1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SCCIterator.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/GlobalsModRef.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/ValueTracking.h" 68 #include "llvm/Analysis/VectorUtils.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/LoopVersioning.h" 96 #include "llvm/Transforms/Vectorize.h" 97 #include <algorithm> 98 #include <map> 99 #include <tuple> 100 101 using namespace llvm; 102 using namespace llvm::PatternMatch; 103 104 #define LV_NAME "loop-vectorize" 105 #define DEBUG_TYPE LV_NAME 106 107 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 108 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 109 110 static cl::opt<bool> 111 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 112 cl::desc("Enable if-conversion during vectorization.")); 113 114 /// We don't vectorize loops with a known constant trip count below this number. 115 static cl::opt<unsigned> TinyTripCountVectorThreshold( 116 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 static cl::opt<bool> MaximizeBandwidth( 122 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 123 cl::desc("Maximize bandwidth when selecting vectorization factor which " 124 "will be determined by the smallest type in loop.")); 125 126 static cl::opt<bool> EnableInterleavedMemAccesses( 127 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 128 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 129 130 /// Maximum factor for an interleaved memory access. 131 static cl::opt<unsigned> MaxInterleaveGroupFactor( 132 "max-interleave-group-factor", cl::Hidden, 133 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 134 cl::init(8)); 135 136 /// We don't interleave loops with a known constant trip count below this 137 /// number. 138 static const unsigned TinyTripCountInterleaveThreshold = 128; 139 140 static cl::opt<unsigned> ForceTargetNumScalarRegs( 141 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 142 cl::desc("A flag that overrides the target's number of scalar registers.")); 143 144 static cl::opt<unsigned> ForceTargetNumVectorRegs( 145 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 146 cl::desc("A flag that overrides the target's number of vector registers.")); 147 148 /// Maximum vectorization interleave count. 149 static const unsigned MaxInterleaveFactor = 16; 150 151 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 152 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's max interleave factor for " 154 "scalar loops.")); 155 156 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 157 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's max interleave factor for " 159 "vectorized loops.")); 160 161 static cl::opt<unsigned> ForceTargetInstructionCost( 162 "force-target-instruction-cost", cl::init(0), cl::Hidden, 163 cl::desc("A flag that overrides the target's expected cost for " 164 "an instruction to a single constant value. Mostly " 165 "useful for getting consistent testing.")); 166 167 static cl::opt<unsigned> SmallLoopCost( 168 "small-loop-cost", cl::init(20), cl::Hidden, 169 cl::desc( 170 "The cost of a loop that is considered 'small' by the interleaver.")); 171 172 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 173 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 174 cl::desc("Enable the use of the block frequency analysis to access PGO " 175 "heuristics minimizing code growth in cold regions and being more " 176 "aggressive in hot regions.")); 177 178 // Runtime interleave loops for load/store throughput. 179 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 180 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 181 cl::desc( 182 "Enable runtime interleaving until load/store ports are saturated")); 183 184 /// The number of stores in a loop that are allowed to need predication. 185 static cl::opt<unsigned> NumberOfStoresToPredicate( 186 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 187 cl::desc("Max number of stores to be predicated behind an if.")); 188 189 static cl::opt<bool> EnableIndVarRegisterHeur( 190 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 191 cl::desc("Count the induction variable only once when interleaving")); 192 193 static cl::opt<bool> EnableCondStoresVectorization( 194 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 195 cl::desc("Enable if predication of stores during vectorization.")); 196 197 static cl::opt<unsigned> MaxNestedScalarReductionIC( 198 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 199 cl::desc("The maximum interleave count to use when interleaving a scalar " 200 "reduction in a nested loop.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 208 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 209 cl::desc("The maximum number of SCEV checks allowed.")); 210 211 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 212 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 213 cl::desc("The maximum number of SCEV checks allowed with a " 214 "vectorize(enable) pragma")); 215 216 /// Create an analysis remark that explains why vectorization failed 217 /// 218 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 219 /// RemarkName is the identifier for the remark. If \p I is passed it is an 220 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 221 /// the location of the remark. \return the remark object that can be 222 /// streamed to. 223 static OptimizationRemarkAnalysis 224 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 225 Instruction *I = nullptr) { 226 Value *CodeRegion = TheLoop->getHeader(); 227 DebugLoc DL = TheLoop->getStartLoc(); 228 229 if (I) { 230 CodeRegion = I->getParent(); 231 // If there is no debug location attached to the instruction, revert back to 232 // using the loop's. 233 if (I->getDebugLoc()) 234 DL = I->getDebugLoc(); 235 } 236 237 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 238 R << "loop not vectorized: "; 239 return R; 240 } 241 242 namespace { 243 244 // Forward declarations. 245 class LoopVectorizeHints; 246 class LoopVectorizationLegality; 247 class LoopVectorizationCostModel; 248 class LoopVectorizationRequirements; 249 250 /// Returns true if the given loop body has a cycle, excluding the loop 251 /// itself. 252 static bool hasCyclesInLoopBody(const Loop &L) { 253 if (!L.empty()) 254 return true; 255 256 for (const auto &SCC : 257 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 258 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 259 if (SCC.size() > 1) { 260 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 261 DEBUG(L.dump()); 262 return true; 263 } 264 } 265 return false; 266 } 267 268 /// \brief This modifies LoopAccessReport to initialize message with 269 /// loop-vectorizer-specific part. 270 class VectorizationReport : public LoopAccessReport { 271 public: 272 VectorizationReport(Instruction *I = nullptr) 273 : LoopAccessReport("loop not vectorized: ", I) {} 274 275 /// \brief This allows promotion of the loop-access analysis report into the 276 /// loop-vectorizer report. It modifies the message to add the 277 /// loop-vectorizer-specific part of the message. 278 explicit VectorizationReport(const LoopAccessReport &R) 279 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 280 R.getInstr()) {} 281 }; 282 283 /// A helper function for converting Scalar types to vector types. 284 /// If the incoming type is void, we return void. If the VF is 1, we return 285 /// the scalar type. 286 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 287 if (Scalar->isVoidTy() || VF == 1) 288 return Scalar; 289 return VectorType::get(Scalar, VF); 290 } 291 292 /// A helper function that returns GEP instruction and knows to skip a 293 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 294 /// pointee types of the 'bitcast' have the same size. 295 /// For example: 296 /// bitcast double** %var to i64* - can be skipped 297 /// bitcast double** %var to i8* - can not 298 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 299 300 if (isa<GetElementPtrInst>(Ptr)) 301 return cast<GetElementPtrInst>(Ptr); 302 303 if (isa<BitCastInst>(Ptr) && 304 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 305 Type *BitcastTy = Ptr->getType(); 306 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 307 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 308 return nullptr; 309 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 310 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 311 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 312 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 313 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 314 } 315 return nullptr; 316 } 317 318 /// A helper function that returns the pointer operand of a load or store 319 /// instruction. 320 static Value *getPointerOperand(Value *I) { 321 if (auto *LI = dyn_cast<LoadInst>(I)) 322 return LI->getPointerOperand(); 323 if (auto *SI = dyn_cast<StoreInst>(I)) 324 return SI->getPointerOperand(); 325 return nullptr; 326 } 327 328 /// A helper function that returns true if the given type is irregular. The 329 /// type is irregular if its allocated size doesn't equal the store size of an 330 /// element of the corresponding vector type at the given vectorization factor. 331 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 332 333 // Determine if an array of VF elements of type Ty is "bitcast compatible" 334 // with a <VF x Ty> vector. 335 if (VF > 1) { 336 auto *VectorTy = VectorType::get(Ty, VF); 337 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 338 } 339 340 // If the vectorization factor is one, we just check if an array of type Ty 341 // requires padding between elements. 342 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 343 } 344 345 /// A helper function that returns the reciprocal of the block probability of 346 /// predicated blocks. If we return X, we are assuming the predicated block 347 /// will execute once for for every X iterations of the loop header. 348 /// 349 /// TODO: We should use actual block probability here, if available. Currently, 350 /// we always assume predicated blocks have a 50% chance of executing. 351 static unsigned getReciprocalPredBlockProb() { return 2; } 352 353 /// InnerLoopVectorizer vectorizes loops which contain only one basic 354 /// block to a specified vectorization factor (VF). 355 /// This class performs the widening of scalars into vectors, or multiple 356 /// scalars. This class also implements the following features: 357 /// * It inserts an epilogue loop for handling loops that don't have iteration 358 /// counts that are known to be a multiple of the vectorization factor. 359 /// * It handles the code generation for reduction variables. 360 /// * Scalarization (implementation using scalars) of un-vectorizable 361 /// instructions. 362 /// InnerLoopVectorizer does not perform any vectorization-legality 363 /// checks, and relies on the caller to check for the different legality 364 /// aspects. The InnerLoopVectorizer relies on the 365 /// LoopVectorizationLegality class to provide information about the induction 366 /// and reduction variables that were found to a given vectorization factor. 367 class InnerLoopVectorizer { 368 public: 369 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 370 LoopInfo *LI, DominatorTree *DT, 371 const TargetLibraryInfo *TLI, 372 const TargetTransformInfo *TTI, AssumptionCache *AC, 373 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 374 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 375 LoopVectorizationCostModel *CM) 376 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 377 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 378 Builder(PSE.getSE()->getContext()), Induction(nullptr), 379 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 380 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 381 AddedSafetyChecks(false) {} 382 383 // Perform the actual loop widening (vectorization). 384 void vectorize() { 385 // Create a new empty loop. Unlink the old loop and connect the new one. 386 createEmptyLoop(); 387 // Widen each instruction in the old loop to a new one in the new loop. 388 vectorizeLoop(); 389 } 390 391 // Return true if any runtime check is added. 392 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 393 394 virtual ~InnerLoopVectorizer() {} 395 396 protected: 397 /// A small list of PHINodes. 398 typedef SmallVector<PHINode *, 4> PhiVector; 399 400 /// A type for vectorized values in the new loop. Each value from the 401 /// original loop, when vectorized, is represented by UF vector values in the 402 /// new unrolled loop, where UF is the unroll factor. 403 typedef SmallVector<Value *, 2> VectorParts; 404 405 /// A type for scalarized values in the new loop. Each value from the 406 /// original loop, when scalarized, is represented by UF x VF scalar values 407 /// in the new unrolled loop, where UF is the unroll factor and VF is the 408 /// vectorization factor. 409 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 410 411 // When we if-convert we need to create edge masks. We have to cache values 412 // so that we don't end up with exponential recursion/IR. 413 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 414 EdgeMaskCache; 415 416 /// Create an empty loop, based on the loop ranges of the old loop. 417 void createEmptyLoop(); 418 419 /// Set up the values of the IVs correctly when exiting the vector loop. 420 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 421 Value *CountRoundDown, Value *EndValue, 422 BasicBlock *MiddleBlock); 423 424 /// Create a new induction variable inside L. 425 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 426 Value *Step, Instruction *DL); 427 /// Copy and widen the instructions from the old loop. 428 virtual void vectorizeLoop(); 429 430 /// Fix a first-order recurrence. This is the second phase of vectorizing 431 /// this phi node. 432 void fixFirstOrderRecurrence(PHINode *Phi); 433 434 /// \brief The Loop exit block may have single value PHI nodes where the 435 /// incoming value is 'Undef'. While vectorizing we only handled real values 436 /// that were defined inside the loop. Here we fix the 'undef case'. 437 /// See PR14725. 438 void fixLCSSAPHIs(); 439 440 /// Iteratively sink the scalarized operands of a predicated instruction into 441 /// the block that was created for it. 442 void sinkScalarOperands(Instruction *PredInst); 443 444 /// Predicate conditional instructions that require predication on their 445 /// respective conditions. 446 void predicateInstructions(); 447 448 /// Collect the instructions from the original loop that would be trivially 449 /// dead in the vectorized loop if generated. 450 void collectTriviallyDeadInstructions(); 451 452 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 453 /// represented as. 454 void truncateToMinimalBitwidths(); 455 456 /// A helper function that computes the predicate of the block BB, assuming 457 /// that the header block of the loop is set to True. It returns the *entry* 458 /// mask for the block BB. 459 VectorParts createBlockInMask(BasicBlock *BB); 460 /// A helper function that computes the predicate of the edge between SRC 461 /// and DST. 462 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 463 464 /// A helper function to vectorize a single BB within the innermost loop. 465 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 466 467 /// Vectorize a single PHINode in a block. This method handles the induction 468 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 469 /// arbitrary length vectors. 470 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF, 471 PhiVector *PV); 472 473 /// Insert the new loop to the loop hierarchy and pass manager 474 /// and update the analysis passes. 475 void updateAnalysis(); 476 477 /// This instruction is un-vectorizable. Implement it as a sequence 478 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 479 /// scalarized instruction behind an if block predicated on the control 480 /// dependence of the instruction. 481 virtual void scalarizeInstruction(Instruction *Instr, 482 bool IfPredicateInstr = false); 483 484 /// Vectorize Load and Store instructions, 485 virtual void vectorizeMemoryInstruction(Instruction *Instr); 486 487 /// Create a broadcast instruction. This method generates a broadcast 488 /// instruction (shuffle) for loop invariant values and for the induction 489 /// value. If this is the induction variable then we extend it to N, N+1, ... 490 /// this is needed because each iteration in the loop corresponds to a SIMD 491 /// element. 492 virtual Value *getBroadcastInstrs(Value *V); 493 494 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 495 /// to each vector element of Val. The sequence starts at StartIndex. 496 /// \p Opcode is relevant for FP induction variable. 497 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 498 Instruction::BinaryOps Opcode = 499 Instruction::BinaryOpsEnd); 500 501 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 502 /// variable on which to base the steps, \p Step is the size of the step, and 503 /// \p EntryVal is the value from the original loop that maps to the steps. 504 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 505 /// can be a truncate instruction). 506 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal); 507 508 /// Create a vector induction phi node based on an existing scalar one. This 509 /// currently only works for integer induction variables with a constant 510 /// step. \p EntryVal is the value from the original loop that maps to the 511 /// vector phi node. If \p EntryVal is a truncate instruction, instead of 512 /// widening the original IV, we widen a version of the IV truncated to \p 513 /// EntryVal's type. 514 void createVectorIntInductionPHI(const InductionDescriptor &II, 515 Instruction *EntryVal); 516 517 /// Widen an integer induction variable \p IV. If \p Trunc is provided, the 518 /// induction variable will first be truncated to the corresponding type. 519 void widenIntInduction(PHINode *IV, TruncInst *Trunc = nullptr); 520 521 /// Returns true if an instruction \p I should be scalarized instead of 522 /// vectorized for the chosen vectorization factor. 523 bool shouldScalarizeInstruction(Instruction *I) const; 524 525 /// Returns true if we should generate a scalar version of \p IV. 526 bool needsScalarInduction(Instruction *IV) const; 527 528 /// Return a constant reference to the VectorParts corresponding to \p V from 529 /// the original loop. If the value has already been vectorized, the 530 /// corresponding vector entry in VectorLoopValueMap is returned. If, 531 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 532 /// new vector values on-demand by inserting the scalar values into vectors 533 /// with an insertelement sequence. If the value has been neither vectorized 534 /// nor scalarized, it must be loop invariant, so we simply broadcast the 535 /// value into vectors. 536 const VectorParts &getVectorValue(Value *V); 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll index \p Part and vector index \p Lane. If the value has 540 /// been vectorized but not scalarized, the necessary extractelement 541 /// instruction will be generated. 542 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 543 544 /// Try to vectorize the interleaved access group that \p Instr belongs to. 545 void vectorizeInterleaveGroup(Instruction *Instr); 546 547 /// Generate a shuffle sequence that will reverse the vector Vec. 548 virtual Value *reverseVector(Value *Vec); 549 550 /// Returns (and creates if needed) the original loop trip count. 551 Value *getOrCreateTripCount(Loop *NewLoop); 552 553 /// Returns (and creates if needed) the trip count of the widened loop. 554 Value *getOrCreateVectorTripCount(Loop *NewLoop); 555 556 /// Emit a bypass check to see if the trip count would overflow, or we 557 /// wouldn't have enough iterations to execute one vector loop. 558 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 559 /// Emit a bypass check to see if the vector trip count is nonzero. 560 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 561 /// Emit a bypass check to see if all of the SCEV assumptions we've 562 /// had to make are correct. 563 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 564 /// Emit bypass checks to check any memory assumptions we may have made. 565 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 566 567 /// Add additional metadata to \p To that was not present on \p Orig. 568 /// 569 /// Currently this is used to add the noalias annotations based on the 570 /// inserted memchecks. Use this for instructions that are *cloned* into the 571 /// vector loop. 572 void addNewMetadata(Instruction *To, const Instruction *Orig); 573 574 /// Add metadata from one instruction to another. 575 /// 576 /// This includes both the original MDs from \p From and additional ones (\see 577 /// addNewMetadata). Use this for *newly created* instructions in the vector 578 /// loop. 579 void addMetadata(Instruction *To, Instruction *From); 580 581 /// \brief Similar to the previous function but it adds the metadata to a 582 /// vector of instructions. 583 void addMetadata(ArrayRef<Value *> To, Instruction *From); 584 585 /// This is a helper class for maintaining vectorization state. It's used for 586 /// mapping values from the original loop to their corresponding values in 587 /// the new loop. Two mappings are maintained: one for vectorized values and 588 /// one for scalarized values. Vectorized values are represented with UF 589 /// vector values in the new loop, and scalarized values are represented with 590 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 591 /// vectorization factors, respectively. 592 /// 593 /// Entries can be added to either map with initVector and initScalar, which 594 /// initialize and return a constant reference to the new entry. If a 595 /// non-constant reference to a vector entry is required, getVector can be 596 /// used to retrieve a mutable entry. We currently directly modify the mapped 597 /// values during "fix-up" operations that occur once the first phase of 598 /// widening is complete. These operations include type truncation and the 599 /// second phase of recurrence widening. 600 /// 601 /// Otherwise, entries from either map should be accessed using the 602 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 603 /// getVectorValue and getScalarValue coordinate to generate a vector or 604 /// scalar value on-demand if one is not yet available. When vectorizing a 605 /// loop, we visit the definition of an instruction before its uses. When 606 /// visiting the definition, we either vectorize or scalarize the 607 /// instruction, creating an entry for it in the corresponding map. (In some 608 /// cases, such as induction variables, we will create both vector and scalar 609 /// entries.) Then, as we encounter uses of the definition, we derive values 610 /// for each scalar or vector use unless such a value is already available. 611 /// For example, if we scalarize a definition and one of its uses is vector, 612 /// we build the required vector on-demand with an insertelement sequence 613 /// when visiting the use. Otherwise, if the use is scalar, we can use the 614 /// existing scalar definition. 615 struct ValueMap { 616 617 /// Construct an empty map with the given unroll and vectorization factors. 618 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 619 : UF(UnrollFactor), VF(VecWidth) { 620 // The unroll and vectorization factors are only used in asserts builds 621 // to verify map entries are sized appropriately. 622 (void)UF; 623 (void)VF; 624 } 625 626 /// \return True if the map has a vector entry for \p Key. 627 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 628 629 /// \return True if the map has a scalar entry for \p Key. 630 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 631 632 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 633 /// constant reference to the new vector map entry. The given key should 634 /// not already be in the map, and the given VectorParts should be 635 /// correctly sized for the current unroll factor. 636 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 637 assert(!hasVector(Key) && "Vector entry already initialized"); 638 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 639 VectorMapStorage[Key] = Entry; 640 return VectorMapStorage[Key]; 641 } 642 643 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 644 /// constant reference to the new scalar map entry. The given key should 645 /// not already be in the map, and the given ScalarParts should be 646 /// correctly sized for the current unroll and vectorization factors. 647 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 648 assert(!hasScalar(Key) && "Scalar entry already initialized"); 649 assert(Entry.size() == UF && 650 all_of(make_range(Entry.begin(), Entry.end()), 651 [&](const SmallVectorImpl<Value *> &Values) -> bool { 652 return Values.size() == VF; 653 }) && 654 "ScalarParts has wrong dimensions"); 655 ScalarMapStorage[Key] = Entry; 656 return ScalarMapStorage[Key]; 657 } 658 659 /// \return A reference to the vector map entry corresponding to \p Key. 660 /// The key should already be in the map. This function should only be used 661 /// when it's necessary to update values that have already been vectorized. 662 /// This is the case for "fix-up" operations including type truncation and 663 /// the second phase of recurrence vectorization. If a non-const reference 664 /// isn't required, getVectorValue should be used instead. 665 VectorParts &getVector(Value *Key) { 666 assert(hasVector(Key) && "Vector entry not initialized"); 667 return VectorMapStorage.find(Key)->second; 668 } 669 670 /// Retrieve an entry from the vector or scalar maps. The preferred way to 671 /// access an existing mapped entry is with getVectorValue or 672 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 673 /// moved inside ValueMap, we have to declare them as friends. 674 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 675 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 676 unsigned Lane); 677 678 private: 679 /// The unroll factor. Each entry in the vector map contains UF vector 680 /// values. 681 unsigned UF; 682 683 /// The vectorization factor. Each entry in the scalar map contains UF x VF 684 /// scalar values. 685 unsigned VF; 686 687 /// The vector and scalar map storage. We use std::map and not DenseMap 688 /// because insertions to DenseMap invalidate its iterators. 689 std::map<Value *, VectorParts> VectorMapStorage; 690 std::map<Value *, ScalarParts> ScalarMapStorage; 691 }; 692 693 /// The original loop. 694 Loop *OrigLoop; 695 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 696 /// dynamic knowledge to simplify SCEV expressions and converts them to a 697 /// more usable form. 698 PredicatedScalarEvolution &PSE; 699 /// Loop Info. 700 LoopInfo *LI; 701 /// Dominator Tree. 702 DominatorTree *DT; 703 /// Alias Analysis. 704 AliasAnalysis *AA; 705 /// Target Library Info. 706 const TargetLibraryInfo *TLI; 707 /// Target Transform Info. 708 const TargetTransformInfo *TTI; 709 /// Assumption Cache. 710 AssumptionCache *AC; 711 /// Interface to emit optimization remarks. 712 OptimizationRemarkEmitter *ORE; 713 714 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 715 /// used. 716 /// 717 /// This is currently only used to add no-alias metadata based on the 718 /// memchecks. The actually versioning is performed manually. 719 std::unique_ptr<LoopVersioning> LVer; 720 721 /// The vectorization SIMD factor to use. Each vector will have this many 722 /// vector elements. 723 unsigned VF; 724 725 protected: 726 /// The vectorization unroll factor to use. Each scalar is vectorized to this 727 /// many different vector instructions. 728 unsigned UF; 729 730 /// The builder that we use 731 IRBuilder<> Builder; 732 733 // --- Vectorization state --- 734 735 /// The vector-loop preheader. 736 BasicBlock *LoopVectorPreHeader; 737 /// The scalar-loop preheader. 738 BasicBlock *LoopScalarPreHeader; 739 /// Middle Block between the vector and the scalar. 740 BasicBlock *LoopMiddleBlock; 741 /// The ExitBlock of the scalar loop. 742 BasicBlock *LoopExitBlock; 743 /// The vector loop body. 744 BasicBlock *LoopVectorBody; 745 /// The scalar loop body. 746 BasicBlock *LoopScalarBody; 747 /// A list of all bypass blocks. The first block is the entry of the loop. 748 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 749 750 /// The new Induction variable which was added to the new block. 751 PHINode *Induction; 752 /// The induction variable of the old basic block. 753 PHINode *OldInduction; 754 755 /// Maps values from the original loop to their corresponding values in the 756 /// vectorized loop. A key value can map to either vector values, scalar 757 /// values or both kinds of values, depending on whether the key was 758 /// vectorized and scalarized. 759 ValueMap VectorLoopValueMap; 760 761 /// Store instructions that should be predicated, as a pair 762 /// <StoreInst, Predicate> 763 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 764 EdgeMaskCache MaskCache; 765 /// Trip count of the original loop. 766 Value *TripCount; 767 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 768 Value *VectorTripCount; 769 770 /// The legality analysis. 771 LoopVectorizationLegality *Legal; 772 773 /// The profitablity analysis. 774 LoopVectorizationCostModel *Cost; 775 776 // Record whether runtime checks are added. 777 bool AddedSafetyChecks; 778 779 // Holds instructions from the original loop whose counterparts in the 780 // vectorized loop would be trivially dead if generated. For example, 781 // original induction update instructions can become dead because we 782 // separately emit induction "steps" when generating code for the new loop. 783 // Similarly, we create a new latch condition when setting up the structure 784 // of the new loop, so the old one can become dead. 785 SmallPtrSet<Instruction *, 4> DeadInstructions; 786 }; 787 788 class InnerLoopUnroller : public InnerLoopVectorizer { 789 public: 790 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 791 LoopInfo *LI, DominatorTree *DT, 792 const TargetLibraryInfo *TLI, 793 const TargetTransformInfo *TTI, AssumptionCache *AC, 794 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 795 LoopVectorizationLegality *LVL, 796 LoopVectorizationCostModel *CM) 797 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 798 UnrollFactor, LVL, CM) {} 799 800 private: 801 void scalarizeInstruction(Instruction *Instr, 802 bool IfPredicateInstr = false) override; 803 void vectorizeMemoryInstruction(Instruction *Instr) override; 804 Value *getBroadcastInstrs(Value *V) override; 805 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 806 Instruction::BinaryOps Opcode = 807 Instruction::BinaryOpsEnd) override; 808 Value *reverseVector(Value *Vec) override; 809 }; 810 811 /// \brief Look for a meaningful debug location on the instruction or it's 812 /// operands. 813 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 814 if (!I) 815 return I; 816 817 DebugLoc Empty; 818 if (I->getDebugLoc() != Empty) 819 return I; 820 821 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 822 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 823 if (OpInst->getDebugLoc() != Empty) 824 return OpInst; 825 } 826 827 return I; 828 } 829 830 /// \brief Set the debug location in the builder using the debug location in the 831 /// instruction. 832 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 833 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 834 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 835 else 836 B.SetCurrentDebugLocation(DebugLoc()); 837 } 838 839 #ifndef NDEBUG 840 /// \return string containing a file name and a line # for the given loop. 841 static std::string getDebugLocString(const Loop *L) { 842 std::string Result; 843 if (L) { 844 raw_string_ostream OS(Result); 845 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 846 LoopDbgLoc.print(OS); 847 else 848 // Just print the module name. 849 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 850 OS.flush(); 851 } 852 return Result; 853 } 854 #endif 855 856 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 857 const Instruction *Orig) { 858 // If the loop was versioned with memchecks, add the corresponding no-alias 859 // metadata. 860 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 861 LVer->annotateInstWithNoAlias(To, Orig); 862 } 863 864 void InnerLoopVectorizer::addMetadata(Instruction *To, 865 Instruction *From) { 866 propagateMetadata(To, From); 867 addNewMetadata(To, From); 868 } 869 870 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 871 Instruction *From) { 872 for (Value *V : To) { 873 if (Instruction *I = dyn_cast<Instruction>(V)) 874 addMetadata(I, From); 875 } 876 } 877 878 /// \brief The group of interleaved loads/stores sharing the same stride and 879 /// close to each other. 880 /// 881 /// Each member in this group has an index starting from 0, and the largest 882 /// index should be less than interleaved factor, which is equal to the absolute 883 /// value of the access's stride. 884 /// 885 /// E.g. An interleaved load group of factor 4: 886 /// for (unsigned i = 0; i < 1024; i+=4) { 887 /// a = A[i]; // Member of index 0 888 /// b = A[i+1]; // Member of index 1 889 /// d = A[i+3]; // Member of index 3 890 /// ... 891 /// } 892 /// 893 /// An interleaved store group of factor 4: 894 /// for (unsigned i = 0; i < 1024; i+=4) { 895 /// ... 896 /// A[i] = a; // Member of index 0 897 /// A[i+1] = b; // Member of index 1 898 /// A[i+2] = c; // Member of index 2 899 /// A[i+3] = d; // Member of index 3 900 /// } 901 /// 902 /// Note: the interleaved load group could have gaps (missing members), but 903 /// the interleaved store group doesn't allow gaps. 904 class InterleaveGroup { 905 public: 906 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 907 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 908 assert(Align && "The alignment should be non-zero"); 909 910 Factor = std::abs(Stride); 911 assert(Factor > 1 && "Invalid interleave factor"); 912 913 Reverse = Stride < 0; 914 Members[0] = Instr; 915 } 916 917 bool isReverse() const { return Reverse; } 918 unsigned getFactor() const { return Factor; } 919 unsigned getAlignment() const { return Align; } 920 unsigned getNumMembers() const { return Members.size(); } 921 922 /// \brief Try to insert a new member \p Instr with index \p Index and 923 /// alignment \p NewAlign. The index is related to the leader and it could be 924 /// negative if it is the new leader. 925 /// 926 /// \returns false if the instruction doesn't belong to the group. 927 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 928 assert(NewAlign && "The new member's alignment should be non-zero"); 929 930 int Key = Index + SmallestKey; 931 932 // Skip if there is already a member with the same index. 933 if (Members.count(Key)) 934 return false; 935 936 if (Key > LargestKey) { 937 // The largest index is always less than the interleave factor. 938 if (Index >= static_cast<int>(Factor)) 939 return false; 940 941 LargestKey = Key; 942 } else if (Key < SmallestKey) { 943 // The largest index is always less than the interleave factor. 944 if (LargestKey - Key >= static_cast<int>(Factor)) 945 return false; 946 947 SmallestKey = Key; 948 } 949 950 // It's always safe to select the minimum alignment. 951 Align = std::min(Align, NewAlign); 952 Members[Key] = Instr; 953 return true; 954 } 955 956 /// \brief Get the member with the given index \p Index 957 /// 958 /// \returns nullptr if contains no such member. 959 Instruction *getMember(unsigned Index) const { 960 int Key = SmallestKey + Index; 961 if (!Members.count(Key)) 962 return nullptr; 963 964 return Members.find(Key)->second; 965 } 966 967 /// \brief Get the index for the given member. Unlike the key in the member 968 /// map, the index starts from 0. 969 unsigned getIndex(Instruction *Instr) const { 970 for (auto I : Members) 971 if (I.second == Instr) 972 return I.first - SmallestKey; 973 974 llvm_unreachable("InterleaveGroup contains no such member"); 975 } 976 977 Instruction *getInsertPos() const { return InsertPos; } 978 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 979 980 private: 981 unsigned Factor; // Interleave Factor. 982 bool Reverse; 983 unsigned Align; 984 DenseMap<int, Instruction *> Members; 985 int SmallestKey; 986 int LargestKey; 987 988 // To avoid breaking dependences, vectorized instructions of an interleave 989 // group should be inserted at either the first load or the last store in 990 // program order. 991 // 992 // E.g. %even = load i32 // Insert Position 993 // %add = add i32 %even // Use of %even 994 // %odd = load i32 995 // 996 // store i32 %even 997 // %odd = add i32 // Def of %odd 998 // store i32 %odd // Insert Position 999 Instruction *InsertPos; 1000 }; 1001 1002 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1003 /// 1004 /// Use this class to analyze interleaved accesses only when we can vectorize 1005 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1006 /// on interleaved accesses is unsafe. 