1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> EnableStrictReductions(
336     "enable-strict-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Fix a first-order recurrence. This is the second phase of vectorizing
594   /// this phi node.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return EnableStrictReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType())
4053                             ->getNumElements();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0),
4056             FixedVectorType::get(ScalarTruncatedTy, Elements));
4057         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4058         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4059       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4060         auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType())
4061                             ->getNumElements();
4062         auto *O0 = B.CreateZExtOrTrunc(
4063             EE->getOperand(0),
4064             FixedVectorType::get(ScalarTruncatedTy, Elements));
4065         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4066       } else {
4067         // If we don't know what to do, be conservative and don't do anything.
4068         continue;
4069       }
4070 
4071       // Lastly, extend the result.
4072       NewI->takeName(cast<Instruction>(I));
4073       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4074       I->replaceAllUsesWith(Res);
4075       cast<Instruction>(I)->eraseFromParent();
4076       Erased.insert(I);
4077       State.reset(Def, Res, Part);
4078     }
4079   }
4080 
4081   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4082   for (const auto &KV : Cost->getMinimalBitwidths()) {
4083     // If the value wasn't vectorized, we must maintain the original scalar
4084     // type. The absence of the value from State indicates that it
4085     // wasn't vectorized.
4086     VPValue *Def = State.Plan->getVPValue(KV.first);
4087     if (!State.hasAnyVectorValue(Def))
4088       continue;
4089     for (unsigned Part = 0; Part < UF; ++Part) {
4090       Value *I = State.get(Def, Part);
4091       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4092       if (Inst && Inst->use_empty()) {
4093         Value *NewI = Inst->getOperand(0);
4094         Inst->eraseFromParent();
4095         State.reset(Def, NewI, Part);
4096       }
4097     }
4098   }
4099 }
4100 
4101 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4102   // Insert truncates and extends for any truncated instructions as hints to
4103   // InstCombine.
4104   if (VF.isVector())
4105     truncateToMinimalBitwidths(State);
4106 
4107   // Fix widened non-induction PHIs by setting up the PHI operands.
4108   if (OrigPHIsToFix.size()) {
4109     assert(EnableVPlanNativePath &&
4110            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4111     fixNonInductionPHIs(State);
4112   }
4113 
4114   // At this point every instruction in the original loop is widened to a
4115   // vector form. Now we need to fix the recurrences in the loop. These PHI
4116   // nodes are currently empty because we did not want to introduce cycles.
4117   // This is the second stage of vectorizing recurrences.
4118   fixCrossIterationPHIs(State);
4119 
4120   // Forget the original basic block.
4121   PSE.getSE()->forgetLoop(OrigLoop);
4122 
4123   // If we inserted an edge from the middle block to the unique exit block,
4124   // update uses outside the loop (phis) to account for the newly inserted
4125   // edge.
4126   if (!Cost->requiresScalarEpilogue(VF)) {
4127     // Fix-up external users of the induction variables.
4128     for (auto &Entry : Legal->getInductionVars())
4129       fixupIVUsers(Entry.first, Entry.second,
4130                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4131                    IVEndValues[Entry.first], LoopMiddleBlock);
4132 
4133     fixLCSSAPHIs(State);
4134   }
4135 
4136   for (Instruction *PI : PredicatedInstructions)
4137     sinkScalarOperands(&*PI);
4138 
4139   // Remove redundant induction instructions.
4140   cse(LoopVectorBody);
4141 
4142   // Set/update profile weights for the vector and remainder loops as original
4143   // loop iterations are now distributed among them. Note that original loop
4144   // represented by LoopScalarBody becomes remainder loop after vectorization.
4145   //
4146   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4147   // end up getting slightly roughened result but that should be OK since
4148   // profile is not inherently precise anyway. Note also possible bypass of
4149   // vector code caused by legality checks is ignored, assigning all the weight
4150   // to the vector loop, optimistically.
4151   //
4152   // For scalable vectorization we can't know at compile time how many iterations
4153   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4154   // vscale of '1'.
4155   setProfileInfoAfterUnrolling(
4156       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4157       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4158 }
4159 
4160 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4161   // In order to support recurrences we need to be able to vectorize Phi nodes.
4162   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4163   // stage #2: We now need to fix the recurrences by adding incoming edges to
4164   // the currently empty PHI nodes. At this point every instruction in the
4165   // original loop is widened to a vector form so we can use them to construct
4166   // the incoming edges.
4167   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4168   for (VPRecipeBase &R : Header->phis()) {
4169     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4170       fixReduction(ReductionPhi, State);
4171     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4172       fixFirstOrderRecurrence(FOR, State);
4173   }
4174 }
4175 
4176 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4177                                                   VPTransformState &State) {
4178   // This is the second phase of vectorizing first-order recurrences. An
4179   // overview of the transformation is described below. Suppose we have the
4180   // following loop.
4181   //
4182   //   for (int i = 0; i < n; ++i)
4183   //     b[i] = a[i] - a[i - 1];
4184   //
4185   // There is a first-order recurrence on "a". For this loop, the shorthand
4186   // scalar IR looks like:
4187   //
4188   //   scalar.ph:
4189   //     s_init = a[-1]
4190   //     br scalar.body
4191   //
4192   //   scalar.body:
4193   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4194   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4195   //     s2 = a[i]
4196   //     b[i] = s2 - s1
4197   //     br cond, scalar.body, ...
4198   //
4199   // In this example, s1 is a recurrence because it's value depends on the
4200   // previous iteration. In the first phase of vectorization, we created a
4201   // vector phi v1 for s1. We now complete the vectorization and produce the
4202   // shorthand vector IR shown below (for VF = 4, UF = 1).
4203   //
4204   //   vector.ph:
4205   //     v_init = vector(..., ..., ..., a[-1])
4206   //     br vector.body
4207   //
4208   //   vector.body
4209   //     i = phi [0, vector.ph], [i+4, vector.body]
4210   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4211   //     v2 = a[i, i+1, i+2, i+3];
4212   //     v3 = vector(v1(3), v2(0, 1, 2))
4213   //     b[i, i+1, i+2, i+3] = v2 - v3
4214   //     br cond, vector.body, middle.block
4215   //
4216   //   middle.block:
4217   //     x = v2(3)
4218   //     br scalar.ph
4219   //
4220   //   scalar.ph:
4221   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4222   //     br scalar.body
4223   //
4224   // After execution completes the vector loop, we extract the next value of
4225   // the recurrence (x) to use as the initial value in the scalar loop.
4226 
4227   auto *IdxTy = Builder.getInt32Ty();
4228   auto *VecPhi = cast<PHINode>(State.get(PhiR, 0));
4229 
4230   // Fix the latch value of the new recurrence in the vector loop.
4231   VPValue *PreviousDef = PhiR->getBackedgeValue();
4232   Value *Incoming = State.get(PreviousDef, UF - 1);
4233   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4234 
4235   // Extract the last vector element in the middle block. This will be the
4236   // initial value for the recurrence when jumping to the scalar loop.
4237   auto *ExtractForScalar = Incoming;
4238   if (VF.isVector()) {
4239     auto *One = ConstantInt::get(IdxTy, 1);
4240     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4241     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4242     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4243     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4244                                                     "vector.recur.extract");
4245   }
4246   // Extract the second last element in the middle block if the
4247   // Phi is used outside the loop. We need to extract the phi itself
4248   // and not the last element (the phi update in the current iteration). This
4249   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4250   // when the scalar loop is not run at all.
4251   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4252   if (VF.isVector()) {
4253     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4254     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4255     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4256         Incoming, Idx, "vector.recur.extract.for.phi");
4257   } else if (UF > 1)
4258     // When loop is unrolled without vectorizing, initialize
4259     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4260     // of `Incoming`. This is analogous to the vectorized case above: extracting
4261     // the second last element when VF > 1.
4262     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4263 
4264   // Fix the initial value of the original recurrence in the scalar loop.
4265   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4266   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4267   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4268   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4269   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4270     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4271     Start->addIncoming(Incoming, BB);
4272   }
4273 
4274   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4275   Phi->setName("scalar.recur");
4276 
4277   // Finally, fix users of the recurrence outside the loop. The users will need
4278   // either the last value of the scalar recurrence or the last value of the
4279   // vector recurrence we extracted in the middle block. Since the loop is in
4280   // LCSSA form, we just need to find all the phi nodes for the original scalar
4281   // recurrence in the exit block, and then add an edge for the middle block.
4282   // Note that LCSSA does not imply single entry when the original scalar loop
4283   // had multiple exiting edges (as we always run the last iteration in the
4284   // scalar epilogue); in that case, there is no edge from middle to exit and
4285   // and thus no phis which needed updated.
4286   if (!Cost->requiresScalarEpilogue(VF))
4287     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4288       if (any_of(LCSSAPhi.incoming_values(),
4289                  [Phi](Value *V) { return V == Phi; }))
4290         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4291 }
4292 
4293 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4294                                        VPTransformState &State) {
4295   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4296   // Get it's reduction variable descriptor.
4297   assert(Legal->isReductionVariable(OrigPhi) &&
4298          "Unable to find the reduction variable");
4299   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4300 
4301   RecurKind RK = RdxDesc.getRecurrenceKind();
4302   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4303   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4304   setDebugLocFromInst(ReductionStartValue);
4305 
4306   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4307   // This is the vector-clone of the value that leaves the loop.
4308   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4309 
4310   // Wrap flags are in general invalid after vectorization, clear them.
4311   clearReductionWrapFlags(RdxDesc, State);
4312 
4313   // Fix the vector-loop phi.
4314 
4315   // Reductions do not have to start at zero. They can start with
4316   // any loop invariant values.
4317   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4318 
4319   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4320   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4321     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4322     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4323     if (PhiR->isOrdered())
4324       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4325 
4326     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4327   }
4328 
4329   // Before each round, move the insertion point right between
4330   // the PHIs and the values we are going to write.
4331   // This allows us to write both PHINodes and the extractelement
4332   // instructions.
4333   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4334 
4335   setDebugLocFromInst(LoopExitInst);
4336 
4337   Type *PhiTy = OrigPhi->getType();
4338   // If tail is folded by masking, the vector value to leave the loop should be
4339   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4340   // instead of the former. For an inloop reduction the reduction will already
4341   // be predicated, and does not need to be handled here.
4342   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4343     for (unsigned Part = 0; Part < UF; ++Part) {
4344       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4345       Value *Sel = nullptr;
4346       for (User *U : VecLoopExitInst->users()) {
4347         if (isa<SelectInst>(U)) {
4348           assert(!Sel && "Reduction exit feeding two selects");
4349           Sel = U;
4350         } else
4351           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4352       }
4353       assert(Sel && "Reduction exit feeds no select");
4354       State.reset(LoopExitInstDef, Sel, Part);
4355 
4356       // If the target can create a predicated operator for the reduction at no
4357       // extra cost in the loop (for example a predicated vadd), it can be
4358       // cheaper for the select to remain in the loop than be sunk out of it,
4359       // and so use the select value for the phi instead of the old
4360       // LoopExitValue.
4361       if (PreferPredicatedReductionSelect ||
4362           TTI->preferPredicatedReductionSelect(
4363               RdxDesc.getOpcode(), PhiTy,
4364               TargetTransformInfo::ReductionFlags())) {
4365         auto *VecRdxPhi =
4366             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4367         VecRdxPhi->setIncomingValueForBlock(
4368             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4369       }
4370     }
4371   }
4372 
4373   // If the vector reduction can be performed in a smaller type, we truncate
4374   // then extend the loop exit value to enable InstCombine to evaluate the
4375   // entire expression in the smaller type.
4376   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4377     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4378     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4379     Builder.SetInsertPoint(
4380         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4381     VectorParts RdxParts(UF);
4382     for (unsigned Part = 0; Part < UF; ++Part) {
4383       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4384       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4385       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4386                                         : Builder.CreateZExt(Trunc, VecTy);
4387       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4388            UI != RdxParts[Part]->user_end();)
4389         if (*UI != Trunc) {
4390           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4391           RdxParts[Part] = Extnd;
4392         } else {
4393           ++UI;
4394         }
4395     }
4396     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4397     for (unsigned Part = 0; Part < UF; ++Part) {
4398       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4399       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4400     }
4401   }
4402 
4403   // Reduce all of the unrolled parts into a single vector.
4404   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4405   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4406 
4407   // The middle block terminator has already been assigned a DebugLoc here (the
4408   // OrigLoop's single latch terminator). We want the whole middle block to
4409   // appear to execute on this line because: (a) it is all compiler generated,
4410   // (b) these instructions are always executed after evaluating the latch
4411   // conditional branch, and (c) other passes may add new predecessors which
4412   // terminate on this line. This is the easiest way to ensure we don't
4413   // accidentally cause an extra step back into the loop while debugging.
4414   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4415   if (PhiR->isOrdered())
4416     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4417   else {
4418     // Floating-point operations should have some FMF to enable the reduction.
4419     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4420     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4421     for (unsigned Part = 1; Part < UF; ++Part) {
4422       Value *RdxPart = State.get(LoopExitInstDef, Part);
4423       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4424         ReducedPartRdx = Builder.CreateBinOp(
4425             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4426       } else {
4427         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4428       }
4429     }
4430   }
4431 
4432   // Create the reduction after the loop. Note that inloop reductions create the
4433   // target reduction in the loop using a Reduction recipe.
4434   if (VF.isVector() && !PhiR->isInLoop()) {
4435     ReducedPartRdx =
4436         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4437     // If the reduction can be performed in a smaller type, we need to extend
4438     // the reduction to the wider type before we branch to the original loop.
4439     if (PhiTy != RdxDesc.getRecurrenceType())
4440       ReducedPartRdx = RdxDesc.isSigned()
4441                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4442                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4443   }
4444 
4445   // Create a phi node that merges control-flow from the backedge-taken check
4446   // block and the middle block.
4447   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4448                                         LoopScalarPreHeader->getTerminator());
4449   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4450     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4451   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4452 
4453   // Now, we need to fix the users of the reduction variable
4454   // inside and outside of the scalar remainder loop.
4455 
4456   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4457   // in the exit blocks.  See comment on analogous loop in
4458   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4459   if (!Cost->requiresScalarEpilogue(VF))
4460     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4461       if (any_of(LCSSAPhi.incoming_values(),
4462                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4463         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4464 
4465   // Fix the scalar loop reduction variable with the incoming reduction sum
4466   // from the vector body and from the backedge value.
4467   int IncomingEdgeBlockIdx =
4468       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4469   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4470   // Pick the other block.
4471   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4472   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4473   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4474 }
4475 
4476 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4477                                                   VPTransformState &State) {
4478   RecurKind RK = RdxDesc.getRecurrenceKind();
4479   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4480     return;
4481 
4482   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4483   assert(LoopExitInstr && "null loop exit instruction");
4484   SmallVector<Instruction *, 8> Worklist;
4485   SmallPtrSet<Instruction *, 8> Visited;
4486   Worklist.push_back(LoopExitInstr);
4487   Visited.insert(LoopExitInstr);
4488 
4489   while (!Worklist.empty()) {
4490     Instruction *Cur = Worklist.pop_back_val();
4491     if (isa<OverflowingBinaryOperator>(Cur))
4492       for (unsigned Part = 0; Part < UF; ++Part) {
4493         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4494         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4495       }
4496 
4497     for (User *U : Cur->users()) {
4498       Instruction *UI = cast<Instruction>(U);
4499       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4500           Visited.insert(UI).second)
4501         Worklist.push_back(UI);
4502     }
4503   }
4504 }
4505 
4506 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4507   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4508     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4509       // Some phis were already hand updated by the reduction and recurrence
4510       // code above, leave them alone.
4511       continue;
4512 
4513     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4514     // Non-instruction incoming values will have only one value.
4515 
4516     VPLane Lane = VPLane::getFirstLane();
4517     if (isa<Instruction>(IncomingValue) &&
4518         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4519                                            VF))
4520       Lane = VPLane::getLastLaneForVF(VF);
4521 
4522     // Can be a loop invariant incoming value or the last scalar value to be
4523     // extracted from the vectorized loop.
4524     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4525     Value *lastIncomingValue =
4526         OrigLoop->isLoopInvariant(IncomingValue)
4527             ? IncomingValue
4528             : State.get(State.Plan->getVPValue(IncomingValue),
4529                         VPIteration(UF - 1, Lane));
4530     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4531   }
4532 }
4533 
4534 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4535   // The basic block and loop containing the predicated instruction.
4536   auto *PredBB = PredInst->getParent();
4537   auto *VectorLoop = LI->getLoopFor(PredBB);
4538 
4539   // Initialize a worklist with the operands of the predicated instruction.
4540   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4541 
4542   // Holds instructions that we need to analyze again. An instruction may be
4543   // reanalyzed if we don't yet know if we can sink it or not.
4544   SmallVector<Instruction *, 8> InstsToReanalyze;
4545 
4546   // Returns true if a given use occurs in the predicated block. Phi nodes use
4547   // their operands in their corresponding predecessor blocks.
4548   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4549     auto *I = cast<Instruction>(U.getUser());
4550     BasicBlock *BB = I->getParent();
4551     if (auto *Phi = dyn_cast<PHINode>(I))
4552       BB = Phi->getIncomingBlock(
4553           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4554     return BB == PredBB;
4555   };
4556 
4557   // Iteratively sink the scalarized operands of the predicated instruction
4558   // into the block we created for it. When an instruction is sunk, it's
4559   // operands are then added to the worklist. The algorithm ends after one pass
4560   // through the worklist doesn't sink a single instruction.
4561   bool Changed;
4562   do {
4563     // Add the instructions that need to be reanalyzed to the worklist, and
4564     // reset the changed indicator.
4565     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4566     InstsToReanalyze.clear();
4567     Changed = false;
4568 
4569     while (!Worklist.empty()) {
4570       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4571 
4572       // We can't sink an instruction if it is a phi node, is not in the loop,
4573       // or may have side effects.
4574       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4575           I->mayHaveSideEffects())
4576         continue;
4577 
4578       // If the instruction is already in PredBB, check if we can sink its
4579       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4580       // sinking the scalar instruction I, hence it appears in PredBB; but it
4581       // may have failed to sink I's operands (recursively), which we try
4582       // (again) here.
4583       if (I->getParent() == PredBB) {
4584         Worklist.insert(I->op_begin(), I->op_end());
4585         continue;
4586       }
4587 
4588       // It's legal to sink the instruction if all its uses occur in the
4589       // predicated block. Otherwise, there's nothing to do yet, and we may
4590       // need to reanalyze the instruction.
4591       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4592         InstsToReanalyze.push_back(I);
4593         continue;
4594       }
4595 
4596       // Move the instruction to the beginning of the predicated block, and add
4597       // it's operands to the worklist.
4598       I->moveBefore(&*PredBB->getFirstInsertionPt());
4599       Worklist.insert(I->op_begin(), I->op_end());
4600 
4601       // The sinking may have enabled other instructions to be sunk, so we will
4602       // need to iterate.
4603       Changed = true;
4604     }
4605   } while (Changed);
4606 }
4607 
4608 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4609   for (PHINode *OrigPhi : OrigPHIsToFix) {
4610     VPWidenPHIRecipe *VPPhi =
4611         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4612     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4613     // Make sure the builder has a valid insert point.
4614     Builder.SetInsertPoint(NewPhi);
4615     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4616       VPValue *Inc = VPPhi->getIncomingValue(i);
4617       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4618       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4619     }
4620   }
4621 }
4622 
4623 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4624   return Cost->useOrderedReductions(RdxDesc);
4625 }
4626 
4627 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4628                                    VPUser &Operands, unsigned UF,
4629                                    ElementCount VF, bool IsPtrLoopInvariant,
4630                                    SmallBitVector &IsIndexLoopInvariant,
4631                                    VPTransformState &State) {
4632   // Construct a vector GEP by widening the operands of the scalar GEP as
4633   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4634   // results in a vector of pointers when at least one operand of the GEP
4635   // is vector-typed. Thus, to keep the representation compact, we only use
4636   // vector-typed operands for loop-varying values.
4637 
4638   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4639     // If we are vectorizing, but the GEP has only loop-invariant operands,
4640     // the GEP we build (by only using vector-typed operands for
4641     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4642     // produce a vector of pointers, we need to either arbitrarily pick an
4643     // operand to broadcast, or broadcast a clone of the original GEP.
4644     // Here, we broadcast a clone of the original.
4645     //
4646     // TODO: If at some point we decide to scalarize instructions having
4647     //       loop-invariant operands, this special case will no longer be
4648     //       required. We would add the scalarization decision to
4649     //       collectLoopScalars() and teach getVectorValue() to broadcast
4650     //       the lane-zero scalar value.
4651     auto *Clone = Builder.Insert(GEP->clone());
4652     for (unsigned Part = 0; Part < UF; ++Part) {
4653       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4654       State.set(VPDef, EntryPart, Part);
4655       addMetadata(EntryPart, GEP);
4656     }
4657   } else {
4658     // If the GEP has at least one loop-varying operand, we are sure to
4659     // produce a vector of pointers. But if we are only unrolling, we want
4660     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4661     // produce with the code below will be scalar (if VF == 1) or vector
4662     // (otherwise). Note that for the unroll-only case, we still maintain
4663     // values in the vector mapping with initVector, as we do for other
4664     // instructions.
4665     for (unsigned Part = 0; Part < UF; ++Part) {
4666       // The pointer operand of the new GEP. If it's loop-invariant, we
4667       // won't broadcast it.
4668       auto *Ptr = IsPtrLoopInvariant
4669                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4670                       : State.get(Operands.getOperand(0), Part);
4671 
4672       // Collect all the indices for the new GEP. If any index is
4673       // loop-invariant, we won't broadcast it.
4674       SmallVector<Value *, 4> Indices;
4675       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4676         VPValue *Operand = Operands.getOperand(I);
4677         if (IsIndexLoopInvariant[I - 1])
4678           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4679         else
4680           Indices.push_back(State.get(Operand, Part));
4681       }
4682 
4683       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4684       // but it should be a vector, otherwise.
4685       auto *NewGEP =
4686           GEP->isInBounds()
4687               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4688                                           Indices)
4689               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4690       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4691              "NewGEP is not a pointer vector");
4692       State.set(VPDef, NewGEP, Part);
4693       addMetadata(NewGEP, GEP);
4694     }
4695   }
4696 }
4697 
4698 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4699                                               VPWidenPHIRecipe *PhiR,
4700                                               VPTransformState &State) {
4701   PHINode *P = cast<PHINode>(PN);
4702   if (EnableVPlanNativePath) {
4703     // Currently we enter here in the VPlan-native path for non-induction
4704     // PHIs where all control flow is uniform. We simply widen these PHIs.
4705     // Create a vector phi with no operands - the vector phi operands will be
4706     // set at the end of vector code generation.
4707     Type *VecTy = (State.VF.isScalar())
4708                       ? PN->getType()
4709                       : VectorType::get(PN->getType(), State.VF);
4710     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4711     State.set(PhiR, VecPhi, 0);
4712     OrigPHIsToFix.push_back(P);
4713 
4714     return;
4715   }
4716 
4717   assert(PN->getParent() == OrigLoop->getHeader() &&
4718          "Non-header phis should have been handled elsewhere");
4719 
4720   // In order to support recurrences we need to be able to vectorize Phi nodes.
4721   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4722   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4723   // this value when we vectorize all of the instructions that use the PHI.
4724 
4725   assert(!Legal->isReductionVariable(P) &&
4726          "reductions should be handled elsewhere");
4727 
4728   setDebugLocFromInst(P);
4729 
4730   // This PHINode must be an induction variable.
4731   // Make sure that we know about it.
4732   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4733 
4734   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4735   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4736 
4737   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4738   // which can be found from the original scalar operations.
4739   switch (II.getKind()) {
4740   case InductionDescriptor::IK_NoInduction:
4741     llvm_unreachable("Unknown induction");
4742   case InductionDescriptor::IK_IntInduction:
4743   case InductionDescriptor::IK_FpInduction:
4744     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4745   case InductionDescriptor::IK_PtrInduction: {
4746     // Handle the pointer induction variable case.
4747     assert(P->getType()->isPointerTy() && "Unexpected type.");
4748 
4749     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4750       // This is the normalized GEP that starts counting at zero.
4751       Value *PtrInd =
4752           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4753       // Determine the number of scalars we need to generate for each unroll
4754       // iteration. If the instruction is uniform, we only need to generate the
4755       // first lane. Otherwise, we generate all VF values.
4756       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4757       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4758 
4759       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4760       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4761       if (NeedsVectorIndex) {
4762         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4763         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4764         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4765       }
4766 
4767       for (unsigned Part = 0; Part < UF; ++Part) {
4768         Value *PartStart = createStepForVF(
4769             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4770 
4771         if (NeedsVectorIndex) {
4772           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4773           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4774           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4775           Value *SclrGep =
4776               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4777           SclrGep->setName("next.gep");
4778           State.set(PhiR, SclrGep, Part);
4779           // We've cached the whole vector, which means we can support the
4780           // extraction of any lane.
