1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = FixedVectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, VPUser &Operands,
419                               bool InvariantCond, VPTransformState &State);
420 
421   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
422   void fixVectorizedLoop();
423 
424   // Return true if any runtime check is added.
425   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
426 
427   /// A type for vectorized values in the new loop. Each value from the
428   /// original loop, when vectorized, is represented by UF vector values in the
429   /// new unrolled loop, where UF is the unroll factor.
430   using VectorParts = SmallVector<Value *, 2>;
431 
432   /// Vectorize a single GetElementPtrInst based on information gathered and
433   /// decisions taken during planning.
434   void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF,
435                 unsigned VF, bool IsPtrLoopInvariant,
436                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
437 
438   /// Vectorize a single PHINode in a block. This method handles the induction
439   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
440   /// arbitrary length vectors.
441   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
442 
443   /// A helper function to scalarize a single Instruction in the innermost loop.
444   /// Generates a sequence of scalar instances for each lane between \p MinLane
445   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
446   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
447   /// Instr's operands.
448   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
449                             const VPIteration &Instance, bool IfPredicateInstr,
450                             VPTransformState &State);
451 
452   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
453   /// is provided, the integer induction variable will first be truncated to
454   /// the corresponding type.
455   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
456 
457   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
458   /// vector or scalar value on-demand if one is not yet available. When
459   /// vectorizing a loop, we visit the definition of an instruction before its
460   /// uses. When visiting the definition, we either vectorize or scalarize the
461   /// instruction, creating an entry for it in the corresponding map. (In some
462   /// cases, such as induction variables, we will create both vector and scalar
463   /// entries.) Then, as we encounter uses of the definition, we derive values
464   /// for each scalar or vector use unless such a value is already available.
465   /// For example, if we scalarize a definition and one of its uses is vector,
466   /// we build the required vector on-demand with an insertelement sequence
467   /// when visiting the use. Otherwise, if the use is scalar, we can use the
468   /// existing scalar definition.
469   ///
470   /// Return a value in the new loop corresponding to \p V from the original
471   /// loop at unroll index \p Part. If the value has already been vectorized,
472   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
473   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
474   /// a new vector value on-demand by inserting the scalar values into a vector
475   /// with an insertelement sequence. If the value has been neither vectorized
476   /// nor scalarized, it must be loop invariant, so we simply broadcast the
477   /// value into a vector.
478   Value *getOrCreateVectorValue(Value *V, unsigned Part);
479 
480   /// Return a value in the new loop corresponding to \p V from the original
481   /// loop at unroll and vector indices \p Instance. If the value has been
482   /// vectorized but not scalarized, the necessary extractelement instruction
483   /// will be generated.
484   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
485 
486   /// Construct the vector value of a scalarized value \p V one lane at a time.
487   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
488 
489   /// Try to vectorize interleaved access group \p Group with the base address
490   /// given in \p Addr, optionally masking the vector operations if \p
491   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
492   /// values in the vectorized loop.
493   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
494                                 VPTransformState &State, VPValue *Addr,
495                                 VPValue *BlockInMask = nullptr);
496 
497   /// Vectorize Load and Store instructions with the base address given in \p
498   /// Addr, optionally masking the vector operations if \p BlockInMask is
499   /// non-null. Use \p State to translate given VPValues to IR values in the
500   /// vectorized loop.
501   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
502                                   VPValue *Addr, VPValue *StoredValue,
503                                   VPValue *BlockInMask);
504 
505   /// Set the debug location in the builder using the debug location in
506   /// the instruction.
507   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
508 
509   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
510   void fixNonInductionPHIs(void);
511 
512 protected:
513   friend class LoopVectorizationPlanner;
514 
515   /// A small list of PHINodes.
516   using PhiVector = SmallVector<PHINode *, 4>;
517 
518   /// A type for scalarized values in the new loop. Each value from the
519   /// original loop, when scalarized, is represented by UF x VF scalar values
520   /// in the new unrolled loop, where UF is the unroll factor and VF is the
521   /// vectorization factor.
522   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
523 
524   /// Set up the values of the IVs correctly when exiting the vector loop.
525   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
526                     Value *CountRoundDown, Value *EndValue,
527                     BasicBlock *MiddleBlock);
528 
529   /// Create a new induction variable inside L.
530   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
531                                    Value *Step, Instruction *DL);
532 
533   /// Handle all cross-iteration phis in the header.
534   void fixCrossIterationPHIs();
535 
536   /// Fix a first-order recurrence. This is the second phase of vectorizing
537   /// this phi node.
538   void fixFirstOrderRecurrence(PHINode *Phi);
539 
540   /// Fix a reduction cross-iteration phi. This is the second phase of
541   /// vectorizing this phi node.
542   void fixReduction(PHINode *Phi);
543 
544   /// Clear NSW/NUW flags from reduction instructions if necessary.
545   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
546 
547   /// The Loop exit block may have single value PHI nodes with some
548   /// incoming value. While vectorizing we only handled real values
549   /// that were defined inside the loop and we should have one value for
550   /// each predecessor of its parent basic block. See PR14725.
551   void fixLCSSAPHIs();
552 
553   /// Iteratively sink the scalarized operands of a predicated instruction into
554   /// the block that was created for it.
555   void sinkScalarOperands(Instruction *PredInst);
556 
557   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
558   /// represented as.
559   void truncateToMinimalBitwidths();
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
569   /// to each vector element of Val. The sequence starts at StartIndex.
570   /// \p Opcode is relevant for FP induction variable.
571   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
572                                Instruction::BinaryOps Opcode =
573                                Instruction::BinaryOpsEnd);
574 
575   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
576   /// variable on which to base the steps, \p Step is the size of the step, and
577   /// \p EntryVal is the value from the original loop that maps to the steps.
578   /// Note that \p EntryVal doesn't have to be an induction variable - it
579   /// can also be a truncate instruction.
580   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
581                         const InductionDescriptor &ID);
582 
583   /// Create a vector induction phi node based on an existing scalar one. \p
584   /// EntryVal is the value from the original loop that maps to the vector phi
585   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
586   /// truncate instruction, instead of widening the original IV, we widen a
587   /// version of the IV truncated to \p EntryVal's type.
588   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
589                                        Value *Step, Instruction *EntryVal);
590 
591   /// Returns true if an instruction \p I should be scalarized instead of
592   /// vectorized for the chosen vectorization factor.
593   bool shouldScalarizeInstruction(Instruction *I) const;
594 
595   /// Returns true if we should generate a scalar version of \p IV.
596   bool needsScalarInduction(Instruction *IV) const;
597 
598   /// If there is a cast involved in the induction variable \p ID, which should
599   /// be ignored in the vectorized loop body, this function records the
600   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
601   /// cast. We had already proved that the casted Phi is equal to the uncasted
602   /// Phi in the vectorized loop (under a runtime guard), and therefore
603   /// there is no need to vectorize the cast - the same value can be used in the
604   /// vector loop for both the Phi and the cast.
605   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
606   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
607   ///
608   /// \p EntryVal is the value from the original loop that maps to the vector
609   /// phi node and is used to distinguish what is the IV currently being
610   /// processed - original one (if \p EntryVal is a phi corresponding to the
611   /// original IV) or the "newly-created" one based on the proof mentioned above
612   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
613   /// latter case \p EntryVal is a TruncInst and we must not record anything for
614   /// that IV, but it's error-prone to expect callers of this routine to care
615   /// about that, hence this explicit parameter.
616   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
617                                              const Instruction *EntryVal,
618                                              Value *VectorLoopValue,
619                                              unsigned Part,
620                                              unsigned Lane = UINT_MAX);
621 
622   /// Generate a shuffle sequence that will reverse the vector Vec.
623   virtual Value *reverseVector(Value *Vec);
624 
625   /// Returns (and creates if needed) the original loop trip count.
626   Value *getOrCreateTripCount(Loop *NewLoop);
627 
628   /// Returns (and creates if needed) the trip count of the widened loop.
629   Value *getOrCreateVectorTripCount(Loop *NewLoop);
630 
631   /// Returns a bitcasted value to the requested vector type.
632   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
633   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
634                                 const DataLayout &DL);
635 
636   /// Emit a bypass check to see if the vector trip count is zero, including if
637   /// it overflows.
638   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
639 
640   /// Emit a bypass check to see if all of the SCEV assumptions we've
641   /// had to make are correct.
642   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
643 
644   /// Emit bypass checks to check any memory assumptions we may have made.
645   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
646 
647   /// Compute the transformed value of Index at offset StartValue using step
648   /// StepValue.
649   /// For integer induction, returns StartValue + Index * StepValue.
650   /// For pointer induction, returns StartValue[Index * StepValue].
651   /// FIXME: The newly created binary instructions should contain nsw/nuw
652   /// flags, which can be found from the original scalar operations.
653   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
654                               const DataLayout &DL,
655                               const InductionDescriptor &ID) const;
656 
657   /// Add additional metadata to \p To that was not present on \p Orig.
658   ///
659   /// Currently this is used to add the noalias annotations based on the
660   /// inserted memchecks.  Use this for instructions that are *cloned* into the
661   /// vector loop.
662   void addNewMetadata(Instruction *To, const Instruction *Orig);
663 
664   /// Add metadata from one instruction to another.
665   ///
666   /// This includes both the original MDs from \p From and additional ones (\see
667   /// addNewMetadata).  Use this for *newly created* instructions in the vector
668   /// loop.
669   void addMetadata(Instruction *To, Instruction *From);
670 
671   /// Similar to the previous function but it adds the metadata to a
672   /// vector of instructions.
673   void addMetadata(ArrayRef<Value *> To, Instruction *From);
674 
675   /// The original loop.
676   Loop *OrigLoop;
677 
678   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
679   /// dynamic knowledge to simplify SCEV expressions and converts them to a
680   /// more usable form.
681   PredicatedScalarEvolution &PSE;
682 
683   /// Loop Info.
684   LoopInfo *LI;
685 
686   /// Dominator Tree.
687   DominatorTree *DT;
688 
689   /// Alias Analysis.
690   AAResults *AA;
691 
692   /// Target Library Info.
693   const TargetLibraryInfo *TLI;
694 
695   /// Target Transform Info.
696   const TargetTransformInfo *TTI;
697 
698   /// Assumption Cache.
699   AssumptionCache *AC;
700 
701   /// Interface to emit optimization remarks.
702   OptimizationRemarkEmitter *ORE;
703 
704   /// LoopVersioning.  It's only set up (non-null) if memchecks were
705   /// used.
706   ///
707   /// This is currently only used to add no-alias metadata based on the
708   /// memchecks.  The actually versioning is performed manually.
709   std::unique_ptr<LoopVersioning> LVer;
710 
711   /// The vectorization SIMD factor to use. Each vector will have this many
712   /// vector elements.
713   unsigned VF;
714 
715   /// The vectorization unroll factor to use. Each scalar is vectorized to this
716   /// many different vector instructions.
717   unsigned UF;
718 
719   /// The builder that we use
720   IRBuilder<> Builder;
721 
722   // --- Vectorization state ---
723 
724   /// The vector-loop preheader.
725   BasicBlock *LoopVectorPreHeader;
726 
727   /// The scalar-loop preheader.
728   BasicBlock *LoopScalarPreHeader;
729 
730   /// Middle Block between the vector and the scalar.
731   BasicBlock *LoopMiddleBlock;
732 
733   /// The ExitBlock of the scalar loop.
734   BasicBlock *LoopExitBlock;
735 
736   /// The vector loop body.
737   BasicBlock *LoopVectorBody;
738 
739   /// The scalar loop body.
740   BasicBlock *LoopScalarBody;
741 
742   /// A list of all bypass blocks. The first block is the entry of the loop.
743   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
744 
745   /// The new Induction variable which was added to the new block.
746   PHINode *Induction = nullptr;
747 
748   /// The induction variable of the old basic block.
749   PHINode *OldInduction = nullptr;
750 
751   /// Maps values from the original loop to their corresponding values in the
752   /// vectorized loop. A key value can map to either vector values, scalar
753   /// values or both kinds of values, depending on whether the key was
754   /// vectorized and scalarized.
755   VectorizerValueMap VectorLoopValueMap;
756 
757   /// Store instructions that were predicated.
758   SmallVector<Instruction *, 4> PredicatedInstructions;
759 
760   /// Trip count of the original loop.
761   Value *TripCount = nullptr;
762 
763   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
764   Value *VectorTripCount = nullptr;
765 
766   /// The legality analysis.
767   LoopVectorizationLegality *Legal;
768 
769   /// The profitablity analysis.
770   LoopVectorizationCostModel *Cost;
771 
772   // Record whether runtime checks are added.
773   bool AddedSafetyChecks = false;
774 
775   // Holds the end values for each induction variable. We save the end values
776   // so we can later fix-up the external users of the induction variables.
777   DenseMap<PHINode *, Value *> IVEndValues;
778 
779   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
780   // fixed up at the end of vector code generation.
781   SmallVector<PHINode *, 8> OrigPHIsToFix;
782 };
783 
784 class InnerLoopUnroller : public InnerLoopVectorizer {
785 public:
786   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
787                     LoopInfo *LI, DominatorTree *DT,
788                     const TargetLibraryInfo *TLI,
789                     const TargetTransformInfo *TTI, AssumptionCache *AC,
790                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
791                     LoopVectorizationLegality *LVL,
792                     LoopVectorizationCostModel *CM)
793       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
794                             UnrollFactor, LVL, CM) {}
795 
796 private:
797   Value *getBroadcastInstrs(Value *V) override;
798   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
799                        Instruction::BinaryOps Opcode =
800                        Instruction::BinaryOpsEnd) override;
801   Value *reverseVector(Value *Vec) override;
802 };
803 
804 } // end namespace llvm
805 
806 /// Look for a meaningful debug location on the instruction or it's
807 /// operands.
808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
809   if (!I)
810     return I;
811 
812   DebugLoc Empty;
813   if (I->getDebugLoc() != Empty)
814     return I;
815 
816   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
817     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
818       if (OpInst->getDebugLoc() != Empty)
819         return OpInst;
820   }
821 
822   return I;
823 }
824 
825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
826   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
827     const DILocation *DIL = Inst->getDebugLoc();
828     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
829         !isa<DbgInfoIntrinsic>(Inst)) {
830       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
831       if (NewDIL)
832         B.SetCurrentDebugLocation(NewDIL.getValue());
833       else
834         LLVM_DEBUG(dbgs()
835                    << "Failed to create new discriminator: "
836                    << DIL->getFilename() << " Line: " << DIL->getLine());
837     }
838     else
839       B.SetCurrentDebugLocation(DIL);
840   } else
841     B.SetCurrentDebugLocation(DebugLoc());
842 }
843 
844 /// Write a record \p DebugMsg about vectorization failure to the debug
845 /// output stream. If \p I is passed, it is an instruction that prevents
846 /// vectorization.
847 #ifndef NDEBUG
848 static void debugVectorizationFailure(const StringRef DebugMsg,
849     Instruction *I) {
850   dbgs() << "LV: Not vectorizing: " << DebugMsg;
851   if (I != nullptr)
852     dbgs() << " " << *I;
853   else
854     dbgs() << '.';
855   dbgs() << '\n';
856 }
857 #endif
858 
859 /// Create an analysis remark that explains why vectorization failed
860 ///
861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
862 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
863 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
864 /// the location of the remark.  \return the remark object that can be
865 /// streamed to.
866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
867     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
868   Value *CodeRegion = TheLoop->getHeader();
869   DebugLoc DL = TheLoop->getStartLoc();
870 
871   if (I) {
872     CodeRegion = I->getParent();
873     // If there is no debug location attached to the instruction, revert back to
874     // using the loop's.
875     if (I->getDebugLoc())
876       DL = I->getDebugLoc();
877   }
878 
879   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
880   R << "loop not vectorized: ";
881   return R;
882 }
883 
884 namespace llvm {
885 
886 void reportVectorizationFailure(const StringRef DebugMsg,
887     const StringRef OREMsg, const StringRef ORETag,
888     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
889   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
890   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
891   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
892                 ORETag, TheLoop, I) << OREMsg);
893 }
894 
895 } // end namespace llvm
896 
897 #ifndef NDEBUG
898 /// \return string containing a file name and a line # for the given loop.
899 static std::string getDebugLocString(const Loop *L) {
900   std::string Result;
901   if (L) {
902     raw_string_ostream OS(Result);
903     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
904       LoopDbgLoc.print(OS);
905     else
906       // Just print the module name.
907       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
908     OS.flush();
909   }
910   return Result;
911 }
912 #endif
913 
914 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
915                                          const Instruction *Orig) {
916   // If the loop was versioned with memchecks, add the corresponding no-alias
917   // metadata.
918   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
919     LVer->annotateInstWithNoAlias(To, Orig);
920 }
921 
922 void InnerLoopVectorizer::addMetadata(Instruction *To,
923                                       Instruction *From) {
924   propagateMetadata(To, From);
925   addNewMetadata(To, From);
926 }
927 
928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
929                                       Instruction *From) {
930   for (Value *V : To) {
931     if (Instruction *I = dyn_cast<Instruction>(V))
932       addMetadata(I, From);
933   }
934 }
935 
936 namespace llvm {
937 
938 // Loop vectorization cost-model hints how the scalar epilogue loop should be
939 // lowered.
940 enum ScalarEpilogueLowering {
941 
942   // The default: allowing scalar epilogues.
943   CM_ScalarEpilogueAllowed,
944 
945   // Vectorization with OptForSize: don't allow epilogues.
946   CM_ScalarEpilogueNotAllowedOptSize,
947 
948   // A special case of vectorisation with OptForSize: loops with a very small
949   // trip count are considered for vectorization under OptForSize, thereby
950   // making sure the cost of their loop body is dominant, free of runtime
951   // guards and scalar iteration overheads.
952   CM_ScalarEpilogueNotAllowedLowTripLoop,
953 
954   // Loop hint predicate indicating an epilogue is undesired.
955   CM_ScalarEpilogueNotNeededUsePredicate
956 };
957 
958 /// LoopVectorizationCostModel - estimates the expected speedups due to
959 /// vectorization.
960 /// In many cases vectorization is not profitable. This can happen because of
961 /// a number of reasons. In this class we mainly attempt to predict the
962 /// expected speedup/slowdowns due to the supported instruction set. We use the
963 /// TargetTransformInfo to query the different backends for the cost of
964 /// different operations.
965 class LoopVectorizationCostModel {
966 public:
967   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
968                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
969                              LoopVectorizationLegality *Legal,
970                              const TargetTransformInfo &TTI,
971                              const TargetLibraryInfo *TLI, DemandedBits *DB,
972                              AssumptionCache *AC,
973                              OptimizationRemarkEmitter *ORE, const Function *F,
974                              const LoopVectorizeHints *Hints,
975                              InterleavedAccessInfo &IAI)
976       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
977         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
978         Hints(Hints), InterleaveInfo(IAI) {}
979 
980   /// \return An upper bound for the vectorization factor, or None if
981   /// vectorization and interleaving should be avoided up front.
982   Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC);
983 
984   /// \return True if runtime checks are required for vectorization, and false
985   /// otherwise.
986   bool runtimeChecksRequired();
987 
988   /// \return The most profitable vectorization factor and the cost of that VF.
989   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
990   /// then this vectorization factor will be selected if vectorization is
991   /// possible.
992   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
993 
994   /// Setup cost-based decisions for user vectorization factor.
995   void selectUserVectorizationFactor(unsigned UserVF) {
996     collectUniformsAndScalars(UserVF);
997     collectInstsToScalarize(UserVF);
998   }
999 
1000   /// \return The size (in bits) of the smallest and widest types in the code
1001   /// that needs to be vectorized. We ignore values that remain scalar such as
1002   /// 64 bit loop indices.
1003   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1004 
1005   /// \return The desired interleave count.
1006   /// If interleave count has been specified by metadata it will be returned.
1007   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1008   /// are the selected vectorization factor and the cost of the selected VF.
1009   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1010 
1011   /// Memory access instruction may be vectorized in more than one way.
1012   /// Form of instruction after vectorization depends on cost.
1013   /// This function takes cost-based decisions for Load/Store instructions
1014   /// and collects them in a map. This decisions map is used for building
1015   /// the lists of loop-uniform and loop-scalar instructions.
1016   /// The calculated cost is saved with widening decision in order to
1017   /// avoid redundant calculations.
1018   void setCostBasedWideningDecision(unsigned VF);
1019 
1020   /// A struct that represents some properties of the register usage
1021   /// of a loop.
1022   struct RegisterUsage {
1023     /// Holds the number of loop invariant values that are used in the loop.
1024     /// The key is ClassID of target-provided register class.
1025     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1026     /// Holds the maximum number of concurrent live intervals in the loop.
1027     /// The key is ClassID of target-provided register class.
1028     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1029   };
1030 
1031   /// \return Returns information about the register usages of the loop for the
1032   /// given vectorization factors.
1033   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1034 
1035   /// Collect values we want to ignore in the cost model.
1036   void collectValuesToIgnore();
1037 
1038   /// \returns The smallest bitwidth each instruction can be represented with.
1039   /// The vector equivalents of these instructions should be truncated to this
1040   /// type.
1041   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1042     return MinBWs;
1043   }
1044 
1045   /// \returns True if it is more profitable to scalarize instruction \p I for
1046   /// vectorization factor \p VF.
1047   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1048     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1049 
1050     // Cost model is not run in the VPlan-native path - return conservative
1051     // result until this changes.
1052     if (EnableVPlanNativePath)
1053       return false;
1054 
1055     auto Scalars = InstsToScalarize.find(VF);
1056     assert(Scalars != InstsToScalarize.end() &&
1057            "VF not yet analyzed for scalarization profitability");
1058     return Scalars->second.find(I) != Scalars->second.end();
1059   }
1060 
1061   /// Returns true if \p I is known to be uniform after vectorization.
1062   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1063     if (VF == 1)
1064       return true;
1065 
1066     // Cost model is not run in the VPlan-native path - return conservative
1067     // result until this changes.
1068     if (EnableVPlanNativePath)
1069       return false;
1070 
1071     auto UniformsPerVF = Uniforms.find(VF);
1072     assert(UniformsPerVF != Uniforms.end() &&
1073            "VF not yet analyzed for uniformity");
1074     return UniformsPerVF->second.count(I);
1075   }
1076 
1077   /// Returns true if \p I is known to be scalar after vectorization.
1078   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1079     if (VF == 1)
1080       return true;
1081 
1082     // Cost model is not run in the VPlan-native path - return conservative
1083     // result until this changes.
1084     if (EnableVPlanNativePath)
1085       return false;
1086 
1087     auto ScalarsPerVF = Scalars.find(VF);
1088     assert(ScalarsPerVF != Scalars.end() &&
1089            "Scalar values are not calculated for VF");
1090     return ScalarsPerVF->second.count(I);
1091   }
1092 
1093   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1094   /// for vectorization factor \p VF.
1095   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1096     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1097            !isProfitableToScalarize(I, VF) &&
1098            !isScalarAfterVectorization(I, VF);
1099   }
1100 
1101   /// Decision that was taken during cost calculation for memory instruction.
1102   enum InstWidening {
1103     CM_Unknown,
1104     CM_Widen,         // For consecutive accesses with stride +1.
1105     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1106     CM_Interleave,
1107     CM_GatherScatter,
1108     CM_Scalarize
1109   };
1110 
1111   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1112   /// instruction \p I and vector width \p VF.
1113   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1114                            unsigned Cost) {
1115     assert(VF >= 2 && "Expected VF >=2");
1116     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1117   }
1118 
1119   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1120   /// interleaving group \p Grp and vector width \p VF.
1121   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1122                            InstWidening W, unsigned Cost) {
1123     assert(VF >= 2 && "Expected VF >=2");
1124     /// Broadcast this decicion to all instructions inside the group.
1125     /// But the cost will be assigned to one instruction only.
1126     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1127       if (auto *I = Grp->getMember(i)) {
1128         if (Grp->getInsertPos() == I)
1129           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1130         else
1131           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1132       }
1133     }
1134   }
1135 
1136   /// Return the cost model decision for the given instruction \p I and vector
1137   /// width \p VF. Return CM_Unknown if this instruction did not pass
1138   /// through the cost modeling.
1139   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1140     assert(VF >= 2 && "Expected VF >=2");
1141 
1142     // Cost model is not run in the VPlan-native path - return conservative
1143     // result until this changes.
1144     if (EnableVPlanNativePath)
1145       return CM_GatherScatter;
1146 
1147     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1148     auto Itr = WideningDecisions.find(InstOnVF);
1149     if (Itr == WideningDecisions.end())
1150       return CM_Unknown;
1151     return Itr->second.first;
1152   }
1153 
1154   /// Return the vectorization cost for the given instruction \p I and vector
1155   /// width \p VF.
1156   unsigned getWideningCost(Instruction *I, unsigned VF) {
1157     assert(VF >= 2 && "Expected VF >=2");
1158     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1159     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1160            "The cost is not calculated");
1161     return WideningDecisions[InstOnVF].second;
1162   }
1163 
1164   /// Return True if instruction \p I is an optimizable truncate whose operand
1165   /// is an induction variable. Such a truncate will be removed by adding a new
1166   /// induction variable with the destination type.
1167   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1168     // If the instruction is not a truncate, return false.
1169     auto *Trunc = dyn_cast<TruncInst>(I);
1170     if (!Trunc)
1171       return false;
1172 
1173     // Get the source and destination types of the truncate.
1174     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1175     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1176 
1177     // If the truncate is free for the given types, return false. Replacing a
1178     // free truncate with an induction variable would add an induction variable
1179     // update instruction to each iteration of the loop. We exclude from this
1180     // check the primary induction variable since it will need an update
1181     // instruction regardless.
1182     Value *Op = Trunc->getOperand(0);
1183     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1184       return false;
1185 
1186     // If the truncated value is not an induction variable, return false.
1187     return Legal->isInductionPhi(Op);
1188   }
1189 
1190   /// Collects the instructions to scalarize for each predicated instruction in
1191   /// the loop.
1192   void collectInstsToScalarize(unsigned VF);
1193 
1194   /// Collect Uniform and Scalar values for the given \p VF.
1195   /// The sets depend on CM decision for Load/Store instructions
1196   /// that may be vectorized as interleave, gather-scatter or scalarized.
1197   void collectUniformsAndScalars(unsigned VF) {
1198     // Do the analysis once.
1199     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1200       return;
1201     setCostBasedWideningDecision(VF);
1202     collectLoopUniforms(VF);
1203     collectLoopScalars(VF);
1204   }
1205 
1206   /// Returns true if the target machine supports masked store operation
1207   /// for the given \p DataType and kind of access to \p Ptr.
1208   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1209     return Legal->isConsecutivePtr(Ptr) &&
1210            TTI.isLegalMaskedStore(DataType, Alignment);
1211   }
1212 
1213   /// Returns true if the target machine supports masked load operation
1214   /// for the given \p DataType and kind of access to \p Ptr.
1215   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1216     return Legal->isConsecutivePtr(Ptr) &&
1217            TTI.isLegalMaskedLoad(DataType, Alignment);
1218   }
1219 
1220   /// Returns true if the target machine supports masked scatter operation
1221   /// for the given \p DataType.
1222   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1223     return TTI.isLegalMaskedScatter(DataType, Alignment);
1224   }
1225 
1226   /// Returns true if the target machine supports masked gather operation
1227   /// for the given \p DataType.
1228   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1229     return TTI.isLegalMaskedGather(DataType, Alignment);
1230   }
1231 
1232   /// Returns true if the target machine can represent \p V as a masked gather
1233   /// or scatter operation.
1234   bool isLegalGatherOrScatter(Value *V) {
1235     bool LI = isa<LoadInst>(V);
1236     bool SI = isa<StoreInst>(V);
1237     if (!LI && !SI)
1238       return false;
1239     auto *Ty = getMemInstValueType(V);
1240     Align Align = getLoadStoreAlignment(V);
1241     return (LI && isLegalMaskedGather(Ty, Align)) ||
1242            (SI && isLegalMaskedScatter(Ty, Align));
1243   }
1244 
1245   /// Returns true if \p I is an instruction that will be scalarized with
1246   /// predication. Such instructions include conditional stores and
1247   /// instructions that may divide by zero.
1248   /// If a non-zero VF has been calculated, we check if I will be scalarized
1249   /// predication for that VF.
1250   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1251 
1252   // Returns true if \p I is an instruction that will be predicated either
1253   // through scalar predication or masked load/store or masked gather/scatter.
1254   // Superset of instructions that return true for isScalarWithPredication.
1255   bool isPredicatedInst(Instruction *I) {
1256     if (!blockNeedsPredication(I->getParent()))
1257       return false;
1258     // Loads and stores that need some form of masked operation are predicated
1259     // instructions.
1260     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1261       return Legal->isMaskRequired(I);
1262     return isScalarWithPredication(I);
1263   }
1264 
1265   /// Returns true if \p I is a memory instruction with consecutive memory
1266   /// access that can be widened.
1267   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1268 
1269   /// Returns true if \p I is a memory instruction in an interleaved-group
1270   /// of memory accesses that can be vectorized with wide vector loads/stores
1271   /// and shuffles.
1272   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1273 
1274   /// Check if \p Instr belongs to any interleaved access group.
1275   bool isAccessInterleaved(Instruction *Instr) {
1276     return InterleaveInfo.isInterleaved(Instr);
1277   }
1278 
1279   /// Get the interleaved access group that \p Instr belongs to.
1280   const InterleaveGroup<Instruction> *
1281   getInterleavedAccessGroup(Instruction *Instr) {
1282     return InterleaveInfo.getInterleaveGroup(Instr);
1283   }
1284 
1285   /// Returns true if an interleaved group requires a scalar iteration
1286   /// to handle accesses with gaps, and there is nothing preventing us from
1287   /// creating a scalar epilogue.
1288   bool requiresScalarEpilogue() const {
1289     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1290   }
1291 
1292   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1293   /// loop hint annotation.
1294   bool isScalarEpilogueAllowed() const {
1295     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1296   }
1297 
1298   /// Returns true if all loop blocks should be masked to fold tail loop.
1299   bool foldTailByMasking() const { return FoldTailByMasking; }
1300 
1301   bool blockNeedsPredication(BasicBlock *BB) {
1302     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1303   }
1304 
1305   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1306   /// with factor VF.  Return the cost of the instruction, including
1307   /// scalarization overhead if it's needed.
1308   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1309 
1310   /// Estimate cost of a call instruction CI if it were vectorized with factor
1311   /// VF. Return the cost of the instruction, including scalarization overhead
1312   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1313   /// scalarized -
1314   /// i.e. either vector version isn't available, or is too expensive.
1315   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1316 
1317   /// Invalidates decisions already taken by the cost model.
1318   void invalidateCostModelingDecisions() {
1319     WideningDecisions.clear();
1320     Uniforms.clear();
1321     Scalars.clear();
1322   }
1323 
1324 private:
1325   unsigned NumPredStores = 0;
1326 
1327   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1328   /// than zero. One is returned if vectorization should best be avoided due
1329   /// to cost.
1330   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1331 
1332   /// The vectorization cost is a combination of the cost itself and a boolean
1333   /// indicating whether any of the contributing operations will actually
1334   /// operate on
1335   /// vector values after type legalization in the backend. If this latter value
1336   /// is
1337   /// false, then all operations will be scalarized (i.e. no vectorization has
1338   /// actually taken place).
1339   using VectorizationCostTy = std::pair<unsigned, bool>;
1340 
1341   /// Returns the expected execution cost. The unit of the cost does
1342   /// not matter because we use the 'cost' units to compare different
1343   /// vector widths. The cost that is returned is *not* normalized by
1344   /// the factor width.
1345   VectorizationCostTy expectedCost(unsigned VF);
1346 
1347   /// Returns the execution time cost of an instruction for a given vector
1348   /// width. Vector width of one means scalar.
1349   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1350 
1351   /// The cost-computation logic from getInstructionCost which provides
1352   /// the vector type as an output parameter.
1353   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1354 
1355   /// Calculate vectorization cost of memory instruction \p I.
1356   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1357 
1358   /// The cost computation for scalarized memory instruction.
1359   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1360 
1361   /// The cost computation for interleaving group of memory instructions.