1007 /// 1008 /// The analysis collects interleave groups and records the relationships 1009 /// between the member and the group in a map. 1010 class InterleavedAccessInfo { 1011 public: 1012 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1013 DominatorTree *DT, LoopInfo *LI) 1014 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1015 RequiresScalarEpilogue(false) {} 1016 1017 ~InterleavedAccessInfo() { 1018 SmallSet<InterleaveGroup *, 4> DelSet; 1019 // Avoid releasing a pointer twice. 1020 for (auto &I : InterleaveGroupMap) 1021 DelSet.insert(I.second); 1022 for (auto *Ptr : DelSet) 1023 delete Ptr; 1024 } 1025 1026 /// \brief Analyze the interleaved accesses and collect them in interleave 1027 /// groups. Substitute symbolic strides using \p Strides. 1028 void analyzeInterleaving(const ValueToValueMap &Strides); 1029 1030 /// \brief Check if \p Instr belongs to any interleave group. 1031 bool isInterleaved(Instruction *Instr) const { 1032 return InterleaveGroupMap.count(Instr); 1033 } 1034 1035 /// \brief Return the maximum interleave factor of all interleaved groups. 1036 unsigned getMaxInterleaveFactor() const { 1037 unsigned MaxFactor = 1; 1038 for (auto &Entry : InterleaveGroupMap) 1039 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1040 return MaxFactor; 1041 } 1042 1043 /// \brief Get the interleave group that \p Instr belongs to. 1044 /// 1045 /// \returns nullptr if doesn't have such group. 1046 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1047 if (InterleaveGroupMap.count(Instr)) 1048 return InterleaveGroupMap.find(Instr)->second; 1049 return nullptr; 1050 } 1051 1052 /// \brief Returns true if an interleaved group that may access memory 1053 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1054 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1055 1056 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1057 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1058 1059 private: 1060 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1061 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1062 /// The interleaved access analysis can also add new predicates (for example 1063 /// by versioning strides of pointers). 1064 PredicatedScalarEvolution &PSE; 1065 Loop *TheLoop; 1066 DominatorTree *DT; 1067 LoopInfo *LI; 1068 const LoopAccessInfo *LAI; 1069 1070 /// True if the loop may contain non-reversed interleaved groups with 1071 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1072 /// out-of-bounds by executing at least one scalar epilogue iteration. 1073 bool RequiresScalarEpilogue; 1074 1075 /// Holds the relationships between the members and the interleave group. 1076 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1077 1078 /// Holds dependences among the memory accesses in the loop. It maps a source 1079 /// access to a set of dependent sink accesses. 1080 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1081 1082 /// \brief The descriptor for a strided memory access. 1083 struct StrideDescriptor { 1084 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1085 unsigned Align) 1086 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1087 1088 StrideDescriptor() = default; 1089 1090 // The access's stride. It is negative for a reverse access. 1091 int64_t Stride = 0; 1092 const SCEV *Scev = nullptr; // The scalar expression of this access 1093 uint64_t Size = 0; // The size of the memory object. 1094 unsigned Align = 0; // The alignment of this access. 1095 }; 1096 1097 /// \brief A type for holding instructions and their stride descriptors. 1098 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1099 1100 /// \brief Create a new interleave group with the given instruction \p Instr, 1101 /// stride \p Stride and alignment \p Align. 1102 /// 1103 /// \returns the newly created interleave group. 1104 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1105 unsigned Align) { 1106 assert(!InterleaveGroupMap.count(Instr) && 1107 "Already in an interleaved access group"); 1108 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1109 return InterleaveGroupMap[Instr]; 1110 } 1111 1112 /// \brief Release the group and remove all the relationships. 1113 void releaseGroup(InterleaveGroup *Group) { 1114 for (unsigned i = 0; i < Group->getFactor(); i++) 1115 if (Instruction *Member = Group->getMember(i)) 1116 InterleaveGroupMap.erase(Member); 1117 1118 delete Group; 1119 } 1120 1121 /// \brief Collect all the accesses with a constant stride in program order. 1122 void collectConstStrideAccesses( 1123 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1124 const ValueToValueMap &Strides); 1125 1126 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1127 static bool isStrided(int Stride) { 1128 unsigned Factor = std::abs(Stride); 1129 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1130 } 1131 1132 /// \brief Returns true if \p BB is a predicated block. 1133 bool isPredicated(BasicBlock *BB) const { 1134 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1135 } 1136 1137 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1138 bool areDependencesValid() const { 1139 return LAI && LAI->getDepChecker().getDependences(); 1140 } 1141 1142 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1143 /// necessary, when constructing interleaved groups. 1144 /// 1145 /// \p A must precede \p B in program order. We return false if reordering is 1146 /// not necessary or is prevented because \p A and \p B may be dependent. 1147 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1148 StrideEntry *B) const { 1149 1150 // Code motion for interleaved accesses can potentially hoist strided loads 1151 // and sink strided stores. The code below checks the legality of the 1152 // following two conditions: 1153 // 1154 // 1. Potentially moving a strided load (B) before any store (A) that 1155 // precedes B, or 1156 // 1157 // 2. Potentially moving a strided store (A) after any load or store (B) 1158 // that A precedes. 1159 // 1160 // It's legal to reorder A and B if we know there isn't a dependence from A 1161 // to B. Note that this determination is conservative since some 1162 // dependences could potentially be reordered safely. 1163 1164 // A is potentially the source of a dependence. 1165 auto *Src = A->first; 1166 auto SrcDes = A->second; 1167 1168 // B is potentially the sink of a dependence. 1169 auto *Sink = B->first; 1170 auto SinkDes = B->second; 1171 1172 // Code motion for interleaved accesses can't violate WAR dependences. 1173 // Thus, reordering is legal if the source isn't a write. 1174 if (!Src->mayWriteToMemory()) 1175 return true; 1176 1177 // At least one of the accesses must be strided. 1178 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1179 return true; 1180 1181 // If dependence information is not available from LoopAccessInfo, 1182 // conservatively assume the instructions can't be reordered. 1183 if (!areDependencesValid()) 1184 return false; 1185 1186 // If we know there is a dependence from source to sink, assume the 1187 // instructions can't be reordered. Otherwise, reordering is legal. 1188 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1189 } 1190 1191 /// \brief Collect the dependences from LoopAccessInfo. 1192 /// 1193 /// We process the dependences once during the interleaved access analysis to 1194 /// enable constant-time dependence queries. 1195 void collectDependences() { 1196 if (!areDependencesValid()) 1197 return; 1198 auto *Deps = LAI->getDepChecker().getDependences(); 1199 for (auto Dep : *Deps) 1200 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1201 } 1202 }; 1203 1204 /// Utility class for getting and setting loop vectorizer hints in the form 1205 /// of loop metadata. 1206 /// This class keeps a number of loop annotations locally (as member variables) 1207 /// and can, upon request, write them back as metadata on the loop. It will 1208 /// initially scan the loop for existing metadata, and will update the local 1209 /// values based on information in the loop. 1210 /// We cannot write all values to metadata, as the mere presence of some info, 1211 /// for example 'force', means a decision has been made. So, we need to be 1212 /// careful NOT to add them if the user hasn't specifically asked so. 1213 class LoopVectorizeHints { 1214 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1215 1216 /// Hint - associates name and validation with the hint value. 1217 struct Hint { 1218 const char *Name; 1219 unsigned Value; // This may have to change for non-numeric values. 1220 HintKind Kind; 1221 1222 Hint(const char *Name, unsigned Value, HintKind Kind) 1223 : Name(Name), Value(Value), Kind(Kind) {} 1224 1225 bool validate(unsigned Val) { 1226 switch (Kind) { 1227 case HK_WIDTH: 1228 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1229 case HK_UNROLL: 1230 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1231 case HK_FORCE: 1232 return (Val <= 1); 1233 } 1234 return false; 1235 } 1236 }; 1237 1238 /// Vectorization width. 1239 Hint Width; 1240 /// Vectorization interleave factor. 1241 Hint Interleave; 1242 /// Vectorization forced 1243 Hint Force; 1244 1245 /// Return the loop metadata prefix. 1246 static StringRef Prefix() { return "llvm.loop."; } 1247 1248 /// True if there is any unsafe math in the loop. 1249 bool PotentiallyUnsafe; 1250 1251 public: 1252 enum ForceKind { 1253 FK_Undefined = -1, ///< Not selected. 1254 FK_Disabled = 0, ///< Forcing disabled. 1255 FK_Enabled = 1, ///< Forcing enabled. 1256 }; 1257 1258 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1259 OptimizationRemarkEmitter &ORE) 1260 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1261 HK_WIDTH), 1262 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1263 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1264 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1265 // Populate values with existing loop metadata. 1266 getHintsFromMetadata(); 1267 1268 // force-vector-interleave overrides DisableInterleaving. 1269 if (VectorizerParams::isInterleaveForced()) 1270 Interleave.Value = VectorizerParams::VectorizationInterleave; 1271 1272 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1273 << "LV: Interleaving disabled by the pass manager\n"); 1274 } 1275 1276 /// Mark the loop L as already vectorized by setting the width to 1. 1277 void setAlreadyVectorized() { 1278 Width.Value = Interleave.Value = 1; 1279 Hint Hints[] = {Width, Interleave}; 1280 writeHintsToMetadata(Hints); 1281 } 1282 1283 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1284 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1285 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1286 emitRemarkWithHints(); 1287 return false; 1288 } 1289 1290 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1291 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1292 emitRemarkWithHints(); 1293 return false; 1294 } 1295 1296 if (getWidth() == 1 && getInterleave() == 1) { 1297 // FIXME: Add a separate metadata to indicate when the loop has already 1298 // been vectorized instead of setting width and count to 1. 1299 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1300 // FIXME: Add interleave.disable metadata. This will allow 1301 // vectorize.disable to be used without disabling the pass and errors 1302 // to differentiate between disabled vectorization and a width of 1. 1303 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1304 "AllDisabled", L->getStartLoc(), 1305 L->getHeader()) 1306 << "loop not vectorized: vectorization and interleaving are " 1307 "explicitly disabled, or vectorize width and interleave " 1308 "count are both set to 1"); 1309 return false; 1310 } 1311 1312 return true; 1313 } 1314 1315 /// Dumps all the hint information. 1316 void emitRemarkWithHints() const { 1317 using namespace ore; 1318 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1319 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1320 TheLoop->getStartLoc(), 1321 TheLoop->getHeader()) 1322 << "loop not vectorized: vectorization is explicitly disabled"); 1323 else { 1324 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1325 TheLoop->getStartLoc(), TheLoop->getHeader()); 1326 R << "loop not vectorized"; 1327 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1328 R << " (Force=" << NV("Force", true); 1329 if (Width.Value != 0) 1330 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1331 if (Interleave.Value != 0) 1332 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1333 R << ")"; 1334 } 1335 ORE.emit(R); 1336 } 1337 } 1338 1339 unsigned getWidth() const { return Width.Value; } 1340 unsigned getInterleave() const { return Interleave.Value; } 1341 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1342 1343 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1344 /// pass name to force the frontend to print the diagnostic. 1345 const char *vectorizeAnalysisPassName() const { 1346 if (getWidth() == 1) 1347 return LV_NAME; 1348 if (getForce() == LoopVectorizeHints::FK_Disabled) 1349 return LV_NAME; 1350 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1351 return LV_NAME; 1352 return OptimizationRemarkAnalysis::AlwaysPrint; 1353 } 1354 1355 bool allowReordering() const { 1356 // When enabling loop hints are provided we allow the vectorizer to change 1357 // the order of operations that is given by the scalar loop. This is not 1358 // enabled by default because can be unsafe or inefficient. For example, 1359 // reordering floating-point operations will change the way round-off 1360 // error accumulates in the loop. 1361 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1362 } 1363 1364 bool isPotentiallyUnsafe() const { 1365 // Avoid FP vectorization if the target is unsure about proper support. 1366 // This may be related to the SIMD unit in the target not handling 1367 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1368 // Otherwise, a sequence of vectorized loops, even without reduction, 1369 // could lead to different end results on the destination vectors. 1370 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1371 } 1372 1373 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1374 1375 private: 1376 /// Find hints specified in the loop metadata and update local values. 1377 void getHintsFromMetadata() { 1378 MDNode *LoopID = TheLoop->getLoopID(); 1379 if (!LoopID) 1380 return; 1381 1382 // First operand should refer to the loop id itself. 1383 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1384 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1385 1386 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1387 const MDString *S = nullptr; 1388 SmallVector<Metadata *, 4> Args; 1389 1390 // The expected hint is either a MDString or a MDNode with the first 1391 // operand a MDString. 1392 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1393 if (!MD || MD->getNumOperands() == 0) 1394 continue; 1395 S = dyn_cast<MDString>(MD->getOperand(0)); 1396 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1397 Args.push_back(MD->getOperand(i)); 1398 } else { 1399 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1400 assert(Args.size() == 0 && "too many arguments for MDString"); 1401 } 1402 1403 if (!S) 1404 continue; 1405 1406 // Check if the hint starts with the loop metadata prefix. 1407 StringRef Name = S->getString(); 1408 if (Args.size() == 1) 1409 setHint(Name, Args[0]); 1410 } 1411 } 1412 1413 /// Checks string hint with one operand and set value if valid. 1414 void setHint(StringRef Name, Metadata *Arg) { 1415 if (!Name.startswith(Prefix())) 1416 return; 1417 Name = Name.substr(Prefix().size(), StringRef::npos); 1418 1419 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1420 if (!C) 1421 return; 1422 unsigned Val = C->getZExtValue(); 1423 1424 Hint *Hints[] = {&Width, &Interleave, &Force}; 1425 for (auto H : Hints) { 1426 if (Name == H->Name) { 1427 if (H->validate(Val)) 1428 H->Value = Val; 1429 else 1430 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1431 break; 1432 } 1433 } 1434 } 1435 1436 /// Create a new hint from name / value pair. 1437 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1438 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1439 Metadata *MDs[] = {MDString::get(Context, Name), 1440 ConstantAsMetadata::get( 1441 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1442 return MDNode::get(Context, MDs); 1443 } 1444 1445 /// Matches metadata with hint name. 1446 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1447 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1448 if (!Name) 1449 return false; 1450 1451 for (auto H : HintTypes) 1452 if (Name->getString().endswith(H.Name)) 1453 return true; 1454 return false; 1455 } 1456 1457 /// Sets current hints into loop metadata, keeping other values intact. 1458 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1459 if (HintTypes.size() == 0) 1460 return; 1461 1462 // Reserve the first element to LoopID (see below). 1463 SmallVector<Metadata *, 4> MDs(1); 1464 // If the loop already has metadata, then ignore the existing operands. 1465 MDNode *LoopID = TheLoop->getLoopID(); 1466 if (LoopID) { 1467 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1468 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1469 // If node in update list, ignore old value. 1470 if (!matchesHintMetadataName(Node, HintTypes)) 1471 MDs.push_back(Node); 1472 } 1473 } 1474 1475 // Now, add the missing hints. 1476 for (auto H : HintTypes) 1477 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1478 1479 // Replace current metadata node with new one. 1480 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1481 MDNode *NewLoopID = MDNode::get(Context, MDs); 1482 // Set operand 0 to refer to the loop id itself. 1483 NewLoopID->replaceOperandWith(0, NewLoopID); 1484 1485 TheLoop->setLoopID(NewLoopID); 1486 } 1487 1488 /// The loop these hints belong to. 1489 const Loop *TheLoop; 1490 1491 /// Interface to emit optimization remarks. 1492 OptimizationRemarkEmitter &ORE; 1493 }; 1494 1495 static void emitAnalysisDiag(const Loop *TheLoop, 1496 const LoopVectorizeHints &Hints, 1497 OptimizationRemarkEmitter &ORE, 1498 const LoopAccessReport &Message) { 1499 const char *Name = Hints.vectorizeAnalysisPassName(); 1500 LoopAccessReport::emitAnalysis(Message, TheLoop, Name, ORE); 1501 } 1502 1503 static void emitMissedWarning(Function *F, Loop *L, 1504 const LoopVectorizeHints &LH, 1505 OptimizationRemarkEmitter *ORE) { 1506 LH.emitRemarkWithHints(); 1507 1508 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1509 if (LH.getWidth() != 1) 1510 emitLoopVectorizeWarning( 1511 F->getContext(), *F, L->getStartLoc(), 1512 "failed explicitly specified loop vectorization"); 1513 else if (LH.getInterleave() != 1) 1514 emitLoopInterleaveWarning( 1515 F->getContext(), *F, L->getStartLoc(), 1516 "failed explicitly specified loop interleaving"); 1517 } 1518 } 1519 1520 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1521 /// to what vectorization factor. 1522 /// This class does not look at the profitability of vectorization, only the 1523 /// legality. This class has two main kinds of checks: 1524 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1525 /// will change the order of memory accesses in a way that will change the 1526 /// correctness of the program. 1527 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1528 /// checks for a number of different conditions, such as the availability of a 1529 /// single induction variable, that all types are supported and vectorize-able, 1530 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1531 /// This class is also used by InnerLoopVectorizer for identifying 1532 /// induction variable and the different reduction variables. 1533 class LoopVectorizationLegality { 1534 public: 1535 LoopVectorizationLegality( 1536 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1537 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1538 const TargetTransformInfo *TTI, 1539 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1540 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1541 LoopVectorizeHints *H) 1542 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1543 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1544 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1545 Requirements(R), Hints(H) {} 1546 1547 /// ReductionList contains the reduction descriptors for all 1548 /// of the reductions that were found in the loop. 1549 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1550 1551 /// InductionList saves induction variables and maps them to the 1552 /// induction descriptor. 1553 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1554 1555 /// RecurrenceSet contains the phi nodes that are recurrences other than 1556 /// inductions and reductions. 1557 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1558 1559 /// Returns true if it is legal to vectorize this loop. 1560 /// This does not mean that it is profitable to vectorize this 1561 /// loop, only that it is legal to do so. 1562 bool canVectorize(); 1563 1564 /// Returns the Induction variable. 1565 PHINode *getInduction() { return Induction; } 1566 1567 /// Returns the reduction variables found in the loop. 1568 ReductionList *getReductionVars() { return &Reductions; } 1569 1570 /// Returns the induction variables found in the loop. 1571 InductionList *getInductionVars() { return &Inductions; } 1572 1573 /// Return the first-order recurrences found in the loop. 1574 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1575 1576 /// Returns the widest induction type. 1577 Type *getWidestInductionType() { return WidestIndTy; } 1578 1579 /// Returns True if V is an induction variable in this loop. 1580 bool isInductionVariable(const Value *V); 1581 1582 /// Returns True if PN is a reduction variable in this loop. 1583 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1584 1585 /// Returns True if Phi is a first-order recurrence in this loop. 1586 bool isFirstOrderRecurrence(const PHINode *Phi); 1587 1588 /// Return true if the block BB needs to be predicated in order for the loop 1589 /// to be vectorized. 1590 bool blockNeedsPredication(BasicBlock *BB); 1591 1592 /// Check if this pointer is consecutive when vectorizing. This happens 1593 /// when the last index of the GEP is the induction variable, or that the 1594 /// pointer itself is an induction variable. 1595 /// This check allows us to vectorize A[idx] into a wide load/store. 1596 /// Returns: 1597 /// 0 - Stride is unknown or non-consecutive. 1598 /// 1 - Address is consecutive. 1599 /// -1 - Address is consecutive, and decreasing. 1600 int isConsecutivePtr(Value *Ptr); 1601 1602 /// Returns true if the value V is uniform within the loop. 1603 bool isUniform(Value *V); 1604 1605 /// Returns true if \p I is known to be uniform after vectorization. 1606 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1607 1608 /// Returns true if \p I is known to be scalar after vectorization. 1609 bool isScalarAfterVectorization(Instruction *I) { return Scalars.count(I); } 1610 1611 /// Returns the information that we collected about runtime memory check. 1612 const RuntimePointerChecking *getRuntimePointerChecking() const { 1613 return LAI->getRuntimePointerChecking(); 1614 } 1615 1616 const LoopAccessInfo *getLAI() const { return LAI; } 1617 1618 /// \brief Check if \p Instr belongs to any interleaved access group. 1619 bool isAccessInterleaved(Instruction *Instr) { 1620 return InterleaveInfo.isInterleaved(Instr); 1621 } 1622 1623 /// \brief Return the maximum interleave factor of all interleaved groups. 1624 unsigned getMaxInterleaveFactor() const { 1625 return InterleaveInfo.getMaxInterleaveFactor(); 1626 } 1627 1628 /// \brief Get the interleaved access group that \p Instr belongs to. 1629 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1630 return InterleaveInfo.getInterleaveGroup(Instr); 1631 } 1632 1633 /// \brief Returns true if an interleaved group requires a scalar iteration 1634 /// to handle accesses with gaps. 1635 bool requiresScalarEpilogue() const { 1636 return InterleaveInfo.requiresScalarEpilogue(); 1637 } 1638 1639 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1640 1641 bool hasStride(Value *V) { return LAI->hasStride(V); } 1642 1643 /// Returns true if the target machine supports masked store operation 1644 /// for the given \p DataType and kind of access to \p Ptr. 1645 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1646 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1647 } 1648 /// Returns true if the target machine supports masked load operation 1649 /// for the given \p DataType and kind of access to \p Ptr. 1650 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1651 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1652 } 1653 /// Returns true if the target machine supports masked scatter operation 1654 /// for the given \p DataType. 1655 bool isLegalMaskedScatter(Type *DataType) { 1656 return TTI->isLegalMaskedScatter(DataType); 1657 } 1658 /// Returns true if the target machine supports masked gather operation 1659 /// for the given \p DataType. 1660 bool isLegalMaskedGather(Type *DataType) { 1661 return TTI->isLegalMaskedGather(DataType); 1662 } 1663 /// Returns true if the target machine can represent \p V as a masked gather 1664 /// or scatter operation. 1665 bool isLegalGatherOrScatter(Value *V) { 1666 auto *LI = dyn_cast<LoadInst>(V); 1667 auto *SI = dyn_cast<StoreInst>(V); 1668 if (!LI && !SI) 1669 return false; 1670 auto *Ptr = getPointerOperand(V); 1671 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1672 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1673 } 1674 1675 /// Returns true if vector representation of the instruction \p I 1676 /// requires mask. 1677 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1678 unsigned getNumStores() const { return LAI->getNumStores(); } 1679 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1680 unsigned getNumPredStores() const { return NumPredStores; } 1681 1682 /// Returns true if \p I is an instruction that will be scalarized with 1683 /// predication. Such instructions include conditional stores and 1684 /// instructions that may divide by zero. 1685 bool isScalarWithPredication(Instruction *I); 1686 1687 /// Returns true if \p I is a memory instruction that has a consecutive or 1688 /// consecutive-like pointer operand. Consecutive-like pointers are pointers 1689 /// that are treated like consecutive pointers during vectorization. The 1690 /// pointer operands of interleaved accesses are an example. 1691 bool hasConsecutiveLikePtrOperand(Instruction *I); 1692 1693 /// Returns true if \p I is a memory instruction that must be scalarized 1694 /// during vectorization. 1695 bool memoryInstructionMustBeScalarized(Instruction *I, unsigned VF = 1); 1696 1697 private: 1698 /// Check if a single basic block loop is vectorizable. 1699 /// At this point we know that this is a loop with a constant trip count 1700 /// and we only need to check individual instructions. 1701 bool canVectorizeInstrs(); 1702 1703 /// When we vectorize loops we may change the order in which 1704 /// we read and write from memory. This method checks if it is 1705 /// legal to vectorize the code, considering only memory constrains. 1706 /// Returns true if the loop is vectorizable 1707 bool canVectorizeMemory(); 1708 1709 /// Return true if we can vectorize this loop using the IF-conversion 1710 /// transformation. 1711 bool canVectorizeWithIfConvert(); 1712 1713 /// Collect the instructions that are uniform after vectorization. An 1714 /// instruction is uniform if we represent it with a single scalar value in 1715 /// the vectorized loop corresponding to each vector iteration. Examples of 1716 /// uniform instructions include pointer operands of consecutive or 1717 /// interleaved memory accesses. Note that although uniformity implies an 1718 /// instruction will be scalar, the reverse is not true. In general, a 1719 /// scalarized instruction will be represented by VF scalar values in the 1720 /// vectorized loop, each corresponding to an iteration of the original 1721 /// scalar loop. 1722 void collectLoopUniforms(); 1723 1724 /// Collect the instructions that are scalar after vectorization. An 1725 /// instruction is scalar if it is known to be uniform or will be scalarized 1726 /// during vectorization. Non-uniform scalarized instructions will be 1727 /// represented by VF values in the vectorized loop, each corresponding to an 1728 /// iteration of the original scalar loop. 1729 void collectLoopScalars(); 1730 1731 /// Return true if all of the instructions in the block can be speculatively 1732 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1733 /// and we know that we can read from them without segfault. 1734 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1735 1736 /// Updates the vectorization state by adding \p Phi to the inductions list. 1737 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1738 /// better choice for the main induction than the existing one. 1739 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1740 SmallPtrSetImpl<Value *> &AllowedExit); 1741 1742 /// Report an analysis message to assist the user in diagnosing loops that are 1743 /// not vectorized. These are handled as LoopAccessReport rather than 1744 /// VectorizationReport because the << operator of VectorizationReport returns 1745 /// LoopAccessReport. 1746 void emitAnalysis(const LoopAccessReport &Message) const { 1747 emitAnalysisDiag(TheLoop, *Hints, *ORE, Message); 1748 } 1749 1750 /// Create an analysis remark that explains why vectorization failed 1751 /// 1752 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1753 /// an instruction that prevents vectorization. Otherwise the loop is used 1754 /// for the location of the remark. \return the remark object that can be 1755 /// streamed to. 1756 OptimizationRemarkAnalysis 1757 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1758 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1759 RemarkName, TheLoop, I); 1760 } 1761 1762 /// \brief If an access has a symbolic strides, this maps the pointer value to 1763 /// the stride symbol. 1764 const ValueToValueMap *getSymbolicStrides() { 1765 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1766 // it's collected. This happens from canVectorizeWithIfConvert, when the 1767 // pointer is checked to reference consecutive elements suitable for a 1768 // masked access. 1769 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1770 } 1771 1772 unsigned NumPredStores; 1773 1774 /// The loop that we evaluate. 1775 Loop *TheLoop; 1776 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1777 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1778 /// of existing SCEV assumptions. The analysis will also add a minimal set 1779 /// of new predicates if this is required to enable vectorization and 1780 /// unrolling. 1781 PredicatedScalarEvolution &PSE; 1782 /// Target Library Info. 1783 TargetLibraryInfo *TLI; 1784 /// Target Transform Info 1785 const TargetTransformInfo *TTI; 1786 /// Dominator Tree. 1787 DominatorTree *DT; 1788 // LoopAccess analysis. 1789 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1790 // And the loop-accesses info corresponding to this loop. This pointer is 1791 // null until canVectorizeMemory sets it up. 1792 const LoopAccessInfo *LAI; 1793 /// Interface to emit optimization remarks. 1794 OptimizationRemarkEmitter *ORE; 1795 1796 /// The interleave access information contains groups of interleaved accesses 1797 /// with the same stride and close to each other. 1798 InterleavedAccessInfo InterleaveInfo; 1799 1800 // --- vectorization state --- // 1801 1802 /// Holds the integer induction variable. This is the counter of the 1803 /// loop. 1804 PHINode *Induction; 1805 /// Holds the reduction variables. 1806 ReductionList Reductions; 1807 /// Holds all of the induction variables that we found in the loop. 1808 /// Notice that inductions don't need to start at zero and that induction 1809 /// variables can be pointers. 1810 InductionList Inductions; 1811 /// Holds the phi nodes that are first-order recurrences. 1812 RecurrenceSet FirstOrderRecurrences; 1813 /// Holds the widest induction type encountered. 1814 Type *WidestIndTy; 1815 1816 /// Allowed outside users. This holds the induction and reduction 1817 /// vars which can be accessed from outside the loop. 1818 SmallPtrSet<Value *, 4> AllowedExit; 1819 1820 /// Holds the instructions known to be uniform after vectorization. 1821 SmallPtrSet<Instruction *, 4> Uniforms; 1822 1823 /// Holds the instructions known to be scalar after vectorization. 1824 SmallPtrSet<Instruction *, 4> Scalars; 1825 1826 /// Can we assume the absence of NaNs. 1827 bool HasFunNoNaNAttr; 1828 1829 /// Vectorization requirements that will go through late-evaluation. 1830 LoopVectorizationRequirements *Requirements; 1831 1832 /// Used to emit an analysis of any legality issues. 1833 LoopVectorizeHints *Hints; 1834 1835 /// While vectorizing these instructions we have to generate a 1836 /// call to the appropriate masked intrinsic 1837 SmallPtrSet<const Instruction *, 8> MaskedOp; 1838 }; 1839 1840 /// LoopVectorizationCostModel - estimates the expected speedups due to 1841 /// vectorization. 1842 /// In many cases vectorization is not profitable. This can happen because of 1843 /// a number of reasons. In this class we mainly attempt to predict the 1844 /// expected speedup/slowdowns due to the supported instruction set. We use the 1845 /// TargetTransformInfo to query the different backends for the cost of 1846 /// different operations. 1847 class LoopVectorizationCostModel { 1848 public: 1849 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1850 LoopInfo *LI, LoopVectorizationLegality *Legal, 1851 const TargetTransformInfo &TTI, 1852 const TargetLibraryInfo *TLI, DemandedBits *DB, 1853 AssumptionCache *AC, 1854 OptimizationRemarkEmitter *ORE, const Function *F, 1855 const LoopVectorizeHints *Hints) 1856 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1857 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1858 1859 /// Information about vectorization costs 1860 struct VectorizationFactor { 1861 unsigned Width; // Vector width with best cost 1862 unsigned Cost; // Cost of the loop with that width 1863 }; 1864 /// \return The most profitable vectorization factor and the cost of that VF. 1865 /// This method checks every power of two up to VF. If UserVF is not ZERO 1866 /// then this vectorization factor will be selected if vectorization is 1867 /// possible. 1868 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1869 1870 /// \return The size (in bits) of the smallest and widest types in the code 1871 /// that needs to be vectorized. We ignore values that remain scalar such as 1872 /// 64 bit loop indices. 1873 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1874 1875 /// \return The desired interleave count. 1876 /// If interleave count has been specified by metadata it will be returned. 1877 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1878 /// are the selected vectorization factor and the cost of the selected VF. 1879 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1880 unsigned LoopCost); 1881 1882 /// \return The most profitable unroll factor. 1883 /// This method finds the best unroll-factor based on register pressure and 1884 /// other parameters. VF and LoopCost are the selected vectorization factor 1885 /// and the cost of the selected VF. 1886 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1887 unsigned LoopCost); 1888 1889 /// \brief A struct that represents some properties of the register usage 1890 /// of a loop. 1891 struct RegisterUsage { 1892 /// Holds the number of loop invariant values that are used in the loop. 1893 unsigned LoopInvariantRegs; 1894 /// Holds the maximum number of concurrent live intervals in the loop. 1895 unsigned MaxLocalUsers; 1896 /// Holds the number of instructions in the loop. 1897 unsigned NumInstructions; 1898 }; 1899 1900 /// \return Returns information about the register usages of the loop for the 1901 /// given vectorization factors. 1902 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1903 1904 /// Collect values we want to ignore in the cost model. 1905 void collectValuesToIgnore(); 1906 1907 /// \returns The smallest bitwidth each instruction can be represented with. 1908 /// The vector equivalents of these instructions should be truncated to this 1909 /// type. 1910 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1911 return MinBWs; 1912 } 1913 1914 /// \returns True if it is more profitable to scalarize instruction \p I for 1915 /// vectorization factor \p VF. 1916 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1917 auto Scalars = InstsToScalarize.find(VF); 1918 assert(Scalars != InstsToScalarize.end() && 1919 "VF not yet analyzed for scalarization profitability"); 1920 return Scalars->second.count(I); 1921 } 1922 1923 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1924 /// for vectorization factor \p VF. 1925 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1926 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1927 !Legal->isScalarAfterVectorization(I); 1928 } 1929 1930 private: 1931 /// The vectorization cost is a combination of the cost itself and a boolean 1932 /// indicating whether any of the contributing operations will actually 1933 /// operate on 1934 /// vector values after type legalization in the backend. If this latter value 1935 /// is 1936 /// false, then all operations will be scalarized (i.e. no vectorization has 1937 /// actually taken place). 