4781           continue;
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         ScStValueType->getPointerElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           ScStValueType->getPointerElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->arg_operands())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       Instruction *Update = cast<Instruction>(
5129           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5130       Worklist.insert(Update);
5131       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5132                         << "\n");
5133       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update
5134                         << "\n");
5135       return;
5136     }
5137     // We only care about bitcast and getelementptr instructions contained in
5138     // the loop.
5139     if (!isLoopVaryingBitCastOrGEP(Ptr))
5140       return;
5141 
5142     // If the pointer has already been identified as scalar (e.g., if it was
5143     // also identified as uniform), there's nothing to do.
5144     auto *I = cast<Instruction>(Ptr);
5145     if (Worklist.count(I))
5146       return;
5147 
5148     // If the use of the pointer will be a scalar use, and all users of the
5149     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5150     // place the pointer in PossibleNonScalarPtrs.
5151     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5152           return isa<LoadInst>(U) || isa<StoreInst>(U);
5153         }))
5154       ScalarPtrs.insert(I);
5155     else
5156       PossibleNonScalarPtrs.insert(I);
5157   };
5158 
5159   // We seed the scalars analysis with three classes of instructions: (1)
5160   // instructions marked uniform-after-vectorization and (2) bitcast,
5161   // getelementptr and (pointer) phi instructions used by memory accesses
5162   // requiring a scalar use.
5163   //
5164   // (1) Add to the worklist all instructions that have been identified as
5165   // uniform-after-vectorization.
5166   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5167 
5168   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5169   // memory accesses requiring a scalar use. The pointer operands of loads and
5170   // stores will be scalar as long as the memory accesses is not a gather or
5171   // scatter operation. The value operand of a store will remain scalar if the
5172   // store is scalarized.
5173   for (auto *BB : TheLoop->blocks())
5174     for (auto &I : *BB) {
5175       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5176         evaluatePtrUse(Load, Load->getPointerOperand());
5177       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5178         evaluatePtrUse(Store, Store->getPointerOperand());
5179         evaluatePtrUse(Store, Store->getValueOperand());
5180       }
5181     }
5182   for (auto *I : ScalarPtrs)
5183     if (!PossibleNonScalarPtrs.count(I)) {
5184       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5185       Worklist.insert(I);
5186     }
5187 
5188   // Insert the forced scalars.
5189   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5190   // induction variable when the PHI user is scalarized.
5191   auto ForcedScalar = ForcedScalars.find(VF);
5192   if (ForcedScalar != ForcedScalars.end())
5193     for (auto *I : ForcedScalar->second)
5194       Worklist.insert(I);
5195 
5196   // Expand the worklist by looking through any bitcasts and getelementptr
5197   // instructions we've already identified as scalar. This is similar to the
5198   // expansion step in collectLoopUniforms(); however, here we're only
5199   // expanding to include additional bitcasts and getelementptr instructions.
5200   unsigned Idx = 0;
5201   while (Idx != Worklist.size()) {
5202     Instruction *Dst = Worklist[Idx++];
5203     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5204       continue;
5205     auto *Src = cast<Instruction>(Dst->getOperand(0));
5206     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5207           auto *J = cast<Instruction>(U);
5208           return !TheLoop->contains(J) || Worklist.count(J) ||
5209                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5210                   isScalarUse(J, Src));
5211         })) {
5212       Worklist.insert(Src);
5213       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5214     }
5215   }
5216 
5217   // An induction variable will remain scalar if all users of the induction
5218   // variable and induction variable update remain scalar.
5219   for (auto &Induction : Legal->getInductionVars()) {
5220     auto *Ind = Induction.first;
5221     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5222 
5223     // If tail-folding is applied, the primary induction variable will be used
5224     // to feed a vector compare.
5225     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5226       continue;
5227 
5228     // Determine if all users of the induction variable are scalar after
5229     // vectorization.
5230     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5231       auto *I = cast<Instruction>(U);
5232       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5233     });
5234     if (!ScalarInd)
5235       continue;
5236 
5237     // Determine if all users of the induction variable update instruction are
5238     // scalar after vectorization.
5239     auto ScalarIndUpdate =
5240         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5241           auto *I = cast<Instruction>(U);
5242           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5243         });
5244     if (!ScalarIndUpdate)
5245       continue;
5246 
5247     // The induction variable and its update instruction will remain scalar.
5248     Worklist.insert(Ind);
5249     Worklist.insert(IndUpdate);
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5252                       << "\n");
5253   }
5254 
5255   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5256 }
5257 
5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5259   if (!blockNeedsPredication(I->getParent()))
5260     return false;
5261   switch(I->getOpcode()) {
5262   default:
5263     break;
5264   case Instruction::Load:
5265   case Instruction::Store: {
5266     if (!Legal->isMaskRequired(I))
5267       return false;
5268     auto *Ptr = getLoadStorePointerOperand(I);
5269     auto *Ty = getLoadStoreType(I);
5270     const Align Alignment = getLoadStoreAlignment(I);
5271     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedGather(Ty, Alignment))
5273                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5274                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5275   }
5276   case Instruction::UDiv:
5277   case Instruction::SDiv:
5278   case Instruction::SRem:
5279   case Instruction::URem:
5280     return mayDivideByZero(*I);
5281   }
5282   return false;
5283 }
5284 
5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5286     Instruction *I, ElementCount VF) {
5287   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5288   assert(getWideningDecision(I, VF) == CM_Unknown &&
5289          "Decision should not be set yet.");
5290   auto *Group = getInterleavedAccessGroup(I);
5291   assert(Group && "Must have a group.");
5292 
5293   // If the instruction's allocated size doesn't equal it's type size, it
5294   // requires padding and will be scalarized.
5295   auto &DL = I->getModule()->getDataLayout();
5296   auto *ScalarTy = getLoadStoreType(I);
5297   if (hasIrregularType(ScalarTy, DL))
5298     return false;
5299 
5300   // Check if masking is required.
5301   // A Group may need masking for one of two reasons: it resides in a block that
5302   // needs predication, or it was decided to use masking to deal with gaps.
5303   bool PredicatedAccessRequiresMasking =
5304       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5305   bool AccessWithGapsRequiresMasking =
5306       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5307   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5308     return true;
5309 
5310   // If masked interleaving is required, we expect that the user/target had
5311   // enabled it, because otherwise it either wouldn't have been created or
5312   // it should have been invalidated by the CostModel.
5313   assert(useMaskedInterleavedAccesses(TTI) &&
5314          "Masked interleave-groups for predicated accesses are not enabled.");
5315 
5316   auto *Ty = getLoadStoreType(I);
5317   const Align Alignment = getLoadStoreAlignment(I);
5318   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5319                           : TTI.isLegalMaskedStore(Ty, Alignment);
5320 }
5321 
5322 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5323     Instruction *I, ElementCount VF) {
5324   // Get and ensure we have a valid memory instruction.
5325   LoadInst *LI = dyn_cast<LoadInst>(I);
5326   StoreInst *SI = dyn_cast<StoreInst>(I);
5327   assert((LI || SI) && "Invalid memory instruction");
5328 
5329   auto *Ptr = getLoadStorePointerOperand(I);
5330 
5331   // In order to be widened, the pointer should be consecutive, first of all.
5332   if (!Legal->isConsecutivePtr(Ptr))
5333     return false;
5334 
5335   // If the instruction is a store located in a predicated block, it will be
5336   // scalarized.
5337   if (isScalarWithPredication(I))
5338     return false;
5339 
5340   // If the instruction's allocated size doesn't equal it's type size, it
5341   // requires padding and will be scalarized.
5342   auto &DL = I->getModule()->getDataLayout();
5343   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5344   if (hasIrregularType(ScalarTy, DL))
5345     return false;
5346 
5347   return true;
5348 }
5349 
5350 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5351   // We should not collect Uniforms more than once per VF. Right now,
5352   // this function is called from collectUniformsAndScalars(), which
5353   // already does this check. Collecting Uniforms for VF=1 does not make any
5354   // sense.
5355 
5356   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5357          "This function should not be visited twice for the same VF");
5358 
5359   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5360   // not analyze again.  Uniforms.count(VF) will return 1.
5361   Uniforms[VF].clear();
5362 
5363   // We now know that the loop is vectorizable!
5364   // Collect instructions inside the loop that will remain uniform after
5365   // vectorization.
5366 
5367   // Global values, params and instructions outside of current loop are out of
5368   // scope.
5369   auto isOutOfScope = [&](Value *V) -> bool {
5370     Instruction *I = dyn_cast<Instruction>(V);
5371     return (!I || !TheLoop->contains(I));
5372   };
5373 
5374   SetVector<Instruction *> Worklist;
5375   BasicBlock *Latch = TheLoop->getLoopLatch();
5376 
5377   // Instructions that are scalar with predication must not be considered
5378   // uniform after vectorization, because that would create an erroneous
5379   // replicating region where only a single instance out of VF should be formed.
5380   // TODO: optimize such seldom cases if found important, see PR40816.
5381   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5382     if (isOutOfScope(I)) {
5383       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5384                         << *I << "\n");
5385       return;
5386     }
5387     if (isScalarWithPredication(I)) {
5388       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5389                         << *I << "\n");
5390       return;
5391     }
5392     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5393     Worklist.insert(I);
5394   };
5395 
5396   // Start with the conditional branch. If the branch condition is an
5397   // instruction contained in the loop that is only used by the branch, it is
5398   // uniform.
5399   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5400   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5401     addToWorklistIfAllowed(Cmp);
5402 
5403   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5404     InstWidening WideningDecision = getWideningDecision(I, VF);
5405     assert(WideningDecision != CM_Unknown &&
5406            "Widening decision should be ready at this moment");
5407 
5408     // A uniform memory op is itself uniform.  We exclude uniform stores
5409     // here as they demand the last lane, not the first one.
5410     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5411       assert(WideningDecision == CM_Scalarize);
5412       return true;
5413     }
5414 
5415     return (WideningDecision == CM_Widen ||
5416             WideningDecision == CM_Widen_Reverse ||
5417             WideningDecision == CM_Interleave);
5418   };
5419 
5420 
5421   // Returns true if Ptr is the pointer operand of a memory access instruction
5422   // I, and I is known to not require scalarization.
5423   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5424     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5425   };
5426 
5427   // Holds a list of values which are known to have at least one uniform use.
5428   // Note that there may be other uses which aren't uniform.  A "uniform use"
5429   // here is something which only demands lane 0 of the unrolled iterations;
5430   // it does not imply that all lanes produce the same value (e.g. this is not
5431   // the usual meaning of uniform)
5432   SetVector<Value *> HasUniformUse;
5433 
5434   // Scan the loop for instructions which are either a) known to have only
5435   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5436   for (auto *BB : TheLoop->blocks())
5437     for (auto &I : *BB) {
5438       // If there's no pointer operand, there's nothing to do.
5439       auto *Ptr = getLoadStorePointerOperand(&I);
5440       if (!Ptr)
5441         continue;
5442 
5443       // A uniform memory op is itself uniform.  We exclude uniform stores
5444       // here as they demand the last lane, not the first one.
5445       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5446         addToWorklistIfAllowed(&I);
5447 
5448       if (isUniformDecision(&I, VF)) {
5449         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5450         HasUniformUse.insert(Ptr);
5451       }
5452     }
5453 
5454   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5455   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5456   // disallows uses outside the loop as well.
5457   for (auto *V : HasUniformUse) {
5458     if (isOutOfScope(V))
5459       continue;
5460     auto *I = cast<Instruction>(V);
5461     auto UsersAreMemAccesses =
5462       llvm::all_of(I->users(), [&](User *U) -> bool {
5463         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5464       });
5465     if (UsersAreMemAccesses)
5466       addToWorklistIfAllowed(I);
5467   }
5468 
5469   // Expand Worklist in topological order: whenever a new instruction
5470   // is added , its users should be already inside Worklist.  It ensures
5471   // a uniform instruction will only be used by uniform instructions.
5472   unsigned idx = 0;
5473   while (idx != Worklist.size()) {
5474     Instruction *I = Worklist[idx++];
5475 
5476     for (auto OV : I->operand_values()) {
5477       // isOutOfScope operands cannot be uniform instructions.
5478       if (isOutOfScope(OV))
5479         continue;
5480       // First order recurrence Phi's should typically be considered
5481       // non-uniform.
5482       auto *OP = dyn_cast<PHINode>(OV);
5483       if (OP && Legal->isFirstOrderRecurrence(OP))
5484         continue;
5485       // If all the users of the operand are uniform, then add the
5486       // operand into the uniform worklist.
5487       auto *OI = cast<Instruction>(OV);
5488       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5489             auto *J = cast<Instruction>(U);
5490             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5491           }))
5492         addToWorklistIfAllowed(OI);
5493     }
5494   }
5495 
5496   // For an instruction to be added into Worklist above, all its users inside
5497   // the loop should also be in Worklist. However, this condition cannot be
5498   // true for phi nodes that form a cyclic dependence. We must process phi
5499   // nodes separately. An induction variable will remain uniform if all users
5500   // of the induction variable and induction variable update remain uniform.
5501   // The code below handles both pointer and non-pointer induction variables.
5502   for (auto &Induction : Legal->getInductionVars()) {
5503     auto *Ind = Induction.first;
5504     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5505 
5506     // Determine if all users of the induction variable are uniform after
5507     // vectorization.
5508     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5509       auto *I = cast<Instruction>(U);
5510       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5511              isVectorizedMemAccessUse(I, Ind);
5512     });
5513     if (!UniformInd)
5514       continue;
5515 
5516     // Determine if all users of the induction variable update instruction are
5517     // uniform after vectorization.
5518     auto UniformIndUpdate =
5519         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5520           auto *I = cast<Instruction>(U);
5521           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5522                  isVectorizedMemAccessUse(I, IndUpdate);
5523         });
5524     if (!UniformIndUpdate)
5525       continue;
5526 
5527     // The induction variable and its update instruction will remain uniform.
5528     addToWorklistIfAllowed(Ind);
5529     addToWorklistIfAllowed(IndUpdate);
5530   }
5531 
5532   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5533 }
5534 
5535 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5536   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5537 
5538   if (Legal->getRuntimePointerChecking()->Need) {
5539     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5540         "runtime pointer checks needed. Enable vectorization of this "
5541         "loop with '#pragma clang loop vectorize(enable)' when "
5542         "compiling with -Os/-Oz",
5543         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5544     return true;
5545   }
5546 
5547   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5548     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5549         "runtime SCEV checks needed. Enable vectorization of this "
5550         "loop with '#pragma clang loop vectorize(enable)' when "
5551         "compiling with -Os/-Oz",
5552         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5553     return true;
5554   }
5555 
5556   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5557   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5558     reportVectorizationFailure("Runtime stride check for small trip count",
5559         "runtime stride == 1 checks needed. Enable vectorization of "
5560         "this loop without such check by compiling with -Os/-Oz",
5561         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5562     return true;
5563   }
5564 
5565   return false;
5566 }
5567 
5568 ElementCount
5569 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5570   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5571     reportVectorizationInfo(
5572         "Disabling scalable vectorization, because target does not "
5573         "support scalable vectors.",
5574         "ScalableVectorsUnsupported", ORE, TheLoop);
5575     return ElementCount::getScalable(0);
5576   }
5577 
5578   if (Hints->isScalableVectorizationDisabled()) {
5579     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5580                             "ScalableVectorizationDisabled", ORE, TheLoop);
5581     return ElementCount::getScalable(0);
5582   }
5583 
5584   auto MaxScalableVF = ElementCount::getScalable(
5585       std::numeric_limits<ElementCount::ScalarTy>::max());
5586 
5587   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5588   // FIXME: While for scalable vectors this is currently sufficient, this should
5589   // be replaced by a more detailed mechanism that filters out specific VFs,
5590   // instead of invalidating vectorization for a whole set of VFs based on the
5591   // MaxVF.
5592 
5593   // Disable scalable vectorization if the loop contains unsupported reductions.
5594   if (!canVectorizeReductions(MaxScalableVF)) {
5595     reportVectorizationInfo(
5596         "Scalable vectorization not supported for the reduction "
5597         "operations found in this loop.",
5598         "ScalableVFUnfeasible", ORE, TheLoop);
5599     return ElementCount::getScalable(0);
5600   }
5601 
5602   // Disable scalable vectorization if the loop contains any instructions
5603   // with element types not supported for scalable vectors.
5604   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5605         return !Ty->isVoidTy() &&
5606                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5607       })) {
5608     reportVectorizationInfo("Scalable vectorization is not supported "
5609                             "for all element types found in this loop.",
5610                             "ScalableVFUnfeasible", ORE, TheLoop);
5611     return ElementCount::getScalable(0);
5612   }
5613 
5614   if (Legal->isSafeForAnyVectorWidth())
5615     return MaxScalableVF;
5616 
5617   // Limit MaxScalableVF by the maximum safe dependence distance.
5618   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5619   MaxScalableVF = ElementCount::getScalable(
5620       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5621   if (!MaxScalableVF)
5622     reportVectorizationInfo(
5623         "Max legal vector width too small, scalable vectorization "
5624         "unfeasible.",
5625         "ScalableVFUnfeasible", ORE, TheLoop);
5626 
5627   return MaxScalableVF;
5628 }
5629 
5630 FixedScalableVFPair
5631 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5632                                                  ElementCount UserVF) {
5633   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5634   unsigned SmallestType, WidestType;
5635   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5636 
5637   // Get the maximum safe dependence distance in bits computed by LAA.
5638   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5639   // the memory accesses that is most restrictive (involved in the smallest
5640   // dependence distance).
5641   unsigned MaxSafeElements =
5642       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5643 
5644   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5645   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5646 
5647   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5648                     << ".\n");
5649   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5650                     << ".\n");
5651 
5652   // First analyze the UserVF, fall back if the UserVF should be ignored.
5653   if (UserVF) {
5654     auto MaxSafeUserVF =
5655         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5656 
5657     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5658       // If `VF=vscale x N` is safe, then so is `VF=N`
5659       if (UserVF.isScalable())
5660         return FixedScalableVFPair(
5661             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5662       else
5663         return UserVF;
5664     }
5665 
5666     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5667 
5668     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5669     // is better to ignore the hint and let the compiler choose a suitable VF.
5670     if (!UserVF.isScalable()) {
5671       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5672                         << " is unsafe, clamping to max safe VF="
5673                         << MaxSafeFixedVF << ".\n");
5674       ORE->emit([&]() {
5675         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5676                                           TheLoop->getStartLoc(),
5677                                           TheLoop->getHeader())
5678                << "User-specified vectorization factor "
5679                << ore::NV("UserVectorizationFactor", UserVF)
5680                << " is unsafe, clamping to maximum safe vectorization factor "
5681                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5682       });
5683       return MaxSafeFixedVF;
5684     }
5685 
5686     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5687                       << " is unsafe. Ignoring scalable UserVF.\n");
5688     ORE->emit([&]() {
5689       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5690                                         TheLoop->getStartLoc(),
5691                                         TheLoop->getHeader())
5692              << "User-specified vectorization factor "
5693              << ore::NV("UserVectorizationFactor", UserVF)
5694              << " is unsafe. Ignoring the hint to let the compiler pick a "
5695                 "suitable VF.";
5696     });
5697   }
5698 
5699   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5700                     << " / " << WidestType << " bits.\n");
5701 
5702   FixedScalableVFPair Result(ElementCount::getFixed(1),
5703                              ElementCount::getScalable(0));
5704   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5705                                            WidestType, MaxSafeFixedVF))
5706     Result.FixedVF = MaxVF;
5707 
5708   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5709                                            WidestType, MaxSafeScalableVF))
5710     if (MaxVF.isScalable()) {
5711       Result.ScalableVF = MaxVF;
5712       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5713                         << "\n");
5714     }
5715 
5716   return Result;
5717 }
5718 
5719 FixedScalableVFPair
5720 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5721   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5722     // TODO: It may by useful to do since it's still likely to be dynamically
5723     // uniform if the target can skip.
5724     reportVectorizationFailure(
5725         "Not inserting runtime ptr check for divergent target",
5726         "runtime pointer checks needed. Not enabled for divergent target",
5727         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5728     return FixedScalableVFPair::getNone();
5729   }
5730 
5731   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5732   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5733   if (TC == 1) {
5734     reportVectorizationFailure("Single iteration (non) loop",
5735         "loop trip count is one, irrelevant for vectorization",
5736         "SingleIterationLoop", ORE, TheLoop);
5737     return FixedScalableVFPair::getNone();
5738   }
5739 
5740   switch (ScalarEpilogueStatus) {
5741   case CM_ScalarEpilogueAllowed:
5742     return computeFeasibleMaxVF(TC, UserVF);
5743   case CM_ScalarEpilogueNotAllowedUsePredicate:
5744     LLVM_FALLTHROUGH;
5745   case CM_ScalarEpilogueNotNeededUsePredicate:
5746     LLVM_DEBUG(
5747         dbgs() << "LV: vector predicate hint/switch found.\n"
5748                << "LV: Not allowing scalar epilogue, creating predicated "
5749                << "vector loop.\n");
5750     break;
5751   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5752     // fallthrough as a special case of OptForSize
5753   case CM_ScalarEpilogueNotAllowedOptSize:
5754     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5755       LLVM_DEBUG(
5756           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5757     else
5758       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5759                         << "count.\n");
5760 
5761     // Bail if runtime checks are required, which are not good when optimising
5762     // for size.
5763     if (runtimeChecksRequired())
5764       return FixedScalableVFPair::getNone();
5765 
5766     break;
5767   }
5768 
5769   // The only loops we can vectorize without a scalar epilogue, are loops with
5770   // a bottom-test and a single exiting block. We'd have to handle the fact
5771   // that not every instruction executes on the last iteration.  This will
5772   // require a lane mask which varies through the vector loop body.  (TODO)
5773   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5774     // If there was a tail-folding hint/switch, but we can't fold the tail by
5775     // masking, fallback to a vectorization with a scalar epilogue.
5776     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5777       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5778                            "scalar epilogue instead.\n");
5779       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5780       return computeFeasibleMaxVF(TC, UserVF);
5781     }
5782     return FixedScalableVFPair::getNone();
5783   }
5784 
5785   // Now try the tail folding
5786 
5787   // Invalidate interleave groups that require an epilogue if we can't mask
5788   // the interleave-group.
5789   if (!useMaskedInterleavedAccesses(TTI)) {
5790     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5791            "No decisions should have been taken at this point");
5792     // Note: There is no need to invalidate any cost modeling decisions here, as
5793     // non where taken so far.
5794     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5795   }
5796 
5797   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5798   // Avoid tail folding if the trip count is known to be a multiple of any VF
5799   // we chose.
5800   // FIXME: The condition below pessimises the case for fixed-width vectors,
5801   // when scalable VFs are also candidates for vectorization.
5802   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5803     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5804     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5805            "MaxFixedVF must be a power of 2");
5806     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5807                                    : MaxFixedVF.getFixedValue();
5808     ScalarEvolution *SE = PSE.getSE();
5809     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5810     const SCEV *ExitCount = SE->getAddExpr(
5811         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5812     const SCEV *Rem = SE->getURemExpr(
5813         SE->applyLoopGuards(ExitCount, TheLoop),
5814         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5815     if (Rem->isZero()) {
5816       // Accept MaxFixedVF if we do not have a tail.
5817       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5818       return MaxFactors;
5819     }
5820   }
5821 
5822   // If we don't know the precise trip count, or if the trip count that we
5823   // found modulo the vectorization factor is not zero, try to fold the tail
5824   // by masking.
5825   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5826   if (Legal->prepareToFoldTailByMasking()) {
5827     FoldTailByMasking = true;
5828     return MaxFactors;
5829   }
5830 
5831   // If there was a tail-folding hint/switch, but we can't fold the tail by
5832   // masking, fallback to a vectorization with a scalar epilogue.
5833   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5834     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5835                          "scalar epilogue instead.\n");
5836     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5837     return MaxFactors;
5838   }
5839 
5840   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5841     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5842     return FixedScalableVFPair::getNone();
5843   }
5844 
5845   if (TC == 0) {
5846     reportVectorizationFailure(
5847         "Unable to calculate the loop count due to complex control flow",
5848         "unable to calculate the loop count due to complex control flow",
5849         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5850     return FixedScalableVFPair::getNone();
5851   }
5852 
5853   reportVectorizationFailure(
5854       "Cannot optimize for size and vectorize at the same time.",
5855       "cannot optimize for size and vectorize at the same time. "
5856       "Enable vectorization of this loop with '#pragma clang loop "
5857       "vectorize(enable)' when compiling with -Os/-Oz",
5858       "NoTailLoopWithOptForSize", ORE, TheLoop);
5859   return FixedScalableVFPair::getNone();
5860 }
5861 
5862 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5863     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5864     const ElementCount &MaxSafeVF) {
5865   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5866   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5867       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5868                            : TargetTransformInfo::RGK_FixedWidthVector);
5869 
5870   // Convenience function to return the minimum of two ElementCounts.
5871   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5872     assert((LHS.isScalable() == RHS.isScalable()) &&
5873            "Scalable flags must match");
5874     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5875   };
5876 
5877   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5878   // Note that both WidestRegister and WidestType may not be a powers of 2.