1362   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1363 
1364   /// The cost computation for Gather/Scatter instruction.
1365   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1366 
1367   /// The cost computation for widening instruction \p I with consecutive
1368   /// memory access.
1369   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1370 
1371   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1372   /// Load: scalar load + broadcast.
1373   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1374   /// element)
1375   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1376 
1377   /// Estimate the overhead of scalarizing an instruction. This is a
1378   /// convenience wrapper for the type-based getScalarizationOverhead API.
1379   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1380 
1381   /// Returns whether the instruction is a load or store and will be a emitted
1382   /// as a vector operation.
1383   bool isConsecutiveLoadOrStore(Instruction *I);
1384 
1385   /// Returns true if an artificially high cost for emulated masked memrefs
1386   /// should be used.
1387   bool useEmulatedMaskMemRefHack(Instruction *I);
1388 
1389   /// Map of scalar integer values to the smallest bitwidth they can be legally
1390   /// represented as. The vector equivalents of these values should be truncated
1391   /// to this type.
1392   MapVector<Instruction *, uint64_t> MinBWs;
1393 
1394   /// A type representing the costs for instructions if they were to be
1395   /// scalarized rather than vectorized. The entries are Instruction-Cost
1396   /// pairs.
1397   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1398 
1399   /// A set containing all BasicBlocks that are known to present after
1400   /// vectorization as a predicated block.
1401   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1402 
1403   /// Records whether it is allowed to have the original scalar loop execute at
1404   /// least once. This may be needed as a fallback loop in case runtime
1405   /// aliasing/dependence checks fail, or to handle the tail/remainder
1406   /// iterations when the trip count is unknown or doesn't divide by the VF,
1407   /// or as a peel-loop to handle gaps in interleave-groups.
1408   /// Under optsize and when the trip count is very small we don't allow any
1409   /// iterations to execute in the scalar loop.
1410   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1411 
1412   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1413   bool FoldTailByMasking = false;
1414 
1415   /// A map holding scalar costs for different vectorization factors. The
1416   /// presence of a cost for an instruction in the mapping indicates that the
1417   /// instruction will be scalarized when vectorizing with the associated
1418   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1419   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1420 
1421   /// Holds the instructions known to be uniform after vectorization.
1422   /// The data is collected per VF.
1423   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1424 
1425   /// Holds the instructions known to be scalar after vectorization.
1426   /// The data is collected per VF.
1427   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1428 
1429   /// Holds the instructions (address computations) that are forced to be
1430   /// scalarized.
1431   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1432 
1433   /// Returns the expected difference in cost from scalarizing the expression
1434   /// feeding a predicated instruction \p PredInst. The instructions to
1435   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1436   /// non-negative return value implies the expression will be scalarized.
1437   /// Currently, only single-use chains are considered for scalarization.
1438   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1439                               unsigned VF);
1440 
1441   /// Collect the instructions that are uniform after vectorization. An
1442   /// instruction is uniform if we represent it with a single scalar value in
1443   /// the vectorized loop corresponding to each vector iteration. Examples of
1444   /// uniform instructions include pointer operands of consecutive or
1445   /// interleaved memory accesses. Note that although uniformity implies an
1446   /// instruction will be scalar, the reverse is not true. In general, a
1447   /// scalarized instruction will be represented by VF scalar values in the
1448   /// vectorized loop, each corresponding to an iteration of the original
1449   /// scalar loop.
1450   void collectLoopUniforms(unsigned VF);
1451 
1452   /// Collect the instructions that are scalar after vectorization. An
1453   /// instruction is scalar if it is known to be uniform or will be scalarized
1454   /// during vectorization. Non-uniform scalarized instructions will be
1455   /// represented by VF values in the vectorized loop, each corresponding to an
1456   /// iteration of the original scalar loop.
1457   void collectLoopScalars(unsigned VF);
1458 
1459   /// Keeps cost model vectorization decision and cost for instructions.
1460   /// Right now it is used for memory instructions only.
1461   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1462                                 std::pair<InstWidening, unsigned>>;
1463 
1464   DecisionList WideningDecisions;
1465 
1466   /// Returns true if \p V is expected to be vectorized and it needs to be
1467   /// extracted.
1468   bool needsExtract(Value *V, unsigned VF) const {
1469     Instruction *I = dyn_cast<Instruction>(V);
1470     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1471       return false;
1472 
1473     // Assume we can vectorize V (and hence we need extraction) if the
1474     // scalars are not computed yet. This can happen, because it is called
1475     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1476     // the scalars are collected. That should be a safe assumption in most
1477     // cases, because we check if the operands have vectorizable types
1478     // beforehand in LoopVectorizationLegality.
1479     return Scalars.find(VF) == Scalars.end() ||
1480            !isScalarAfterVectorization(I, VF);
1481   };
1482 
1483   /// Returns a range containing only operands needing to be extracted.
1484   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1485                                                    unsigned VF) {
1486     return SmallVector<Value *, 4>(make_filter_range(
1487         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1488   }
1489 
1490 public:
1491   /// The loop that we evaluate.
1492   Loop *TheLoop;
1493 
1494   /// Predicated scalar evolution analysis.
1495   PredicatedScalarEvolution &PSE;
1496 
1497   /// Loop Info analysis.
1498   LoopInfo *LI;
1499 
1500   /// Vectorization legality.
1501   LoopVectorizationLegality *Legal;
1502 
1503   /// Vector target information.
1504   const TargetTransformInfo &TTI;
1505 
1506   /// Target Library Info.
1507   const TargetLibraryInfo *TLI;
1508 
1509   /// Demanded bits analysis.
1510   DemandedBits *DB;
1511 
1512   /// Assumption cache.
1513   AssumptionCache *AC;
1514 
1515   /// Interface to emit optimization remarks.
1516   OptimizationRemarkEmitter *ORE;
1517 
1518   const Function *TheFunction;
1519 
1520   /// Loop Vectorize Hint.
1521   const LoopVectorizeHints *Hints;
1522 
1523   /// The interleave access information contains groups of interleaved accesses
1524   /// with the same stride and close to each other.
1525   InterleavedAccessInfo &InterleaveInfo;
1526 
1527   /// Values to ignore in the cost model.
1528   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1529 
1530   /// Values to ignore in the cost model when VF > 1.
1531   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1532 };
1533 
1534 } // end namespace llvm
1535 
1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1537 // vectorization. The loop needs to be annotated with #pragma omp simd
1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1539 // vector length information is not provided, vectorization is not considered
1540 // explicit. Interleave hints are not allowed either. These limitations will be
1541 // relaxed in the future.
1542 // Please, note that we are currently forced to abuse the pragma 'clang
1543 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1545 // provides *explicit vectorization hints* (LV can bypass legal checks and
1546 // assume that vectorization is legal). However, both hints are implemented
1547 // using the same metadata (llvm.loop.vectorize, processed by
1548 // LoopVectorizeHints). This will be fixed in the future when the native IR
1549 // representation for pragma 'omp simd' is introduced.
1550 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1551                                    OptimizationRemarkEmitter *ORE) {
1552   assert(!OuterLp->empty() && "This is not an outer loop");
1553   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1554 
1555   // Only outer loops with an explicit vectorization hint are supported.
1556   // Unannotated outer loops are ignored.
1557   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1558     return false;
1559 
1560   Function *Fn = OuterLp->getHeader()->getParent();
1561   if (!Hints.allowVectorization(Fn, OuterLp,
1562                                 true /*VectorizeOnlyWhenForced*/)) {
1563     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1564     return false;
1565   }
1566 
1567   if (Hints.getInterleave() > 1) {
1568     // TODO: Interleave support is future work.
1569     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1570                          "outer loops.\n");
1571     Hints.emitRemarkWithHints();
1572     return false;
1573   }
1574 
1575   return true;
1576 }
1577 
1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1579                                   OptimizationRemarkEmitter *ORE,
1580                                   SmallVectorImpl<Loop *> &V) {
1581   // Collect inner loops and outer loops without irreducible control flow. For
1582   // now, only collect outer loops that have explicit vectorization hints. If we
1583   // are stress testing the VPlan H-CFG construction, we collect the outermost
1584   // loop of every loop nest.
1585   if (L.empty() || VPlanBuildStressTest ||
1586       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1587     LoopBlocksRPO RPOT(&L);
1588     RPOT.perform(LI);
1589     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1590       V.push_back(&L);
1591       // TODO: Collect inner loops inside marked outer loops in case
1592       // vectorization fails for the outer loop. Do not invoke
1593       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1594       // already known to be reducible. We can use an inherited attribute for
1595       // that.
1596       return;
1597     }
1598   }
1599   for (Loop *InnerL : L)
1600     collectSupportedLoops(*InnerL, LI, ORE, V);
1601 }
1602 
1603 namespace {
1604 
1605 /// The LoopVectorize Pass.
1606 struct LoopVectorize : public FunctionPass {
1607   /// Pass identification, replacement for typeid
1608   static char ID;
1609 
1610   LoopVectorizePass Impl;
1611 
1612   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1613                          bool VectorizeOnlyWhenForced = false)
1614       : FunctionPass(ID),
1615         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1616     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1617   }
1618 
1619   bool runOnFunction(Function &F) override {
1620     if (skipFunction(F))
1621       return false;
1622 
1623     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1624     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1625     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1626     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1627     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1628     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1629     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1630     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1631     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1632     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1633     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1634     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1635     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1636 
1637     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1638         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1639 
1640     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1641                         GetLAA, *ORE, PSI).MadeAnyChange;
1642   }
1643 
1644   void getAnalysisUsage(AnalysisUsage &AU) const override {
1645     AU.addRequired<AssumptionCacheTracker>();
1646     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1647     AU.addRequired<DominatorTreeWrapperPass>();
1648     AU.addRequired<LoopInfoWrapperPass>();
1649     AU.addRequired<ScalarEvolutionWrapperPass>();
1650     AU.addRequired<TargetTransformInfoWrapperPass>();
1651     AU.addRequired<AAResultsWrapperPass>();
1652     AU.addRequired<LoopAccessLegacyAnalysis>();
1653     AU.addRequired<DemandedBitsWrapperPass>();
1654     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1655     AU.addRequired<InjectTLIMappingsLegacy>();
1656 
1657     // We currently do not preserve loopinfo/dominator analyses with outer loop
1658     // vectorization. Until this is addressed, mark these analyses as preserved
1659     // only for non-VPlan-native path.
1660     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1661     if (!EnableVPlanNativePath) {
1662       AU.addPreserved<LoopInfoWrapperPass>();
1663       AU.addPreserved<DominatorTreeWrapperPass>();
1664     }
1665 
1666     AU.addPreserved<BasicAAWrapperPass>();
1667     AU.addPreserved<GlobalsAAWrapperPass>();
1668     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1669   }
1670 };
1671 
1672 } // end anonymous namespace
1673 
1674 //===----------------------------------------------------------------------===//
1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1676 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1677 //===----------------------------------------------------------------------===//
1678 
1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1680   // We need to place the broadcast of invariant variables outside the loop,
1681   // but only if it's proven safe to do so. Else, broadcast will be inside
1682   // vector loop body.
1683   Instruction *Instr = dyn_cast<Instruction>(V);
1684   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1685                      (!Instr ||
1686                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1687   // Place the code for broadcasting invariant variables in the new preheader.
1688   IRBuilder<>::InsertPointGuard Guard(Builder);
1689   if (SafeToHoist)
1690     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1691 
1692   // Broadcast the scalar into all locations in the vector.
1693   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1694 
1695   return Shuf;
1696 }
1697 
1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1699     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1700   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1701          "Expected either an induction phi-node or a truncate of it!");
1702   Value *Start = II.getStartValue();
1703 
1704   // Construct the initial value of the vector IV in the vector loop preheader
1705   auto CurrIP = Builder.saveIP();
1706   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1707   if (isa<TruncInst>(EntryVal)) {
1708     assert(Start->getType()->isIntegerTy() &&
1709            "Truncation requires an integer type");
1710     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1711     Step = Builder.CreateTrunc(Step, TruncType);
1712     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1713   }
1714   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1715   Value *SteppedStart =
1716       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1717 
1718   // We create vector phi nodes for both integer and floating-point induction
1719   // variables. Here, we determine the kind of arithmetic we will perform.
1720   Instruction::BinaryOps AddOp;
1721   Instruction::BinaryOps MulOp;
1722   if (Step->getType()->isIntegerTy()) {
1723     AddOp = Instruction::Add;
1724     MulOp = Instruction::Mul;
1725   } else {
1726     AddOp = II.getInductionOpcode();
1727     MulOp = Instruction::FMul;
1728   }
1729 
1730   // Multiply the vectorization factor by the step using integer or
1731   // floating-point arithmetic as appropriate.
1732   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1733   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1734 
1735   // Create a vector splat to use in the induction update.
1736   //
1737   // FIXME: If the step is non-constant, we create the vector splat with
1738   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1739   //        handle a constant vector splat.
1740   Value *SplatVF =
1741       isa<Constant>(Mul)
1742           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1743           : Builder.CreateVectorSplat(VF, Mul);
1744   Builder.restoreIP(CurrIP);
1745 
1746   // We may need to add the step a number of times, depending on the unroll
1747   // factor. The last of those goes into the PHI.
1748   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1749                                     &*LoopVectorBody->getFirstInsertionPt());
1750   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1751   Instruction *LastInduction = VecInd;
1752   for (unsigned Part = 0; Part < UF; ++Part) {
1753     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1754 
1755     if (isa<TruncInst>(EntryVal))
1756       addMetadata(LastInduction, EntryVal);
1757     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1758 
1759     LastInduction = cast<Instruction>(addFastMathFlag(
1760         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1761     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1762   }
1763 
1764   // Move the last step to the end of the latch block. This ensures consistent
1765   // placement of all induction updates.
1766   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1767   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1768   auto *ICmp = cast<Instruction>(Br->getCondition());
1769   LastInduction->moveBefore(ICmp);
1770   LastInduction->setName("vec.ind.next");
1771 
1772   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1773   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1774 }
1775 
1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1777   return Cost->isScalarAfterVectorization(I, VF) ||
1778          Cost->isProfitableToScalarize(I, VF);
1779 }
1780 
1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1782   if (shouldScalarizeInstruction(IV))
1783     return true;
1784   auto isScalarInst = [&](User *U) -> bool {
1785     auto *I = cast<Instruction>(U);
1786     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1787   };
1788   return llvm::any_of(IV->users(), isScalarInst);
1789 }
1790 
1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1792     const InductionDescriptor &ID, const Instruction *EntryVal,
1793     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1794   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1795          "Expected either an induction phi-node or a truncate of it!");
1796 
1797   // This induction variable is not the phi from the original loop but the
1798   // newly-created IV based on the proof that casted Phi is equal to the
1799   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1800   // re-uses the same InductionDescriptor that original IV uses but we don't
1801   // have to do any recording in this case - that is done when original IV is
1802   // processed.
1803   if (isa<TruncInst>(EntryVal))
1804     return;
1805 
1806   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1807   if (Casts.empty())
1808     return;
1809   // Only the first Cast instruction in the Casts vector is of interest.
1810   // The rest of the Casts (if exist) have no uses outside the
1811   // induction update chain itself.
1812   Instruction *CastInst = *Casts.begin();
1813   if (Lane < UINT_MAX)
1814     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1815   else
1816     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1817 }
1818 
1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1820   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1821          "Primary induction variable must have an integer type");
1822 
1823   auto II = Legal->getInductionVars().find(IV);
1824   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1825 
1826   auto ID = II->second;
1827   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1828 
1829   // The value from the original loop to which we are mapping the new induction
1830   // variable.
1831   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1832 
1833   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1834 
1835   // Generate code for the induction step. Note that induction steps are
1836   // required to be loop-invariant
1837   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1838     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1839            "Induction step should be loop invariant");
1840     if (PSE.getSE()->isSCEVable(IV->getType())) {
1841       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1842       return Exp.expandCodeFor(Step, Step->getType(),
1843                                LoopVectorPreHeader->getTerminator());
1844     }
1845     return cast<SCEVUnknown>(Step)->getValue();
1846   };
1847 
1848   // The scalar value to broadcast. This is derived from the canonical
1849   // induction variable. If a truncation type is given, truncate the canonical
1850   // induction variable and step. Otherwise, derive these values from the
1851   // induction descriptor.
1852   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1853     Value *ScalarIV = Induction;
1854     if (IV != OldInduction) {
1855       ScalarIV = IV->getType()->isIntegerTy()
1856                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1857                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1858                                           IV->getType());
1859       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1860       ScalarIV->setName("offset.idx");
1861     }
1862     if (Trunc) {
1863       auto *TruncType = cast<IntegerType>(Trunc->getType());
1864       assert(Step->getType()->isIntegerTy() &&
1865              "Truncation requires an integer step");
1866       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1867       Step = Builder.CreateTrunc(Step, TruncType);
1868     }
1869     return ScalarIV;
1870   };
1871 
1872   // Create the vector values from the scalar IV, in the absence of creating a
1873   // vector IV.
1874   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1875     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1876     for (unsigned Part = 0; Part < UF; ++Part) {
1877       Value *EntryPart =
1878           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1879       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1880       if (Trunc)
1881         addMetadata(EntryPart, Trunc);
1882       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1883     }
1884   };
1885 
1886   // Now do the actual transformations, and start with creating the step value.
1887   Value *Step = CreateStepValue(ID.getStep());
1888   if (VF <= 1) {
1889     Value *ScalarIV = CreateScalarIV(Step);
1890     CreateSplatIV(ScalarIV, Step);
1891     return;
1892   }
1893 
1894   // Determine if we want a scalar version of the induction variable. This is
1895   // true if the induction variable itself is not widened, or if it has at
1896   // least one user in the loop that is not widened.
1897   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1898   if (!NeedsScalarIV) {
1899     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1900     return;
1901   }
1902 
1903   // Try to create a new independent vector induction variable. If we can't
1904   // create the phi node, we will splat the scalar induction variable in each
1905   // loop iteration.
1906   if (!shouldScalarizeInstruction(EntryVal)) {
1907     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1908     Value *ScalarIV = CreateScalarIV(Step);
1909     // Create scalar steps that can be used by instructions we will later
1910     // scalarize. Note that the addition of the scalar steps will not increase
1911     // the number of instructions in the loop in the common case prior to
1912     // InstCombine. We will be trading one vector extract for each scalar step.
1913     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1914     return;
1915   }
1916 
1917   // All IV users are scalar instructions, so only emit a scalar IV, not a
1918   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
1919   // predicate used by the masked loads/stores.
1920   Value *ScalarIV = CreateScalarIV(Step);
1921   if (!Cost->isScalarEpilogueAllowed())
1922     CreateSplatIV(ScalarIV, Step);
1923   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1924 }
1925 
1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1927                                           Instruction::BinaryOps BinOp) {
1928   // Create and check the types.
1929   auto *ValVTy = cast<VectorType>(Val->getType());
1930   int VLen = ValVTy->getNumElements();
1931 
1932   Type *STy = Val->getType()->getScalarType();
1933   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1934          "Induction Step must be an integer or FP");
1935   assert(Step->getType() == STy && "Step has wrong type");
1936 
1937   SmallVector<Constant *, 8> Indices;
1938 
1939   if (STy->isIntegerTy()) {
1940     // Create a vector of consecutive numbers from zero to VF.
1941     for (int i = 0; i < VLen; ++i)
1942       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1943 
1944     // Add the consecutive indices to the vector value.
1945     Constant *Cv = ConstantVector::get(Indices);
1946     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1947     Step = Builder.CreateVectorSplat(VLen, Step);
1948     assert(Step->getType() == Val->getType() && "Invalid step vec");
1949     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1950     // which can be found from the original scalar operations.
1951     Step = Builder.CreateMul(Cv, Step);
1952     return Builder.CreateAdd(Val, Step, "induction");
1953   }
1954 
1955   // Floating point induction.
1956   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1957          "Binary Opcode should be specified for FP induction");
1958   // Create a vector of consecutive numbers from zero to VF.
1959   for (int i = 0; i < VLen; ++i)
1960     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1961 
1962   // Add the consecutive indices to the vector value.
1963   Constant *Cv = ConstantVector::get(Indices);
1964 
1965   Step = Builder.CreateVectorSplat(VLen, Step);
1966 
1967   // Floating point operations had to be 'fast' to enable the induction.
1968   FastMathFlags Flags;
1969   Flags.setFast();
1970 
1971   Value *MulOp = Builder.CreateFMul(Cv, Step);
1972   if (isa<Instruction>(MulOp))
1973     // Have to check, MulOp may be a constant
1974     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1975 
1976   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1977   if (isa<Instruction>(BOp))
1978     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1979   return BOp;
1980 }
1981 
1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1983                                            Instruction *EntryVal,
1984                                            const InductionDescriptor &ID) {
1985   // We shouldn't have to build scalar steps if we aren't vectorizing.
1986   assert(VF > 1 && "VF should be greater than one");
1987 
1988   // Get the value type and ensure it and the step have the same integer type.
1989   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1990   assert(ScalarIVTy == Step->getType() &&
1991          "Val and Step should have the same type");
1992 
1993   // We build scalar steps for both integer and floating-point induction
1994   // variables. Here, we determine the kind of arithmetic we will perform.
1995   Instruction::BinaryOps AddOp;
1996   Instruction::BinaryOps MulOp;
1997   if (ScalarIVTy->isIntegerTy()) {
1998     AddOp = Instruction::Add;
1999     MulOp = Instruction::Mul;
2000   } else {
2001     AddOp = ID.getInductionOpcode();
2002     MulOp = Instruction::FMul;
2003   }
2004 
2005   // Determine the number of scalars we need to generate for each unroll
2006   // iteration. If EntryVal is uniform, we only need to generate the first
2007   // lane. Otherwise, we generate all VF values.
2008   unsigned Lanes =
2009       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2010                                                                          : VF;
2011   // Compute the scalar steps and save the results in VectorLoopValueMap.
2012   for (unsigned Part = 0; Part < UF; ++Part) {
2013     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2014       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2015       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2016       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2017       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2018       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2019     }
2020   }
2021 }
2022 
2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2024   assert(V != Induction && "The new induction variable should not be used.");
2025   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2026   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2027 
2028   // If we have a stride that is replaced by one, do it here. Defer this for
2029   // the VPlan-native path until we start running Legal checks in that path.
2030   if (!EnableVPlanNativePath && Legal->hasStride(V))
2031     V = ConstantInt::get(V->getType(), 1);
2032 
2033   // If we have a vector mapped to this value, return it.
2034   if (VectorLoopValueMap.hasVectorValue(V, Part))
2035     return VectorLoopValueMap.getVectorValue(V, Part);
2036 
2037   // If the value has not been vectorized, check if it has been scalarized
2038   // instead. If it has been scalarized, and we actually need the value in
2039   // vector form, we will construct the vector values on demand.
2040   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2041     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2042 
2043     // If we've scalarized a value, that value should be an instruction.
2044     auto *I = cast<Instruction>(V);
2045 
2046     // If we aren't vectorizing, we can just copy the scalar map values over to
2047     // the vector map.
2048     if (VF == 1) {
2049       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2050       return ScalarValue;
2051     }
2052 
2053     // Get the last scalar instruction we generated for V and Part. If the value
2054     // is known to be uniform after vectorization, this corresponds to lane zero
2055     // of the Part unroll iteration. Otherwise, the last instruction is the one
2056     // we created for the last vector lane of the Part unroll iteration.
2057     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2058     auto *LastInst = cast<Instruction>(
2059         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2060 
2061     // Set the insert point after the last scalarized instruction. This ensures
2062     // the insertelement sequence will directly follow the scalar definitions.
2063     auto OldIP = Builder.saveIP();
2064     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2065     Builder.SetInsertPoint(&*NewIP);
2066 
2067     // However, if we are vectorizing, we need to construct the vector values.
2068     // If the value is known to be uniform after vectorization, we can just
2069     // broadcast the scalar value corresponding to lane zero for each unroll
2070     // iteration. Otherwise, we construct the vector values using insertelement
2071     // instructions. Since the resulting vectors are stored in
2072     // VectorLoopValueMap, we will only generate the insertelements once.
2073     Value *VectorValue = nullptr;
2074     if (Cost->isUniformAfterVectorization(I, VF)) {
2075       VectorValue = getBroadcastInstrs(ScalarValue);
2076       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2077     } else {
2078       // Initialize packing with insertelements to start from undef.
2079       Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF));
2080       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2081       for (unsigned Lane = 0; Lane < VF; ++Lane)
2082         packScalarIntoVectorValue(V, {Part, Lane});
2083       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2084     }
2085     Builder.restoreIP(OldIP);
2086     return VectorValue;
2087   }
2088 
2089   // If this scalar is unknown, assume that it is a constant or that it is
2090   // loop invariant. Broadcast V and save the value for future uses.
2091   Value *B = getBroadcastInstrs(V);
2092   VectorLoopValueMap.setVectorValue(V, Part, B);
2093   return B;
2094 }
2095 
2096 Value *
2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2098                                             const VPIteration &Instance) {
2099   // If the value is not an instruction contained in the loop, it should
2100   // already be scalar.
2101   if (OrigLoop->isLoopInvariant(V))
2102     return V;
2103 
2104   assert(Instance.Lane > 0
2105              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2106              : true && "Uniform values only have lane zero");
2107 
2108   // If the value from the original loop has not been vectorized, it is
2109   // represented by UF x VF scalar values in the new loop. Return the requested
2110   // scalar value.
2111   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2112     return VectorLoopValueMap.getScalarValue(V, Instance);
2113 
2114   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2115   // for the given unroll part. If this entry is not a vector type (i.e., the
2116   // vectorization factor is one), there is no need to generate an
2117   // extractelement instruction.
2118   auto *U = getOrCreateVectorValue(V, Instance.Part);
2119   if (!U->getType()->isVectorTy()) {
2120     assert(VF == 1 && "Value not scalarized has non-vector type");
2121     return U;
2122   }
2123 
2124   // Otherwise, the value from the original loop has been vectorized and is
2125   // represented by UF vector values. Extract and return the requested scalar
2126   // value from the appropriate vector lane.
2127   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2128 }
2129 
2130 void InnerLoopVectorizer::packScalarIntoVectorValue(
2131     Value *V, const VPIteration &Instance) {
2132   assert(V != Induction && "The new induction variable should not be used.");
2133   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2134   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2135 
2136   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2137   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2138   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2139                                             Builder.getInt32(Instance.Lane));
2140   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2141 }
2142 
2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2144   assert(Vec->getType()->isVectorTy() && "Invalid type");
2145   SmallVector<int, 8> ShuffleMask;
2146   for (unsigned i = 0; i < VF; ++i)
2147     ShuffleMask.push_back(VF - i - 1);
2148 
2149   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2150                                      ShuffleMask, "reverse");
2151 }
2152 
2153 // Return whether we allow using masked interleave-groups (for dealing with
2154 // strided loads/stores that reside in predicated blocks, or for dealing
2155 // with gaps).
2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2157   // If an override option has been passed in for interleaved accesses, use it.
2158   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2159     return EnableMaskedInterleavedMemAccesses;
2160 
2161   return TTI.enableMaskedInterleavedAccessVectorization();
2162 }
2163 
2164 // Try to vectorize the interleave group that \p Instr belongs to.
2165 //
2166 // E.g. Translate following interleaved load group (factor = 3):
2167 //   for (i = 0; i < N; i+=3) {
2168 //     R = Pic[i];             // Member of index 0
2169 //     G = Pic[i+1];           // Member of index 1
2170 //     B = Pic[i+2];           // Member of index 2
2171 //     ... // do something to R, G, B
2172 //   }
2173 // To:
2174 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2175 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2176 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2177 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2178 //
2179 // Or translate following interleaved store group (factor = 3):
2180 //   for (i = 0; i < N; i+=3) {
2181 //     ... do something to R, G, B
2182 //     Pic[i]   = R;           // Member of index 0
2183 //     Pic[i+1] = G;           // Member of index 1
2184 //     Pic[i+2] = B;           // Member of index 2
2185 //   }
2186 // To:
2187 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2188 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2189 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2190 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2191 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2192 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2193     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2194     VPValue *Addr, VPValue *BlockInMask) {
2195   Instruction *Instr = Group->getInsertPos();
2196   const DataLayout &DL = Instr->getModule()->getDataLayout();
2197 
2198   // Prepare for the vector type of the interleaved load/store.
2199   Type *ScalarTy = getMemInstValueType(Instr);
2200   unsigned InterleaveFactor = Group->getFactor();
2201   auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF);
2202 
2203   // Prepare for the new pointers.
2204   SmallVector<Value *, 2> AddrParts;
2205   unsigned Index = Group->getIndex(Instr);
2206 
2207   // TODO: extend the masked interleaved-group support to reversed access.
2208   assert((!BlockInMask || !Group->isReverse()) &&
2209          "Reversed masked interleave-group not supported.");
2210 
2211   // If the group is reverse, adjust the index to refer to the last vector lane
2212   // instead of the first. We adjust the index from the first vector lane,
2213   // rather than directly getting the pointer for lane VF - 1, because the
2214   // pointer operand of the interleaved access is supposed to be uniform. For
2215   // uniform instructions, we're only required to generate a value for the
2216   // first vector lane in each unroll iteration.
2217   if (Group->isReverse())
2218     Index += (VF - 1) * Group->getFactor();
2219 
2220   for (unsigned Part = 0; Part < UF; Part++) {
2221     Value *AddrPart = State.get(Addr, {Part, 0});
2222     setDebugLocFromInst(Builder, AddrPart);
2223 
2224     // Notice current instruction could be any index. Need to adjust the address
2225     // to the member of index 0.
2226     //
2227     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2228     //       b = A[i];       // Member of index 0
2229     // Current pointer is pointed to A[i+1], adjust it to A[i].
2230     //
2231     // E.g.  A[i+1] = a;     // Member of index 1
2232     //       A[i]   = b;     // Member of index 0
2233     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2234     // Current pointer is pointed to A[i+2], adjust it to A[i].
2235 
2236     bool InBounds = false;
2237     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2238       InBounds = gep->isInBounds();
2239     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2240     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2241 
2242     // Cast to the vector pointer type.
2243     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2244     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2245     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2246   }
2247 
2248   setDebugLocFromInst(Builder, Instr);
2249   Value *UndefVec = UndefValue::get(VecTy);
2250 
2251   Value *MaskForGaps = nullptr;
2252   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2253     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2254     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2255   }
2256 
2257   // Vectorize the interleaved load group.
2258   if (isa<LoadInst>(Instr)) {
2259     // For each unroll part, create a wide load for the group.
2260     SmallVector<Value *, 2> NewLoads;
2261     for (unsigned Part = 0; Part < UF; Part++) {
2262       Instruction *NewLoad;
2263       if (BlockInMask || MaskForGaps) {
2264         assert(useMaskedInterleavedAccesses(*TTI) &&
2265                "masked interleaved groups are not allowed.");
2266         Value *GroupMask = MaskForGaps;
2267         if (BlockInMask) {
2268           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2269           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2270           Value *ShuffledMask = Builder.CreateShuffleVector(
2271               BlockInMaskPart, Undefs,
2272               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2273           GroupMask = MaskForGaps
2274                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2275                                                 MaskForGaps)
2276                           : ShuffledMask;
2277         }
2278         NewLoad =
2279             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2280                                      GroupMask, UndefVec, "wide.masked.vec");
2281       }
2282       else
2283         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2284                                             Group->getAlign(), "wide.vec");
2285       Group->addMetadata(NewLoad);
2286       NewLoads.push_back(NewLoad);
2287     }
2288 
2289     // For each member in the group, shuffle out the appropriate data from the
2290     // wide loads.
2291     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2292       Instruction *Member = Group->getMember(I);
2293 
2294       // Skip the gaps in the group.
2295       if (!Member)
2296         continue;
2297 
2298       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2299       for (unsigned Part = 0; Part < UF; Part++) {
2300         Value *StridedVec = Builder.CreateShuffleVector(
2301             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2302 
2303         // If this member has different type, cast the result type.
2304         if (Member->getType() != ScalarTy) {
2305           VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF);
2306           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2307         }
2308 
2309         if (Group->isReverse())
2310           StridedVec = reverseVector(StridedVec);
2311 
2312         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2313       }
2314     }
2315     return;
2316   }
2317 
2318   // The sub vector type for current instruction.