1938 typedef std::pair<unsigned, bool> VectorizationCostTy; 1939 1940 /// Returns the expected execution cost. The unit of the cost does 1941 /// not matter because we use the 'cost' units to compare different 1942 /// vector widths. The cost that is returned is *not* normalized by 1943 /// the factor width. 1944 VectorizationCostTy expectedCost(unsigned VF); 1945 1946 /// Returns the execution time cost of an instruction for a given vector 1947 /// width. Vector width of one means scalar. 1948 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1949 1950 /// The cost-computation logic from getInstructionCost which provides 1951 /// the vector type as an output parameter. 1952 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1953 1954 /// Returns whether the instruction is a load or store and will be a emitted 1955 /// as a vector operation. 1956 bool isConsecutiveLoadOrStore(Instruction *I); 1957 1958 /// Create an analysis remark that explains why vectorization failed 1959 /// 1960 /// \p RemarkName is the identifier for the remark. \return the remark object 1961 /// that can be streamed to. 1962 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1963 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1964 RemarkName, TheLoop); 1965 } 1966 1967 /// Map of scalar integer values to the smallest bitwidth they can be legally 1968 /// represented as. The vector equivalents of these values should be truncated 1969 /// to this type. 1970 MapVector<Instruction *, uint64_t> MinBWs; 1971 1972 /// A type representing the costs for instructions if they were to be 1973 /// scalarized rather than vectorized. The entries are Instruction-Cost 1974 /// pairs. 1975 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 1976 1977 /// A map holding scalar costs for different vectorization factors. The 1978 /// presence of a cost for an instruction in the mapping indicates that the 1979 /// instruction will be scalarized when vectorizing with the associated 1980 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1981 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1982 1983 /// Returns the expected difference in cost from scalarizing the expression 1984 /// feeding a predicated instruction \p PredInst. The instructions to 1985 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1986 /// non-negative return value implies the expression will be scalarized. 1987 /// Currently, only single-use chains are considered for scalarization. 1988 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1989 unsigned VF); 1990 1991 /// Collects the instructions to scalarize for each predicated instruction in 1992 /// the loop. 1993 void collectInstsToScalarize(unsigned VF); 1994 1995 public: 1996 /// The loop that we evaluate. 1997 Loop *TheLoop; 1998 /// Predicated scalar evolution analysis. 1999 PredicatedScalarEvolution &PSE; 2000 /// Loop Info analysis. 2001 LoopInfo *LI; 2002 /// Vectorization legality. 2003 LoopVectorizationLegality *Legal; 2004 /// Vector target information. 2005 const TargetTransformInfo &TTI; 2006 /// Target Library Info. 2007 const TargetLibraryInfo *TLI; 2008 /// Demanded bits analysis. 2009 DemandedBits *DB; 2010 /// Assumption cache. 2011 AssumptionCache *AC; 2012 /// Interface to emit optimization remarks. 2013 OptimizationRemarkEmitter *ORE; 2014 2015 const Function *TheFunction; 2016 /// Loop Vectorize Hint. 2017 const LoopVectorizeHints *Hints; 2018 /// Values to ignore in the cost model. 2019 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2020 /// Values to ignore in the cost model when VF > 1. 2021 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2022 }; 2023 2024 /// \brief This holds vectorization requirements that must be verified late in 2025 /// the process. The requirements are set by legalize and costmodel. Once 2026 /// vectorization has been determined to be possible and profitable the 2027 /// requirements can be verified by looking for metadata or compiler options. 2028 /// For example, some loops require FP commutativity which is only allowed if 2029 /// vectorization is explicitly specified or if the fast-math compiler option 2030 /// has been provided. 2031 /// Late evaluation of these requirements allows helpful diagnostics to be 2032 /// composed that tells the user what need to be done to vectorize the loop. For 2033 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2034 /// evaluation should be used only when diagnostics can generated that can be 2035 /// followed by a non-expert user. 2036 class LoopVectorizationRequirements { 2037 public: 2038 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2039 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2040 2041 void addUnsafeAlgebraInst(Instruction *I) { 2042 // First unsafe algebra instruction. 2043 if (!UnsafeAlgebraInst) 2044 UnsafeAlgebraInst = I; 2045 } 2046 2047 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2048 2049 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2050 const char *PassName = Hints.vectorizeAnalysisPassName(); 2051 bool Failed = false; 2052 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2053 ORE.emit( 2054 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2055 UnsafeAlgebraInst->getDebugLoc(), 2056 UnsafeAlgebraInst->getParent()) 2057 << "loop not vectorized: cannot prove it is safe to reorder " 2058 "floating-point operations"); 2059 Failed = true; 2060 } 2061 2062 // Test if runtime memcheck thresholds are exceeded. 2063 bool PragmaThresholdReached = 2064 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2065 bool ThresholdReached = 2066 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2067 if ((ThresholdReached && !Hints.allowReordering()) || 2068 PragmaThresholdReached) { 2069 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2070 L->getStartLoc(), 2071 L->getHeader()) 2072 << "loop not vectorized: cannot prove it is safe to reorder " 2073 "memory operations"); 2074 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2075 Failed = true; 2076 } 2077 2078 return Failed; 2079 } 2080 2081 private: 2082 unsigned NumRuntimePointerChecks; 2083 Instruction *UnsafeAlgebraInst; 2084 2085 /// Interface to emit optimization remarks. 2086 OptimizationRemarkEmitter &ORE; 2087 }; 2088 2089 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2090 if (L.empty()) { 2091 if (!hasCyclesInLoopBody(L)) 2092 V.push_back(&L); 2093 return; 2094 } 2095 for (Loop *InnerL : L) 2096 addAcyclicInnerLoop(*InnerL, V); 2097 } 2098 2099 /// The LoopVectorize Pass. 2100 struct LoopVectorize : public FunctionPass { 2101 /// Pass identification, replacement for typeid 2102 static char ID; 2103 2104 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2105 : FunctionPass(ID) { 2106 Impl.DisableUnrolling = NoUnrolling; 2107 Impl.AlwaysVectorize = AlwaysVectorize; 2108 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2109 } 2110 2111 LoopVectorizePass Impl; 2112 2113 bool runOnFunction(Function &F) override { 2114 if (skipFunction(F)) 2115 return false; 2116 2117 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2118 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2119 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2120 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2121 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2122 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2123 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2124 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2125 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2126 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2127 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2128 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2129 2130 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2131 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2132 2133 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2134 GetLAA, *ORE); 2135 } 2136 2137 void getAnalysisUsage(AnalysisUsage &AU) const override { 2138 AU.addRequired<AssumptionCacheTracker>(); 2139 AU.addRequiredID(LoopSimplifyID); 2140 AU.addRequiredID(LCSSAID); 2141 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2142 AU.addRequired<DominatorTreeWrapperPass>(); 2143 AU.addRequired<LoopInfoWrapperPass>(); 2144 AU.addRequired<ScalarEvolutionWrapperPass>(); 2145 AU.addRequired<TargetTransformInfoWrapperPass>(); 2146 AU.addRequired<AAResultsWrapperPass>(); 2147 AU.addRequired<LoopAccessLegacyAnalysis>(); 2148 AU.addRequired<DemandedBitsWrapperPass>(); 2149 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2150 AU.addPreserved<LoopInfoWrapperPass>(); 2151 AU.addPreserved<DominatorTreeWrapperPass>(); 2152 AU.addPreserved<BasicAAWrapperPass>(); 2153 AU.addPreserved<GlobalsAAWrapperPass>(); 2154 } 2155 }; 2156 2157 } // end anonymous namespace 2158 2159 //===----------------------------------------------------------------------===// 2160 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2161 // LoopVectorizationCostModel. 2162 //===----------------------------------------------------------------------===// 2163 2164 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2165 // We need to place the broadcast of invariant variables outside the loop. 2166 Instruction *Instr = dyn_cast<Instruction>(V); 2167 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2168 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2169 2170 // Place the code for broadcasting invariant variables in the new preheader. 2171 IRBuilder<>::InsertPointGuard Guard(Builder); 2172 if (Invariant) 2173 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2174 2175 // Broadcast the scalar into all locations in the vector. 2176 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2177 2178 return Shuf; 2179 } 2180 2181 void InnerLoopVectorizer::createVectorIntInductionPHI( 2182 const InductionDescriptor &II, Instruction *EntryVal) { 2183 Value *Start = II.getStartValue(); 2184 ConstantInt *Step = II.getConstIntStepValue(); 2185 assert(Step && "Can not widen an IV with a non-constant step"); 2186 2187 // Construct the initial value of the vector IV in the vector loop preheader 2188 auto CurrIP = Builder.saveIP(); 2189 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2190 if (isa<TruncInst>(EntryVal)) { 2191 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2192 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2193 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2194 } 2195 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2196 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2197 Builder.restoreIP(CurrIP); 2198 2199 Value *SplatVF = 2200 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2201 VF * Step->getSExtValue())); 2202 // We may need to add the step a number of times, depending on the unroll 2203 // factor. The last of those goes into the PHI. 2204 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2205 &*LoopVectorBody->getFirstInsertionPt()); 2206 Instruction *LastInduction = VecInd; 2207 VectorParts Entry(UF); 2208 for (unsigned Part = 0; Part < UF; ++Part) { 2209 Entry[Part] = LastInduction; 2210 LastInduction = cast<Instruction>( 2211 Builder.CreateAdd(LastInduction, SplatVF, "step.add")); 2212 } 2213 VectorLoopValueMap.initVector(EntryVal, Entry); 2214 if (isa<TruncInst>(EntryVal)) 2215 addMetadata(Entry, EntryVal); 2216 2217 // Move the last step to the end of the latch block. This ensures consistent 2218 // placement of all induction updates. 2219 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2220 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2221 auto *ICmp = cast<Instruction>(Br->getCondition()); 2222 LastInduction->moveBefore(ICmp); 2223 LastInduction->setName("vec.ind.next"); 2224 2225 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2226 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2227 } 2228 2229 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2230 return Legal->isScalarAfterVectorization(I) || 2231 Cost->isProfitableToScalarize(I, VF); 2232 } 2233 2234 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2235 if (shouldScalarizeInstruction(IV)) 2236 return true; 2237 auto isScalarInst = [&](User *U) -> bool { 2238 auto *I = cast<Instruction>(U); 2239 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2240 }; 2241 return any_of(IV->users(), isScalarInst); 2242 } 2243 2244 void InnerLoopVectorizer::widenIntInduction(PHINode *IV, TruncInst *Trunc) { 2245 2246 auto II = Legal->getInductionVars()->find(IV); 2247 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2248 2249 auto ID = II->second; 2250 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2251 2252 // The scalar value to broadcast. This will be derived from the canonical 2253 // induction variable. 2254 Value *ScalarIV = nullptr; 2255 2256 // The step of the induction. 2257 Value *Step = nullptr; 2258 2259 // The value from the original loop to which we are mapping the new induction 2260 // variable. 2261 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2262 2263 // True if we have vectorized the induction variable. 2264 auto VectorizedIV = false; 2265 2266 // Determine if we want a scalar version of the induction variable. This is 2267 // true if the induction variable itself is not widened, or if it has at 2268 // least one user in the loop that is not widened. 2269 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2270 2271 // If the induction variable has a constant integer step value, go ahead and 2272 // get it now. 2273 if (ID.getConstIntStepValue()) 2274 Step = ID.getConstIntStepValue(); 2275 2276 // Try to create a new independent vector induction variable. If we can't 2277 // create the phi node, we will splat the scalar induction variable in each 2278 // loop iteration. 2279 if (VF > 1 && IV->getType() == Induction->getType() && Step && 2280 !shouldScalarizeInstruction(EntryVal)) { 2281 createVectorIntInductionPHI(ID, EntryVal); 2282 VectorizedIV = true; 2283 } 2284 2285 // If we haven't yet vectorized the induction variable, or if we will create 2286 // a scalar one, we need to define the scalar induction variable and step 2287 // values. If we were given a truncation type, truncate the canonical 2288 // induction variable and constant step. Otherwise, derive these values from 2289 // the induction descriptor. 2290 if (!VectorizedIV || NeedsScalarIV) { 2291 if (Trunc) { 2292 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2293 assert(Step && "Truncation requires constant integer step"); 2294 auto StepInt = cast<ConstantInt>(Step)->getSExtValue(); 2295 ScalarIV = Builder.CreateCast(Instruction::Trunc, Induction, TruncType); 2296 Step = ConstantInt::getSigned(TruncType, StepInt); 2297 } else { 2298 ScalarIV = Induction; 2299 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2300 if (IV != OldInduction) { 2301 ScalarIV = Builder.CreateSExtOrTrunc(ScalarIV, IV->getType()); 2302 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2303 ScalarIV->setName("offset.idx"); 2304 } 2305 if (!Step) { 2306 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2307 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2308 &*Builder.GetInsertPoint()); 2309 } 2310 } 2311 } 2312 2313 // If we haven't yet vectorized the induction variable, splat the scalar 2314 // induction variable, and build the necessary step vectors. 2315 if (!VectorizedIV) { 2316 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2317 VectorParts Entry(UF); 2318 for (unsigned Part = 0; Part < UF; ++Part) 2319 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 2320 VectorLoopValueMap.initVector(EntryVal, Entry); 2321 if (Trunc) 2322 addMetadata(Entry, Trunc); 2323 } 2324 2325 // If an induction variable is only used for counting loop iterations or 2326 // calculating addresses, it doesn't need to be widened. Create scalar steps 2327 // that can be used by instructions we will later scalarize. Note that the 2328 // addition of the scalar steps will not increase the number of instructions 2329 // in the loop in the common case prior to InstCombine. We will be trading 2330 // one vector extract for each scalar step. 2331 if (NeedsScalarIV) 2332 buildScalarSteps(ScalarIV, Step, EntryVal); 2333 } 2334 2335 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2336 Instruction::BinaryOps BinOp) { 2337 // Create and check the types. 2338 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2339 int VLen = Val->getType()->getVectorNumElements(); 2340 2341 Type *STy = Val->getType()->getScalarType(); 2342 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2343 "Induction Step must be an integer or FP"); 2344 assert(Step->getType() == STy && "Step has wrong type"); 2345 2346 SmallVector<Constant *, 8> Indices; 2347 2348 if (STy->isIntegerTy()) { 2349 // Create a vector of consecutive numbers from zero to VF. 2350 for (int i = 0; i < VLen; ++i) 2351 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2352 2353 // Add the consecutive indices to the vector value. 2354 Constant *Cv = ConstantVector::get(Indices); 2355 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2356 Step = Builder.CreateVectorSplat(VLen, Step); 2357 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2358 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2359 // which can be found from the original scalar operations. 2360 Step = Builder.CreateMul(Cv, Step); 2361 return Builder.CreateAdd(Val, Step, "induction"); 2362 } 2363 2364 // Floating point induction. 2365 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2366 "Binary Opcode should be specified for FP induction"); 2367 // Create a vector of consecutive numbers from zero to VF. 2368 for (int i = 0; i < VLen; ++i) 2369 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2370 2371 // Add the consecutive indices to the vector value. 2372 Constant *Cv = ConstantVector::get(Indices); 2373 2374 Step = Builder.CreateVectorSplat(VLen, Step); 2375 2376 // Floating point operations had to be 'fast' to enable the induction. 2377 FastMathFlags Flags; 2378 Flags.setUnsafeAlgebra(); 2379 2380 Value *MulOp = Builder.CreateFMul(Cv, Step); 2381 if (isa<Instruction>(MulOp)) 2382 // Have to check, MulOp may be a constant 2383 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2384 2385 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2386 if (isa<Instruction>(BOp)) 2387 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2388 return BOp; 2389 } 2390 2391 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2392 Value *EntryVal) { 2393 2394 // We shouldn't have to build scalar steps if we aren't vectorizing. 2395 assert(VF > 1 && "VF should be greater than one"); 2396 2397 // Get the value type and ensure it and the step have the same integer type. 2398 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2399 assert(ScalarIVTy->isIntegerTy() && ScalarIVTy == Step->getType() && 2400 "Val and Step should have the same integer type"); 2401 2402 // Determine the number of scalars we need to generate for each unroll 2403 // iteration. If EntryVal is uniform, we only need to generate the first 2404 // lane. Otherwise, we generate all VF values. 2405 unsigned Lanes = 2406 Legal->isUniformAfterVectorization(cast<Instruction>(EntryVal)) ? 1 : VF; 2407 2408 // Compute the scalar steps and save the results in VectorLoopValueMap. 2409 ScalarParts Entry(UF); 2410 for (unsigned Part = 0; Part < UF; ++Part) { 2411 Entry[Part].resize(VF); 2412 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2413 auto *StartIdx = ConstantInt::get(ScalarIVTy, VF * Part + Lane); 2414 auto *Mul = Builder.CreateMul(StartIdx, Step); 2415 auto *Add = Builder.CreateAdd(ScalarIV, Mul); 2416 Entry[Part][Lane] = Add; 2417 } 2418 } 2419 VectorLoopValueMap.initScalar(EntryVal, Entry); 2420 } 2421 2422 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2423 2424 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2425 ValueToValueMap(); 2426 2427 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2428 if (Stride == 1 || Stride == -1) 2429 return Stride; 2430 return 0; 2431 } 2432 2433 bool LoopVectorizationLegality::isUniform(Value *V) { 2434 return LAI->isUniform(V); 2435 } 2436 2437 const InnerLoopVectorizer::VectorParts & 2438 InnerLoopVectorizer::getVectorValue(Value *V) { 2439 assert(V != Induction && "The new induction variable should not be used."); 2440 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2441 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2442 2443 // If we have a stride that is replaced by one, do it here. 2444 if (Legal->hasStride(V)) 2445 V = ConstantInt::get(V->getType(), 1); 2446 2447 // If we have this scalar in the map, return it. 2448 if (VectorLoopValueMap.hasVector(V)) 2449 return VectorLoopValueMap.VectorMapStorage[V]; 2450 2451 // If the value has not been vectorized, check if it has been scalarized 2452 // instead. If it has been scalarized, and we actually need the value in 2453 // vector form, we will construct the vector values on demand. 2454 if (VectorLoopValueMap.hasScalar(V)) { 2455 2456 // Initialize a new vector map entry. 2457 VectorParts Entry(UF); 2458 2459 // If we've scalarized a value, that value should be an instruction. 2460 auto *I = cast<Instruction>(V); 2461 2462 // If we aren't vectorizing, we can just copy the scalar map values over to 2463 // the vector map. 2464 if (VF == 1) { 2465 for (unsigned Part = 0; Part < UF; ++Part) 2466 Entry[Part] = getScalarValue(V, Part, 0); 2467 return VectorLoopValueMap.initVector(V, Entry); 2468 } 2469 2470 // Get the last scalar instruction we generated for V. If the value is 2471 // known to be uniform after vectorization, this corresponds to lane zero 2472 // of the last unroll iteration. Otherwise, the last instruction is the one 2473 // we created for the last vector lane of the last unroll iteration. 2474 unsigned LastLane = Legal->isUniformAfterVectorization(I) ? 0 : VF - 1; 2475 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2476 2477 // Set the insert point after the last scalarized instruction. This ensures 2478 // the insertelement sequence will directly follow the scalar definitions. 2479 auto OldIP = Builder.saveIP(); 2480 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2481 Builder.SetInsertPoint(&*NewIP); 2482 2483 // However, if we are vectorizing, we need to construct the vector values. 2484 // If the value is known to be uniform after vectorization, we can just 2485 // broadcast the scalar value corresponding to lane zero for each unroll 2486 // iteration. Otherwise, we construct the vector values using insertelement 2487 // instructions. Since the resulting vectors are stored in 2488 // VectorLoopValueMap, we will only generate the insertelements once. 2489 for (unsigned Part = 0; Part < UF; ++Part) { 2490 Value *VectorValue = nullptr; 2491 if (Legal->isUniformAfterVectorization(I)) { 2492 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2493 } else { 2494 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2495 for (unsigned Lane = 0; Lane < VF; ++Lane) 2496 VectorValue = Builder.CreateInsertElement( 2497 VectorValue, getScalarValue(V, Part, Lane), 2498 Builder.getInt32(Lane)); 2499 } 2500 Entry[Part] = VectorValue; 2501 } 2502 Builder.restoreIP(OldIP); 2503 return VectorLoopValueMap.initVector(V, Entry); 2504 } 2505 2506 // If this scalar is unknown, assume that it is a constant or that it is 2507 // loop invariant. Broadcast V and save the value for future uses. 2508 Value *B = getBroadcastInstrs(V); 2509 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2510 } 2511 2512 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2513 unsigned Lane) { 2514 2515 // If the value is not an instruction contained in the loop, it should 2516 // already be scalar. 2517 if (OrigLoop->isLoopInvariant(V)) 2518 return V; 2519 2520 assert(Lane > 0 ? !Legal->isUniformAfterVectorization(cast<Instruction>(V)) 2521 : true && "Uniform values only have lane zero"); 2522 2523 // If the value from the original loop has not been vectorized, it is 2524 // represented by UF x VF scalar values in the new loop. Return the requested 2525 // scalar value. 2526 if (VectorLoopValueMap.hasScalar(V)) 2527 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2528 2529 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2530 // for the given unroll part. If this entry is not a vector type (i.e., the 2531 // vectorization factor is one), there is no need to generate an 2532 // extractelement instruction. 2533 auto *U = getVectorValue(V)[Part]; 2534 if (!U->getType()->isVectorTy()) { 2535 assert(VF == 1 && "Value not scalarized has non-vector type"); 2536 return U; 2537 } 2538 2539 // Otherwise, the value from the original loop has been vectorized and is 2540 // represented by UF vector values. Extract and return the requested scalar 2541 // value from the appropriate vector lane. 2542 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2543 } 2544 2545 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2546 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2547 SmallVector<Constant *, 8> ShuffleMask; 2548 for (unsigned i = 0; i < VF; ++i) 2549 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2550 2551 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2552 ConstantVector::get(ShuffleMask), 2553 "reverse"); 2554 } 2555 2556 // Get a mask to interleave \p NumVec vectors into a wide vector. 2557 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2558 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2559 // <0, 4, 1, 5, 2, 6, 3, 7> 2560 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2561 unsigned NumVec) { 2562 SmallVector<Constant *, 16> Mask; 2563 for (unsigned i = 0; i < VF; i++) 2564 for (unsigned j = 0; j < NumVec; j++) 2565 Mask.push_back(Builder.getInt32(j * VF + i)); 2566 2567 return ConstantVector::get(Mask); 2568 } 2569 2570 // Get the strided mask starting from index \p Start. 2571 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2572 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2573 unsigned Stride, unsigned VF) { 2574 SmallVector<Constant *, 16> Mask; 2575 for (unsigned i = 0; i < VF; i++) 2576 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2577 2578 return ConstantVector::get(Mask); 2579 } 2580 2581 // Get a mask of two parts: The first part consists of sequential integers 2582 // starting from 0, The second part consists of UNDEFs. 2583 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2584 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2585 unsigned NumUndef) { 2586 SmallVector<Constant *, 16> Mask; 2587 for (unsigned i = 0; i < NumInt; i++) 2588 Mask.push_back(Builder.getInt32(i)); 2589 2590 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2591 for (unsigned i = 0; i < NumUndef; i++) 2592 Mask.push_back(Undef); 2593 2594 return ConstantVector::get(Mask); 2595 } 2596 2597 // Concatenate two vectors with the same element type. The 2nd vector should 2598 // not have more elements than the 1st vector. If the 2nd vector has less 2599 // elements, extend it with UNDEFs. 2600 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2601 Value *V2) { 2602 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2603 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2604 assert(VecTy1 && VecTy2 && 2605 VecTy1->getScalarType() == VecTy2->getScalarType() && 2606 "Expect two vectors with the same element type"); 2607 2608 unsigned NumElts1 = VecTy1->getNumElements(); 2609 unsigned NumElts2 = VecTy2->getNumElements(); 2610 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2611 2612 if (NumElts1 > NumElts2) { 2613 // Extend with UNDEFs. 2614 Constant *ExtMask = 2615 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2616 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2617 } 2618 2619 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2620 return Builder.CreateShuffleVector(V1, V2, Mask); 2621 } 2622 2623 // Concatenate vectors in the given list. All vectors have the same type. 2624 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2625 ArrayRef<Value *> InputList) { 2626 unsigned NumVec = InputList.size(); 2627 assert(NumVec > 1 && "Should be at least two vectors"); 2628 2629 SmallVector<Value *, 8> ResList; 2630 ResList.append(InputList.begin(), InputList.end()); 2631 do { 2632 SmallVector<Value *, 8> TmpList; 2633 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2634 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2635 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2636 "Only the last vector may have a different type"); 2637 2638 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2639 } 2640 2641 // Push the last vector if the total number of vectors is odd. 2642 if (NumVec % 2 != 0) 2643 TmpList.push_back(ResList[NumVec - 1]); 2644 2645 ResList = TmpList; 2646 NumVec = ResList.size(); 2647 } while (NumVec > 1); 2648 2649 return ResList[0]; 2650 } 2651 2652 // Try to vectorize the interleave group that \p Instr belongs to. 2653 // 2654 // E.g. Translate following interleaved load group (factor = 3): 2655 // for (i = 0; i < N; i+=3) { 2656 // R = Pic[i]; // Member of index 0 2657 // G = Pic[i+1]; // Member of index 1 2658 // B = Pic[i+2]; // Member of index 2 2659 // ... // do something to R, G, B 2660 // } 2661 // To: 2662 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2663 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2664 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2665 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2666 // 2667 // Or translate following interleaved store group (factor = 3): 2668 // for (i = 0; i < N; i+=3) { 2669 // ... do something to R, G, B 2670 // Pic[i] = R; // Member of index 0 2671 // Pic[i+1] = G; // Member of index 1 2672 // Pic[i+2] = B; // Member of index 2 2673 // } 2674 // To: 2675 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2676 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2677 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2678 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2679 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2680 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2681 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2682 assert(Group && "Fail to get an interleaved access group."); 2683 2684 // Skip if current instruction is not the insert position. 2685 if (Instr != Group->getInsertPos()) 2686 return; 2687 2688 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2689 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2690 Value *Ptr = getPointerOperand(Instr); 2691 2692 // Prepare for the vector type of the interleaved load/store. 2693 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2694 unsigned InterleaveFactor = Group->getFactor(); 2695 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2696 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2697 2698 // Prepare for the new pointers. 2699 setDebugLocFromInst(Builder, Ptr); 2700 SmallVector<Value *, 2> NewPtrs; 2701 unsigned Index = Group->getIndex(Instr); 2702 2703 // If the group is reverse, adjust the index to refer to the last vector lane 2704 // instead of the first. We adjust the index from the first vector lane, 2705 // rather than directly getting the pointer for lane VF - 1, because the 2706 // pointer operand of the interleaved access is supposed to be uniform. For 2707 // uniform instructions, we're only required to generate a value for the 2708 // first vector lane in each unroll iteration. 2709 if (Group->isReverse()) 2710 Index += (VF - 1) * Group->getFactor(); 2711 2712 for (unsigned Part = 0; Part < UF; Part++) { 2713 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2714 2715 // Notice current instruction could be any index. Need to adjust the address 2716 // to the member of index 0. 2717 // 2718 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2719 // b = A[i]; // Member of index 0 2720 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2721 // 2722 // E.g. A[i+1] = a; // Member of index 1 2723 // A[i] = b; // Member of index 0 2724 // A[i+2] = c; // Member of index 2 (Current instruction) 2725 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2726 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2727 2728 // Cast to the vector pointer type. 2729 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2730 } 2731 2732 setDebugLocFromInst(Builder, Instr); 2733 Value *UndefVec = UndefValue::get(VecTy); 2734 2735 // Vectorize the interleaved load group. 2736 if (LI) { 2737 2738 // For each unroll part, create a wide load for the group. 2739 SmallVector<Value *, 2> NewLoads; 2740 for (unsigned Part = 0; Part < UF; Part++) { 2741 auto *NewLoad = Builder.CreateAlignedLoad( 2742 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2743 addMetadata(NewLoad, Instr); 2744 NewLoads.push_back(NewLoad); 2745 } 2746 2747 // For each member in the group, shuffle out the appropriate data from the 2748 // wide loads. 2749 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2750 Instruction *Member = Group->getMember(I); 2751 2752 // Skip the gaps in the group. 2753 if (!Member) 2754 continue; 2755 2756 VectorParts Entry(UF); 2757 Constant *StrideMask = getStridedMask(Builder, I, InterleaveFactor, VF); 2758 for (unsigned Part = 0; Part < UF; Part++) { 2759 Value *StridedVec = Builder.CreateShuffleVector( 2760 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2761 2762 // If this member has different type, cast the result type. 2763 if (Member->getType() != ScalarTy) { 2764 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2765 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2766 } 2767 2768 Entry[Part] = 2769 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2770 } 2771 VectorLoopValueMap.initVector(Member, Entry); 2772 } 2773 return; 2774 } 2775 2776 // The sub vector type for current instruction. 2777 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2778 2779 // Vectorize the interleaved store group. 2780 for (unsigned Part = 0; Part < UF; Part++) { 2781 // Collect the stored vector from each member. 2782 SmallVector<Value *, 4> StoredVecs; 2783 for (unsigned i = 0; i < InterleaveFactor; i++) { 2784 // Interleaved store group doesn't allow a gap, so each index has a member 2785 Instruction *Member = Group->getMember(i); 2786 assert(Member && "Fail to get a member from an interleaved store group"); 2787 2788 Value *StoredVec = 2789 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2790 if (Group->isReverse()) 2791 StoredVec = reverseVector(StoredVec); 2792 2793 // If this member has different type, cast it to an unified type. 2794 if (StoredVec->getType() != SubVT) 2795 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2796 2797 StoredVecs.push_back(StoredVec); 2798 } 2799 2800 // Concatenate all vectors into a wide vector. 2801 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2802 2803 // Interleave the elements in the wide vector. 2804 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2805 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2806 "interleaved.vec"); 2807 2808 Instruction *NewStoreInstr = 2809 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2810 addMetadata(NewStoreInstr, Instr); 2811 } 2812 } 2813 2814 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2815 // Attempt to issue a wide load. 2816 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2817 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2818 2819 assert((LI || SI) && "Invalid Load/Store instruction"); 2820 2821 // Try to vectorize the interleave group if this access is interleaved. 2822 if (Legal->isAccessInterleaved(Instr)) 2823 return vectorizeInterleaveGroup(Instr); 2824 2825 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2826 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2827 Value *Ptr = getPointerOperand(Instr); 2828 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2829 // An alignment of 0 means target abi alignment. We need to use the scalar's 2830 // target abi alignment in such a case. 2831 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2832 if (!Alignment) 2833 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2834 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2835 2836 // Scalarize the memory instruction if necessary. 2837 if (Legal->memoryInstructionMustBeScalarized(Instr, VF)) 2838 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2839 2840 // Determine if the pointer operand of the access is either consecutive or 2841 // reverse consecutive. 2842 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2843 bool Reverse = ConsecutiveStride < 0; 2844 2845 // Determine if either a gather or scatter operation is legal. 2846 bool CreateGatherScatter = 2847 !ConsecutiveStride && Legal->isLegalGatherOrScatter(Instr); 2848 2849 VectorParts VectorGep; 2850 2851 // Handle consecutive loads/stores. 2852 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2853 if (ConsecutiveStride) { 2854 if (Gep) { 2855 unsigned NumOperands = Gep->getNumOperands(); 2856 #ifndef NDEBUG 2857 // The original GEP that identified as a consecutive memory access 2858 // should have only one loop-variant operand. 