1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask, 548 bool ConsecutiveStride, bool Reverse); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Create the exit value of first order recurrences in the middle block and 594 /// update their users. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Create code for the loop exit value of the reduction. 598 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value * 624 getStepVector(Value *Val, Value *StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The unique ExitBlock of the scalar loop if one exists. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector( 893 Value *Val, Value *StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 914 ElementCount EVF, unsigned EUF) 915 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 916 assert(EUF == 1 && 917 "A high UF for the epilogue loop is likely not beneficial."); 918 } 919 }; 920 921 /// An extension of the inner loop vectorizer that creates a skeleton for a 922 /// vectorized loop that has its epilogue (residual) also vectorized. 923 /// The idea is to run the vplan on a given loop twice, firstly to setup the 924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 925 /// from the first step and vectorize the epilogue. This is achieved by 926 /// deriving two concrete strategy classes from this base class and invoking 927 /// them in succession from the loop vectorizer planner. 928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 929 public: 930 InnerLoopAndEpilogueVectorizer( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 940 Checks), 941 EPI(EPI) {} 942 943 // Override this function to handle the more complex control flow around the 944 // three loops. 945 BasicBlock *createVectorizedLoopSkeleton() final override { 946 return createEpilogueVectorizedLoopSkeleton(); 947 } 948 949 /// The interface for creating a vectorized skeleton using one of two 950 /// different strategies, each corresponding to one execution of the vplan 951 /// as described above. 952 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 953 954 /// Holds and updates state information required to vectorize the main loop 955 /// and its epilogue in two separate passes. This setup helps us avoid 956 /// regenerating and recomputing runtime safety checks. It also helps us to 957 /// shorten the iteration-count-check path length for the cases where the 958 /// iteration count of the loop is so small that the main vector loop is 959 /// completely skipped. 960 EpilogueLoopVectorizationInfo &EPI; 961 }; 962 963 /// A specialized derived class of inner loop vectorizer that performs 964 /// vectorization of *main* loops in the process of vectorizing loops and their 965 /// epilogues. 966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 967 public: 968 EpilogueVectorizerMainLoop( 969 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 970 DominatorTree *DT, const TargetLibraryInfo *TLI, 971 const TargetTransformInfo *TTI, AssumptionCache *AC, 972 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 973 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 GeneratedRTChecks &Check) 976 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 977 EPI, LVL, CM, BFI, PSI, Check) {} 978 /// Implements the interface for creating a vectorized skeleton using the 979 /// *main loop* strategy (ie the first pass of vplan execution). 980 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 981 982 protected: 983 /// Emits an iteration count bypass check once for the main loop (when \p 984 /// ForEpilogue is false) and once for the epilogue loop (when \p 985 /// ForEpilogue is true). 986 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 987 bool ForEpilogue); 988 void printDebugTracesAtStart() override; 989 void printDebugTracesAtEnd() override; 990 }; 991 992 // A specialized derived class of inner loop vectorizer that performs 993 // vectorization of *epilogue* loops in the process of vectorizing loops and 994 // their epilogues. 995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 996 public: 997 EpilogueVectorizerEpilogueLoop( 998 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 999 DominatorTree *DT, const TargetLibraryInfo *TLI, 1000 const TargetTransformInfo *TTI, AssumptionCache *AC, 1001 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1002 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1003 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1004 GeneratedRTChecks &Checks) 1005 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1006 EPI, LVL, CM, BFI, PSI, Checks) {} 1007 /// Implements the interface for creating a vectorized skeleton using the 1008 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1009 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1010 1011 protected: 1012 /// Emits an iteration count bypass check after the main vector loop has 1013 /// finished to see if there are any iterations left to execute by either 1014 /// the vector epilogue or the scalar epilogue. 