5879   auto MaxVectorElementCount = ElementCount::get(
5880       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5881       ComputeScalableMaxVF);
5882   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5883   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5884                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5885 
5886   if (!MaxVectorElementCount) {
5887     LLVM_DEBUG(dbgs() << "LV: The target has no "
5888                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5889                       << " vector registers.\n");
5890     return ElementCount::getFixed(1);
5891   }
5892 
5893   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5894   if (ConstTripCount &&
5895       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5896       isPowerOf2_32(ConstTripCount)) {
5897     // We need to clamp the VF to be the ConstTripCount. There is no point in
5898     // choosing a higher viable VF as done in the loop below. If
5899     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5900     // the TC is less than or equal to the known number of lanes.
5901     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5902                       << ConstTripCount << "\n");
5903     return TripCountEC;
5904   }
5905 
5906   ElementCount MaxVF = MaxVectorElementCount;
5907   if (TTI.shouldMaximizeVectorBandwidth() ||
5908       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5909     auto MaxVectorElementCountMaxBW = ElementCount::get(
5910         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5911         ComputeScalableMaxVF);
5912     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5913 
5914     // Collect all viable vectorization factors larger than the default MaxVF
5915     // (i.e. MaxVectorElementCount).
5916     SmallVector<ElementCount, 8> VFs;
5917     for (ElementCount VS = MaxVectorElementCount * 2;
5918          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5919       VFs.push_back(VS);
5920 
5921     // For each VF calculate its register usage.
5922     auto RUs = calculateRegisterUsage(VFs);
5923 
5924     // Select the largest VF which doesn't require more registers than existing
5925     // ones.
5926     for (int i = RUs.size() - 1; i >= 0; --i) {
5927       bool Selected = true;
5928       for (auto &pair : RUs[i].MaxLocalUsers) {
5929         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5930         if (pair.second > TargetNumRegisters)
5931           Selected = false;
5932       }
5933       if (Selected) {
5934         MaxVF = VFs[i];
5935         break;
5936       }
5937     }
5938     if (ElementCount MinVF =
5939             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5940       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5941         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5942                           << ") with target's minimum: " << MinVF << '\n');
5943         MaxVF = MinVF;
5944       }
5945     }
5946   }
5947   return MaxVF;
5948 }
5949 
5950 bool LoopVectorizationCostModel::isMoreProfitable(
5951     const VectorizationFactor &A, const VectorizationFactor &B) const {
5952   InstructionCost CostA = A.Cost;
5953   InstructionCost CostB = B.Cost;
5954 
5955   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5956 
5957   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5958       MaxTripCount) {
5959     // If we are folding the tail and the trip count is a known (possibly small)
5960     // constant, the trip count will be rounded up to an integer number of
5961     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5962     // which we compare directly. When not folding the tail, the total cost will
5963     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5964     // approximated with the per-lane cost below instead of using the tripcount
5965     // as here.
5966     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5967     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5968     return RTCostA < RTCostB;
5969   }
5970 
5971   // When set to preferred, for now assume vscale may be larger than 1, so
5972   // that scalable vectorization is slightly favorable over fixed-width
5973   // vectorization.
5974   if (Hints->isScalableVectorizationPreferred())
5975     if (A.Width.isScalable() && !B.Width.isScalable())
5976       return (CostA * B.Width.getKnownMinValue()) <=
5977              (CostB * A.Width.getKnownMinValue());
5978 
5979   // To avoid the need for FP division:
5980   //      (CostA / A.Width) < (CostB / B.Width)
5981   // <=>  (CostA * B.Width) < (CostB * A.Width)
5982   return (CostA * B.Width.getKnownMinValue()) <
5983          (CostB * A.Width.getKnownMinValue());
5984 }
5985 
5986 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5987     const ElementCountSet &VFCandidates) {
5988   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5989   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5990   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5991   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5992          "Expected Scalar VF to be a candidate");
5993 
5994   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5995   VectorizationFactor ChosenFactor = ScalarCost;
5996 
5997   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5998   if (ForceVectorization && VFCandidates.size() > 1) {
5999     // Ignore scalar width, because the user explicitly wants vectorization.
6000     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6001     // evaluation.
6002     ChosenFactor.Cost = InstructionCost::getMax();
6003   }
6004 
6005   SmallVector<InstructionVFPair> InvalidCosts;
6006   for (const auto &i : VFCandidates) {
6007     // The cost for scalar VF=1 is already calculated, so ignore it.
6008     if (i.isScalar())
6009       continue;
6010 
6011     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6012     VectorizationFactor Candidate(i, C.first);
6013     LLVM_DEBUG(
6014         dbgs() << "LV: Vector loop of width " << i << " costs: "
6015                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6016                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6017                << ".\n");
6018 
6019     if (!C.second && !ForceVectorization) {
6020       LLVM_DEBUG(
6021           dbgs() << "LV: Not considering vector loop of width " << i
6022                  << " because it will not generate any vector instructions.\n");
6023       continue;
6024     }
6025 
6026     // If profitable add it to ProfitableVF list.
6027     if (isMoreProfitable(Candidate, ScalarCost))
6028       ProfitableVFs.push_back(Candidate);
6029 
6030     if (isMoreProfitable(Candidate, ChosenFactor))
6031       ChosenFactor = Candidate;
6032   }
6033 
6034   // Emit a report of VFs with invalid costs in the loop.
6035   if (!InvalidCosts.empty()) {
6036     // Group the remarks per instruction, keeping the instruction order from
6037     // InvalidCosts.
6038     std::map<Instruction *, unsigned> Numbering;
6039     unsigned I = 0;
6040     for (auto &Pair : InvalidCosts)
6041       if (!Numbering.count(Pair.first))
6042         Numbering[Pair.first] = I++;
6043 
6044     // Sort the list, first on instruction(number) then on VF.
6045     llvm::sort(InvalidCosts,
6046                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6047                  if (Numbering[A.first] != Numbering[B.first])
6048                    return Numbering[A.first] < Numbering[B.first];
6049                  ElementCountComparator ECC;
6050                  return ECC(A.second, B.second);
6051                });
6052 
6053     // For a list of ordered instruction-vf pairs:
6054     //   [(load, vf1), (load, vf2), (store, vf1)]
6055     // Group the instructions together to emit separate remarks for:
6056     //   load  (vf1, vf2)
6057     //   store (vf1)
6058     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6059     auto Subset = ArrayRef<InstructionVFPair>();
6060     do {
6061       if (Subset.empty())
6062         Subset = Tail.take_front(1);
6063 
6064       Instruction *I = Subset.front().first;
6065 
6066       // If the next instruction is different, or if there are no other pairs,
6067       // emit a remark for the collated subset. e.g.
6068       //   [(load, vf1), (load, vf2))]
6069       // to emit:
6070       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6071       if (Subset == Tail || Tail[Subset.size()].first != I) {
6072         std::string OutString;
6073         raw_string_ostream OS(OutString);
6074         assert(!Subset.empty() && "Unexpected empty range");
6075         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6076         for (auto &Pair : Subset)
6077           OS << (Pair.second == Subset.front().second ? "" : ", ")
6078              << Pair.second;
6079         OS << "):";
6080         if (auto *CI = dyn_cast<CallInst>(I))
6081           OS << " call to " << CI->getCalledFunction()->getName();
6082         else
6083           OS << " " << I->getOpcodeName();
6084         OS.flush();
6085         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6086         Tail = Tail.drop_front(Subset.size());
6087         Subset = {};
6088       } else
6089         // Grow the subset by one element
6090         Subset = Tail.take_front(Subset.size() + 1);
6091     } while (!Tail.empty());
6092   }
6093 
6094   if (!EnableCondStoresVectorization && NumPredStores) {
6095     reportVectorizationFailure("There are conditional stores.",
6096         "store that is conditionally executed prevents vectorization",
6097         "ConditionalStore", ORE, TheLoop);
6098     ChosenFactor = ScalarCost;
6099   }
6100 
6101   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6102                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6103              << "LV: Vectorization seems to be not beneficial, "
6104              << "but was forced by a user.\n");
6105   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6106   return ChosenFactor;
6107 }
6108 
6109 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6110     const Loop &L, ElementCount VF) const {
6111   // Cross iteration phis such as reductions need special handling and are
6112   // currently unsupported.
6113   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6114         return Legal->isFirstOrderRecurrence(&Phi) ||
6115                Legal->isReductionVariable(&Phi);
6116       }))
6117     return false;
6118 
6119   // Phis with uses outside of the loop require special handling and are
6120   // currently unsupported.
6121   for (auto &Entry : Legal->getInductionVars()) {
6122     // Look for uses of the value of the induction at the last iteration.
6123     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6124     for (User *U : PostInc->users())
6125       if (!L.contains(cast<Instruction>(U)))
6126         return false;
6127     // Look for uses of penultimate value of the induction.
6128     for (User *U : Entry.first->users())
6129       if (!L.contains(cast<Instruction>(U)))
6130         return false;
6131   }
6132 
6133   // Induction variables that are widened require special handling that is
6134   // currently not supported.
6135   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6136         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6137                  this->isProfitableToScalarize(Entry.first, VF));
6138       }))
6139     return false;
6140 
6141   // Epilogue vectorization code has not been auditted to ensure it handles
6142   // non-latch exits properly.  It may be fine, but it needs auditted and
6143   // tested.
6144   if (L.getExitingBlock() != L.getLoopLatch())
6145     return false;
6146 
6147   return true;
6148 }
6149 
6150 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6151     const ElementCount VF) const {
6152   // FIXME: We need a much better cost-model to take different parameters such
6153   // as register pressure, code size increase and cost of extra branches into
6154   // account. For now we apply a very crude heuristic and only consider loops
6155   // with vectorization factors larger than a certain value.
6156   // We also consider epilogue vectorization unprofitable for targets that don't
6157   // consider interleaving beneficial (eg. MVE).
6158   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6159     return false;
6160   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6161     return true;
6162   return false;
6163 }
6164 
6165 VectorizationFactor
6166 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6167     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6168   VectorizationFactor Result = VectorizationFactor::Disabled();
6169   if (!EnableEpilogueVectorization) {
6170     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6171     return Result;
6172   }
6173 
6174   if (!isScalarEpilogueAllowed()) {
6175     LLVM_DEBUG(
6176         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6177                   "allowed.\n";);
6178     return Result;
6179   }
6180 
6181   // FIXME: This can be fixed for scalable vectors later, because at this stage
6182   // the LoopVectorizer will only consider vectorizing a loop with scalable
6183   // vectors when the loop has a hint to enable vectorization for a given VF.
6184   if (MainLoopVF.isScalable()) {
6185     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6186                          "yet supported.\n");
6187     return Result;
6188   }
6189 
6190   // Not really a cost consideration, but check for unsupported cases here to
6191   // simplify the logic.
6192   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6193     LLVM_DEBUG(
6194         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6195                   "not a supported candidate.\n";);
6196     return Result;
6197   }
6198 
6199   if (EpilogueVectorizationForceVF > 1) {
6200     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6201     if (LVP.hasPlanWithVFs(
6202             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6203       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6204     else {
6205       LLVM_DEBUG(
6206           dbgs()
6207               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6208       return Result;
6209     }
6210   }
6211 
6212   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6213       TheLoop->getHeader()->getParent()->hasMinSize()) {
6214     LLVM_DEBUG(
6215         dbgs()
6216             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6217     return Result;
6218   }
6219 
6220   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6221     return Result;
6222 
6223   for (auto &NextVF : ProfitableVFs)
6224     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6225         (Result.Width.getFixedValue() == 1 ||
6226          isMoreProfitable(NextVF, Result)) &&
6227         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6228       Result = NextVF;
6229 
6230   if (Result != VectorizationFactor::Disabled())
6231     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6232                       << Result.Width.getFixedValue() << "\n";);
6233   return Result;
6234 }
6235 
6236 std::pair<unsigned, unsigned>
6237 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6238   unsigned MinWidth = -1U;
6239   unsigned MaxWidth = 8;
6240   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6241   for (Type *T : ElementTypesInLoop) {
6242     MinWidth = std::min<unsigned>(
6243         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6244     MaxWidth = std::max<unsigned>(
6245         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6246   }
6247   return {MinWidth, MaxWidth};
6248 }
6249 
6250 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6251   ElementTypesInLoop.clear();
6252   // For each block.
6253   for (BasicBlock *BB : TheLoop->blocks()) {
6254     // For each instruction in the loop.
6255     for (Instruction &I : BB->instructionsWithoutDebug()) {
6256       Type *T = I.getType();
6257 
6258       // Skip ignored values.
6259       if (ValuesToIgnore.count(&I))
6260         continue;
6261 
6262       // Only examine Loads, Stores and PHINodes.
6263       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6264         continue;
6265 
6266       // Examine PHI nodes that are reduction variables. Update the type to
6267       // account for the recurrence type.
6268       if (auto *PN = dyn_cast<PHINode>(&I)) {
6269         if (!Legal->isReductionVariable(PN))
6270           continue;
6271         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6272         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6273             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6274                                       RdxDesc.getRecurrenceType(),
6275                                       TargetTransformInfo::ReductionFlags()))
6276           continue;
6277         T = RdxDesc.getRecurrenceType();
6278       }
6279 
6280       // Examine the stored values.
6281       if (auto *ST = dyn_cast<StoreInst>(&I))
6282         T = ST->getValueOperand()->getType();
6283 
6284       // Ignore loaded pointer types and stored pointer types that are not
6285       // vectorizable.
6286       //
6287       // FIXME: The check here attempts to predict whether a load or store will
6288       //        be vectorized. We only know this for certain after a VF has
6289       //        been selected. Here, we assume that if an access can be
6290       //        vectorized, it will be. We should also look at extending this
6291       //        optimization to non-pointer types.
6292       //
6293       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6294           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6295         continue;
6296 
6297       ElementTypesInLoop.insert(T);
6298     }
6299   }
6300 }
6301 
6302 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6303                                                            unsigned LoopCost) {
6304   // -- The interleave heuristics --
6305   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6306   // There are many micro-architectural considerations that we can't predict
6307   // at this level. For example, frontend pressure (on decode or fetch) due to
6308   // code size, or the number and capabilities of the execution ports.
6309   //
6310   // We use the following heuristics to select the interleave count:
6311   // 1. If the code has reductions, then we interleave to break the cross
6312   // iteration dependency.
6313   // 2. If the loop is really small, then we interleave to reduce the loop
6314   // overhead.
6315   // 3. We don't interleave if we think that we will spill registers to memory
6316   // due to the increased register pressure.
6317 
6318   if (!isScalarEpilogueAllowed())
6319     return 1;
6320 
6321   // We used the distance for the interleave count.
6322   if (Legal->getMaxSafeDepDistBytes() != -1U)
6323     return 1;
6324 
6325   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6326   const bool HasReductions = !Legal->getReductionVars().empty();
6327   // Do not interleave loops with a relatively small known or estimated trip
6328   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6329   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6330   // because with the above conditions interleaving can expose ILP and break
6331   // cross iteration dependences for reductions.
6332   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6333       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6334     return 1;
6335 
6336   RegisterUsage R = calculateRegisterUsage({VF})[0];
6337   // We divide by these constants so assume that we have at least one
6338   // instruction that uses at least one register.
6339   for (auto& pair : R.MaxLocalUsers) {
6340     pair.second = std::max(pair.second, 1U);
6341   }
6342 
6343   // We calculate the interleave count using the following formula.
6344   // Subtract the number of loop invariants from the number of available
6345   // registers. These registers are used by all of the interleaved instances.
6346   // Next, divide the remaining registers by the number of registers that is
6347   // required by the loop, in order to estimate how many parallel instances
6348   // fit without causing spills. All of this is rounded down if necessary to be
6349   // a power of two. We want power of two interleave count to simplify any
6350   // addressing operations or alignment considerations.
6351   // We also want power of two interleave counts to ensure that the induction
6352   // variable of the vector loop wraps to zero, when tail is folded by masking;
6353   // this currently happens when OptForSize, in which case IC is set to 1 above.
6354   unsigned IC = UINT_MAX;
6355 
6356   for (auto& pair : R.MaxLocalUsers) {
6357     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6358     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6359                       << " registers of "
6360                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6361     if (VF.isScalar()) {
6362       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6363         TargetNumRegisters = ForceTargetNumScalarRegs;
6364     } else {
6365       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6366         TargetNumRegisters = ForceTargetNumVectorRegs;
6367     }
6368     unsigned MaxLocalUsers = pair.second;
6369     unsigned LoopInvariantRegs = 0;
6370     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6371       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6372 
6373     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6374     // Don't count the induction variable as interleaved.
6375     if (EnableIndVarRegisterHeur) {
6376       TmpIC =
6377           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6378                         std::max(1U, (MaxLocalUsers - 1)));
6379     }
6380 
6381     IC = std::min(IC, TmpIC);
6382   }
6383 
6384   // Clamp the interleave ranges to reasonable counts.
6385   unsigned MaxInterleaveCount =
6386       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6387 
6388   // Check if the user has overridden the max.
6389   if (VF.isScalar()) {
6390     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6391       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6392   } else {
6393     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6394       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6395   }
6396 
6397   // If trip count is known or estimated compile time constant, limit the
6398   // interleave count to be less than the trip count divided by VF, provided it
6399   // is at least 1.
6400   //
6401   // For scalable vectors we can't know if interleaving is beneficial. It may
6402   // not be beneficial for small loops if none of the lanes in the second vector
6403   // iterations is enabled. However, for larger loops, there is likely to be a
6404   // similar benefit as for fixed-width vectors. For now, we choose to leave
6405   // the InterleaveCount as if vscale is '1', although if some information about
6406   // the vector is known (e.g. min vector size), we can make a better decision.
6407   if (BestKnownTC) {
6408     MaxInterleaveCount =
6409         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6410     // Make sure MaxInterleaveCount is greater than 0.
6411     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6412   }
6413 
6414   assert(MaxInterleaveCount > 0 &&
6415          "Maximum interleave count must be greater than 0");
6416 
6417   // Clamp the calculated IC to be between the 1 and the max interleave count
6418   // that the target and trip count allows.
6419   if (IC > MaxInterleaveCount)
6420     IC = MaxInterleaveCount;
6421   else
6422     // Make sure IC is greater than 0.
6423     IC = std::max(1u, IC);
6424 
6425   assert(IC > 0 && "Interleave count must be greater than 0.");
6426 
6427   // If we did not calculate the cost for VF (because the user selected the VF)
6428   // then we calculate the cost of VF here.
6429   if (LoopCost == 0) {
6430     InstructionCost C = expectedCost(VF).first;
6431     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6432     LoopCost = *C.getValue();
6433   }
6434 
6435   assert(LoopCost && "Non-zero loop cost expected");
6436 
6437   // Interleave if we vectorized this loop and there is a reduction that could
6438   // benefit from interleaving.
6439   if (VF.isVector() && HasReductions) {
6440     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6441     return IC;
6442   }
6443 
6444   // Note that if we've already vectorized the loop we will have done the
6445   // runtime check and so interleaving won't require further checks.
6446   bool InterleavingRequiresRuntimePointerCheck =
6447       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6448 
6449   // We want to interleave small loops in order to reduce the loop overhead and
6450   // potentially expose ILP opportunities.
6451   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6452                     << "LV: IC is " << IC << '\n'
6453                     << "LV: VF is " << VF << '\n');
6454   const bool AggressivelyInterleaveReductions =
6455       TTI.enableAggressiveInterleaving(HasReductions);
6456   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6457     // We assume that the cost overhead is 1 and we use the cost model
6458     // to estimate the cost of the loop and interleave until the cost of the
6459     // loop overhead is about 5% of the cost of the loop.
6460     unsigned SmallIC =
6461         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6462 
6463     // Interleave until store/load ports (estimated by max interleave count) are
6464     // saturated.
6465     unsigned NumStores = Legal->getNumStores();
6466     unsigned NumLoads = Legal->getNumLoads();
6467     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6468     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6469 
6470     // If we have a scalar reduction (vector reductions are already dealt with
6471     // by this point), we can increase the critical path length if the loop
6472     // we're interleaving is inside another loop. Limit, by default to 2, so the
6473     // critical path only gets increased by one reduction operation.
6474     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6475       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6476       SmallIC = std::min(SmallIC, F);
6477       StoresIC = std::min(StoresIC, F);
6478       LoadsIC = std::min(LoadsIC, F);
6479     }
6480 
6481     if (EnableLoadStoreRuntimeInterleave &&
6482         std::max(StoresIC, LoadsIC) > SmallIC) {
6483       LLVM_DEBUG(
6484           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6485       return std::max(StoresIC, LoadsIC);
6486     }
6487 
6488     // If there are scalar reductions and TTI has enabled aggressive
6489     // interleaving for reductions, we will interleave to expose ILP.
6490     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6491         AggressivelyInterleaveReductions) {
6492       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6493       // Interleave no less than SmallIC but not as aggressive as the normal IC
6494       // to satisfy the rare situation when resources are too limited.
6495       return std::max(IC / 2, SmallIC);
6496     } else {
6497       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6498       return SmallIC;
6499     }
6500   }
6501 
6502   // Interleave if this is a large loop (small loops are already dealt with by
6503   // this point) that could benefit from interleaving.
6504   if (AggressivelyInterleaveReductions) {
6505     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6506     return IC;
6507   }
6508 
6509   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6510   return 1;
6511 }
6512 
6513 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6514 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6515   // This function calculates the register usage by measuring the highest number
6516   // of values that are alive at a single location. Obviously, this is a very
6517   // rough estimation. We scan the loop in a topological order in order and
6518   // assign a number to each instruction. We use RPO to ensure that defs are
6519   // met before their users. We assume that each instruction that has in-loop
6520   // users starts an interval. We record every time that an in-loop value is
6521   // used, so we have a list of the first and last occurrences of each
6522   // instruction. Next, we transpose this data structure into a multi map that
6523   // holds the list of intervals that *end* at a specific location. This multi
6524   // map allows us to perform a linear search. We scan the instructions linearly
6525   // and record each time that a new interval starts, by placing it in a set.
6526   // If we find this value in the multi-map then we remove it from the set.
6527   // The max register usage is the maximum size of the set.
6528   // We also search for instructions that are defined outside the loop, but are
6529   // used inside the loop. We need this number separately from the max-interval
6530   // usage number because when we unroll, loop-invariant values do not take
6531   // more register.
6532   LoopBlocksDFS DFS(TheLoop);
6533   DFS.perform(LI);
6534 
6535   RegisterUsage RU;
6536 
6537   // Each 'key' in the map opens a new interval. The values
6538   // of the map are the index of the 'last seen' usage of the
6539   // instruction that is the key.
6540   using IntervalMap = DenseMap<Instruction *, unsigned>;
6541 
6542   // Maps instruction to its index.
6543   SmallVector<Instruction *, 64> IdxToInstr;
6544   // Marks the end of each interval.
6545   IntervalMap EndPoint;
6546   // Saves the list of instruction indices that are used in the loop.
6547   SmallPtrSet<Instruction *, 8> Ends;
6548   // Saves the list of values that are used in the loop but are
6549   // defined outside the loop, such as arguments and constants.
6550   SmallPtrSet<Value *, 8> LoopInvariants;
6551 
6552   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6553     for (Instruction &I : BB->instructionsWithoutDebug()) {
6554       IdxToInstr.push_back(&I);
6555 
6556       // Save the end location of each USE.
6557       for (Value *U : I.operands()) {
6558         auto *Instr = dyn_cast<Instruction>(U);
6559 
6560         // Ignore non-instruction values such as arguments, constants, etc.
6561         if (!Instr)
6562           continue;
6563 
6564         // If this instruction is outside the loop then record it and continue.
6565         if (!TheLoop->contains(Instr)) {
6566           LoopInvariants.insert(Instr);
6567           continue;
6568         }
6569 
6570         // Overwrite previous end points.
6571         EndPoint[Instr] = IdxToInstr.size();
6572         Ends.insert(Instr);
6573       }
6574     }
6575   }
6576 
6577   // Saves the list of intervals that end with the index in 'key'.
6578   using InstrList = SmallVector<Instruction *, 2>;
6579   DenseMap<unsigned, InstrList> TransposeEnds;
6580 
6581   // Transpose the EndPoints to a list of values that end at each index.
6582   for (auto &Interval : EndPoint)
6583     TransposeEnds[Interval.second].push_back(Interval.first);
6584 
6585   SmallPtrSet<Instruction *, 8> OpenIntervals;
6586   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6587   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6588 
6589   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6590 
6591   // A lambda that gets the register usage for the given type and VF.
6592   const auto &TTICapture = TTI;
6593   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6594     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6595       return 0;
6596     InstructionCost::CostType RegUsage =
6597         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6598     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6599            "Nonsensical values for register usage.");
6600     return RegUsage;
6601   };
6602 
6603   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6604     Instruction *I = IdxToInstr[i];
6605 
6606     // Remove all of the instructions that end at this location.
6607     InstrList &List = TransposeEnds[i];
6608     for (Instruction *ToRemove : List)
6609       OpenIntervals.erase(ToRemove);
6610 
6611     // Ignore instructions that are never used within the loop.
6612     if (!Ends.count(I))
6613       continue;
6614 
6615     // Skip ignored values.