2859 unsigned NumOfLoopVariantOps = 0; 2860 for (unsigned i = 0; i < NumOperands; ++i) 2861 if (!PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 2862 OrigLoop)) 2863 NumOfLoopVariantOps++; 2864 assert(NumOfLoopVariantOps == 1 && 2865 "Consecutive GEP should have only one loop-variant operand"); 2866 #endif 2867 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2868 Gep2->setName("gep.indvar"); 2869 2870 // A new GEP is created for a 0-lane value of the first unroll iteration. 2871 // The GEPs for the rest of the unroll iterations are computed below as an 2872 // offset from this GEP. 2873 for (unsigned i = 0; i < NumOperands; ++i) 2874 // We can apply getScalarValue() for all GEP indices. It returns an 2875 // original value for loop-invariant operand and 0-lane for consecutive 2876 // operand. 2877 Gep2->setOperand(i, getScalarValue(Gep->getOperand(i), 2878 0, /* First unroll iteration */ 2879 0 /* 0-lane of the vector */ )); 2880 setDebugLocFromInst(Builder, Gep); 2881 Ptr = Builder.Insert(Gep2); 2882 2883 } else { // No GEP 2884 setDebugLocFromInst(Builder, Ptr); 2885 Ptr = getScalarValue(Ptr, 0, 0); 2886 } 2887 } else { 2888 // At this point we should vector version of GEP for Gather or Scatter 2889 assert(CreateGatherScatter && "The instruction should be scalarized"); 2890 if (Gep) { 2891 // Vectorizing GEP, across UF parts. We want to get a vector value for base 2892 // and each index that's defined inside the loop, even if it is 2893 // loop-invariant but wasn't hoisted out. Otherwise we want to keep them 2894 // scalar. 2895 SmallVector<VectorParts, 4> OpsV; 2896 for (Value *Op : Gep->operands()) { 2897 Instruction *SrcInst = dyn_cast<Instruction>(Op); 2898 if (SrcInst && OrigLoop->contains(SrcInst)) 2899 OpsV.push_back(getVectorValue(Op)); 2900 else 2901 OpsV.push_back(VectorParts(UF, Op)); 2902 } 2903 for (unsigned Part = 0; Part < UF; ++Part) { 2904 SmallVector<Value *, 4> Ops; 2905 Value *GEPBasePtr = OpsV[0][Part]; 2906 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2907 Ops.push_back(OpsV[i][Part]); 2908 Value *NewGep = Builder.CreateGEP(GEPBasePtr, Ops, "VectorGep"); 2909 cast<GetElementPtrInst>(NewGep)->setIsInBounds(Gep->isInBounds()); 2910 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2911 2912 NewGep = 2913 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2914 VectorGep.push_back(NewGep); 2915 } 2916 } else 2917 VectorGep = getVectorValue(Ptr); 2918 } 2919 2920 VectorParts Mask = createBlockInMask(Instr->getParent()); 2921 // Handle Stores: 2922 if (SI) { 2923 assert(!Legal->isUniform(SI->getPointerOperand()) && 2924 "We do not allow storing to uniform addresses"); 2925 setDebugLocFromInst(Builder, SI); 2926 // We don't want to update the value in the map as it might be used in 2927 // another expression. So don't use a reference type for "StoredVal". 2928 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2929 2930 for (unsigned Part = 0; Part < UF; ++Part) { 2931 Instruction *NewSI = nullptr; 2932 if (CreateGatherScatter) { 2933 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2934 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2935 Alignment, MaskPart); 2936 } else { 2937 // Calculate the pointer for the specific unroll-part. 2938 Value *PartPtr = 2939 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2940 2941 if (Reverse) { 2942 // If we store to reverse consecutive memory locations, then we need 2943 // to reverse the order of elements in the stored value. 2944 StoredVal[Part] = reverseVector(StoredVal[Part]); 2945 // If the address is consecutive but reversed, then the 2946 // wide store needs to start at the last vector element. 2947 PartPtr = 2948 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2949 PartPtr = 2950 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2951 Mask[Part] = reverseVector(Mask[Part]); 2952 } 2953 2954 Value *VecPtr = 2955 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2956 2957 if (Legal->isMaskRequired(SI)) 2958 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2959 Mask[Part]); 2960 else 2961 NewSI = 2962 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2963 } 2964 addMetadata(NewSI, SI); 2965 } 2966 return; 2967 } 2968 2969 // Handle loads. 2970 assert(LI && "Must have a load instruction"); 2971 setDebugLocFromInst(Builder, LI); 2972 VectorParts Entry(UF); 2973 for (unsigned Part = 0; Part < UF; ++Part) { 2974 Instruction *NewLI; 2975 if (CreateGatherScatter) { 2976 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2977 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2978 0, "wide.masked.gather"); 2979 Entry[Part] = NewLI; 2980 } else { 2981 // Calculate the pointer for the specific unroll-part. 2982 Value *PartPtr = 2983 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2984 2985 if (Reverse) { 2986 // If the address is consecutive but reversed, then the 2987 // wide load needs to start at the last vector element. 2988 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2989 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2990 Mask[Part] = reverseVector(Mask[Part]); 2991 } 2992 2993 Value *VecPtr = 2994 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2995 if (Legal->isMaskRequired(LI)) 2996 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2997 UndefValue::get(DataTy), 2998 "wide.masked.load"); 2999 else 3000 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3001 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3002 } 3003 addMetadata(NewLI, LI); 3004 } 3005 VectorLoopValueMap.initVector(Instr, Entry); 3006 } 3007 3008 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3009 bool IfPredicateInstr) { 3010 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3011 DEBUG(dbgs() << "LV: Scalarizing" 3012 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3013 << '\n'); 3014 // Holds vector parameters or scalars, in case of uniform vals. 3015 SmallVector<VectorParts, 4> Params; 3016 3017 setDebugLocFromInst(Builder, Instr); 3018 3019 // Does this instruction return a value ? 3020 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3021 3022 // Initialize a new scalar map entry. 3023 ScalarParts Entry(UF); 3024 3025 VectorParts Cond; 3026 if (IfPredicateInstr) 3027 Cond = createBlockInMask(Instr->getParent()); 3028 3029 // Determine the number of scalars we need to generate for each unroll 3030 // iteration. If the instruction is uniform, we only need to generate the 3031 // first lane. Otherwise, we generate all VF values. 3032 unsigned Lanes = Legal->isUniformAfterVectorization(Instr) ? 1 : VF; 3033 3034 // For each vector unroll 'part': 3035 for (unsigned Part = 0; Part < UF; ++Part) { 3036 Entry[Part].resize(VF); 3037 // For each scalar that we create: 3038 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3039 3040 // Start if-block. 3041 Value *Cmp = nullptr; 3042 if (IfPredicateInstr) { 3043 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Lane)); 3044 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3045 ConstantInt::get(Cmp->getType(), 1)); 3046 } 3047 3048 Instruction *Cloned = Instr->clone(); 3049 if (!IsVoidRetTy) 3050 Cloned->setName(Instr->getName() + ".cloned"); 3051 3052 // Replace the operands of the cloned instructions with their scalar 3053 // equivalents in the new loop. 3054 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3055 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3056 Cloned->setOperand(op, NewOp); 3057 } 3058 addNewMetadata(Cloned, Instr); 3059 3060 // Place the cloned scalar in the new loop. 3061 Builder.Insert(Cloned); 3062 3063 // Add the cloned scalar to the scalar map entry. 3064 Entry[Part][Lane] = Cloned; 3065 3066 // If we just cloned a new assumption, add it the assumption cache. 3067 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3068 if (II->getIntrinsicID() == Intrinsic::assume) 3069 AC->registerAssumption(II); 3070 3071 // End if-block. 3072 if (IfPredicateInstr) 3073 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3074 } 3075 } 3076 VectorLoopValueMap.initScalar(Instr, Entry); 3077 } 3078 3079 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3080 Value *End, Value *Step, 3081 Instruction *DL) { 3082 BasicBlock *Header = L->getHeader(); 3083 BasicBlock *Latch = L->getLoopLatch(); 3084 // As we're just creating this loop, it's possible no latch exists 3085 // yet. If so, use the header as this will be a single block loop. 3086 if (!Latch) 3087 Latch = Header; 3088 3089 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3090 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3091 setDebugLocFromInst(Builder, OldInst); 3092 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3093 3094 Builder.SetInsertPoint(Latch->getTerminator()); 3095 setDebugLocFromInst(Builder, OldInst); 3096 3097 // Create i+1 and fill the PHINode. 3098 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3099 Induction->addIncoming(Start, L->getLoopPreheader()); 3100 Induction->addIncoming(Next, Latch); 3101 // Create the compare. 3102 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3103 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3104 3105 // Now we have two terminators. Remove the old one from the block. 3106 Latch->getTerminator()->eraseFromParent(); 3107 3108 return Induction; 3109 } 3110 3111 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3112 if (TripCount) 3113 return TripCount; 3114 3115 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3116 // Find the loop boundaries. 3117 ScalarEvolution *SE = PSE.getSE(); 3118 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3119 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3120 "Invalid loop count"); 3121 3122 Type *IdxTy = Legal->getWidestInductionType(); 3123 3124 // The exit count might have the type of i64 while the phi is i32. This can 3125 // happen if we have an induction variable that is sign extended before the 3126 // compare. The only way that we get a backedge taken count is that the 3127 // induction variable was signed and as such will not overflow. In such a case 3128 // truncation is legal. 3129 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3130 IdxTy->getPrimitiveSizeInBits()) 3131 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3132 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3133 3134 // Get the total trip count from the count by adding 1. 3135 const SCEV *ExitCount = SE->getAddExpr( 3136 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3137 3138 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3139 3140 // Expand the trip count and place the new instructions in the preheader. 3141 // Notice that the pre-header does not change, only the loop body. 3142 SCEVExpander Exp(*SE, DL, "induction"); 3143 3144 // Count holds the overall loop count (N). 3145 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3146 L->getLoopPreheader()->getTerminator()); 3147 3148 if (TripCount->getType()->isPointerTy()) 3149 TripCount = 3150 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3151 L->getLoopPreheader()->getTerminator()); 3152 3153 return TripCount; 3154 } 3155 3156 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3157 if (VectorTripCount) 3158 return VectorTripCount; 3159 3160 Value *TC = getOrCreateTripCount(L); 3161 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3162 3163 // Now we need to generate the expression for the part of the loop that the 3164 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3165 // iterations are not required for correctness, or N - Step, otherwise. Step 3166 // is equal to the vectorization factor (number of SIMD elements) times the 3167 // unroll factor (number of SIMD instructions). 3168 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3169 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3170 3171 // If there is a non-reversed interleaved group that may speculatively access 3172 // memory out-of-bounds, we need to ensure that there will be at least one 3173 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3174 // the trip count, we set the remainder to be equal to the step. If the step 3175 // does not evenly divide the trip count, no adjustment is necessary since 3176 // there will already be scalar iterations. Note that the minimum iterations 3177 // check ensures that N >= Step. 3178 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3179 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3180 R = Builder.CreateSelect(IsZero, Step, R); 3181 } 3182 3183 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3184 3185 return VectorTripCount; 3186 } 3187 3188 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3189 BasicBlock *Bypass) { 3190 Value *Count = getOrCreateTripCount(L); 3191 BasicBlock *BB = L->getLoopPreheader(); 3192 IRBuilder<> Builder(BB->getTerminator()); 3193 3194 // Generate code to check that the loop's trip count that we computed by 3195 // adding one to the backedge-taken count will not overflow. 3196 Value *CheckMinIters = Builder.CreateICmpULT( 3197 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3198 3199 BasicBlock *NewBB = 3200 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3201 // Update dominator tree immediately if the generated block is a 3202 // LoopBypassBlock because SCEV expansions to generate loop bypass 3203 // checks may query it before the current function is finished. 3204 DT->addNewBlock(NewBB, BB); 3205 if (L->getParentLoop()) 3206 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3207 ReplaceInstWithInst(BB->getTerminator(), 3208 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3209 LoopBypassBlocks.push_back(BB); 3210 } 3211 3212 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3213 BasicBlock *Bypass) { 3214 Value *TC = getOrCreateVectorTripCount(L); 3215 BasicBlock *BB = L->getLoopPreheader(); 3216 IRBuilder<> Builder(BB->getTerminator()); 3217 3218 // Now, compare the new count to zero. If it is zero skip the vector loop and 3219 // jump to the scalar loop. 3220 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3221 "cmp.zero"); 3222 3223 // Generate code to check that the loop's trip count that we computed by 3224 // adding one to the backedge-taken count will not overflow. 3225 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3226 // Update dominator tree immediately if the generated block is a 3227 // LoopBypassBlock because SCEV expansions to generate loop bypass 3228 // checks may query it before the current function is finished. 3229 DT->addNewBlock(NewBB, BB); 3230 if (L->getParentLoop()) 3231 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3232 ReplaceInstWithInst(BB->getTerminator(), 3233 BranchInst::Create(Bypass, NewBB, Cmp)); 3234 LoopBypassBlocks.push_back(BB); 3235 } 3236 3237 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3238 BasicBlock *BB = L->getLoopPreheader(); 3239 3240 // Generate the code to check that the SCEV assumptions that we made. 3241 // We want the new basic block to start at the first instruction in a 3242 // sequence of instructions that form a check. 3243 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3244 "scev.check"); 3245 Value *SCEVCheck = 3246 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3247 3248 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3249 if (C->isZero()) 3250 return; 3251 3252 // Create a new block containing the stride check. 3253 BB->setName("vector.scevcheck"); 3254 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3255 // Update dominator tree immediately if the generated block is a 3256 // LoopBypassBlock because SCEV expansions to generate loop bypass 3257 // checks may query it before the current function is finished. 3258 DT->addNewBlock(NewBB, BB); 3259 if (L->getParentLoop()) 3260 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3261 ReplaceInstWithInst(BB->getTerminator(), 3262 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3263 LoopBypassBlocks.push_back(BB); 3264 AddedSafetyChecks = true; 3265 } 3266 3267 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3268 BasicBlock *BB = L->getLoopPreheader(); 3269 3270 // Generate the code that checks in runtime if arrays overlap. We put the 3271 // checks into a separate block to make the more common case of few elements 3272 // faster. 3273 Instruction *FirstCheckInst; 3274 Instruction *MemRuntimeCheck; 3275 std::tie(FirstCheckInst, MemRuntimeCheck) = 3276 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3277 if (!MemRuntimeCheck) 3278 return; 3279 3280 // Create a new block containing the memory check. 3281 BB->setName("vector.memcheck"); 3282 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3283 // Update dominator tree immediately if the generated block is a 3284 // LoopBypassBlock because SCEV expansions to generate loop bypass 3285 // checks may query it before the current function is finished. 3286 DT->addNewBlock(NewBB, BB); 3287 if (L->getParentLoop()) 3288 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3289 ReplaceInstWithInst(BB->getTerminator(), 3290 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3291 LoopBypassBlocks.push_back(BB); 3292 AddedSafetyChecks = true; 3293 3294 // We currently don't use LoopVersioning for the actual loop cloning but we 3295 // still use it to add the noalias metadata. 3296 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3297 PSE.getSE()); 3298 LVer->prepareNoAliasMetadata(); 3299 } 3300 3301 void InnerLoopVectorizer::createEmptyLoop() { 3302 /* 3303 In this function we generate a new loop. The new loop will contain 3304 the vectorized instructions while the old loop will continue to run the 3305 scalar remainder. 3306 3307 [ ] <-- loop iteration number check. 3308 / | 3309 / v 3310 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3311 | / | 3312 | / v 3313 || [ ] <-- vector pre header. 3314 |/ | 3315 | v 3316 | [ ] \ 3317 | [ ]_| <-- vector loop. 3318 | | 3319 | v 3320 | -[ ] <--- middle-block. 3321 | / | 3322 | / v 3323 -|- >[ ] <--- new preheader. 3324 | | 3325 | v 3326 | [ ] \ 3327 | [ ]_| <-- old scalar loop to handle remainder. 3328 \ | 3329 \ v 3330 >[ ] <-- exit block. 3331 ... 3332 */ 3333 3334 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3335 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3336 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3337 assert(VectorPH && "Invalid loop structure"); 3338 assert(ExitBlock && "Must have an exit block"); 3339 3340 // Some loops have a single integer induction variable, while other loops 3341 // don't. One example is c++ iterators that often have multiple pointer 3342 // induction variables. In the code below we also support a case where we 3343 // don't have a single induction variable. 3344 // 3345 // We try to obtain an induction variable from the original loop as hard 3346 // as possible. However if we don't find one that: 3347 // - is an integer 3348 // - counts from zero, stepping by one 3349 // - is the size of the widest induction variable type 3350 // then we create a new one. 3351 OldInduction = Legal->getInduction(); 3352 Type *IdxTy = Legal->getWidestInductionType(); 3353 3354 // Split the single block loop into the two loop structure described above. 3355 BasicBlock *VecBody = 3356 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3357 BasicBlock *MiddleBlock = 3358 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3359 BasicBlock *ScalarPH = 3360 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3361 3362 // Create and register the new vector loop. 3363 Loop *Lp = new Loop(); 3364 Loop *ParentLoop = OrigLoop->getParentLoop(); 3365 3366 // Insert the new loop into the loop nest and register the new basic blocks 3367 // before calling any utilities such as SCEV that require valid LoopInfo. 3368 if (ParentLoop) { 3369 ParentLoop->addChildLoop(Lp); 3370 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3371 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3372 } else { 3373 LI->addTopLevelLoop(Lp); 3374 } 3375 Lp->addBasicBlockToLoop(VecBody, *LI); 3376 3377 // Find the loop boundaries. 3378 Value *Count = getOrCreateTripCount(Lp); 3379 3380 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3381 3382 // We need to test whether the backedge-taken count is uint##_max. Adding one 3383 // to it will cause overflow and an incorrect loop trip count in the vector 3384 // body. In case of overflow we want to directly jump to the scalar remainder 3385 // loop. 3386 emitMinimumIterationCountCheck(Lp, ScalarPH); 3387 // Now, compare the new count to zero. If it is zero skip the vector loop and 3388 // jump to the scalar loop. 3389 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3390 // Generate the code to check any assumptions that we've made for SCEV 3391 // expressions. 3392 emitSCEVChecks(Lp, ScalarPH); 3393 3394 // Generate the code that checks in runtime if arrays overlap. We put the 3395 // checks into a separate block to make the more common case of few elements 3396 // faster. 3397 emitMemRuntimeChecks(Lp, ScalarPH); 3398 3399 // Generate the induction variable. 3400 // The loop step is equal to the vectorization factor (num of SIMD elements) 3401 // times the unroll factor (num of SIMD instructions). 3402 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3403 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3404 Induction = 3405 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3406 getDebugLocFromInstOrOperands(OldInduction)); 3407 3408 // We are going to resume the execution of the scalar loop. 3409 // Go over all of the induction variables that we found and fix the 3410 // PHIs that are left in the scalar version of the loop. 3411 // The starting values of PHI nodes depend on the counter of the last 3412 // iteration in the vectorized loop. 3413 // If we come from a bypass edge then we need to start from the original 3414 // start value. 3415 3416 // This variable saves the new starting index for the scalar loop. It is used 3417 // to test if there are any tail iterations left once the vector loop has 3418 // completed. 3419 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3420 for (auto &InductionEntry : *List) { 3421 PHINode *OrigPhi = InductionEntry.first; 3422 InductionDescriptor II = InductionEntry.second; 3423 3424 // Create phi nodes to merge from the backedge-taken check block. 3425 PHINode *BCResumeVal = PHINode::Create( 3426 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3427 Value *EndValue; 3428 if (OrigPhi == OldInduction) { 3429 // We know what the end value is. 3430 EndValue = CountRoundDown; 3431 } else { 3432 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3433 Type *StepType = II.getStep()->getType(); 3434 Instruction::CastOps CastOp = 3435 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3436 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3437 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3438 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3439 EndValue->setName("ind.end"); 3440 } 3441 3442 // The new PHI merges the original incoming value, in case of a bypass, 3443 // or the value at the end of the vectorized loop. 3444 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3445 3446 // Fix up external users of the induction variable. 3447 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3448 3449 // Fix the scalar body counter (PHI node). 3450 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3451 3452 // The old induction's phi node in the scalar body needs the truncated 3453 // value. 3454 for (BasicBlock *BB : LoopBypassBlocks) 3455 BCResumeVal->addIncoming(II.getStartValue(), BB); 3456 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3457 } 3458 3459 // Add a check in the middle block to see if we have completed 3460 // all of the iterations in the first vector loop. 3461 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3462 Value *CmpN = 3463 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3464 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3465 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3466 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3467 3468 // Get ready to start creating new instructions into the vectorized body. 3469 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3470 3471 // Save the state. 3472 LoopVectorPreHeader = Lp->getLoopPreheader(); 3473 LoopScalarPreHeader = ScalarPH; 3474 LoopMiddleBlock = MiddleBlock; 3475 LoopExitBlock = ExitBlock; 3476 LoopVectorBody = VecBody; 3477 LoopScalarBody = OldBasicBlock; 3478 3479 // Keep all loop hints from the original loop on the vector loop (we'll 3480 // replace the vectorizer-specific hints below). 3481 if (MDNode *LID = OrigLoop->getLoopID()) 3482 Lp->setLoopID(LID); 3483 3484 LoopVectorizeHints Hints(Lp, true, *ORE); 3485 Hints.setAlreadyVectorized(); 3486 } 3487 3488 // Fix up external users of the induction variable. At this point, we are 3489 // in LCSSA form, with all external PHIs that use the IV having one input value, 3490 // coming from the remainder loop. We need those PHIs to also have a correct 3491 // value for the IV when arriving directly from the middle block. 3492 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3493 const InductionDescriptor &II, 3494 Value *CountRoundDown, Value *EndValue, 3495 BasicBlock *MiddleBlock) { 3496 // There are two kinds of external IV usages - those that use the value 3497 // computed in the last iteration (the PHI) and those that use the penultimate 3498 // value (the value that feeds into the phi from the loop latch). 3499 // We allow both, but they, obviously, have different values. 3500 3501 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3502 3503 DenseMap<Value *, Value *> MissingVals; 3504 3505 // An external user of the last iteration's value should see the value that 3506 // the remainder loop uses to initialize its own IV. 3507 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3508 for (User *U : PostInc->users()) { 3509 Instruction *UI = cast<Instruction>(U); 3510 if (!OrigLoop->contains(UI)) { 3511 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3512 MissingVals[UI] = EndValue; 3513 } 3514 } 3515 3516 // An external user of the penultimate value need to see EndValue - Step. 3517 // The simplest way to get this is to recompute it from the constituent SCEVs, 3518 // that is Start + (Step * (CRD - 1)). 3519 for (User *U : OrigPhi->users()) { 3520 auto *UI = cast<Instruction>(U); 3521 if (!OrigLoop->contains(UI)) { 3522 const DataLayout &DL = 3523 OrigLoop->getHeader()->getModule()->getDataLayout(); 3524 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3525 3526 IRBuilder<> B(MiddleBlock->getTerminator()); 3527 Value *CountMinusOne = B.CreateSub( 3528 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3529 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3530 "cast.cmo"); 3531 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3532 Escape->setName("ind.escape"); 3533 MissingVals[UI] = Escape; 3534 } 3535 } 3536 3537 for (auto &I : MissingVals) { 3538 PHINode *PHI = cast<PHINode>(I.first); 3539 // One corner case we have to handle is two IVs "chasing" each-other, 3540 // that is %IV2 = phi [...], [ %IV1, %latch ] 3541 // In this case, if IV1 has an external use, we need to avoid adding both 3542 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3543 // don't already have an incoming value for the middle block. 3544 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3545 PHI->addIncoming(I.second, MiddleBlock); 3546 } 3547 } 3548 3549 namespace { 3550 struct CSEDenseMapInfo { 3551 static bool canHandle(Instruction *I) { 3552 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3553 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3554 } 3555 static inline Instruction *getEmptyKey() { 3556 return DenseMapInfo<Instruction *>::getEmptyKey(); 3557 } 3558 static inline Instruction *getTombstoneKey() { 3559 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3560 } 3561 static unsigned getHashValue(Instruction *I) { 3562 assert(canHandle(I) && "Unknown instruction!"); 3563 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3564 I->value_op_end())); 3565 } 3566 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3567 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3568 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3569 return LHS == RHS; 3570 return LHS->isIdenticalTo(RHS); 3571 } 3572 }; 3573 } 3574 3575 ///\brief Perform cse of induction variable instructions. 3576 static void cse(BasicBlock *BB) { 3577 // Perform simple cse. 3578 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3579 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3580 Instruction *In = &*I++; 3581 3582 if (!CSEDenseMapInfo::canHandle(In)) 3583 continue; 3584 3585 // Check if we can replace this instruction with any of the 3586 // visited instructions. 3587 if (Instruction *V = CSEMap.lookup(In)) { 3588 In->replaceAllUsesWith(V); 3589 In->eraseFromParent(); 3590 continue; 3591 } 3592 3593 CSEMap[In] = In; 3594 } 3595 } 3596 3597 /// \brief Adds a 'fast' flag to floating point operations. 3598 static Value *addFastMathFlag(Value *V) { 3599 if (isa<FPMathOperator>(V)) { 3600 FastMathFlags Flags; 3601 Flags.setUnsafeAlgebra(); 3602 cast<Instruction>(V)->setFastMathFlags(Flags); 3603 } 3604 return V; 3605 } 3606 3607 /// \brief Estimate the overhead of scalarizing a value based on its type. 3608 /// Insert and Extract are set if the result needs to be inserted and/or 3609 /// extracted from vectors. 3610 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3611 const TargetTransformInfo &TTI) { 3612 if (Ty->isVoidTy()) 3613 return 0; 3614 3615 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3616 unsigned Cost = 0; 3617 3618 for (unsigned I = 0, E = Ty->getVectorNumElements(); I < E; ++I) { 3619 if (Extract) 3620 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, I); 3621 if (Insert) 3622 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, I); 3623 } 3624 3625 return Cost; 3626 } 3627 3628 /// \brief Estimate the overhead of scalarizing an Instruction based on the 3629 /// types of its operands and return value. 3630 static unsigned getScalarizationOverhead(SmallVectorImpl<Type *> &OpTys, 3631 Type *RetTy, 3632 const TargetTransformInfo &TTI) { 3633 unsigned ScalarizationCost = 3634 getScalarizationOverhead(RetTy, true, false, TTI); 3635 3636 for (Type *Ty : OpTys) 3637 ScalarizationCost += getScalarizationOverhead(Ty, false, true, TTI); 3638 3639 return ScalarizationCost; 3640 } 3641 3642 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3643 /// convenience wrapper for the type-based getScalarizationOverhead API. 3644 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3645 const TargetTransformInfo &TTI) { 3646 if (VF == 1) 3647 return 0; 3648 3649 Type *RetTy = ToVectorTy(I->getType(), VF); 3650 3651 SmallVector<Type *, 4> OpTys; 3652 unsigned OperandsNum = I->getNumOperands(); 3653 for (unsigned OpInd = 0; OpInd < OperandsNum; ++OpInd) 3654 OpTys.push_back(ToVectorTy(I->getOperand(OpInd)->getType(), VF)); 3655 3656 return getScalarizationOverhead(OpTys, RetTy, TTI); 3657 } 3658 3659 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3660 // Return the cost of the instruction, including scalarization overhead if it's 3661 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3662 // i.e. either vector version isn't available, or is too expensive. 3663 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3664 const TargetTransformInfo &TTI, 3665 const TargetLibraryInfo *TLI, 3666 bool &NeedToScalarize) { 3667 Function *F = CI->getCalledFunction(); 3668 StringRef FnName = CI->getCalledFunction()->getName(); 3669 Type *ScalarRetTy = CI->getType(); 3670 SmallVector<Type *, 4> Tys, ScalarTys; 3671 for (auto &ArgOp : CI->arg_operands()) 3672 ScalarTys.push_back(ArgOp->getType()); 3673 3674 // Estimate cost of scalarized vector call. The source operands are assumed 3675 // to be vectors, so we need to extract individual elements from there, 3676 // execute VF scalar calls, and then gather the result into the vector return 3677 // value. 3678 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3679 if (VF == 1) 3680 return ScalarCallCost; 3681 3682 // Compute corresponding vector type for return value and arguments. 3683 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3684 for (Type *ScalarTy : ScalarTys) 3685 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3686 3687 // Compute costs of unpacking argument values for the scalar calls and 3688 // packing the return values to a vector. 3689 unsigned ScalarizationCost = getScalarizationOverhead(Tys, RetTy, TTI); 3690 3691 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3692 3693 // If we can't emit a vector call for this function, then the currently found 3694 // cost is the cost we need to return. 3695 NeedToScalarize = true; 3696 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3697 return Cost; 3698 3699 // If the corresponding vector cost is cheaper, return its cost. 3700 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3701 if (VectorCallCost < Cost) { 3702 NeedToScalarize = false; 3703 return VectorCallCost; 3704 } 3705 return Cost; 3706 } 3707 3708 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3709 // factor VF. Return the cost of the instruction, including scalarization 3710 // overhead if it's needed. 3711 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3712 const TargetTransformInfo &TTI, 3713 const TargetLibraryInfo *TLI) { 3714 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3715 assert(ID && "Expected intrinsic call!"); 3716 3717 Type *RetTy = ToVectorTy(CI->getType(), VF); 3718 SmallVector<Type *, 4> Tys; 3719 for (Value *ArgOperand : CI->arg_operands()) 3720 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3721 3722 FastMathFlags FMF; 3723 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3724 FMF = FPMO->getFastMathFlags(); 3725 3726 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3727 } 3728 3729 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3730 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3731 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3732 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3733 } 3734 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3735 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3736 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3737 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3738 } 3739 3740 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3741 // For every instruction `I` in MinBWs, truncate the operands, create a 3742 // truncated version of `I` and reextend its result. InstCombine runs 3743 // later and will remove any ext/trunc pairs. 3744 // 3745 SmallPtrSet<Value *, 4> Erased; 3746 for (const auto &KV : Cost->getMinimalBitwidths()) { 3747 // If the value wasn't vectorized, we must maintain the original scalar 3748 // type. The absence of the value from VectorLoopValueMap indicates that it 3749 // wasn't vectorized. 3750 if (!VectorLoopValueMap.hasVector(KV.first)) 3751 continue; 3752 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3753 for (Value *&I : Parts) { 3754 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3755 continue; 3756 Type *OriginalTy = I->getType(); 3757 Type *ScalarTruncatedTy = 3758 IntegerType::get(OriginalTy->getContext(), KV.second); 3759 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3760 OriginalTy->getVectorNumElements()); 3761 if (TruncatedTy == OriginalTy) 3762 continue; 3763 3764 IRBuilder<> B(cast<Instruction>(I)); 3765 auto ShrinkOperand = [&](Value *V) -> Value * { 3766 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3767 if (ZI->getSrcTy() == TruncatedTy) 3768 return ZI->getOperand(0); 3769 return B.CreateZExtOrTrunc(V, TruncatedTy); 3770 }; 3771 3772 // The actual instruction modification depends on the instruction type, 3773 // unfortunately. 3774 Value *NewI = nullptr; 3775 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3776 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3777 ShrinkOperand(BO->getOperand(1))); 3778 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3779 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3780 NewI = 3781 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3782 ShrinkOperand(CI->getOperand(1))); 3783 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3784 NewI = B.CreateSelect(SI->getCondition(), 3785 ShrinkOperand(SI->getTrueValue()), 3786 ShrinkOperand(SI->getFalseValue())); 3787 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3788 switch (CI->getOpcode()) { 3789 default: 3790 llvm_unreachable("Unhandled cast!"); 3791 case Instruction::Trunc: 3792 NewI = ShrinkOperand(CI->getOperand(0)); 3793 break; 3794 case Instruction::SExt: 3795 NewI = B.CreateSExtOrTrunc( 3796 CI->getOperand(0), 3797 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3798 break; 3799 case Instruction::ZExt: 3800 NewI = B.CreateZExtOrTrunc( 3801 CI->getOperand(0), 3802 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3803 break; 3804 } 3805 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3806 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3807 auto *O0 = B.CreateZExtOrTrunc( 3808 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3809 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3810 auto *O1 = B.CreateZExtOrTrunc( 3811 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3812 3813 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3814 } else if (isa<LoadInst>(I)) { 3815 // Don't do anything with the operands, just extend the result. 