1015 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1016 BasicBlock *Bypass, 1017 BasicBlock *Insert); 1018 void printDebugTracesAtStart() override; 1019 void printDebugTracesAtEnd() override; 1020 }; 1021 } // end namespace llvm 1022 1023 /// Look for a meaningful debug location on the instruction or it's 1024 /// operands. 1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1026 if (!I) 1027 return I; 1028 1029 DebugLoc Empty; 1030 if (I->getDebugLoc() != Empty) 1031 return I; 1032 1033 for (Use &Op : I->operands()) { 1034 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1035 if (OpInst->getDebugLoc() != Empty) 1036 return OpInst; 1037 } 1038 1039 return I; 1040 } 1041 1042 void InnerLoopVectorizer::setDebugLocFromInst( 1043 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1044 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1045 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1046 const DILocation *DIL = Inst->getDebugLoc(); 1047 1048 // When a FSDiscriminator is enabled, we don't need to add the multiply 1049 // factors to the discriminators. 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1052 // FIXME: For scalable vectors, assume vscale=1. 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B->SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } else 1062 B->SetCurrentDebugLocation(DIL); 1063 } else 1064 B->SetCurrentDebugLocation(DebugLoc()); 1065 } 1066 1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1068 /// is passed, the message relates to that particular instruction. 1069 #ifndef NDEBUG 1070 static void debugVectorizationMessage(const StringRef Prefix, 1071 const StringRef DebugMsg, 1072 Instruction *I) { 1073 dbgs() << "LV: " << Prefix << DebugMsg; 1074 if (I != nullptr) 1075 dbgs() << " " << *I; 1076 else 1077 dbgs() << '.'; 1078 dbgs() << '\n'; 1079 } 1080 #endif 1081 1082 /// Create an analysis remark that explains why vectorization failed 1083 /// 1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1085 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1086 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1087 /// the location of the remark. \return the remark object that can be 1088 /// streamed to. 1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1090 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1091 Value *CodeRegion = TheLoop->getHeader(); 1092 DebugLoc DL = TheLoop->getStartLoc(); 1093 1094 if (I) { 1095 CodeRegion = I->getParent(); 1096 // If there is no debug location attached to the instruction, revert back to 1097 // using the loop's. 1098 if (I->getDebugLoc()) 1099 DL = I->getDebugLoc(); 1100 } 1101 1102 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1103 } 1104 1105 /// Return a value for Step multiplied by VF. 1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1107 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1108 Constant *StepVal = ConstantInt::get( 1109 Step->getType(), 1110 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1111 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1112 } 1113 1114 namespace llvm { 1115 1116 /// Return the runtime value for VF. 1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1118 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1119 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1120 } 1121 1122 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1123 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1124 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1125 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1126 return B.CreateSIToFP(RuntimeVF, FTy); 1127 } 1128 1129 void reportVectorizationFailure(const StringRef DebugMsg, 1130 const StringRef OREMsg, const StringRef ORETag, 1131 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1132 Instruction *I) { 1133 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1134 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1135 ORE->emit( 1136 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1137 << "loop not vectorized: " << OREMsg); 1138 } 1139 1140 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1141 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1142 Instruction *I) { 1143 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1144 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1145 ORE->emit( 1146 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1147 << Msg); 1148 } 1149 1150 } // end namespace llvm 1151 1152 #ifndef NDEBUG 1153 /// \return string containing a file name and a line # for the given loop. 1154 static std::string getDebugLocString(const Loop *L) { 1155 std::string Result; 1156 if (L) { 1157 raw_string_ostream OS(Result); 1158 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1159 LoopDbgLoc.print(OS); 1160 else 1161 // Just print the module name. 1162 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1163 OS.flush(); 1164 } 1165 return Result; 1166 } 1167 #endif 1168 1169 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1170 const Instruction *Orig) { 1171 // If the loop was versioned with memchecks, add the corresponding no-alias 1172 // metadata. 