6616     if (ValuesToIgnore.count(I))
6617       continue;
6618 
6619     // For each VF find the maximum usage of registers.
6620     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6621       // Count the number of live intervals.
6622       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6623 
6624       if (VFs[j].isScalar()) {
6625         for (auto Inst : OpenIntervals) {
6626           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6627           if (RegUsage.find(ClassID) == RegUsage.end())
6628             RegUsage[ClassID] = 1;
6629           else
6630             RegUsage[ClassID] += 1;
6631         }
6632       } else {
6633         collectUniformsAndScalars(VFs[j]);
6634         for (auto Inst : OpenIntervals) {
6635           // Skip ignored values for VF > 1.
6636           if (VecValuesToIgnore.count(Inst))
6637             continue;
6638           if (isScalarAfterVectorization(Inst, VFs[j])) {
6639             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6640             if (RegUsage.find(ClassID) == RegUsage.end())
6641               RegUsage[ClassID] = 1;
6642             else
6643               RegUsage[ClassID] += 1;
6644           } else {
6645             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6646             if (RegUsage.find(ClassID) == RegUsage.end())
6647               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6648             else
6649               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6650           }
6651         }
6652       }
6653 
6654       for (auto& pair : RegUsage) {
6655         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6656           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6657         else
6658           MaxUsages[j][pair.first] = pair.second;
6659       }
6660     }
6661 
6662     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6663                       << OpenIntervals.size() << '\n');
6664 
6665     // Add the current instruction to the list of open intervals.
6666     OpenIntervals.insert(I);
6667   }
6668 
6669   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6670     SmallMapVector<unsigned, unsigned, 4> Invariant;
6671 
6672     for (auto Inst : LoopInvariants) {
6673       unsigned Usage =
6674           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6675       unsigned ClassID =
6676           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6677       if (Invariant.find(ClassID) == Invariant.end())
6678         Invariant[ClassID] = Usage;
6679       else
6680         Invariant[ClassID] += Usage;
6681     }
6682 
6683     LLVM_DEBUG({
6684       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6685       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6686              << " item\n";
6687       for (const auto &pair : MaxUsages[i]) {
6688         dbgs() << "LV(REG): RegisterClass: "
6689                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6690                << " registers\n";
6691       }
6692       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6693              << " item\n";
6694       for (const auto &pair : Invariant) {
6695         dbgs() << "LV(REG): RegisterClass: "
6696                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6697                << " registers\n";
6698       }
6699     });
6700 
6701     RU.LoopInvariantRegs = Invariant;
6702     RU.MaxLocalUsers = MaxUsages[i];
6703     RUs[i] = RU;
6704   }
6705 
6706   return RUs;
6707 }
6708 
6709 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6710   // TODO: Cost model for emulated masked load/store is completely
6711   // broken. This hack guides the cost model to use an artificially
6712   // high enough value to practically disable vectorization with such
6713   // operations, except where previously deployed legality hack allowed
6714   // using very low cost values. This is to avoid regressions coming simply
6715   // from moving "masked load/store" check from legality to cost model.
6716   // Masked Load/Gather emulation was previously never allowed.
6717   // Limited number of Masked Store/Scatter emulation was allowed.
6718   assert(isPredicatedInst(I) &&
6719          "Expecting a scalar emulated instruction");
6720   return isa<LoadInst>(I) ||
6721          (isa<StoreInst>(I) &&
6722           NumPredStores > NumberOfStoresToPredicate);
6723 }
6724 
6725 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6726   // If we aren't vectorizing the loop, or if we've already collected the
6727   // instructions to scalarize, there's nothing to do. Collection may already
6728   // have occurred if we have a user-selected VF and are now computing the
6729   // expected cost for interleaving.
6730   if (VF.isScalar() || VF.isZero() ||
6731       InstsToScalarize.find(VF) != InstsToScalarize.end())
6732     return;
6733 
6734   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6735   // not profitable to scalarize any instructions, the presence of VF in the
6736   // map will indicate that we've analyzed it already.
6737   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6738 
6739   // Find all the instructions that are scalar with predication in the loop and
6740   // determine if it would be better to not if-convert the blocks they are in.
6741   // If so, we also record the instructions to scalarize.
6742   for (BasicBlock *BB : TheLoop->blocks()) {
6743     if (!blockNeedsPredication(BB))
6744       continue;
6745     for (Instruction &I : *BB)
6746       if (isScalarWithPredication(&I)) {
6747         ScalarCostsTy ScalarCosts;
6748         // Do not apply discount if scalable, because that would lead to
6749         // invalid scalarization costs.
6750         // Do not apply discount logic if hacked cost is needed
6751         // for emulated masked memrefs.
6752         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6753             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6754           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6755         // Remember that BB will remain after vectorization.
6756         PredicatedBBsAfterVectorization.insert(BB);
6757       }
6758   }
6759 }
6760 
6761 int LoopVectorizationCostModel::computePredInstDiscount(
6762     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6763   assert(!isUniformAfterVectorization(PredInst, VF) &&
6764          "Instruction marked uniform-after-vectorization will be predicated");
6765 
6766   // Initialize the discount to zero, meaning that the scalar version and the
6767   // vector version cost the same.
6768   InstructionCost Discount = 0;
6769 
6770   // Holds instructions to analyze. The instructions we visit are mapped in
6771   // ScalarCosts. Those instructions are the ones that would be scalarized if
6772   // we find that the scalar version costs less.
6773   SmallVector<Instruction *, 8> Worklist;
6774 
6775   // Returns true if the given instruction can be scalarized.
6776   auto canBeScalarized = [&](Instruction *I) -> bool {
6777     // We only attempt to scalarize instructions forming a single-use chain
6778     // from the original predicated block that would otherwise be vectorized.
6779     // Although not strictly necessary, we give up on instructions we know will
6780     // already be scalar to avoid traversing chains that are unlikely to be
6781     // beneficial.
6782     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6783         isScalarAfterVectorization(I, VF))
6784       return false;
6785 
6786     // If the instruction is scalar with predication, it will be analyzed
6787     // separately. We ignore it within the context of PredInst.
6788     if (isScalarWithPredication(I))
6789       return false;
6790 
6791     // If any of the instruction's operands are uniform after vectorization,
6792     // the instruction cannot be scalarized. This prevents, for example, a
6793     // masked load from being scalarized.
6794     //
6795     // We assume we will only emit a value for lane zero of an instruction
6796     // marked uniform after vectorization, rather than VF identical values.
6797     // Thus, if we scalarize an instruction that uses a uniform, we would
6798     // create uses of values corresponding to the lanes we aren't emitting code
6799     // for. This behavior can be changed by allowing getScalarValue to clone
6800     // the lane zero values for uniforms rather than asserting.
6801     for (Use &U : I->operands())
6802       if (auto *J = dyn_cast<Instruction>(U.get()))
6803         if (isUniformAfterVectorization(J, VF))
6804           return false;
6805 
6806     // Otherwise, we can scalarize the instruction.
6807     return true;
6808   };
6809 
6810   // Compute the expected cost discount from scalarizing the entire expression
6811   // feeding the predicated instruction. We currently only consider expressions
6812   // that are single-use instruction chains.
6813   Worklist.push_back(PredInst);
6814   while (!Worklist.empty()) {
6815     Instruction *I = Worklist.pop_back_val();
6816 
6817     // If we've already analyzed the instruction, there's nothing to do.
6818     if (ScalarCosts.find(I) != ScalarCosts.end())
6819       continue;
6820 
6821     // Compute the cost of the vector instruction. Note that this cost already
6822     // includes the scalarization overhead of the predicated instruction.
6823     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6824 
6825     // Compute the cost of the scalarized instruction. This cost is the cost of
6826     // the instruction as if it wasn't if-converted and instead remained in the
6827     // predicated block. We will scale this cost by block probability after
6828     // computing the scalarization overhead.
6829     InstructionCost ScalarCost =
6830         VF.getFixedValue() *
6831         getInstructionCost(I, ElementCount::getFixed(1)).first;
6832 
6833     // Compute the scalarization overhead of needed insertelement instructions
6834     // and phi nodes.
6835     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6836       ScalarCost += TTI.getScalarizationOverhead(
6837           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6838           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6839       ScalarCost +=
6840           VF.getFixedValue() *
6841           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6842     }
6843 
6844     // Compute the scalarization overhead of needed extractelement
6845     // instructions. For each of the instruction's operands, if the operand can
6846     // be scalarized, add it to the worklist; otherwise, account for the
6847     // overhead.
6848     for (Use &U : I->operands())
6849       if (auto *J = dyn_cast<Instruction>(U.get())) {
6850         assert(VectorType::isValidElementType(J->getType()) &&
6851                "Instruction has non-scalar type");
6852         if (canBeScalarized(J))
6853           Worklist.push_back(J);
6854         else if (needsExtract(J, VF)) {
6855           ScalarCost += TTI.getScalarizationOverhead(
6856               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6857               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6858         }
6859       }
6860 
6861     // Scale the total scalar cost by block probability.
6862     ScalarCost /= getReciprocalPredBlockProb();
6863 
6864     // Compute the discount. A non-negative discount means the vector version
6865     // of the instruction costs more, and scalarizing would be beneficial.
6866     Discount += VectorCost - ScalarCost;
6867     ScalarCosts[I] = ScalarCost;
6868   }
6869 
6870   return *Discount.getValue();
6871 }
6872 
6873 LoopVectorizationCostModel::VectorizationCostTy
6874 LoopVectorizationCostModel::expectedCost(
6875     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6876   VectorizationCostTy Cost;
6877 
6878   // For each block.
6879   for (BasicBlock *BB : TheLoop->blocks()) {
6880     VectorizationCostTy BlockCost;
6881 
6882     // For each instruction in the old loop.
6883     for (Instruction &I : BB->instructionsWithoutDebug()) {
6884       // Skip ignored values.
6885       if (ValuesToIgnore.count(&I) ||
6886           (VF.isVector() && VecValuesToIgnore.count(&I)))
6887         continue;
6888 
6889       VectorizationCostTy C = getInstructionCost(&I, VF);
6890 
6891       // Check if we should override the cost.
6892       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6893         C.first = InstructionCost(ForceTargetInstructionCost);
6894 
6895       // Keep a list of instructions with invalid costs.
6896       if (Invalid && !C.first.isValid())
6897         Invalid->emplace_back(&I, VF);
6898 
6899       BlockCost.first += C.first;
6900       BlockCost.second |= C.second;
6901       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6902                         << " for VF " << VF << " For instruction: " << I
6903                         << '\n');
6904     }
6905 
6906     // If we are vectorizing a predicated block, it will have been
6907     // if-converted. This means that the block's instructions (aside from
6908     // stores and instructions that may divide by zero) will now be
6909     // unconditionally executed. For the scalar case, we may not always execute
6910     // the predicated block, if it is an if-else block. Thus, scale the block's
6911     // cost by the probability of executing it. blockNeedsPredication from
6912     // Legal is used so as to not include all blocks in tail folded loops.
6913     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6914       BlockCost.first /= getReciprocalPredBlockProb();
6915 
6916     Cost.first += BlockCost.first;
6917     Cost.second |= BlockCost.second;
6918   }
6919 
6920   return Cost;
6921 }
6922 
6923 /// Gets Address Access SCEV after verifying that the access pattern
6924 /// is loop invariant except the induction variable dependence.
6925 ///
6926 /// This SCEV can be sent to the Target in order to estimate the address
6927 /// calculation cost.
6928 static const SCEV *getAddressAccessSCEV(
6929               Value *Ptr,
6930               LoopVectorizationLegality *Legal,
6931               PredicatedScalarEvolution &PSE,
6932               const Loop *TheLoop) {
6933 
6934   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6935   if (!Gep)
6936     return nullptr;
6937 
6938   // We are looking for a gep with all loop invariant indices except for one
6939   // which should be an induction variable.
6940   auto SE = PSE.getSE();
6941   unsigned NumOperands = Gep->getNumOperands();
6942   for (unsigned i = 1; i < NumOperands; ++i) {
6943     Value *Opd = Gep->getOperand(i);
6944     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6945         !Legal->isInductionVariable(Opd))
6946       return nullptr;
6947   }
6948 
6949   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6950   return PSE.getSCEV(Ptr);
6951 }
6952 
6953 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6954   return Legal->hasStride(I->getOperand(0)) ||
6955          Legal->hasStride(I->getOperand(1));
6956 }
6957 
6958 InstructionCost
6959 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6960                                                         ElementCount VF) {
6961   assert(VF.isVector() &&
6962          "Scalarization cost of instruction implies vectorization.");
6963   if (VF.isScalable())
6964     return InstructionCost::getInvalid();
6965 
6966   Type *ValTy = getLoadStoreType(I);
6967   auto SE = PSE.getSE();
6968 
6969   unsigned AS = getLoadStoreAddressSpace(I);
6970   Value *Ptr = getLoadStorePointerOperand(I);
6971   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6972 
6973   // Figure out whether the access is strided and get the stride value
6974   // if it's known in compile time
6975   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6976 
6977   // Get the cost of the scalar memory instruction and address computation.
6978   InstructionCost Cost =
6979       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6980 
6981   // Don't pass *I here, since it is scalar but will actually be part of a
6982   // vectorized loop where the user of it is a vectorized instruction.
6983   const Align Alignment = getLoadStoreAlignment(I);
6984   Cost += VF.getKnownMinValue() *
6985           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6986                               AS, TTI::TCK_RecipThroughput);
6987 
6988   // Get the overhead of the extractelement and insertelement instructions
6989   // we might create due to scalarization.
6990   Cost += getScalarizationOverhead(I, VF);
6991 
6992   // If we have a predicated load/store, it will need extra i1 extracts and
6993   // conditional branches, but may not be executed for each vector lane. Scale
6994   // the cost by the probability of executing the predicated block.
6995   if (isPredicatedInst(I)) {
6996     Cost /= getReciprocalPredBlockProb();
6997 
6998     // Add the cost of an i1 extract and a branch
6999     auto *Vec_i1Ty =
7000         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7001     Cost += TTI.getScalarizationOverhead(
7002         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7003         /*Insert=*/false, /*Extract=*/true);
7004     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7005 
7006     if (useEmulatedMaskMemRefHack(I))
7007       // Artificially setting to a high enough value to practically disable
7008       // vectorization with such operations.
7009       Cost = 3000000;
7010   }
7011 
7012   return Cost;
7013 }
7014 
7015 InstructionCost
7016 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7017                                                     ElementCount VF) {
7018   Type *ValTy = getLoadStoreType(I);
7019   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7020   Value *Ptr = getLoadStorePointerOperand(I);
7021   unsigned AS = getLoadStoreAddressSpace(I);
7022   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7023   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7024 
7025   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7026          "Stride should be 1 or -1 for consecutive memory access");
7027   const Align Alignment = getLoadStoreAlignment(I);
7028   InstructionCost Cost = 0;
7029   if (Legal->isMaskRequired(I))
7030     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7031                                       CostKind);
7032   else
7033     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7034                                 CostKind, I);
7035 
7036   bool Reverse = ConsecutiveStride < 0;
7037   if (Reverse)
7038     Cost +=
7039         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7040   return Cost;
7041 }
7042 
7043 InstructionCost
7044 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7045                                                 ElementCount VF) {
7046   assert(Legal->isUniformMemOp(*I));
7047 
7048   Type *ValTy = getLoadStoreType(I);
7049   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7050   const Align Alignment = getLoadStoreAlignment(I);
7051   unsigned AS = getLoadStoreAddressSpace(I);
7052   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7053   if (isa<LoadInst>(I)) {
7054     return TTI.getAddressComputationCost(ValTy) +
7055            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7056                                CostKind) +
7057            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7058   }
7059   StoreInst *SI = cast<StoreInst>(I);
7060 
7061   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7062   return TTI.getAddressComputationCost(ValTy) +
7063          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7064                              CostKind) +
7065          (isLoopInvariantStoreValue
7066               ? 0
7067               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7068                                        VF.getKnownMinValue() - 1));
7069 }
7070 
7071 InstructionCost
7072 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7073                                                  ElementCount VF) {
7074   Type *ValTy = getLoadStoreType(I);
7075   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7076   const Align Alignment = getLoadStoreAlignment(I);
7077   const Value *Ptr = getLoadStorePointerOperand(I);
7078 
7079   return TTI.getAddressComputationCost(VectorTy) +
7080          TTI.getGatherScatterOpCost(
7081              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7082              TargetTransformInfo::TCK_RecipThroughput, I);
7083 }
7084 
7085 InstructionCost
7086 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7087                                                    ElementCount VF) {
7088   // TODO: Once we have support for interleaving with scalable vectors
7089   // we can calculate the cost properly here.
7090   if (VF.isScalable())
7091     return InstructionCost::getInvalid();
7092 
7093   Type *ValTy = getLoadStoreType(I);
7094   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7095   unsigned AS = getLoadStoreAddressSpace(I);
7096 
7097   auto Group = getInterleavedAccessGroup(I);
7098   assert(Group && "Fail to get an interleaved access group.");
7099 
7100   unsigned InterleaveFactor = Group->getFactor();
7101   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7102 
7103   // Holds the indices of existing members in an interleaved load group.
7104   // An interleaved store group doesn't need this as it doesn't allow gaps.
7105   SmallVector<unsigned, 4> Indices;
7106   if (isa<LoadInst>(I)) {
7107     for (unsigned i = 0; i < InterleaveFactor; i++)
7108       if (Group->getMember(i))
7109         Indices.push_back(i);
7110   }
7111 
7112   // Calculate the cost of the whole interleaved group.
7113   bool UseMaskForGaps =
7114       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7115   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7116       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7117       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7118 
7119   if (Group->isReverse()) {
7120     // TODO: Add support for reversed masked interleaved access.
7121     assert(!Legal->isMaskRequired(I) &&
7122            "Reverse masked interleaved access not supported.");
7123     Cost +=
7124         Group->getNumMembers() *
7125         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7126   }
7127   return Cost;
7128 }
7129 
7130 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7131     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7132   using namespace llvm::PatternMatch;
7133   // Early exit for no inloop reductions
7134   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7135     return None;
7136   auto *VectorTy = cast<VectorType>(Ty);
7137 
7138   // We are looking for a pattern of, and finding the minimal acceptable cost:
7139   //  reduce(mul(ext(A), ext(B))) or
7140   //  reduce(mul(A, B)) or
7141   //  reduce(ext(A)) or
7142   //  reduce(A).
7143   // The basic idea is that we walk down the tree to do that, finding the root
7144   // reduction instruction in InLoopReductionImmediateChains. From there we find
7145   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7146   // of the components. If the reduction cost is lower then we return it for the
7147   // reduction instruction and 0 for the other instructions in the pattern. If
7148   // it is not we return an invalid cost specifying the orignal cost method
7149   // should be used.
7150   Instruction *RetI = I;
7151   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7152     if (!RetI->hasOneUser())
7153       return None;
7154     RetI = RetI->user_back();
7155   }
7156   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7157       RetI->user_back()->getOpcode() == Instruction::Add) {
7158     if (!RetI->hasOneUser())
7159       return None;
7160     RetI = RetI->user_back();
7161   }
7162 
7163   // Test if the found instruction is a reduction, and if not return an invalid
7164   // cost specifying the parent to use the original cost modelling.
7165   if (!InLoopReductionImmediateChains.count(RetI))
7166     return None;
7167 
7168   // Find the reduction this chain is a part of and calculate the basic cost of
7169   // the reduction on its own.
7170   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7171   Instruction *ReductionPhi = LastChain;
7172   while (!isa<PHINode>(ReductionPhi))
7173     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7174 
7175   const RecurrenceDescriptor &RdxDesc =
7176       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7177   InstructionCost BaseCost =
7178       TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), VectorTy, CostKind);
7179 
7180   // Get the operand that was not the reduction chain and match it to one of the
7181   // patterns, returning the better cost if it is found.
7182   Instruction *RedOp = RetI->getOperand(1) == LastChain
7183                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7184                            : dyn_cast<Instruction>(RetI->getOperand(1));
7185 
7186   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7187 
7188   Instruction *Op0, *Op1;
7189   if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7190       !TheLoop->isLoopInvariant(RedOp)) {
7191     // Matched reduce(ext(A))
7192     bool IsUnsigned = isa<ZExtInst>(RedOp);
7193     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7194     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7195         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7196         CostKind);
7197 
7198     InstructionCost ExtCost =
7199         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7200                              TTI::CastContextHint::None, CostKind, RedOp);
7201     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7202       return I == RetI ? RedCost : 0;
7203   } else if (RedOp &&
7204              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7205     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7206         Op0->getOpcode() == Op1->getOpcode() &&
7207         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7208         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7209       bool IsUnsigned = isa<ZExtInst>(Op0);
7210       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7211       // Matched reduce(mul(ext, ext))
7212       InstructionCost ExtCost =
7213           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7214                                TTI::CastContextHint::None, CostKind, Op0);
7215       InstructionCost MulCost =
7216           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7217 
7218       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7219           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7220           CostKind);
7221 
7222       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7223         return I == RetI ? RedCost : 0;
7224     } else {
7225       // Matched reduce(mul())
7226       InstructionCost MulCost =
7227           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7228 
7229       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7230           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7231           CostKind);
7232 
7233       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7234         return I == RetI ? RedCost : 0;
7235     }
7236   }
7237 
7238   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7239 }
7240 
7241 InstructionCost
7242 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7243                                                      ElementCount VF) {
7244   // Calculate scalar cost only. Vectorization cost should be ready at this
7245   // moment.
7246   if (VF.isScalar()) {
7247     Type *ValTy = getLoadStoreType(I);
7248     const Align Alignment = getLoadStoreAlignment(I);
7249     unsigned AS = getLoadStoreAddressSpace(I);
7250 
7251     return TTI.getAddressComputationCost(ValTy) +
7252            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7253                                TTI::TCK_RecipThroughput, I);
7254   }
7255   return getWideningCost(I, VF);
7256 }
7257 
7258 LoopVectorizationCostModel::VectorizationCostTy
7259 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7260                                                ElementCount VF) {
7261   // If we know that this instruction will remain uniform, check the cost of
7262   // the scalar version.
7263   if (isUniformAfterVectorization(I, VF))
7264     VF = ElementCount::getFixed(1);
7265 
7266   if (VF.isVector() && isProfitableToScalarize(I, VF))
7267     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7268 
7269   // Forced scalars do not have any scalarization overhead.
7270   auto ForcedScalar = ForcedScalars.find(VF);
7271   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7272     auto InstSet = ForcedScalar->second;
7273     if (InstSet.count(I))
7274       return VectorizationCostTy(
7275           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7276            VF.getKnownMinValue()),
7277           false);
7278   }
7279 
7280   Type *VectorTy;
7281   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7282 
7283   bool TypeNotScalarized =
7284       VF.isVector() && VectorTy->isVectorTy() &&
7285       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7286   return VectorizationCostTy(C, TypeNotScalarized);
7287 }
7288 
7289 InstructionCost
7290 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7291                                                      ElementCount VF) const {
7292 
7293   // There is no mechanism yet to create a scalable scalarization loop,
7294   // so this is currently Invalid.
7295   if (VF.isScalable())
7296     return InstructionCost::getInvalid();
7297 
7298   if (VF.isScalar())
7299     return 0;
7300 
7301   InstructionCost Cost = 0;
7302   Type *RetTy = ToVectorTy(I->getType(), VF);
7303   if (!RetTy->isVoidTy() &&
7304       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7305     Cost += TTI.getScalarizationOverhead(
7306         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7307         true, false);
7308 
7309   // Some targets keep addresses scalar.
7310   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7311     return Cost;
7312 
7313   // Some targets support efficient element stores.
7314   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7315     return Cost;
7316 
7317   // Collect operands to consider.
7318   CallInst *CI = dyn_cast<CallInst>(I);
7319   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7320 
7321   // Skip operands that do not require extraction/scalarization and do not incur
7322   // any overhead.
7323   SmallVector<Type *> Tys;
7324   for (auto *V : filterExtractingOperands(Ops, VF))
7325     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7326   return Cost + TTI.getOperandsScalarizationOverhead(
7327                     filterExtractingOperands(Ops, VF), Tys);
7328 }
7329 
7330 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7331   if (VF.isScalar())
7332     return;
7333   NumPredStores = 0;
7334   for (BasicBlock *BB : TheLoop->blocks()) {
7335     // For each instruction in the old loop.
7336     for (Instruction &I : *BB) {
7337       Value *Ptr =  getLoadStorePointerOperand(&I);
7338       if (!Ptr)
7339         continue;
7340 
7341       // TODO: We should generate better code and update the cost model for
7342       // predicated uniform stores. Today they are treated as any other
7343       // predicated store (see added test cases in
7344       // invariant-store-vectorization.ll).
7345       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7346         NumPredStores++;
7347 
7348       if (Legal->isUniformMemOp(I)) {
7349         // TODO: Avoid replicating loads and stores instead of
7350         // relying on instcombine to remove them.