3816 continue; 3817 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3818 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3819 auto *O0 = B.CreateZExtOrTrunc( 3820 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3821 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3822 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3823 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3824 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3825 auto *O0 = B.CreateZExtOrTrunc( 3826 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3827 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3828 } else { 3829 llvm_unreachable("Unhandled instruction type!"); 3830 } 3831 3832 // Lastly, extend the result. 3833 NewI->takeName(cast<Instruction>(I)); 3834 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3835 I->replaceAllUsesWith(Res); 3836 cast<Instruction>(I)->eraseFromParent(); 3837 Erased.insert(I); 3838 I = Res; 3839 } 3840 } 3841 3842 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3843 for (const auto &KV : Cost->getMinimalBitwidths()) { 3844 // If the value wasn't vectorized, we must maintain the original scalar 3845 // type. The absence of the value from VectorLoopValueMap indicates that it 3846 // wasn't vectorized. 3847 if (!VectorLoopValueMap.hasVector(KV.first)) 3848 continue; 3849 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3850 for (Value *&I : Parts) { 3851 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3852 if (Inst && Inst->use_empty()) { 3853 Value *NewI = Inst->getOperand(0); 3854 Inst->eraseFromParent(); 3855 I = NewI; 3856 } 3857 } 3858 } 3859 } 3860 3861 void InnerLoopVectorizer::vectorizeLoop() { 3862 //===------------------------------------------------===// 3863 // 3864 // Notice: any optimization or new instruction that go 3865 // into the code below should be also be implemented in 3866 // the cost-model. 3867 // 3868 //===------------------------------------------------===// 3869 Constant *Zero = Builder.getInt32(0); 3870 3871 // In order to support recurrences we need to be able to vectorize Phi nodes. 3872 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3873 // we create a new vector PHI node with no incoming edges. We use this value 3874 // when we vectorize all of the instructions that use the PHI. Next, after 3875 // all of the instructions in the block are complete we add the new incoming 3876 // edges to the PHI. At this point all of the instructions in the basic block 3877 // are vectorized, so we can use them to construct the PHI. 3878 PhiVector PHIsToFix; 3879 3880 // Collect instructions from the original loop that will become trivially 3881 // dead in the vectorized loop. We don't need to vectorize these 3882 // instructions. 3883 collectTriviallyDeadInstructions(); 3884 3885 // Scan the loop in a topological order to ensure that defs are vectorized 3886 // before users. 3887 LoopBlocksDFS DFS(OrigLoop); 3888 DFS.perform(LI); 3889 3890 // Vectorize all of the blocks in the original loop. 3891 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3892 vectorizeBlockInLoop(BB, &PHIsToFix); 3893 3894 // Insert truncates and extends for any truncated instructions as hints to 3895 // InstCombine. 3896 if (VF > 1) 3897 truncateToMinimalBitwidths(); 3898 3899 // At this point every instruction in the original loop is widened to a 3900 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3901 // nodes are currently empty because we did not want to introduce cycles. 3902 // This is the second stage of vectorizing recurrences. 3903 for (PHINode *Phi : PHIsToFix) { 3904 assert(Phi && "Unable to recover vectorized PHI"); 3905 3906 // Handle first-order recurrences that need to be fixed. 3907 if (Legal->isFirstOrderRecurrence(Phi)) { 3908 fixFirstOrderRecurrence(Phi); 3909 continue; 3910 } 3911 3912 // If the phi node is not a first-order recurrence, it must be a reduction. 3913 // Get it's reduction variable descriptor. 3914 assert(Legal->isReductionVariable(Phi) && 3915 "Unable to find the reduction variable"); 3916 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3917 3918 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3919 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3920 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3921 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3922 RdxDesc.getMinMaxRecurrenceKind(); 3923 setDebugLocFromInst(Builder, ReductionStartValue); 3924 3925 // We need to generate a reduction vector from the incoming scalar. 3926 // To do so, we need to generate the 'identity' vector and override 3927 // one of the elements with the incoming scalar reduction. We need 3928 // to do it in the vector-loop preheader. 3929 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3930 3931 // This is the vector-clone of the value that leaves the loop. 3932 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 3933 Type *VecTy = VectorExit[0]->getType(); 3934 3935 // Find the reduction identity variable. Zero for addition, or, xor, 3936 // one for multiplication, -1 for And. 3937 Value *Identity; 3938 Value *VectorStart; 3939 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3940 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3941 // MinMax reduction have the start value as their identify. 3942 if (VF == 1) { 3943 VectorStart = Identity = ReductionStartValue; 3944 } else { 3945 VectorStart = Identity = 3946 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3947 } 3948 } else { 3949 // Handle other reduction kinds: 3950 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3951 RK, VecTy->getScalarType()); 3952 if (VF == 1) { 3953 Identity = Iden; 3954 // This vector is the Identity vector where the first element is the 3955 // incoming scalar reduction. 3956 VectorStart = ReductionStartValue; 3957 } else { 3958 Identity = ConstantVector::getSplat(VF, Iden); 3959 3960 // This vector is the Identity vector where the first element is the 3961 // incoming scalar reduction. 3962 VectorStart = 3963 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3964 } 3965 } 3966 3967 // Fix the vector-loop phi. 3968 3969 // Reductions do not have to start at zero. They can start with 3970 // any loop invariant values. 3971 const VectorParts &VecRdxPhi = getVectorValue(Phi); 3972 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3973 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3974 const VectorParts &Val = getVectorValue(LoopVal); 3975 for (unsigned part = 0; part < UF; ++part) { 3976 // Make sure to add the reduction stat value only to the 3977 // first unroll part. 3978 Value *StartVal = (part == 0) ? VectorStart : Identity; 3979 cast<PHINode>(VecRdxPhi[part]) 3980 ->addIncoming(StartVal, LoopVectorPreHeader); 3981 cast<PHINode>(VecRdxPhi[part]) 3982 ->addIncoming(Val[part], LoopVectorBody); 3983 } 3984 3985 // Before each round, move the insertion point right between 3986 // the PHIs and the values we are going to write. 3987 // This allows us to write both PHINodes and the extractelement 3988 // instructions. 3989 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3990 3991 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 3992 setDebugLocFromInst(Builder, LoopExitInst); 3993 3994 // If the vector reduction can be performed in a smaller type, we truncate 3995 // then extend the loop exit value to enable InstCombine to evaluate the 3996 // entire expression in the smaller type. 3997 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3998 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3999 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4000 for (unsigned part = 0; part < UF; ++part) { 4001 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4002 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4003 : Builder.CreateZExt(Trunc, VecTy); 4004 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4005 UI != RdxParts[part]->user_end();) 4006 if (*UI != Trunc) { 4007 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4008 RdxParts[part] = Extnd; 4009 } else { 4010 ++UI; 4011 } 4012 } 4013 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4014 for (unsigned part = 0; part < UF; ++part) 4015 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4016 } 4017 4018 // Reduce all of the unrolled parts into a single vector. 4019 Value *ReducedPartRdx = RdxParts[0]; 4020 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4021 setDebugLocFromInst(Builder, ReducedPartRdx); 4022 for (unsigned part = 1; part < UF; ++part) { 4023 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4024 // Floating point operations had to be 'fast' to enable the reduction. 4025 ReducedPartRdx = addFastMathFlag( 4026 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4027 ReducedPartRdx, "bin.rdx")); 4028 else 4029 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4030 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4031 } 4032 4033 if (VF > 1) { 4034 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4035 // and vector ops, reducing the set of values being computed by half each 4036 // round. 4037 assert(isPowerOf2_32(VF) && 4038 "Reduction emission only supported for pow2 vectors!"); 4039 Value *TmpVec = ReducedPartRdx; 4040 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4041 for (unsigned i = VF; i != 1; i >>= 1) { 4042 // Move the upper half of the vector to the lower half. 4043 for (unsigned j = 0; j != i / 2; ++j) 4044 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4045 4046 // Fill the rest of the mask with undef. 4047 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4048 UndefValue::get(Builder.getInt32Ty())); 4049 4050 Value *Shuf = Builder.CreateShuffleVector( 4051 TmpVec, UndefValue::get(TmpVec->getType()), 4052 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4053 4054 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4055 // Floating point operations had to be 'fast' to enable the reduction. 4056 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4057 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4058 else 4059 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4060 TmpVec, Shuf); 4061 } 4062 4063 // The result is in the first element of the vector. 4064 ReducedPartRdx = 4065 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4066 4067 // If the reduction can be performed in a smaller type, we need to extend 4068 // the reduction to the wider type before we branch to the original loop. 4069 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4070 ReducedPartRdx = 4071 RdxDesc.isSigned() 4072 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4073 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4074 } 4075 4076 // Create a phi node that merges control-flow from the backedge-taken check 4077 // block and the middle block. 4078 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4079 LoopScalarPreHeader->getTerminator()); 4080 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4081 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4082 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4083 4084 // Now, we need to fix the users of the reduction variable 4085 // inside and outside of the scalar remainder loop. 4086 // We know that the loop is in LCSSA form. We need to update the 4087 // PHI nodes in the exit blocks. 4088 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4089 LEE = LoopExitBlock->end(); 4090 LEI != LEE; ++LEI) { 4091 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4092 if (!LCSSAPhi) 4093 break; 4094 4095 // All PHINodes need to have a single entry edge, or two if 4096 // we already fixed them. 4097 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4098 4099 // We found our reduction value exit-PHI. Update it with the 4100 // incoming bypass edge. 4101 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 4102 // Add an edge coming from the bypass. 4103 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4104 break; 4105 } 4106 } // end of the LCSSA phi scan. 4107 4108 // Fix the scalar loop reduction variable with the incoming reduction sum 4109 // from the vector body and from the backedge value. 4110 int IncomingEdgeBlockIdx = 4111 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4112 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4113 // Pick the other block. 4114 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4115 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4116 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4117 } // end of for each Phi in PHIsToFix. 4118 4119 fixLCSSAPHIs(); 4120 4121 // Make sure DomTree is updated. 4122 updateAnalysis(); 4123 4124 predicateInstructions(); 4125 4126 // Remove redundant induction instructions. 4127 cse(LoopVectorBody); 4128 } 4129 4130 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 4131 4132 // This is the second phase of vectorizing first-order recurrences. An 4133 // overview of the transformation is described below. Suppose we have the 4134 // following loop. 4135 // 4136 // for (int i = 0; i < n; ++i) 4137 // b[i] = a[i] - a[i - 1]; 4138 // 4139 // There is a first-order recurrence on "a". For this loop, the shorthand 4140 // scalar IR looks like: 4141 // 4142 // scalar.ph: 4143 // s_init = a[-1] 4144 // br scalar.body 4145 // 4146 // scalar.body: 4147 // i = phi [0, scalar.ph], [i+1, scalar.body] 4148 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4149 // s2 = a[i] 4150 // b[i] = s2 - s1 4151 // br cond, scalar.body, ... 4152 // 4153 // In this example, s1 is a recurrence because it's value depends on the 4154 // previous iteration. In the first phase of vectorization, we created a 4155 // temporary value for s1. We now complete the vectorization and produce the 4156 // shorthand vector IR shown below (for VF = 4, UF = 1). 4157 // 4158 // vector.ph: 4159 // v_init = vector(..., ..., ..., a[-1]) 4160 // br vector.body 4161 // 4162 // vector.body 4163 // i = phi [0, vector.ph], [i+4, vector.body] 4164 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4165 // v2 = a[i, i+1, i+2, i+3]; 4166 // v3 = vector(v1(3), v2(0, 1, 2)) 4167 // b[i, i+1, i+2, i+3] = v2 - v3 4168 // br cond, vector.body, middle.block 4169 // 4170 // middle.block: 4171 // x = v2(3) 4172 // br scalar.ph 4173 // 4174 // scalar.ph: 4175 // s_init = phi [x, middle.block], [a[-1], otherwise] 4176 // br scalar.body 4177 // 4178 // After execution completes the vector loop, we extract the next value of 4179 // the recurrence (x) to use as the initial value in the scalar loop. 4180 4181 // Get the original loop preheader and single loop latch. 4182 auto *Preheader = OrigLoop->getLoopPreheader(); 4183 auto *Latch = OrigLoop->getLoopLatch(); 4184 4185 // Get the initial and previous values of the scalar recurrence. 4186 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4187 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4188 4189 // Create a vector from the initial value. 4190 auto *VectorInit = ScalarInit; 4191 if (VF > 1) { 4192 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4193 VectorInit = Builder.CreateInsertElement( 4194 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4195 Builder.getInt32(VF - 1), "vector.recur.init"); 4196 } 4197 4198 // We constructed a temporary phi node in the first phase of vectorization. 4199 // This phi node will eventually be deleted. 4200 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4201 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4202 4203 // Create a phi node for the new recurrence. The current value will either be 4204 // the initial value inserted into a vector or loop-varying vector value. 4205 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4206 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4207 4208 // Get the vectorized previous value. We ensured the previous values was an 4209 // instruction when detecting the recurrence. 4210 auto &PreviousParts = getVectorValue(Previous); 4211 4212 // Set the insertion point to be after this instruction. We ensured the 4213 // previous value dominated all uses of the phi when detecting the 4214 // recurrence. 4215 Builder.SetInsertPoint( 4216 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4217 4218 // We will construct a vector for the recurrence by combining the values for 4219 // the current and previous iterations. This is the required shuffle mask. 4220 SmallVector<Constant *, 8> ShuffleMask(VF); 4221 ShuffleMask[0] = Builder.getInt32(VF - 1); 4222 for (unsigned I = 1; I < VF; ++I) 4223 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4224 4225 // The vector from which to take the initial value for the current iteration 4226 // (actual or unrolled). Initially, this is the vector phi node. 4227 Value *Incoming = VecPhi; 4228 4229 // Shuffle the current and previous vector and update the vector parts. 4230 for (unsigned Part = 0; Part < UF; ++Part) { 4231 auto *Shuffle = 4232 VF > 1 4233 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4234 ConstantVector::get(ShuffleMask)) 4235 : Incoming; 4236 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4237 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4238 PhiParts[Part] = Shuffle; 4239 Incoming = PreviousParts[Part]; 4240 } 4241 4242 // Fix the latch value of the new recurrence in the vector loop. 4243 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4244 4245 // Extract the last vector element in the middle block. This will be the 4246 // initial value for the recurrence when jumping to the scalar loop. 4247 auto *Extract = Incoming; 4248 if (VF > 1) { 4249 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4250 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4251 "vector.recur.extract"); 4252 } 4253 4254 // Fix the initial value of the original recurrence in the scalar loop. 4255 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4256 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4257 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4258 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4259 Start->addIncoming(Incoming, BB); 4260 } 4261 4262 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4263 Phi->setName("scalar.recur"); 4264 4265 // Finally, fix users of the recurrence outside the loop. The users will need 4266 // either the last value of the scalar recurrence or the last value of the 4267 // vector recurrence we extracted in the middle block. Since the loop is in 4268 // LCSSA form, we just need to find the phi node for the original scalar 4269 // recurrence in the exit block, and then add an edge for the middle block. 4270 for (auto &I : *LoopExitBlock) { 4271 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4272 if (!LCSSAPhi) 4273 break; 4274 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4275 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4276 break; 4277 } 4278 } 4279 } 4280 4281 void InnerLoopVectorizer::fixLCSSAPHIs() { 4282 for (Instruction &LEI : *LoopExitBlock) { 4283 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4284 if (!LCSSAPhi) 4285 break; 4286 if (LCSSAPhi->getNumIncomingValues() == 1) 4287 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4288 LoopMiddleBlock); 4289 } 4290 } 4291 4292 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4293 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4294 4295 // We create new control-flow for the vectorized loop, so the original 4296 // condition will be dead after vectorization if it's only used by the 4297 // branch. 4298 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4299 if (Cmp && Cmp->hasOneUse()) 4300 DeadInstructions.insert(Cmp); 4301 4302 // We create new "steps" for induction variable updates to which the original 4303 // induction variables map. An original update instruction will be dead if 4304 // all its users except the induction variable are dead. 4305 for (auto &Induction : *Legal->getInductionVars()) { 4306 PHINode *Ind = Induction.first; 4307 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4308 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4309 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4310 })) 4311 DeadInstructions.insert(IndUpdate); 4312 } 4313 } 4314 4315 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4316 4317 // The basic block and loop containing the predicated instruction. 4318 auto *PredBB = PredInst->getParent(); 4319 auto *VectorLoop = LI->getLoopFor(PredBB); 4320 4321 // Initialize a worklist with the operands of the predicated instruction. 4322 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4323 4324 // Holds instructions that we need to analyze again. An instruction may be 4325 // reanalyzed if we don't yet know if we can sink it or not. 4326 SmallVector<Instruction *, 8> InstsToReanalyze; 4327 4328 // Returns true if a given use occurs in the predicated block. Phi nodes use 4329 // their operands in their corresponding predecessor blocks. 4330 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4331 auto *I = cast<Instruction>(U.getUser()); 4332 BasicBlock *BB = I->getParent(); 4333 if (auto *Phi = dyn_cast<PHINode>(I)) 4334 BB = Phi->getIncomingBlock( 4335 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4336 return BB == PredBB; 4337 }; 4338 4339 // Iteratively sink the scalarized operands of the predicated instruction 4340 // into the block we created for it. When an instruction is sunk, it's 4341 // operands are then added to the worklist. The algorithm ends after one pass 4342 // through the worklist doesn't sink a single instruction. 4343 bool Changed; 4344 do { 4345 4346 // Add the instructions that need to be reanalyzed to the worklist, and 4347 // reset the changed indicator. 4348 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4349 InstsToReanalyze.clear(); 4350 Changed = false; 4351 4352 while (!Worklist.empty()) { 4353 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4354 4355 // We can't sink an instruction if it is a phi node, is already in the 4356 // predicated block, is not in the loop, or may have side effects. 4357 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4358 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4359 continue; 4360 4361 // It's legal to sink the instruction if all its uses occur in the 4362 // predicated block. Otherwise, there's nothing to do yet, and we may 4363 // need to reanalyze the instruction. 4364 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4365 InstsToReanalyze.push_back(I); 4366 continue; 4367 } 4368 4369 // Move the instruction to the beginning of the predicated block, and add 4370 // it's operands to the worklist. 4371 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4372 Worklist.insert(I->op_begin(), I->op_end()); 4373 4374 // The sinking may have enabled other instructions to be sunk, so we will 4375 // need to iterate. 4376 Changed = true; 4377 } 4378 } while (Changed); 4379 } 4380 4381 void InnerLoopVectorizer::predicateInstructions() { 4382 4383 // For each instruction I marked for predication on value C, split I into its 4384 // own basic block to form an if-then construct over C. Since I may be fed by 4385 // an extractelement instruction or other scalar operand, we try to 4386 // iteratively sink its scalar operands into the predicated block. If I feeds 4387 // an insertelement instruction, we try to move this instruction into the 4388 // predicated block as well. For non-void types, a phi node will be created 4389 // for the resulting value (either vector or scalar). 4390 // 4391 // So for some predicated instruction, e.g. the conditional sdiv in: 4392 // 4393 // for.body: 4394 // ... 4395 // %add = add nsw i32 %mul, %0 4396 // %cmp5 = icmp sgt i32 %2, 7 4397 // br i1 %cmp5, label %if.then, label %if.end 4398 // 4399 // if.then: 4400 // %div = sdiv i32 %0, %1 4401 // br label %if.end 4402 // 4403 // if.end: 4404 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4405 // 4406 // the sdiv at this point is scalarized and if-converted using a select. 4407 // The inactive elements in the vector are not used, but the predicated 4408 // instruction is still executed for all vector elements, essentially: 4409 // 4410 // vector.body: 4411 // ... 4412 // %17 = add nsw <2 x i32> %16, %wide.load 4413 // %29 = extractelement <2 x i32> %wide.load, i32 0 4414 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4415 // %31 = sdiv i32 %29, %30 4416 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4417 // %35 = extractelement <2 x i32> %wide.load, i32 1 4418 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4419 // %37 = sdiv i32 %35, %36 4420 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4421 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4422 // 4423 // Predication will now re-introduce the original control flow to avoid false 4424 // side-effects by the sdiv instructions on the inactive elements, yielding 4425 // (after cleanup): 4426 // 4427 // vector.body: 4428 // ... 4429 // %5 = add nsw <2 x i32> %4, %wide.load 4430 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4431 // %9 = extractelement <2 x i1> %8, i32 0 4432 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4433 // 4434 // pred.sdiv.if: 4435 // %10 = extractelement <2 x i32> %wide.load, i32 0 4436 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4437 // %12 = sdiv i32 %10, %11 4438 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4439 // br label %pred.sdiv.continue 4440 // 4441 // pred.sdiv.continue: 4442 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4443 // %15 = extractelement <2 x i1> %8, i32 1 4444 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4445 // 4446 // pred.sdiv.if54: 4447 // %16 = extractelement <2 x i32> %wide.load, i32 1 4448 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4449 // %18 = sdiv i32 %16, %17 4450 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4451 // br label %pred.sdiv.continue55 4452 // 4453 // pred.sdiv.continue55: 4454 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4455 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4456 4457 for (auto KV : PredicatedInstructions) { 4458 BasicBlock::iterator I(KV.first); 4459 BasicBlock *Head = I->getParent(); 4460 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4461 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4462 /*BranchWeights=*/nullptr, DT, LI); 4463 I->moveBefore(T); 4464 sinkScalarOperands(&*I); 4465 4466 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4467 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4468 4469 // If the instruction is non-void create a Phi node at reconvergence point. 4470 if (!I->getType()->isVoidTy()) { 4471 Value *IncomingTrue = nullptr; 4472 Value *IncomingFalse = nullptr; 4473 4474 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4475 // If the predicated instruction is feeding an insert-element, move it 4476 // into the Then block; Phi node will be created for the vector. 4477 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4478 IEI->moveBefore(T); 4479 IncomingTrue = IEI; // the new vector with the inserted element. 4480 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4481 } else { 4482 // Phi node will be created for the scalar predicated instruction. 4483 IncomingTrue = &*I; 4484 IncomingFalse = UndefValue::get(I->getType()); 4485 } 4486 4487 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4488 assert(PostDom && "Then block has multiple successors"); 4489 PHINode *Phi = 4490 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4491 IncomingTrue->replaceAllUsesWith(Phi); 4492 Phi->addIncoming(IncomingFalse, Head); 4493 Phi->addIncoming(IncomingTrue, I->getParent()); 4494 } 4495 } 4496 4497 DEBUG(DT->verifyDomTree()); 4498 } 4499 4500 InnerLoopVectorizer::VectorParts 4501 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4502 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4503 4504 // Look for cached value. 4505 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4506 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4507 if (ECEntryIt != MaskCache.end()) 4508 return ECEntryIt->second; 4509 4510 VectorParts SrcMask = createBlockInMask(Src); 4511 4512 // The terminator has to be a branch inst! 4513 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4514 assert(BI && "Unexpected terminator found"); 4515 4516 if (BI->isConditional()) { 4517 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4518 4519 if (BI->getSuccessor(0) != Dst) 4520 for (unsigned part = 0; part < UF; ++part) 4521 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4522 4523 for (unsigned part = 0; part < UF; ++part) 4524 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4525 4526 MaskCache[Edge] = EdgeMask; 4527 return EdgeMask; 4528 } 4529 4530 MaskCache[Edge] = SrcMask; 4531 return SrcMask; 4532 } 4533 4534 InnerLoopVectorizer::VectorParts 4535 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4536 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4537 4538 // Loop incoming mask is all-one. 4539 if (OrigLoop->getHeader() == BB) { 4540 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4541 return getVectorValue(C); 4542 } 4543 4544 // This is the block mask. We OR all incoming edges, and with zero. 4545 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4546 VectorParts BlockMask = getVectorValue(Zero); 4547 4548 // For each pred: 4549 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4550 VectorParts EM = createEdgeMask(*it, BB); 4551 for (unsigned part = 0; part < UF; ++part) 4552 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4553 } 4554 4555 return BlockMask; 4556 } 4557 4558 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4559 unsigned VF, PhiVector *PV) { 4560 PHINode *P = cast<PHINode>(PN); 4561 // Handle recurrences. 4562 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4563 VectorParts Entry(UF); 4564 for (unsigned part = 0; part < UF; ++part) { 4565 // This is phase one of vectorizing PHIs. 4566 Type *VecTy = 4567 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4568 Entry[part] = PHINode::Create( 4569 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4570 } 4571 VectorLoopValueMap.initVector(P, Entry); 4572 PV->push_back(P); 4573 return; 4574 } 4575 4576 setDebugLocFromInst(Builder, P); 4577 // Check for PHI nodes that are lowered to vector selects. 4578 if (P->getParent() != OrigLoop->getHeader()) { 4579 // We know that all PHIs in non-header blocks are converted into 4580 // selects, so we don't have to worry about the insertion order and we 4581 // can just use the builder. 4582 // At this point we generate the predication tree. There may be 4583 // duplications since this is a simple recursive scan, but future 4584 // optimizations will clean it up. 4585 4586 unsigned NumIncoming = P->getNumIncomingValues(); 4587 4588 // Generate a sequence of selects of the form: 4589 // SELECT(Mask3, In3, 4590 // SELECT(Mask2, In2, 4591 // ( ...))) 4592 VectorParts Entry(UF); 4593 for (unsigned In = 0; In < NumIncoming; In++) { 4594 VectorParts Cond = 4595 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4596 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4597 4598 for (unsigned part = 0; part < UF; ++part) { 4599 // We might have single edge PHIs (blocks) - use an identity 4600 // 'select' for the first PHI operand. 4601 if (In == 0) 4602 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4603 else 4604 // Select between the current value and the previous incoming edge 4605 // based on the incoming mask. 4606 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4607 "predphi"); 4608 } 4609 } 4610 VectorLoopValueMap.initVector(P, Entry); 4611 return; 4612 } 4613 4614 // This PHINode must be an induction variable. 4615 // Make sure that we know about it. 4616 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4617 4618 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4619 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4620 4621 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4622 // which can be found from the original scalar operations. 4623 switch (II.getKind()) { 4624 case InductionDescriptor::IK_NoInduction: 4625 llvm_unreachable("Unknown induction"); 4626 case InductionDescriptor::IK_IntInduction: 4627 return widenIntInduction(P); 4628 case InductionDescriptor::IK_PtrInduction: { 4629 // Handle the pointer induction variable case. 4630 assert(P->getType()->isPointerTy() && "Unexpected type."); 4631 // This is the normalized GEP that starts counting at zero. 4632 Value *PtrInd = Induction; 4633 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4634 // Determine the number of scalars we need to generate for each unroll 4635 // iteration. If the instruction is uniform, we only need to generate the 4636 // first lane. Otherwise, we generate all VF values. 4637 unsigned Lanes = Legal->isUniformAfterVectorization(P) ? 1 : VF; 4638 // These are the scalar results. Notice that we don't generate vector GEPs 4639 // because scalar GEPs result in better code. 4640 ScalarParts Entry(UF); 4641 for (unsigned Part = 0; Part < UF; ++Part) { 4642 Entry[Part].resize(VF); 4643 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4644 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4645 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4646 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4647 SclrGep->setName("next.gep"); 4648 Entry[Part][Lane] = SclrGep; 4649 } 4650 } 4651 VectorLoopValueMap.initScalar(P, Entry); 4652 return; 4653 } 4654 case InductionDescriptor::IK_FpInduction: { 4655 assert(P->getType() == II.getStartValue()->getType() && 4656 "Types must match"); 4657 // Handle other induction variables that are now based on the 4658 // canonical one. 4659 assert(P != OldInduction && "Primary induction can be integer only"); 4660 4661 Value *V = Builder.CreateCast(Instruction::SIToFP, Induction, P->getType()); 4662 V = II.transform(Builder, V, PSE.getSE(), DL); 4663 V->setName("fp.offset.idx"); 4664 4665 // Now we have scalar op: %fp.offset.idx = StartVal +/- Induction*StepVal 4666 4667 Value *Broadcasted = getBroadcastInstrs(V); 4668 // After broadcasting the induction variable we need to make the vector 4669 // consecutive by adding StepVal*0, StepVal*1, StepVal*2, etc. 4670 Value *StepVal = cast<SCEVUnknown>(II.getStep())->getValue(); 4671 VectorParts Entry(UF); 4672 for (unsigned part = 0; part < UF; ++part) 4673 Entry[part] = getStepVector(Broadcasted, VF * part, StepVal, 4674 II.getInductionOpcode()); 4675 VectorLoopValueMap.initVector(P, Entry); 4676 return; 4677 } 4678 } 4679 } 4680 4681 /// A helper function for checking whether an integer division-related 4682 /// instruction may divide by zero (in which case it must be predicated if 4683 /// executed conditionally in the scalar code). 4684 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4685 /// Non-zero divisors that are non compile-time constants will not be 4686 /// converted into multiplication, so we will still end up scalarizing 4687 /// the division, but can do so w/o predication. 4688 static bool mayDivideByZero(Instruction &I) { 4689 assert((I.getOpcode() == Instruction::UDiv || 4690 I.getOpcode() == Instruction::SDiv || 4691 I.getOpcode() == Instruction::URem || 4692 I.getOpcode() == Instruction::SRem) && 4693 "Unexpected instruction"); 4694 Value *Divisor = I.getOperand(1); 4695 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4696 return !CInt || CInt->isZero(); 4697 } 4698 4699 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4700 // For each instruction in the old loop. 4701 for (Instruction &I : *BB) { 4702 4703 // If the instruction will become trivially dead when vectorized, we don't 4704 // need to generate it. 4705 if (DeadInstructions.count(&I)) 4706 continue; 4707 4708 // Scalarize instructions that should remain scalar after vectorization. 4709 if (VF > 1 && 4710 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4711 isa<DbgInfoIntrinsic>(&I)) && 4712 shouldScalarizeInstruction(&I)) { 4713 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4714 continue; 4715 } 4716 4717 switch (I.getOpcode()) { 4718 case Instruction::Br: 4719 // Nothing to do for PHIs and BR, since we already took care of the 4720 // loop control flow instructions. 4721 continue; 4722 case Instruction::PHI: { 4723 // Vectorize PHINodes. 4724 widenPHIInstruction(&I, UF, VF, PV); 4725 continue; 4726 } // End of PHI. 4727 4728 case Instruction::UDiv: 4729 case Instruction::SDiv: 4730 case Instruction::SRem: 4731 case Instruction::URem: 4732 // Scalarize with predication if this instruction may divide by zero and 4733 // block execution is conditional, otherwise fallthrough. 4734 if (Legal->isScalarWithPredication(&I)) { 4735 scalarizeInstruction(&I, true); 4736 continue; 4737 } 4738 case Instruction::Add: 4739 case Instruction::FAdd: 4740 case Instruction::Sub: 4741 case Instruction::FSub: 4742 case Instruction::Mul: 4743 case Instruction::FMul: 4744 case Instruction::FDiv: 4745 case Instruction::FRem: 4746 case Instruction::Shl: 4747 case Instruction::LShr: 4748 case Instruction::AShr: 4749 case Instruction::And: 4750 case Instruction::Or: 4751 case Instruction::Xor: { 4752 // Just widen binops. 