2319   auto *SubVT = FixedVectorType::get(ScalarTy, VF);
2320 
2321   // Vectorize the interleaved store group.
2322   for (unsigned Part = 0; Part < UF; Part++) {
2323     // Collect the stored vector from each member.
2324     SmallVector<Value *, 4> StoredVecs;
2325     for (unsigned i = 0; i < InterleaveFactor; i++) {
2326       // Interleaved store group doesn't allow a gap, so each index has a member
2327       Instruction *Member = Group->getMember(i);
2328       assert(Member && "Fail to get a member from an interleaved store group");
2329 
2330       Value *StoredVec = getOrCreateVectorValue(
2331           cast<StoreInst>(Member)->getValueOperand(), Part);
2332       if (Group->isReverse())
2333         StoredVec = reverseVector(StoredVec);
2334 
2335       // If this member has different type, cast it to a unified type.
2336 
2337       if (StoredVec->getType() != SubVT)
2338         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2339 
2340       StoredVecs.push_back(StoredVec);
2341     }
2342 
2343     // Concatenate all vectors into a wide vector.
2344     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2345 
2346     // Interleave the elements in the wide vector.
2347     Value *IVec = Builder.CreateShuffleVector(
2348         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2349         "interleaved.vec");
2350 
2351     Instruction *NewStoreInstr;
2352     if (BlockInMask) {
2353       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2354       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2355       Value *ShuffledMask = Builder.CreateShuffleVector(
2356           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2357           "interleaved.mask");
2358       NewStoreInstr = Builder.CreateMaskedStore(
2359           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2360     }
2361     else
2362       NewStoreInstr =
2363           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2364 
2365     Group->addMetadata(NewStoreInstr);
2366   }
2367 }
2368 
2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2370                                                      VPTransformState &State,
2371                                                      VPValue *Addr,
2372                                                      VPValue *StoredValue,
2373                                                      VPValue *BlockInMask) {
2374   // Attempt to issue a wide load.
2375   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2376   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2377 
2378   assert((LI || SI) && "Invalid Load/Store instruction");
2379   assert((!SI || StoredValue) && "No stored value provided for widened store");
2380   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2381 
2382   LoopVectorizationCostModel::InstWidening Decision =
2383       Cost->getWideningDecision(Instr, VF);
2384   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2385           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2386           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2387          "CM decision is not to widen the memory instruction");
2388 
2389   Type *ScalarDataTy = getMemInstValueType(Instr);
2390   auto *DataTy = FixedVectorType::get(ScalarDataTy, VF);
2391   const Align Alignment = getLoadStoreAlignment(Instr);
2392 
2393   // Determine if the pointer operand of the access is either consecutive or
2394   // reverse consecutive.
2395   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2396   bool ConsecutiveStride =
2397       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2398   bool CreateGatherScatter =
2399       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2400 
2401   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2402   // gather/scatter. Otherwise Decision should have been to Scalarize.
2403   assert((ConsecutiveStride || CreateGatherScatter) &&
2404          "The instruction should be scalarized");
2405   (void)ConsecutiveStride;
2406 
2407   VectorParts BlockInMaskParts(UF);
2408   bool isMaskRequired = BlockInMask;
2409   if (isMaskRequired)
2410     for (unsigned Part = 0; Part < UF; ++Part)
2411       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2412 
2413   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2414     // Calculate the pointer for the specific unroll-part.
2415     GetElementPtrInst *PartPtr = nullptr;
2416 
2417     bool InBounds = false;
2418     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2419       InBounds = gep->isInBounds();
2420 
2421     if (Reverse) {
2422       // If the address is consecutive but reversed, then the
2423       // wide store needs to start at the last vector element.
2424       PartPtr = cast<GetElementPtrInst>(
2425           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2426       PartPtr->setIsInBounds(InBounds);
2427       PartPtr = cast<GetElementPtrInst>(
2428           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2429       PartPtr->setIsInBounds(InBounds);
2430       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2431         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2432     } else {
2433       PartPtr = cast<GetElementPtrInst>(
2434           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2435       PartPtr->setIsInBounds(InBounds);
2436     }
2437 
2438     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2439     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2440   };
2441 
2442   // Handle Stores:
2443   if (SI) {
2444     setDebugLocFromInst(Builder, SI);
2445 
2446     for (unsigned Part = 0; Part < UF; ++Part) {
2447       Instruction *NewSI = nullptr;
2448       Value *StoredVal = State.get(StoredValue, Part);
2449       if (CreateGatherScatter) {
2450         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2451         Value *VectorGep = State.get(Addr, Part);
2452         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2453                                             MaskPart);
2454       } else {
2455         if (Reverse) {
2456           // If we store to reverse consecutive memory locations, then we need
2457           // to reverse the order of elements in the stored value.
2458           StoredVal = reverseVector(StoredVal);
2459           // We don't want to update the value in the map as it might be used in
2460           // another expression. So don't call resetVectorValue(StoredVal).
2461         }
2462         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2463         if (isMaskRequired)
2464           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2465                                             BlockInMaskParts[Part]);
2466         else
2467           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2468       }
2469       addMetadata(NewSI, SI);
2470     }
2471     return;
2472   }
2473 
2474   // Handle loads.
2475   assert(LI && "Must have a load instruction");
2476   setDebugLocFromInst(Builder, LI);
2477   for (unsigned Part = 0; Part < UF; ++Part) {
2478     Value *NewLI;
2479     if (CreateGatherScatter) {
2480       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2481       Value *VectorGep = State.get(Addr, Part);
2482       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2483                                          nullptr, "wide.masked.gather");
2484       addMetadata(NewLI, LI);
2485     } else {
2486       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2487       if (isMaskRequired)
2488         NewLI = Builder.CreateMaskedLoad(
2489             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2490             "wide.masked.load");
2491       else
2492         NewLI =
2493             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2494 
2495       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2496       addMetadata(NewLI, LI);
2497       if (Reverse)
2498         NewLI = reverseVector(NewLI);
2499     }
2500     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2501   }
2502 }
2503 
2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2505                                                const VPIteration &Instance,
2506                                                bool IfPredicateInstr,
2507                                                VPTransformState &State) {
2508   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2509 
2510   setDebugLocFromInst(Builder, Instr);
2511 
2512   // Does this instruction return a value ?
2513   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2514 
2515   Instruction *Cloned = Instr->clone();
2516   if (!IsVoidRetTy)
2517     Cloned->setName(Instr->getName() + ".cloned");
2518 
2519   // Replace the operands of the cloned instructions with their scalar
2520   // equivalents in the new loop.
2521   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2522     auto *NewOp = State.get(User.getOperand(op), Instance);
2523     Cloned->setOperand(op, NewOp);
2524   }
2525   addNewMetadata(Cloned, Instr);
2526 
2527   // Place the cloned scalar in the new loop.
2528   Builder.Insert(Cloned);
2529 
2530   // Add the cloned scalar to the scalar map entry.
2531   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2532 
2533   // If we just cloned a new assumption, add it the assumption cache.
2534   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2535     if (II->getIntrinsicID() == Intrinsic::assume)
2536       AC->registerAssumption(II);
2537 
2538   // End if-block.
2539   if (IfPredicateInstr)
2540     PredicatedInstructions.push_back(Cloned);
2541 }
2542 
2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2544                                                       Value *End, Value *Step,
2545                                                       Instruction *DL) {
2546   BasicBlock *Header = L->getHeader();
2547   BasicBlock *Latch = L->getLoopLatch();
2548   // As we're just creating this loop, it's possible no latch exists
2549   // yet. If so, use the header as this will be a single block loop.
2550   if (!Latch)
2551     Latch = Header;
2552 
2553   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2554   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2555   setDebugLocFromInst(Builder, OldInst);
2556   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2557 
2558   Builder.SetInsertPoint(Latch->getTerminator());
2559   setDebugLocFromInst(Builder, OldInst);
2560 
2561   // Create i+1 and fill the PHINode.
2562   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2563   Induction->addIncoming(Start, L->getLoopPreheader());
2564   Induction->addIncoming(Next, Latch);
2565   // Create the compare.
2566   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2567   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2568 
2569   // Now we have two terminators. Remove the old one from the block.
2570   Latch->getTerminator()->eraseFromParent();
2571 
2572   return Induction;
2573 }
2574 
2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2576   if (TripCount)
2577     return TripCount;
2578 
2579   assert(L && "Create Trip Count for null loop.");
2580   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2581   // Find the loop boundaries.
2582   ScalarEvolution *SE = PSE.getSE();
2583   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2584   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2585          "Invalid loop count");
2586 
2587   Type *IdxTy = Legal->getWidestInductionType();
2588   assert(IdxTy && "No type for induction");
2589 
2590   // The exit count might have the type of i64 while the phi is i32. This can
2591   // happen if we have an induction variable that is sign extended before the
2592   // compare. The only way that we get a backedge taken count is that the
2593   // induction variable was signed and as such will not overflow. In such a case
2594   // truncation is legal.
2595   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2596       IdxTy->getPrimitiveSizeInBits())
2597     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2598   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2599 
2600   // Get the total trip count from the count by adding 1.
2601   const SCEV *ExitCount = SE->getAddExpr(
2602       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2603 
2604   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2605 
2606   // Expand the trip count and place the new instructions in the preheader.
2607   // Notice that the pre-header does not change, only the loop body.
2608   SCEVExpander Exp(*SE, DL, "induction");
2609 
2610   // Count holds the overall loop count (N).
2611   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2612                                 L->getLoopPreheader()->getTerminator());
2613 
2614   if (TripCount->getType()->isPointerTy())
2615     TripCount =
2616         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2617                                     L->getLoopPreheader()->getTerminator());
2618 
2619   return TripCount;
2620 }
2621 
2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2623   if (VectorTripCount)
2624     return VectorTripCount;
2625 
2626   Value *TC = getOrCreateTripCount(L);
2627   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2628 
2629   Type *Ty = TC->getType();
2630   Constant *Step = ConstantInt::get(Ty, VF * UF);
2631 
2632   // If the tail is to be folded by masking, round the number of iterations N
2633   // up to a multiple of Step instead of rounding down. This is done by first
2634   // adding Step-1 and then rounding down. Note that it's ok if this addition
2635   // overflows: the vector induction variable will eventually wrap to zero given
2636   // that it starts at zero and its Step is a power of two; the loop will then
2637   // exit, with the last early-exit vector comparison also producing all-true.
2638   if (Cost->foldTailByMasking()) {
2639     assert(isPowerOf2_32(VF * UF) &&
2640            "VF*UF must be a power of 2 when folding tail by masking");
2641     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2642   }
2643 
2644   // Now we need to generate the expression for the part of the loop that the
2645   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2646   // iterations are not required for correctness, or N - Step, otherwise. Step
2647   // is equal to the vectorization factor (number of SIMD elements) times the
2648   // unroll factor (number of SIMD instructions).
2649   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2650 
2651   // If there is a non-reversed interleaved group that may speculatively access
2652   // memory out-of-bounds, we need to ensure that there will be at least one
2653   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2654   // the trip count, we set the remainder to be equal to the step. If the step
2655   // does not evenly divide the trip count, no adjustment is necessary since
2656   // there will already be scalar iterations. Note that the minimum iterations
2657   // check ensures that N >= Step.
2658   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2659     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2660     R = Builder.CreateSelect(IsZero, Step, R);
2661   }
2662 
2663   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2664 
2665   return VectorTripCount;
2666 }
2667 
2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2669                                                    const DataLayout &DL) {
2670   // Verify that V is a vector type with same number of elements as DstVTy.
2671   unsigned VF = DstVTy->getNumElements();
2672   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2673   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2674   Type *SrcElemTy = SrcVecTy->getElementType();
2675   Type *DstElemTy = DstVTy->getElementType();
2676   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2677          "Vector elements must have same size");
2678 
2679   // Do a direct cast if element types are castable.
2680   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2681     return Builder.CreateBitOrPointerCast(V, DstVTy);
2682   }
2683   // V cannot be directly casted to desired vector type.
2684   // May happen when V is a floating point vector but DstVTy is a vector of
2685   // pointers or vice-versa. Handle this using a two-step bitcast using an
2686   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2687   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2688          "Only one type should be a pointer type");
2689   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2690          "Only one type should be a floating point type");
2691   Type *IntTy =
2692       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2693   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2694   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2695   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2696 }
2697 
2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2699                                                          BasicBlock *Bypass) {
2700   Value *Count = getOrCreateTripCount(L);
2701   // Reuse existing vector loop preheader for TC checks.
2702   // Note that new preheader block is generated for vector loop.
2703   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2704   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2705 
2706   // Generate code to check if the loop's trip count is less than VF * UF, or
2707   // equal to it in case a scalar epilogue is required; this implies that the
2708   // vector trip count is zero. This check also covers the case where adding one
2709   // to the backedge-taken count overflowed leading to an incorrect trip count
2710   // of zero. In this case we will also jump to the scalar loop.
2711   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2712                                           : ICmpInst::ICMP_ULT;
2713 
2714   // If tail is to be folded, vector loop takes care of all iterations.
2715   Value *CheckMinIters = Builder.getFalse();
2716   if (!Cost->foldTailByMasking())
2717     CheckMinIters = Builder.CreateICmp(
2718         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2719         "min.iters.check");
2720 
2721   // Create new preheader for vector loop.
2722   LoopVectorPreHeader =
2723       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2724                  "vector.ph");
2725 
2726   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2727                                DT->getNode(Bypass)->getIDom()) &&
2728          "TC check is expected to dominate Bypass");
2729 
2730   // Update dominator for Bypass & LoopExit.
2731   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2732   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2733 
2734   ReplaceInstWithInst(
2735       TCCheckBlock->getTerminator(),
2736       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2737   LoopBypassBlocks.push_back(TCCheckBlock);
2738 }
2739 
2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2741   // Reuse existing vector loop preheader for SCEV checks.
2742   // Note that new preheader block is generated for vector loop.
2743   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2744 
2745   // Generate the code to check that the SCEV assumptions that we made.
2746   // We want the new basic block to start at the first instruction in a
2747   // sequence of instructions that form a check.
2748   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2749                    "scev.check");
2750   Value *SCEVCheck = Exp.expandCodeForPredicate(
2751       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2752 
2753   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2754     if (C->isZero())
2755       return;
2756 
2757   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2758          "Cannot SCEV check stride or overflow when optimizing for size");
2759 
2760   SCEVCheckBlock->setName("vector.scevcheck");
2761   // Create new preheader for vector loop.
2762   LoopVectorPreHeader =
2763       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2764                  nullptr, "vector.ph");
2765 
2766   // Update dominator only if this is first RT check.
2767   if (LoopBypassBlocks.empty()) {
2768     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2769     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2770   }
2771 
2772   ReplaceInstWithInst(
2773       SCEVCheckBlock->getTerminator(),
2774       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2775   LoopBypassBlocks.push_back(SCEVCheckBlock);
2776   AddedSafetyChecks = true;
2777 }
2778 
2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2780   // VPlan-native path does not do any analysis for runtime checks currently.
2781   if (EnableVPlanNativePath)
2782     return;
2783 
2784   // Reuse existing vector loop preheader for runtime memory checks.
2785   // Note that new preheader block is generated for vector loop.
2786   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2787 
2788   // Generate the code that checks in runtime if arrays overlap. We put the
2789   // checks into a separate block to make the more common case of few elements
2790   // faster.
2791   auto *LAI = Legal->getLAI();
2792   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2793   if (!RtPtrChecking.Need)
2794     return;
2795   Instruction *FirstCheckInst;
2796   Instruction *MemRuntimeCheck;
2797   std::tie(FirstCheckInst, MemRuntimeCheck) =
2798       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2799                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2800   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2801                             "claimed checks are required");
2802 
2803   if (MemCheckBlock->getParent()->hasOptSize()) {
2804     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2805            "Cannot emit memory checks when optimizing for size, unless forced "
2806            "to vectorize.");
2807     ORE->emit([&]() {
2808       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2809                                         L->getStartLoc(), L->getHeader())
2810              << "Code-size may be reduced by not forcing "
2811                 "vectorization, or by source-code modifications "
2812                 "eliminating the need for runtime checks "
2813                 "(e.g., adding 'restrict').";
2814     });
2815   }
2816 
2817   MemCheckBlock->setName("vector.memcheck");
2818   // Create new preheader for vector loop.
2819   LoopVectorPreHeader =
2820       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2821                  "vector.ph");
2822 
2823   // Update dominator only if this is first RT check.
2824   if (LoopBypassBlocks.empty()) {
2825     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2826     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2827   }
2828 
2829   ReplaceInstWithInst(
2830       MemCheckBlock->getTerminator(),
2831       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2832   LoopBypassBlocks.push_back(MemCheckBlock);
2833   AddedSafetyChecks = true;
2834 
2835   // We currently don't use LoopVersioning for the actual loop cloning but we
2836   // still use it to add the noalias metadata.
2837   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2838                                           PSE.getSE());
2839   LVer->prepareNoAliasMetadata();
2840 }
2841 
2842 Value *InnerLoopVectorizer::emitTransformedIndex(
2843     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2844     const InductionDescriptor &ID) const {
2845 
2846   SCEVExpander Exp(*SE, DL, "induction");
2847   auto Step = ID.getStep();
2848   auto StartValue = ID.getStartValue();
2849   assert(Index->getType() == Step->getType() &&
2850          "Index type does not match StepValue type");
2851 
2852   // Note: the IR at this point is broken. We cannot use SE to create any new
2853   // SCEV and then expand it, hoping that SCEV's simplification will give us
2854   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2855   // lead to various SCEV crashes. So all we can do is to use builder and rely
2856   // on InstCombine for future simplifications. Here we handle some trivial
2857   // cases only.
2858   auto CreateAdd = [&B](Value *X, Value *Y) {
2859     assert(X->getType() == Y->getType() && "Types don't match!");
2860     if (auto *CX = dyn_cast<ConstantInt>(X))
2861       if (CX->isZero())
2862         return Y;
2863     if (auto *CY = dyn_cast<ConstantInt>(Y))
2864       if (CY->isZero())
2865         return X;
2866     return B.CreateAdd(X, Y);
2867   };
2868 
2869   auto CreateMul = [&B](Value *X, Value *Y) {
2870     assert(X->getType() == Y->getType() && "Types don't match!");
2871     if (auto *CX = dyn_cast<ConstantInt>(X))
2872       if (CX->isOne())
2873         return Y;
2874     if (auto *CY = dyn_cast<ConstantInt>(Y))
2875       if (CY->isOne())
2876         return X;
2877     return B.CreateMul(X, Y);
2878   };
2879 
2880   switch (ID.getKind()) {
2881   case InductionDescriptor::IK_IntInduction: {
2882     assert(Index->getType() == StartValue->getType() &&
2883            "Index type does not match StartValue type");
2884     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2885       return B.CreateSub(StartValue, Index);
2886     auto *Offset = CreateMul(
2887         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2888     return CreateAdd(StartValue, Offset);
2889   }
2890   case InductionDescriptor::IK_PtrInduction: {
2891     assert(isa<SCEVConstant>(Step) &&
2892            "Expected constant step for pointer induction");
2893     return B.CreateGEP(
2894         StartValue->getType()->getPointerElementType(), StartValue,
2895         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2896                                            &*B.GetInsertPoint())));
2897   }
2898   case InductionDescriptor::IK_FpInduction: {
2899     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2900     auto InductionBinOp = ID.getInductionBinOp();
2901     assert(InductionBinOp &&
2902            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2903             InductionBinOp->getOpcode() == Instruction::FSub) &&
2904            "Original bin op should be defined for FP induction");
2905 
2906     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2907 
2908     // Floating point operations had to be 'fast' to enable the induction.
2909     FastMathFlags Flags;
2910     Flags.setFast();
2911 
2912     Value *MulExp = B.CreateFMul(StepValue, Index);
2913     if (isa<Instruction>(MulExp))
2914       // We have to check, the MulExp may be a constant.
2915       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2916 
2917     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2918                                "induction");
2919     if (isa<Instruction>(BOp))
2920       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2921 
2922     return BOp;
2923   }
2924   case InductionDescriptor::IK_NoInduction:
2925     return nullptr;
2926   }
2927   llvm_unreachable("invalid enum");
2928 }
2929 
2930 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2931   /*
2932    In this function we generate a new loop. The new loop will contain
2933    the vectorized instructions while the old loop will continue to run the
2934    scalar remainder.
2935 
2936        [ ] <-- loop iteration number check.
2937     /   |
2938    /    v
2939   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2940   |  /  |
2941   | /   v
2942   ||   [ ]     <-- vector pre header.
2943   |/    |
2944   |     v
2945   |    [  ] \
2946   |    [  ]_|   <-- vector loop.
2947   |     |
2948   |     v
2949   |   -[ ]   <--- middle-block.
2950   |  /  |
2951   | /   v
2952   -|- >[ ]     <--- new preheader.
2953    |    |
2954    |    v
2955    |   [ ] \
2956    |   [ ]_|   <-- old scalar loop to handle remainder.
2957     \   |
2958      \  v
2959       >[ ]     <-- exit block.
2960    ...
2961    */
2962 
2963   MDNode *OrigLoopID = OrigLoop->getLoopID();
2964 
2965   // Some loops have a single integer induction variable, while other loops
2966   // don't. One example is c++ iterators that often have multiple pointer
2967   // induction variables. In the code below we also support a case where we
2968   // don't have a single induction variable.
2969   //
2970   // We try to obtain an induction variable from the original loop as hard
2971   // as possible. However if we don't find one that:
2972   //   - is an integer
2973   //   - counts from zero, stepping by one
2974   //   - is the size of the widest induction variable type
2975   // then we create a new one.
2976   OldInduction = Legal->getPrimaryInduction();
2977   Type *IdxTy = Legal->getWidestInductionType();
2978 
2979   // Split the single block loop into the two loop structure described above.
2980   LoopScalarBody = OrigLoop->getHeader();
2981   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2982   LoopExitBlock = OrigLoop->getExitBlock();
2983   assert(LoopExitBlock && "Must have an exit block");
2984   assert(LoopVectorPreHeader && "Invalid loop structure");
2985 
2986   LoopMiddleBlock =
2987       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2988                  LI, nullptr, "middle.block");
2989   LoopScalarPreHeader =
2990       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2991                  nullptr, "scalar.ph");
2992   // We intentionally don't let SplitBlock to update LoopInfo since
2993   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2994   // LoopVectorBody is explicitly added to the correct place few lines later.
2995   LoopVectorBody =
2996       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2997                  nullptr, nullptr, "vector.body");
2998 
2999   // Update dominator for loop exit.
3000   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3001 
3002   // Create and register the new vector loop.
3003   Loop *Lp = LI->AllocateLoop();
3004   Loop *ParentLoop = OrigLoop->getParentLoop();
3005 
3006   // Insert the new loop into the loop nest and register the new basic blocks
3007   // before calling any utilities such as SCEV that require valid LoopInfo.
3008   if (ParentLoop) {
3009     ParentLoop->addChildLoop(Lp);
3010   } else {
3011     LI->addTopLevelLoop(Lp);
3012   }
3013   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3014 
3015   // Find the loop boundaries.
3016   Value *Count = getOrCreateTripCount(Lp);
3017 
3018   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3019 
3020   // Now, compare the new count to zero. If it is zero skip the vector loop and
3021   // jump to the scalar loop. This check also covers the case where the
3022   // backedge-taken count is uint##_max: adding one to it will overflow leading
3023   // to an incorrect trip count of zero. In this (rare) case we will also jump
3024   // to the scalar loop.
3025   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3026 
3027   // Generate the code to check any assumptions that we've made for SCEV
3028   // expressions.
3029   emitSCEVChecks(Lp, LoopScalarPreHeader);
3030 
3031   // Generate the code that checks in runtime if arrays overlap. We put the
3032   // checks into a separate block to make the more common case of few elements
3033   // faster.
3034   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3035 
3036   // Generate the induction variable.
3037   // The loop step is equal to the vectorization factor (num of SIMD elements)
3038   // times the unroll factor (num of SIMD instructions).
3039   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3040   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3041   Induction =
3042       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3043                               getDebugLocFromInstOrOperands(OldInduction));
3044 
3045   // We are going to resume the execution of the scalar loop.
3046   // Go over all of the induction variables that we found and fix the
3047   // PHIs that are left in the scalar version of the loop.
3048   // The starting values of PHI nodes depend on the counter of the last
3049   // iteration in the vectorized loop.
3050   // If we come from a bypass edge then we need to start from the original
3051   // start value.
3052 
3053   // This variable saves the new starting index for the scalar loop. It is used
3054   // to test if there are any tail iterations left once the vector loop has
3055   // completed.
3056   for (auto &InductionEntry : Legal->getInductionVars()) {
3057     PHINode *OrigPhi = InductionEntry.first;
3058     InductionDescriptor II = InductionEntry.second;
3059 
3060     // Create phi nodes to merge from the  backedge-taken check block.
3061     PHINode *BCResumeVal =
3062         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3063                         LoopScalarPreHeader->getTerminator());
3064     // Copy original phi DL over to the new one.
3065     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3066     Value *&EndValue = IVEndValues[OrigPhi];
3067     if (OrigPhi == OldInduction) {
3068       // We know what the end value is.
3069       EndValue = CountRoundDown;
3070     } else {
3071       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3072       Type *StepType = II.getStep()->getType();
3073       Instruction::CastOps CastOp =
3074           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3075       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3076       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3077       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3078       EndValue->setName("ind.end");
3079     }
3080 
3081     // The new PHI merges the original incoming value, in case of a bypass,
3082     // or the value at the end of the vectorized loop.
3083     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3084 
3085     // Fix the scalar body counter (PHI node).
3086     // The old induction's phi node in the scalar body needs the truncated
3087     // value.
3088     for (BasicBlock *BB : LoopBypassBlocks)
3089       BCResumeVal->addIncoming(II.getStartValue(), BB);
3090     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3091   }
3092 
3093   // We need the OrigLoop (scalar loop part) latch terminator to help
3094   // produce correct debug info for the middle block BB instructions.
3095   // The legality check stage guarantees that the loop will have a single
3096   // latch.
3097   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3098          "Scalar loop latch terminator isn't a branch");
3099   BranchInst *ScalarLatchBr =
3100       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3101 
3102   // Add a check in the middle block to see if we have completed
3103   // all of the iterations in the first vector loop.
3104   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3105   // If tail is to be folded, we know we don't need to run the remainder.
3106   Value *CmpN = Builder.getTrue();
3107   if (!Cost->foldTailByMasking()) {
3108     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3109                            CountRoundDown, "cmp.n",
3110                            LoopMiddleBlock->getTerminator());
3111 
3112     // Here we use the same DebugLoc as the scalar loop latch branch instead
3113     // of the corresponding compare because they may have ended up with
3114     // different line numbers and we want to avoid awkward line stepping while
3115     // debugging. Eg. if the compare has got a line number inside the loop.
3116     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3117   }
3118 
3119   BranchInst *BrInst =
3120       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3121   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3122   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3123 
3124   // Get ready to start creating new instructions into the vectorized body.
3125   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3126          "Inconsistent vector loop preheader");
3127   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3128 
3129   Optional<MDNode *> VectorizedLoopID =
3130       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3131                                       LLVMLoopVectorizeFollowupVectorized});
3132   if (VectorizedLoopID.hasValue()) {
3133     Lp->setLoopID(VectorizedLoopID.getValue());
3134 
3135     // Do not setAlreadyVectorized if loop attributes have been defined
3136     // explicitly.
3137     return LoopVectorPreHeader;
3138   }
3139 
3140   // Keep all loop hints from the original loop on the vector loop (we'll
3141   // replace the vectorizer-specific hints below).
3142   if (MDNode *LID = OrigLoop->getLoopID())
3143     Lp->setLoopID(LID);
3144 
3145   LoopVectorizeHints Hints(Lp, true, *ORE);
3146   Hints.setAlreadyVectorized();
3147 
3148 #ifdef EXPENSIVE_CHECKS
3149   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3150   LI->verify(*DT);
3151 #endif
3152 
3153   return LoopVectorPreHeader;
3154 }
3155 
3156 // Fix up external users of the induction variable. At this point, we are
3157 // in LCSSA form, with all external PHIs that use the IV having one input value,
3158 // coming from the remainder loop. We need those PHIs to also have a correct
3159 // value for the IV when arriving directly from the middle block.
3160 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3161                                        const InductionDescriptor &II,
3162                                        Value *CountRoundDown, Value *EndValue,
3163                                        BasicBlock *MiddleBlock) {
3164   // There are two kinds of external IV usages - those that use the value
3165   // computed in the last iteration (the PHI) and those that use the penultimate
3166   // value (the value that feeds into the phi from the loop latch).
3167   // We allow both, but they, obviously, have different values.
3168 
3169   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3170 
3171   DenseMap<Value *, Value *> MissingVals;
3172 
3173   // An external user of the last iteration's value should see the value that
3174   // the remainder loop uses to initialize its own IV.
3175   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3176   for (User *U : PostInc->users()) {
3177     Instruction *UI = cast<Instruction>(U);
3178     if (!OrigLoop->contains(UI)) {
3179       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3180       MissingVals[UI] = EndValue;
3181     }
3182   }
3183 
3184   // An external user of the penultimate value need to see EndValue - Step.
3185   // The simplest way to get this is to recompute it from the constituent SCEVs,
3186   // that is Start + (Step * (CRD - 1)).
3187   for (User *U : OrigPhi->users()) {
3188     auto *UI = cast<Instruction>(U);
3189     if (!OrigLoop->contains(UI)) {
3190       const DataLayout &DL =
3191           OrigLoop->getHeader()->getModule()->getDataLayout();
3192       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3193 
3194       IRBuilder<> B(MiddleBlock->getTerminator());
3195       Value *CountMinusOne = B.CreateSub(
3196           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3197       Value *CMO =
3198           !II.getStep()->getType()->isIntegerTy()
3199               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3200                              II.getStep()->getType())
3201               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3202       CMO->setName("cast.cmo");
3203       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3204       Escape->setName("ind.escape");
3205       MissingVals[UI] = Escape;
3206     }
3207   }
3208 
3209   for (auto &I : MissingVals) {
3210     PHINode *PHI = cast<PHINode>(I.first);
3211     // One corner case we have to handle is two IVs "chasing" each-other,
3212     // that is %IV2 = phi [...], [ %IV1, %latch ]
3213     // In this case, if IV1 has an external use, we need to avoid adding both
3214     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3215     // don't already have an incoming value for the middle block.
3216     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3217       PHI->addIncoming(I.second, MiddleBlock);
3218   }
3219 }
3220 
3221 namespace {
3222 
3223 struct CSEDenseMapInfo {
3224   static bool canHandle(const Instruction *I) {
3225     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3226            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3227   }
3228 
3229   static inline Instruction *getEmptyKey() {
3230     return DenseMapInfo<Instruction *>::getEmptyKey();
3231   }
3232 
3233   static inline Instruction *getTombstoneKey() {
3234     return DenseMapInfo<Instruction *>::getTombstoneKey();
3235   }
3236 
3237   static unsigned getHashValue(const Instruction *I) {
3238     assert(canHandle(I) && "Unknown instruction!");
3239     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3240                                                            I->value_op_end()));
3241   }
3242 
3243   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3244     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3245         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3246       return LHS == RHS;
3247     return LHS->isIdenticalTo(RHS);
3248   }
3249 };
3250 
3251 } // end anonymous namespace
3252 
3253 ///Perform cse of induction variable instructions.
3254 static void cse(BasicBlock *BB) {
3255   // Perform simple cse.
3256   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3257   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3258     Instruction *In = &*I++;
3259 
3260     if (!CSEDenseMapInfo::canHandle(In))
3261       continue;
3262 
3263     // Check if we can replace this instruction with any of the
3264     // visited instructions.