1173 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1174 LVer->annotateInstWithNoAlias(To, Orig); 1175 } 1176 1177 void InnerLoopVectorizer::addMetadata(Instruction *To, 1178 Instruction *From) { 1179 propagateMetadata(To, From); 1180 addNewMetadata(To, From); 1181 } 1182 1183 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1184 Instruction *From) { 1185 for (Value *V : To) { 1186 if (Instruction *I = dyn_cast<Instruction>(V)) 1187 addMetadata(I, From); 1188 } 1189 } 1190 1191 namespace llvm { 1192 1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1194 // lowered. 1195 enum ScalarEpilogueLowering { 1196 1197 // The default: allowing scalar epilogues. 1198 CM_ScalarEpilogueAllowed, 1199 1200 // Vectorization with OptForSize: don't allow epilogues. 1201 CM_ScalarEpilogueNotAllowedOptSize, 1202 1203 // A special case of vectorisation with OptForSize: loops with a very small 1204 // trip count are considered for vectorization under OptForSize, thereby 1205 // making sure the cost of their loop body is dominant, free of runtime 1206 // guards and scalar iteration overheads. 1207 CM_ScalarEpilogueNotAllowedLowTripLoop, 1208 1209 // Loop hint predicate indicating an epilogue is undesired. 1210 CM_ScalarEpilogueNotNeededUsePredicate, 1211 1212 // Directive indicating we must either tail fold or not vectorize 1213 CM_ScalarEpilogueNotAllowedUsePredicate 1214 }; 1215 1216 /// ElementCountComparator creates a total ordering for ElementCount 1217 /// for the purposes of using it in a set structure. 1218 struct ElementCountComparator { 1219 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1220 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1221 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1222 } 1223 }; 1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1225 1226 /// LoopVectorizationCostModel - estimates the expected speedups due to 1227 /// vectorization. 1228 /// In many cases vectorization is not profitable. This can happen because of 1229 /// a number of reasons. In this class we mainly attempt to predict the 1230 /// expected speedup/slowdowns due to the supported instruction set. We use the 1231 /// TargetTransformInfo to query the different backends for the cost of 1232 /// different operations. 1233 class LoopVectorizationCostModel { 1234 public: 1235 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1236 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1237 LoopVectorizationLegality *Legal, 1238 const TargetTransformInfo &TTI, 1239 const TargetLibraryInfo *TLI, DemandedBits *DB, 1240 AssumptionCache *AC, 1241 OptimizationRemarkEmitter *ORE, const Function *F, 1242 const LoopVectorizeHints *Hints, 1243 InterleavedAccessInfo &IAI) 1244 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1245 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1246 Hints(Hints), InterleaveInfo(IAI) {} 1247 1248 /// \return An upper bound for the vectorization factors (both fixed and 1249 /// scalable). If the factors are 0, vectorization and interleaving should be 1250 /// avoided up front. 1251 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1252 1253 /// \return True if runtime checks are required for vectorization, and false 1254 /// otherwise. 1255 bool runtimeChecksRequired(); 1256 1257 /// \return The most profitable vectorization factor and the cost of that VF. 1258 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1259 /// then this vectorization factor will be selected if vectorization is 1260 /// possible. 1261 VectorizationFactor 1262 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1263 1264 VectorizationFactor 1265 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1266 const LoopVectorizationPlanner &LVP); 1267 1268 /// Setup cost-based decisions for user vectorization factor. 1269 /// \return true if the UserVF is a feasible VF to be chosen. 1270 bool selectUserVectorizationFactor(ElementCount UserVF) { 1271 collectUniformsAndScalars(UserVF); 1272 collectInstsToScalarize(UserVF); 1273 return expectedCost(UserVF).first.isValid(); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Collect all element types in the loop for which widening is needed. 1316 void collectElementTypesForWidening(); 1317 1318 /// Split reductions into those that happen in the loop, and those that happen 1319 /// outside. In loop reductions are collected into InLoopReductionChains. 1320 void collectInLoopReductions(); 1321 1322 /// Returns true if we should use strict in-order reductions for the given 1323 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1324 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1325 /// of FP operations. 