4753 auto *BinOp = cast<BinaryOperator>(&I); 4754 setDebugLocFromInst(Builder, BinOp); 4755 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4756 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4757 4758 // Use this vector value for all users of the original instruction. 4759 VectorParts Entry(UF); 4760 for (unsigned Part = 0; Part < UF; ++Part) { 4761 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4762 4763 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4764 VecOp->copyIRFlags(BinOp); 4765 4766 Entry[Part] = V; 4767 } 4768 4769 VectorLoopValueMap.initVector(&I, Entry); 4770 addMetadata(Entry, BinOp); 4771 break; 4772 } 4773 case Instruction::Select: { 4774 // Widen selects. 4775 // If the selector is loop invariant we can create a select 4776 // instruction with a scalar condition. Otherwise, use vector-select. 4777 auto *SE = PSE.getSE(); 4778 bool InvariantCond = 4779 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4780 setDebugLocFromInst(Builder, &I); 4781 4782 // The condition can be loop invariant but still defined inside the 4783 // loop. This means that we can't just use the original 'cond' value. 4784 // We have to take the 'vectorized' value and pick the first lane. 4785 // Instcombine will make this a no-op. 4786 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4787 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4788 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4789 4790 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4791 4792 VectorParts Entry(UF); 4793 for (unsigned Part = 0; Part < UF; ++Part) { 4794 Entry[Part] = Builder.CreateSelect( 4795 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4796 } 4797 4798 VectorLoopValueMap.initVector(&I, Entry); 4799 addMetadata(Entry, &I); 4800 break; 4801 } 4802 4803 case Instruction::ICmp: 4804 case Instruction::FCmp: { 4805 // Widen compares. Generate vector compares. 4806 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4807 auto *Cmp = dyn_cast<CmpInst>(&I); 4808 setDebugLocFromInst(Builder, Cmp); 4809 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4810 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4811 VectorParts Entry(UF); 4812 for (unsigned Part = 0; Part < UF; ++Part) { 4813 Value *C = nullptr; 4814 if (FCmp) { 4815 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4816 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4817 } else { 4818 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4819 } 4820 Entry[Part] = C; 4821 } 4822 4823 VectorLoopValueMap.initVector(&I, Entry); 4824 addMetadata(Entry, &I); 4825 break; 4826 } 4827 4828 case Instruction::Store: 4829 case Instruction::Load: 4830 vectorizeMemoryInstruction(&I); 4831 break; 4832 case Instruction::ZExt: 4833 case Instruction::SExt: 4834 case Instruction::FPToUI: 4835 case Instruction::FPToSI: 4836 case Instruction::FPExt: 4837 case Instruction::PtrToInt: 4838 case Instruction::IntToPtr: 4839 case Instruction::SIToFP: 4840 case Instruction::UIToFP: 4841 case Instruction::Trunc: 4842 case Instruction::FPTrunc: 4843 case Instruction::BitCast: { 4844 auto *CI = dyn_cast<CastInst>(&I); 4845 setDebugLocFromInst(Builder, CI); 4846 4847 // Optimize the special case where the source is a constant integer 4848 // induction variable. Notice that we can only optimize the 'trunc' case 4849 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4850 // (c) other casts depend on pointer size. 4851 auto ID = Legal->getInductionVars()->lookup(OldInduction); 4852 if (isa<TruncInst>(CI) && CI->getOperand(0) == OldInduction && 4853 ID.getConstIntStepValue()) { 4854 widenIntInduction(OldInduction, cast<TruncInst>(CI)); 4855 break; 4856 } 4857 4858 /// Vectorize casts. 4859 Type *DestTy = 4860 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4861 4862 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4863 VectorParts Entry(UF); 4864 for (unsigned Part = 0; Part < UF; ++Part) 4865 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4866 VectorLoopValueMap.initVector(&I, Entry); 4867 addMetadata(Entry, &I); 4868 break; 4869 } 4870 4871 case Instruction::Call: { 4872 // Ignore dbg intrinsics. 4873 if (isa<DbgInfoIntrinsic>(I)) 4874 break; 4875 setDebugLocFromInst(Builder, &I); 4876 4877 Module *M = BB->getParent()->getParent(); 4878 auto *CI = cast<CallInst>(&I); 4879 4880 StringRef FnName = CI->getCalledFunction()->getName(); 4881 Function *F = CI->getCalledFunction(); 4882 Type *RetTy = ToVectorTy(CI->getType(), VF); 4883 SmallVector<Type *, 4> Tys; 4884 for (Value *ArgOperand : CI->arg_operands()) 4885 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4886 4887 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4888 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4889 ID == Intrinsic::lifetime_start)) { 4890 scalarizeInstruction(&I); 4891 break; 4892 } 4893 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4894 // version of the instruction. 4895 // Is it beneficial to perform intrinsic call compared to lib call? 4896 bool NeedToScalarize; 4897 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4898 bool UseVectorIntrinsic = 4899 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4900 if (!UseVectorIntrinsic && NeedToScalarize) { 4901 scalarizeInstruction(&I); 4902 break; 4903 } 4904 4905 VectorParts Entry(UF); 4906 for (unsigned Part = 0; Part < UF; ++Part) { 4907 SmallVector<Value *, 4> Args; 4908 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4909 Value *Arg = CI->getArgOperand(i); 4910 // Some intrinsics have a scalar argument - don't replace it with a 4911 // vector. 4912 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4913 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4914 Arg = VectorArg[Part]; 4915 } 4916 Args.push_back(Arg); 4917 } 4918 4919 Function *VectorF; 4920 if (UseVectorIntrinsic) { 4921 // Use vector version of the intrinsic. 4922 Type *TysForDecl[] = {CI->getType()}; 4923 if (VF > 1) 4924 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4925 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4926 } else { 4927 // Use vector version of the library call. 4928 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4929 assert(!VFnName.empty() && "Vector function name is empty."); 4930 VectorF = M->getFunction(VFnName); 4931 if (!VectorF) { 4932 // Generate a declaration 4933 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4934 VectorF = 4935 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4936 VectorF->copyAttributesFrom(F); 4937 } 4938 } 4939 assert(VectorF && "Can't create vector function."); 4940 4941 SmallVector<OperandBundleDef, 1> OpBundles; 4942 CI->getOperandBundlesAsDefs(OpBundles); 4943 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4944 4945 if (isa<FPMathOperator>(V)) 4946 V->copyFastMathFlags(CI); 4947 4948 Entry[Part] = V; 4949 } 4950 4951 VectorLoopValueMap.initVector(&I, Entry); 4952 addMetadata(Entry, &I); 4953 break; 4954 } 4955 4956 default: 4957 // All other instructions are unsupported. Scalarize them. 4958 scalarizeInstruction(&I); 4959 break; 4960 } // end of switch. 4961 } // end of for_each instr. 4962 } 4963 4964 void InnerLoopVectorizer::updateAnalysis() { 4965 // Forget the original basic block. 4966 PSE.getSE()->forgetLoop(OrigLoop); 4967 4968 // Update the dominator tree information. 4969 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4970 "Entry does not dominate exit."); 4971 4972 // We don't predicate stores by this point, so the vector body should be a 4973 // single loop. 4974 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4975 4976 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4977 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4978 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4979 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4980 4981 DEBUG(DT->verifyDomTree()); 4982 } 4983 4984 /// \brief Check whether it is safe to if-convert this phi node. 4985 /// 4986 /// Phi nodes with constant expressions that can trap are not safe to if 4987 /// convert. 4988 static bool canIfConvertPHINodes(BasicBlock *BB) { 4989 for (Instruction &I : *BB) { 4990 auto *Phi = dyn_cast<PHINode>(&I); 4991 if (!Phi) 4992 return true; 4993 for (Value *V : Phi->incoming_values()) 4994 if (auto *C = dyn_cast<Constant>(V)) 4995 if (C->canTrap()) 4996 return false; 4997 } 4998 return true; 4999 } 5000 5001 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5002 if (!EnableIfConversion) { 5003 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5004 << "if-conversion is disabled"); 5005 return false; 5006 } 5007 5008 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5009 5010 // A list of pointers that we can safely read and write to. 5011 SmallPtrSet<Value *, 8> SafePointes; 5012 5013 // Collect safe addresses. 5014 for (BasicBlock *BB : TheLoop->blocks()) { 5015 if (blockNeedsPredication(BB)) 5016 continue; 5017 5018 for (Instruction &I : *BB) 5019 if (auto *Ptr = getPointerOperand(&I)) 5020 SafePointes.insert(Ptr); 5021 } 5022 5023 // Collect the blocks that need predication. 5024 BasicBlock *Header = TheLoop->getHeader(); 5025 for (BasicBlock *BB : TheLoop->blocks()) { 5026 // We don't support switch statements inside loops. 5027 if (!isa<BranchInst>(BB->getTerminator())) { 5028 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5029 << "loop contains a switch statement"); 5030 return false; 5031 } 5032 5033 // We must be able to predicate all blocks that need to be predicated. 5034 if (blockNeedsPredication(BB)) { 5035 if (!blockCanBePredicated(BB, SafePointes)) { 5036 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5037 << "control flow cannot be substituted for a select"); 5038 return false; 5039 } 5040 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5041 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5042 << "control flow cannot be substituted for a select"); 5043 return false; 5044 } 5045 } 5046 5047 // We can if-convert this loop. 5048 return true; 5049 } 5050 5051 bool LoopVectorizationLegality::canVectorize() { 5052 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5053 // be canonicalized. 5054 if (!TheLoop->getLoopPreheader()) { 5055 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5056 << "loop control flow is not understood by vectorizer"); 5057 return false; 5058 } 5059 5060 // FIXME: The code is currently dead, since the loop gets sent to 5061 // LoopVectorizationLegality is already an innermost loop. 5062 // 5063 // We can only vectorize innermost loops. 5064 if (!TheLoop->empty()) { 5065 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5066 << "loop is not the innermost loop"); 5067 return false; 5068 } 5069 5070 // We must have a single backedge. 5071 if (TheLoop->getNumBackEdges() != 1) { 5072 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5073 << "loop control flow is not understood by vectorizer"); 5074 return false; 5075 } 5076 5077 // We must have a single exiting block. 5078 if (!TheLoop->getExitingBlock()) { 5079 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5080 << "loop control flow is not understood by vectorizer"); 5081 return false; 5082 } 5083 5084 // We only handle bottom-tested loops, i.e. loop in which the condition is 5085 // checked at the end of each iteration. With that we can assume that all 5086 // instructions in the loop are executed the same number of times. 5087 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5088 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5089 << "loop control flow is not understood by vectorizer"); 5090 return false; 5091 } 5092 5093 // We need to have a loop header. 5094 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5095 << '\n'); 5096 5097 // Check if we can if-convert non-single-bb loops. 5098 unsigned NumBlocks = TheLoop->getNumBlocks(); 5099 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5100 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5101 return false; 5102 } 5103 5104 // ScalarEvolution needs to be able to find the exit count. 5105 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5106 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5107 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5108 << "could not determine number of loop iterations"); 5109 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5110 return false; 5111 } 5112 5113 // Check if we can vectorize the instructions and CFG in this loop. 5114 if (!canVectorizeInstrs()) { 5115 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5116 return false; 5117 } 5118 5119 // Go over each instruction and look at memory deps. 5120 if (!canVectorizeMemory()) { 5121 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5122 return false; 5123 } 5124 5125 DEBUG(dbgs() << "LV: We can vectorize this loop" 5126 << (LAI->getRuntimePointerChecking()->Need 5127 ? " (with a runtime bound check)" 5128 : "") 5129 << "!\n"); 5130 5131 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5132 5133 // If an override option has been passed in for interleaved accesses, use it. 5134 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5135 UseInterleaved = EnableInterleavedMemAccesses; 5136 5137 // Analyze interleaved memory accesses. 5138 if (UseInterleaved) 5139 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5140 5141 // Collect all instructions that are known to be uniform after vectorization. 5142 collectLoopUniforms(); 5143 5144 // Collect all instructions that are known to be scalar after vectorization. 5145 collectLoopScalars(); 5146 5147 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5148 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5149 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5150 5151 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5152 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5153 << "Too many SCEV assumptions need to be made and checked " 5154 << "at runtime"); 5155 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5156 return false; 5157 } 5158 5159 // Okay! We can vectorize. At this point we don't have any other mem analysis 5160 // which may limit our maximum vectorization factor, so just return true with 5161 // no restrictions. 5162 return true; 5163 } 5164 5165 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5166 if (Ty->isPointerTy()) 5167 return DL.getIntPtrType(Ty); 5168 5169 // It is possible that char's or short's overflow when we ask for the loop's 5170 // trip count, work around this by changing the type size. 5171 if (Ty->getScalarSizeInBits() < 32) 5172 return Type::getInt32Ty(Ty->getContext()); 5173 5174 return Ty; 5175 } 5176 5177 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5178 Ty0 = convertPointerToIntegerType(DL, Ty0); 5179 Ty1 = convertPointerToIntegerType(DL, Ty1); 5180 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5181 return Ty0; 5182 return Ty1; 5183 } 5184 5185 /// \brief Check that the instruction has outside loop users and is not an 5186 /// identified reduction variable. 5187 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5188 SmallPtrSetImpl<Value *> &AllowedExit) { 5189 // Reduction and Induction instructions are allowed to have exit users. All 5190 // other instructions must not have external users. 5191 if (!AllowedExit.count(Inst)) 5192 // Check that all of the users of the loop are inside the BB. 5193 for (User *U : Inst->users()) { 5194 Instruction *UI = cast<Instruction>(U); 5195 // This user may be a reduction exit value. 5196 if (!TheLoop->contains(UI)) { 5197 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5198 return true; 5199 } 5200 } 5201 return false; 5202 } 5203 5204 void LoopVectorizationLegality::addInductionPhi( 5205 PHINode *Phi, const InductionDescriptor &ID, 5206 SmallPtrSetImpl<Value *> &AllowedExit) { 5207 Inductions[Phi] = ID; 5208 Type *PhiTy = Phi->getType(); 5209 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5210 5211 // Get the widest type. 5212 if (!PhiTy->isFloatingPointTy()) { 5213 if (!WidestIndTy) 5214 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5215 else 5216 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5217 } 5218 5219 // Int inductions are special because we only allow one IV. 5220 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5221 ID.getConstIntStepValue() && 5222 ID.getConstIntStepValue()->isOne() && 5223 isa<Constant>(ID.getStartValue()) && 5224 cast<Constant>(ID.getStartValue())->isNullValue()) { 5225 5226 // Use the phi node with the widest type as induction. Use the last 5227 // one if there are multiple (no good reason for doing this other 5228 // than it is expedient). We've checked that it begins at zero and 5229 // steps by one, so this is a canonical induction variable. 5230 if (!Induction || PhiTy == WidestIndTy) 5231 Induction = Phi; 5232 } 5233 5234 // Both the PHI node itself, and the "post-increment" value feeding 5235 // back into the PHI node may have external users. 5236 AllowedExit.insert(Phi); 5237 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5238 5239 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5240 return; 5241 } 5242 5243 bool LoopVectorizationLegality::canVectorizeInstrs() { 5244 BasicBlock *Header = TheLoop->getHeader(); 5245 5246 // Look for the attribute signaling the absence of NaNs. 5247 Function &F = *Header->getParent(); 5248 HasFunNoNaNAttr = 5249 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5250 5251 // For each block in the loop. 5252 for (BasicBlock *BB : TheLoop->blocks()) { 5253 // Scan the instructions in the block and look for hazards. 5254 for (Instruction &I : *BB) { 5255 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5256 Type *PhiTy = Phi->getType(); 5257 // Check that this PHI type is allowed. 5258 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5259 !PhiTy->isPointerTy()) { 5260 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5261 << "loop control flow is not understood by vectorizer"); 5262 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5263 return false; 5264 } 5265 5266 // If this PHINode is not in the header block, then we know that we 5267 // can convert it to select during if-conversion. No need to check if 5268 // the PHIs in this block are induction or reduction variables. 5269 if (BB != Header) { 5270 // Check that this instruction has no outside users or is an 5271 // identified reduction value with an outside user. 5272 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5273 continue; 5274 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5275 << "value could not be identified as " 5276 "an induction or reduction variable"); 5277 return false; 5278 } 5279 5280 // We only allow if-converted PHIs with exactly two incoming values. 5281 if (Phi->getNumIncomingValues() != 2) { 5282 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5283 << "control flow not understood by vectorizer"); 5284 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5285 return false; 5286 } 5287 5288 RecurrenceDescriptor RedDes; 5289 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5290 if (RedDes.hasUnsafeAlgebra()) 5291 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5292 AllowedExit.insert(RedDes.getLoopExitInstr()); 5293 Reductions[Phi] = RedDes; 5294 continue; 5295 } 5296 5297 InductionDescriptor ID; 5298 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5299 addInductionPhi(Phi, ID, AllowedExit); 5300 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5301 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5302 continue; 5303 } 5304 5305 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5306 FirstOrderRecurrences.insert(Phi); 5307 continue; 5308 } 5309 5310 // As a last resort, coerce the PHI to a AddRec expression 5311 // and re-try classifying it a an induction PHI. 5312 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5313 addInductionPhi(Phi, ID, AllowedExit); 5314 continue; 5315 } 5316 5317 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5318 << "value that could not be identified as " 5319 "reduction is used outside the loop"); 5320 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5321 return false; 5322 } // end of PHI handling 5323 5324 // We handle calls that: 5325 // * Are debug info intrinsics. 5326 // * Have a mapping to an IR intrinsic. 5327 // * Have a vector version available. 5328 auto *CI = dyn_cast<CallInst>(&I); 5329 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5330 !isa<DbgInfoIntrinsic>(CI) && 5331 !(CI->getCalledFunction() && TLI && 5332 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5333 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5334 << "call instruction cannot be vectorized"); 5335 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5336 return false; 5337 } 5338 5339 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5340 // second argument is the same (i.e. loop invariant) 5341 if (CI && hasVectorInstrinsicScalarOpd( 5342 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5343 auto *SE = PSE.getSE(); 5344 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5345 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5346 << "intrinsic instruction cannot be vectorized"); 5347 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5348 return false; 5349 } 5350 } 5351 5352 // Check that the instruction return type is vectorizable. 5353 // Also, we can't vectorize extractelement instructions. 5354 if ((!VectorType::isValidElementType(I.getType()) && 5355 !I.getType()->isVoidTy()) || 5356 isa<ExtractElementInst>(I)) { 5357 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5358 << "instruction return type cannot be vectorized"); 5359 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5360 return false; 5361 } 5362 5363 // Check that the stored type is vectorizable. 5364 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5365 Type *T = ST->getValueOperand()->getType(); 5366 if (!VectorType::isValidElementType(T)) { 5367 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5368 << "store instruction cannot be vectorized"); 5369 return false; 5370 } 5371 5372 // FP instructions can allow unsafe algebra, thus vectorizable by 5373 // non-IEEE-754 compliant SIMD units. 5374 // This applies to floating-point math operations and calls, not memory 5375 // operations, shuffles, or casts, as they don't change precision or 5376 // semantics. 5377 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5378 !I.hasUnsafeAlgebra()) { 5379 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5380 Hints->setPotentiallyUnsafe(); 5381 } 5382 5383 // Reduction instructions are allowed to have exit users. 5384 // All other instructions must not have external users. 5385 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5386 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5387 << "value cannot be used outside the loop"); 5388 return false; 5389 } 5390 5391 } // next instr. 5392 } 5393 5394 if (!Induction) { 5395 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5396 if (Inductions.empty()) { 5397 ORE->emit(createMissedAnalysis("NoInductionVariable") 5398 << "loop induction variable could not be identified"); 5399 return false; 5400 } 5401 } 5402 5403 // Now we know the widest induction type, check if our found induction 5404 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5405 // will create another. 5406 if (Induction && WidestIndTy != Induction->getType()) 5407 Induction = nullptr; 5408 5409 return true; 5410 } 5411 5412 void LoopVectorizationLegality::collectLoopScalars() { 5413 5414 // If an instruction is uniform after vectorization, it will remain scalar. 5415 Scalars.insert(Uniforms.begin(), Uniforms.end()); 5416 5417 // Collect the getelementptr instructions that will not be vectorized. A 5418 // getelementptr instruction is only vectorized if it is used for a legal 5419 // gather or scatter operation. 5420 for (auto *BB : TheLoop->blocks()) 5421 for (auto &I : *BB) { 5422 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 5423 Scalars.insert(GEP); 5424 continue; 5425 } 5426 auto *Ptr = getPointerOperand(&I); 5427 if (!Ptr) 5428 continue; 5429 auto *GEP = getGEPInstruction(Ptr); 5430 if (GEP && isLegalGatherOrScatter(&I)) 5431 Scalars.erase(GEP); 5432 } 5433 5434 // An induction variable will remain scalar if all users of the induction 5435 // variable and induction variable update remain scalar. 5436 auto *Latch = TheLoop->getLoopLatch(); 5437 for (auto &Induction : *getInductionVars()) { 5438 auto *Ind = Induction.first; 5439 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5440 5441 // Determine if all users of the induction variable are scalar after 5442 // vectorization. 5443 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5444 auto *I = cast<Instruction>(U); 5445 return I == IndUpdate || !TheLoop->contains(I) || Scalars.count(I); 5446 }); 5447 if (!ScalarInd) 5448 continue; 5449 5450 // Determine if all users of the induction variable update instruction are 5451 // scalar after vectorization. 5452 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5453 auto *I = cast<Instruction>(U); 5454 return I == Ind || !TheLoop->contains(I) || Scalars.count(I); 5455 }); 5456 if (!ScalarIndUpdate) 5457 continue; 5458 5459 // The induction variable and its update instruction will remain scalar. 5460 Scalars.insert(Ind); 5461 Scalars.insert(IndUpdate); 5462 } 5463 } 5464 5465 bool LoopVectorizationLegality::hasConsecutiveLikePtrOperand(Instruction *I) { 5466 if (isAccessInterleaved(I)) 5467 return true; 5468 if (auto *Ptr = getPointerOperand(I)) 5469 return isConsecutivePtr(Ptr); 5470 return false; 5471 } 5472 5473 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5474 if (!blockNeedsPredication(I->getParent())) 5475 return false; 5476 switch(I->getOpcode()) { 5477 default: 5478 break; 5479 case Instruction::Store: 5480 return !isMaskRequired(I); 5481 case Instruction::UDiv: 5482 case Instruction::SDiv: 5483 case Instruction::SRem: 5484 case Instruction::URem: 5485 return mayDivideByZero(*I); 5486 } 5487 return false; 5488 } 5489 5490 bool LoopVectorizationLegality::memoryInstructionMustBeScalarized( 5491 Instruction *I, unsigned VF) { 5492 5493 // If the memory instruction is in an interleaved group, it will be 5494 // vectorized and its pointer will remain uniform. 5495 if (isAccessInterleaved(I)) 5496 return false; 5497 5498 // Get and ensure we have a valid memory instruction. 5499 LoadInst *LI = dyn_cast<LoadInst>(I); 5500 StoreInst *SI = dyn_cast<StoreInst>(I); 5501 assert((LI || SI) && "Invalid memory instruction"); 5502 5503 // If the pointer operand is uniform (loop invariant), the memory instruction 5504 // will be scalarized. 5505 auto *Ptr = getPointerOperand(I); 5506 if (LI && isUniform(Ptr)) 5507 return true; 5508 5509 // If the pointer operand is non-consecutive and neither a gather nor a 5510 // scatter operation is legal, the memory instruction will be scalarized. 5511 if (!isConsecutivePtr(Ptr) && !isLegalGatherOrScatter(I)) 5512 return true; 5513 5514 // If the instruction is a store located in a predicated block, it will be 5515 // scalarized. 5516 if (isScalarWithPredication(I)) 5517 return true; 5518 5519 // If the instruction's allocated size doesn't equal it's type size, it 5520 // requires padding and will be scalarized. 5521 auto &DL = I->getModule()->getDataLayout(); 5522 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5523 if (hasIrregularType(ScalarTy, DL, VF)) 5524 return true; 5525 5526 // Otherwise, the memory instruction should be vectorized if the rest of the 5527 // loop is. 5528 return false; 5529 } 5530 5531 void LoopVectorizationLegality::collectLoopUniforms() { 5532 // We now know that the loop is vectorizable! 5533 // Collect instructions inside the loop that will remain uniform after 5534 // vectorization. 5535 5536 // Global values, params and instructions outside of current loop are out of 5537 // scope. 5538 auto isOutOfScope = [&](Value *V) -> bool { 5539 Instruction *I = dyn_cast<Instruction>(V); 5540 return (!I || !TheLoop->contains(I)); 5541 }; 5542 5543 SetVector<Instruction *> Worklist; 5544 BasicBlock *Latch = TheLoop->getLoopLatch(); 5545 5546 // Start with the conditional branch. If the branch condition is an 5547 // instruction contained in the loop that is only used by the branch, it is 5548 // uniform. 5549 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5550 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5551 Worklist.insert(Cmp); 5552 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5553 } 5554 5555 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5556 // are pointers that are treated like consecutive pointers during 5557 // vectorization. The pointer operands of interleaved accesses are an 5558 // example. 5559 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5560 5561 // Holds pointer operands of instructions that are possibly non-uniform. 5562 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5563 5564 // Iterate over the instructions in the loop, and collect all 5565 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5566 // that a consecutive-like pointer operand will be scalarized, we collect it 5567 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5568 // getelementptr instruction can be used by both vectorized and scalarized 5569 // memory instructions. For example, if a loop loads and stores from the same 5570 // location, but the store is conditional, the store will be scalarized, and 5571 // the getelementptr won't remain uniform. 5572 for (auto *BB : TheLoop->blocks()) 5573 for (auto &I : *BB) { 5574 5575 // If there's no pointer operand, there's nothing to do. 5576 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5577 if (!Ptr) 5578 continue; 5579 5580 // True if all users of Ptr are memory accesses that have Ptr as their 5581 // pointer operand. 5582 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5583 return getPointerOperand(U) == Ptr; 5584 }); 5585 5586 // Ensure the memory instruction will not be scalarized, making its 5587 // pointer operand non-uniform. If the pointer operand is used by some 5588 // instruction other than a memory access, we're not going to check if 5589 // that other instruction may be scalarized here. Thus, conservatively 5590 // assume the pointer operand may be non-uniform. 5591 if (!UsersAreMemAccesses || memoryInstructionMustBeScalarized(&I)) 5592 PossibleNonUniformPtrs.insert(Ptr); 5593 5594 // If the memory instruction will be vectorized and its pointer operand 5595 // is consecutive-like, the pointer operand should remain uniform. 5596 else if (hasConsecutiveLikePtrOperand(&I)) 5597 ConsecutiveLikePtrs.insert(Ptr); 5598 } 5599 5600 // Add to the Worklist all consecutive and consecutive-like pointers that 5601 // aren't also identified as possibly non-uniform. 5602 for (auto *V : ConsecutiveLikePtrs) 5603 if (!PossibleNonUniformPtrs.count(V)) { 5604 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5605 Worklist.insert(V); 5606 } 5607 5608 // Expand Worklist in topological order: whenever a new instruction 5609 // is added , its users should be either already inside Worklist, or 5610 // out of scope. It ensures a uniform instruction will only be used 5611 // by uniform instructions or out of scope instructions. 5612 unsigned idx = 0; 5613 while (idx != Worklist.size()) { 5614 Instruction *I = Worklist[idx++]; 5615 5616 for (auto OV : I->operand_values()) { 5617 if (isOutOfScope(OV)) 5618 continue; 5619 auto *OI = cast<Instruction>(OV); 5620 if (all_of(OI->users(), [&](User *U) -> bool { 5621 return isOutOfScope(U) || Worklist.count(cast<Instruction>(U)); 5622 })) { 5623 Worklist.insert(OI); 5624 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5625 } 5626 } 5627 } 5628 5629 // Returns true if Ptr is the pointer operand of a memory access instruction 5630 // I, and I is known to not require scalarization. 5631 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5632 return getPointerOperand(I) == Ptr && !memoryInstructionMustBeScalarized(I); 5633 }; 5634 5635 // For an instruction to be added into Worklist above, all its users inside 5636 // the loop should also be in Worklist. However, this condition cannot be 5637 // true for phi nodes that form a cyclic dependence. We must process phi 5638 // nodes separately. An induction variable will remain uniform if all users 5639 // of the induction variable and induction variable update remain uniform. 5640 // The code below handles both pointer and non-pointer induction variables. 5641 for (auto &Induction : Inductions) { 5642 auto *Ind = Induction.first; 5643 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5644 5645 // Determine if all users of the induction variable are uniform after 5646 // vectorization. 5647 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5648 auto *I = cast<Instruction>(U); 5649 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5650 isVectorizedMemAccessUse(I, Ind); 5651 }); 5652 if (!UniformInd) 5653 continue; 5654 5655 // Determine if all users of the induction variable update instruction are 5656 // uniform after vectorization. 5657 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5658 auto *I = cast<Instruction>(U); 5659 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5660 isVectorizedMemAccessUse(I, IndUpdate); 5661 }); 5662 if (!UniformIndUpdate) 5663 continue; 5664 5665 // The induction variable and its update instruction will remain uniform. 5666 Worklist.insert(Ind); 5667 Worklist.insert(IndUpdate); 5668 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5669 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5670 } 5671 5672 Uniforms.insert(Worklist.begin(), Worklist.end()); 5673 } 5674 5675 bool LoopVectorizationLegality::canVectorizeMemory() { 5676 LAI = &(*GetLAA)(*TheLoop); 5677 InterleaveInfo.setLAI(LAI); 5678 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5679 if (LAR) { 5680 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5681 "loop not vectorized: ", *LAR); 5682 ORE->emit(VR); 5683 } 5684 if (!LAI->canVectorizeMemory()) 5685 return false; 5686 5687 if (LAI->hasStoreToLoopInvariantAddress()) { 5688 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5689 << "write to a loop invariant address could not be vectorized"); 5690 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5691 return false; 5692 } 5693 5694 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5695 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5696 5697 return true; 5698 } 5699 5700 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5701 Value *In0 = const_cast<Value *>(V); 5702 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5703 if (!PN) 5704 return false; 5705 5706 return Inductions.count(PN); 5707 } 5708 5709 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5710 return FirstOrderRecurrences.count(Phi); 5711 } 5712 5713 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5714 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5715 } 5716 5717 bool LoopVectorizationLegality::blockCanBePredicated( 5718 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5719 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5720 5721 for (Instruction &I : *BB) { 5722 // Check that we don't have a constant expression that can trap as operand. 5723 for (Value *Operand : I.operands()) { 5724 if (auto *C = dyn_cast<Constant>(Operand)) 5725 if (C->canTrap()) 5726 return false; 5727 } 5728 // We might be able to hoist the load. 5729 if (I.mayReadFromMemory()) { 5730 auto *LI = dyn_cast<LoadInst>(&I); 5731 if (!LI) 5732 return false; 5733 if (!SafePtrs.count(LI->getPointerOperand())) { 5734 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5735 isLegalMaskedGather(LI->getType())) { 5736 MaskedOp.insert(LI); 5737 continue; 5738 } 5739 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5740 if (IsAnnotatedParallel) 5741 continue; 5742 return false; 5743 } 5744 } 5745 5746 if (I.mayWriteToMemory()) { 5747 auto *SI = dyn_cast<StoreInst>(&I); 5748 // We only support predication of stores in basic blocks with one 5749 // predecessor. 5750 if (!SI) 5751 return false; 5752 5753 // Build a masked store if it is legal for the target. 5754 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5755 SI->getPointerOperand()) || 5756 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5757 MaskedOp.insert(SI); 5758 continue; 5759 } 5760 5761 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5762 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5763 5764 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5765 !isSinglePredecessor) 5766 return false; 5767 } 5768 if (I.mayThrow()) 5769 return false; 5770 } 5771 5772 return true; 5773 } 5774 5775 void InterleavedAccessInfo::collectConstStrideAccesses( 5776 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5777 const ValueToValueMap &Strides) { 5778 5779 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5780 5781 // Since it's desired that the load/store instructions be maintained in 5782 // "program order" for the interleaved access analysis, we have to visit the 5783 // blocks in the loop in reverse postorder (i.e., in a topological order). 5784 // Such an ordering will ensure that any load/store that may be executed 5785 // before a second load/store will precede the second load/store in 5786 // AccessStrideInfo. 