3265     if (Instruction *V = CSEMap.lookup(In)) {
3266       In->replaceAllUsesWith(V);
3267       In->eraseFromParent();
3268       continue;
3269     }
3270 
3271     CSEMap[In] = In;
3272   }
3273 }
3274 
3275 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3276                                                        unsigned VF,
3277                                                        bool &NeedToScalarize) {
3278   Function *F = CI->getCalledFunction();
3279   Type *ScalarRetTy = CI->getType();
3280   SmallVector<Type *, 4> Tys, ScalarTys;
3281   for (auto &ArgOp : CI->arg_operands())
3282     ScalarTys.push_back(ArgOp->getType());
3283 
3284   // Estimate cost of scalarized vector call. The source operands are assumed
3285   // to be vectors, so we need to extract individual elements from there,
3286   // execute VF scalar calls, and then gather the result into the vector return
3287   // value.
3288   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3289                                                  TTI::TCK_RecipThroughput);
3290   if (VF == 1)
3291     return ScalarCallCost;
3292 
3293   // Compute corresponding vector type for return value and arguments.
3294   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3295   for (Type *ScalarTy : ScalarTys)
3296     Tys.push_back(ToVectorTy(ScalarTy, VF));
3297 
3298   // Compute costs of unpacking argument values for the scalar calls and
3299   // packing the return values to a vector.
3300   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3301 
3302   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3303 
3304   // If we can't emit a vector call for this function, then the currently found
3305   // cost is the cost we need to return.
3306   NeedToScalarize = true;
3307   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3308   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3309 
3310   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3311     return Cost;
3312 
3313   // If the corresponding vector cost is cheaper, return its cost.
3314   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3315                                                  TTI::TCK_RecipThroughput);
3316   if (VectorCallCost < Cost) {
3317     NeedToScalarize = false;
3318     return VectorCallCost;
3319   }
3320   return Cost;
3321 }
3322 
3323 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3324                                                             unsigned VF) {
3325   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3326   assert(ID && "Expected intrinsic call!");
3327 
3328   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3329   return TTI.getIntrinsicInstrCost(CostAttrs,
3330                                    TargetTransformInfo::TCK_RecipThroughput);
3331 }
3332 
3333 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3334   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3335   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3336   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3337 }
3338 
3339 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3340   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3341   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3342   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3343 }
3344 
3345 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3346   // For every instruction `I` in MinBWs, truncate the operands, create a
3347   // truncated version of `I` and reextend its result. InstCombine runs
3348   // later and will remove any ext/trunc pairs.
3349   SmallPtrSet<Value *, 4> Erased;
3350   for (const auto &KV : Cost->getMinimalBitwidths()) {
3351     // If the value wasn't vectorized, we must maintain the original scalar
3352     // type. The absence of the value from VectorLoopValueMap indicates that it
3353     // wasn't vectorized.
3354     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3355       continue;
3356     for (unsigned Part = 0; Part < UF; ++Part) {
3357       Value *I = getOrCreateVectorValue(KV.first, Part);
3358       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3359         continue;
3360       Type *OriginalTy = I->getType();
3361       Type *ScalarTruncatedTy =
3362           IntegerType::get(OriginalTy->getContext(), KV.second);
3363       auto *TruncatedTy = FixedVectorType::get(
3364           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3365       if (TruncatedTy == OriginalTy)
3366         continue;
3367 
3368       IRBuilder<> B(cast<Instruction>(I));
3369       auto ShrinkOperand = [&](Value *V) -> Value * {
3370         if (auto *ZI = dyn_cast<ZExtInst>(V))
3371           if (ZI->getSrcTy() == TruncatedTy)
3372             return ZI->getOperand(0);
3373         return B.CreateZExtOrTrunc(V, TruncatedTy);
3374       };
3375 
3376       // The actual instruction modification depends on the instruction type,
3377       // unfortunately.
3378       Value *NewI = nullptr;
3379       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3380         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3381                              ShrinkOperand(BO->getOperand(1)));
3382 
3383         // Any wrapping introduced by shrinking this operation shouldn't be
3384         // considered undefined behavior. So, we can't unconditionally copy
3385         // arithmetic wrapping flags to NewI.
3386         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3387       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3388         NewI =
3389             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3390                          ShrinkOperand(CI->getOperand(1)));
3391       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3392         NewI = B.CreateSelect(SI->getCondition(),
3393                               ShrinkOperand(SI->getTrueValue()),
3394                               ShrinkOperand(SI->getFalseValue()));
3395       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3396         switch (CI->getOpcode()) {
3397         default:
3398           llvm_unreachable("Unhandled cast!");
3399         case Instruction::Trunc:
3400           NewI = ShrinkOperand(CI->getOperand(0));
3401           break;
3402         case Instruction::SExt:
3403           NewI = B.CreateSExtOrTrunc(
3404               CI->getOperand(0),
3405               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3406           break;
3407         case Instruction::ZExt:
3408           NewI = B.CreateZExtOrTrunc(
3409               CI->getOperand(0),
3410               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3411           break;
3412         }
3413       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3414         auto Elements0 =
3415             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3416         auto *O0 = B.CreateZExtOrTrunc(
3417             SI->getOperand(0),
3418             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3419         auto Elements1 =
3420             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3421         auto *O1 = B.CreateZExtOrTrunc(
3422             SI->getOperand(1),
3423             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3424 
3425         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3426       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3427         // Don't do anything with the operands, just extend the result.
3428         continue;
3429       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3430         auto Elements =
3431             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3432         auto *O0 = B.CreateZExtOrTrunc(
3433             IE->getOperand(0),
3434             FixedVectorType::get(ScalarTruncatedTy, Elements));
3435         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3436         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3437       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3438         auto Elements =
3439             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3440         auto *O0 = B.CreateZExtOrTrunc(
3441             EE->getOperand(0),
3442             FixedVectorType::get(ScalarTruncatedTy, Elements));
3443         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3444       } else {
3445         // If we don't know what to do, be conservative and don't do anything.
3446         continue;
3447       }
3448 
3449       // Lastly, extend the result.
3450       NewI->takeName(cast<Instruction>(I));
3451       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3452       I->replaceAllUsesWith(Res);
3453       cast<Instruction>(I)->eraseFromParent();
3454       Erased.insert(I);
3455       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3456     }
3457   }
3458 
3459   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3460   for (const auto &KV : Cost->getMinimalBitwidths()) {
3461     // If the value wasn't vectorized, we must maintain the original scalar
3462     // type. The absence of the value from VectorLoopValueMap indicates that it
3463     // wasn't vectorized.
3464     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3465       continue;
3466     for (unsigned Part = 0; Part < UF; ++Part) {
3467       Value *I = getOrCreateVectorValue(KV.first, Part);
3468       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3469       if (Inst && Inst->use_empty()) {
3470         Value *NewI = Inst->getOperand(0);
3471         Inst->eraseFromParent();
3472         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3473       }
3474     }
3475   }
3476 }
3477 
3478 void InnerLoopVectorizer::fixVectorizedLoop() {
3479   // Insert truncates and extends for any truncated instructions as hints to
3480   // InstCombine.
3481   if (VF > 1)
3482     truncateToMinimalBitwidths();
3483 
3484   // Fix widened non-induction PHIs by setting up the PHI operands.
3485   if (OrigPHIsToFix.size()) {
3486     assert(EnableVPlanNativePath &&
3487            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3488     fixNonInductionPHIs();
3489   }
3490 
3491   // At this point every instruction in the original loop is widened to a
3492   // vector form. Now we need to fix the recurrences in the loop. These PHI
3493   // nodes are currently empty because we did not want to introduce cycles.
3494   // This is the second stage of vectorizing recurrences.
3495   fixCrossIterationPHIs();
3496 
3497   // Forget the original basic block.
3498   PSE.getSE()->forgetLoop(OrigLoop);
3499 
3500   // Fix-up external users of the induction variables.
3501   for (auto &Entry : Legal->getInductionVars())
3502     fixupIVUsers(Entry.first, Entry.second,
3503                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3504                  IVEndValues[Entry.first], LoopMiddleBlock);
3505 
3506   fixLCSSAPHIs();
3507   for (Instruction *PI : PredicatedInstructions)
3508     sinkScalarOperands(&*PI);
3509 
3510   // Remove redundant induction instructions.
3511   cse(LoopVectorBody);
3512 
3513   // Set/update profile weights for the vector and remainder loops as original
3514   // loop iterations are now distributed among them. Note that original loop
3515   // represented by LoopScalarBody becomes remainder loop after vectorization.
3516   //
3517   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3518   // end up getting slightly roughened result but that should be OK since
3519   // profile is not inherently precise anyway. Note also possible bypass of
3520   // vector code caused by legality checks is ignored, assigning all the weight
3521   // to the vector loop, optimistically.
3522   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3523                                LI->getLoopFor(LoopVectorBody),
3524                                LI->getLoopFor(LoopScalarBody), VF * UF);
3525 }
3526 
3527 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3528   // In order to support recurrences we need to be able to vectorize Phi nodes.
3529   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3530   // stage #2: We now need to fix the recurrences by adding incoming edges to
3531   // the currently empty PHI nodes. At this point every instruction in the
3532   // original loop is widened to a vector form so we can use them to construct
3533   // the incoming edges.
3534   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3535     // Handle first-order recurrences and reductions that need to be fixed.
3536     if (Legal->isFirstOrderRecurrence(&Phi))
3537       fixFirstOrderRecurrence(&Phi);
3538     else if (Legal->isReductionVariable(&Phi))
3539       fixReduction(&Phi);
3540   }
3541 }
3542 
3543 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3544   // This is the second phase of vectorizing first-order recurrences. An
3545   // overview of the transformation is described below. Suppose we have the
3546   // following loop.
3547   //
3548   //   for (int i = 0; i < n; ++i)
3549   //     b[i] = a[i] - a[i - 1];
3550   //
3551   // There is a first-order recurrence on "a". For this loop, the shorthand
3552   // scalar IR looks like:
3553   //
3554   //   scalar.ph:
3555   //     s_init = a[-1]
3556   //     br scalar.body
3557   //
3558   //   scalar.body:
3559   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3560   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3561   //     s2 = a[i]
3562   //     b[i] = s2 - s1
3563   //     br cond, scalar.body, ...
3564   //
3565   // In this example, s1 is a recurrence because it's value depends on the
3566   // previous iteration. In the first phase of vectorization, we created a
3567   // temporary value for s1. We now complete the vectorization and produce the
3568   // shorthand vector IR shown below (for VF = 4, UF = 1).
3569   //
3570   //   vector.ph:
3571   //     v_init = vector(..., ..., ..., a[-1])
3572   //     br vector.body
3573   //
3574   //   vector.body
3575   //     i = phi [0, vector.ph], [i+4, vector.body]
3576   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3577   //     v2 = a[i, i+1, i+2, i+3];
3578   //     v3 = vector(v1(3), v2(0, 1, 2))
3579   //     b[i, i+1, i+2, i+3] = v2 - v3
3580   //     br cond, vector.body, middle.block
3581   //
3582   //   middle.block:
3583   //     x = v2(3)
3584   //     br scalar.ph
3585   //
3586   //   scalar.ph:
3587   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3588   //     br scalar.body
3589   //
3590   // After execution completes the vector loop, we extract the next value of
3591   // the recurrence (x) to use as the initial value in the scalar loop.
3592 
3593   // Get the original loop preheader and single loop latch.
3594   auto *Preheader = OrigLoop->getLoopPreheader();
3595   auto *Latch = OrigLoop->getLoopLatch();
3596 
3597   // Get the initial and previous values of the scalar recurrence.
3598   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3599   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3600 
3601   // Create a vector from the initial value.
3602   auto *VectorInit = ScalarInit;
3603   if (VF > 1) {
3604     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3605     VectorInit = Builder.CreateInsertElement(
3606         UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)),
3607         VectorInit, Builder.getInt32(VF - 1), "vector.recur.init");
3608   }
3609 
3610   // We constructed a temporary phi node in the first phase of vectorization.
3611   // This phi node will eventually be deleted.
3612   Builder.SetInsertPoint(
3613       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3614 
3615   // Create a phi node for the new recurrence. The current value will either be
3616   // the initial value inserted into a vector or loop-varying vector value.
3617   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3618   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3619 
3620   // Get the vectorized previous value of the last part UF - 1. It appears last
3621   // among all unrolled iterations, due to the order of their construction.
3622   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3623 
3624   // Find and set the insertion point after the previous value if it is an
3625   // instruction.
3626   BasicBlock::iterator InsertPt;
3627   // Note that the previous value may have been constant-folded so it is not
3628   // guaranteed to be an instruction in the vector loop.
3629   // FIXME: Loop invariant values do not form recurrences. We should deal with
3630   //        them earlier.
3631   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3632     InsertPt = LoopVectorBody->getFirstInsertionPt();
3633   else {
3634     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3635     if (isa<PHINode>(PreviousLastPart))
3636       // If the previous value is a phi node, we should insert after all the phi
3637       // nodes in the block containing the PHI to avoid breaking basic block
3638       // verification. Note that the basic block may be different to
3639       // LoopVectorBody, in case we predicate the loop.
3640       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3641     else
3642       InsertPt = ++PreviousInst->getIterator();
3643   }
3644   Builder.SetInsertPoint(&*InsertPt);
3645 
3646   // We will construct a vector for the recurrence by combining the values for
3647   // the current and previous iterations. This is the required shuffle mask.
3648   SmallVector<int, 8> ShuffleMask(VF);
3649   ShuffleMask[0] = VF - 1;
3650   for (unsigned I = 1; I < VF; ++I)
3651     ShuffleMask[I] = I + VF - 1;
3652 
3653   // The vector from which to take the initial value for the current iteration
3654   // (actual or unrolled). Initially, this is the vector phi node.
3655   Value *Incoming = VecPhi;
3656 
3657   // Shuffle the current and previous vector and update the vector parts.
3658   for (unsigned Part = 0; Part < UF; ++Part) {
3659     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3660     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3661     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3662                                                          ShuffleMask)
3663                            : Incoming;
3664     PhiPart->replaceAllUsesWith(Shuffle);
3665     cast<Instruction>(PhiPart)->eraseFromParent();
3666     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3667     Incoming = PreviousPart;
3668   }
3669 
3670   // Fix the latch value of the new recurrence in the vector loop.
3671   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3672 
3673   // Extract the last vector element in the middle block. This will be the
3674   // initial value for the recurrence when jumping to the scalar loop.
3675   auto *ExtractForScalar = Incoming;
3676   if (VF > 1) {
3677     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3678     ExtractForScalar = Builder.CreateExtractElement(
3679         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3680   }
3681   // Extract the second last element in the middle block if the
3682   // Phi is used outside the loop. We need to extract the phi itself
3683   // and not the last element (the phi update in the current iteration). This
3684   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3685   // when the scalar loop is not run at all.
3686   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3687   if (VF > 1)
3688     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3689         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3690   // When loop is unrolled without vectorizing, initialize
3691   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3692   // `Incoming`. This is analogous to the vectorized case above: extracting the
3693   // second last element when VF > 1.
3694   else if (UF > 1)
3695     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3696 
3697   // Fix the initial value of the original recurrence in the scalar loop.
3698   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3699   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3700   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3701     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3702     Start->addIncoming(Incoming, BB);
3703   }
3704 
3705   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3706   Phi->setName("scalar.recur");
3707 
3708   // Finally, fix users of the recurrence outside the loop. The users will need
3709   // either the last value of the scalar recurrence or the last value of the
3710   // vector recurrence we extracted in the middle block. Since the loop is in
3711   // LCSSA form, we just need to find all the phi nodes for the original scalar
3712   // recurrence in the exit block, and then add an edge for the middle block.
3713   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3714     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3715       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3716     }
3717   }
3718 }
3719 
3720 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3721   Constant *Zero = Builder.getInt32(0);
3722 
3723   // Get it's reduction variable descriptor.
3724   assert(Legal->isReductionVariable(Phi) &&
3725          "Unable to find the reduction variable");
3726   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3727 
3728   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3729   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3730   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3731   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3732     RdxDesc.getMinMaxRecurrenceKind();
3733   setDebugLocFromInst(Builder, ReductionStartValue);
3734 
3735   // We need to generate a reduction vector from the incoming scalar.
3736   // To do so, we need to generate the 'identity' vector and override
3737   // one of the elements with the incoming scalar reduction. We need
3738   // to do it in the vector-loop preheader.
3739   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3740 
3741   // This is the vector-clone of the value that leaves the loop.
3742   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3743 
3744   // Find the reduction identity variable. Zero for addition, or, xor,
3745   // one for multiplication, -1 for And.
3746   Value *Identity;
3747   Value *VectorStart;
3748   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3749       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3750     // MinMax reduction have the start value as their identify.
3751     if (VF == 1) {
3752       VectorStart = Identity = ReductionStartValue;
3753     } else {
3754       VectorStart = Identity =
3755         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3756     }
3757   } else {
3758     // Handle other reduction kinds:
3759     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3760         RK, VecTy->getScalarType());
3761     if (VF == 1) {
3762       Identity = Iden;
3763       // This vector is the Identity vector where the first element is the
3764       // incoming scalar reduction.
3765       VectorStart = ReductionStartValue;
3766     } else {
3767       Identity = ConstantVector::getSplat({VF, false}, Iden);
3768 
3769       // This vector is the Identity vector where the first element is the
3770       // incoming scalar reduction.
3771       VectorStart =
3772         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3773     }
3774   }
3775 
3776   // Wrap flags are in general invalid after vectorization, clear them.
3777   clearReductionWrapFlags(RdxDesc);
3778 
3779   // Fix the vector-loop phi.
3780 
3781   // Reductions do not have to start at zero. They can start with
3782   // any loop invariant values.
3783   BasicBlock *Latch = OrigLoop->getLoopLatch();
3784   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3785 
3786   for (unsigned Part = 0; Part < UF; ++Part) {
3787     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3788     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3789     // Make sure to add the reduction start value only to the
3790     // first unroll part.
3791     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3792     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3793     cast<PHINode>(VecRdxPhi)
3794       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3795   }
3796 
3797   // Before each round, move the insertion point right between
3798   // the PHIs and the values we are going to write.
3799   // This allows us to write both PHINodes and the extractelement
3800   // instructions.
3801   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3802 
3803   setDebugLocFromInst(Builder, LoopExitInst);
3804 
3805   // If tail is folded by masking, the vector value to leave the loop should be
3806   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3807   // instead of the former.
3808   if (Cost->foldTailByMasking()) {
3809     for (unsigned Part = 0; Part < UF; ++Part) {
3810       Value *VecLoopExitInst =
3811           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3812       Value *Sel = nullptr;
3813       for (User *U : VecLoopExitInst->users()) {
3814         if (isa<SelectInst>(U)) {
3815           assert(!Sel && "Reduction exit feeding two selects");
3816           Sel = U;
3817         } else
3818           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3819       }
3820       assert(Sel && "Reduction exit feeds no select");
3821       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3822     }
3823   }
3824 
3825   // If the vector reduction can be performed in a smaller type, we truncate
3826   // then extend the loop exit value to enable InstCombine to evaluate the
3827   // entire expression in the smaller type.
3828   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3829     Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF);
3830     Builder.SetInsertPoint(
3831         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3832     VectorParts RdxParts(UF);
3833     for (unsigned Part = 0; Part < UF; ++Part) {
3834       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3835       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3836       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3837                                         : Builder.CreateZExt(Trunc, VecTy);
3838       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3839            UI != RdxParts[Part]->user_end();)
3840         if (*UI != Trunc) {
3841           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3842           RdxParts[Part] = Extnd;
3843         } else {
3844           ++UI;
3845         }
3846     }
3847     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3848     for (unsigned Part = 0; Part < UF; ++Part) {
3849       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3850       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3851     }
3852   }
3853 
3854   // Reduce all of the unrolled parts into a single vector.
3855   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3856   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3857 
3858   // The middle block terminator has already been assigned a DebugLoc here (the
3859   // OrigLoop's single latch terminator). We want the whole middle block to
3860   // appear to execute on this line because: (a) it is all compiler generated,
3861   // (b) these instructions are always executed after evaluating the latch
3862   // conditional branch, and (c) other passes may add new predecessors which
3863   // terminate on this line. This is the easiest way to ensure we don't
3864   // accidentally cause an extra step back into the loop while debugging.
3865   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3866   for (unsigned Part = 1; Part < UF; ++Part) {
3867     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3868     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3869       // Floating point operations had to be 'fast' to enable the reduction.
3870       ReducedPartRdx = addFastMathFlag(
3871           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3872                               ReducedPartRdx, "bin.rdx"),
3873           RdxDesc.getFastMathFlags());
3874     else
3875       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3876                                       RdxPart);
3877   }
3878 
3879   if (VF > 1) {
3880     bool NoNaN = Legal->hasFunNoNaNAttr();
3881     ReducedPartRdx =
3882         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3883     // If the reduction can be performed in a smaller type, we need to extend
3884     // the reduction to the wider type before we branch to the original loop.
3885     if (Phi->getType() != RdxDesc.getRecurrenceType())
3886       ReducedPartRdx =
3887         RdxDesc.isSigned()
3888         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3889         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3890   }
3891 
3892   // Create a phi node that merges control-flow from the backedge-taken check
3893   // block and the middle block.
3894   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3895                                         LoopScalarPreHeader->getTerminator());
3896   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3897     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3898   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3899 
3900   // Now, we need to fix the users of the reduction variable
3901   // inside and outside of the scalar remainder loop.
3902   // We know that the loop is in LCSSA form. We need to update the
3903   // PHI nodes in the exit blocks.
3904   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3905     // All PHINodes need to have a single entry edge, or two if
3906     // we already fixed them.
3907     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3908 
3909     // We found a reduction value exit-PHI. Update it with the
3910     // incoming bypass edge.
3911     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3912       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3913   } // end of the LCSSA phi scan.
3914 
3915     // Fix the scalar loop reduction variable with the incoming reduction sum
3916     // from the vector body and from the backedge value.
3917   int IncomingEdgeBlockIdx =
3918     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3919   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3920   // Pick the other block.
3921   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3922   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3923   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3924 }
3925 
3926 void InnerLoopVectorizer::clearReductionWrapFlags(
3927     RecurrenceDescriptor &RdxDesc) {
3928   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3929   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3930       RK != RecurrenceDescriptor::RK_IntegerMult)
3931     return;
3932 
3933   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3934   assert(LoopExitInstr && "null loop exit instruction");
3935   SmallVector<Instruction *, 8> Worklist;
3936   SmallPtrSet<Instruction *, 8> Visited;
3937   Worklist.push_back(LoopExitInstr);
3938   Visited.insert(LoopExitInstr);
3939 
3940   while (!Worklist.empty()) {
3941     Instruction *Cur = Worklist.pop_back_val();
3942     if (isa<OverflowingBinaryOperator>(Cur))
3943       for (unsigned Part = 0; Part < UF; ++Part) {
3944         Value *V = getOrCreateVectorValue(Cur, Part);
3945         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3946       }
3947 
3948     for (User *U : Cur->users()) {
3949       Instruction *UI = cast<Instruction>(U);
3950       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3951           Visited.insert(UI).second)
3952         Worklist.push_back(UI);
3953     }
3954   }
3955 }
3956 
3957 void InnerLoopVectorizer::fixLCSSAPHIs() {
3958   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3959     if (LCSSAPhi.getNumIncomingValues() == 1) {
3960       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3961       // Non-instruction incoming values will have only one value.
3962       unsigned LastLane = 0;
3963       if (isa<Instruction>(IncomingValue))
3964           LastLane = Cost->isUniformAfterVectorization(
3965                          cast<Instruction>(IncomingValue), VF)
3966                          ? 0
3967                          : VF - 1;
3968       // Can be a loop invariant incoming value or the last scalar value to be
3969       // extracted from the vectorized loop.
3970       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3971       Value *lastIncomingValue =
3972           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3973       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3974     }
3975   }
3976 }
3977 
3978 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3979   // The basic block and loop containing the predicated instruction.
3980   auto *PredBB = PredInst->getParent();
3981   auto *VectorLoop = LI->getLoopFor(PredBB);
3982 
3983   // Initialize a worklist with the operands of the predicated instruction.
3984   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3985 
3986   // Holds instructions that we need to analyze again. An instruction may be
3987   // reanalyzed if we don't yet know if we can sink it or not.
3988   SmallVector<Instruction *, 8> InstsToReanalyze;
3989 
3990   // Returns true if a given use occurs in the predicated block. Phi nodes use
3991   // their operands in their corresponding predecessor blocks.
3992   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3993     auto *I = cast<Instruction>(U.getUser());
3994     BasicBlock *BB = I->getParent();
3995     if (auto *Phi = dyn_cast<PHINode>(I))
3996       BB = Phi->getIncomingBlock(
3997           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3998     return BB == PredBB;
3999   };
4000 
4001   // Iteratively sink the scalarized operands of the predicated instruction
4002   // into the block we created for it. When an instruction is sunk, it's
4003   // operands are then added to the worklist. The algorithm ends after one pass
4004   // through the worklist doesn't sink a single instruction.
4005   bool Changed;
4006   do {
4007     // Add the instructions that need to be reanalyzed to the worklist, and
4008     // reset the changed indicator.
4009     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4010     InstsToReanalyze.clear();
4011     Changed = false;
4012 
4013     while (!Worklist.empty()) {
4014       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4015 
4016       // We can't sink an instruction if it is a phi node, is already in the
4017       // predicated block, is not in the loop, or may have side effects.
4018       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4019           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4020         continue;
4021 
4022       // It's legal to sink the instruction if all its uses occur in the
4023       // predicated block. Otherwise, there's nothing to do yet, and we may
4024       // need to reanalyze the instruction.
4025       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4026         InstsToReanalyze.push_back(I);
4027         continue;
4028       }
4029 
4030       // Move the instruction to the beginning of the predicated block, and add
4031       // it's operands to the worklist.
4032       I->moveBefore(&*PredBB->getFirstInsertionPt());
4033       Worklist.insert(I->op_begin(), I->op_end());
4034 
4035       // The sinking may have enabled other instructions to be sunk, so we will
4036       // need to iterate.
4037       Changed = true;
4038     }
4039   } while (Changed);
4040 }
4041 
4042 void InnerLoopVectorizer::fixNonInductionPHIs() {
4043   for (PHINode *OrigPhi : OrigPHIsToFix) {
4044     PHINode *NewPhi =
4045         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4046     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4047 
4048     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4049         predecessors(OrigPhi->getParent()));
4050     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4051         predecessors(NewPhi->getParent()));
4052     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4053            "Scalar and Vector BB should have the same number of predecessors");
4054 
4055     // The insertion point in Builder may be invalidated by the time we get
4056     // here. Force the Builder insertion point to something valid so that we do
4057     // not run into issues during insertion point restore in
4058     // getOrCreateVectorValue calls below.
4059     Builder.SetInsertPoint(NewPhi);
4060 
4061     // The predecessor order is preserved and we can rely on mapping between
4062     // scalar and vector block predecessors.
4063     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4064       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4065 
4066       // When looking up the new scalar/vector values to fix up, use incoming
4067       // values from original phi.
4068       Value *ScIncV =
4069           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4070 
4071       // Scalar incoming value may need a broadcast
4072       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4073       NewPhi->addIncoming(NewIncV, NewPredBB);
4074     }
4075   }
4076 }
4077 
4078 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands,
4079                                    unsigned UF, unsigned VF,
4080                                    bool IsPtrLoopInvariant,
4081                                    SmallBitVector &IsIndexLoopInvariant,
4082                                    VPTransformState &State) {
4083   // Construct a vector GEP by widening the operands of the scalar GEP as
4084   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4085   // results in a vector of pointers when at least one operand of the GEP
4086   // is vector-typed. Thus, to keep the representation compact, we only use
4087   // vector-typed operands for loop-varying values.
4088 
4089   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4090     // If we are vectorizing, but the GEP has only loop-invariant operands,
4091     // the GEP we build (by only using vector-typed operands for
4092     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4093     // produce a vector of pointers, we need to either arbitrarily pick an
4094     // operand to broadcast, or broadcast a clone of the original GEP.
4095     // Here, we broadcast a clone of the original.
4096     //
4097     // TODO: If at some point we decide to scalarize instructions having
4098     //       loop-invariant operands, this special case will no longer be
4099     //       required. We would add the scalarization decision to
4100     //       collectLoopScalars() and teach getVectorValue() to broadcast
4101     //       the lane-zero scalar value.
4102     auto *Clone = Builder.Insert(GEP->clone());
4103     for (unsigned Part = 0; Part < UF; ++Part) {
4104       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4105       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4106       addMetadata(EntryPart, GEP);
4107     }
4108   } else {
4109     // If the GEP has at least one loop-varying operand, we are sure to
4110     // produce a vector of pointers. But if we are only unrolling, we want
4111     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4112     // produce with the code below will be scalar (if VF == 1) or vector
4113     // (otherwise). Note that for the unroll-only case, we still maintain
4114     // values in the vector mapping with initVector, as we do for other
4115     // instructions.
4116     for (unsigned Part = 0; Part < UF; ++Part) {
4117       // The pointer operand of the new GEP. If it's loop-invariant, we
4118       // won't broadcast it.
4119       auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0})
4120                                      : State.get(Operands.getOperand(0), Part);
4121 
4122       // Collect all the indices for the new GEP. If any index is
4123       // loop-invariant, we won't broadcast it.
4124       SmallVector<Value *, 4> Indices;
4125       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4126         VPValue *Operand = Operands.getOperand(I);
4127         if (IsIndexLoopInvariant[I - 1])
4128           Indices.push_back(State.get(Operand, {0, 0}));
4129         else
4130           Indices.push_back(State.get(Operand, Part));
4131       }
4132 
4133       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4134       // but it should be a vector, otherwise.
4135       auto *NewGEP =
4136           GEP->isInBounds()
4137               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4138                                           Indices)
4139               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4140       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4141              "NewGEP is not a pointer vector");
4142       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4143       addMetadata(NewGEP, GEP);
4144     }
4145   }
4146 }
4147 
4148 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4149                                               unsigned VF) {
4150   PHINode *P = cast<PHINode>(PN);
4151   if (EnableVPlanNativePath) {
4152     // Currently we enter here in the VPlan-native path for non-induction
4153     // PHIs where all control flow is uniform. We simply widen these PHIs.
4154     // Create a vector phi with no operands - the vector phi operands will be
4155     // set at the end of vector code generation.
4156     Type *VecTy =
4157         (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4158     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4159     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4160     OrigPHIsToFix.push_back(P);
4161 
4162     return;
4163   }
4164 
4165   assert(PN->getParent() == OrigLoop->getHeader() &&
4166          "Non-header phis should have been handled elsewhere");
4167 
4168   // In order to support recurrences we need to be able to vectorize Phi nodes.
4169   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4170   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4171   // this value when we vectorize all of the instructions that use the PHI.
4172   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4173     for (unsigned Part = 0; Part < UF; ++Part) {
4174       // This is phase one of vectorizing PHIs.
4175       Type *VecTy =
4176           (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4177       Value *EntryPart = PHINode::Create(
4178           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4179       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4180     }
4181     return;
4182   }
4183 
4184   setDebugLocFromInst(Builder, P);
4185 
4186   // This PHINode must be an induction variable.
4187   // Make sure that we know about it.
4188   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4189 
4190   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4191   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4192 
4193   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4194   // which can be found from the original scalar operations.
4195   switch (II.getKind()) {
4196   case InductionDescriptor::IK_NoInduction:
4197     llvm_unreachable("Unknown induction");
4198   case InductionDescriptor::IK_IntInduction:
4199   case InductionDescriptor::IK_FpInduction:
4200     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4201   case InductionDescriptor::IK_PtrInduction: {
4202     // Handle the pointer induction variable case.
4203     assert(P->getType()->isPointerTy() && "Unexpected type.");
4204     // This is the normalized GEP that starts counting at zero.
4205     Value *PtrInd = Induction;
4206     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4207     // Determine the number of scalars we need to generate for each unroll
4208     // iteration. If the instruction is uniform, we only need to generate the
4209     // first lane. Otherwise, we generate all VF values.
4210     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4211     // These are the scalar results. Notice that we don't generate vector GEPs
4212     // because scalar GEPs result in better code.
4213     for (unsigned Part = 0; Part < UF; ++Part) {
4214       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4215         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4216         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4217         Value *SclrGep =
4218             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4219         SclrGep->setName("next.gep");
4220         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4221       }
4222     }
4223     return;
4224   }
4225   }
4226 }
4227 
4228 /// A helper function for checking whether an integer division-related
4229 /// instruction may divide by zero (in which case it must be predicated if
4230 /// executed conditionally in the scalar code).