7351         // Load: Scalar load + broadcast
7352         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7353         InstructionCost Cost;
7354         if (isa<StoreInst>(&I) && VF.isScalable() &&
7355             isLegalGatherOrScatter(&I)) {
7356           Cost = getGatherScatterCost(&I, VF);
7357           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7358         } else {
7359           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7360                  "Cannot yet scalarize uniform stores");
7361           Cost = getUniformMemOpCost(&I, VF);
7362           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7363         }
7364         continue;
7365       }
7366 
7367       // We assume that widening is the best solution when possible.
7368       if (memoryInstructionCanBeWidened(&I, VF)) {
7369         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7370         int ConsecutiveStride =
7371                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7372         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7373                "Expected consecutive stride.");
7374         InstWidening Decision =
7375             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7376         setWideningDecision(&I, VF, Decision, Cost);
7377         continue;
7378       }
7379 
7380       // Choose between Interleaving, Gather/Scatter or Scalarization.
7381       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7382       unsigned NumAccesses = 1;
7383       if (isAccessInterleaved(&I)) {
7384         auto Group = getInterleavedAccessGroup(&I);
7385         assert(Group && "Fail to get an interleaved access group.");
7386 
7387         // Make one decision for the whole group.
7388         if (getWideningDecision(&I, VF) != CM_Unknown)
7389           continue;
7390 
7391         NumAccesses = Group->getNumMembers();
7392         if (interleavedAccessCanBeWidened(&I, VF))
7393           InterleaveCost = getInterleaveGroupCost(&I, VF);
7394       }
7395 
7396       InstructionCost GatherScatterCost =
7397           isLegalGatherOrScatter(&I)
7398               ? getGatherScatterCost(&I, VF) * NumAccesses
7399               : InstructionCost::getInvalid();
7400 
7401       InstructionCost ScalarizationCost =
7402           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7403 
7404       // Choose better solution for the current VF,
7405       // write down this decision and use it during vectorization.
7406       InstructionCost Cost;
7407       InstWidening Decision;
7408       if (InterleaveCost <= GatherScatterCost &&
7409           InterleaveCost < ScalarizationCost) {
7410         Decision = CM_Interleave;
7411         Cost = InterleaveCost;
7412       } else if (GatherScatterCost < ScalarizationCost) {
7413         Decision = CM_GatherScatter;
7414         Cost = GatherScatterCost;
7415       } else {
7416         assert(!VF.isScalable() &&
7417                "We cannot yet scalarise for scalable vectors");
7418         Decision = CM_Scalarize;
7419         Cost = ScalarizationCost;
7420       }
7421       // If the instructions belongs to an interleave group, the whole group
7422       // receives the same decision. The whole group receives the cost, but
7423       // the cost will actually be assigned to one instruction.
7424       if (auto Group = getInterleavedAccessGroup(&I))
7425         setWideningDecision(Group, VF, Decision, Cost);
7426       else
7427         setWideningDecision(&I, VF, Decision, Cost);
7428     }
7429   }
7430 
7431   // Make sure that any load of address and any other address computation
7432   // remains scalar unless there is gather/scatter support. This avoids
7433   // inevitable extracts into address registers, and also has the benefit of
7434   // activating LSR more, since that pass can't optimize vectorized
7435   // addresses.
7436   if (TTI.prefersVectorizedAddressing())
7437     return;
7438 
7439   // Start with all scalar pointer uses.
7440   SmallPtrSet<Instruction *, 8> AddrDefs;
7441   for (BasicBlock *BB : TheLoop->blocks())
7442     for (Instruction &I : *BB) {
7443       Instruction *PtrDef =
7444         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7445       if (PtrDef && TheLoop->contains(PtrDef) &&
7446           getWideningDecision(&I, VF) != CM_GatherScatter)
7447         AddrDefs.insert(PtrDef);
7448     }
7449 
7450   // Add all instructions used to generate the addresses.
7451   SmallVector<Instruction *, 4> Worklist;
7452   append_range(Worklist, AddrDefs);
7453   while (!Worklist.empty()) {
7454     Instruction *I = Worklist.pop_back_val();
7455     for (auto &Op : I->operands())
7456       if (auto *InstOp = dyn_cast<Instruction>(Op))
7457         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7458             AddrDefs.insert(InstOp).second)
7459           Worklist.push_back(InstOp);
7460   }
7461 
7462   for (auto *I : AddrDefs) {
7463     if (isa<LoadInst>(I)) {
7464       // Setting the desired widening decision should ideally be handled in
7465       // by cost functions, but since this involves the task of finding out
7466       // if the loaded register is involved in an address computation, it is
7467       // instead changed here when we know this is the case.
7468       InstWidening Decision = getWideningDecision(I, VF);
7469       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7470         // Scalarize a widened load of address.
7471         setWideningDecision(
7472             I, VF, CM_Scalarize,
7473             (VF.getKnownMinValue() *
7474              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7475       else if (auto Group = getInterleavedAccessGroup(I)) {
7476         // Scalarize an interleave group of address loads.
7477         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7478           if (Instruction *Member = Group->getMember(I))
7479             setWideningDecision(
7480                 Member, VF, CM_Scalarize,
7481                 (VF.getKnownMinValue() *
7482                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7483         }
7484       }
7485     } else
7486       // Make sure I gets scalarized and a cost estimate without
7487       // scalarization overhead.
7488       ForcedScalars[VF].insert(I);
7489   }
7490 }
7491 
7492 InstructionCost
7493 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7494                                                Type *&VectorTy) {
7495   Type *RetTy = I->getType();
7496   if (canTruncateToMinimalBitwidth(I, VF))
7497     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7498   auto SE = PSE.getSE();
7499   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7500 
7501   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7502                                                 ElementCount VF) -> bool {
7503     if (VF.isScalar())
7504       return true;
7505 
7506     auto Scalarized = InstsToScalarize.find(VF);
7507     assert(Scalarized != InstsToScalarize.end() &&
7508            "VF not yet analyzed for scalarization profitability");
7509     return !Scalarized->second.count(I) &&
7510            llvm::all_of(I->users(), [&](User *U) {
7511              auto *UI = cast<Instruction>(U);
7512              return !Scalarized->second.count(UI);
7513            });
7514   };
7515   (void) hasSingleCopyAfterVectorization;
7516 
7517   if (isScalarAfterVectorization(I, VF)) {
7518     // With the exception of GEPs and PHIs, after scalarization there should
7519     // only be one copy of the instruction generated in the loop. This is
7520     // because the VF is either 1, or any instructions that need scalarizing
7521     // have already been dealt with by the the time we get here. As a result,
7522     // it means we don't have to multiply the instruction cost by VF.
7523     assert(I->getOpcode() == Instruction::GetElementPtr ||
7524            I->getOpcode() == Instruction::PHI ||
7525            (I->getOpcode() == Instruction::BitCast &&
7526             I->getType()->isPointerTy()) ||
7527            hasSingleCopyAfterVectorization(I, VF));
7528     VectorTy = RetTy;
7529   } else
7530     VectorTy = ToVectorTy(RetTy, VF);
7531 
7532   // TODO: We need to estimate the cost of intrinsic calls.
7533   switch (I->getOpcode()) {
7534   case Instruction::GetElementPtr:
7535     // We mark this instruction as zero-cost because the cost of GEPs in
7536     // vectorized code depends on whether the corresponding memory instruction
7537     // is scalarized or not. Therefore, we handle GEPs with the memory
7538     // instruction cost.
7539     return 0;
7540   case Instruction::Br: {
7541     // In cases of scalarized and predicated instructions, there will be VF
7542     // predicated blocks in the vectorized loop. Each branch around these
7543     // blocks requires also an extract of its vector compare i1 element.
7544     bool ScalarPredicatedBB = false;
7545     BranchInst *BI = cast<BranchInst>(I);
7546     if (VF.isVector() && BI->isConditional() &&
7547         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7548          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7549       ScalarPredicatedBB = true;
7550 
7551     if (ScalarPredicatedBB) {
7552       // Not possible to scalarize scalable vector with predicated instructions.
7553       if (VF.isScalable())
7554         return InstructionCost::getInvalid();
7555       // Return cost for branches around scalarized and predicated blocks.
7556       auto *Vec_i1Ty =
7557           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7558       return (
7559           TTI.getScalarizationOverhead(
7560               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7561               true) +
7562           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7563     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7564       // The back-edge branch will remain, as will all scalar branches.
7565       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7566     else
7567       // This branch will be eliminated by if-conversion.
7568       return 0;
7569     // Note: We currently assume zero cost for an unconditional branch inside
7570     // a predicated block since it will become a fall-through, although we
7571     // may decide in the future to call TTI for all branches.
7572   }
7573   case Instruction::PHI: {
7574     auto *Phi = cast<PHINode>(I);
7575 
7576     // First-order recurrences are replaced by vector shuffles inside the loop.
7577     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7578     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7579       return TTI.getShuffleCost(
7580           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7581           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7582 
7583     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7584     // converted into select instructions. We require N - 1 selects per phi
7585     // node, where N is the number of incoming values.
7586     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7587       return (Phi->getNumIncomingValues() - 1) *
7588              TTI.getCmpSelInstrCost(
7589                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7590                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7591                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7592 
7593     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7594   }
7595   case Instruction::UDiv:
7596   case Instruction::SDiv:
7597   case Instruction::URem:
7598   case Instruction::SRem:
7599     // If we have a predicated instruction, it may not be executed for each
7600     // vector lane. Get the scalarization cost and scale this amount by the
7601     // probability of executing the predicated block. If the instruction is not
7602     // predicated, we fall through to the next case.
7603     if (VF.isVector() && isScalarWithPredication(I)) {
7604       InstructionCost Cost = 0;
7605 
7606       // These instructions have a non-void type, so account for the phi nodes
7607       // that we will create. This cost is likely to be zero. The phi node
7608       // cost, if any, should be scaled by the block probability because it
7609       // models a copy at the end of each predicated block.
7610       Cost += VF.getKnownMinValue() *
7611               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7612 
7613       // The cost of the non-predicated instruction.
7614       Cost += VF.getKnownMinValue() *
7615               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7616 
7617       // The cost of insertelement and extractelement instructions needed for
7618       // scalarization.
7619       Cost += getScalarizationOverhead(I, VF);
7620 
7621       // Scale the cost by the probability of executing the predicated blocks.
7622       // This assumes the predicated block for each vector lane is equally
7623       // likely.
7624       return Cost / getReciprocalPredBlockProb();
7625     }
7626     LLVM_FALLTHROUGH;
7627   case Instruction::Add:
7628   case Instruction::FAdd:
7629   case Instruction::Sub:
7630   case Instruction::FSub:
7631   case Instruction::Mul:
7632   case Instruction::FMul:
7633   case Instruction::FDiv:
7634   case Instruction::FRem:
7635   case Instruction::Shl:
7636   case Instruction::LShr:
7637   case Instruction::AShr:
7638   case Instruction::And:
7639   case Instruction::Or:
7640   case Instruction::Xor: {
7641     // Since we will replace the stride by 1 the multiplication should go away.
7642     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7643       return 0;
7644 
7645     // Detect reduction patterns
7646     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7647       return *RedCost;
7648 
7649     // Certain instructions can be cheaper to vectorize if they have a constant
7650     // second vector operand. One example of this are shifts on x86.
7651     Value *Op2 = I->getOperand(1);
7652     TargetTransformInfo::OperandValueProperties Op2VP;
7653     TargetTransformInfo::OperandValueKind Op2VK =
7654         TTI.getOperandInfo(Op2, Op2VP);
7655     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7656       Op2VK = TargetTransformInfo::OK_UniformValue;
7657 
7658     SmallVector<const Value *, 4> Operands(I->operand_values());
7659     return TTI.getArithmeticInstrCost(
7660         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7661         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7662   }
7663   case Instruction::FNeg: {
7664     return TTI.getArithmeticInstrCost(
7665         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7666         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7667         TargetTransformInfo::OP_None, I->getOperand(0), I);
7668   }
7669   case Instruction::Select: {
7670     SelectInst *SI = cast<SelectInst>(I);
7671     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7672     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7673 
7674     const Value *Op0, *Op1;
7675     using namespace llvm::PatternMatch;
7676     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7677                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7678       // select x, y, false --> x & y
7679       // select x, true, y --> x | y
7680       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7681       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7682       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7683       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7684       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7685               Op1->getType()->getScalarSizeInBits() == 1);
7686 
7687       SmallVector<const Value *, 2> Operands{Op0, Op1};
7688       return TTI.getArithmeticInstrCost(
7689           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7690           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7691     }
7692 
7693     Type *CondTy = SI->getCondition()->getType();
7694     if (!ScalarCond)
7695       CondTy = VectorType::get(CondTy, VF);
7696     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7697                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7698   }
7699   case Instruction::ICmp:
7700   case Instruction::FCmp: {
7701     Type *ValTy = I->getOperand(0)->getType();
7702     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7703     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7704       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7705     VectorTy = ToVectorTy(ValTy, VF);
7706     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7707                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7708   }
7709   case Instruction::Store:
7710   case Instruction::Load: {
7711     ElementCount Width = VF;
7712     if (Width.isVector()) {
7713       InstWidening Decision = getWideningDecision(I, Width);
7714       assert(Decision != CM_Unknown &&
7715              "CM decision should be taken at this point");
7716       if (Decision == CM_Scalarize)
7717         Width = ElementCount::getFixed(1);
7718     }
7719     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7720     return getMemoryInstructionCost(I, VF);
7721   }
7722   case Instruction::BitCast:
7723     if (I->getType()->isPointerTy())
7724       return 0;
7725     LLVM_FALLTHROUGH;
7726   case Instruction::ZExt:
7727   case Instruction::SExt:
7728   case Instruction::FPToUI:
7729   case Instruction::FPToSI:
7730   case Instruction::FPExt:
7731   case Instruction::PtrToInt:
7732   case Instruction::IntToPtr:
7733   case Instruction::SIToFP:
7734   case Instruction::UIToFP:
7735   case Instruction::Trunc:
7736   case Instruction::FPTrunc: {
7737     // Computes the CastContextHint from a Load/Store instruction.
7738     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7739       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7740              "Expected a load or a store!");
7741 
7742       if (VF.isScalar() || !TheLoop->contains(I))
7743         return TTI::CastContextHint::Normal;
7744 
7745       switch (getWideningDecision(I, VF)) {
7746       case LoopVectorizationCostModel::CM_GatherScatter:
7747         return TTI::CastContextHint::GatherScatter;
7748       case LoopVectorizationCostModel::CM_Interleave:
7749         return TTI::CastContextHint::Interleave;
7750       case LoopVectorizationCostModel::CM_Scalarize:
7751       case LoopVectorizationCostModel::CM_Widen:
7752         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7753                                         : TTI::CastContextHint::Normal;
7754       case LoopVectorizationCostModel::CM_Widen_Reverse:
7755         return TTI::CastContextHint::Reversed;
7756       case LoopVectorizationCostModel::CM_Unknown:
7757         llvm_unreachable("Instr did not go through cost modelling?");
7758       }
7759 
7760       llvm_unreachable("Unhandled case!");
7761     };
7762 
7763     unsigned Opcode = I->getOpcode();
7764     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7765     // For Trunc, the context is the only user, which must be a StoreInst.
7766     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7767       if (I->hasOneUse())
7768         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7769           CCH = ComputeCCH(Store);
7770     }
7771     // For Z/Sext, the context is the operand, which must be a LoadInst.
7772     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7773              Opcode == Instruction::FPExt) {
7774       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7775         CCH = ComputeCCH(Load);
7776     }
7777 
7778     // We optimize the truncation of induction variables having constant
7779     // integer steps. The cost of these truncations is the same as the scalar
7780     // operation.
7781     if (isOptimizableIVTruncate(I, VF)) {
7782       auto *Trunc = cast<TruncInst>(I);
7783       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7784                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7785     }
7786 
7787     // Detect reduction patterns
7788     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7789       return *RedCost;
7790 
7791     Type *SrcScalarTy = I->getOperand(0)->getType();
7792     Type *SrcVecTy =
7793         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7794     if (canTruncateToMinimalBitwidth(I, VF)) {
7795       // This cast is going to be shrunk. This may remove the cast or it might
7796       // turn it into slightly different cast. For example, if MinBW == 16,
7797       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7798       //
7799       // Calculate the modified src and dest types.
7800       Type *MinVecTy = VectorTy;
7801       if (Opcode == Instruction::Trunc) {
7802         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7803         VectorTy =
7804             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7805       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7806         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7807         VectorTy =
7808             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7809       }
7810     }
7811 
7812     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7813   }
7814   case Instruction::Call: {
7815     bool NeedToScalarize;
7816     CallInst *CI = cast<CallInst>(I);
7817     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7818     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7819       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7820       return std::min(CallCost, IntrinsicCost);
7821     }
7822     return CallCost;
7823   }
7824   case Instruction::ExtractValue:
7825     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7826   case Instruction::Alloca:
7827     // We cannot easily widen alloca to a scalable alloca, as
7828     // the result would need to be a vector of pointers.
7829     if (VF.isScalable())
7830       return InstructionCost::getInvalid();
7831     LLVM_FALLTHROUGH;
7832   default:
7833     // This opcode is unknown. Assume that it is the same as 'mul'.
7834     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7835   } // end of switch.
7836 }
7837 
7838 char LoopVectorize::ID = 0;
7839 
7840 static const char lv_name[] = "Loop Vectorization";
7841 
7842 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7843 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7844 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7845 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7846 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7847 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7848 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7849 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7850 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7851 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7852 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7853 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7854 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7855 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7856 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7857 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7858 
7859 namespace llvm {
7860 
7861 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7862 
7863 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7864                               bool VectorizeOnlyWhenForced) {
7865   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7866 }
7867 
7868 } // end namespace llvm
7869 
7870 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7871   // Check if the pointer operand of a load or store instruction is
7872   // consecutive.
7873   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7874     return Legal->isConsecutivePtr(Ptr);
7875   return false;
7876 }
7877 
7878 void LoopVectorizationCostModel::collectValuesToIgnore() {
7879   // Ignore ephemeral values.
7880   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7881 
7882   // Ignore type-promoting instructions we identified during reduction
7883   // detection.
7884   for (auto &Reduction : Legal->getReductionVars()) {
7885     RecurrenceDescriptor &RedDes = Reduction.second;
7886     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7887     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7888   }
7889   // Ignore type-casting instructions we identified during induction
7890   // detection.
7891   for (auto &Induction : Legal->getInductionVars()) {
7892     InductionDescriptor &IndDes = Induction.second;
7893     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7894     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7895   }
7896 }
7897 
7898 void LoopVectorizationCostModel::collectInLoopReductions() {
7899   for (auto &Reduction : Legal->getReductionVars()) {
7900     PHINode *Phi = Reduction.first;
7901     RecurrenceDescriptor &RdxDesc = Reduction.second;
7902 
7903     // We don't collect reductions that are type promoted (yet).
7904     if (RdxDesc.getRecurrenceType() != Phi->getType())
7905       continue;
7906 
7907     // If the target would prefer this reduction to happen "in-loop", then we
7908     // want to record it as such.
7909     unsigned Opcode = RdxDesc.getOpcode();
7910     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7911         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7912                                    TargetTransformInfo::ReductionFlags()))
7913       continue;
7914 
7915     // Check that we can correctly put the reductions into the loop, by
7916     // finding the chain of operations that leads from the phi to the loop
7917     // exit value.
7918     SmallVector<Instruction *, 4> ReductionOperations =
7919         RdxDesc.getReductionOpChain(Phi, TheLoop);
7920     bool InLoop = !ReductionOperations.empty();
7921     if (InLoop) {
7922       InLoopReductionChains[Phi] = ReductionOperations;
7923       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7924       Instruction *LastChain = Phi;
7925       for (auto *I : ReductionOperations) {
7926         InLoopReductionImmediateChains[I] = LastChain;
7927         LastChain = I;
7928       }
7929     }
7930     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7931                       << " reduction for phi: " << *Phi << "\n");
7932   }
7933 }
7934 
7935 // TODO: we could return a pair of values that specify the max VF and
7936 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7937 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7938 // doesn't have a cost model that can choose which plan to execute if
7939 // more than one is generated.
7940 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7941                                  LoopVectorizationCostModel &CM) {
7942   unsigned WidestType;
7943   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7944   return WidestVectorRegBits / WidestType;
7945 }
7946 
7947 VectorizationFactor
7948 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7949   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7950   ElementCount VF = UserVF;
7951   // Outer loop handling: They may require CFG and instruction level
7952   // transformations before even evaluating whether vectorization is profitable.
7953   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7954   // the vectorization pipeline.
7955   if (!OrigLoop->isInnermost()) {
7956     // If the user doesn't provide a vectorization factor, determine a
7957     // reasonable one.
7958     if (UserVF.isZero()) {
7959       VF = ElementCount::getFixed(determineVPlanVF(
7960           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7961               .getFixedSize(),
7962           CM));
7963       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7964 
7965       // Make sure we have a VF > 1 for stress testing.
7966       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7967         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7968                           << "overriding computed VF.\n");
7969         VF = ElementCount::getFixed(4);
7970       }
7971     }
7972     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7973     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7974            "VF needs to be a power of two");
7975     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7976                       << "VF " << VF << " to build VPlans.\n");
7977     buildVPlans(VF, VF);
7978 
7979     // For VPlan build stress testing, we bail out after VPlan construction.
7980     if (VPlanBuildStressTest)
7981       return VectorizationFactor::Disabled();
7982 
7983     return {VF, 0 /*Cost*/};
7984   }
7985 
7986   LLVM_DEBUG(
7987       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7988                 "VPlan-native path.\n");
7989   return VectorizationFactor::Disabled();
7990 }
7991 
7992 Optional<VectorizationFactor>
7993 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7994   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7995   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7996   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7997     return None;
7998 
7999   // Invalidate interleave groups if all blocks of loop will be predicated.
8000   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8001       !useMaskedInterleavedAccesses(*TTI)) {
8002     LLVM_DEBUG(
8003         dbgs()
8004         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8005            "which requires masked-interleaved support.\n");
8006     if (CM.InterleaveInfo.invalidateGroups())
8007       // Invalidating interleave groups also requires invalidating all decisions
8008       // based on them, which includes widening decisions and uniform and scalar
8009       // values.
8010       CM.invalidateCostModelingDecisions();
8011   }
8012 
8013   ElementCount MaxUserVF =
8014       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8015   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8016   if (!UserVF.isZero() && UserVFIsLegal) {
8017     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8018            "VF needs to be a power of two");
8019     // Collect the instructions (and their associated costs) that will be more
8020     // profitable to scalarize.
8021     if (CM.selectUserVectorizationFactor(UserVF)) {
8022       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8023       CM.collectInLoopReductions();
8024       buildVPlansWithVPRecipes(UserVF, UserVF);
8025       LLVM_DEBUG(printPlans(dbgs()));
8026       return {{UserVF, 0}};
8027     } else
8028       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8029                               "InvalidCost", ORE, OrigLoop);
8030   }
8031 
8032   // Populate the set of Vectorization Factor Candidates.
8033   ElementCountSet VFCandidates;
8034   for (auto VF = ElementCount::getFixed(1);
8035        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8036     VFCandidates.insert(VF);
8037   for (auto VF = ElementCount::getScalable(1);
8038        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8039     VFCandidates.insert(VF);
8040 
8041   for (const auto &VF : VFCandidates) {
8042     // Collect Uniform and Scalar instructions after vectorization with VF.
8043     CM.collectUniformsAndScalars(VF);
8044 
8045     // Collect the instructions (and their associated costs) that will be more
8046     // profitable to scalarize.
8047     if (VF.isVector())
8048       CM.collectInstsToScalarize(VF);
8049   }
8050 
8051   CM.collectInLoopReductions();
8052   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8053   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8054 
8055   LLVM_DEBUG(printPlans(dbgs()));
8056   if (!MaxFactors.hasVector())
8057     return VectorizationFactor::Disabled();
8058 
8059   // Select the optimal vectorization factor.
8060   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8061 
8062   // Check if it is profitable to vectorize with runtime checks.
8063   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8064   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8065     bool PragmaThresholdReached =
8066         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8067     bool ThresholdReached =
8068         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8069     if ((ThresholdReached && !Hints.allowReordering()) ||
8070         PragmaThresholdReached) {
8071       ORE->emit([&]() {
8072         return OptimizationRemarkAnalysisAliasing(
8073                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8074                    OrigLoop->getHeader())
8075                << "loop not vectorized: cannot prove it is safe to reorder "
8076                   "memory operations";
8077       });
8078       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8079       Hints.emitRemarkWithHints();
8080       return VectorizationFactor::Disabled();
8081     }
8082   }
8083   return SelectedVF;
8084 }
8085 
8086 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8087   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8088                     << '\n');
8089   BestVF = VF;
8090   BestUF = UF;
8091 
8092   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8093     return !Plan->hasVF(VF);
8094   });
8095   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8096 }
8097 
8098 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8099                                            DominatorTree *DT) {
8100   // Perform the actual loop transformation.
8101 
8102   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8103   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8104   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8105 
8106   VPTransformState State{
8107       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8108   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8109   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8110   State.CanonicalIV = ILV.Induction;
8111 
8112   ILV.printDebugTracesAtStart();
8113 
8114   //===------------------------------------------------===//
8115   //
8116   // Notice: any optimization or new instruction that go
8117   // into the code below should also be implemented in
8118   // the cost-model.