5787 LoopBlocksDFS DFS(TheLoop); 5788 DFS.perform(LI); 5789 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5790 for (auto &I : *BB) { 5791 auto *LI = dyn_cast<LoadInst>(&I); 5792 auto *SI = dyn_cast<StoreInst>(&I); 5793 if (!LI && !SI) 5794 continue; 5795 5796 Value *Ptr = getPointerOperand(&I); 5797 // We don't check wrapping here because we don't know yet if Ptr will be 5798 // part of a full group or a group with gaps. Checking wrapping for all 5799 // pointers (even those that end up in groups with no gaps) will be overly 5800 // conservative. For full groups, wrapping should be ok since if we would 5801 // wrap around the address space we would do a memory access at nullptr 5802 // even without the transformation. The wrapping checks are therefore 5803 // deferred until after we've formed the interleaved groups. 5804 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5805 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5806 5807 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5808 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5809 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5810 5811 // An alignment of 0 means target ABI alignment. 5812 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5813 if (!Align) 5814 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5815 5816 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5817 } 5818 } 5819 5820 // Analyze interleaved accesses and collect them into interleaved load and 5821 // store groups. 5822 // 5823 // When generating code for an interleaved load group, we effectively hoist all 5824 // loads in the group to the location of the first load in program order. When 5825 // generating code for an interleaved store group, we sink all stores to the 5826 // location of the last store. This code motion can change the order of load 5827 // and store instructions and may break dependences. 5828 // 5829 // The code generation strategy mentioned above ensures that we won't violate 5830 // any write-after-read (WAR) dependences. 5831 // 5832 // E.g., for the WAR dependence: a = A[i]; // (1) 5833 // A[i] = b; // (2) 5834 // 5835 // The store group of (2) is always inserted at or below (2), and the load 5836 // group of (1) is always inserted at or above (1). Thus, the instructions will 5837 // never be reordered. All other dependences are checked to ensure the 5838 // correctness of the instruction reordering. 5839 // 5840 // The algorithm visits all memory accesses in the loop in bottom-up program 5841 // order. Program order is established by traversing the blocks in the loop in 5842 // reverse postorder when collecting the accesses. 5843 // 5844 // We visit the memory accesses in bottom-up order because it can simplify the 5845 // construction of store groups in the presence of write-after-write (WAW) 5846 // dependences. 5847 // 5848 // E.g., for the WAW dependence: A[i] = a; // (1) 5849 // A[i] = b; // (2) 5850 // A[i + 1] = c; // (3) 5851 // 5852 // We will first create a store group with (3) and (2). (1) can't be added to 5853 // this group because it and (2) are dependent. However, (1) can be grouped 5854 // with other accesses that may precede it in program order. Note that a 5855 // bottom-up order does not imply that WAW dependences should not be checked. 5856 void InterleavedAccessInfo::analyzeInterleaving( 5857 const ValueToValueMap &Strides) { 5858 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5859 5860 // Holds all accesses with a constant stride. 5861 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5862 collectConstStrideAccesses(AccessStrideInfo, Strides); 5863 5864 if (AccessStrideInfo.empty()) 5865 return; 5866 5867 // Collect the dependences in the loop. 5868 collectDependences(); 5869 5870 // Holds all interleaved store groups temporarily. 5871 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5872 // Holds all interleaved load groups temporarily. 5873 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5874 5875 // Search in bottom-up program order for pairs of accesses (A and B) that can 5876 // form interleaved load or store groups. In the algorithm below, access A 5877 // precedes access B in program order. We initialize a group for B in the 5878 // outer loop of the algorithm, and then in the inner loop, we attempt to 5879 // insert each A into B's group if: 5880 // 5881 // 1. A and B have the same stride, 5882 // 2. A and B have the same memory object size, and 5883 // 3. A belongs in B's group according to its distance from B. 5884 // 5885 // Special care is taken to ensure group formation will not break any 5886 // dependences. 5887 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5888 BI != E; ++BI) { 5889 Instruction *B = BI->first; 5890 StrideDescriptor DesB = BI->second; 5891 5892 // Initialize a group for B if it has an allowable stride. Even if we don't 5893 // create a group for B, we continue with the bottom-up algorithm to ensure 5894 // we don't break any of B's dependences. 5895 InterleaveGroup *Group = nullptr; 5896 if (isStrided(DesB.Stride)) { 5897 Group = getInterleaveGroup(B); 5898 if (!Group) { 5899 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5900 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5901 } 5902 if (B->mayWriteToMemory()) 5903 StoreGroups.insert(Group); 5904 else 5905 LoadGroups.insert(Group); 5906 } 5907 5908 for (auto AI = std::next(BI); AI != E; ++AI) { 5909 Instruction *A = AI->first; 5910 StrideDescriptor DesA = AI->second; 5911 5912 // Our code motion strategy implies that we can't have dependences 5913 // between accesses in an interleaved group and other accesses located 5914 // between the first and last member of the group. Note that this also 5915 // means that a group can't have more than one member at a given offset. 5916 // The accesses in a group can have dependences with other accesses, but 5917 // we must ensure we don't extend the boundaries of the group such that 5918 // we encompass those dependent accesses. 5919 // 5920 // For example, assume we have the sequence of accesses shown below in a 5921 // stride-2 loop: 5922 // 5923 // (1, 2) is a group | A[i] = a; // (1) 5924 // | A[i-1] = b; // (2) | 5925 // A[i-3] = c; // (3) 5926 // A[i] = d; // (4) | (2, 4) is not a group 5927 // 5928 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5929 // but not with (4). If we did, the dependent access (3) would be within 5930 // the boundaries of the (2, 4) group. 5931 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5932 5933 // If a dependence exists and A is already in a group, we know that A 5934 // must be a store since A precedes B and WAR dependences are allowed. 5935 // Thus, A would be sunk below B. We release A's group to prevent this 5936 // illegal code motion. A will then be free to form another group with 5937 // instructions that precede it. 5938 if (isInterleaved(A)) { 5939 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5940 StoreGroups.remove(StoreGroup); 5941 releaseGroup(StoreGroup); 5942 } 5943 5944 // If a dependence exists and A is not already in a group (or it was 5945 // and we just released it), B might be hoisted above A (if B is a 5946 // load) or another store might be sunk below A (if B is a store). In 5947 // either case, we can't add additional instructions to B's group. B 5948 // will only form a group with instructions that it precedes. 5949 break; 5950 } 5951 5952 // At this point, we've checked for illegal code motion. If either A or B 5953 // isn't strided, there's nothing left to do. 5954 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5955 continue; 5956 5957 // Ignore A if it's already in a group or isn't the same kind of memory 5958 // operation as B. 5959 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5960 continue; 5961 5962 // Check rules 1 and 2. Ignore A if its stride or size is different from 5963 // that of B. 5964 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5965 continue; 5966 5967 // Calculate the distance from A to B. 5968 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5969 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5970 if (!DistToB) 5971 continue; 5972 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5973 5974 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5975 // size. 5976 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5977 continue; 5978 5979 // Ignore A if either A or B is in a predicated block. Although we 5980 // currently prevent group formation for predicated accesses, we may be 5981 // able to relax this limitation in the future once we handle more 5982 // complicated blocks. 5983 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5984 continue; 5985 5986 // The index of A is the index of B plus A's distance to B in multiples 5987 // of the size. 5988 int IndexA = 5989 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5990 5991 // Try to insert A into B's group. 5992 if (Group->insertMember(A, IndexA, DesA.Align)) { 5993 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5994 << " into the interleave group with" << *B << '\n'); 5995 InterleaveGroupMap[A] = Group; 5996 5997 // Set the first load in program order as the insert position. 5998 if (A->mayReadFromMemory()) 5999 Group->setInsertPos(A); 6000 } 6001 } // Iteration over A accesses. 6002 } // Iteration over B accesses. 6003 6004 // Remove interleaved store groups with gaps. 6005 for (InterleaveGroup *Group : StoreGroups) 6006 if (Group->getNumMembers() != Group->getFactor()) 6007 releaseGroup(Group); 6008 6009 // Remove interleaved groups with gaps (currently only loads) whose memory 6010 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6011 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6012 // not check wrapping (see documentation there). 6013 // FORNOW we use Assume=false; 6014 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6015 // of runtime SCEV assumptions checks (thereby potentially failing to 6016 // vectorize altogether). 6017 // Additional optional optimizations: 6018 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6019 // wrap then we can deduce that all pointers in the group don't wrap. 6020 // This means that we can forcefully peel the loop in order to only have to 6021 // check the first pointer for no-wrap. When we'll change to use Assume=true 6022 // we'll only need at most one runtime check per interleaved group. 6023 // 6024 for (InterleaveGroup *Group : LoadGroups) { 6025 6026 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6027 // load would wrap around the address space we would do a memory access at 6028 // nullptr even without the transformation. 6029 if (Group->getNumMembers() == Group->getFactor()) 6030 continue; 6031 6032 // Case 2: If first and last members of the group don't wrap this implies 6033 // that all the pointers in the group don't wrap. 6034 // So we check only group member 0 (which is always guaranteed to exist), 6035 // and group member Factor - 1; If the latter doesn't exist we rely on 6036 // peeling (if it is a non-reveresed accsess -- see Case 3). 6037 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6038 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6039 /*ShouldCheckWrap=*/true)) { 6040 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6041 "first group member potentially pointer-wrapping.\n"); 6042 releaseGroup(Group); 6043 continue; 6044 } 6045 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6046 if (LastMember) { 6047 Value *LastMemberPtr = getPointerOperand(LastMember); 6048 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6049 /*ShouldCheckWrap=*/true)) { 6050 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6051 "last group member potentially pointer-wrapping.\n"); 6052 releaseGroup(Group); 6053 } 6054 } 6055 else { 6056 // Case 3: A non-reversed interleaved load group with gaps: We need 6057 // to execute at least one scalar epilogue iteration. This will ensure 6058 // we don't speculatively access memory out-of-bounds. We only need 6059 // to look for a member at index factor - 1, since every group must have 6060 // a member at index zero. 6061 if (Group->isReverse()) { 6062 releaseGroup(Group); 6063 continue; 6064 } 6065 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6066 RequiresScalarEpilogue = true; 6067 } 6068 } 6069 } 6070 6071 LoopVectorizationCostModel::VectorizationFactor 6072 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 6073 // Width 1 means no vectorize 6074 VectorizationFactor Factor = {1U, 0U}; 6075 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 6076 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6077 << "runtime pointer checks needed. Enable vectorization of this " 6078 "loop with '#pragma clang loop vectorize(enable)' when " 6079 "compiling with -Os/-Oz"); 6080 DEBUG(dbgs() 6081 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6082 return Factor; 6083 } 6084 6085 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6086 ORE->emit(createMissedAnalysis("ConditionalStore") 6087 << "store that is conditionally executed prevents vectorization"); 6088 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6089 return Factor; 6090 } 6091 6092 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6093 unsigned SmallestType, WidestType; 6094 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6095 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6096 unsigned MaxSafeDepDist = -1U; 6097 6098 // Get the maximum safe dependence distance in bits computed by LAA. If the 6099 // loop contains any interleaved accesses, we divide the dependence distance 6100 // by the maximum interleave factor of all interleaved groups. Note that 6101 // although the division ensures correctness, this is a fairly conservative 6102 // computation because the maximum distance computed by LAA may not involve 6103 // any of the interleaved accesses. 6104 if (Legal->getMaxSafeDepDistBytes() != -1U) 6105 MaxSafeDepDist = 6106 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6107 6108 WidestRegister = 6109 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6110 unsigned MaxVectorSize = WidestRegister / WidestType; 6111 6112 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6113 << WidestType << " bits.\n"); 6114 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6115 << " bits.\n"); 6116 6117 if (MaxVectorSize == 0) { 6118 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6119 MaxVectorSize = 1; 6120 } 6121 6122 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6123 " into one vector!"); 6124 6125 unsigned VF = MaxVectorSize; 6126 if (MaximizeBandwidth && !OptForSize) { 6127 // Collect all viable vectorization factors. 6128 SmallVector<unsigned, 8> VFs; 6129 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6130 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6131 VFs.push_back(VS); 6132 6133 // For each VF calculate its register usage. 6134 auto RUs = calculateRegisterUsage(VFs); 6135 6136 // Select the largest VF which doesn't require more registers than existing 6137 // ones. 6138 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6139 for (int i = RUs.size() - 1; i >= 0; --i) { 6140 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6141 VF = VFs[i]; 6142 break; 6143 } 6144 } 6145 } 6146 6147 // If we optimize the program for size, avoid creating the tail loop. 6148 if (OptForSize) { 6149 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6150 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6151 6152 // If we don't know the precise trip count, don't try to vectorize. 6153 if (TC < 2) { 6154 ORE->emit( 6155 createMissedAnalysis("UnknownLoopCountComplexCFG") 6156 << "unable to calculate the loop count due to complex control flow"); 6157 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6158 return Factor; 6159 } 6160 6161 // Find the maximum SIMD width that can fit within the trip count. 6162 VF = TC % MaxVectorSize; 6163 6164 if (VF == 0) 6165 VF = MaxVectorSize; 6166 else { 6167 // If the trip count that we found modulo the vectorization factor is not 6168 // zero then we require a tail. 6169 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6170 << "cannot optimize for size and vectorize at the " 6171 "same time. Enable vectorization of this loop " 6172 "with '#pragma clang loop vectorize(enable)' " 6173 "when compiling with -Os/-Oz"); 6174 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6175 return Factor; 6176 } 6177 } 6178 6179 int UserVF = Hints->getWidth(); 6180 if (UserVF != 0) { 6181 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6182 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6183 6184 Factor.Width = UserVF; 6185 collectInstsToScalarize(UserVF); 6186 return Factor; 6187 } 6188 6189 float Cost = expectedCost(1).first; 6190 #ifndef NDEBUG 6191 const float ScalarCost = Cost; 6192 #endif /* NDEBUG */ 6193 unsigned Width = 1; 6194 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6195 6196 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6197 // Ignore scalar width, because the user explicitly wants vectorization. 6198 if (ForceVectorization && VF > 1) { 6199 Width = 2; 6200 Cost = expectedCost(Width).first / (float)Width; 6201 } 6202 6203 for (unsigned i = 2; i <= VF; i *= 2) { 6204 // Notice that the vector loop needs to be executed less times, so 6205 // we need to divide the cost of the vector loops by the width of 6206 // the vector elements. 6207 VectorizationCostTy C = expectedCost(i); 6208 float VectorCost = C.first / (float)i; 6209 DEBUG(dbgs() << "LV: Vector loop of width " << i 6210 << " costs: " << (int)VectorCost << ".\n"); 6211 if (!C.second && !ForceVectorization) { 6212 DEBUG( 6213 dbgs() << "LV: Not considering vector loop of width " << i 6214 << " because it will not generate any vector instructions.\n"); 6215 continue; 6216 } 6217 if (VectorCost < Cost) { 6218 Cost = VectorCost; 6219 Width = i; 6220 } 6221 } 6222 6223 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6224 << "LV: Vectorization seems to be not beneficial, " 6225 << "but was forced by a user.\n"); 6226 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6227 Factor.Width = Width; 6228 Factor.Cost = Width * Cost; 6229 return Factor; 6230 } 6231 6232 std::pair<unsigned, unsigned> 6233 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6234 unsigned MinWidth = -1U; 6235 unsigned MaxWidth = 8; 6236 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6237 6238 // For each block. 6239 for (BasicBlock *BB : TheLoop->blocks()) { 6240 // For each instruction in the loop. 6241 for (Instruction &I : *BB) { 6242 Type *T = I.getType(); 6243 6244 // Skip ignored values. 6245 if (ValuesToIgnore.count(&I)) 6246 continue; 6247 6248 // Only examine Loads, Stores and PHINodes. 6249 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6250 continue; 6251 6252 // Examine PHI nodes that are reduction variables. Update the type to 6253 // account for the recurrence type. 6254 if (auto *PN = dyn_cast<PHINode>(&I)) { 6255 if (!Legal->isReductionVariable(PN)) 6256 continue; 6257 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6258 T = RdxDesc.getRecurrenceType(); 6259 } 6260 6261 // Examine the stored values. 6262 if (auto *ST = dyn_cast<StoreInst>(&I)) 6263 T = ST->getValueOperand()->getType(); 6264 6265 // Ignore loaded pointer types and stored pointer types that are not 6266 // consecutive. However, we do want to take consecutive stores/loads of 6267 // pointer vectors into account. 6268 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I)) 6269 continue; 6270 6271 MinWidth = std::min(MinWidth, 6272 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6273 MaxWidth = std::max(MaxWidth, 6274 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6275 } 6276 } 6277 6278 return {MinWidth, MaxWidth}; 6279 } 6280 6281 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6282 unsigned VF, 6283 unsigned LoopCost) { 6284 6285 // -- The interleave heuristics -- 6286 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6287 // There are many micro-architectural considerations that we can't predict 6288 // at this level. For example, frontend pressure (on decode or fetch) due to 6289 // code size, or the number and capabilities of the execution ports. 6290 // 6291 // We use the following heuristics to select the interleave count: 6292 // 1. If the code has reductions, then we interleave to break the cross 6293 // iteration dependency. 6294 // 2. If the loop is really small, then we interleave to reduce the loop 6295 // overhead. 6296 // 3. We don't interleave if we think that we will spill registers to memory 6297 // due to the increased register pressure. 6298 6299 // When we optimize for size, we don't interleave. 6300 if (OptForSize) 6301 return 1; 6302 6303 // We used the distance for the interleave count. 6304 if (Legal->getMaxSafeDepDistBytes() != -1U) 6305 return 1; 6306 6307 // Do not interleave loops with a relatively small trip count. 6308 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6309 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6310 return 1; 6311 6312 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6313 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6314 << " registers\n"); 6315 6316 if (VF == 1) { 6317 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6318 TargetNumRegisters = ForceTargetNumScalarRegs; 6319 } else { 6320 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6321 TargetNumRegisters = ForceTargetNumVectorRegs; 6322 } 6323 6324 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6325 // We divide by these constants so assume that we have at least one 6326 // instruction that uses at least one register. 6327 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6328 R.NumInstructions = std::max(R.NumInstructions, 1U); 6329 6330 // We calculate the interleave count using the following formula. 6331 // Subtract the number of loop invariants from the number of available 6332 // registers. These registers are used by all of the interleaved instances. 6333 // Next, divide the remaining registers by the number of registers that is 6334 // required by the loop, in order to estimate how many parallel instances 6335 // fit without causing spills. All of this is rounded down if necessary to be 6336 // a power of two. We want power of two interleave count to simplify any 6337 // addressing operations or alignment considerations. 6338 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6339 R.MaxLocalUsers); 6340 6341 // Don't count the induction variable as interleaved. 6342 if (EnableIndVarRegisterHeur) 6343 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6344 std::max(1U, (R.MaxLocalUsers - 1))); 6345 6346 // Clamp the interleave ranges to reasonable counts. 6347 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6348 6349 // Check if the user has overridden the max. 6350 if (VF == 1) { 6351 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6352 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6353 } else { 6354 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6355 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6356 } 6357 6358 // If we did not calculate the cost for VF (because the user selected the VF) 6359 // then we calculate the cost of VF here. 6360 if (LoopCost == 0) 6361 LoopCost = expectedCost(VF).first; 6362 6363 // Clamp the calculated IC to be between the 1 and the max interleave count 6364 // that the target allows. 6365 if (IC > MaxInterleaveCount) 6366 IC = MaxInterleaveCount; 6367 else if (IC < 1) 6368 IC = 1; 6369 6370 // Interleave if we vectorized this loop and there is a reduction that could 6371 // benefit from interleaving. 6372 if (VF > 1 && Legal->getReductionVars()->size()) { 6373 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6374 return IC; 6375 } 6376 6377 // Note that if we've already vectorized the loop we will have done the 6378 // runtime check and so interleaving won't require further checks. 6379 bool InterleavingRequiresRuntimePointerCheck = 6380 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6381 6382 // We want to interleave small loops in order to reduce the loop overhead and 6383 // potentially expose ILP opportunities. 6384 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6385 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6386 // We assume that the cost overhead is 1 and we use the cost model 6387 // to estimate the cost of the loop and interleave until the cost of the 6388 // loop overhead is about 5% of the cost of the loop. 6389 unsigned SmallIC = 6390 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6391 6392 // Interleave until store/load ports (estimated by max interleave count) are 6393 // saturated. 6394 unsigned NumStores = Legal->getNumStores(); 6395 unsigned NumLoads = Legal->getNumLoads(); 6396 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6397 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6398 6399 // If we have a scalar reduction (vector reductions are already dealt with 6400 // by this point), we can increase the critical path length if the loop 6401 // we're interleaving is inside another loop. Limit, by default to 2, so the 6402 // critical path only gets increased by one reduction operation. 6403 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6404 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6405 SmallIC = std::min(SmallIC, F); 6406 StoresIC = std::min(StoresIC, F); 6407 LoadsIC = std::min(LoadsIC, F); 6408 } 6409 6410 if (EnableLoadStoreRuntimeInterleave && 6411 std::max(StoresIC, LoadsIC) > SmallIC) { 6412 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6413 return std::max(StoresIC, LoadsIC); 6414 } 6415 6416 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6417 return SmallIC; 6418 } 6419 6420 // Interleave if this is a large loop (small loops are already dealt with by 6421 // this point) that could benefit from interleaving. 6422 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6423 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6424 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6425 return IC; 6426 } 6427 6428 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6429 return 1; 6430 } 6431 6432 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6433 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6434 // This function calculates the register usage by measuring the highest number 6435 // of values that are alive at a single location. Obviously, this is a very 6436 // rough estimation. We scan the loop in a topological order in order and 6437 // assign a number to each instruction. We use RPO to ensure that defs are 6438 // met before their users. We assume that each instruction that has in-loop 6439 // users starts an interval. We record every time that an in-loop value is 6440 // used, so we have a list of the first and last occurrences of each 6441 // instruction. Next, we transpose this data structure into a multi map that 6442 // holds the list of intervals that *end* at a specific location. This multi 6443 // map allows us to perform a linear search. We scan the instructions linearly 6444 // and record each time that a new interval starts, by placing it in a set. 6445 // If we find this value in the multi-map then we remove it from the set. 6446 // The max register usage is the maximum size of the set. 6447 // We also search for instructions that are defined outside the loop, but are 6448 // used inside the loop. We need this number separately from the max-interval 6449 // usage number because when we unroll, loop-invariant values do not take 6450 // more register. 6451 LoopBlocksDFS DFS(TheLoop); 6452 DFS.perform(LI); 6453 6454 RegisterUsage RU; 6455 RU.NumInstructions = 0; 6456 6457 // Each 'key' in the map opens a new interval. The values 6458 // of the map are the index of the 'last seen' usage of the 6459 // instruction that is the key. 6460 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6461 // Maps instruction to its index. 6462 DenseMap<unsigned, Instruction *> IdxToInstr; 6463 // Marks the end of each interval. 6464 IntervalMap EndPoint; 6465 // Saves the list of instruction indices that are used in the loop. 6466 SmallSet<Instruction *, 8> Ends; 6467 // Saves the list of values that are used in the loop but are 6468 // defined outside the loop, such as arguments and constants. 6469 SmallPtrSet<Value *, 8> LoopInvariants; 6470 6471 unsigned Index = 0; 6472 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6473 RU.NumInstructions += BB->size(); 6474 for (Instruction &I : *BB) { 6475 IdxToInstr[Index++] = &I; 6476 6477 // Save the end location of each USE. 6478 for (Value *U : I.operands()) { 6479 auto *Instr = dyn_cast<Instruction>(U); 6480 6481 // Ignore non-instruction values such as arguments, constants, etc. 6482 if (!Instr) 6483 continue; 6484 6485 // If this instruction is outside the loop then record it and continue. 6486 if (!TheLoop->contains(Instr)) { 6487 LoopInvariants.insert(Instr); 6488 continue; 6489 } 6490 6491 // Overwrite previous end points. 6492 EndPoint[Instr] = Index; 6493 Ends.insert(Instr); 6494 } 6495 } 6496 } 6497 6498 // Saves the list of intervals that end with the index in 'key'. 6499 typedef SmallVector<Instruction *, 2> InstrList; 6500 DenseMap<unsigned, InstrList> TransposeEnds; 6501 6502 // Transpose the EndPoints to a list of values that end at each index. 6503 for (auto &Interval : EndPoint) 6504 TransposeEnds[Interval.second].push_back(Interval.first); 6505 6506 SmallSet<Instruction *, 8> OpenIntervals; 6507 6508 // Get the size of the widest register. 6509 unsigned MaxSafeDepDist = -1U; 6510 if (Legal->getMaxSafeDepDistBytes() != -1U) 6511 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6512 unsigned WidestRegister = 6513 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6514 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6515 6516 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6517 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6518 6519 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6520 6521 // A lambda that gets the register usage for the given type and VF. 6522 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6523 if (Ty->isTokenTy()) 6524 return 0U; 6525 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6526 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6527 }; 6528 6529 for (unsigned int i = 0; i < Index; ++i) { 6530 Instruction *I = IdxToInstr[i]; 6531 6532 // Remove all of the instructions that end at this location. 6533 InstrList &List = TransposeEnds[i]; 6534 for (Instruction *ToRemove : List) 6535 OpenIntervals.erase(ToRemove); 6536 6537 // Ignore instructions that are never used within the loop. 6538 if (!Ends.count(I)) 6539 continue; 6540 6541 // Skip ignored values. 6542 if (ValuesToIgnore.count(I)) 6543 continue; 6544 6545 // For each VF find the maximum usage of registers. 6546 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6547 if (VFs[j] == 1) { 6548 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6549 continue; 6550 } 6551 6552 // Count the number of live intervals. 6553 unsigned RegUsage = 0; 6554 for (auto Inst : OpenIntervals) { 6555 // Skip ignored values for VF > 1. 6556 if (VecValuesToIgnore.count(Inst)) 6557 continue; 6558 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6559 } 6560 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6561 } 6562 6563 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6564 << OpenIntervals.size() << '\n'); 6565 6566 // Add the current instruction to the list of open intervals. 6567 OpenIntervals.insert(I); 6568 } 6569 6570 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6571 unsigned Invariant = 0; 6572 if (VFs[i] == 1) 6573 Invariant = LoopInvariants.size(); 6574 else { 6575 for (auto Inst : LoopInvariants) 6576 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6577 } 6578 6579 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6580 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6581 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6582 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6583 6584 RU.LoopInvariantRegs = Invariant; 6585 RU.MaxLocalUsers = MaxUsages[i]; 6586 RUs[i] = RU; 6587 } 6588 6589 return RUs; 6590 } 6591 6592 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6593 6594 // If we aren't vectorizing the loop, or if we've already collected the 6595 // instructions to scalarize, there's nothing to do. Collection may already 6596 // have occurred if we have a user-selected VF and are now computing the 6597 // expected cost for interleaving. 6598 if (VF < 2 || InstsToScalarize.count(VF)) 6599 return; 6600 6601 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6602 // not profitable to scalarize any instructions, the presence of VF in the 6603 // map will indicate that we've analyzed it already. 6604 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6605 6606 // Find all the instructions that are scalar with predication in the loop and 6607 // determine if it would be better to not if-convert the blocks they are in. 6608 // If so, we also record the instructions to scalarize. 6609 for (BasicBlock *BB : TheLoop->blocks()) { 6610 if (!Legal->blockNeedsPredication(BB)) 6611 continue; 6612 for (Instruction &I : *BB) 6613 if (Legal->isScalarWithPredication(&I)) { 6614 ScalarCostsTy ScalarCosts; 6615 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6616 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6617 } 6618 } 6619 } 6620 6621 int LoopVectorizationCostModel::computePredInstDiscount( 6622 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6623 unsigned VF) { 6624 6625 assert(!Legal->isUniformAfterVectorization(PredInst) && 6626 "Instruction marked uniform-after-vectorization will be predicated"); 6627 6628 // Initialize the discount to zero, meaning that the scalar version and the 6629 // vector version cost the same. 6630 int Discount = 0; 6631 6632 // Holds instructions to analyze. The instructions we visit are mapped in 6633 // ScalarCosts. Those instructions are the ones that would be scalarized if 6634 // we find that the scalar version costs less. 6635 SmallVector<Instruction *, 8> Worklist; 6636 6637 // Returns true if the given instruction can be scalarized. 6638 auto canBeScalarized = [&](Instruction *I) -> bool { 6639 6640 // We only attempt to scalarize instructions forming a single-use chain 6641 // from the original predicated block that would otherwise be vectorized. 6642 // Although not strictly necessary, we give up on instructions we know will 6643 // already be scalar to avoid traversing chains that are unlikely to be 6644 // beneficial. 6645 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6646 Legal->isScalarAfterVectorization(I)) 6647 return false; 6648 6649 // If the instruction is scalar with predication, it will be analyzed 6650 // separately. We ignore it within the context of PredInst. 6651 if (Legal->isScalarWithPredication(I)) 6652 return false; 6653 6654 // If any of the instruction's operands are uniform after vectorization, 6655 // the instruction cannot be scalarized. This prevents, for example, a 6656 // masked load from being scalarized. 6657 // 6658 // We assume we will only emit a value for lane zero of an instruction 6659 // marked uniform after vectorization, rather than VF identical values. 6660 // Thus, if we scalarize an instruction that uses a uniform, we would 6661 // create uses of values corresponding to the lanes we aren't emitting code 6662 // for. This behavior can be changed by allowing getScalarValue to clone 6663 // the lane zero values for uniforms rather than asserting. 6664 for (Use &U : I->operands()) 6665 if (auto *J = dyn_cast<Instruction>(U.get())) 6666 if (Legal->isUniformAfterVectorization(J)) 6667 return false; 6668 6669 // Otherwise, we can scalarize the instruction. 6670 return true; 6671 }; 6672 6673 // Returns true if an operand that cannot be scalarized must be extracted 6674 // from a vector. We will account for this scalarization overhead below. Note 6675 // that the non-void predicated instructions are placed in their own blocks, 6676 // and their return values are inserted into vectors. Thus, an extract would 6677 // still be required. 6678 auto needsExtract = [&](Instruction *I) -> bool { 6679 return TheLoop->contains(I) && !Legal->isScalarAfterVectorization(I); 6680 }; 6681 6682 // Compute the expected cost discount from scalarizing the entire expression 6683 // feeding the predicated instruction. We currently only consider expressions 6684 // that are single-use instruction chains. 6685 Worklist.push_back(PredInst); 6686 while (!Worklist.empty()) { 6687 Instruction *I = Worklist.pop_back_val(); 6688 6689 // If we've already analyzed the instruction, there's nothing to do. 6690 if (ScalarCosts.count(I)) 6691 continue; 6692 6693 // Compute the cost of the vector instruction. Note that this cost already 6694 // includes the scalarization overhead of the predicated instruction. 6695 unsigned VectorCost = getInstructionCost(I, VF).first; 6696 6697 // Compute the cost of the scalarized instruction. This cost is the cost of 6698 // the instruction as if it wasn't if-converted and instead remained in the 6699 // predicated block. We will scale this cost by block probability after 6700 // computing the scalarization overhead. 