1326 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1327 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1328 } 1329 1330 /// \returns The smallest bitwidth each instruction can be represented with. 1331 /// The vector equivalents of these instructions should be truncated to this 1332 /// type. 1333 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1334 return MinBWs; 1335 } 1336 1337 /// \returns True if it is more profitable to scalarize instruction \p I for 1338 /// vectorization factor \p VF. 1339 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1340 assert(VF.isVector() && 1341 "Profitable to scalarize relevant only for VF > 1."); 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto Scalars = InstsToScalarize.find(VF); 1349 assert(Scalars != InstsToScalarize.end() && 1350 "VF not yet analyzed for scalarization profitability"); 1351 return Scalars->second.find(I) != Scalars->second.end(); 1352 } 1353 1354 /// Returns true if \p I is known to be uniform after vectorization. 1355 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1356 if (VF.isScalar()) 1357 return true; 1358 1359 // Cost model is not run in the VPlan-native path - return conservative 1360 // result until this changes. 1361 if (EnableVPlanNativePath) 1362 return false; 1363 1364 auto UniformsPerVF = Uniforms.find(VF); 1365 assert(UniformsPerVF != Uniforms.end() && 1366 "VF not yet analyzed for uniformity"); 1367 return UniformsPerVF->second.count(I); 1368 } 1369 1370 /// Returns true if \p I is known to be scalar after vectorization. 1371 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1372 if (VF.isScalar()) 1373 return true; 1374 1375 // Cost model is not run in the VPlan-native path - return conservative 1376 // result until this changes. 1377 if (EnableVPlanNativePath) 1378 return false; 1379 1380 auto ScalarsPerVF = Scalars.find(VF); 1381 assert(ScalarsPerVF != Scalars.end() && 1382 "Scalar values are not calculated for VF"); 1383 return ScalarsPerVF->second.count(I); 1384 } 1385 1386 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1387 /// for vectorization factor \p VF. 1388 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1389 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1390 !isProfitableToScalarize(I, VF) && 1391 !isScalarAfterVectorization(I, VF); 1392 } 1393 1394 /// Decision that was taken during cost calculation for memory instruction. 1395 enum InstWidening { 1396 CM_Unknown, 1397 CM_Widen, // For consecutive accesses with stride +1. 1398 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1399 CM_Interleave, 1400 CM_GatherScatter, 1401 CM_Scalarize 1402 }; 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// instruction \p I and vector width \p VF. 1406 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1407 InstructionCost Cost) { 1408 assert(VF.isVector() && "Expected VF >=2"); 1409 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1410 } 1411 1412 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1413 /// interleaving group \p Grp and vector width \p VF. 1414 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1415 ElementCount VF, InstWidening W, 1416 InstructionCost Cost) { 1417 assert(VF.isVector() && "Expected VF >=2"); 1418 /// Broadcast this decicion to all instructions inside the group. 1419 /// But the cost will be assigned to one instruction only. 1420 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1421 if (auto *I = Grp->getMember(i)) { 1422 if (Grp->getInsertPos() == I) 1423 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1424 else 1425 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1426 } 1427 } 1428 } 1429 1430 /// Return the cost model decision for the given instruction \p I and vector 1431 /// width \p VF. Return CM_Unknown if this instruction did not pass 1432 /// through the cost modeling. 1433 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1434 assert(VF.isVector() && "Expected VF to be a vector VF"); 1435 // Cost model is not run in the VPlan-native path - return conservative 1436 // result until this changes. 1437 if (EnableVPlanNativePath) 1438 return CM_GatherScatter; 1439 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 auto Itr = WideningDecisions.find(InstOnVF); 1442 if (Itr == WideningDecisions.end()) 1443 return CM_Unknown; 1444 return Itr->second.first; 1445 } 1446 1447 /// Return the vectorization cost for the given instruction \p I and vector 1448 /// width \p VF. 1449 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1450 assert(VF.isVector() && "Expected VF >=2"); 1451 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1452 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1453 "The cost is not calculated"); 1454 return WideningDecisions[InstOnVF].second; 1455 } 1456 1457 /// Return True if instruction \p I is an optimizable truncate whose operand 1458 /// is an induction variable. Such a truncate will be removed by adding a new 1459 /// induction variable with the destination type. 1460 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1461 // If the instruction is not a truncate, return false. 1462 auto *Trunc = dyn_cast<TruncInst>(I); 1463 if (!Trunc) 1464 return false; 1465 1466 // Get the source and destination types of the truncate. 