8119   //
8120   //===------------------------------------------------===//
8121 
8122   // 2. Copy and widen instructions from the old loop into the new loop.
8123   VPlans.front()->execute(&State);
8124 
8125   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8126   //    predication, updating analyses.
8127   ILV.fixVectorizedLoop(State);
8128 
8129   ILV.printDebugTracesAtEnd();
8130 }
8131 
8132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8133 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8134   for (const auto &Plan : VPlans)
8135     if (PrintVPlansInDotFormat)
8136       Plan->printDOT(O);
8137     else
8138       Plan->print(O);
8139 }
8140 #endif
8141 
8142 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8143     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8144 
8145   // We create new control-flow for the vectorized loop, so the original exit
8146   // conditions will be dead after vectorization if it's only used by the
8147   // terminator
8148   SmallVector<BasicBlock*> ExitingBlocks;
8149   OrigLoop->getExitingBlocks(ExitingBlocks);
8150   for (auto *BB : ExitingBlocks) {
8151     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8152     if (!Cmp || !Cmp->hasOneUse())
8153       continue;
8154 
8155     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8156     if (!DeadInstructions.insert(Cmp).second)
8157       continue;
8158 
8159     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8160     // TODO: can recurse through operands in general
8161     for (Value *Op : Cmp->operands()) {
8162       if (isa<TruncInst>(Op) && Op->hasOneUse())
8163           DeadInstructions.insert(cast<Instruction>(Op));
8164     }
8165   }
8166 
8167   // We create new "steps" for induction variable updates to which the original
8168   // induction variables map. An original update instruction will be dead if
8169   // all its users except the induction variable are dead.
8170   auto *Latch = OrigLoop->getLoopLatch();
8171   for (auto &Induction : Legal->getInductionVars()) {
8172     PHINode *Ind = Induction.first;
8173     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8174 
8175     // If the tail is to be folded by masking, the primary induction variable,
8176     // if exists, isn't dead: it will be used for masking. Don't kill it.
8177     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8178       continue;
8179 
8180     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8181           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8182         }))
8183       DeadInstructions.insert(IndUpdate);
8184 
8185     // We record as "Dead" also the type-casting instructions we had identified
8186     // during induction analysis. We don't need any handling for them in the
8187     // vectorized loop because we have proven that, under a proper runtime
8188     // test guarding the vectorized loop, the value of the phi, and the casted
8189     // value of the phi, are the same. The last instruction in this casting chain
8190     // will get its scalar/vector/widened def from the scalar/vector/widened def
8191     // of the respective phi node. Any other casts in the induction def-use chain
8192     // have no other uses outside the phi update chain, and will be ignored.
8193     InductionDescriptor &IndDes = Induction.second;
8194     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8195     DeadInstructions.insert(Casts.begin(), Casts.end());
8196   }
8197 }
8198 
8199 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8200 
8201 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8202 
8203 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8204                                         Instruction::BinaryOps BinOp) {
8205   // When unrolling and the VF is 1, we only need to add a simple scalar.
8206   Type *Ty = Val->getType();
8207   assert(!Ty->isVectorTy() && "Val must be a scalar");
8208 
8209   if (Ty->isFloatingPointTy()) {
8210     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8211 
8212     // Floating-point operations inherit FMF via the builder's flags.
8213     Value *MulOp = Builder.CreateFMul(C, Step);
8214     return Builder.CreateBinOp(BinOp, Val, MulOp);
8215   }
8216   Constant *C = ConstantInt::get(Ty, StartIdx);
8217   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8218 }
8219 
8220 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8221   SmallVector<Metadata *, 4> MDs;
8222   // Reserve first location for self reference to the LoopID metadata node.
8223   MDs.push_back(nullptr);
8224   bool IsUnrollMetadata = false;
8225   MDNode *LoopID = L->getLoopID();
8226   if (LoopID) {
8227     // First find existing loop unrolling disable metadata.
8228     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8229       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8230       if (MD) {
8231         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8232         IsUnrollMetadata =
8233             S && S->getString().startswith("llvm.loop.unroll.disable");
8234       }
8235       MDs.push_back(LoopID->getOperand(i));
8236     }
8237   }
8238 
8239   if (!IsUnrollMetadata) {
8240     // Add runtime unroll disable metadata.
8241     LLVMContext &Context = L->getHeader()->getContext();
8242     SmallVector<Metadata *, 1> DisableOperands;
8243     DisableOperands.push_back(
8244         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8245     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8246     MDs.push_back(DisableNode);
8247     MDNode *NewLoopID = MDNode::get(Context, MDs);
8248     // Set operand 0 to refer to the loop id itself.
8249     NewLoopID->replaceOperandWith(0, NewLoopID);
8250     L->setLoopID(NewLoopID);
8251   }
8252 }
8253 
8254 //===--------------------------------------------------------------------===//
8255 // EpilogueVectorizerMainLoop
8256 //===--------------------------------------------------------------------===//
8257 
8258 /// This function is partially responsible for generating the control flow
8259 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8260 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8261   MDNode *OrigLoopID = OrigLoop->getLoopID();
8262   Loop *Lp = createVectorLoopSkeleton("");
8263 
8264   // Generate the code to check the minimum iteration count of the vector
8265   // epilogue (see below).
8266   EPI.EpilogueIterationCountCheck =
8267       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8268   EPI.EpilogueIterationCountCheck->setName("iter.check");
8269 
8270   // Generate the code to check any assumptions that we've made for SCEV
8271   // expressions.
8272   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8273 
8274   // Generate the code that checks at runtime if arrays overlap. We put the
8275   // checks into a separate block to make the more common case of few elements
8276   // faster.
8277   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8278 
8279   // Generate the iteration count check for the main loop, *after* the check
8280   // for the epilogue loop, so that the path-length is shorter for the case
8281   // that goes directly through the vector epilogue. The longer-path length for
8282   // the main loop is compensated for, by the gain from vectorizing the larger
8283   // trip count. Note: the branch will get updated later on when we vectorize
8284   // the epilogue.
8285   EPI.MainLoopIterationCountCheck =
8286       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8287 
8288   // Generate the induction variable.
8289   OldInduction = Legal->getPrimaryInduction();
8290   Type *IdxTy = Legal->getWidestInductionType();
8291   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8292   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8293   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8294   EPI.VectorTripCount = CountRoundDown;
8295   Induction =
8296       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8297                               getDebugLocFromInstOrOperands(OldInduction));
8298 
8299   // Skip induction resume value creation here because they will be created in
8300   // the second pass. If we created them here, they wouldn't be used anyway,
8301   // because the vplan in the second pass still contains the inductions from the
8302   // original loop.
8303 
8304   return completeLoopSkeleton(Lp, OrigLoopID);
8305 }
8306 
8307 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8308   LLVM_DEBUG({
8309     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8310            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8311            << ", Main Loop UF:" << EPI.MainLoopUF
8312            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8313            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8314   });
8315 }
8316 
8317 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8318   DEBUG_WITH_TYPE(VerboseDebug, {
8319     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8320   });
8321 }
8322 
8323 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8324     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8325   assert(L && "Expected valid Loop.");
8326   assert(Bypass && "Expected valid bypass basic block.");
8327   unsigned VFactor =
8328       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8329   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8330   Value *Count = getOrCreateTripCount(L);
8331   // Reuse existing vector loop preheader for TC checks.
8332   // Note that new preheader block is generated for vector loop.
8333   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8334   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8335 
8336   // Generate code to check if the loop's trip count is less than VF * UF of the
8337   // main vector loop.
8338   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8339       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8340 
8341   Value *CheckMinIters = Builder.CreateICmp(
8342       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8343       "min.iters.check");
8344 
8345   if (!ForEpilogue)
8346     TCCheckBlock->setName("vector.main.loop.iter.check");
8347 
8348   // Create new preheader for vector loop.
8349   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8350                                    DT, LI, nullptr, "vector.ph");
8351 
8352   if (ForEpilogue) {
8353     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8354                                  DT->getNode(Bypass)->getIDom()) &&
8355            "TC check is expected to dominate Bypass");
8356 
8357     // Update dominator for Bypass & LoopExit.
8358     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8359     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8360       // For loops with multiple exits, there's no edge from the middle block
8361       // to exit blocks (as the epilogue must run) and thus no need to update
8362       // the immediate dominator of the exit blocks.
8363       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8364 
8365     LoopBypassBlocks.push_back(TCCheckBlock);
8366 
8367     // Save the trip count so we don't have to regenerate it in the
8368     // vec.epilog.iter.check. This is safe to do because the trip count
8369     // generated here dominates the vector epilog iter check.
8370     EPI.TripCount = Count;
8371   }
8372 
8373   ReplaceInstWithInst(
8374       TCCheckBlock->getTerminator(),
8375       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8376 
8377   return TCCheckBlock;
8378 }
8379 
8380 //===--------------------------------------------------------------------===//
8381 // EpilogueVectorizerEpilogueLoop
8382 //===--------------------------------------------------------------------===//
8383 
8384 /// This function is partially responsible for generating the control flow
8385 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8386 BasicBlock *
8387 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8388   MDNode *OrigLoopID = OrigLoop->getLoopID();
8389   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8390 
8391   // Now, compare the remaining count and if there aren't enough iterations to
8392   // execute the vectorized epilogue skip to the scalar part.
8393   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8394   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8395   LoopVectorPreHeader =
8396       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8397                  LI, nullptr, "vec.epilog.ph");
8398   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8399                                           VecEpilogueIterationCountCheck);
8400 
8401   // Adjust the control flow taking the state info from the main loop
8402   // vectorization into account.
8403   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8404          "expected this to be saved from the previous pass.");
8405   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8406       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8407 
8408   DT->changeImmediateDominator(LoopVectorPreHeader,
8409                                EPI.MainLoopIterationCountCheck);
8410 
8411   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8412       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8413 
8414   if (EPI.SCEVSafetyCheck)
8415     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8416         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8417   if (EPI.MemSafetyCheck)
8418     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8419         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8420 
8421   DT->changeImmediateDominator(
8422       VecEpilogueIterationCountCheck,
8423       VecEpilogueIterationCountCheck->getSinglePredecessor());
8424 
8425   DT->changeImmediateDominator(LoopScalarPreHeader,
8426                                EPI.EpilogueIterationCountCheck);
8427   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8428     // If there is an epilogue which must run, there's no edge from the
8429     // middle block to exit blocks  and thus no need to update the immediate
8430     // dominator of the exit blocks.
8431     DT->changeImmediateDominator(LoopExitBlock,
8432                                  EPI.EpilogueIterationCountCheck);
8433 
8434   // Keep track of bypass blocks, as they feed start values to the induction
8435   // phis in the scalar loop preheader.
8436   if (EPI.SCEVSafetyCheck)
8437     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8438   if (EPI.MemSafetyCheck)
8439     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8440   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8441 
8442   // Generate a resume induction for the vector epilogue and put it in the
8443   // vector epilogue preheader
8444   Type *IdxTy = Legal->getWidestInductionType();
8445   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8446                                          LoopVectorPreHeader->getFirstNonPHI());
8447   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8448   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8449                            EPI.MainLoopIterationCountCheck);
8450 
8451   // Generate the induction variable.
8452   OldInduction = Legal->getPrimaryInduction();
8453   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8454   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8455   Value *StartIdx = EPResumeVal;
8456   Induction =
8457       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8458                               getDebugLocFromInstOrOperands(OldInduction));
8459 
8460   // Generate induction resume values. These variables save the new starting
8461   // indexes for the scalar loop. They are used to test if there are any tail
8462   // iterations left once the vector loop has completed.
8463   // Note that when the vectorized epilogue is skipped due to iteration count
8464   // check, then the resume value for the induction variable comes from
8465   // the trip count of the main vector loop, hence passing the AdditionalBypass
8466   // argument.
8467   createInductionResumeValues(Lp, CountRoundDown,
8468                               {VecEpilogueIterationCountCheck,
8469                                EPI.VectorTripCount} /* AdditionalBypass */);
8470 
8471   AddRuntimeUnrollDisableMetaData(Lp);
8472   return completeLoopSkeleton(Lp, OrigLoopID);
8473 }
8474 
8475 BasicBlock *
8476 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8477     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8478 
8479   assert(EPI.TripCount &&
8480          "Expected trip count to have been safed in the first pass.");
8481   assert(
8482       (!isa<Instruction>(EPI.TripCount) ||
8483        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8484       "saved trip count does not dominate insertion point.");
8485   Value *TC = EPI.TripCount;
8486   IRBuilder<> Builder(Insert->getTerminator());
8487   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8488 
8489   // Generate code to check if the loop's trip count is less than VF * UF of the
8490   // vector epilogue loop.
8491   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8492       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8493 
8494   Value *CheckMinIters = Builder.CreateICmp(
8495       P, Count,
8496       ConstantInt::get(Count->getType(),
8497                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8498       "min.epilog.iters.check");
8499 
8500   ReplaceInstWithInst(
8501       Insert->getTerminator(),
8502       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8503 
8504   LoopBypassBlocks.push_back(Insert);
8505   return Insert;
8506 }
8507 
8508 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8509   LLVM_DEBUG({
8510     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8511            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8512            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8513   });
8514 }
8515 
8516 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8517   DEBUG_WITH_TYPE(VerboseDebug, {
8518     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8519   });
8520 }
8521 
8522 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8523     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8524   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8525   bool PredicateAtRangeStart = Predicate(Range.Start);
8526 
8527   for (ElementCount TmpVF = Range.Start * 2;
8528        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8529     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8530       Range.End = TmpVF;
8531       break;
8532     }
8533 
8534   return PredicateAtRangeStart;
8535 }
8536 
8537 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8538 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8539 /// of VF's starting at a given VF and extending it as much as possible. Each
8540 /// vectorization decision can potentially shorten this sub-range during
8541 /// buildVPlan().
8542 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8543                                            ElementCount MaxVF) {
8544   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8545   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8546     VFRange SubRange = {VF, MaxVFPlusOne};
8547     VPlans.push_back(buildVPlan(SubRange));
8548     VF = SubRange.End;
8549   }
8550 }
8551 
8552 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8553                                          VPlanPtr &Plan) {
8554   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8555 
8556   // Look for cached value.
8557   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8558   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8559   if (ECEntryIt != EdgeMaskCache.end())
8560     return ECEntryIt->second;
8561 
8562   VPValue *SrcMask = createBlockInMask(Src, Plan);
8563 
8564   // The terminator has to be a branch inst!
8565   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8566   assert(BI && "Unexpected terminator found");
8567 
8568   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8569     return EdgeMaskCache[Edge] = SrcMask;
8570 
8571   // If source is an exiting block, we know the exit edge is dynamically dead
8572   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8573   // adding uses of an otherwise potentially dead instruction.
8574   if (OrigLoop->isLoopExiting(Src))
8575     return EdgeMaskCache[Edge] = SrcMask;
8576 
8577   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8578   assert(EdgeMask && "No Edge Mask found for condition");
8579 
8580   if (BI->getSuccessor(0) != Dst)
8581     EdgeMask = Builder.createNot(EdgeMask);
8582 
8583   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8584     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8585     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8586     // The select version does not introduce new UB if SrcMask is false and
8587     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8588     VPValue *False = Plan->getOrAddVPValue(
8589         ConstantInt::getFalse(BI->getCondition()->getType()));
8590     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8591   }
8592 
8593   return EdgeMaskCache[Edge] = EdgeMask;
8594 }
8595 
8596 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8597   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8598 
8599   // Look for cached value.
8600   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8601   if (BCEntryIt != BlockMaskCache.end())
8602     return BCEntryIt->second;
8603 
8604   // All-one mask is modelled as no-mask following the convention for masked
8605   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8606   VPValue *BlockMask = nullptr;
8607 
8608   if (OrigLoop->getHeader() == BB) {
8609     if (!CM.blockNeedsPredication(BB))
8610       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8611 
8612     // Create the block in mask as the first non-phi instruction in the block.
8613     VPBuilder::InsertPointGuard Guard(Builder);
8614     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8615     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8616 
8617     // Introduce the early-exit compare IV <= BTC to form header block mask.
8618     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8619     // Start by constructing the desired canonical IV.
8620     VPValue *IV = nullptr;
8621     if (Legal->getPrimaryInduction())
8622       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8623     else {
8624       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8625       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8626       IV = IVRecipe->getVPSingleValue();
8627     }
8628     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8629     bool TailFolded = !CM.isScalarEpilogueAllowed();
8630 
8631     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8632       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8633       // as a second argument, we only pass the IV here and extract the
8634       // tripcount from the transform state where codegen of the VP instructions
8635       // happen.
8636       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8637     } else {
8638       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8639     }
8640     return BlockMaskCache[BB] = BlockMask;
8641   }
8642 
8643   // This is the block mask. We OR all incoming edges.
8644   for (auto *Predecessor : predecessors(BB)) {
8645     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8646     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8647       return BlockMaskCache[BB] = EdgeMask;
8648 
8649     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8650       BlockMask = EdgeMask;
8651       continue;
8652     }
8653 
8654     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8655   }
8656 
8657   return BlockMaskCache[BB] = BlockMask;
8658 }
8659 
8660 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8661                                                 ArrayRef<VPValue *> Operands,
8662                                                 VFRange &Range,
8663                                                 VPlanPtr &Plan) {
8664   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8665          "Must be called with either a load or store");
8666 
8667   auto willWiden = [&](ElementCount VF) -> bool {
8668     if (VF.isScalar())
8669       return false;
8670     LoopVectorizationCostModel::InstWidening Decision =
8671         CM.getWideningDecision(I, VF);
8672     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8673            "CM decision should be taken at this point.");
8674     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8675       return true;
8676     if (CM.isScalarAfterVectorization(I, VF) ||
8677         CM.isProfitableToScalarize(I, VF))
8678       return false;
8679     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8680   };
8681 
8682   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8683     return nullptr;
8684 
8685   VPValue *Mask = nullptr;
8686   if (Legal->isMaskRequired(I))
8687     Mask = createBlockInMask(I->getParent(), Plan);
8688 
8689   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8690     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8691 
8692   StoreInst *Store = cast<StoreInst>(I);
8693   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8694                                             Mask);
8695 }
8696 
8697 VPWidenIntOrFpInductionRecipe *
8698 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8699                                            ArrayRef<VPValue *> Operands) const {
8700   // Check if this is an integer or fp induction. If so, build the recipe that
8701   // produces its scalar and vector values.
8702   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8703   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8704       II.getKind() == InductionDescriptor::IK_FpInduction) {
8705     assert(II.getStartValue() ==
8706            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8707     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8708     return new VPWidenIntOrFpInductionRecipe(
8709         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8710   }
8711 
8712   return nullptr;
8713 }
8714 
8715 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8716     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8717     VPlan &Plan) const {
8718   // Optimize the special case where the source is a constant integer
8719   // induction variable. Notice that we can only optimize the 'trunc' case
8720   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8721   // (c) other casts depend on pointer size.
8722 
8723   // Determine whether \p K is a truncation based on an induction variable that
8724   // can be optimized.
8725   auto isOptimizableIVTruncate =
8726       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8727     return [=](ElementCount VF) -> bool {
8728       return CM.isOptimizableIVTruncate(K, VF);
8729     };
8730   };
8731 
8732   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8733           isOptimizableIVTruncate(I), Range)) {
8734 
8735     InductionDescriptor II =
8736         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8737     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8738     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8739                                              Start, nullptr, I);
8740   }
8741   return nullptr;
8742 }
8743 
8744 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8745                                                 ArrayRef<VPValue *> Operands,
8746                                                 VPlanPtr &Plan) {
8747   // If all incoming values are equal, the incoming VPValue can be used directly
8748   // instead of creating a new VPBlendRecipe.
8749   VPValue *FirstIncoming = Operands[0];
8750   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8751         return FirstIncoming == Inc;
8752       })) {
8753     return Operands[0];
8754   }
8755 
8756   // We know that all PHIs in non-header blocks are converted into selects, so
8757   // we don't have to worry about the insertion order and we can just use the
8758   // builder. At this point we generate the predication tree. There may be
8759   // duplications since this is a simple recursive scan, but future
8760   // optimizations will clean it up.
8761   SmallVector<VPValue *, 2> OperandsWithMask;
8762   unsigned NumIncoming = Phi->getNumIncomingValues();
8763 
8764   for (unsigned In = 0; In < NumIncoming; In++) {
8765     VPValue *EdgeMask =
8766       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8767     assert((EdgeMask || NumIncoming == 1) &&
8768            "Multiple predecessors with one having a full mask");
8769     OperandsWithMask.push_back(Operands[In]);
8770     if (EdgeMask)
8771       OperandsWithMask.push_back(EdgeMask);
8772   }
8773   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8774 }
8775 
8776 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8777                                                    ArrayRef<VPValue *> Operands,
8778                                                    VFRange &Range) const {
8779 
8780   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8781       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8782       Range);
8783 
8784   if (IsPredicated)
8785     return nullptr;
8786 
8787   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8788   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8789              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8790              ID == Intrinsic::pseudoprobe ||
8791              ID == Intrinsic::experimental_noalias_scope_decl))
8792     return nullptr;
8793 
8794   auto willWiden = [&](ElementCount VF) -> bool {
8795     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8796     // The following case may be scalarized depending on the VF.
8797     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8798     // version of the instruction.
8799     // Is it beneficial to perform intrinsic call compared to lib call?
8800     bool NeedToScalarize = false;
8801     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8802     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8803     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8804     return UseVectorIntrinsic || !NeedToScalarize;
8805   };
8806 
8807   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8808     return nullptr;
8809 
8810   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8811   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8812 }
8813 
8814 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8815   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8816          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8817   // Instruction should be widened, unless it is scalar after vectorization,
8818   // scalarization is profitable or it is predicated.
8819   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8820     return CM.isScalarAfterVectorization(I, VF) ||
8821            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8822   };
8823   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8824                                                              Range);
8825 }
8826 
8827 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8828                                            ArrayRef<VPValue *> Operands) const {
8829   auto IsVectorizableOpcode = [](unsigned Opcode) {
8830     switch (Opcode) {
8831     case Instruction::Add:
8832     case Instruction::And:
8833     case Instruction::AShr:
8834     case Instruction::BitCast:
8835     case Instruction::FAdd:
8836     case Instruction::FCmp:
8837     case Instruction::FDiv:
8838     case Instruction::FMul:
8839     case Instruction::FNeg:
8840     case Instruction::FPExt:
8841     case Instruction::FPToSI:
8842     case Instruction::FPToUI:
8843     case Instruction::FPTrunc:
8844     case Instruction::FRem:
8845     case Instruction::FSub:
8846     case Instruction::ICmp:
8847     case Instruction::IntToPtr:
8848     case Instruction::LShr:
8849     case Instruction::Mul:
8850     case Instruction::Or:
8851     case Instruction::PtrToInt:
8852     case Instruction::SDiv:
8853     case Instruction::Select:
8854     case Instruction::SExt:
8855     case Instruction::Shl:
8856     case Instruction::SIToFP:
8857     case Instruction::SRem:
8858     case Instruction::Sub:
8859     case Instruction::Trunc:
8860     case Instruction::UDiv:
8861     case Instruction::UIToFP:
8862     case Instruction::URem:
8863     case Instruction::Xor:
8864     case Instruction::ZExt:
8865       return true;
8866     }
8867     return false;
8868   };
8869 
8870   if (!IsVectorizableOpcode(I->getOpcode()))
8871     return nullptr;
8872 
8873   // Success: widen this instruction.
8874   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8875 }
8876 
8877 void VPRecipeBuilder::fixHeaderPhis() {
8878   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8879   for (VPWidenPHIRecipe *R : PhisToFix) {
8880     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8881     VPRecipeBase *IncR =
8882         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8883     R->addOperand(IncR->getVPSingleValue());
8884   }
8885 }
8886 
8887 VPBasicBlock *VPRecipeBuilder::handleReplication(
8888     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8889     VPlanPtr &Plan) {
8890   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8891       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8892       Range);
8893 
8894   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8895       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8896 
8897   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8898                                        IsUniform, IsPredicated);
8899   setRecipe(I, Recipe);
8900   Plan->addVPValue(I, Recipe);
8901 
8902   // Find if I uses a predicated instruction. If so, it will use its scalar
8903   // value. Avoid hoisting the insert-element which packs the scalar value into
8904   // a vector value, as that happens iff all users use the vector value.
8905   for (VPValue *Op : Recipe->operands()) {
8906     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8907     if (!PredR)
8908       continue;
8909     auto *RepR =
8910         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8911     assert(RepR->isPredicated() &&
8912            "expected Replicate recipe to be predicated");
8913     RepR->setAlsoPack(false);
8914   }
8915 
8916   // Finalize the recipe for Instr, first if it is not predicated.
8917   if (!IsPredicated) {
8918     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8919     VPBB->appendRecipe(Recipe);
8920     return VPBB;
8921   }
8922   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8923   assert(VPBB->getSuccessors().empty() &&
8924          "VPBB has successors when handling predicated replication.");
8925   // Record predicated instructions for above packing optimizations.