4231 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4232 /// Non-zero divisors that are non compile-time constants will not be
4233 /// converted into multiplication, so we will still end up scalarizing
4234 /// the division, but can do so w/o predication.
4235 static bool mayDivideByZero(Instruction &I) {
4236   assert((I.getOpcode() == Instruction::UDiv ||
4237           I.getOpcode() == Instruction::SDiv ||
4238           I.getOpcode() == Instruction::URem ||
4239           I.getOpcode() == Instruction::SRem) &&
4240          "Unexpected instruction");
4241   Value *Divisor = I.getOperand(1);
4242   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4243   return !CInt || CInt->isZero();
4244 }
4245 
4246 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4247                                            VPTransformState &State) {
4248   switch (I.getOpcode()) {
4249   case Instruction::Call:
4250   case Instruction::Br:
4251   case Instruction::PHI:
4252   case Instruction::GetElementPtr:
4253   case Instruction::Select:
4254     llvm_unreachable("This instruction is handled by a different recipe.");
4255   case Instruction::UDiv:
4256   case Instruction::SDiv:
4257   case Instruction::SRem:
4258   case Instruction::URem:
4259   case Instruction::Add:
4260   case Instruction::FAdd:
4261   case Instruction::Sub:
4262   case Instruction::FSub:
4263   case Instruction::FNeg:
4264   case Instruction::Mul:
4265   case Instruction::FMul:
4266   case Instruction::FDiv:
4267   case Instruction::FRem:
4268   case Instruction::Shl:
4269   case Instruction::LShr:
4270   case Instruction::AShr:
4271   case Instruction::And:
4272   case Instruction::Or:
4273   case Instruction::Xor: {
4274     // Just widen unops and binops.
4275     setDebugLocFromInst(Builder, &I);
4276 
4277     for (unsigned Part = 0; Part < UF; ++Part) {
4278       SmallVector<Value *, 2> Ops;
4279       for (VPValue *VPOp : User.operands())
4280         Ops.push_back(State.get(VPOp, Part));
4281 
4282       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4283 
4284       if (auto *VecOp = dyn_cast<Instruction>(V))
4285         VecOp->copyIRFlags(&I);
4286 
4287       // Use this vector value for all users of the original instruction.
4288       VectorLoopValueMap.setVectorValue(&I, Part, V);
4289       addMetadata(V, &I);
4290     }
4291 
4292     break;
4293   }
4294   case Instruction::ICmp:
4295   case Instruction::FCmp: {
4296     // Widen compares. Generate vector compares.
4297     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4298     auto *Cmp = cast<CmpInst>(&I);
4299     setDebugLocFromInst(Builder, Cmp);
4300     for (unsigned Part = 0; Part < UF; ++Part) {
4301       Value *A = State.get(User.getOperand(0), Part);
4302       Value *B = State.get(User.getOperand(1), Part);
4303       Value *C = nullptr;
4304       if (FCmp) {
4305         // Propagate fast math flags.
4306         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4307         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4308         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4309       } else {
4310         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4311       }
4312       VectorLoopValueMap.setVectorValue(&I, Part, C);
4313       addMetadata(C, &I);
4314     }
4315 
4316     break;
4317   }
4318 
4319   case Instruction::ZExt:
4320   case Instruction::SExt:
4321   case Instruction::FPToUI:
4322   case Instruction::FPToSI:
4323   case Instruction::FPExt:
4324   case Instruction::PtrToInt:
4325   case Instruction::IntToPtr:
4326   case Instruction::SIToFP:
4327   case Instruction::UIToFP:
4328   case Instruction::Trunc:
4329   case Instruction::FPTrunc:
4330   case Instruction::BitCast: {
4331     auto *CI = cast<CastInst>(&I);
4332     setDebugLocFromInst(Builder, CI);
4333 
4334     /// Vectorize casts.
4335     Type *DestTy =
4336         (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF);
4337 
4338     for (unsigned Part = 0; Part < UF; ++Part) {
4339       Value *A = State.get(User.getOperand(0), Part);
4340       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4341       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4342       addMetadata(Cast, &I);
4343     }
4344     break;
4345   }
4346   default:
4347     // This instruction is not vectorized by simple widening.
4348     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4349     llvm_unreachable("Unhandled instruction!");
4350   } // end of switch.
4351 }
4352 
4353 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4354                                                VPTransformState &State) {
4355   assert(!isa<DbgInfoIntrinsic>(I) &&
4356          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4357   setDebugLocFromInst(Builder, &I);
4358 
4359   Module *M = I.getParent()->getParent()->getParent();
4360   auto *CI = cast<CallInst>(&I);
4361 
4362   SmallVector<Type *, 4> Tys;
4363   for (Value *ArgOperand : CI->arg_operands())
4364     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4365 
4366   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4367 
4368   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4369   // version of the instruction.
4370   // Is it beneficial to perform intrinsic call compared to lib call?
4371   bool NeedToScalarize = false;
4372   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4373   bool UseVectorIntrinsic =
4374       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4375   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4376          "Instruction should be scalarized elsewhere.");
4377 
4378   for (unsigned Part = 0; Part < UF; ++Part) {
4379     SmallVector<Value *, 4> Args;
4380     for (auto &I : enumerate(ArgOperands.operands())) {
4381       // Some intrinsics have a scalar argument - don't replace it with a
4382       // vector.
4383       Value *Arg;
4384       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4385         Arg = State.get(I.value(), Part);
4386       else
4387         Arg = State.get(I.value(), {0, 0});
4388       Args.push_back(Arg);
4389     }
4390 
4391     Function *VectorF;
4392     if (UseVectorIntrinsic) {
4393       // Use vector version of the intrinsic.
4394       Type *TysForDecl[] = {CI->getType()};
4395       if (VF > 1)
4396         TysForDecl[0] =
4397             FixedVectorType::get(CI->getType()->getScalarType(), VF);
4398       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4399       assert(VectorF && "Can't retrieve vector intrinsic.");
4400     } else {
4401       // Use vector version of the function call.
4402       const VFShape Shape =
4403           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4404 #ifndef NDEBUG
4405       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4406              "Can't create vector function.");
4407 #endif
4408         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4409     }
4410       SmallVector<OperandBundleDef, 1> OpBundles;
4411       CI->getOperandBundlesAsDefs(OpBundles);
4412       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4413 
4414       if (isa<FPMathOperator>(V))
4415         V->copyFastMathFlags(CI);
4416 
4417       VectorLoopValueMap.setVectorValue(&I, Part, V);
4418       addMetadata(V, &I);
4419   }
4420 }
4421 
4422 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4423                                                  VPUser &Operands,
4424                                                  bool InvariantCond,
4425                                                  VPTransformState &State) {
4426   setDebugLocFromInst(Builder, &I);
4427 
4428   // The condition can be loop invariant  but still defined inside the
4429   // loop. This means that we can't just use the original 'cond' value.
4430   // We have to take the 'vectorized' value and pick the first lane.
4431   // Instcombine will make this a no-op.
4432   auto *InvarCond =
4433       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4434 
4435   for (unsigned Part = 0; Part < UF; ++Part) {
4436     Value *Cond =
4437         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4438     Value *Op0 = State.get(Operands.getOperand(1), Part);
4439     Value *Op1 = State.get(Operands.getOperand(2), Part);
4440     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4441     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4442     addMetadata(Sel, &I);
4443   }
4444 }
4445 
4446 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4447   // We should not collect Scalars more than once per VF. Right now, this
4448   // function is called from collectUniformsAndScalars(), which already does
4449   // this check. Collecting Scalars for VF=1 does not make any sense.
4450   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4451          "This function should not be visited twice for the same VF");
4452 
4453   SmallSetVector<Instruction *, 8> Worklist;
4454 
4455   // These sets are used to seed the analysis with pointers used by memory
4456   // accesses that will remain scalar.
4457   SmallSetVector<Instruction *, 8> ScalarPtrs;
4458   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4459 
4460   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4461   // The pointer operands of loads and stores will be scalar as long as the
4462   // memory access is not a gather or scatter operation. The value operand of a
4463   // store will remain scalar if the store is scalarized.
4464   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4465     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4466     assert(WideningDecision != CM_Unknown &&
4467            "Widening decision should be ready at this moment");
4468     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4469       if (Ptr == Store->getValueOperand())
4470         return WideningDecision == CM_Scalarize;
4471     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4472            "Ptr is neither a value or pointer operand");
4473     return WideningDecision != CM_GatherScatter;
4474   };
4475 
4476   // A helper that returns true if the given value is a bitcast or
4477   // getelementptr instruction contained in the loop.
4478   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4479     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4480             isa<GetElementPtrInst>(V)) &&
4481            !TheLoop->isLoopInvariant(V);
4482   };
4483 
4484   // A helper that evaluates a memory access's use of a pointer. If the use
4485   // will be a scalar use, and the pointer is only used by memory accesses, we
4486   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4487   // PossibleNonScalarPtrs.
4488   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4489     // We only care about bitcast and getelementptr instructions contained in
4490     // the loop.
4491     if (!isLoopVaryingBitCastOrGEP(Ptr))
4492       return;
4493 
4494     // If the pointer has already been identified as scalar (e.g., if it was
4495     // also identified as uniform), there's nothing to do.
4496     auto *I = cast<Instruction>(Ptr);
4497     if (Worklist.count(I))
4498       return;
4499 
4500     // If the use of the pointer will be a scalar use, and all users of the
4501     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4502     // place the pointer in PossibleNonScalarPtrs.
4503     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4504           return isa<LoadInst>(U) || isa<StoreInst>(U);
4505         }))
4506       ScalarPtrs.insert(I);
4507     else
4508       PossibleNonScalarPtrs.insert(I);
4509   };
4510 
4511   // We seed the scalars analysis with three classes of instructions: (1)
4512   // instructions marked uniform-after-vectorization, (2) bitcast and
4513   // getelementptr instructions used by memory accesses requiring a scalar use,
4514   // and (3) pointer induction variables and their update instructions (we
4515   // currently only scalarize these).
4516   //
4517   // (1) Add to the worklist all instructions that have been identified as
4518   // uniform-after-vectorization.
4519   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4520 
4521   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4522   // memory accesses requiring a scalar use. The pointer operands of loads and
4523   // stores will be scalar as long as the memory accesses is not a gather or
4524   // scatter operation. The value operand of a store will remain scalar if the
4525   // store is scalarized.
4526   for (auto *BB : TheLoop->blocks())
4527     for (auto &I : *BB) {
4528       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4529         evaluatePtrUse(Load, Load->getPointerOperand());
4530       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4531         evaluatePtrUse(Store, Store->getPointerOperand());
4532         evaluatePtrUse(Store, Store->getValueOperand());
4533       }
4534     }
4535   for (auto *I : ScalarPtrs)
4536     if (!PossibleNonScalarPtrs.count(I)) {
4537       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4538       Worklist.insert(I);
4539     }
4540 
4541   // (3) Add to the worklist all pointer induction variables and their update
4542   // instructions.
4543   //
4544   // TODO: Once we are able to vectorize pointer induction variables we should
4545   //       no longer insert them into the worklist here.
4546   auto *Latch = TheLoop->getLoopLatch();
4547   for (auto &Induction : Legal->getInductionVars()) {
4548     auto *Ind = Induction.first;
4549     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4550     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4551       continue;
4552     Worklist.insert(Ind);
4553     Worklist.insert(IndUpdate);
4554     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4555     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4556                       << "\n");
4557   }
4558 
4559   // Insert the forced scalars.
4560   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4561   // induction variable when the PHI user is scalarized.
4562   auto ForcedScalar = ForcedScalars.find(VF);
4563   if (ForcedScalar != ForcedScalars.end())
4564     for (auto *I : ForcedScalar->second)
4565       Worklist.insert(I);
4566 
4567   // Expand the worklist by looking through any bitcasts and getelementptr
4568   // instructions we've already identified as scalar. This is similar to the
4569   // expansion step in collectLoopUniforms(); however, here we're only
4570   // expanding to include additional bitcasts and getelementptr instructions.
4571   unsigned Idx = 0;
4572   while (Idx != Worklist.size()) {
4573     Instruction *Dst = Worklist[Idx++];
4574     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4575       continue;
4576     auto *Src = cast<Instruction>(Dst->getOperand(0));
4577     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4578           auto *J = cast<Instruction>(U);
4579           return !TheLoop->contains(J) || Worklist.count(J) ||
4580                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4581                   isScalarUse(J, Src));
4582         })) {
4583       Worklist.insert(Src);
4584       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4585     }
4586   }
4587 
4588   // An induction variable will remain scalar if all users of the induction
4589   // variable and induction variable update remain scalar.
4590   for (auto &Induction : Legal->getInductionVars()) {
4591     auto *Ind = Induction.first;
4592     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4593 
4594     // We already considered pointer induction variables, so there's no reason
4595     // to look at their users again.
4596     //
4597     // TODO: Once we are able to vectorize pointer induction variables we
4598     //       should no longer skip over them here.
4599     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4600       continue;
4601 
4602     // If tail-folding is applied, the primary induction variable will be used
4603     // to feed a vector compare.
4604     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4605       continue;
4606 
4607     // Determine if all users of the induction variable are scalar after
4608     // vectorization.
4609     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4610       auto *I = cast<Instruction>(U);
4611       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4612     });
4613     if (!ScalarInd)
4614       continue;
4615 
4616     // Determine if all users of the induction variable update instruction are
4617     // scalar after vectorization.
4618     auto ScalarIndUpdate =
4619         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4620           auto *I = cast<Instruction>(U);
4621           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4622         });
4623     if (!ScalarIndUpdate)
4624       continue;
4625 
4626     // The induction variable and its update instruction will remain scalar.
4627     Worklist.insert(Ind);
4628     Worklist.insert(IndUpdate);
4629     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4630     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4631                       << "\n");
4632   }
4633 
4634   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4635 }
4636 
4637 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4638   if (!blockNeedsPredication(I->getParent()))
4639     return false;
4640   switch(I->getOpcode()) {
4641   default:
4642     break;
4643   case Instruction::Load:
4644   case Instruction::Store: {
4645     if (!Legal->isMaskRequired(I))
4646       return false;
4647     auto *Ptr = getLoadStorePointerOperand(I);
4648     auto *Ty = getMemInstValueType(I);
4649     // We have already decided how to vectorize this instruction, get that
4650     // result.
4651     if (VF > 1) {
4652       InstWidening WideningDecision = getWideningDecision(I, VF);
4653       assert(WideningDecision != CM_Unknown &&
4654              "Widening decision should be ready at this moment");
4655       return WideningDecision == CM_Scalarize;
4656     }
4657     const Align Alignment = getLoadStoreAlignment(I);
4658     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4659                                 isLegalMaskedGather(Ty, Alignment))
4660                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4661                                 isLegalMaskedScatter(Ty, Alignment));
4662   }
4663   case Instruction::UDiv:
4664   case Instruction::SDiv:
4665   case Instruction::SRem:
4666   case Instruction::URem:
4667     return mayDivideByZero(*I);
4668   }
4669   return false;
4670 }
4671 
4672 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4673                                                                unsigned VF) {
4674   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4675   assert(getWideningDecision(I, VF) == CM_Unknown &&
4676          "Decision should not be set yet.");
4677   auto *Group = getInterleavedAccessGroup(I);
4678   assert(Group && "Must have a group.");
4679 
4680   // If the instruction's allocated size doesn't equal it's type size, it
4681   // requires padding and will be scalarized.
4682   auto &DL = I->getModule()->getDataLayout();
4683   auto *ScalarTy = getMemInstValueType(I);
4684   if (hasIrregularType(ScalarTy, DL, VF))
4685     return false;
4686 
4687   // Check if masking is required.
4688   // A Group may need masking for one of two reasons: it resides in a block that
4689   // needs predication, or it was decided to use masking to deal with gaps.
4690   bool PredicatedAccessRequiresMasking =
4691       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4692   bool AccessWithGapsRequiresMasking =
4693       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4694   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4695     return true;
4696 
4697   // If masked interleaving is required, we expect that the user/target had
4698   // enabled it, because otherwise it either wouldn't have been created or
4699   // it should have been invalidated by the CostModel.
4700   assert(useMaskedInterleavedAccesses(TTI) &&
4701          "Masked interleave-groups for predicated accesses are not enabled.");
4702 
4703   auto *Ty = getMemInstValueType(I);
4704   const Align Alignment = getLoadStoreAlignment(I);
4705   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4706                           : TTI.isLegalMaskedStore(Ty, Alignment);
4707 }
4708 
4709 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4710                                                                unsigned VF) {
4711   // Get and ensure we have a valid memory instruction.
4712   LoadInst *LI = dyn_cast<LoadInst>(I);
4713   StoreInst *SI = dyn_cast<StoreInst>(I);
4714   assert((LI || SI) && "Invalid memory instruction");
4715 
4716   auto *Ptr = getLoadStorePointerOperand(I);
4717 
4718   // In order to be widened, the pointer should be consecutive, first of all.
4719   if (!Legal->isConsecutivePtr(Ptr))
4720     return false;
4721 
4722   // If the instruction is a store located in a predicated block, it will be
4723   // scalarized.
4724   if (isScalarWithPredication(I))
4725     return false;
4726 
4727   // If the instruction's allocated size doesn't equal it's type size, it
4728   // requires padding and will be scalarized.
4729   auto &DL = I->getModule()->getDataLayout();
4730   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4731   if (hasIrregularType(ScalarTy, DL, VF))
4732     return false;
4733 
4734   return true;
4735 }
4736 
4737 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4738   // We should not collect Uniforms more than once per VF. Right now,
4739   // this function is called from collectUniformsAndScalars(), which
4740   // already does this check. Collecting Uniforms for VF=1 does not make any
4741   // sense.
4742 
4743   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4744          "This function should not be visited twice for the same VF");
4745 
4746   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4747   // not analyze again.  Uniforms.count(VF) will return 1.
4748   Uniforms[VF].clear();
4749 
4750   // We now know that the loop is vectorizable!
4751   // Collect instructions inside the loop that will remain uniform after
4752   // vectorization.
4753 
4754   // Global values, params and instructions outside of current loop are out of
4755   // scope.
4756   auto isOutOfScope = [&](Value *V) -> bool {
4757     Instruction *I = dyn_cast<Instruction>(V);
4758     return (!I || !TheLoop->contains(I));
4759   };
4760 
4761   SetVector<Instruction *> Worklist;
4762   BasicBlock *Latch = TheLoop->getLoopLatch();
4763 
4764   // Instructions that are scalar with predication must not be considered
4765   // uniform after vectorization, because that would create an erroneous
4766   // replicating region where only a single instance out of VF should be formed.
4767   // TODO: optimize such seldom cases if found important, see PR40816.
4768   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4769     if (isScalarWithPredication(I, VF)) {
4770       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4771                         << *I << "\n");
4772       return;
4773     }
4774     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4775     Worklist.insert(I);
4776   };
4777 
4778   // Start with the conditional branch. If the branch condition is an
4779   // instruction contained in the loop that is only used by the branch, it is
4780   // uniform.
4781   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4782   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4783     addToWorklistIfAllowed(Cmp);
4784 
4785   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4786   // are pointers that are treated like consecutive pointers during
4787   // vectorization. The pointer operands of interleaved accesses are an
4788   // example.
4789   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4790 
4791   // Holds pointer operands of instructions that are possibly non-uniform.
4792   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4793 
4794   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4795     InstWidening WideningDecision = getWideningDecision(I, VF);
4796     assert(WideningDecision != CM_Unknown &&
4797            "Widening decision should be ready at this moment");
4798 
4799     return (WideningDecision == CM_Widen ||
4800             WideningDecision == CM_Widen_Reverse ||
4801             WideningDecision == CM_Interleave);
4802   };
4803   // Iterate over the instructions in the loop, and collect all
4804   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4805   // that a consecutive-like pointer operand will be scalarized, we collect it
4806   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4807   // getelementptr instruction can be used by both vectorized and scalarized
4808   // memory instructions. For example, if a loop loads and stores from the same
4809   // location, but the store is conditional, the store will be scalarized, and
4810   // the getelementptr won't remain uniform.
4811   for (auto *BB : TheLoop->blocks())
4812     for (auto &I : *BB) {
4813       // If there's no pointer operand, there's nothing to do.
4814       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4815       if (!Ptr)
4816         continue;
4817 
4818       // True if all users of Ptr are memory accesses that have Ptr as their
4819       // pointer operand.
4820       auto UsersAreMemAccesses =
4821           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4822             return getLoadStorePointerOperand(U) == Ptr;
4823           });
4824 
4825       // Ensure the memory instruction will not be scalarized or used by
4826       // gather/scatter, making its pointer operand non-uniform. If the pointer
4827       // operand is used by any instruction other than a memory access, we
4828       // conservatively assume the pointer operand may be non-uniform.
4829       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4830         PossibleNonUniformPtrs.insert(Ptr);
4831 
4832       // If the memory instruction will be vectorized and its pointer operand
4833       // is consecutive-like, or interleaving - the pointer operand should
4834       // remain uniform.
4835       else
4836         ConsecutiveLikePtrs.insert(Ptr);
4837     }
4838 
4839   // Add to the Worklist all consecutive and consecutive-like pointers that
4840   // aren't also identified as possibly non-uniform.
4841   for (auto *V : ConsecutiveLikePtrs)
4842     if (!PossibleNonUniformPtrs.count(V))
4843       addToWorklistIfAllowed(V);
4844 
4845   // Expand Worklist in topological order: whenever a new instruction
4846   // is added , its users should be already inside Worklist.  It ensures
4847   // a uniform instruction will only be used by uniform instructions.
4848   unsigned idx = 0;
4849   while (idx != Worklist.size()) {
4850     Instruction *I = Worklist[idx++];
4851 
4852     for (auto OV : I->operand_values()) {
4853       // isOutOfScope operands cannot be uniform instructions.
4854       if (isOutOfScope(OV))
4855         continue;
4856       // First order recurrence Phi's should typically be considered
4857       // non-uniform.
4858       auto *OP = dyn_cast<PHINode>(OV);
4859       if (OP && Legal->isFirstOrderRecurrence(OP))
4860         continue;
4861       // If all the users of the operand are uniform, then add the
4862       // operand into the uniform worklist.
4863       auto *OI = cast<Instruction>(OV);
4864       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4865             auto *J = cast<Instruction>(U);
4866             return Worklist.count(J) ||
4867                    (OI == getLoadStorePointerOperand(J) &&
4868                     isUniformDecision(J, VF));
4869           }))
4870         addToWorklistIfAllowed(OI);
4871     }
4872   }
4873 
4874   // Returns true if Ptr is the pointer operand of a memory access instruction
4875   // I, and I is known to not require scalarization.
4876   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4877     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4878   };
4879 
4880   // For an instruction to be added into Worklist above, all its users inside
4881   // the loop should also be in Worklist. However, this condition cannot be
4882   // true for phi nodes that form a cyclic dependence. We must process phi
4883   // nodes separately. An induction variable will remain uniform if all users
4884   // of the induction variable and induction variable update remain uniform.
4885   // The code below handles both pointer and non-pointer induction variables.
4886   for (auto &Induction : Legal->getInductionVars()) {
4887     auto *Ind = Induction.first;
4888     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4889 
4890     // Determine if all users of the induction variable are uniform after
4891     // vectorization.
4892     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4893       auto *I = cast<Instruction>(U);
4894       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4895              isVectorizedMemAccessUse(I, Ind);
4896     });
4897     if (!UniformInd)
4898       continue;
4899 
4900     // Determine if all users of the induction variable update instruction are
4901     // uniform after vectorization.
4902     auto UniformIndUpdate =
4903         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4904           auto *I = cast<Instruction>(U);
4905           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4906                  isVectorizedMemAccessUse(I, IndUpdate);
4907         });
4908     if (!UniformIndUpdate)
4909       continue;
4910 
4911     // The induction variable and its update instruction will remain uniform.
4912     addToWorklistIfAllowed(Ind);
4913     addToWorklistIfAllowed(IndUpdate);
4914   }
4915 
4916   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4917 }
4918 
4919 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4920   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4921 
4922   if (Legal->getRuntimePointerChecking()->Need) {
4923     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4924         "runtime pointer checks needed. Enable vectorization of this "
4925         "loop with '#pragma clang loop vectorize(enable)' when "
4926         "compiling with -Os/-Oz",
4927         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4928     return true;
4929   }
4930 
4931   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4932     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4933         "runtime SCEV checks needed. Enable vectorization of this "
4934         "loop with '#pragma clang loop vectorize(enable)' when "
4935         "compiling with -Os/-Oz",
4936         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4937     return true;
4938   }
4939 
4940   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4941   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4942     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4943         "runtime stride == 1 checks needed. Enable vectorization of "
4944         "this loop with '#pragma clang loop vectorize(enable)' when "
4945         "compiling with -Os/-Oz",
4946         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4947     return true;
4948   }
4949 
4950   return false;
4951 }
4952 
4953 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF,
4954                                                             unsigned UserIC) {
4955   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4956     // TODO: It may by useful to do since it's still likely to be dynamically
4957     // uniform if the target can skip.
4958     reportVectorizationFailure(
4959         "Not inserting runtime ptr check for divergent target",
4960         "runtime pointer checks needed. Not enabled for divergent target",
4961         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4962     return None;
4963   }
4964 
4965   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4966   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4967   if (TC == 1) {
4968     reportVectorizationFailure("Single iteration (non) loop",
4969         "loop trip count is one, irrelevant for vectorization",
4970         "SingleIterationLoop", ORE, TheLoop);
4971     return None;
4972   }
4973 
4974   switch (ScalarEpilogueStatus) {
4975   case CM_ScalarEpilogueAllowed:
4976     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
4977   case CM_ScalarEpilogueNotNeededUsePredicate:
4978     LLVM_DEBUG(
4979         dbgs() << "LV: vector predicate hint/switch found.\n"
4980                << "LV: Not allowing scalar epilogue, creating predicated "
4981                << "vector loop.\n");
4982     break;
4983   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4984     // fallthrough as a special case of OptForSize
4985   case CM_ScalarEpilogueNotAllowedOptSize:
4986     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4987       LLVM_DEBUG(
4988           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4989     else
4990       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4991                         << "count.\n");
4992 
4993     // Bail if runtime checks are required, which are not good when optimising
4994     // for size.
4995     if (runtimeChecksRequired())
4996       return None;
4997     break;
4998   }
4999 
5000   // Now try the tail folding
5001 
5002   // Invalidate interleave groups that require an epilogue if we can't mask
5003   // the interleave-group.
5004   if (!useMaskedInterleavedAccesses(TTI)) {
5005     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5006            "No decisions should have been taken at this point");
5007     // Note: There is no need to invalidate any cost modeling decisions here, as
5008     // non where taken so far.
5009     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5010   }
5011 
5012   unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5013   assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2");
5014   unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
5015   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5016     // Accept MaxVF if we do not have a tail.
5017     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5018     return MaxVF;
5019   }
5020 
5021   // If we don't know the precise trip count, or if the trip count that we
5022   // found modulo the vectorization factor is not zero, try to fold the tail
5023   // by masking.
5024   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5025   if (Legal->prepareToFoldTailByMasking()) {
5026     FoldTailByMasking = true;
5027     return MaxVF;
5028   }
5029 
5030   if (TC == 0) {
5031     reportVectorizationFailure(
5032         "Unable to calculate the loop count due to complex control flow",
5033         "unable to calculate the loop count due to complex control flow",
5034         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5035     return None;
5036   }
5037 
5038   reportVectorizationFailure(
5039       "Cannot optimize for size and vectorize at the same time.",
5040       "cannot optimize for size and vectorize at the same time. "
5041       "Enable vectorization of this loop with '#pragma clang loop "
5042       "vectorize(enable)' when compiling with -Os/-Oz",
5043       "NoTailLoopWithOptForSize", ORE, TheLoop);
5044   return None;
5045 }
5046 
5047 unsigned
5048 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5049   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5050   unsigned SmallestType, WidestType;
5051   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5052   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5053 
5054   // Get the maximum safe dependence distance in bits computed by LAA.
5055   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5056   // the memory accesses that is most restrictive (involved in the smallest
5057   // dependence distance).
5058   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5059 
5060   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5061 
5062   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5063   // Note that both WidestRegister and WidestType may not be a powers of 2.
5064   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5065 
5066   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5067                     << " / " << WidestType << " bits.\n");
5068   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5069                     << WidestRegister << " bits.\n");
5070 
5071   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5072                                  " into one vector!");
5073   if (MaxVectorSize == 0) {
5074     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5075     MaxVectorSize = 1;
5076     return MaxVectorSize;
5077   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5078              isPowerOf2_32(ConstTripCount)) {
5079     // We need to clamp the VF to be the ConstTripCount. There is no point in
5080     // choosing a higher viable VF as done in the loop below.
5081     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5082                       << ConstTripCount << "\n");
5083     MaxVectorSize = ConstTripCount;
5084     return MaxVectorSize;
5085   }
5086 
5087   unsigned MaxVF = MaxVectorSize;
5088   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5089       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5090     // Collect all viable vectorization factors larger than the default MaxVF
5091     // (i.e. MaxVectorSize).
5092     SmallVector<unsigned, 8> VFs;
5093     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5094     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5095       VFs.push_back(VS);
5096 
5097     // For each VF calculate its register usage.
5098     auto RUs = calculateRegisterUsage(VFs);
5099 
5100     // Select the largest VF which doesn't require more registers than existing
5101     // ones.
5102     for (int i = RUs.size() - 1; i >= 0; --i) {
5103       bool Selected = true;
5104       for (auto& pair : RUs[i].MaxLocalUsers) {
5105         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5106         if (pair.second > TargetNumRegisters)
5107           Selected = false;
5108       }
5109       if (Selected) {
5110         MaxVF = VFs[i];
5111         break;
5112       }
5113     }
5114     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5115       if (MaxVF < MinVF) {
5116         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5117                           << ") with target's minimum: " << MinVF << '\n');
5118         MaxVF = MinVF;
5119       }
5120     }
5121   }
5122   return MaxVF;
5123 }
5124 
5125 VectorizationFactor
5126 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5127   float Cost = expectedCost(1).first;
5128   const float ScalarCost = Cost;
5129   unsigned Width = 1;
5130   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5131 
5132   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5133   if (ForceVectorization && MaxVF > 1) {
5134     // Ignore scalar width, because the user explicitly wants vectorization.
5135     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5136     // evaluation.
5137     Cost = std::numeric_limits<float>::max();
5138   }
5139 
5140   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5141     // Notice that the vector loop needs to be executed less times, so
5142     // we need to divide the cost of the vector loops by the width of
5143     // the vector elements.
5144     VectorizationCostTy C = expectedCost(i);
5145     float VectorCost = C.first / (float)i;
5146     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5147                       << " costs: " << (int)VectorCost << ".\n");
5148     if (!C.second && !ForceVectorization) {
5149       LLVM_DEBUG(
5150           dbgs() << "LV: Not considering vector loop of width " << i
5151                  << " because it will not generate any vector instructions.\n");
5152       continue;
5153     }
5154     if (VectorCost < Cost) {
5155       Cost = VectorCost;
5156       Width = i;
5157     }
5158   }
5159 
5160   if (!EnableCondStoresVectorization && NumPredStores) {
5161     reportVectorizationFailure("There are conditional stores.",
5162         "store that is conditionally executed prevents vectorization",
5163         "ConditionalStore", ORE, TheLoop);
5164     Width = 1;
5165     Cost = ScalarCost;
5166   }
5167 
5168   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5169              << "LV: Vectorization seems to be not beneficial, "
5170              << "but was forced by a user.\n");
5171   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5172   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5173   return Factor;
5174 }
5175 
5176 std::pair<unsigned, unsigned>
5177 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5178   unsigned MinWidth = -1U;
5179   unsigned MaxWidth = 8;
5180   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5181 
5182   // For each block.
5183   for (BasicBlock *BB : TheLoop->blocks()) {
5184     // For each instruction in the loop.
5185     for (Instruction &I : BB->instructionsWithoutDebug()) {
5186       Type *T = I.getType();
5187 
5188       // Skip ignored values.
5189       if (ValuesToIgnore.count(&I))
5190         continue;
5191 
5192       // Only examine Loads, Stores and PHINodes.