1467 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1468 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1469 1470 // If the truncate is free for the given types, return false. Replacing a 1471 // free truncate with an induction variable would add an induction variable 1472 // update instruction to each iteration of the loop. We exclude from this 1473 // check the primary induction variable since it will need an update 1474 // instruction regardless. 1475 Value *Op = Trunc->getOperand(0); 1476 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1477 return false; 1478 1479 // If the truncated value is not an induction variable, return false. 1480 return Legal->isInductionPhi(Op); 1481 } 1482 1483 /// Collects the instructions to scalarize for each predicated instruction in 1484 /// the loop. 1485 void collectInstsToScalarize(ElementCount VF); 1486 1487 /// Collect Uniform and Scalar values for the given \p VF. 1488 /// The sets depend on CM decision for Load/Store instructions 1489 /// that may be vectorized as interleave, gather-scatter or scalarized. 1490 void collectUniformsAndScalars(ElementCount VF) { 1491 // Do the analysis once. 1492 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1493 return; 1494 setCostBasedWideningDecision(VF); 1495 collectLoopUniforms(VF); 1496 collectLoopScalars(VF); 1497 } 1498 1499 /// Returns true if the target machine supports masked store operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedStore(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine supports masked load operation 1507 /// for the given \p DataType and kind of access to \p Ptr. 1508 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1509 return Legal->isConsecutivePtr(DataType, Ptr) && 1510 TTI.isLegalMaskedLoad(DataType, Alignment); 1511 } 1512 1513 /// Returns true if the target machine can represent \p V as a masked gather 1514 /// or scatter operation. 1515 bool isLegalGatherOrScatter(Value *V) { 1516 bool LI = isa<LoadInst>(V); 1517 bool SI = isa<StoreInst>(V); 1518 if (!LI && !SI) 1519 return false; 1520 auto *Ty = getLoadStoreType(V); 1521 Align Align = getLoadStoreAlignment(V); 1522 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1523 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1524 } 1525 1526 /// Returns true if the target machine supports all of the reduction 1527 /// variables found for the given VF. 1528 bool canVectorizeReductions(ElementCount VF) const { 1529 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1530 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1531 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1532 })); 1533 } 1534 1535 /// Returns true if \p I is an instruction that will be scalarized with 1536 /// predication. Such instructions include conditional stores and 1537 /// instructions that may divide by zero. 1538 /// If a non-zero VF has been calculated, we check if I will be scalarized 1539 /// predication for that VF. 1540 bool isScalarWithPredication(Instruction *I) const; 1541 1542 // Returns true if \p I is an instruction that will be predicated either 1543 // through scalar predication or masked load/store or masked gather/scatter. 1544 // Superset of instructions that return true for isScalarWithPredication. 1545 bool isPredicatedInst(Instruction *I) { 1546 if (!blockNeedsPredication(I->getParent())) 1547 return false; 1548 // Loads and stores that need some form of masked operation are predicated 1549 // instructions. 1550 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1551 return Legal->isMaskRequired(I); 1552 return isScalarWithPredication(I); 1553 } 1554 1555 /// Returns true if \p I is a memory instruction with consecutive memory 1556 /// access that can be widened. 1557 bool 1558 memoryInstructionCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Returns true if \p I is a memory instruction in an interleaved-group 1562 /// of memory accesses that can be vectorized with wide vector loads/stores 1563 /// and shuffles. 1564 bool 1565 interleavedAccessCanBeWidened(Instruction *I, 1566 ElementCount VF = ElementCount::getFixed(1)); 1567 1568 /// Check if \p Instr belongs to any interleaved access group. 1569 bool isAccessInterleaved(Instruction *Instr) { 1570 return InterleaveInfo.isInterleaved(Instr); 1571 } 1572 1573 /// Get the interleaved access group that \p Instr belongs to. 1574 const InterleaveGroup<Instruction> * 1575 getInterleavedAccessGroup(Instruction *Instr) { 1576 return InterleaveInfo.getInterleaveGroup(Instr); 1577 } 1578 1579 /// Returns true if we're required to use a scalar epilogue for at least 1580 /// the final iteration of the original loop. 1581 bool requiresScalarEpilogue(ElementCount VF) const { 1582 if (!isScalarEpilogueAllowed()) 1583 return false; 1584 // If we might exit from anywhere but the latch, must run the exiting 1585 // iteration in scalar form. 1586 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1587 return true; 1588 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1589 } 1590 1591 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1592 /// loop hint annotation. 