8926   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8927   VPBlockUtils::insertBlockAfter(Region, VPBB);
8928   auto *RegSucc = new VPBasicBlock();
8929   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8930   return RegSucc;
8931 }
8932 
8933 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8934                                                       VPRecipeBase *PredRecipe,
8935                                                       VPlanPtr &Plan) {
8936   // Instructions marked for predication are replicated and placed under an
8937   // if-then construct to prevent side-effects.
8938 
8939   // Generate recipes to compute the block mask for this region.
8940   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8941 
8942   // Build the triangular if-then region.
8943   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8944   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8945   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8946   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8947   auto *PHIRecipe = Instr->getType()->isVoidTy()
8948                         ? nullptr
8949                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8950   if (PHIRecipe) {
8951     Plan->removeVPValueFor(Instr);
8952     Plan->addVPValue(Instr, PHIRecipe);
8953   }
8954   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8955   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8956   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8957 
8958   // Note: first set Entry as region entry and then connect successors starting
8959   // from it in order, to propagate the "parent" of each VPBasicBlock.
8960   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8961   VPBlockUtils::connectBlocks(Pred, Exit);
8962 
8963   return Region;
8964 }
8965 
8966 VPRecipeOrVPValueTy
8967 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8968                                         ArrayRef<VPValue *> Operands,
8969                                         VFRange &Range, VPlanPtr &Plan) {
8970   // First, check for specific widening recipes that deal with calls, memory
8971   // operations, inductions and Phi nodes.
8972   if (auto *CI = dyn_cast<CallInst>(Instr))
8973     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8974 
8975   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8976     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8977 
8978   VPRecipeBase *Recipe;
8979   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8980     if (Phi->getParent() != OrigLoop->getHeader())
8981       return tryToBlend(Phi, Operands, Plan);
8982     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
8983       return toVPRecipeResult(Recipe);
8984 
8985     VPWidenPHIRecipe *PhiRecipe = nullptr;
8986     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8987       VPValue *StartV = Operands[0];
8988       if (Legal->isReductionVariable(Phi)) {
8989         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
8990         assert(RdxDesc.getRecurrenceStartValue() ==
8991                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8992         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8993                                              CM.isInLoopReduction(Phi),
8994                                              CM.useOrderedReductions(RdxDesc));
8995       } else {
8996         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8997       }
8998 
8999       // Record the incoming value from the backedge, so we can add the incoming
9000       // value from the backedge after all recipes have been created.
9001       recordRecipeOf(cast<Instruction>(
9002           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9003       PhisToFix.push_back(PhiRecipe);
9004     } else {
9005       // TODO: record start and backedge value for remaining pointer induction
9006       // phis.
9007       assert(Phi->getType()->isPointerTy() &&
9008              "only pointer phis should be handled here");
9009       PhiRecipe = new VPWidenPHIRecipe(Phi);
9010     }
9011 
9012     return toVPRecipeResult(PhiRecipe);
9013   }
9014 
9015   if (isa<TruncInst>(Instr) &&
9016       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9017                                                Range, *Plan)))
9018     return toVPRecipeResult(Recipe);
9019 
9020   if (!shouldWiden(Instr, Range))
9021     return nullptr;
9022 
9023   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9024     return toVPRecipeResult(new VPWidenGEPRecipe(
9025         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9026 
9027   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9028     bool InvariantCond =
9029         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9030     return toVPRecipeResult(new VPWidenSelectRecipe(
9031         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9032   }
9033 
9034   return toVPRecipeResult(tryToWiden(Instr, Operands));
9035 }
9036 
9037 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9038                                                         ElementCount MaxVF) {
9039   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9040 
9041   // Collect instructions from the original loop that will become trivially dead
9042   // in the vectorized loop. We don't need to vectorize these instructions. For
9043   // example, original induction update instructions can become dead because we
9044   // separately emit induction "steps" when generating code for the new loop.
9045   // Similarly, we create a new latch condition when setting up the structure
9046   // of the new loop, so the old one can become dead.
9047   SmallPtrSet<Instruction *, 4> DeadInstructions;
9048   collectTriviallyDeadInstructions(DeadInstructions);
9049 
9050   // Add assume instructions we need to drop to DeadInstructions, to prevent
9051   // them from being added to the VPlan.
9052   // TODO: We only need to drop assumes in blocks that get flattend. If the
9053   // control flow is preserved, we should keep them.
9054   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9055   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9056 
9057   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9058   // Dead instructions do not need sinking. Remove them from SinkAfter.
9059   for (Instruction *I : DeadInstructions)
9060     SinkAfter.erase(I);
9061 
9062   // Cannot sink instructions after dead instructions (there won't be any
9063   // recipes for them). Instead, find the first non-dead previous instruction.
9064   for (auto &P : Legal->getSinkAfter()) {
9065     Instruction *SinkTarget = P.second;
9066     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9067     (void)FirstInst;
9068     while (DeadInstructions.contains(SinkTarget)) {
9069       assert(
9070           SinkTarget != FirstInst &&
9071           "Must find a live instruction (at least the one feeding the "
9072           "first-order recurrence PHI) before reaching beginning of the block");
9073       SinkTarget = SinkTarget->getPrevNode();
9074       assert(SinkTarget != P.first &&
9075              "sink source equals target, no sinking required");
9076     }
9077     P.second = SinkTarget;
9078   }
9079 
9080   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9081   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9082     VFRange SubRange = {VF, MaxVFPlusOne};
9083     VPlans.push_back(
9084         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9085     VF = SubRange.End;
9086   }
9087 }
9088 
9089 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9090     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9091     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9092 
9093   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9094 
9095   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9096 
9097   // ---------------------------------------------------------------------------
9098   // Pre-construction: record ingredients whose recipes we'll need to further
9099   // process after constructing the initial VPlan.
9100   // ---------------------------------------------------------------------------
9101 
9102   // Mark instructions we'll need to sink later and their targets as
9103   // ingredients whose recipe we'll need to record.
9104   for (auto &Entry : SinkAfter) {
9105     RecipeBuilder.recordRecipeOf(Entry.first);
9106     RecipeBuilder.recordRecipeOf(Entry.second);
9107   }
9108   for (auto &Reduction : CM.getInLoopReductionChains()) {
9109     PHINode *Phi = Reduction.first;
9110     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9111     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9112 
9113     RecipeBuilder.recordRecipeOf(Phi);
9114     for (auto &R : ReductionOperations) {
9115       RecipeBuilder.recordRecipeOf(R);
9116       // For min/max reducitons, where we have a pair of icmp/select, we also
9117       // need to record the ICmp recipe, so it can be removed later.
9118       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9119         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9120     }
9121   }
9122 
9123   // For each interleave group which is relevant for this (possibly trimmed)
9124   // Range, add it to the set of groups to be later applied to the VPlan and add
9125   // placeholders for its members' Recipes which we'll be replacing with a
9126   // single VPInterleaveRecipe.
9127   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9128     auto applyIG = [IG, this](ElementCount VF) -> bool {
9129       return (VF.isVector() && // Query is illegal for VF == 1
9130               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9131                   LoopVectorizationCostModel::CM_Interleave);
9132     };
9133     if (!getDecisionAndClampRange(applyIG, Range))
9134       continue;
9135     InterleaveGroups.insert(IG);
9136     for (unsigned i = 0; i < IG->getFactor(); i++)
9137       if (Instruction *Member = IG->getMember(i))
9138         RecipeBuilder.recordRecipeOf(Member);
9139   };
9140 
9141   // ---------------------------------------------------------------------------
9142   // Build initial VPlan: Scan the body of the loop in a topological order to
9143   // visit each basic block after having visited its predecessor basic blocks.
9144   // ---------------------------------------------------------------------------
9145 
9146   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9147   auto Plan = std::make_unique<VPlan>();
9148   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9149   Plan->setEntry(VPBB);
9150 
9151   // Scan the body of the loop in a topological order to visit each basic block
9152   // after having visited its predecessor basic blocks.
9153   LoopBlocksDFS DFS(OrigLoop);
9154   DFS.perform(LI);
9155 
9156   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9157     // Relevant instructions from basic block BB will be grouped into VPRecipe
9158     // ingredients and fill a new VPBasicBlock.
9159     unsigned VPBBsForBB = 0;
9160     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9161     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9162     VPBB = FirstVPBBForBB;
9163     Builder.setInsertPoint(VPBB);
9164 
9165     // Introduce each ingredient into VPlan.
9166     // TODO: Model and preserve debug instrinsics in VPlan.
9167     for (Instruction &I : BB->instructionsWithoutDebug()) {
9168       Instruction *Instr = &I;
9169 
9170       // First filter out irrelevant instructions, to ensure no recipes are
9171       // built for them.
9172       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9173         continue;
9174 
9175       SmallVector<VPValue *, 4> Operands;
9176       auto *Phi = dyn_cast<PHINode>(Instr);
9177       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9178         Operands.push_back(Plan->getOrAddVPValue(
9179             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9180       } else {
9181         auto OpRange = Plan->mapToVPValues(Instr->operands());
9182         Operands = {OpRange.begin(), OpRange.end()};
9183       }
9184       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9185               Instr, Operands, Range, Plan)) {
9186         // If Instr can be simplified to an existing VPValue, use it.
9187         if (RecipeOrValue.is<VPValue *>()) {
9188           auto *VPV = RecipeOrValue.get<VPValue *>();
9189           Plan->addVPValue(Instr, VPV);
9190           // If the re-used value is a recipe, register the recipe for the
9191           // instruction, in case the recipe for Instr needs to be recorded.
9192           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9193             RecipeBuilder.setRecipe(Instr, R);
9194           continue;
9195         }
9196         // Otherwise, add the new recipe.
9197         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9198         for (auto *Def : Recipe->definedValues()) {
9199           auto *UV = Def->getUnderlyingValue();
9200           Plan->addVPValue(UV, Def);
9201         }
9202 
9203         RecipeBuilder.setRecipe(Instr, Recipe);
9204         VPBB->appendRecipe(Recipe);
9205         continue;
9206       }
9207 
9208       // Otherwise, if all widening options failed, Instruction is to be
9209       // replicated. This may create a successor for VPBB.
9210       VPBasicBlock *NextVPBB =
9211           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9212       if (NextVPBB != VPBB) {
9213         VPBB = NextVPBB;
9214         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9215                                     : "");
9216       }
9217     }
9218   }
9219 
9220   RecipeBuilder.fixHeaderPhis();
9221 
9222   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9223   // may also be empty, such as the last one VPBB, reflecting original
9224   // basic-blocks with no recipes.
9225   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9226   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9227   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9228   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9229   delete PreEntry;
9230 
9231   // ---------------------------------------------------------------------------
9232   // Transform initial VPlan: Apply previously taken decisions, in order, to
9233   // bring the VPlan to its final state.
9234   // ---------------------------------------------------------------------------
9235 
9236   // Apply Sink-After legal constraints.
9237   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9238     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9239     if (Region && Region->isReplicator()) {
9240       assert(Region->getNumSuccessors() == 1 &&
9241              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9242       assert(R->getParent()->size() == 1 &&
9243              "A recipe in an original replicator region must be the only "
9244              "recipe in its block");
9245       return Region;
9246     }
9247     return nullptr;
9248   };
9249   for (auto &Entry : SinkAfter) {
9250     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9251     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9252 
9253     auto *TargetRegion = GetReplicateRegion(Target);
9254     auto *SinkRegion = GetReplicateRegion(Sink);
9255     if (!SinkRegion) {
9256       // If the sink source is not a replicate region, sink the recipe directly.
9257       if (TargetRegion) {
9258         // The target is in a replication region, make sure to move Sink to
9259         // the block after it, not into the replication region itself.
9260         VPBasicBlock *NextBlock =
9261             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9262         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9263       } else
9264         Sink->moveAfter(Target);
9265       continue;
9266     }
9267 
9268     // The sink source is in a replicate region. Unhook the region from the CFG.
9269     auto *SinkPred = SinkRegion->getSinglePredecessor();
9270     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9271     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9272     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9273     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9274 
9275     if (TargetRegion) {
9276       // The target recipe is also in a replicate region, move the sink region
9277       // after the target region.
9278       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9279       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9280       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9281       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9282     } else {
9283       // The sink source is in a replicate region, we need to move the whole
9284       // replicate region, which should only contain a single recipe in the
9285       // main block.
9286       auto *SplitBlock =
9287           Target->getParent()->splitAt(std::next(Target->getIterator()));
9288 
9289       auto *SplitPred = SplitBlock->getSinglePredecessor();
9290 
9291       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9292       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9293       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9294       if (VPBB == SplitPred)
9295         VPBB = SplitBlock;
9296     }
9297   }
9298 
9299   // Introduce a recipe to combine the incoming and previous values of a
9300   // first-order recurrence.
9301   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9302     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9303     if (!RecurPhi)
9304       continue;
9305 
9306     auto *RecurSplice = cast<VPInstruction>(
9307         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9308                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9309 
9310     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9311     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9312       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9313       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9314     } else
9315       RecurSplice->moveAfter(PrevRecipe);
9316     RecurPhi->replaceAllUsesWith(RecurSplice);
9317     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9318     // all users.
9319     RecurSplice->setOperand(0, RecurPhi);
9320   }
9321 
9322   // Interleave memory: for each Interleave Group we marked earlier as relevant
9323   // for this VPlan, replace the Recipes widening its memory instructions with a
9324   // single VPInterleaveRecipe at its insertion point.
9325   for (auto IG : InterleaveGroups) {
9326     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9327         RecipeBuilder.getRecipe(IG->getInsertPos()));
9328     SmallVector<VPValue *, 4> StoredValues;
9329     for (unsigned i = 0; i < IG->getFactor(); ++i)
9330       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i)))
9331         StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0)));
9332 
9333     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9334                                         Recipe->getMask());
9335     VPIG->insertBefore(Recipe);
9336     unsigned J = 0;
9337     for (unsigned i = 0; i < IG->getFactor(); ++i)
9338       if (Instruction *Member = IG->getMember(i)) {
9339         if (!Member->getType()->isVoidTy()) {
9340           VPValue *OriginalV = Plan->getVPValue(Member);
9341           Plan->removeVPValueFor(Member);
9342           Plan->addVPValue(Member, VPIG->getVPValue(J));
9343           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9344           J++;
9345         }
9346         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9347       }
9348   }
9349 
9350   // Adjust the recipes for any inloop reductions.
9351   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9352 
9353   // Finally, if tail is folded by masking, introduce selects between the phi
9354   // and the live-out instruction of each reduction, at the end of the latch.
9355   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9356     Builder.setInsertPoint(VPBB);
9357     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9358     for (auto &Reduction : Legal->getReductionVars()) {
9359       if (CM.isInLoopReduction(Reduction.first))
9360         continue;
9361       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9362       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9363       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9364     }
9365   }
9366 
9367   VPlanTransforms::sinkScalarOperands(*Plan);
9368   VPlanTransforms::mergeReplicateRegions(*Plan);
9369 
9370   std::string PlanName;
9371   raw_string_ostream RSO(PlanName);
9372   ElementCount VF = Range.Start;
9373   Plan->addVF(VF);
9374   RSO << "Initial VPlan for VF={" << VF;
9375   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9376     Plan->addVF(VF);
9377     RSO << "," << VF;
9378   }
9379   RSO << "},UF>=1";
9380   RSO.flush();
9381   Plan->setName(PlanName);
9382 
9383   return Plan;
9384 }
9385 
9386 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9387   // Outer loop handling: They may require CFG and instruction level
9388   // transformations before even evaluating whether vectorization is profitable.
9389   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9390   // the vectorization pipeline.
9391   assert(!OrigLoop->isInnermost());
9392   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9393 
9394   // Create new empty VPlan
9395   auto Plan = std::make_unique<VPlan>();
9396 
9397   // Build hierarchical CFG
9398   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9399   HCFGBuilder.buildHierarchicalCFG();
9400 
9401   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9402        VF *= 2)
9403     Plan->addVF(VF);
9404 
9405   if (EnableVPlanPredication) {
9406     VPlanPredicator VPP(*Plan);
9407     VPP.predicate();
9408 
9409     // Avoid running transformation to recipes until masked code generation in
9410     // VPlan-native path is in place.
9411     return Plan;
9412   }
9413 
9414   SmallPtrSet<Instruction *, 1> DeadInstructions;
9415   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9416                                              Legal->getInductionVars(),
9417                                              DeadInstructions, *PSE.getSE());
9418   return Plan;
9419 }
9420 
9421 // Adjust the recipes for any inloop reductions. The chain of instructions
9422 // leading from the loop exit instr to the phi need to be converted to
9423 // reductions, with one operand being vector and the other being the scalar
9424 // reduction chain.
9425 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9426     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9427   for (auto &Reduction : CM.getInLoopReductionChains()) {
9428     PHINode *Phi = Reduction.first;
9429     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9430     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9431 
9432     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9433       continue;
9434 
9435     // ReductionOperations are orders top-down from the phi's use to the
9436     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9437     // which of the two operands will remain scalar and which will be reduced.
9438     // For minmax the chain will be the select instructions.
9439     Instruction *Chain = Phi;
9440     for (Instruction *R : ReductionOperations) {
9441       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9442       RecurKind Kind = RdxDesc.getRecurrenceKind();
9443 
9444       VPValue *ChainOp = Plan->getVPValue(Chain);
9445       unsigned FirstOpId;
9446       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9447         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9448                "Expected to replace a VPWidenSelectSC");
9449         FirstOpId = 1;
9450       } else {
9451         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9452                "Expected to replace a VPWidenSC");
9453         FirstOpId = 0;
9454       }
9455       unsigned VecOpId =
9456           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9457       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9458 
9459       auto *CondOp = CM.foldTailByMasking()
9460                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9461                          : nullptr;
9462       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9463           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9464       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9465       Plan->removeVPValueFor(R);
9466       Plan->addVPValue(R, RedRecipe);
9467       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9468       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9469       WidenRecipe->eraseFromParent();
9470 
9471       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9472         VPRecipeBase *CompareRecipe =
9473             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9474         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9475                "Expected to replace a VPWidenSC");
9476         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9477                "Expected no remaining users");
9478         CompareRecipe->eraseFromParent();
9479       }
9480       Chain = R;
9481     }
9482   }
9483 }
9484 
9485 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9486 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9487                                VPSlotTracker &SlotTracker) const {
9488   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9489   IG->getInsertPos()->printAsOperand(O, false);
9490   O << ", ";
9491   getAddr()->printAsOperand(O, SlotTracker);
9492   VPValue *Mask = getMask();
9493   if (Mask) {
9494     O << ", ";
9495     Mask->printAsOperand(O, SlotTracker);
9496   }
9497   for (unsigned i = 0; i < IG->getFactor(); ++i)
9498     if (Instruction *I = IG->getMember(i))
9499       O << "\n" << Indent << "  " << VPlanIngredient(I) << " " << i;
9500 }
9501 #endif
9502 
9503 void VPWidenCallRecipe::execute(VPTransformState &State) {
9504   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9505                                   *this, State);
9506 }
9507 
9508 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9509   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9510                                     this, *this, InvariantCond, State);
9511 }
9512 
9513 void VPWidenRecipe::execute(VPTransformState &State) {
9514   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9515 }
9516 
9517 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9518   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9519                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9520                       IsIndexLoopInvariant, State);
9521 }
9522 
9523 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9524   assert(!State.Instance && "Int or FP induction being replicated.");
9525   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9526                                    getTruncInst(), getVPValue(0),
9527                                    getCastValue(), State);
9528 }
9529 
9530 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9531   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9532                                  State);
9533 }
9534 
9535 void VPBlendRecipe::execute(VPTransformState &State) {
9536   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9537   // We know that all PHIs in non-header blocks are converted into
9538   // selects, so we don't have to worry about the insertion order and we
9539   // can just use the builder.
9540   // At this point we generate the predication tree. There may be
9541   // duplications since this is a simple recursive scan, but future
9542   // optimizations will clean it up.
9543 
9544   unsigned NumIncoming = getNumIncomingValues();
9545 
9546   // Generate a sequence of selects of the form:
9547   // SELECT(Mask3, In3,
9548   //        SELECT(Mask2, In2,
9549   //               SELECT(Mask1, In1,
9550   //                      In0)))
9551   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9552   // are essentially undef are taken from In0.
9553   InnerLoopVectorizer::VectorParts Entry(State.UF);
9554   for (unsigned In = 0; In < NumIncoming; ++In) {
9555     for (unsigned Part = 0; Part < State.UF; ++Part) {
9556       // We might have single edge PHIs (blocks) - use an identity
9557       // 'select' for the first PHI operand.
9558       Value *In0 = State.get(getIncomingValue(In), Part);
9559       if (In == 0)
9560         Entry[Part] = In0; // Initialize with the first incoming value.
9561       else {
9562         // Select between the current value and the previous incoming edge
9563         // based on the incoming mask.
9564         Value *Cond = State.get(getMask(In), Part);
9565         Entry[Part] =
9566             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9567       }
9568     }
9569   }
9570   for (unsigned Part = 0; Part < State.UF; ++Part)
9571     State.set(this, Entry[Part], Part);
9572 }
9573 
9574 void VPInterleaveRecipe::execute(VPTransformState &State) {
9575   assert(!State.Instance && "Interleave group being replicated.");
9576   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9577                                       getStoredValues(), getMask());
9578 }
9579 
9580 void VPReductionRecipe::execute(VPTransformState &State) {
9581   assert(!State.Instance && "Reduction being replicated.");
9582   Value *PrevInChain = State.get(getChainOp(), 0);
9583   for (unsigned Part = 0; Part < State.UF; ++Part) {
9584     RecurKind Kind = RdxDesc->getRecurrenceKind();
9585     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9586     Value *NewVecOp = State.get(getVecOp(), Part);
9587     if (VPValue *Cond = getCondOp()) {
9588       Value *NewCond = State.get(Cond, Part);
9589       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9590       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9591           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9592       Constant *IdenVec =
9593           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9594       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9595       NewVecOp = Select;
9596     }
9597     Value *NewRed;
9598     Value *NextInChain;
9599     if (IsOrdered) {
9600       if (State.VF.isVector())
9601         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9602                                         PrevInChain);
9603       else
9604         NewRed = State.Builder.CreateBinOp(
9605             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9606             PrevInChain, NewVecOp);
9607       PrevInChain = NewRed;
9608     } else {
9609       PrevInChain = State.get(getChainOp(), Part);
9610       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9611     }
9612     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9613       NextInChain =
9614           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9615                          NewRed, PrevInChain);
9616     } else if (IsOrdered)
9617       NextInChain = NewRed;
9618     else {
9619       NextInChain = State.Builder.CreateBinOp(
9620           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9621           PrevInChain);
9622     }
9623     State.set(this, NextInChain, Part);
9624   }
9625 }
9626 
9627 void VPReplicateRecipe::execute(VPTransformState &State) {
9628   if (State.Instance) { // Generate a single instance.
9629     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9630     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9631                                     *State.Instance, IsPredicated, State);
9632     // Insert scalar instance packing it into a vector.
9633     if (AlsoPack && State.VF.isVector()) {
9634       // If we're constructing lane 0, initialize to start from poison.
9635       if (State.Instance->Lane.isFirstLane()) {
9636         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9637         Value *Poison = PoisonValue::get(
9638             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9639         State.set(this, Poison, State.Instance->Part);
9640       }
9641       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9642     }
9643     return;
9644   }
9645 
9646   // Generate scalar instances for all VF lanes of all UF parts, unless the
9647   // instruction is uniform inwhich case generate only the first lane for each
9648   // of the UF parts.
9649   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9650   assert((!State.VF.isScalable() || IsUniform) &&
9651          "Can't scalarize a scalable vector");
9652   for (unsigned Part = 0; Part < State.UF; ++Part)
9653     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9654       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9655                                       VPIteration(Part, Lane), IsPredicated,
9656                                       State);
9657 }
9658 
9659 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9660   assert(State.Instance && "Branch on Mask works only on single instance.");
9661 
9662   unsigned Part = State.Instance->Part;
9663   unsigned Lane = State.Instance->Lane.getKnownLane();
9664 
9665   Value *ConditionBit = nullptr;
9666   VPValue *BlockInMask = getMask();
9667   if (BlockInMask) {
9668     ConditionBit = State.get(BlockInMask, Part);
9669     if (ConditionBit->getType()->isVectorTy())
9670       ConditionBit = State.Builder.CreateExtractElement(
9671           ConditionBit, State.Builder.getInt32(Lane));
9672   } else // Block in mask is all-one.
9673     ConditionBit = State.Builder.getTrue();
9674 
9675   // Replace the temporary unreachable terminator with a new conditional branch,
9676   // whose two destinations will be set later when they are created.