6701 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6702 6703 // Compute the scalarization overhead of needed insertelement instructions 6704 // and phi nodes. 6705 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6706 ScalarCost += getScalarizationOverhead(ToVectorTy(I->getType(), VF), true, 6707 false, TTI); 6708 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6709 } 6710 6711 // Compute the scalarization overhead of needed extractelement 6712 // instructions. For each of the instruction's operands, if the operand can 6713 // be scalarized, add it to the worklist; otherwise, account for the 6714 // overhead. 6715 for (Use &U : I->operands()) 6716 if (auto *J = dyn_cast<Instruction>(U.get())) { 6717 assert(VectorType::isValidElementType(J->getType()) && 6718 "Instruction has non-scalar type"); 6719 if (canBeScalarized(J)) 6720 Worklist.push_back(J); 6721 else if (needsExtract(J)) 6722 ScalarCost += getScalarizationOverhead(ToVectorTy(J->getType(), VF), 6723 false, true, TTI); 6724 } 6725 6726 // Scale the total scalar cost by block probability. 6727 ScalarCost /= getReciprocalPredBlockProb(); 6728 6729 // Compute the discount. A non-negative discount means the vector version 6730 // of the instruction costs more, and scalarizing would be beneficial. 6731 Discount += VectorCost - ScalarCost; 6732 ScalarCosts[I] = ScalarCost; 6733 } 6734 6735 return Discount; 6736 } 6737 6738 LoopVectorizationCostModel::VectorizationCostTy 6739 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6740 VectorizationCostTy Cost; 6741 6742 // Collect the instructions (and their associated costs) that will be more 6743 // profitable to scalarize. 6744 collectInstsToScalarize(VF); 6745 6746 // For each block. 6747 for (BasicBlock *BB : TheLoop->blocks()) { 6748 VectorizationCostTy BlockCost; 6749 6750 // For each instruction in the old loop. 6751 for (Instruction &I : *BB) { 6752 // Skip dbg intrinsics. 6753 if (isa<DbgInfoIntrinsic>(I)) 6754 continue; 6755 6756 // Skip ignored values. 6757 if (ValuesToIgnore.count(&I)) 6758 continue; 6759 6760 VectorizationCostTy C = getInstructionCost(&I, VF); 6761 6762 // Check if we should override the cost. 6763 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6764 C.first = ForceTargetInstructionCost; 6765 6766 BlockCost.first += C.first; 6767 BlockCost.second |= C.second; 6768 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6769 << VF << " For instruction: " << I << '\n'); 6770 } 6771 6772 // If we are vectorizing a predicated block, it will have been 6773 // if-converted. This means that the block's instructions (aside from 6774 // stores and instructions that may divide by zero) will now be 6775 // unconditionally executed. For the scalar case, we may not always execute 6776 // the predicated block. Thus, scale the block's cost by the probability of 6777 // executing it. 6778 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6779 BlockCost.first /= getReciprocalPredBlockProb(); 6780 6781 Cost.first += BlockCost.first; 6782 Cost.second |= BlockCost.second; 6783 } 6784 6785 return Cost; 6786 } 6787 6788 /// \brief Check whether the address computation for a non-consecutive memory 6789 /// access looks like an unlikely candidate for being merged into the indexing 6790 /// mode. 6791 /// 6792 /// We look for a GEP which has one index that is an induction variable and all 6793 /// other indices are loop invariant. If the stride of this access is also 6794 /// within a small bound we decide that this address computation can likely be 6795 /// merged into the addressing mode. 6796 /// In all other cases, we identify the address computation as complex. 6797 static bool isLikelyComplexAddressComputation(Value *Ptr, 6798 LoopVectorizationLegality *Legal, 6799 ScalarEvolution *SE, 6800 const Loop *TheLoop) { 6801 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6802 if (!Gep) 6803 return true; 6804 6805 // We are looking for a gep with all loop invariant indices except for one 6806 // which should be an induction variable. 6807 unsigned NumOperands = Gep->getNumOperands(); 6808 for (unsigned i = 1; i < NumOperands; ++i) { 6809 Value *Opd = Gep->getOperand(i); 6810 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6811 !Legal->isInductionVariable(Opd)) 6812 return true; 6813 } 6814 6815 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6816 // can likely be merged into the address computation. 6817 unsigned MaxMergeDistance = 64; 6818 6819 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6820 if (!AddRec) 6821 return true; 6822 6823 // Check the step is constant. 6824 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6825 // Calculate the pointer stride and check if it is consecutive. 6826 const auto *C = dyn_cast<SCEVConstant>(Step); 6827 if (!C) 6828 return true; 6829 6830 const APInt &APStepVal = C->getAPInt(); 6831 6832 // Huge step value - give up. 6833 if (APStepVal.getBitWidth() > 64) 6834 return true; 6835 6836 int64_t StepVal = APStepVal.getSExtValue(); 6837 6838 return StepVal > MaxMergeDistance; 6839 } 6840 6841 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6842 return Legal->hasStride(I->getOperand(0)) || 6843 Legal->hasStride(I->getOperand(1)); 6844 } 6845 6846 LoopVectorizationCostModel::VectorizationCostTy 6847 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6848 // If we know that this instruction will remain uniform, check the cost of 6849 // the scalar version. 6850 if (Legal->isUniformAfterVectorization(I)) 6851 VF = 1; 6852 6853 if (VF > 1 && isProfitableToScalarize(I, VF)) 6854 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6855 6856 Type *VectorTy; 6857 unsigned C = getInstructionCost(I, VF, VectorTy); 6858 6859 bool TypeNotScalarized = 6860 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6861 return VectorizationCostTy(C, TypeNotScalarized); 6862 } 6863 6864 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6865 unsigned VF, 6866 Type *&VectorTy) { 6867 Type *RetTy = I->getType(); 6868 if (canTruncateToMinimalBitwidth(I, VF)) 6869 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6870 VectorTy = ToVectorTy(RetTy, VF); 6871 auto SE = PSE.getSE(); 6872 6873 // TODO: We need to estimate the cost of intrinsic calls. 6874 switch (I->getOpcode()) { 6875 case Instruction::GetElementPtr: 6876 // We mark this instruction as zero-cost because the cost of GEPs in 6877 // vectorized code depends on whether the corresponding memory instruction 6878 // is scalarized or not. Therefore, we handle GEPs with the memory 6879 // instruction cost. 6880 return 0; 6881 case Instruction::Br: { 6882 return TTI.getCFInstrCost(I->getOpcode()); 6883 } 6884 case Instruction::PHI: { 6885 auto *Phi = cast<PHINode>(I); 6886 6887 // First-order recurrences are replaced by vector shuffles inside the loop. 6888 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6889 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6890 VectorTy, VF - 1, VectorTy); 6891 6892 // TODO: IF-converted IFs become selects. 6893 return 0; 6894 } 6895 case Instruction::UDiv: 6896 case Instruction::SDiv: 6897 case Instruction::URem: 6898 case Instruction::SRem: 6899 // If we have a predicated instruction, it may not be executed for each 6900 // vector lane. Get the scalarization cost and scale this amount by the 6901 // probability of executing the predicated block. If the instruction is not 6902 // predicated, we fall through to the next case. 6903 if (VF > 1 && Legal->isScalarWithPredication(I)) { 6904 unsigned Cost = 0; 6905 6906 // These instructions have a non-void type, so account for the phi nodes 6907 // that we will create. This cost is likely to be zero. The phi node 6908 // cost, if any, should be scaled by the block probability because it 6909 // models a copy at the end of each predicated block. 6910 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 6911 6912 // The cost of the non-predicated instruction. 6913 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 6914 6915 // The cost of insertelement and extractelement instructions needed for 6916 // scalarization. 6917 Cost += getScalarizationOverhead(I, VF, TTI); 6918 6919 // Scale the cost by the probability of executing the predicated blocks. 6920 // This assumes the predicated block for each vector lane is equally 6921 // likely. 6922 return Cost / getReciprocalPredBlockProb(); 6923 } 6924 case Instruction::Add: 6925 case Instruction::FAdd: 6926 case Instruction::Sub: 6927 case Instruction::FSub: 6928 case Instruction::Mul: 6929 case Instruction::FMul: 6930 case Instruction::FDiv: 6931 case Instruction::FRem: 6932 case Instruction::Shl: 6933 case Instruction::LShr: 6934 case Instruction::AShr: 6935 case Instruction::And: 6936 case Instruction::Or: 6937 case Instruction::Xor: { 6938 // Since we will replace the stride by 1 the multiplication should go away. 6939 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6940 return 0; 6941 // Certain instructions can be cheaper to vectorize if they have a constant 6942 // second vector operand. One example of this are shifts on x86. 6943 TargetTransformInfo::OperandValueKind Op1VK = 6944 TargetTransformInfo::OK_AnyValue; 6945 TargetTransformInfo::OperandValueKind Op2VK = 6946 TargetTransformInfo::OK_AnyValue; 6947 TargetTransformInfo::OperandValueProperties Op1VP = 6948 TargetTransformInfo::OP_None; 6949 TargetTransformInfo::OperandValueProperties Op2VP = 6950 TargetTransformInfo::OP_None; 6951 Value *Op2 = I->getOperand(1); 6952 6953 // Check for a splat or for a non uniform vector of constants. 6954 if (isa<ConstantInt>(Op2)) { 6955 ConstantInt *CInt = cast<ConstantInt>(Op2); 6956 if (CInt && CInt->getValue().isPowerOf2()) 6957 Op2VP = TargetTransformInfo::OP_PowerOf2; 6958 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6959 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6960 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6961 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6962 if (SplatValue) { 6963 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6964 if (CInt && CInt->getValue().isPowerOf2()) 6965 Op2VP = TargetTransformInfo::OP_PowerOf2; 6966 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6967 } 6968 } else if (Legal->isUniform(Op2)) { 6969 Op2VK = TargetTransformInfo::OK_UniformValue; 6970 } 6971 6972 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6973 Op1VP, Op2VP); 6974 } 6975 case Instruction::Select: { 6976 SelectInst *SI = cast<SelectInst>(I); 6977 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6978 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6979 Type *CondTy = SI->getCondition()->getType(); 6980 if (!ScalarCond) 6981 CondTy = VectorType::get(CondTy, VF); 6982 6983 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6984 } 6985 case Instruction::ICmp: 6986 case Instruction::FCmp: { 6987 Type *ValTy = I->getOperand(0)->getType(); 6988 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6989 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6990 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6991 VectorTy = ToVectorTy(ValTy, VF); 6992 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6993 } 6994 case Instruction::Store: 6995 case Instruction::Load: { 6996 StoreInst *SI = dyn_cast<StoreInst>(I); 6997 LoadInst *LI = dyn_cast<LoadInst>(I); 6998 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6999 VectorTy = ToVectorTy(ValTy, VF); 7000 7001 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 7002 unsigned AS = 7003 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 7004 Value *Ptr = getPointerOperand(I); 7005 // We add the cost of address computation here instead of with the gep 7006 // instruction because only here we know whether the operation is 7007 // scalarized. 7008 if (VF == 1) 7009 return TTI.getAddressComputationCost(VectorTy) + 7010 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7011 7012 if (LI && Legal->isUniform(Ptr)) { 7013 // Scalar load + broadcast 7014 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 7015 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 7016 Alignment, AS); 7017 return Cost + 7018 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 7019 } 7020 7021 // For an interleaved access, calculate the total cost of the whole 7022 // interleave group. 7023 if (Legal->isAccessInterleaved(I)) { 7024 auto Group = Legal->getInterleavedAccessGroup(I); 7025 assert(Group && "Fail to get an interleaved access group."); 7026 7027 // Only calculate the cost once at the insert position. 7028 if (Group->getInsertPos() != I) 7029 return 0; 7030 7031 unsigned InterleaveFactor = Group->getFactor(); 7032 Type *WideVecTy = 7033 VectorType::get(VectorTy->getVectorElementType(), 7034 VectorTy->getVectorNumElements() * InterleaveFactor); 7035 7036 // Holds the indices of existing members in an interleaved load group. 7037 // An interleaved store group doesn't need this as it doesn't allow gaps. 7038 SmallVector<unsigned, 4> Indices; 7039 if (LI) { 7040 for (unsigned i = 0; i < InterleaveFactor; i++) 7041 if (Group->getMember(i)) 7042 Indices.push_back(i); 7043 } 7044 7045 // Calculate the cost of the whole interleaved group. 7046 unsigned Cost = TTI.getInterleavedMemoryOpCost( 7047 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 7048 Group->getAlignment(), AS); 7049 7050 if (Group->isReverse()) 7051 Cost += 7052 Group->getNumMembers() * 7053 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7054 7055 // FIXME: The interleaved load group with a huge gap could be even more 7056 // expensive than scalar operations. Then we could ignore such group and 7057 // use scalar operations instead. 7058 return Cost; 7059 } 7060 7061 // Check if the memory instruction will be scalarized. 7062 if (Legal->memoryInstructionMustBeScalarized(I, VF)) { 7063 unsigned Cost = 0; 7064 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7065 7066 // True if the memory instruction's address computation is complex. 7067 bool IsComplexComputation = 7068 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 7069 7070 // Get the cost of the scalar memory instruction and address computation. 7071 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 7072 Cost += VF * 7073 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 7074 Alignment, AS); 7075 7076 // Get the overhead of the extractelement and insertelement instructions 7077 // we might create due to scalarization. 7078 Cost += getScalarizationOverhead(I, VF, TTI); 7079 7080 // If we have a predicated store, it may not be executed for each vector 7081 // lane. Scale the cost by the probability of executing the predicated 7082 // block. 7083 if (Legal->isScalarWithPredication(I)) 7084 Cost /= getReciprocalPredBlockProb(); 7085 7086 return Cost; 7087 } 7088 7089 // Determine if the pointer operand of the access is either consecutive or 7090 // reverse consecutive. 7091 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7092 bool Reverse = ConsecutiveStride < 0; 7093 7094 // Determine if either a gather or scatter operation is legal. 7095 bool UseGatherOrScatter = 7096 !ConsecutiveStride && Legal->isLegalGatherOrScatter(I); 7097 7098 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 7099 if (UseGatherOrScatter) { 7100 assert(ConsecutiveStride == 0 && 7101 "Gather/Scatter are not used for consecutive stride"); 7102 return Cost + 7103 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7104 Legal->isMaskRequired(I), Alignment); 7105 } 7106 // Wide load/stores. 7107 if (Legal->isMaskRequired(I)) 7108 Cost += 7109 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7110 else 7111 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7112 7113 if (Reverse) 7114 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7115 return Cost; 7116 } 7117 case Instruction::ZExt: 7118 case Instruction::SExt: 7119 case Instruction::FPToUI: 7120 case Instruction::FPToSI: 7121 case Instruction::FPExt: 7122 case Instruction::PtrToInt: 7123 case Instruction::IntToPtr: 7124 case Instruction::SIToFP: 7125 case Instruction::UIToFP: 7126 case Instruction::Trunc: 7127 case Instruction::FPTrunc: 7128 case Instruction::BitCast: { 7129 // We optimize the truncation of induction variable. 7130 // The cost of these is the same as the scalar operation. 7131 if (I->getOpcode() == Instruction::Trunc && 7132 Legal->isInductionVariable(I->getOperand(0))) 7133 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 7134 I->getOperand(0)->getType()); 7135 7136 Type *SrcScalarTy = I->getOperand(0)->getType(); 7137 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7138 if (canTruncateToMinimalBitwidth(I, VF)) { 7139 // This cast is going to be shrunk. This may remove the cast or it might 7140 // turn it into slightly different cast. For example, if MinBW == 16, 7141 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7142 // 7143 // Calculate the modified src and dest types. 7144 Type *MinVecTy = VectorTy; 7145 if (I->getOpcode() == Instruction::Trunc) { 7146 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7147 VectorTy = 7148 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7149 } else if (I->getOpcode() == Instruction::ZExt || 7150 I->getOpcode() == Instruction::SExt) { 7151 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7152 VectorTy = 7153 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7154 } 7155 } 7156 7157 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 7158 } 7159 case Instruction::Call: { 7160 bool NeedToScalarize; 7161 CallInst *CI = cast<CallInst>(I); 7162 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7163 if (getVectorIntrinsicIDForCall(CI, TLI)) 7164 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7165 return CallCost; 7166 } 7167 default: 7168 // The cost of executing VF copies of the scalar instruction. This opcode 7169 // is unknown. Assume that it is the same as 'mul'. 7170 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7171 getScalarizationOverhead(I, VF, TTI); 7172 } // end of switch. 7173 } 7174 7175 char LoopVectorize::ID = 0; 7176 static const char lv_name[] = "Loop Vectorization"; 7177 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7178 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7179 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7180 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7181 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7182 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7183 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7184 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7185 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7186 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 7187 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7188 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7189 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7190 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7191 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7192 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7193 7194 namespace llvm { 7195 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7196 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7197 } 7198 } 7199 7200 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7201 7202 // Check if the pointer operand of a load or store instruction is 7203 // consecutive. 7204 if (auto *Ptr = getPointerOperand(Inst)) 7205 return Legal->isConsecutivePtr(Ptr); 7206 return false; 7207 } 7208 7209 void LoopVectorizationCostModel::collectValuesToIgnore() { 7210 // Ignore ephemeral values. 7211 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7212 7213 // Ignore type-promoting instructions we identified during reduction 7214 // detection. 7215 for (auto &Reduction : *Legal->getReductionVars()) { 7216 RecurrenceDescriptor &RedDes = Reduction.second; 7217 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7218 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7219 } 7220 7221 // Insert values known to be scalar into VecValuesToIgnore. This is a 7222 // conservative estimation of the values that will later be scalarized. 7223 // 7224 // FIXME: Even though an instruction is not scalar-after-vectoriztion, it may 7225 // still be scalarized. For example, we may find an instruction to be 7226 // more profitable for a given vectorization factor if it were to be 7227 // scalarized. But at this point, we haven't yet computed the 7228 // vectorization factor. 7229 for (auto *BB : TheLoop->getBlocks()) 7230 for (auto &I : *BB) 7231 if (Legal->isScalarAfterVectorization(&I)) 7232 VecValuesToIgnore.insert(&I); 7233 } 7234 7235 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 7236 bool IfPredicateInstr) { 7237 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 7238 // Holds vector parameters or scalars, in case of uniform vals. 7239 SmallVector<VectorParts, 4> Params; 7240 7241 setDebugLocFromInst(Builder, Instr); 7242 7243 // Does this instruction return a value ? 7244 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 7245 7246 // Initialize a new scalar map entry. 7247 ScalarParts Entry(UF); 7248 7249 VectorParts Cond; 7250 if (IfPredicateInstr) 7251 Cond = createBlockInMask(Instr->getParent()); 7252 7253 // For each vector unroll 'part': 7254 for (unsigned Part = 0; Part < UF; ++Part) { 7255 Entry[Part].resize(1); 7256 // For each scalar that we create: 7257 7258 // Start an "if (pred) a[i] = ..." block. 7259 Value *Cmp = nullptr; 7260 if (IfPredicateInstr) { 7261 if (Cond[Part]->getType()->isVectorTy()) 7262 Cond[Part] = 7263 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 7264 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 7265 ConstantInt::get(Cond[Part]->getType(), 1)); 7266 } 7267 7268 Instruction *Cloned = Instr->clone(); 7269 if (!IsVoidRetTy) 7270 Cloned->setName(Instr->getName() + ".cloned"); 7271 7272 // Replace the operands of the cloned instructions with their scalar 7273 // equivalents in the new loop. 7274 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 7275 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, 0); 7276 Cloned->setOperand(op, NewOp); 7277 } 7278 7279 // Place the cloned scalar in the new loop. 7280 Builder.Insert(Cloned); 7281 7282 // Add the cloned scalar to the scalar map entry. 7283 Entry[Part][0] = Cloned; 7284 7285 // If we just cloned a new assumption, add it the assumption cache. 7286 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 7287 if (II->getIntrinsicID() == Intrinsic::assume) 7288 AC->registerAssumption(II); 7289 7290 // End if-block. 7291 if (IfPredicateInstr) 7292 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 7293 } 7294 VectorLoopValueMap.initScalar(Instr, Entry); 7295 } 7296 7297 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7298 auto *SI = dyn_cast<StoreInst>(Instr); 7299 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7300 7301 return scalarizeInstruction(Instr, IfPredicateInstr); 7302 } 7303 7304 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7305 7306 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7307 7308 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7309 Instruction::BinaryOps BinOp) { 7310 // When unrolling and the VF is 1, we only need to add a simple scalar. 7311 Type *Ty = Val->getType(); 7312 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7313 7314 if (Ty->isFloatingPointTy()) { 7315 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7316 7317 // Floating point operations had to be 'fast' to enable the unrolling. 7318 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7319 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7320 } 7321 Constant *C = ConstantInt::get(Ty, StartIdx); 7322 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7323 } 7324 7325 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7326 SmallVector<Metadata *, 4> MDs; 7327 // Reserve first location for self reference to the LoopID metadata node. 7328 MDs.push_back(nullptr); 7329 bool IsUnrollMetadata = false; 7330 MDNode *LoopID = L->getLoopID(); 7331 if (LoopID) { 7332 // First find existing loop unrolling disable metadata. 7333 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7334 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7335 if (MD) { 7336 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7337 IsUnrollMetadata = 7338 S && S->getString().startswith("llvm.loop.unroll.disable"); 7339 } 7340 MDs.push_back(LoopID->getOperand(i)); 7341 } 7342 } 7343 7344 if (!IsUnrollMetadata) { 7345 // Add runtime unroll disable metadata. 7346 LLVMContext &Context = L->getHeader()->getContext(); 7347 SmallVector<Metadata *, 1> DisableOperands; 7348 DisableOperands.push_back( 7349 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7350 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7351 MDs.push_back(DisableNode); 7352 MDNode *NewLoopID = MDNode::get(Context, MDs); 7353 // Set operand 0 to refer to the loop id itself. 7354 NewLoopID->replaceOperandWith(0, NewLoopID); 7355 L->setLoopID(NewLoopID); 7356 } 7357 } 7358 7359 bool LoopVectorizePass::processLoop(Loop *L) { 7360 assert(L->empty() && "Only process inner loops."); 7361 7362 #ifndef NDEBUG 7363 const std::string DebugLocStr = getDebugLocString(L); 7364 #endif /* NDEBUG */ 7365 7366 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7367 << L->getHeader()->getParent()->getName() << "\" from " 7368 << DebugLocStr << "\n"); 7369 7370 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7371 7372 DEBUG(dbgs() << "LV: Loop hints:" 7373 << " force=" 7374 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7375 ? "disabled" 7376 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7377 ? "enabled" 7378 : "?")) 7379 << " width=" << Hints.getWidth() 7380 << " unroll=" << Hints.getInterleave() << "\n"); 7381 7382 // Function containing loop 7383 Function *F = L->getHeader()->getParent(); 7384 7385 // Looking at the diagnostic output is the only way to determine if a loop 7386 // was vectorized (other than looking at the IR or machine code), so it 7387 // is important to generate an optimization remark for each loop. Most of 7388 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7389 // generated as OptimizationRemark and OptimizationRemarkMissed are 7390 // less verbose reporting vectorized loops and unvectorized loops that may 7391 // benefit from vectorization, respectively. 7392 7393 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7394 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7395 return false; 7396 } 7397 7398 // Check the loop for a trip count threshold: 7399 // do not vectorize loops with a tiny trip count. 7400 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7401 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7402 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7403 << "This loop is not worth vectorizing."); 7404 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7405 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7406 else { 7407 DEBUG(dbgs() << "\n"); 7408 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7409 "NotBeneficial", L) 7410 << "vectorization is not beneficial " 7411 "and is not explicitly forced"); 7412 return false; 7413 } 7414 } 7415 7416 PredicatedScalarEvolution PSE(*SE, *L); 7417 7418 // Check if it is legal to vectorize the loop. 7419 LoopVectorizationRequirements Requirements(*ORE); 7420 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7421 &Requirements, &Hints); 7422 if (!LVL.canVectorize()) { 7423 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7424 emitMissedWarning(F, L, Hints, ORE); 7425 return false; 7426 } 7427 7428 // Use the cost model. 7429 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7430 &Hints); 7431 CM.collectValuesToIgnore(); 7432 7433 // Check the function attributes to find out if this function should be 7434 // optimized for size. 7435 bool OptForSize = 7436 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7437 7438 // Compute the weighted frequency of this loop being executed and see if it 7439 // is less than 20% of the function entry baseline frequency. Note that we 7440 // always have a canonical loop here because we think we *can* vectorize. 7441 // FIXME: This is hidden behind a flag due to pervasive problems with 7442 // exactly what block frequency models. 7443 if (LoopVectorizeWithBlockFrequency) { 7444 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7445 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7446 LoopEntryFreq < ColdEntryFreq) 7447 OptForSize = true; 7448 } 7449 7450 // Check the function attributes to see if implicit floats are allowed. 7451 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7452 // an integer loop and the vector instructions selected are purely integer 7453 // vector instructions? 7454 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7455 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7456 "attribute is used.\n"); 7457 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7458 "NoImplicitFloat", L) 7459 << "loop not vectorized due to NoImplicitFloat attribute"); 7460 emitMissedWarning(F, L, Hints, ORE); 7461 return false; 7462 } 7463 7464 // Check if the target supports potentially unsafe FP vectorization. 7465 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7466 // for the target we're vectorizing for, to make sure none of the 7467 // additional fp-math flags can help. 7468 if (Hints.isPotentiallyUnsafe() && 7469 TTI->isFPVectorizationPotentiallyUnsafe()) { 7470 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7471 ORE->emit( 7472 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7473 << "loop not vectorized due to unsafe FP support."); 7474 emitMissedWarning(F, L, Hints, ORE); 7475 return false; 7476 } 7477 7478 // Select the optimal vectorization factor. 7479 const LoopVectorizationCostModel::VectorizationFactor VF = 7480 CM.selectVectorizationFactor(OptForSize); 7481 7482 // Select the interleave count. 7483 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7484 7485 // Get user interleave count. 7486 unsigned UserIC = Hints.getInterleave(); 7487 7488 // Identify the diagnostic messages that should be produced. 7489 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7490 bool VectorizeLoop = true, InterleaveLoop = true; 7491 if (Requirements.doesNotMeet(F, L, Hints)) { 7492 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7493 "requirements.\n"); 7494 emitMissedWarning(F, L, Hints, ORE); 7495 return false; 7496 } 7497 7498 if (VF.Width == 1) { 7499 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7500 VecDiagMsg = std::make_pair( 7501 "VectorizationNotBeneficial", 7502 "the cost-model indicates that vectorization is not beneficial"); 7503 VectorizeLoop = false; 7504 } 7505 7506 if (IC == 1 && UserIC <= 1) { 7507 // Tell the user interleaving is not beneficial. 7508 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7509 IntDiagMsg = std::make_pair( 7510 "InterleavingNotBeneficial", 7511 "the cost-model indicates that interleaving is not beneficial"); 7512 InterleaveLoop = false; 7513 if (UserIC == 1) { 7514 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7515 IntDiagMsg.second += 7516 " and is explicitly disabled or interleave count is set to 1"; 7517 } 7518 } else if (IC > 1 && UserIC == 1) { 7519 // Tell the user interleaving is beneficial, but it explicitly disabled. 7520 DEBUG(dbgs() 7521 << "LV: Interleaving is beneficial but is explicitly disabled."); 7522 IntDiagMsg = std::make_pair( 7523 "InterleavingBeneficialButDisabled", 7524 "the cost-model indicates that interleaving is beneficial " 7525 "but is explicitly disabled or interleave count is set to 1"); 7526 InterleaveLoop = false; 7527 } 7528 7529 // Override IC if user provided an interleave count. 7530 IC = UserIC > 0 ? UserIC : IC; 7531 7532 // Emit diagnostic messages, if any. 7533 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7534 if (!VectorizeLoop && !InterleaveLoop) { 7535 // Do not vectorize or interleaving the loop. 7536 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7537 L->getStartLoc(), L->getHeader()) 7538 << VecDiagMsg.second); 7539 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7540 L->getStartLoc(), L->getHeader()) 7541 << IntDiagMsg.second); 7542 return false; 7543 } else if (!VectorizeLoop && InterleaveLoop) { 7544 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7545 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7546 L->getStartLoc(), L->getHeader()) 7547 << VecDiagMsg.second); 7548 } else if (VectorizeLoop && !InterleaveLoop) { 7549 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7550 << DebugLocStr << '\n'); 7551 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7552 L->getStartLoc(), L->getHeader()) 7553 << IntDiagMsg.second); 7554 } else if (VectorizeLoop && InterleaveLoop) { 7555 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7556 << DebugLocStr << '\n'); 7557 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7558 } 7559 7560 using namespace ore; 7561 if (!VectorizeLoop) { 7562 assert(IC > 1 && "interleave count should not be 1 or 0"); 7563 // If we decided that it is not legal to vectorize the loop, then 7564 // interleave it. 7565 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7566 &CM); 7567 Unroller.vectorize(); 7568 7569 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7570 L->getHeader()) 7571 << "interleaved loop (interleaved count: " 7572 << NV("InterleaveCount", IC) << ")"); 7573 } else { 7574 // If we decided that it is *legal* to vectorize the loop, then do it. 7575 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7576 &LVL, &CM); 7577 LB.vectorize(); 7578 ++LoopsVectorized; 7579 7580 // Add metadata to disable runtime unrolling a scalar loop when there are 7581 // no runtime checks about strides and memory. A scalar loop that is 7582 // rarely used is not worth unrolling. 7583 if (!LB.areSafetyChecksAdded()) 7584 AddRuntimeUnrollDisableMetaData(L); 7585 7586 // Report the vectorization decision. 7587 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7588 L->getHeader()) 7589 << "vectorized loop (vectorization width: " 7590 << NV("VectorizationFactor", VF.Width) 7591 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7592 } 7593 7594 // Mark the loop as already vectorized to avoid vectorizing again. 7595 Hints.setAlreadyVectorized(); 7596 7597 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7598 return true; 7599 } 7600 7601 bool LoopVectorizePass::runImpl( 7602 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7603 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7604 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7605 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7606 OptimizationRemarkEmitter &ORE_) { 7607 7608 SE = &SE_; 7609 LI = &LI_; 7610 TTI = &TTI_; 7611 DT = &DT_; 7612 BFI = &BFI_; 7613 TLI = TLI_; 7614 AA = &AA_; 7615 AC = &AC_; 7616 GetLAA = &GetLAA_; 7617 DB = &DB_; 7618 ORE = &ORE_; 7619 7620 // Compute some weights outside of the loop over the loops. Compute this 7621 // using a BranchProbability to re-use its scaling math. 7622 const BranchProbability ColdProb(1, 5); // 20% 7623 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7624 7625 // Don't attempt if 7626 // 1. the target claims to have no vector registers, and 7627 // 2. interleaving won't help ILP. 7628 // 7629 // The second condition is necessary because, even if the target has no 7630 // vector registers, loop vectorization may still enable scalar 7631 // interleaving. 7632 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7633 return false; 7634 7635 // Build up a worklist of inner-loops to vectorize. This is necessary as 7636 // the act of vectorizing or partially unrolling a loop creates new loops 7637 // and can invalidate iterators across the loops. 7638 SmallVector<Loop *, 8> Worklist; 7639 7640 for (Loop *L : *LI) 7641 addAcyclicInnerLoop(*L, Worklist); 7642 7643 LoopsAnalyzed += Worklist.size(); 7644 7645 // Now walk the identified inner loops. 7646 bool Changed = false; 7647 while (!Worklist.empty()) 7648 Changed |= processLoop(Worklist.pop_back_val()); 7649 7650 // Process each loop nest in the function. 7651 return Changed; 7652 7653 } 7654 7655 7656 PreservedAnalyses LoopVectorizePass::run(Function &F, 7657 FunctionAnalysisManager &AM) { 7658 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7659 auto &LI = AM.getResult<LoopAnalysis>(F); 7660 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7661 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7662 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7663 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); 7664 auto &AA = AM.getResult<AAManager>(F); 7665 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7666 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7667 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7668 7669 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7670 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7671 [&](Loop &L) -> const LoopAccessInfo & { 7672 return LAM.getResult<LoopAccessAnalysis>(L); 7673 }; 7674 bool Changed = 7675 runImpl(F, SE, LI, TTI, DT, BFI, TLI, DB, AA, AC, GetLAA, ORE); 7676 if (!Changed) 7677 return PreservedAnalyses::all(); 7678 PreservedAnalyses PA; 7679 PA.preserve<LoopAnalysis>(); 7680 PA.preserve<DominatorTreeAnalysis>(); 7681 PA.preserve<BasicAA>(); 7682 PA.preserve<GlobalsAA>(); 7683 return PA; 7684 } 7685