5193       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5194         continue;
5195 
5196       // Examine PHI nodes that are reduction variables. Update the type to
5197       // account for the recurrence type.
5198       if (auto *PN = dyn_cast<PHINode>(&I)) {
5199         if (!Legal->isReductionVariable(PN))
5200           continue;
5201         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5202         T = RdxDesc.getRecurrenceType();
5203       }
5204 
5205       // Examine the stored values.
5206       if (auto *ST = dyn_cast<StoreInst>(&I))
5207         T = ST->getValueOperand()->getType();
5208 
5209       // Ignore loaded pointer types and stored pointer types that are not
5210       // vectorizable.
5211       //
5212       // FIXME: The check here attempts to predict whether a load or store will
5213       //        be vectorized. We only know this for certain after a VF has
5214       //        been selected. Here, we assume that if an access can be
5215       //        vectorized, it will be. We should also look at extending this
5216       //        optimization to non-pointer types.
5217       //
5218       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5219           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5220         continue;
5221 
5222       MinWidth = std::min(MinWidth,
5223                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5224       MaxWidth = std::max(MaxWidth,
5225                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5226     }
5227   }
5228 
5229   return {MinWidth, MaxWidth};
5230 }
5231 
5232 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5233                                                            unsigned LoopCost) {
5234   // -- The interleave heuristics --
5235   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5236   // There are many micro-architectural considerations that we can't predict
5237   // at this level. For example, frontend pressure (on decode or fetch) due to
5238   // code size, or the number and capabilities of the execution ports.
5239   //
5240   // We use the following heuristics to select the interleave count:
5241   // 1. If the code has reductions, then we interleave to break the cross
5242   // iteration dependency.
5243   // 2. If the loop is really small, then we interleave to reduce the loop
5244   // overhead.
5245   // 3. We don't interleave if we think that we will spill registers to memory
5246   // due to the increased register pressure.
5247 
5248   if (!isScalarEpilogueAllowed())
5249     return 1;
5250 
5251   // We used the distance for the interleave count.
5252   if (Legal->getMaxSafeDepDistBytes() != -1U)
5253     return 1;
5254 
5255   // Do not interleave loops with a relatively small known or estimated trip
5256   // count.
5257   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5258   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5259     return 1;
5260 
5261   RegisterUsage R = calculateRegisterUsage({VF})[0];
5262   // We divide by these constants so assume that we have at least one
5263   // instruction that uses at least one register.
5264   for (auto& pair : R.MaxLocalUsers) {
5265     pair.second = std::max(pair.second, 1U);
5266   }
5267 
5268   // We calculate the interleave count using the following formula.
5269   // Subtract the number of loop invariants from the number of available
5270   // registers. These registers are used by all of the interleaved instances.
5271   // Next, divide the remaining registers by the number of registers that is
5272   // required by the loop, in order to estimate how many parallel instances
5273   // fit without causing spills. All of this is rounded down if necessary to be
5274   // a power of two. We want power of two interleave count to simplify any
5275   // addressing operations or alignment considerations.
5276   // We also want power of two interleave counts to ensure that the induction
5277   // variable of the vector loop wraps to zero, when tail is folded by masking;
5278   // this currently happens when OptForSize, in which case IC is set to 1 above.
5279   unsigned IC = UINT_MAX;
5280 
5281   for (auto& pair : R.MaxLocalUsers) {
5282     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5283     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5284                       << " registers of "
5285                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5286     if (VF == 1) {
5287       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5288         TargetNumRegisters = ForceTargetNumScalarRegs;
5289     } else {
5290       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5291         TargetNumRegisters = ForceTargetNumVectorRegs;
5292     }
5293     unsigned MaxLocalUsers = pair.second;
5294     unsigned LoopInvariantRegs = 0;
5295     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5296       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5297 
5298     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5299     // Don't count the induction variable as interleaved.
5300     if (EnableIndVarRegisterHeur) {
5301       TmpIC =
5302           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5303                         std::max(1U, (MaxLocalUsers - 1)));
5304     }
5305 
5306     IC = std::min(IC, TmpIC);
5307   }
5308 
5309   // Clamp the interleave ranges to reasonable counts.
5310   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5311 
5312   // Check if the user has overridden the max.
5313   if (VF == 1) {
5314     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5315       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5316   } else {
5317     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5318       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5319   }
5320 
5321   // If trip count is known or estimated compile time constant, limit the
5322   // interleave count to be less than the trip count divided by VF.
5323   if (BestKnownTC) {
5324     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5325   }
5326 
5327   // If we did not calculate the cost for VF (because the user selected the VF)
5328   // then we calculate the cost of VF here.
5329   if (LoopCost == 0)
5330     LoopCost = expectedCost(VF).first;
5331 
5332   assert(LoopCost && "Non-zero loop cost expected");
5333 
5334   // Clamp the calculated IC to be between the 1 and the max interleave count
5335   // that the target and trip count allows.
5336   if (IC > MaxInterleaveCount)
5337     IC = MaxInterleaveCount;
5338   else if (IC < 1)
5339     IC = 1;
5340 
5341   // Interleave if we vectorized this loop and there is a reduction that could
5342   // benefit from interleaving.
5343   if (VF > 1 && !Legal->getReductionVars().empty()) {
5344     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5345     return IC;
5346   }
5347 
5348   // Note that if we've already vectorized the loop we will have done the
5349   // runtime check and so interleaving won't require further checks.
5350   bool InterleavingRequiresRuntimePointerCheck =
5351       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5352 
5353   // We want to interleave small loops in order to reduce the loop overhead and
5354   // potentially expose ILP opportunities.
5355   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5356   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5357     // We assume that the cost overhead is 1 and we use the cost model
5358     // to estimate the cost of the loop and interleave until the cost of the
5359     // loop overhead is about 5% of the cost of the loop.
5360     unsigned SmallIC =
5361         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5362 
5363     // Interleave until store/load ports (estimated by max interleave count) are
5364     // saturated.
5365     unsigned NumStores = Legal->getNumStores();
5366     unsigned NumLoads = Legal->getNumLoads();
5367     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5368     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5369 
5370     // If we have a scalar reduction (vector reductions are already dealt with
5371     // by this point), we can increase the critical path length if the loop
5372     // we're interleaving is inside another loop. Limit, by default to 2, so the
5373     // critical path only gets increased by one reduction operation.
5374     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5375       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5376       SmallIC = std::min(SmallIC, F);
5377       StoresIC = std::min(StoresIC, F);
5378       LoadsIC = std::min(LoadsIC, F);
5379     }
5380 
5381     if (EnableLoadStoreRuntimeInterleave &&
5382         std::max(StoresIC, LoadsIC) > SmallIC) {
5383       LLVM_DEBUG(
5384           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5385       return std::max(StoresIC, LoadsIC);
5386     }
5387 
5388     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5389     return SmallIC;
5390   }
5391 
5392   // Interleave if this is a large loop (small loops are already dealt with by
5393   // this point) that could benefit from interleaving.
5394   bool HasReductions = !Legal->getReductionVars().empty();
5395   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5396     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5397     return IC;
5398   }
5399 
5400   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5401   return 1;
5402 }
5403 
5404 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5405 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5406   // This function calculates the register usage by measuring the highest number
5407   // of values that are alive at a single location. Obviously, this is a very
5408   // rough estimation. We scan the loop in a topological order in order and
5409   // assign a number to each instruction. We use RPO to ensure that defs are
5410   // met before their users. We assume that each instruction that has in-loop
5411   // users starts an interval. We record every time that an in-loop value is
5412   // used, so we have a list of the first and last occurrences of each
5413   // instruction. Next, we transpose this data structure into a multi map that
5414   // holds the list of intervals that *end* at a specific location. This multi
5415   // map allows us to perform a linear search. We scan the instructions linearly
5416   // and record each time that a new interval starts, by placing it in a set.
5417   // If we find this value in the multi-map then we remove it from the set.
5418   // The max register usage is the maximum size of the set.
5419   // We also search for instructions that are defined outside the loop, but are
5420   // used inside the loop. We need this number separately from the max-interval
5421   // usage number because when we unroll, loop-invariant values do not take
5422   // more register.
5423   LoopBlocksDFS DFS(TheLoop);
5424   DFS.perform(LI);
5425 
5426   RegisterUsage RU;
5427 
5428   // Each 'key' in the map opens a new interval. The values
5429   // of the map are the index of the 'last seen' usage of the
5430   // instruction that is the key.
5431   using IntervalMap = DenseMap<Instruction *, unsigned>;
5432 
5433   // Maps instruction to its index.
5434   SmallVector<Instruction *, 64> IdxToInstr;
5435   // Marks the end of each interval.
5436   IntervalMap EndPoint;
5437   // Saves the list of instruction indices that are used in the loop.
5438   SmallPtrSet<Instruction *, 8> Ends;
5439   // Saves the list of values that are used in the loop but are
5440   // defined outside the loop, such as arguments and constants.
5441   SmallPtrSet<Value *, 8> LoopInvariants;
5442 
5443   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5444     for (Instruction &I : BB->instructionsWithoutDebug()) {
5445       IdxToInstr.push_back(&I);
5446 
5447       // Save the end location of each USE.
5448       for (Value *U : I.operands()) {
5449         auto *Instr = dyn_cast<Instruction>(U);
5450 
5451         // Ignore non-instruction values such as arguments, constants, etc.
5452         if (!Instr)
5453           continue;
5454 
5455         // If this instruction is outside the loop then record it and continue.
5456         if (!TheLoop->contains(Instr)) {
5457           LoopInvariants.insert(Instr);
5458           continue;
5459         }
5460 
5461         // Overwrite previous end points.
5462         EndPoint[Instr] = IdxToInstr.size();
5463         Ends.insert(Instr);
5464       }
5465     }
5466   }
5467 
5468   // Saves the list of intervals that end with the index in 'key'.
5469   using InstrList = SmallVector<Instruction *, 2>;
5470   DenseMap<unsigned, InstrList> TransposeEnds;
5471 
5472   // Transpose the EndPoints to a list of values that end at each index.
5473   for (auto &Interval : EndPoint)
5474     TransposeEnds[Interval.second].push_back(Interval.first);
5475 
5476   SmallPtrSet<Instruction *, 8> OpenIntervals;
5477 
5478   // Get the size of the widest register.
5479   unsigned MaxSafeDepDist = -1U;
5480   if (Legal->getMaxSafeDepDistBytes() != -1U)
5481     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5482   unsigned WidestRegister =
5483       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5484   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5485 
5486   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5487   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5488 
5489   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5490 
5491   // A lambda that gets the register usage for the given type and VF.
5492   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5493     if (Ty->isTokenTy())
5494       return 0U;
5495     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5496     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5497   };
5498 
5499   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5500     Instruction *I = IdxToInstr[i];
5501 
5502     // Remove all of the instructions that end at this location.
5503     InstrList &List = TransposeEnds[i];
5504     for (Instruction *ToRemove : List)
5505       OpenIntervals.erase(ToRemove);
5506 
5507     // Ignore instructions that are never used within the loop.
5508     if (!Ends.count(I))
5509       continue;
5510 
5511     // Skip ignored values.
5512     if (ValuesToIgnore.count(I))
5513       continue;
5514 
5515     // For each VF find the maximum usage of registers.
5516     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5517       // Count the number of live intervals.
5518       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5519 
5520       if (VFs[j] == 1) {
5521         for (auto Inst : OpenIntervals) {
5522           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5523           if (RegUsage.find(ClassID) == RegUsage.end())
5524             RegUsage[ClassID] = 1;
5525           else
5526             RegUsage[ClassID] += 1;
5527         }
5528       } else {
5529         collectUniformsAndScalars(VFs[j]);
5530         for (auto Inst : OpenIntervals) {
5531           // Skip ignored values for VF > 1.
5532           if (VecValuesToIgnore.count(Inst))
5533             continue;
5534           if (isScalarAfterVectorization(Inst, VFs[j])) {
5535             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5536             if (RegUsage.find(ClassID) == RegUsage.end())
5537               RegUsage[ClassID] = 1;
5538             else
5539               RegUsage[ClassID] += 1;
5540           } else {
5541             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5542             if (RegUsage.find(ClassID) == RegUsage.end())
5543               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5544             else
5545               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5546           }
5547         }
5548       }
5549 
5550       for (auto& pair : RegUsage) {
5551         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5552           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5553         else
5554           MaxUsages[j][pair.first] = pair.second;
5555       }
5556     }
5557 
5558     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5559                       << OpenIntervals.size() << '\n');
5560 
5561     // Add the current instruction to the list of open intervals.
5562     OpenIntervals.insert(I);
5563   }
5564 
5565   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5566     SmallMapVector<unsigned, unsigned, 4> Invariant;
5567 
5568     for (auto Inst : LoopInvariants) {
5569       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5570       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5571       if (Invariant.find(ClassID) == Invariant.end())
5572         Invariant[ClassID] = Usage;
5573       else
5574         Invariant[ClassID] += Usage;
5575     }
5576 
5577     LLVM_DEBUG({
5578       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5579       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5580              << " item\n";
5581       for (const auto &pair : MaxUsages[i]) {
5582         dbgs() << "LV(REG): RegisterClass: "
5583                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5584                << " registers\n";
5585       }
5586       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5587              << " item\n";
5588       for (const auto &pair : Invariant) {
5589         dbgs() << "LV(REG): RegisterClass: "
5590                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5591                << " registers\n";
5592       }
5593     });
5594 
5595     RU.LoopInvariantRegs = Invariant;
5596     RU.MaxLocalUsers = MaxUsages[i];
5597     RUs[i] = RU;
5598   }
5599 
5600   return RUs;
5601 }
5602 
5603 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5604   // TODO: Cost model for emulated masked load/store is completely
5605   // broken. This hack guides the cost model to use an artificially
5606   // high enough value to practically disable vectorization with such
5607   // operations, except where previously deployed legality hack allowed
5608   // using very low cost values. This is to avoid regressions coming simply
5609   // from moving "masked load/store" check from legality to cost model.
5610   // Masked Load/Gather emulation was previously never allowed.
5611   // Limited number of Masked Store/Scatter emulation was allowed.
5612   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5613   return isa<LoadInst>(I) ||
5614          (isa<StoreInst>(I) &&
5615           NumPredStores > NumberOfStoresToPredicate);
5616 }
5617 
5618 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5619   // If we aren't vectorizing the loop, or if we've already collected the
5620   // instructions to scalarize, there's nothing to do. Collection may already
5621   // have occurred if we have a user-selected VF and are now computing the
5622   // expected cost for interleaving.
5623   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5624     return;
5625 
5626   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5627   // not profitable to scalarize any instructions, the presence of VF in the
5628   // map will indicate that we've analyzed it already.
5629   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5630 
5631   // Find all the instructions that are scalar with predication in the loop and
5632   // determine if it would be better to not if-convert the blocks they are in.
5633   // If so, we also record the instructions to scalarize.
5634   for (BasicBlock *BB : TheLoop->blocks()) {
5635     if (!blockNeedsPredication(BB))
5636       continue;
5637     for (Instruction &I : *BB)
5638       if (isScalarWithPredication(&I)) {
5639         ScalarCostsTy ScalarCosts;
5640         // Do not apply discount logic if hacked cost is needed
5641         // for emulated masked memrefs.
5642         if (!useEmulatedMaskMemRefHack(&I) &&
5643             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5644           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5645         // Remember that BB will remain after vectorization.
5646         PredicatedBBsAfterVectorization.insert(BB);
5647       }
5648   }
5649 }
5650 
5651 int LoopVectorizationCostModel::computePredInstDiscount(
5652     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5653     unsigned VF) {
5654   assert(!isUniformAfterVectorization(PredInst, VF) &&
5655          "Instruction marked uniform-after-vectorization will be predicated");
5656 
5657   // Initialize the discount to zero, meaning that the scalar version and the
5658   // vector version cost the same.
5659   int Discount = 0;
5660 
5661   // Holds instructions to analyze. The instructions we visit are mapped in
5662   // ScalarCosts. Those instructions are the ones that would be scalarized if
5663   // we find that the scalar version costs less.
5664   SmallVector<Instruction *, 8> Worklist;
5665 
5666   // Returns true if the given instruction can be scalarized.
5667   auto canBeScalarized = [&](Instruction *I) -> bool {
5668     // We only attempt to scalarize instructions forming a single-use chain
5669     // from the original predicated block that would otherwise be vectorized.
5670     // Although not strictly necessary, we give up on instructions we know will
5671     // already be scalar to avoid traversing chains that are unlikely to be
5672     // beneficial.
5673     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5674         isScalarAfterVectorization(I, VF))
5675       return false;
5676 
5677     // If the instruction is scalar with predication, it will be analyzed
5678     // separately. We ignore it within the context of PredInst.
5679     if (isScalarWithPredication(I))
5680       return false;
5681 
5682     // If any of the instruction's operands are uniform after vectorization,
5683     // the instruction cannot be scalarized. This prevents, for example, a
5684     // masked load from being scalarized.
5685     //
5686     // We assume we will only emit a value for lane zero of an instruction
5687     // marked uniform after vectorization, rather than VF identical values.
5688     // Thus, if we scalarize an instruction that uses a uniform, we would
5689     // create uses of values corresponding to the lanes we aren't emitting code
5690     // for. This behavior can be changed by allowing getScalarValue to clone
5691     // the lane zero values for uniforms rather than asserting.
5692     for (Use &U : I->operands())
5693       if (auto *J = dyn_cast<Instruction>(U.get()))
5694         if (isUniformAfterVectorization(J, VF))
5695           return false;
5696 
5697     // Otherwise, we can scalarize the instruction.
5698     return true;
5699   };
5700 
5701   // Compute the expected cost discount from scalarizing the entire expression
5702   // feeding the predicated instruction. We currently only consider expressions
5703   // that are single-use instruction chains.
5704   Worklist.push_back(PredInst);
5705   while (!Worklist.empty()) {
5706     Instruction *I = Worklist.pop_back_val();
5707 
5708     // If we've already analyzed the instruction, there's nothing to do.
5709     if (ScalarCosts.find(I) != ScalarCosts.end())
5710       continue;
5711 
5712     // Compute the cost of the vector instruction. Note that this cost already
5713     // includes the scalarization overhead of the predicated instruction.
5714     unsigned VectorCost = getInstructionCost(I, VF).first;
5715 
5716     // Compute the cost of the scalarized instruction. This cost is the cost of
5717     // the instruction as if it wasn't if-converted and instead remained in the
5718     // predicated block. We will scale this cost by block probability after
5719     // computing the scalarization overhead.
5720     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5721 
5722     // Compute the scalarization overhead of needed insertelement instructions
5723     // and phi nodes.
5724     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5725       ScalarCost += TTI.getScalarizationOverhead(
5726           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5727           APInt::getAllOnesValue(VF), true, false);
5728       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI,
5729                                             TTI::TCK_RecipThroughput);
5730     }
5731 
5732     // Compute the scalarization overhead of needed extractelement
5733     // instructions. For each of the instruction's operands, if the operand can
5734     // be scalarized, add it to the worklist; otherwise, account for the
5735     // overhead.
5736     for (Use &U : I->operands())
5737       if (auto *J = dyn_cast<Instruction>(U.get())) {
5738         assert(VectorType::isValidElementType(J->getType()) &&
5739                "Instruction has non-scalar type");
5740         if (canBeScalarized(J))
5741           Worklist.push_back(J);
5742         else if (needsExtract(J, VF))
5743           ScalarCost += TTI.getScalarizationOverhead(
5744               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5745               APInt::getAllOnesValue(VF), false, true);
5746       }
5747 
5748     // Scale the total scalar cost by block probability.
5749     ScalarCost /= getReciprocalPredBlockProb();
5750 
5751     // Compute the discount. A non-negative discount means the vector version
5752     // of the instruction costs more, and scalarizing would be beneficial.
5753     Discount += VectorCost - ScalarCost;
5754     ScalarCosts[I] = ScalarCost;
5755   }
5756 
5757   return Discount;
5758 }
5759 
5760 LoopVectorizationCostModel::VectorizationCostTy
5761 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5762   VectorizationCostTy Cost;
5763 
5764   // For each block.
5765   for (BasicBlock *BB : TheLoop->blocks()) {
5766     VectorizationCostTy BlockCost;
5767 
5768     // For each instruction in the old loop.
5769     for (Instruction &I : BB->instructionsWithoutDebug()) {
5770       // Skip ignored values.
5771       if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I)))
5772         continue;
5773 
5774       VectorizationCostTy C = getInstructionCost(&I, VF);
5775 
5776       // Check if we should override the cost.
5777       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5778         C.first = ForceTargetInstructionCost;
5779 
5780       BlockCost.first += C.first;
5781       BlockCost.second |= C.second;
5782       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5783                         << " for VF " << VF << " For instruction: " << I
5784                         << '\n');
5785     }
5786 
5787     // If we are vectorizing a predicated block, it will have been
5788     // if-converted. This means that the block's instructions (aside from
5789     // stores and instructions that may divide by zero) will now be
5790     // unconditionally executed. For the scalar case, we may not always execute
5791     // the predicated block. Thus, scale the block's cost by the probability of
5792     // executing it.
5793     if (VF == 1 && blockNeedsPredication(BB))
5794       BlockCost.first /= getReciprocalPredBlockProb();
5795 
5796     Cost.first += BlockCost.first;
5797     Cost.second |= BlockCost.second;
5798   }
5799 
5800   return Cost;
5801 }
5802 
5803 /// Gets Address Access SCEV after verifying that the access pattern
5804 /// is loop invariant except the induction variable dependence.
5805 ///
5806 /// This SCEV can be sent to the Target in order to estimate the address
5807 /// calculation cost.
5808 static const SCEV *getAddressAccessSCEV(
5809               Value *Ptr,
5810               LoopVectorizationLegality *Legal,
5811               PredicatedScalarEvolution &PSE,
5812               const Loop *TheLoop) {
5813 
5814   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5815   if (!Gep)
5816     return nullptr;
5817 
5818   // We are looking for a gep with all loop invariant indices except for one
5819   // which should be an induction variable.
5820   auto SE = PSE.getSE();
5821   unsigned NumOperands = Gep->getNumOperands();
5822   for (unsigned i = 1; i < NumOperands; ++i) {
5823     Value *Opd = Gep->getOperand(i);
5824     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5825         !Legal->isInductionVariable(Opd))
5826       return nullptr;
5827   }
5828 
5829   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5830   return PSE.getSCEV(Ptr);
5831 }
5832 
5833 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5834   return Legal->hasStride(I->getOperand(0)) ||
5835          Legal->hasStride(I->getOperand(1));
5836 }
5837 
5838 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5839                                                                  unsigned VF) {
5840   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5841   Type *ValTy = getMemInstValueType(I);
5842   auto SE = PSE.getSE();
5843 
5844   unsigned AS = getLoadStoreAddressSpace(I);
5845   Value *Ptr = getLoadStorePointerOperand(I);
5846   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5847 
5848   // Figure out whether the access is strided and get the stride value
5849   // if it's known in compile time
5850   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5851 
5852   // Get the cost of the scalar memory instruction and address computation.
5853   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5854 
5855   // Don't pass *I here, since it is scalar but will actually be part of a
5856   // vectorized loop where the user of it is a vectorized instruction.
5857   const Align Alignment = getLoadStoreAlignment(I);
5858   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5859                                    Alignment, AS,
5860                                    TTI::TCK_RecipThroughput);
5861 
5862   // Get the overhead of the extractelement and insertelement instructions
5863   // we might create due to scalarization.
5864   Cost += getScalarizationOverhead(I, VF);
5865 
5866   // If we have a predicated store, it may not be executed for each vector
5867   // lane. Scale the cost by the probability of executing the predicated
5868   // block.
5869   if (isPredicatedInst(I)) {
5870     Cost /= getReciprocalPredBlockProb();
5871 
5872     if (useEmulatedMaskMemRefHack(I))
5873       // Artificially setting to a high enough value to practically disable
5874       // vectorization with such operations.
5875       Cost = 3000000;
5876   }
5877 
5878   return Cost;
5879 }
5880 
5881 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5882                                                              unsigned VF) {
5883   Type *ValTy = getMemInstValueType(I);
5884   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5885   Value *Ptr = getLoadStorePointerOperand(I);
5886   unsigned AS = getLoadStoreAddressSpace(I);
5887   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5888   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5889 
5890   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5891          "Stride should be 1 or -1 for consecutive memory access");
5892   const Align Alignment = getLoadStoreAlignment(I);
5893   unsigned Cost = 0;
5894   if (Legal->isMaskRequired(I))
5895     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5896                                       CostKind);
5897   else
5898     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5899                                 CostKind, I);
5900 
5901   bool Reverse = ConsecutiveStride < 0;
5902   if (Reverse)
5903     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5904   return Cost;
5905 }
5906 
5907 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5908                                                          unsigned VF) {
5909   Type *ValTy = getMemInstValueType(I);
5910   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5911   const Align Alignment = getLoadStoreAlignment(I);
5912   unsigned AS = getLoadStoreAddressSpace(I);
5913   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5914   if (isa<LoadInst>(I)) {
5915     return TTI.getAddressComputationCost(ValTy) +
5916            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5917                                CostKind) +
5918            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5919   }
5920   StoreInst *SI = cast<StoreInst>(I);
5921 
5922   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5923   return TTI.getAddressComputationCost(ValTy) +
5924          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5925                              CostKind) +
5926          (isLoopInvariantStoreValue
5927               ? 0
5928               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5929                                        VF - 1));
5930 }
5931 
5932 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5933                                                           unsigned VF) {
5934   Type *ValTy = getMemInstValueType(I);
5935   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5936   const Align Alignment = getLoadStoreAlignment(I);
5937   const Value *Ptr = getLoadStorePointerOperand(I);
5938 
5939   return TTI.getAddressComputationCost(VectorTy) +
5940          TTI.getGatherScatterOpCost(
5941              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
5942              TargetTransformInfo::TCK_RecipThroughput, I);
5943 }
5944 
5945 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5946                                                             unsigned VF) {
5947   Type *ValTy = getMemInstValueType(I);
5948   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5949   unsigned AS = getLoadStoreAddressSpace(I);
5950 
5951   auto Group = getInterleavedAccessGroup(I);
5952   assert(Group && "Fail to get an interleaved access group.");
5953 
5954   unsigned InterleaveFactor = Group->getFactor();
5955   auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor);
5956 
5957   // Holds the indices of existing members in an interleaved load group.
5958   // An interleaved store group doesn't need this as it doesn't allow gaps.
5959   SmallVector<unsigned, 4> Indices;
5960   if (isa<LoadInst>(I)) {
5961     for (unsigned i = 0; i < InterleaveFactor; i++)
5962       if (Group->getMember(i))
5963         Indices.push_back(i);
5964   }
5965 
5966   // Calculate the cost of the whole interleaved group.
5967   bool UseMaskForGaps =
5968       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5969   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5970       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
5971       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
5972 
5973   if (Group->isReverse()) {
5974     // TODO: Add support for reversed masked interleaved access.
5975     assert(!Legal->isMaskRequired(I) &&
5976            "Reverse masked interleaved access not supported.");
5977     Cost += Group->getNumMembers() *
5978             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5979   }
5980   return Cost;
5981 }
5982 
5983 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5984                                                               unsigned VF) {
5985   // Calculate scalar cost only. Vectorization cost should be ready at this
5986   // moment.
5987   if (VF == 1) {
5988     Type *ValTy = getMemInstValueType(I);
5989     const Align Alignment = getLoadStoreAlignment(I);
5990     unsigned AS = getLoadStoreAddressSpace(I);
5991 
5992     return TTI.getAddressComputationCost(ValTy) +
5993            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5994                                TTI::TCK_RecipThroughput, I);
5995   }
5996   return getWideningCost(I, VF);
5997 }
5998 
5999 LoopVectorizationCostModel::VectorizationCostTy
6000 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6001   // If we know that this instruction will remain uniform, check the cost of
6002   // the scalar version.
6003   if (isUniformAfterVectorization(I, VF))
6004     VF = 1;
6005 
6006   if (VF > 1 && isProfitableToScalarize(I, VF))
6007     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6008 
6009   // Forced scalars do not have any scalarization overhead.
6010   auto ForcedScalar = ForcedScalars.find(VF);
6011   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6012     auto InstSet = ForcedScalar->second;
6013     if (InstSet.count(I))
6014       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6015   }
6016 
6017   Type *VectorTy;
6018   unsigned C = getInstructionCost(I, VF, VectorTy);
6019 
6020   bool TypeNotScalarized =
6021       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6022   return VectorizationCostTy(C, TypeNotScalarized);
6023 }
6024 
6025 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6026                                                               unsigned VF) {
6027 
6028   if (VF == 1)
6029     return 0;
6030 
6031   unsigned Cost = 0;
6032   Type *RetTy = ToVectorTy(I->getType(), VF);
6033   if (!RetTy->isVoidTy() &&
6034       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6035     Cost += TTI.getScalarizationOverhead(
6036         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6037 
6038   // Some targets keep addresses scalar.
6039   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6040     return Cost;
6041 
6042   // Some targets support efficient element stores.
6043   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6044     return Cost;
6045 
6046   // Collect operands to consider.
6047   CallInst *CI = dyn_cast<CallInst>(I);
6048   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6049 
6050   // Skip operands that do not require extraction/scalarization and do not incur
6051   // any overhead.
6052   return Cost + TTI.getOperandsScalarizationOverhead(
6053                     filterExtractingOperands(Ops, VF), VF);
6054 }
6055 
6056 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6057   if (VF == 1)
6058     return;
6059   NumPredStores = 0;
6060   for (BasicBlock *BB : TheLoop->blocks()) {
6061     // For each instruction in the old loop.
6062     for (Instruction &I : *BB) {
6063       Value *Ptr =  getLoadStorePointerOperand(&I);
6064       if (!Ptr)
6065         continue;
6066 
6067       // TODO: We should generate better code and update the cost model for
6068       // predicated uniform stores. Today they are treated as any other
6069       // predicated store (see added test cases in
6070       // invariant-store-vectorization.ll).
6071       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6072         NumPredStores++;
6073 
6074       if (Legal->isUniform(Ptr) &&
6075           // Conditional loads and stores should be scalarized and predicated.
6076           // isScalarWithPredication cannot be used here since masked
6077           // gather/scatters are not considered scalar with predication.
6078           !Legal->blockNeedsPredication(I.getParent())) {
6079         // TODO: Avoid replicating loads and stores instead of
6080         // relying on instcombine to remove them.
6081         // Load: Scalar load + broadcast
6082         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6083         unsigned Cost = getUniformMemOpCost(&I, VF);
6084         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6085         continue;
6086       }
6087 
6088       // We assume that widening is the best solution when possible.
6089       if (memoryInstructionCanBeWidened(&I, VF)) {
6090         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6091         int ConsecutiveStride =
6092                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6093         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6094                "Expected consecutive stride.");
6095         InstWidening Decision =
6096             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6097         setWideningDecision(&I, VF, Decision, Cost);
6098         continue;
6099       }
6100 
6101       // Choose between Interleaving, Gather/Scatter or Scalarization.
6102       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6103       unsigned NumAccesses = 1;
6104       if (isAccessInterleaved(&I)) {
6105         auto Group = getInterleavedAccessGroup(&I);
6106         assert(Group && "Fail to get an interleaved access group.");
6107 
6108         // Make one decision for the whole group.
6109         if (getWideningDecision(&I, VF) != CM_Unknown)
6110           continue;
6111 
6112         NumAccesses = Group->getNumMembers();
6113         if (interleavedAccessCanBeWidened(&I, VF))
6114           InterleaveCost = getInterleaveGroupCost(&I, VF);
6115       }
6116 
6117       unsigned GatherScatterCost =
6118           isLegalGatherOrScatter(&I)
6119               ? getGatherScatterCost(&I, VF) * NumAccesses
6120               : std::numeric_limits<unsigned>::max();
6121 
6122       unsigned ScalarizationCost =
6123           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6124 
6125       // Choose better solution for the current VF,
6126       // write down this decision and use it during vectorization.