9677   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9678   assert(isa<UnreachableInst>(CurrentTerminator) &&
9679          "Expected to replace unreachable terminator with conditional branch.");
9680   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9681   CondBr->setSuccessor(0, nullptr);
9682   ReplaceInstWithInst(CurrentTerminator, CondBr);
9683 }
9684 
9685 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9686   assert(State.Instance && "Predicated instruction PHI works per instance.");
9687   Instruction *ScalarPredInst =
9688       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9689   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9690   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9691   assert(PredicatingBB && "Predicated block has no single predecessor.");
9692   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9693          "operand must be VPReplicateRecipe");
9694 
9695   // By current pack/unpack logic we need to generate only a single phi node: if
9696   // a vector value for the predicated instruction exists at this point it means
9697   // the instruction has vector users only, and a phi for the vector value is
9698   // needed. In this case the recipe of the predicated instruction is marked to
9699   // also do that packing, thereby "hoisting" the insert-element sequence.
9700   // Otherwise, a phi node for the scalar value is needed.
9701   unsigned Part = State.Instance->Part;
9702   if (State.hasVectorValue(getOperand(0), Part)) {
9703     Value *VectorValue = State.get(getOperand(0), Part);
9704     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9705     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9706     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9707     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9708     if (State.hasVectorValue(this, Part))
9709       State.reset(this, VPhi, Part);
9710     else
9711       State.set(this, VPhi, Part);
9712     // NOTE: Currently we need to update the value of the operand, so the next
9713     // predicated iteration inserts its generated value in the correct vector.
9714     State.reset(getOperand(0), VPhi, Part);
9715   } else {
9716     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9717     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9718     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9719                      PredicatingBB);
9720     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9721     if (State.hasScalarValue(this, *State.Instance))
9722       State.reset(this, Phi, *State.Instance);
9723     else
9724       State.set(this, Phi, *State.Instance);
9725     // NOTE: Currently we need to update the value of the operand, so the next
9726     // predicated iteration inserts its generated value in the correct vector.
9727     State.reset(getOperand(0), Phi, *State.Instance);
9728   }
9729 }
9730 
9731 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9732   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9733   State.ILV->vectorizeMemoryInstruction(
9734       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9735       StoredValue, getMask());
9736 }
9737 
9738 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9739 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9740 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9741 // for predication.
9742 static ScalarEpilogueLowering getScalarEpilogueLowering(
9743     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9744     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9745     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9746     LoopVectorizationLegality &LVL) {
9747   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9748   // don't look at hints or options, and don't request a scalar epilogue.
9749   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9750   // LoopAccessInfo (due to code dependency and not being able to reliably get
9751   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9752   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9753   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9754   // back to the old way and vectorize with versioning when forced. See D81345.)
9755   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9756                                                       PGSOQueryType::IRPass) &&
9757                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9758     return CM_ScalarEpilogueNotAllowedOptSize;
9759 
9760   // 2) If set, obey the directives
9761   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9762     switch (PreferPredicateOverEpilogue) {
9763     case PreferPredicateTy::ScalarEpilogue:
9764       return CM_ScalarEpilogueAllowed;
9765     case PreferPredicateTy::PredicateElseScalarEpilogue:
9766       return CM_ScalarEpilogueNotNeededUsePredicate;
9767     case PreferPredicateTy::PredicateOrDontVectorize:
9768       return CM_ScalarEpilogueNotAllowedUsePredicate;
9769     };
9770   }
9771 
9772   // 3) If set, obey the hints
9773   switch (Hints.getPredicate()) {
9774   case LoopVectorizeHints::FK_Enabled:
9775     return CM_ScalarEpilogueNotNeededUsePredicate;
9776   case LoopVectorizeHints::FK_Disabled:
9777     return CM_ScalarEpilogueAllowed;
9778   };
9779 
9780   // 4) if the TTI hook indicates this is profitable, request predication.
9781   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9782                                        LVL.getLAI()))
9783     return CM_ScalarEpilogueNotNeededUsePredicate;
9784 
9785   return CM_ScalarEpilogueAllowed;
9786 }
9787 
9788 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9789   // If Values have been set for this Def return the one relevant for \p Part.
9790   if (hasVectorValue(Def, Part))
9791     return Data.PerPartOutput[Def][Part];
9792 
9793   if (!hasScalarValue(Def, {Part, 0})) {
9794     Value *IRV = Def->getLiveInIRValue();
9795     Value *B = ILV->getBroadcastInstrs(IRV);
9796     set(Def, B, Part);
9797     return B;
9798   }
9799 
9800   Value *ScalarValue = get(Def, {Part, 0});
9801   // If we aren't vectorizing, we can just copy the scalar map values over
9802   // to the vector map.
9803   if (VF.isScalar()) {
9804     set(Def, ScalarValue, Part);
9805     return ScalarValue;
9806   }
9807 
9808   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9809   bool IsUniform = RepR && RepR->isUniform();
9810 
9811   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9812   // Check if there is a scalar value for the selected lane.
9813   if (!hasScalarValue(Def, {Part, LastLane})) {
9814     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9815     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9816            "unexpected recipe found to be invariant");
9817     IsUniform = true;
9818     LastLane = 0;
9819   }
9820 
9821   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9822   // Set the insert point after the last scalarized instruction or after the
9823   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9824   // will directly follow the scalar definitions.
9825   auto OldIP = Builder.saveIP();
9826   auto NewIP =
9827       isa<PHINode>(LastInst)
9828           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9829           : std::next(BasicBlock::iterator(LastInst));
9830   Builder.SetInsertPoint(&*NewIP);
9831 
9832   // However, if we are vectorizing, we need to construct the vector values.
9833   // If the value is known to be uniform after vectorization, we can just
9834   // broadcast the scalar value corresponding to lane zero for each unroll
9835   // iteration. Otherwise, we construct the vector values using
9836   // insertelement instructions. Since the resulting vectors are stored in
9837   // State, we will only generate the insertelements once.
9838   Value *VectorValue = nullptr;
9839   if (IsUniform) {
9840     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9841     set(Def, VectorValue, Part);
9842   } else {
9843     // Initialize packing with insertelements to start from undef.
9844     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9845     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9846     set(Def, Undef, Part);
9847     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9848       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9849     VectorValue = get(Def, Part);
9850   }
9851   Builder.restoreIP(OldIP);
9852   return VectorValue;
9853 }
9854 
9855 // Process the loop in the VPlan-native vectorization path. This path builds
9856 // VPlan upfront in the vectorization pipeline, which allows to apply
9857 // VPlan-to-VPlan transformations from the very beginning without modifying the
9858 // input LLVM IR.
9859 static bool processLoopInVPlanNativePath(
9860     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9861     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9862     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9863     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9864     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9865     LoopVectorizationRequirements &Requirements) {
9866 
9867   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9868     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9869     return false;
9870   }
9871   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9872   Function *F = L->getHeader()->getParent();
9873   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9874 
9875   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9876       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9877 
9878   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9879                                 &Hints, IAI);
9880   // Use the planner for outer loop vectorization.
9881   // TODO: CM is not used at this point inside the planner. Turn CM into an
9882   // optional argument if we don't need it in the future.
9883   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9884                                Requirements, ORE);
9885 
9886   // Get user vectorization factor.
9887   ElementCount UserVF = Hints.getWidth();
9888 
9889   CM.collectElementTypesForWidening();
9890 
9891   // Plan how to best vectorize, return the best VF and its cost.
9892   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9893 
9894   // If we are stress testing VPlan builds, do not attempt to generate vector
9895   // code. Masked vector code generation support will follow soon.
9896   // Also, do not attempt to vectorize if no vector code will be produced.
9897   if (VPlanBuildStressTest || EnableVPlanPredication ||
9898       VectorizationFactor::Disabled() == VF)
9899     return false;
9900 
9901   LVP.setBestPlan(VF.Width, 1);
9902 
9903   {
9904     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9905                              F->getParent()->getDataLayout());
9906     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9907                            &CM, BFI, PSI, Checks);
9908     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9909                       << L->getHeader()->getParent()->getName() << "\"\n");
9910     LVP.executePlan(LB, DT);
9911   }
9912 
9913   // Mark the loop as already vectorized to avoid vectorizing again.
9914   Hints.setAlreadyVectorized();
9915   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9916   return true;
9917 }
9918 
9919 // Emit a remark if there are stores to floats that required a floating point
9920 // extension. If the vectorized loop was generated with floating point there
9921 // will be a performance penalty from the conversion overhead and the change in
9922 // the vector width.
9923 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9924   SmallVector<Instruction *, 4> Worklist;
9925   for (BasicBlock *BB : L->getBlocks()) {
9926     for (Instruction &Inst : *BB) {
9927       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9928         if (S->getValueOperand()->getType()->isFloatTy())
9929           Worklist.push_back(S);
9930       }
9931     }
9932   }
9933 
9934   // Traverse the floating point stores upwards searching, for floating point
9935   // conversions.
9936   SmallPtrSet<const Instruction *, 4> Visited;
9937   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9938   while (!Worklist.empty()) {
9939     auto *I = Worklist.pop_back_val();
9940     if (!L->contains(I))
9941       continue;
9942     if (!Visited.insert(I).second)
9943       continue;
9944 
9945     // Emit a remark if the floating point store required a floating
9946     // point conversion.
9947     // TODO: More work could be done to identify the root cause such as a
9948     // constant or a function return type and point the user to it.
9949     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9950       ORE->emit([&]() {
9951         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9952                                           I->getDebugLoc(), L->getHeader())
9953                << "floating point conversion changes vector width. "
9954                << "Mixed floating point precision requires an up/down "
9955                << "cast that will negatively impact performance.";
9956       });
9957 
9958     for (Use &Op : I->operands())
9959       if (auto *OpI = dyn_cast<Instruction>(Op))
9960         Worklist.push_back(OpI);
9961   }
9962 }
9963 
9964 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
9965     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
9966                                !EnableLoopInterleaving),
9967       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
9968                               !EnableLoopVectorization) {}
9969 
9970 bool LoopVectorizePass::processLoop(Loop *L) {
9971   assert((EnableVPlanNativePath || L->isInnermost()) &&
9972          "VPlan-native path is not enabled. Only process inner loops.");
9973 
9974 #ifndef NDEBUG
9975   const std::string DebugLocStr = getDebugLocString(L);
9976 #endif /* NDEBUG */
9977 
9978   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
9979                     << L->getHeader()->getParent()->getName() << "\" from "
9980                     << DebugLocStr << "\n");
9981 
9982   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
9983 
9984   LLVM_DEBUG(
9985       dbgs() << "LV: Loop hints:"
9986              << " force="
9987              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
9988                      ? "disabled"
9989                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
9990                             ? "enabled"
9991                             : "?"))
9992              << " width=" << Hints.getWidth()
9993              << " interleave=" << Hints.getInterleave() << "\n");
9994 
9995   // Function containing loop
9996   Function *F = L->getHeader()->getParent();
9997 
9998   // Looking at the diagnostic output is the only way to determine if a loop
9999   // was vectorized (other than looking at the IR or machine code), so it
10000   // is important to generate an optimization remark for each loop. Most of
10001   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10002   // generated as OptimizationRemark and OptimizationRemarkMissed are
10003   // less verbose reporting vectorized loops and unvectorized loops that may
10004   // benefit from vectorization, respectively.
10005 
10006   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10007     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10008     return false;
10009   }
10010 
10011   PredicatedScalarEvolution PSE(*SE, *L);
10012 
10013   // Check if it is legal to vectorize the loop.
10014   LoopVectorizationRequirements Requirements;
10015   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10016                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10017   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10018     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10019     Hints.emitRemarkWithHints();
10020     return false;
10021   }
10022 
10023   // Check the function attributes and profiles to find out if this function
10024   // should be optimized for size.
10025   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10026       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10027 
10028   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10029   // here. They may require CFG and instruction level transformations before
10030   // even evaluating whether vectorization is profitable. Since we cannot modify
10031   // the incoming IR, we need to build VPlan upfront in the vectorization
10032   // pipeline.
10033   if (!L->isInnermost())
10034     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10035                                         ORE, BFI, PSI, Hints, Requirements);
10036 
10037   assert(L->isInnermost() && "Inner loop expected.");
10038 
10039   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10040   // count by optimizing for size, to minimize overheads.
10041   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10042   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10043     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10044                       << "This loop is worth vectorizing only if no scalar "
10045                       << "iteration overheads are incurred.");
10046     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10047       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10048     else {
10049       LLVM_DEBUG(dbgs() << "\n");
10050       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10051     }
10052   }
10053 
10054   // Check the function attributes to see if implicit floats are allowed.
10055   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10056   // an integer loop and the vector instructions selected are purely integer
10057   // vector instructions?
10058   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10059     reportVectorizationFailure(
10060         "Can't vectorize when the NoImplicitFloat attribute is used",
10061         "loop not vectorized due to NoImplicitFloat attribute",
10062         "NoImplicitFloat", ORE, L);
10063     Hints.emitRemarkWithHints();
10064     return false;
10065   }
10066 
10067   // Check if the target supports potentially unsafe FP vectorization.
10068   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10069   // for the target we're vectorizing for, to make sure none of the
10070   // additional fp-math flags can help.
10071   if (Hints.isPotentiallyUnsafe() &&
10072       TTI->isFPVectorizationPotentiallyUnsafe()) {
10073     reportVectorizationFailure(
10074         "Potentially unsafe FP op prevents vectorization",
10075         "loop not vectorized due to unsafe FP support.",
10076         "UnsafeFP", ORE, L);
10077     Hints.emitRemarkWithHints();
10078     return false;
10079   }
10080 
10081   if (!LVL.canVectorizeFPMath(EnableStrictReductions)) {
10082     ORE->emit([&]() {
10083       auto *ExactFPMathInst = Requirements.getExactFPInst();
10084       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10085                                                  ExactFPMathInst->getDebugLoc(),
10086                                                  ExactFPMathInst->getParent())
10087              << "loop not vectorized: cannot prove it is safe to reorder "
10088                 "floating-point operations";
10089     });
10090     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10091                          "reorder floating-point operations\n");
10092     Hints.emitRemarkWithHints();
10093     return false;
10094   }
10095 
10096   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10097   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10098 
10099   // If an override option has been passed in for interleaved accesses, use it.
10100   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10101     UseInterleaved = EnableInterleavedMemAccesses;
10102 
10103   // Analyze interleaved memory accesses.
10104   if (UseInterleaved) {
10105     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10106   }
10107 
10108   // Use the cost model.
10109   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10110                                 F, &Hints, IAI);
10111   CM.collectValuesToIgnore();
10112   CM.collectElementTypesForWidening();
10113 
10114   // Use the planner for vectorization.
10115   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10116                                Requirements, ORE);
10117 
10118   // Get user vectorization factor and interleave count.
10119   ElementCount UserVF = Hints.getWidth();
10120   unsigned UserIC = Hints.getInterleave();
10121 
10122   // Plan how to best vectorize, return the best VF and its cost.
10123   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10124 
10125   VectorizationFactor VF = VectorizationFactor::Disabled();
10126   unsigned IC = 1;
10127 
10128   if (MaybeVF) {
10129     VF = *MaybeVF;
10130     // Select the interleave count.
10131     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10132   }
10133 
10134   // Identify the diagnostic messages that should be produced.
10135   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10136   bool VectorizeLoop = true, InterleaveLoop = true;
10137   if (VF.Width.isScalar()) {
10138     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10139     VecDiagMsg = std::make_pair(
10140         "VectorizationNotBeneficial",
10141         "the cost-model indicates that vectorization is not beneficial");
10142     VectorizeLoop = false;
10143   }
10144 
10145   if (!MaybeVF && UserIC > 1) {
10146     // Tell the user interleaving was avoided up-front, despite being explicitly
10147     // requested.
10148     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10149                          "interleaving should be avoided up front\n");
10150     IntDiagMsg = std::make_pair(
10151         "InterleavingAvoided",
10152         "Ignoring UserIC, because interleaving was avoided up front");
10153     InterleaveLoop = false;
10154   } else if (IC == 1 && UserIC <= 1) {
10155     // Tell the user interleaving is not beneficial.
10156     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10157     IntDiagMsg = std::make_pair(
10158         "InterleavingNotBeneficial",
10159         "the cost-model indicates that interleaving is not beneficial");
10160     InterleaveLoop = false;
10161     if (UserIC == 1) {
10162       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10163       IntDiagMsg.second +=
10164           " and is explicitly disabled or interleave count is set to 1";
10165     }
10166   } else if (IC > 1 && UserIC == 1) {
10167     // Tell the user interleaving is beneficial, but it explicitly disabled.
10168     LLVM_DEBUG(
10169         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10170     IntDiagMsg = std::make_pair(
10171         "InterleavingBeneficialButDisabled",
10172         "the cost-model indicates that interleaving is beneficial "
10173         "but is explicitly disabled or interleave count is set to 1");
10174     InterleaveLoop = false;
10175   }
10176 
10177   // Override IC if user provided an interleave count.
10178   IC = UserIC > 0 ? UserIC : IC;
10179 
10180   // Emit diagnostic messages, if any.
10181   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10182   if (!VectorizeLoop && !InterleaveLoop) {
10183     // Do not vectorize or interleaving the loop.
10184     ORE->emit([&]() {
10185       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10186                                       L->getStartLoc(), L->getHeader())
10187              << VecDiagMsg.second;
10188     });
10189     ORE->emit([&]() {
10190       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10191                                       L->getStartLoc(), L->getHeader())
10192              << IntDiagMsg.second;
10193     });
10194     return false;
10195   } else if (!VectorizeLoop && InterleaveLoop) {
10196     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10197     ORE->emit([&]() {
10198       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10199                                         L->getStartLoc(), L->getHeader())
10200              << VecDiagMsg.second;
10201     });
10202   } else if (VectorizeLoop && !InterleaveLoop) {
10203     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10204                       << ") in " << DebugLocStr << '\n');
10205     ORE->emit([&]() {
10206       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10207                                         L->getStartLoc(), L->getHeader())
10208              << IntDiagMsg.second;
10209     });
10210   } else if (VectorizeLoop && InterleaveLoop) {
10211     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10212                       << ") in " << DebugLocStr << '\n');
10213     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10214   }
10215 
10216   bool DisableRuntimeUnroll = false;
10217   MDNode *OrigLoopID = L->getLoopID();
10218   {
10219     // Optimistically generate runtime checks. Drop them if they turn out to not
10220     // be profitable. Limit the scope of Checks, so the cleanup happens
10221     // immediately after vector codegeneration is done.
10222     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10223                              F->getParent()->getDataLayout());
10224     if (!VF.Width.isScalar() || IC > 1)
10225       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10226     LVP.setBestPlan(VF.Width, IC);
10227 
10228     using namespace ore;
10229     if (!VectorizeLoop) {
10230       assert(IC > 1 && "interleave count should not be 1 or 0");
10231       // If we decided that it is not legal to vectorize the loop, then
10232       // interleave it.
10233       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10234                                  &CM, BFI, PSI, Checks);
10235       LVP.executePlan(Unroller, DT);
10236 
10237       ORE->emit([&]() {
10238         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10239                                   L->getHeader())
10240                << "interleaved loop (interleaved count: "
10241                << NV("InterleaveCount", IC) << ")";
10242       });
10243     } else {
10244       // If we decided that it is *legal* to vectorize the loop, then do it.
10245 
10246       // Consider vectorizing the epilogue too if it's profitable.
10247       VectorizationFactor EpilogueVF =
10248           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10249       if (EpilogueVF.Width.isVector()) {
10250 
10251         // The first pass vectorizes the main loop and creates a scalar epilogue
10252         // to be vectorized by executing the plan (potentially with a different
10253         // factor) again shortly afterwards.
10254         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10255                                           EpilogueVF.Width.getKnownMinValue(),
10256                                           1);
10257         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10258                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10259 
10260         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10261         LVP.executePlan(MainILV, DT);
10262         ++LoopsVectorized;
10263 
10264         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10265         formLCSSARecursively(*L, *DT, LI, SE);
10266 
10267         // Second pass vectorizes the epilogue and adjusts the control flow
10268         // edges from the first pass.
10269         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10270         EPI.MainLoopVF = EPI.EpilogueVF;
10271         EPI.MainLoopUF = EPI.EpilogueUF;
10272         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10273                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10274                                                  Checks);
10275         LVP.executePlan(EpilogILV, DT);
10276         ++LoopsEpilogueVectorized;
10277 
10278         if (!MainILV.areSafetyChecksAdded())
10279           DisableRuntimeUnroll = true;
10280       } else {
10281         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10282                                &LVL, &CM, BFI, PSI, Checks);
10283         LVP.executePlan(LB, DT);
10284         ++LoopsVectorized;
10285 
10286         // Add metadata to disable runtime unrolling a scalar loop when there
10287         // are no runtime checks about strides and memory. A scalar loop that is
10288         // rarely used is not worth unrolling.
10289         if (!LB.areSafetyChecksAdded())
10290           DisableRuntimeUnroll = true;
10291       }
10292       // Report the vectorization decision.
10293       ORE->emit([&]() {
10294         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10295                                   L->getHeader())
10296                << "vectorized loop (vectorization width: "
10297                << NV("VectorizationFactor", VF.Width)
10298                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10299       });
10300     }
10301 
10302     if (ORE->allowExtraAnalysis(LV_NAME))
10303       checkMixedPrecision(L, ORE);
10304   }
10305 
10306   Optional<MDNode *> RemainderLoopID =
10307       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10308                                       LLVMLoopVectorizeFollowupEpilogue});
10309   if (RemainderLoopID.hasValue()) {
10310     L->setLoopID(RemainderLoopID.getValue());
10311   } else {
10312     if (DisableRuntimeUnroll)
10313       AddRuntimeUnrollDisableMetaData(L);
10314 
10315     // Mark the loop as already vectorized to avoid vectorizing again.
10316     Hints.setAlreadyVectorized();
10317   }
10318 
10319   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10320   return true;
10321 }
10322 
10323 LoopVectorizeResult LoopVectorizePass::runImpl(
10324     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10325     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10326     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10327     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10328     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10329   SE = &SE_;
10330   LI = &LI_;
10331   TTI = &TTI_;
10332   DT = &DT_;
10333   BFI = &BFI_;
10334   TLI = TLI_;
10335   AA = &AA_;
10336   AC = &AC_;
10337   GetLAA = &GetLAA_;
10338   DB = &DB_;
10339   ORE = &ORE_;
10340   PSI = PSI_;
10341 
10342   // Don't attempt if
10343   // 1. the target claims to have no vector registers, and
10344   // 2. interleaving won't help ILP.
10345   //
10346   // The second condition is necessary because, even if the target has no
10347   // vector registers, loop vectorization may still enable scalar
10348   // interleaving.
10349   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10350       TTI->getMaxInterleaveFactor(1) < 2)
10351     return LoopVectorizeResult(false, false);
10352 
10353   bool Changed = false, CFGChanged = false;
10354 
10355   // The vectorizer requires loops to be in simplified form.
10356   // Since simplification may add new inner loops, it has to run before the
10357   // legality and profitability checks. This means running the loop vectorizer
10358   // will simplify all loops, regardless of whether anything end up being
10359   // vectorized.
10360   for (auto &L : *LI)
10361     Changed |= CFGChanged |=
10362         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10363 
10364   // Build up a worklist of inner-loops to vectorize. This is necessary as
10365   // the act of vectorizing or partially unrolling a loop creates new loops
10366   // and can invalidate iterators across the loops.
10367   SmallVector<Loop *, 8> Worklist;
10368 
10369   for (Loop *L : *LI)
10370     collectSupportedLoops(*L, LI, ORE, Worklist);
10371 
10372   LoopsAnalyzed += Worklist.size();
10373 
10374   // Now walk the identified inner loops.
10375   while (!Worklist.empty()) {
10376     Loop *L = Worklist.pop_back_val();
10377 
10378     // For the inner loops we actually process, form LCSSA to simplify the
10379     // transform.
10380     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10381 
10382     Changed |= CFGChanged |= processLoop(L);
10383   }
10384 
10385   // Process each loop nest in the function.
10386   return LoopVectorizeResult(Changed, CFGChanged);
10387 }
10388 
10389 PreservedAnalyses LoopVectorizePass::run(Function &F,
10390                                          FunctionAnalysisManager &AM) {
10391     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10392     auto &LI = AM.getResult<LoopAnalysis>(F);
10393     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10394     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10395     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10396     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10397     auto &AA = AM.getResult<AAManager>(F);
10398     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10399     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10400     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10401     MemorySSA *MSSA = EnableMSSALoopDependency
10402                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10403                           : nullptr;
10404 
10405     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10406     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10407         [&](Loop &L) -> const LoopAccessInfo & {
10408       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10409                                         TLI, TTI, nullptr, MSSA};
10410       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10411     };
10412     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10413     ProfileSummaryInfo *PSI =
10414         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10415     LoopVectorizeResult Result =
10416         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10417     if (!Result.MadeAnyChange)
10418       return PreservedAnalyses::all();
10419     PreservedAnalyses PA;
10420 
10421     // We currently do not preserve loopinfo/dominator analyses with outer loop
10422     // vectorization. Until this is addressed, mark these analyses as preserved
10423     // only for non-VPlan-native path.
10424     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10425     if (!EnableVPlanNativePath) {
10426       PA.preserve<LoopAnalysis>();
10427       PA.preserve<DominatorTreeAnalysis>();
10428     }
10429     if (!Result.MadeCFGChange)
10430       PA.preserveSet<CFGAnalyses>();
10431     return PA;
10432 }
10433