6127       unsigned Cost;
6128       InstWidening Decision;
6129       if (InterleaveCost <= GatherScatterCost &&
6130           InterleaveCost < ScalarizationCost) {
6131         Decision = CM_Interleave;
6132         Cost = InterleaveCost;
6133       } else if (GatherScatterCost < ScalarizationCost) {
6134         Decision = CM_GatherScatter;
6135         Cost = GatherScatterCost;
6136       } else {
6137         Decision = CM_Scalarize;
6138         Cost = ScalarizationCost;
6139       }
6140       // If the instructions belongs to an interleave group, the whole group
6141       // receives the same decision. The whole group receives the cost, but
6142       // the cost will actually be assigned to one instruction.
6143       if (auto Group = getInterleavedAccessGroup(&I))
6144         setWideningDecision(Group, VF, Decision, Cost);
6145       else
6146         setWideningDecision(&I, VF, Decision, Cost);
6147     }
6148   }
6149 
6150   // Make sure that any load of address and any other address computation
6151   // remains scalar unless there is gather/scatter support. This avoids
6152   // inevitable extracts into address registers, and also has the benefit of
6153   // activating LSR more, since that pass can't optimize vectorized
6154   // addresses.
6155   if (TTI.prefersVectorizedAddressing())
6156     return;
6157 
6158   // Start with all scalar pointer uses.
6159   SmallPtrSet<Instruction *, 8> AddrDefs;
6160   for (BasicBlock *BB : TheLoop->blocks())
6161     for (Instruction &I : *BB) {
6162       Instruction *PtrDef =
6163         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6164       if (PtrDef && TheLoop->contains(PtrDef) &&
6165           getWideningDecision(&I, VF) != CM_GatherScatter)
6166         AddrDefs.insert(PtrDef);
6167     }
6168 
6169   // Add all instructions used to generate the addresses.
6170   SmallVector<Instruction *, 4> Worklist;
6171   for (auto *I : AddrDefs)
6172     Worklist.push_back(I);
6173   while (!Worklist.empty()) {
6174     Instruction *I = Worklist.pop_back_val();
6175     for (auto &Op : I->operands())
6176       if (auto *InstOp = dyn_cast<Instruction>(Op))
6177         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6178             AddrDefs.insert(InstOp).second)
6179           Worklist.push_back(InstOp);
6180   }
6181 
6182   for (auto *I : AddrDefs) {
6183     if (isa<LoadInst>(I)) {
6184       // Setting the desired widening decision should ideally be handled in
6185       // by cost functions, but since this involves the task of finding out
6186       // if the loaded register is involved in an address computation, it is
6187       // instead changed here when we know this is the case.
6188       InstWidening Decision = getWideningDecision(I, VF);
6189       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6190         // Scalarize a widened load of address.
6191         setWideningDecision(I, VF, CM_Scalarize,
6192                             (VF * getMemoryInstructionCost(I, 1)));
6193       else if (auto Group = getInterleavedAccessGroup(I)) {
6194         // Scalarize an interleave group of address loads.
6195         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6196           if (Instruction *Member = Group->getMember(I))
6197             setWideningDecision(Member, VF, CM_Scalarize,
6198                                 (VF * getMemoryInstructionCost(Member, 1)));
6199         }
6200       }
6201     } else
6202       // Make sure I gets scalarized and a cost estimate without
6203       // scalarization overhead.
6204       ForcedScalars[VF].insert(I);
6205   }
6206 }
6207 
6208 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6209                                                         unsigned VF,
6210                                                         Type *&VectorTy) {
6211   Type *RetTy = I->getType();
6212   if (canTruncateToMinimalBitwidth(I, VF))
6213     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6214   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6215   auto SE = PSE.getSE();
6216   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6217 
6218   // TODO: We need to estimate the cost of intrinsic calls.
6219   switch (I->getOpcode()) {
6220   case Instruction::GetElementPtr:
6221     // We mark this instruction as zero-cost because the cost of GEPs in
6222     // vectorized code depends on whether the corresponding memory instruction
6223     // is scalarized or not. Therefore, we handle GEPs with the memory
6224     // instruction cost.
6225     return 0;
6226   case Instruction::Br: {
6227     // In cases of scalarized and predicated instructions, there will be VF
6228     // predicated blocks in the vectorized loop. Each branch around these
6229     // blocks requires also an extract of its vector compare i1 element.
6230     bool ScalarPredicatedBB = false;
6231     BranchInst *BI = cast<BranchInst>(I);
6232     if (VF > 1 && BI->isConditional() &&
6233         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6234          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6235       ScalarPredicatedBB = true;
6236 
6237     if (ScalarPredicatedBB) {
6238       // Return cost for branches around scalarized and predicated blocks.
6239       auto *Vec_i1Ty =
6240           FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6241       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6242                                            false, true) +
6243               (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF));
6244     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6245       // The back-edge branch will remain, as will all scalar branches.
6246       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6247     else
6248       // This branch will be eliminated by if-conversion.
6249       return 0;
6250     // Note: We currently assume zero cost for an unconditional branch inside
6251     // a predicated block since it will become a fall-through, although we
6252     // may decide in the future to call TTI for all branches.
6253   }
6254   case Instruction::PHI: {
6255     auto *Phi = cast<PHINode>(I);
6256 
6257     // First-order recurrences are replaced by vector shuffles inside the loop.
6258     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6259     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6260       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6261                                 cast<VectorType>(VectorTy), VF - 1,
6262                                 FixedVectorType::get(RetTy, 1));
6263 
6264     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6265     // converted into select instructions. We require N - 1 selects per phi
6266     // node, where N is the number of incoming values.
6267     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6268       return (Phi->getNumIncomingValues() - 1) *
6269              TTI.getCmpSelInstrCost(
6270                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6271                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6272                  CostKind);
6273 
6274     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6275   }
6276   case Instruction::UDiv:
6277   case Instruction::SDiv:
6278   case Instruction::URem:
6279   case Instruction::SRem:
6280     // If we have a predicated instruction, it may not be executed for each
6281     // vector lane. Get the scalarization cost and scale this amount by the
6282     // probability of executing the predicated block. If the instruction is not
6283     // predicated, we fall through to the next case.
6284     if (VF > 1 && isScalarWithPredication(I)) {
6285       unsigned Cost = 0;
6286 
6287       // These instructions have a non-void type, so account for the phi nodes
6288       // that we will create. This cost is likely to be zero. The phi node
6289       // cost, if any, should be scaled by the block probability because it
6290       // models a copy at the end of each predicated block.
6291       Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind);
6292 
6293       // The cost of the non-predicated instruction.
6294       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6295 
6296       // The cost of insertelement and extractelement instructions needed for
6297       // scalarization.
6298       Cost += getScalarizationOverhead(I, VF);
6299 
6300       // Scale the cost by the probability of executing the predicated blocks.
6301       // This assumes the predicated block for each vector lane is equally
6302       // likely.
6303       return Cost / getReciprocalPredBlockProb();
6304     }
6305     LLVM_FALLTHROUGH;
6306   case Instruction::Add:
6307   case Instruction::FAdd:
6308   case Instruction::Sub:
6309   case Instruction::FSub:
6310   case Instruction::Mul:
6311   case Instruction::FMul:
6312   case Instruction::FDiv:
6313   case Instruction::FRem:
6314   case Instruction::Shl:
6315   case Instruction::LShr:
6316   case Instruction::AShr:
6317   case Instruction::And:
6318   case Instruction::Or:
6319   case Instruction::Xor: {
6320     // Since we will replace the stride by 1 the multiplication should go away.
6321     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6322       return 0;
6323     // Certain instructions can be cheaper to vectorize if they have a constant
6324     // second vector operand. One example of this are shifts on x86.
6325     Value *Op2 = I->getOperand(1);
6326     TargetTransformInfo::OperandValueProperties Op2VP;
6327     TargetTransformInfo::OperandValueKind Op2VK =
6328         TTI.getOperandInfo(Op2, Op2VP);
6329     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6330       Op2VK = TargetTransformInfo::OK_UniformValue;
6331 
6332     SmallVector<const Value *, 4> Operands(I->operand_values());
6333     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6334     return N * TTI.getArithmeticInstrCost(
6335                    I->getOpcode(), VectorTy, CostKind,
6336                    TargetTransformInfo::OK_AnyValue,
6337                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6338   }
6339   case Instruction::FNeg: {
6340     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6341     return N * TTI.getArithmeticInstrCost(
6342                    I->getOpcode(), VectorTy, CostKind,
6343                    TargetTransformInfo::OK_AnyValue,
6344                    TargetTransformInfo::OK_AnyValue,
6345                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6346                    I->getOperand(0), I);
6347   }
6348   case Instruction::Select: {
6349     SelectInst *SI = cast<SelectInst>(I);
6350     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6351     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6352     Type *CondTy = SI->getCondition()->getType();
6353     if (!ScalarCond)
6354       CondTy = FixedVectorType::get(CondTy, VF);
6355 
6356     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6357                                   CostKind, I);
6358   }
6359   case Instruction::ICmp:
6360   case Instruction::FCmp: {
6361     Type *ValTy = I->getOperand(0)->getType();
6362     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6363     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6364       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6365     VectorTy = ToVectorTy(ValTy, VF);
6366     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6367                                   I);
6368   }
6369   case Instruction::Store:
6370   case Instruction::Load: {
6371     unsigned Width = VF;
6372     if (Width > 1) {
6373       InstWidening Decision = getWideningDecision(I, Width);
6374       assert(Decision != CM_Unknown &&
6375              "CM decision should be taken at this point");
6376       if (Decision == CM_Scalarize)
6377         Width = 1;
6378     }
6379     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6380     return getMemoryInstructionCost(I, VF);
6381   }
6382   case Instruction::ZExt:
6383   case Instruction::SExt:
6384   case Instruction::FPToUI:
6385   case Instruction::FPToSI:
6386   case Instruction::FPExt:
6387   case Instruction::PtrToInt:
6388   case Instruction::IntToPtr:
6389   case Instruction::SIToFP:
6390   case Instruction::UIToFP:
6391   case Instruction::Trunc:
6392   case Instruction::FPTrunc:
6393   case Instruction::BitCast: {
6394     // We optimize the truncation of induction variables having constant
6395     // integer steps. The cost of these truncations is the same as the scalar
6396     // operation.
6397     if (isOptimizableIVTruncate(I, VF)) {
6398       auto *Trunc = cast<TruncInst>(I);
6399       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6400                                   Trunc->getSrcTy(), CostKind, Trunc);
6401     }
6402 
6403     Type *SrcScalarTy = I->getOperand(0)->getType();
6404     Type *SrcVecTy =
6405         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6406     if (canTruncateToMinimalBitwidth(I, VF)) {
6407       // This cast is going to be shrunk. This may remove the cast or it might
6408       // turn it into slightly different cast. For example, if MinBW == 16,
6409       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6410       //
6411       // Calculate the modified src and dest types.
6412       Type *MinVecTy = VectorTy;
6413       if (I->getOpcode() == Instruction::Trunc) {
6414         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6415         VectorTy =
6416             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6417       } else if (I->getOpcode() == Instruction::ZExt ||
6418                  I->getOpcode() == Instruction::SExt) {
6419         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6420         VectorTy =
6421             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6422       }
6423     }
6424 
6425     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6426     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6427                                     CostKind, I);
6428   }
6429   case Instruction::Call: {
6430     bool NeedToScalarize;
6431     CallInst *CI = cast<CallInst>(I);
6432     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6433     if (getVectorIntrinsicIDForCall(CI, TLI))
6434       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6435     return CallCost;
6436   }
6437   default:
6438     // The cost of executing VF copies of the scalar instruction. This opcode
6439     // is unknown. Assume that it is the same as 'mul'.
6440     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6441                                            CostKind) +
6442            getScalarizationOverhead(I, VF);
6443   } // end of switch.
6444 }
6445 
6446 char LoopVectorize::ID = 0;
6447 
6448 static const char lv_name[] = "Loop Vectorization";
6449 
6450 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6451 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6452 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6453 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6454 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6455 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6456 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6457 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6458 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6459 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6460 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6461 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6462 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6463 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6464 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6465 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6466 
6467 namespace llvm {
6468 
6469 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6470 
6471 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6472                               bool VectorizeOnlyWhenForced) {
6473   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6474 }
6475 
6476 } // end namespace llvm
6477 
6478 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6479   // Check if the pointer operand of a load or store instruction is
6480   // consecutive.
6481   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6482     return Legal->isConsecutivePtr(Ptr);
6483   return false;
6484 }
6485 
6486 void LoopVectorizationCostModel::collectValuesToIgnore() {
6487   // Ignore ephemeral values.
6488   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6489 
6490   // Ignore type-promoting instructions we identified during reduction
6491   // detection.
6492   for (auto &Reduction : Legal->getReductionVars()) {
6493     RecurrenceDescriptor &RedDes = Reduction.second;
6494     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6495     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6496   }
6497   // Ignore type-casting instructions we identified during induction
6498   // detection.
6499   for (auto &Induction : Legal->getInductionVars()) {
6500     InductionDescriptor &IndDes = Induction.second;
6501     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6502     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6503   }
6504 }
6505 
6506 // TODO: we could return a pair of values that specify the max VF and
6507 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6508 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6509 // doesn't have a cost model that can choose which plan to execute if
6510 // more than one is generated.
6511 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6512                                  LoopVectorizationCostModel &CM) {
6513   unsigned WidestType;
6514   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6515   return WidestVectorRegBits / WidestType;
6516 }
6517 
6518 VectorizationFactor
6519 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6520   unsigned VF = UserVF;
6521   // Outer loop handling: They may require CFG and instruction level
6522   // transformations before even evaluating whether vectorization is profitable.
6523   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6524   // the vectorization pipeline.
6525   if (!OrigLoop->empty()) {
6526     // If the user doesn't provide a vectorization factor, determine a
6527     // reasonable one.
6528     if (!UserVF) {
6529       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6530       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6531 
6532       // Make sure we have a VF > 1 for stress testing.
6533       if (VPlanBuildStressTest && VF < 2) {
6534         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6535                           << "overriding computed VF.\n");
6536         VF = 4;
6537       }
6538     }
6539     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6540     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6541     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6542                       << " to build VPlans.\n");
6543     buildVPlans(VF, VF);
6544 
6545     // For VPlan build stress testing, we bail out after VPlan construction.
6546     if (VPlanBuildStressTest)
6547       return VectorizationFactor::Disabled();
6548 
6549     return {VF, 0};
6550   }
6551 
6552   LLVM_DEBUG(
6553       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6554                 "VPlan-native path.\n");
6555   return VectorizationFactor::Disabled();
6556 }
6557 
6558 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF,
6559                                                              unsigned UserIC) {
6560   assert(OrigLoop->empty() && "Inner loop expected.");
6561   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6562   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6563     return None;
6564 
6565   // Invalidate interleave groups if all blocks of loop will be predicated.
6566   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6567       !useMaskedInterleavedAccesses(*TTI)) {
6568     LLVM_DEBUG(
6569         dbgs()
6570         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6571            "which requires masked-interleaved support.\n");
6572     if (CM.InterleaveInfo.invalidateGroups())
6573       // Invalidating interleave groups also requires invalidating all decisions
6574       // based on them, which includes widening decisions and uniform and scalar
6575       // values.
6576       CM.invalidateCostModelingDecisions();
6577   }
6578 
6579   if (UserVF) {
6580     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6581     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6582     // Collect the instructions (and their associated costs) that will be more
6583     // profitable to scalarize.
6584     CM.selectUserVectorizationFactor(UserVF);
6585     buildVPlansWithVPRecipes(UserVF, UserVF);
6586     LLVM_DEBUG(printPlans(dbgs()));
6587     return {{UserVF, 0}};
6588   }
6589 
6590   unsigned MaxVF = MaybeMaxVF.getValue();
6591   assert(MaxVF != 0 && "MaxVF is zero.");
6592 
6593   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6594     // Collect Uniform and Scalar instructions after vectorization with VF.
6595     CM.collectUniformsAndScalars(VF);
6596 
6597     // Collect the instructions (and their associated costs) that will be more
6598     // profitable to scalarize.
6599     if (VF > 1)
6600       CM.collectInstsToScalarize(VF);
6601   }
6602 
6603   buildVPlansWithVPRecipes(1, MaxVF);
6604   LLVM_DEBUG(printPlans(dbgs()));
6605   if (MaxVF == 1)
6606     return VectorizationFactor::Disabled();
6607 
6608   // Select the optimal vectorization factor.
6609   return CM.selectVectorizationFactor(MaxVF);
6610 }
6611 
6612 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6613   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6614                     << '\n');
6615   BestVF = VF;
6616   BestUF = UF;
6617 
6618   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6619     return !Plan->hasVF(VF);
6620   });
6621   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6622 }
6623 
6624 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6625                                            DominatorTree *DT) {
6626   // Perform the actual loop transformation.
6627 
6628   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6629   VPCallbackILV CallbackILV(ILV);
6630 
6631   VPTransformState State{BestVF, BestUF,      LI,
6632                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6633                          &ILV,   CallbackILV};
6634   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6635   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6636   State.CanonicalIV = ILV.Induction;
6637 
6638   //===------------------------------------------------===//
6639   //
6640   // Notice: any optimization or new instruction that go
6641   // into the code below should also be implemented in
6642   // the cost-model.
6643   //
6644   //===------------------------------------------------===//
6645 
6646   // 2. Copy and widen instructions from the old loop into the new loop.
6647   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6648   VPlans.front()->execute(&State);
6649 
6650   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6651   //    predication, updating analyses.
6652   ILV.fixVectorizedLoop();
6653 }
6654 
6655 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6656     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6657   BasicBlock *Latch = OrigLoop->getLoopLatch();
6658 
6659   // We create new control-flow for the vectorized loop, so the original
6660   // condition will be dead after vectorization if it's only used by the
6661   // branch.
6662   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6663   if (Cmp && Cmp->hasOneUse())
6664     DeadInstructions.insert(Cmp);
6665 
6666   // We create new "steps" for induction variable updates to which the original
6667   // induction variables map. An original update instruction will be dead if
6668   // all its users except the induction variable are dead.
6669   for (auto &Induction : Legal->getInductionVars()) {
6670     PHINode *Ind = Induction.first;
6671     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6672     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6673           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
6674         }))
6675       DeadInstructions.insert(IndUpdate);
6676 
6677     // We record as "Dead" also the type-casting instructions we had identified
6678     // during induction analysis. We don't need any handling for them in the
6679     // vectorized loop because we have proven that, under a proper runtime
6680     // test guarding the vectorized loop, the value of the phi, and the casted
6681     // value of the phi, are the same. The last instruction in this casting chain
6682     // will get its scalar/vector/widened def from the scalar/vector/widened def
6683     // of the respective phi node. Any other casts in the induction def-use chain
6684     // have no other uses outside the phi update chain, and will be ignored.
6685     InductionDescriptor &IndDes = Induction.second;
6686     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6687     DeadInstructions.insert(Casts.begin(), Casts.end());
6688   }
6689 }
6690 
6691 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6692 
6693 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6694 
6695 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6696                                         Instruction::BinaryOps BinOp) {
6697   // When unrolling and the VF is 1, we only need to add a simple scalar.
6698   Type *Ty = Val->getType();
6699   assert(!Ty->isVectorTy() && "Val must be a scalar");
6700 
6701   if (Ty->isFloatingPointTy()) {
6702     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6703 
6704     // Floating point operations had to be 'fast' to enable the unrolling.
6705     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6706     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6707   }
6708   Constant *C = ConstantInt::get(Ty, StartIdx);
6709   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6710 }
6711 
6712 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6713   SmallVector<Metadata *, 4> MDs;
6714   // Reserve first location for self reference to the LoopID metadata node.
6715   MDs.push_back(nullptr);
6716   bool IsUnrollMetadata = false;
6717   MDNode *LoopID = L->getLoopID();
6718   if (LoopID) {
6719     // First find existing loop unrolling disable metadata.
6720     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6721       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6722       if (MD) {
6723         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6724         IsUnrollMetadata =
6725             S && S->getString().startswith("llvm.loop.unroll.disable");
6726       }
6727       MDs.push_back(LoopID->getOperand(i));
6728     }
6729   }
6730 
6731   if (!IsUnrollMetadata) {
6732     // Add runtime unroll disable metadata.
6733     LLVMContext &Context = L->getHeader()->getContext();
6734     SmallVector<Metadata *, 1> DisableOperands;
6735     DisableOperands.push_back(
6736         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6737     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6738     MDs.push_back(DisableNode);
6739     MDNode *NewLoopID = MDNode::get(Context, MDs);
6740     // Set operand 0 to refer to the loop id itself.
6741     NewLoopID->replaceOperandWith(0, NewLoopID);
6742     L->setLoopID(NewLoopID);
6743   }
6744 }
6745 
6746 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6747     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6748   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6749   bool PredicateAtRangeStart = Predicate(Range.Start);
6750 
6751   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6752     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6753       Range.End = TmpVF;
6754       break;
6755     }
6756 
6757   return PredicateAtRangeStart;
6758 }
6759 
6760 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6761 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6762 /// of VF's starting at a given VF and extending it as much as possible. Each
6763 /// vectorization decision can potentially shorten this sub-range during
6764 /// buildVPlan().
6765 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6766   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6767     VFRange SubRange = {VF, MaxVF + 1};
6768     VPlans.push_back(buildVPlan(SubRange));
6769     VF = SubRange.End;
6770   }
6771 }
6772 
6773 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6774                                          VPlanPtr &Plan) {
6775   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6776 
6777   // Look for cached value.
6778   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6779   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6780   if (ECEntryIt != EdgeMaskCache.end())
6781     return ECEntryIt->second;
6782 
6783   VPValue *SrcMask = createBlockInMask(Src, Plan);
6784 
6785   // The terminator has to be a branch inst!
6786   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6787   assert(BI && "Unexpected terminator found");
6788 
6789   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6790     return EdgeMaskCache[Edge] = SrcMask;
6791 
6792   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6793   assert(EdgeMask && "No Edge Mask found for condition");
6794 
6795   if (BI->getSuccessor(0) != Dst)
6796     EdgeMask = Builder.createNot(EdgeMask);
6797 
6798   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6799     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6800 
6801   return EdgeMaskCache[Edge] = EdgeMask;
6802 }
6803 
6804 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6805   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6806 
6807   // Look for cached value.
6808   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6809   if (BCEntryIt != BlockMaskCache.end())
6810     return BCEntryIt->second;
6811 
6812   // All-one mask is modelled as no-mask following the convention for masked
6813   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6814   VPValue *BlockMask = nullptr;
6815 
6816   if (OrigLoop->getHeader() == BB) {
6817     if (!CM.blockNeedsPredication(BB))
6818       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6819 
6820     // Introduce the early-exit compare IV <= BTC to form header block mask.
6821     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6822     // Start by constructing the desired canonical IV.
6823     VPValue *IV = nullptr;
6824     if (Legal->getPrimaryInduction())
6825       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6826     else {
6827       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6828       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6829       IV = IVRecipe->getVPValue();
6830     }
6831     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6832     bool TailFolded = !CM.isScalarEpilogueAllowed();
6833     if (TailFolded && CM.TTI.emitGetActiveLaneMask())
6834       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC});
6835     else
6836       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6837     return BlockMaskCache[BB] = BlockMask;
6838   }
6839 
6840   // This is the block mask. We OR all incoming edges.
6841   for (auto *Predecessor : predecessors(BB)) {
6842     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6843     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6844       return BlockMaskCache[BB] = EdgeMask;
6845 
6846     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6847       BlockMask = EdgeMask;
6848       continue;
6849     }
6850 
6851     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6852   }
6853 
6854   return BlockMaskCache[BB] = BlockMask;
6855 }
6856 
6857 VPWidenMemoryInstructionRecipe *
6858 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6859                                   VPlanPtr &Plan) {
6860   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6861          "Must be called with either a load or store");
6862 
6863   auto willWiden = [&](unsigned VF) -> bool {
6864     if (VF == 1)
6865       return false;
6866     LoopVectorizationCostModel::InstWidening Decision =
6867         CM.getWideningDecision(I, VF);
6868     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6869            "CM decision should be taken at this point.");
6870     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6871       return true;
6872     if (CM.isScalarAfterVectorization(I, VF) ||
6873         CM.isProfitableToScalarize(I, VF))
6874       return false;
6875     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6876   };
6877 
6878   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6879     return nullptr;
6880 
6881   VPValue *Mask = nullptr;
6882   if (Legal->isMaskRequired(I))
6883     Mask = createBlockInMask(I->getParent(), Plan);
6884 
6885   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6886   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6887     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6888 
6889   StoreInst *Store = cast<StoreInst>(I);
6890   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6891   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6892 }
6893 
6894 VPWidenIntOrFpInductionRecipe *
6895 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6896   // Check if this is an integer or fp induction. If so, build the recipe that
6897   // produces its scalar and vector values.
6898   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6899   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6900       II.getKind() == InductionDescriptor::IK_FpInduction)
6901     return new VPWidenIntOrFpInductionRecipe(Phi);
6902 
6903   return nullptr;
6904 }
6905 
6906 VPWidenIntOrFpInductionRecipe *
6907 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6908                                                 VFRange &Range) const {
6909   // Optimize the special case where the source is a constant integer
6910   // induction variable. Notice that we can only optimize the 'trunc' case
6911   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6912   // (c) other casts depend on pointer size.
6913 
6914   // Determine whether \p K is a truncation based on an induction variable that
6915   // can be optimized.
6916   auto isOptimizableIVTruncate =
6917       [&](Instruction *K) -> std::function<bool(unsigned)> {
6918     return
6919         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6920   };
6921 
6922   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6923           isOptimizableIVTruncate(I), Range))
6924     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6925                                              I);
6926   return nullptr;
6927 }
6928 
6929 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6930   // We know that all PHIs in non-header blocks are converted into selects, so
6931   // we don't have to worry about the insertion order and we can just use the
6932   // builder. At this point we generate the predication tree. There may be
6933   // duplications since this is a simple recursive scan, but future
6934   // optimizations will clean it up.
6935 
6936   SmallVector<VPValue *, 2> Operands;
6937   unsigned NumIncoming = Phi->getNumIncomingValues();
6938   for (unsigned In = 0; In < NumIncoming; In++) {
6939     VPValue *EdgeMask =
6940       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6941     assert((EdgeMask || NumIncoming == 1) &&
6942            "Multiple predecessors with one having a full mask");
6943     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6944     if (EdgeMask)
6945       Operands.push_back(EdgeMask);
6946   }
6947   return new VPBlendRecipe(Phi, Operands);
6948 }
6949 
6950 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6951                                                    VPlan &Plan) const {
6952 
6953   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6954       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6955       Range);
6956 
6957   if (IsPredicated)
6958     return nullptr;
6959 
6960   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6961   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6962              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6963     return nullptr;
6964 
6965   auto willWiden = [&](unsigned VF) -> bool {
6966     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6967     // The following case may be scalarized depending on the VF.
6968     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6969     // version of the instruction.
6970     // Is it beneficial to perform intrinsic call compared to lib call?
6971     bool NeedToScalarize = false;
6972     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6973     bool UseVectorIntrinsic =
6974         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6975     return UseVectorIntrinsic || !NeedToScalarize;
6976   };
6977 
6978   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6979     return nullptr;
6980 
6981   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6982 }
6983 
6984 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6985   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6986          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6987   // Instruction should be widened, unless it is scalar after vectorization,
6988   // scalarization is profitable or it is predicated.
6989   auto WillScalarize = [this, I](unsigned VF) -> bool {
6990     return CM.isScalarAfterVectorization(I, VF) ||
6991            CM.isProfitableToScalarize(I, VF) ||
6992            CM.isScalarWithPredication(I, VF);
6993   };
6994   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6995                                                              Range);
6996 }
6997 
6998 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6999   auto IsVectorizableOpcode = [](unsigned Opcode) {
7000     switch (Opcode) {
7001     case Instruction::Add:
7002     case Instruction::And:
7003     case Instruction::AShr:
7004     case Instruction::BitCast:
7005     case Instruction::FAdd:
7006     case Instruction::FCmp:
7007     case Instruction::FDiv:
7008     case Instruction::FMul:
7009     case Instruction::FNeg:
7010     case Instruction::FPExt:
7011     case Instruction::FPToSI:
7012     case Instruction::FPToUI:
7013     case Instruction::FPTrunc:
7014     case Instruction::FRem:
7015     case Instruction::FSub:
7016     case Instruction::ICmp:
7017     case Instruction::IntToPtr:
7018     case Instruction::LShr:
7019     case Instruction::Mul:
7020     case Instruction::Or:
7021     case Instruction::PtrToInt:
7022     case Instruction::SDiv:
7023     case Instruction::Select:
7024     case Instruction::SExt:
7025     case Instruction::Shl:
7026     case Instruction::SIToFP:
7027     case Instruction::SRem:
7028     case Instruction::Sub:
7029     case Instruction::Trunc:
7030     case Instruction::UDiv:
7031     case Instruction::UIToFP:
7032     case Instruction::URem:
7033     case Instruction::Xor:
7034     case Instruction::ZExt:
7035       return true;
7036     }
7037     return false;
7038   };
7039 
7040   if (!IsVectorizableOpcode(I->getOpcode()))
7041     return nullptr;
7042 
7043   // Success: widen this instruction.
7044   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7045 }
7046 
7047 VPBasicBlock *VPRecipeBuilder::handleReplication(
7048     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7049     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7050     VPlanPtr &Plan) {
7051   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7052       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7053       Range);
7054 
7055   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7056       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7057 
7058   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7059                                        IsUniform, IsPredicated);
7060   setRecipe(I, Recipe);
7061 
7062   // Find if I uses a predicated instruction. If so, it will use its scalar
7063   // value. Avoid hoisting the insert-element which packs the scalar value into
7064   // a vector value, as that happens iff all users use the vector value.
7065   for (auto &Op : I->operands())
7066     if (auto *PredInst = dyn_cast<Instruction>(Op))
7067       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7068         PredInst2Recipe[PredInst]->setAlsoPack(false);
7069 
7070   // Finalize the recipe for Instr, first if it is not predicated.
7071   if (!IsPredicated) {
7072     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7073     VPBB->appendRecipe(Recipe);
7074     return VPBB;
7075   }
7076   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7077   assert(VPBB->getSuccessors().empty() &&
7078          "VPBB has successors when handling predicated replication.");
7079   // Record predicated instructions for above packing optimizations.
7080   PredInst2Recipe[I] = Recipe;
7081   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7082   VPBlockUtils::insertBlockAfter(Region, VPBB);
7083   auto *RegSucc = new VPBasicBlock();
7084   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7085   return RegSucc;
7086 }
7087 
7088 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7089                                                       VPRecipeBase *PredRecipe,
7090                                                       VPlanPtr &Plan) {
7091   // Instructions marked for predication are replicated and placed under an
7092   // if-then construct to prevent side-effects.
7093 
7094   // Generate recipes to compute the block mask for this region.
7095   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7096 
7097   // Build the triangular if-then region.
7098   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7099   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7100   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7101   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7102   auto *PHIRecipe =
7103       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7104   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7105   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7106   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7107 
7108   // Note: first set Entry as region entry and then connect successors starting
7109   // from it in order, to propagate the "parent" of each VPBasicBlock.
7110   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7111   VPBlockUtils::connectBlocks(Pred, Exit);
7112 
7113   return Region;
7114 }
7115 
7116 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7117                                                       VFRange &Range,
7118                                                       VPlanPtr &Plan) {
7119   // First, check for specific widening recipes that deal with calls, memory
7120   // operations, inductions and Phi nodes.
7121   if (auto *CI = dyn_cast<CallInst>(Instr))
7122     return tryToWidenCall(CI, Range, *Plan);
7123 
7124   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7125     return tryToWidenMemory(Instr, Range, Plan);
7126 
7127   VPRecipeBase *Recipe;
7128   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7129     if (Phi->getParent() != OrigLoop->getHeader())
7130       return tryToBlend(Phi, Plan);
7131     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7132       return Recipe;
7133     return new VPWidenPHIRecipe(Phi);
7134   }
7135 
7136   if (isa<TruncInst>(Instr) &&
7137       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7138     return Recipe;
7139 
7140   if (!shouldWiden(Instr, Range))
7141     return nullptr;
7142 
7143   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7144     return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()),
7145                                 OrigLoop);
7146 
7147   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7148     bool InvariantCond =
7149         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7150     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7151                                    InvariantCond);
7152   }
7153 
7154   return tryToWiden(Instr, *Plan);
7155 }
7156 
7157 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7158                                                         unsigned MaxVF) {
7159   assert(OrigLoop->empty() && "Inner loop expected.");
7160 
7161   // Collect conditions feeding internal conditional branches; they need to be
7162   // represented in VPlan for it to model masking.
7163   SmallPtrSet<Value *, 1> NeedDef;
7164 
7165   auto *Latch = OrigLoop->getLoopLatch();
7166   for (BasicBlock *BB : OrigLoop->blocks()) {
7167     if (BB == Latch)
7168       continue;
7169     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7170     if (Branch && Branch->isConditional())
7171       NeedDef.insert(Branch->getCondition());
7172   }
7173 
7174   // If the tail is to be folded by masking, the primary induction variable, if
7175   // exists needs to be represented in VPlan for it to model early-exit masking.
7176   // Also, both the Phi and the live-out instruction of each reduction are
7177   // required in order to introduce a select between them in VPlan.
7178   if (CM.foldTailByMasking()) {
7179     if (Legal->getPrimaryInduction())
7180       NeedDef.insert(Legal->getPrimaryInduction());
7181     for (auto &Reduction : Legal->getReductionVars()) {
7182       NeedDef.insert(Reduction.first);
7183       NeedDef.insert(Reduction.second.getLoopExitInstr());
7184     }
7185   }
7186 
7187   // Collect instructions from the original loop that will become trivially dead
7188   // in the vectorized loop. We don't need to vectorize these instructions. For
7189   // example, original induction update instructions can become dead because we
7190   // separately emit induction "steps" when generating code for the new loop.
7191   // Similarly, we create a new latch condition when setting up the structure
7192   // of the new loop, so the old one can become dead.
7193   SmallPtrSet<Instruction *, 4> DeadInstructions;
7194   collectTriviallyDeadInstructions(DeadInstructions);
7195 
7196   // Add assume instructions we need to drop to DeadInstructions, to prevent
7197   // them from being added to the VPlan.
7198   // TODO: We only need to drop assumes in blocks that get flattend. If the
7199   // control flow is preserved, we should keep them.
7200   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7201   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7202 
7203   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7204   // Dead instructions do not need sinking. Remove them from SinkAfter.
7205   for (Instruction *I : DeadInstructions)
7206     SinkAfter.erase(I);
7207 
7208   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7209     VFRange SubRange = {VF, MaxVF + 1};
7210     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7211                                              DeadInstructions, SinkAfter));
7212     VF = SubRange.End;
7213   }
7214 }
7215 
7216 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7217     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7218     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7219     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7220 
7221   // Hold a mapping from predicated instructions to their recipes, in order to
7222   // fix their AlsoPack behavior if a user is determined to replicate and use a
7223   // scalar instead of vector value.
7224   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7225 
7226   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7227 
7228   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7229 
7230   // ---------------------------------------------------------------------------
7231   // Pre-construction: record ingredients whose recipes we'll need to further
7232   // process after constructing the initial VPlan.
7233   // ---------------------------------------------------------------------------
7234 
7235   // Mark instructions we'll need to sink later and their targets as
7236   // ingredients whose recipe we'll need to record.
7237   for (auto &Entry : SinkAfter) {
7238     RecipeBuilder.recordRecipeOf(Entry.first);
7239     RecipeBuilder.recordRecipeOf(Entry.second);
7240   }
7241 
7242   // For each interleave group which is relevant for this (possibly trimmed)
7243   // Range, add it to the set of groups to be later applied to the VPlan and add
7244   // placeholders for its members' Recipes which we'll be replacing with a
7245   // single VPInterleaveRecipe.
7246   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7247     auto applyIG = [IG, this](unsigned VF) -> bool {
7248       return (VF >= 2 && // Query is illegal for VF == 1
7249               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7250                   LoopVectorizationCostModel::CM_Interleave);
7251     };
7252     if (!getDecisionAndClampRange(applyIG, Range))
7253       continue;
7254     InterleaveGroups.insert(IG);
7255     for (unsigned i = 0; i < IG->getFactor(); i++)
7256       if (Instruction *Member = IG->getMember(i))
7257         RecipeBuilder.recordRecipeOf(Member);
7258   };
7259 
7260   // ---------------------------------------------------------------------------
7261   // Build initial VPlan: Scan the body of the loop in a topological order to
7262   // visit each basic block after having visited its predecessor basic blocks.
7263   // ---------------------------------------------------------------------------
7264 
7265   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7266   auto Plan = std::make_unique<VPlan>();
7267   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7268   Plan->setEntry(VPBB);
7269 
7270   // Represent values that will have defs inside VPlan.
7271   for (Value *V : NeedDef)
7272     Plan->addVPValue(V);
7273 
7274   // Scan the body of the loop in a topological order to visit each basic block
7275   // after having visited its predecessor basic blocks.
7276   LoopBlocksDFS DFS(OrigLoop);
7277   DFS.perform(LI);
7278 
7279   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7280     // Relevant instructions from basic block BB will be grouped into VPRecipe
7281     // ingredients and fill a new VPBasicBlock.
7282     unsigned VPBBsForBB = 0;
7283     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7284     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7285     VPBB = FirstVPBBForBB;
7286     Builder.setInsertPoint(VPBB);
7287 
7288     // Introduce each ingredient into VPlan.
7289     // TODO: Model and preserve debug instrinsics in VPlan.
7290     for (Instruction &I : BB->instructionsWithoutDebug()) {
7291       Instruction *Instr = &I;
7292 
7293       // First filter out irrelevant instructions, to ensure no recipes are
7294       // built for them.
7295       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
7296         continue;
7297 
7298       if (auto Recipe =
7299               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7300         RecipeBuilder.setRecipe(Instr, Recipe);
7301         VPBB->appendRecipe(Recipe);
7302         continue;
7303       }
7304 
7305       // Otherwise, if all widening options failed, Instruction is to be
7306       // replicated. This may create a successor for VPBB.
7307       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7308           Instr, Range, VPBB, PredInst2Recipe, Plan);
7309       if (NextVPBB != VPBB) {
7310         VPBB = NextVPBB;
7311         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7312                                     : "");
7313       }
7314     }
7315   }
7316 
7317   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7318   // may also be empty, such as the last one VPBB, reflecting original
7319   // basic-blocks with no recipes.
7320   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7321   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7322   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7323   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7324   delete PreEntry;
7325 
7326   // ---------------------------------------------------------------------------
7327   // Transform initial VPlan: Apply previously taken decisions, in order, to
7328   // bring the VPlan to its final state.
7329   // ---------------------------------------------------------------------------
7330 
7331   // Apply Sink-After legal constraints.
7332   for (auto &Entry : SinkAfter) {
7333     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7334     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7335     Sink->moveAfter(Target);
7336   }
7337 
7338   // Interleave memory: for each Interleave Group we marked earlier as relevant
7339   // for this VPlan, replace the Recipes widening its memory instructions with a
7340   // single VPInterleaveRecipe at its insertion point.
7341   for (auto IG : InterleaveGroups) {
7342     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7343         RecipeBuilder.getRecipe(IG->getInsertPos()));
7344     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7345         ->insertBefore(Recipe);
7346 
7347     for (unsigned i = 0; i < IG->getFactor(); ++i)
7348       if (Instruction *Member = IG->getMember(i)) {
7349         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7350       }
7351   }
7352 
7353   // Finally, if tail is folded by masking, introduce selects between the phi
7354   // and the live-out instruction of each reduction, at the end of the latch.
7355   if (CM.foldTailByMasking()) {
7356     Builder.setInsertPoint(VPBB);
7357     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7358     for (auto &Reduction : Legal->getReductionVars()) {
7359       VPValue *Phi = Plan->getVPValue(Reduction.first);
7360       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7361       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7362     }
7363   }
7364 
7365   std::string PlanName;
7366   raw_string_ostream RSO(PlanName);
7367   unsigned VF = Range.Start;
7368   Plan->addVF(VF);
7369   RSO << "Initial VPlan for VF={" << VF;
7370   for (VF *= 2; VF < Range.End; VF *= 2) {
7371     Plan->addVF(VF);
7372     RSO << "," << VF;
7373   }
7374   RSO << "},UF>=1";
7375   RSO.flush();
7376   Plan->setName(PlanName);
7377 
7378   return Plan;
7379 }
7380 
7381 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7382   // Outer loop handling: They may require CFG and instruction level
7383   // transformations before even evaluating whether vectorization is profitable.
7384   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7385   // the vectorization pipeline.
7386   assert(!OrigLoop->empty());
7387   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7388 
7389   // Create new empty VPlan
7390   auto Plan = std::make_unique<VPlan>();
7391 
7392   // Build hierarchical CFG
7393   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7394   HCFGBuilder.buildHierarchicalCFG();
7395 
7396   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7397     Plan->addVF(VF);
7398 
7399   if (EnableVPlanPredication) {
7400     VPlanPredicator VPP(*Plan);
7401     VPP.predicate();
7402 
7403     // Avoid running transformation to recipes until masked code generation in
7404     // VPlan-native path is in place.
7405     return Plan;
7406   }
7407 
7408   SmallPtrSet<Instruction *, 1> DeadInstructions;
7409   VPlanTransforms::VPInstructionsToVPRecipes(
7410       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7411   return Plan;
7412 }
7413 
7414 Value* LoopVectorizationPlanner::VPCallbackILV::
7415 getOrCreateVectorValues(Value *V, unsigned Part) {
7416       return ILV.getOrCreateVectorValue(V, Part);
7417 }
7418 
7419 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7420     Value *V, const VPIteration &Instance) {
7421   return ILV.getOrCreateScalarValue(V, Instance);
7422 }
7423 
7424 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7425                                VPSlotTracker &SlotTracker) const {
7426   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7427   IG->getInsertPos()->printAsOperand(O, false);
7428   O << ", ";
7429   getAddr()->printAsOperand(O, SlotTracker);
7430   VPValue *Mask = getMask();
7431   if (Mask) {
7432     O << ", ";
7433     Mask->printAsOperand(O, SlotTracker);
7434   }
7435   for (unsigned i = 0; i < IG->getFactor(); ++i)
7436     if (Instruction *I = IG->getMember(i))
7437       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7438 }
7439 
7440 void VPWidenCallRecipe::execute(VPTransformState &State) {
7441   State.ILV->widenCallInstruction(Ingredient, User, State);
7442 }
7443 
7444 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7445   State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State);
7446 }
7447 
7448 void VPWidenRecipe::execute(VPTransformState &State) {
7449   State.ILV->widenInstruction(Ingredient, User, State);
7450 }
7451 
7452 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7453   State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant,
7454                       IsIndexLoopInvariant, State);
7455 }
7456 
7457 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7458   assert(!State.Instance && "Int or FP induction being replicated.");
7459   State.ILV->widenIntOrFpInduction(IV, Trunc);
7460 }
7461 
7462 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7463   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7464 }
7465 
7466 void VPBlendRecipe::execute(VPTransformState &State) {
7467   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7468   // We know that all PHIs in non-header blocks are converted into
7469   // selects, so we don't have to worry about the insertion order and we
7470   // can just use the builder.
7471   // At this point we generate the predication tree. There may be
7472   // duplications since this is a simple recursive scan, but future
7473   // optimizations will clean it up.
7474 
7475   unsigned NumIncoming = getNumIncomingValues();
7476 
7477   // Generate a sequence of selects of the form:
7478   // SELECT(Mask3, In3,
7479   //        SELECT(Mask2, In2,
7480   //               SELECT(Mask1, In1,
7481   //                      In0)))
7482   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7483   // are essentially undef are taken from In0.
7484   InnerLoopVectorizer::VectorParts Entry(State.UF);
7485   for (unsigned In = 0; In < NumIncoming; ++In) {
7486     for (unsigned Part = 0; Part < State.UF; ++Part) {
7487       // We might have single edge PHIs (blocks) - use an identity
7488       // 'select' for the first PHI operand.
7489       Value *In0 = State.get(getIncomingValue(In), Part);
7490       if (In == 0)
7491         Entry[Part] = In0; // Initialize with the first incoming value.
7492       else {
7493         // Select between the current value and the previous incoming edge
7494         // based on the incoming mask.
7495         Value *Cond = State.get(getMask(In), Part);
7496         Entry[Part] =
7497             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7498       }
7499     }
7500   }
7501   for (unsigned Part = 0; Part < State.UF; ++Part)
7502     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7503 }
7504 
7505 void VPInterleaveRecipe::execute(VPTransformState &State) {
7506   assert(!State.Instance && "Interleave group being replicated.");
7507   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7508 }
7509 
7510 void VPReplicateRecipe::execute(VPTransformState &State) {
7511   if (State.Instance) { // Generate a single instance.
7512     State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance,
7513                                     IsPredicated, State);
7514     // Insert scalar instance packing it into a vector.
7515     if (AlsoPack && State.VF > 1) {
7516       // If we're constructing lane 0, initialize to start from undef.
7517       if (State.Instance->Lane == 0) {
7518         Value *Undef = UndefValue::get(
7519             FixedVectorType::get(Ingredient->getType(), State.VF));
7520         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7521       }
7522       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7523     }
7524     return;
7525   }
7526 
7527   // Generate scalar instances for all VF lanes of all UF parts, unless the
7528   // instruction is uniform inwhich case generate only the first lane for each
7529   // of the UF parts.
7530   unsigned EndLane = IsUniform ? 1 : State.VF;
7531   for (unsigned Part = 0; Part < State.UF; ++Part)
7532     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7533       State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane},
7534                                       IsPredicated, State);
7535 }
7536 
7537 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7538   assert(State.Instance && "Branch on Mask works only on single instance.");
7539 
7540   unsigned Part = State.Instance->Part;
7541   unsigned Lane = State.Instance->Lane;
7542 
7543   Value *ConditionBit = nullptr;
7544   VPValue *BlockInMask = getMask();
7545   if (BlockInMask) {
7546     ConditionBit = State.get(BlockInMask, Part);
7547     if (ConditionBit->getType()->isVectorTy())
7548       ConditionBit = State.Builder.CreateExtractElement(
7549           ConditionBit, State.Builder.getInt32(Lane));
7550   } else // Block in mask is all-one.
7551     ConditionBit = State.Builder.getTrue();
7552 
7553   // Replace the temporary unreachable terminator with a new conditional branch,
7554   // whose two destinations will be set later when they are created.
7555   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7556   assert(isa<UnreachableInst>(CurrentTerminator) &&
7557          "Expected to replace unreachable terminator with conditional branch.");
7558   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7559   CondBr->setSuccessor(0, nullptr);
7560   ReplaceInstWithInst(CurrentTerminator, CondBr);
7561 }
7562 
7563 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7564   assert(State.Instance && "Predicated instruction PHI works per instance.");
7565   Instruction *ScalarPredInst = cast<Instruction>(
7566       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7567   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7568   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7569   assert(PredicatingBB && "Predicated block has no single predecessor.");
7570 
7571   // By current pack/unpack logic we need to generate only a single phi node: if
7572   // a vector value for the predicated instruction exists at this point it means
7573   // the instruction has vector users only, and a phi for the vector value is
7574   // needed. In this case the recipe of the predicated instruction is marked to
7575   // also do that packing, thereby "hoisting" the insert-element sequence.
7576   // Otherwise, a phi node for the scalar value is needed.
7577   unsigned Part = State.Instance->Part;
7578   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7579     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7580     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7581     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7582     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7583     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7584     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7585   } else {
7586     Type *PredInstType = PredInst->getType();
7587     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7588     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7589     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7590     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7591   }
7592 }
7593 
7594 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7595   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7596   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7597                                         getMask());
7598 }
7599 
7600 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7601 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7602 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7603 // for predication.
7604 static ScalarEpilogueLowering getScalarEpilogueLowering(
7605     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7606     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7607     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7608     LoopVectorizationLegality &LVL) {
7609   bool OptSize =
7610       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7611                                                      PGSOQueryType::IRPass);
7612   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7613   // don't look at hints or options, and don't request a scalar epilogue.
7614   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7615     return CM_ScalarEpilogueNotAllowedOptSize;
7616 
7617   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7618                               !PreferPredicateOverEpilog;
7619 
7620   // 2) Next, if disabling predication is requested on the command line, honour
7621   // this and request a scalar epilogue.
7622   if (PredicateOptDisabled)
7623     return CM_ScalarEpilogueAllowed;
7624 
7625   // 3) and 4) look if enabling predication is requested on the command line,
7626   // with a loop hint, or if the TTI hook indicates this is profitable, request
7627   // predication .
7628   if (PreferPredicateOverEpilog ||
7629       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7630       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7631                                         LVL.getLAI()) &&
7632        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7633     return CM_ScalarEpilogueNotNeededUsePredicate;
7634 
7635   return CM_ScalarEpilogueAllowed;
7636 }
7637 
7638 // Process the loop in the VPlan-native vectorization path. This path builds
7639 // VPlan upfront in the vectorization pipeline, which allows to apply
7640 // VPlan-to-VPlan transformations from the very beginning without modifying the
7641 // input LLVM IR.
7642 static bool processLoopInVPlanNativePath(
7643     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7644     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7645     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7646     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7647     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7648 
7649   if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) {
7650     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
7651     return false;
7652   }
7653   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7654   Function *F = L->getHeader()->getParent();
7655   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7656 
7657   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7658       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7659 
7660   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7661                                 &Hints, IAI);
7662   // Use the planner for outer loop vectorization.
7663   // TODO: CM is not used at this point inside the planner. Turn CM into an
7664   // optional argument if we don't need it in the future.
7665   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7666 
7667   // Get user vectorization factor.
7668   const unsigned UserVF = Hints.getWidth();
7669 
7670   // Plan how to best vectorize, return the best VF and its cost.
7671   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7672 
7673   // If we are stress testing VPlan builds, do not attempt to generate vector
7674   // code. Masked vector code generation support will follow soon.
7675   // Also, do not attempt to vectorize if no vector code will be produced.
7676   if (VPlanBuildStressTest || EnableVPlanPredication ||
7677       VectorizationFactor::Disabled() == VF)
7678     return false;
7679 
7680   LVP.setBestPlan(VF.Width, 1);
7681 
7682   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7683                          &CM);
7684   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7685                     << L->getHeader()->getParent()->getName() << "\"\n");
7686   LVP.executePlan(LB, DT);
7687 
7688   // Mark the loop as already vectorized to avoid vectorizing again.
7689   Hints.setAlreadyVectorized();
7690 
7691   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7692   return true;
7693 }
7694 
7695 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7696     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7697                                !EnableLoopInterleaving),
7698       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7699                               !EnableLoopVectorization) {}
7700 
7701 bool LoopVectorizePass::processLoop(Loop *L) {
7702   assert((EnableVPlanNativePath || L->empty()) &&
7703          "VPlan-native path is not enabled. Only process inner loops.");
7704 
7705 #ifndef NDEBUG
7706   const std::string DebugLocStr = getDebugLocString(L);
7707 #endif /* NDEBUG */
7708 
7709   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7710                     << L->getHeader()->getParent()->getName() << "\" from "
7711                     << DebugLocStr << "\n");
7712 
7713   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7714 
7715   LLVM_DEBUG(
7716       dbgs() << "LV: Loop hints:"
7717              << " force="
7718              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7719                      ? "disabled"
7720                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7721                             ? "enabled"
7722                             : "?"))
7723              << " width=" << Hints.getWidth()
7724              << " unroll=" << Hints.getInterleave() << "\n");
7725 
7726   // Function containing loop
7727   Function *F = L->getHeader()->getParent();
7728 
7729   // Looking at the diagnostic output is the only way to determine if a loop
7730   // was vectorized (other than looking at the IR or machine code), so it
7731   // is important to generate an optimization remark for each loop. Most of
7732   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7733   // generated as OptimizationRemark and OptimizationRemarkMissed are
7734   // less verbose reporting vectorized loops and unvectorized loops that may
7735   // benefit from vectorization, respectively.
7736 
7737   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7738     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7739     return false;
7740   }
7741 
7742   PredicatedScalarEvolution PSE(*SE, *L);
7743 
7744   // Check if it is legal to vectorize the loop.
7745   LoopVectorizationRequirements Requirements(*ORE);
7746   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7747                                 &Requirements, &Hints, DB, AC);
7748   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7749     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7750     Hints.emitRemarkWithHints();
7751     return false;
7752   }
7753 
7754   // Check the function attributes and profiles to find out if this function
7755   // should be optimized for size.
7756   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7757       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7758 
7759   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7760   // here. They may require CFG and instruction level transformations before
7761   // even evaluating whether vectorization is profitable. Since we cannot modify
7762   // the incoming IR, we need to build VPlan upfront in the vectorization
7763   // pipeline.
7764   if (!L->empty())
7765     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7766                                         ORE, BFI, PSI, Hints);
7767 
7768   assert(L->empty() && "Inner loop expected.");
7769 
7770   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7771   // count by optimizing for size, to minimize overheads.
7772   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7773   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7774     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7775                       << "This loop is worth vectorizing only if no scalar "
7776                       << "iteration overheads are incurred.");
7777     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7778       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7779     else {
7780       LLVM_DEBUG(dbgs() << "\n");
7781       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7782     }
7783   }
7784 
7785   // Check the function attributes to see if implicit floats are allowed.
7786   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7787   // an integer loop and the vector instructions selected are purely integer
7788   // vector instructions?
7789   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7790     reportVectorizationFailure(
7791         "Can't vectorize when the NoImplicitFloat attribute is used",
7792         "loop not vectorized due to NoImplicitFloat attribute",
7793         "NoImplicitFloat", ORE, L);
7794     Hints.emitRemarkWithHints();
7795     return false;
7796   }
7797 
7798   // Check if the target supports potentially unsafe FP vectorization.
7799   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7800   // for the target we're vectorizing for, to make sure none of the
7801   // additional fp-math flags can help.
7802   if (Hints.isPotentiallyUnsafe() &&
7803       TTI->isFPVectorizationPotentiallyUnsafe()) {
7804     reportVectorizationFailure(
7805         "Potentially unsafe FP op prevents vectorization",
7806         "loop not vectorized due to unsafe FP support.",
7807         "UnsafeFP", ORE, L);
7808     Hints.emitRemarkWithHints();
7809     return false;
7810   }
7811 
7812   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7813   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7814 
7815   // If an override option has been passed in for interleaved accesses, use it.
7816   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7817     UseInterleaved = EnableInterleavedMemAccesses;
7818 
7819   // Analyze interleaved memory accesses.
7820   if (UseInterleaved) {
7821     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7822   }
7823 
7824   // Use the cost model.
7825   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7826                                 F, &Hints, IAI);
7827   CM.collectValuesToIgnore();
7828 
7829   // Use the planner for vectorization.
7830   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7831 
7832   // Get user vectorization factor and interleave count.
7833   unsigned UserVF = Hints.getWidth();
7834   unsigned UserIC = Hints.getInterleave();
7835 
7836   // Plan how to best vectorize, return the best VF and its cost.
7837   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
7838 
7839   VectorizationFactor VF = VectorizationFactor::Disabled();
7840   unsigned IC = 1;
7841 
7842   if (MaybeVF) {
7843     VF = *MaybeVF;
7844     // Select the interleave count.
7845     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7846   }
7847 
7848   // Identify the diagnostic messages that should be produced.
7849   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7850   bool VectorizeLoop = true, InterleaveLoop = true;
7851   if (Requirements.doesNotMeet(F, L, Hints)) {
7852     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7853                          "requirements.\n");
7854     Hints.emitRemarkWithHints();
7855     return false;
7856   }
7857 
7858   if (VF.Width == 1) {
7859     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7860     VecDiagMsg = std::make_pair(
7861         "VectorizationNotBeneficial",
7862         "the cost-model indicates that vectorization is not beneficial");
7863     VectorizeLoop = false;
7864   }
7865 
7866   if (!MaybeVF && UserIC > 1) {
7867     // Tell the user interleaving was avoided up-front, despite being explicitly
7868     // requested.
7869     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7870                          "interleaving should be avoided up front\n");
7871     IntDiagMsg = std::make_pair(
7872         "InterleavingAvoided",
7873         "Ignoring UserIC, because interleaving was avoided up front");
7874     InterleaveLoop = false;
7875   } else if (IC == 1 && UserIC <= 1) {
7876     // Tell the user interleaving is not beneficial.
7877     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7878     IntDiagMsg = std::make_pair(
7879         "InterleavingNotBeneficial",
7880         "the cost-model indicates that interleaving is not beneficial");
7881     InterleaveLoop = false;
7882     if (UserIC == 1) {
7883       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7884       IntDiagMsg.second +=
7885           " and is explicitly disabled or interleave count is set to 1";
7886     }
7887   } else if (IC > 1 && UserIC == 1) {
7888     // Tell the user interleaving is beneficial, but it explicitly disabled.
7889     LLVM_DEBUG(
7890         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7891     IntDiagMsg = std::make_pair(
7892         "InterleavingBeneficialButDisabled",
7893         "the cost-model indicates that interleaving is beneficial "
7894         "but is explicitly disabled or interleave count is set to 1");
7895     InterleaveLoop = false;
7896   }
7897 
7898   // Override IC if user provided an interleave count.
7899   IC = UserIC > 0 ? UserIC : IC;
7900 
7901   // Emit diagnostic messages, if any.
7902   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7903   if (!VectorizeLoop && !InterleaveLoop) {
7904     // Do not vectorize or interleaving the loop.
7905     ORE->emit([&]() {
7906       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7907                                       L->getStartLoc(), L->getHeader())
7908              << VecDiagMsg.second;
7909     });
7910     ORE->emit([&]() {
7911       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7912                                       L->getStartLoc(), L->getHeader())
7913              << IntDiagMsg.second;
7914     });
7915     return false;
7916   } else if (!VectorizeLoop && InterleaveLoop) {
7917     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7918     ORE->emit([&]() {
7919       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7920                                         L->getStartLoc(), L->getHeader())
7921              << VecDiagMsg.second;
7922     });
7923   } else if (VectorizeLoop && !InterleaveLoop) {
7924     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7925                       << ") in " << DebugLocStr << '\n');
7926     ORE->emit([&]() {
7927       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7928                                         L->getStartLoc(), L->getHeader())
7929              << IntDiagMsg.second;
7930     });
7931   } else if (VectorizeLoop && InterleaveLoop) {
7932     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7933                       << ") in " << DebugLocStr << '\n');
7934     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7935   }
7936 
7937   LVP.setBestPlan(VF.Width, IC);
7938 
7939   using namespace ore;
7940   bool DisableRuntimeUnroll = false;
7941   MDNode *OrigLoopID = L->getLoopID();
7942 
7943   if (!VectorizeLoop) {
7944     assert(IC > 1 && "interleave count should not be 1 or 0");
7945     // If we decided that it is not legal to vectorize the loop, then
7946     // interleave it.
7947     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7948                                &CM);
7949     LVP.executePlan(Unroller, DT);
7950 
7951     ORE->emit([&]() {
7952       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7953                                 L->getHeader())
7954              << "interleaved loop (interleaved count: "
7955              << NV("InterleaveCount", IC) << ")";
7956     });
7957   } else {
7958     // If we decided that it is *legal* to vectorize the loop, then do it.
7959     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7960                            &LVL, &CM);
7961     LVP.executePlan(LB, DT);
7962     ++LoopsVectorized;
7963 
7964     // Add metadata to disable runtime unrolling a scalar loop when there are
7965     // no runtime checks about strides and memory. A scalar loop that is
7966     // rarely used is not worth unrolling.
7967     if (!LB.areSafetyChecksAdded())
7968       DisableRuntimeUnroll = true;
7969 
7970     // Report the vectorization decision.
7971     ORE->emit([&]() {
7972       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7973                                 L->getHeader())
7974              << "vectorized loop (vectorization width: "
7975              << NV("VectorizationFactor", VF.Width)
7976              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7977     });
7978   }
7979 
7980   Optional<MDNode *> RemainderLoopID =
7981       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7982                                       LLVMLoopVectorizeFollowupEpilogue});
7983   if (RemainderLoopID.hasValue()) {
7984     L->setLoopID(RemainderLoopID.getValue());
7985   } else {
7986     if (DisableRuntimeUnroll)
7987       AddRuntimeUnrollDisableMetaData(L);
7988 
7989     // Mark the loop as already vectorized to avoid vectorizing again.
7990     Hints.setAlreadyVectorized();
7991   }
7992 
7993   assert(!verifyFunction(*L->getHeader()->getParent()));
7994   return true;
7995 }
7996 
7997 LoopVectorizeResult LoopVectorizePass::runImpl(
7998     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7999     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8000     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
8001     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8002     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
8003   SE = &SE_;
8004   LI = &LI_;
8005   TTI = &TTI_;
8006   DT = &DT_;
8007   BFI = &BFI_;
8008   TLI = TLI_;
8009   AA = &AA_;
8010   AC = &AC_;
8011   GetLAA = &GetLAA_;
8012   DB = &DB_;
8013   ORE = &ORE_;
8014   PSI = PSI_;
8015 
8016   // Don't attempt if
8017   // 1. the target claims to have no vector registers, and
8018   // 2. interleaving won't help ILP.
8019   //
8020   // The second condition is necessary because, even if the target has no
8021   // vector registers, loop vectorization may still enable scalar
8022   // interleaving.
8023   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8024       TTI->getMaxInterleaveFactor(1) < 2)
8025     return LoopVectorizeResult(false, false);
8026 
8027   bool Changed = false, CFGChanged = false;
8028 
8029   // The vectorizer requires loops to be in simplified form.
8030   // Since simplification may add new inner loops, it has to run before the
8031   // legality and profitability checks. This means running the loop vectorizer
8032   // will simplify all loops, regardless of whether anything end up being
8033   // vectorized.
8034   for (auto &L : *LI)
8035     Changed |= CFGChanged |=
8036         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8037 
8038   // Build up a worklist of inner-loops to vectorize. This is necessary as
8039   // the act of vectorizing or partially unrolling a loop creates new loops
8040   // and can invalidate iterators across the loops.
8041   SmallVector<Loop *, 8> Worklist;
8042 
8043   for (Loop *L : *LI)
8044     collectSupportedLoops(*L, LI, ORE, Worklist);
8045 
8046   LoopsAnalyzed += Worklist.size();
8047 
8048   // Now walk the identified inner loops.
8049   while (!Worklist.empty()) {
8050     Loop *L = Worklist.pop_back_val();
8051 
8052     // For the inner loops we actually process, form LCSSA to simplify the
8053     // transform.
8054     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8055 
8056     Changed |= CFGChanged |= processLoop(L);
8057   }
8058 
8059   // Process each loop nest in the function.
8060   return LoopVectorizeResult(Changed, CFGChanged);
8061 }
8062 
8063 PreservedAnalyses LoopVectorizePass::run(Function &F,
8064                                          FunctionAnalysisManager &AM) {
8065     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8066     auto &LI = AM.getResult<LoopAnalysis>(F);
8067     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8068     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8069     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8070     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8071     auto &AA = AM.getResult<AAManager>(F);
8072     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8073     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8074     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8075     MemorySSA *MSSA = EnableMSSALoopDependency
8076                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8077                           : nullptr;
8078 
8079     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8080     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8081         [&](Loop &L) -> const LoopAccessInfo & {
8082       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8083       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8084     };
8085     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8086     ProfileSummaryInfo *PSI =
8087         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8088     LoopVectorizeResult Result =
8089         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8090     if (!Result.MadeAnyChange)
8091       return PreservedAnalyses::all();
8092     PreservedAnalyses PA;
8093 
8094     // We currently do not preserve loopinfo/dominator analyses with outer loop
8095     // vectorization. Until this is addressed, mark these analyses as preserved
8096     // only for non-VPlan-native path.
8097     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8098     if (!EnableVPlanNativePath) {
8099       PA.preserve<LoopAnalysis>();
8100       PA.preserve<DominatorTreeAnalysis>();
8101     }
8102     PA.preserve<BasicAA>();
8103     PA.preserve<GlobalsAA>();
8104     if (!Result.MadeCFGChange)
8105       PA.preserveSet<CFGAnalyses>();
8106     return PA;
8107 }
8108