1593 bool isScalarEpilogueAllowed() const { 1594 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1595 } 1596 1597 /// Returns true if all loop blocks should be masked to fold tail loop. 1598 bool foldTailByMasking() const { return FoldTailByMasking; } 1599 1600 bool blockNeedsPredication(BasicBlock *BB) const { 1601 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1602 } 1603 1604 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1605 /// nodes to the chain of instructions representing the reductions. Uses a 1606 /// MapVector to ensure deterministic iteration order. 1607 using ReductionChainMap = 1608 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1609 1610 /// Return the chain of instructions representing an inloop reduction. 1611 const ReductionChainMap &getInLoopReductionChains() const { 1612 return InLoopReductionChains; 1613 } 1614 1615 /// Returns true if the Phi is part of an inloop reduction. 1616 bool isInLoopReduction(PHINode *Phi) const { 1617 return InLoopReductionChains.count(Phi); 1618 } 1619 1620 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1621 /// with factor VF. Return the cost of the instruction, including 1622 /// scalarization overhead if it's needed. 1623 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1624 1625 /// Estimate cost of a call instruction CI if it were vectorized with factor 1626 /// VF. Return the cost of the instruction, including scalarization overhead 1627 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1628 /// scalarized - 1629 /// i.e. either vector version isn't available, or is too expensive. 1630 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1631 bool &NeedToScalarize) const; 1632 1633 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1634 /// that of B. 1635 bool isMoreProfitable(const VectorizationFactor &A, 1636 const VectorizationFactor &B) const; 1637 1638 /// Invalidates decisions already taken by the cost model. 1639 void invalidateCostModelingDecisions() { 1640 WideningDecisions.clear(); 1641 Uniforms.clear(); 1642 Scalars.clear(); 1643 } 1644 1645 private: 1646 unsigned NumPredStores = 0; 1647 1648 /// \return An upper bound for the vectorization factors for both 1649 /// fixed and scalable vectorization, where the minimum-known number of 1650 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1651 /// disabled or unsupported, then the scalable part will be equal to 1652 /// ElementCount::getScalable(0). 1653 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1654 ElementCount UserVF); 1655 1656 /// \return the maximized element count based on the targets vector 1657 /// registers and the loop trip-count, but limited to a maximum safe VF. 1658 /// This is a helper function of computeFeasibleMaxVF. 1659 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1660 /// issue that occurred on one of the buildbots which cannot be reproduced 1661 /// without having access to the properietary compiler (see comments on 1662 /// D98509). The issue is currently under investigation and this workaround 1663 /// will be removed as soon as possible. 1664 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1665 unsigned SmallestType, 1666 unsigned WidestType, 1667 const ElementCount &MaxSafeVF); 1668 1669 /// \return the maximum legal scalable VF, based on the safe max number 1670 /// of elements. 1671 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1672 1673 /// The vectorization cost is a combination of the cost itself and a boolean 1674 /// indicating whether any of the contributing operations will actually 1675 /// operate on vector values after type legalization in the backend. If this 1676 /// latter value is false, then all operations will be scalarized (i.e. no 1677 /// vectorization has actually taken place). 1678 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1679 1680 /// Returns the expected execution cost. The unit of the cost does 1681 /// not matter because we use the 'cost' units to compare different 1682 /// vector widths. The cost that is returned is *not* normalized by 1683 /// the factor width. If \p Invalid is not nullptr, this function 1684 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1685 /// each instruction that has an Invalid cost for the given VF. 1686 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1687 VectorizationCostTy 1688 expectedCost(ElementCount VF, 1689 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1690 1691 /// Returns the execution time cost of an instruction for a given vector 1692 /// width. Vector width of one means scalar. 1693 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost-computation logic from getInstructionCost which provides 1696 /// the vector type as an output parameter. 1697 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1698 Type *&VectorTy); 1699 1700 /// Return the cost of instructions in an inloop reduction pattern, if I is 1701 /// part of that pattern. 1702 Optional<InstructionCost> 1703 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1704 TTI::TargetCostKind CostKind); 1705 1706 /// Calculate vectorization cost of memory instruction \p I. 1707 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1708 1709 /// The cost computation for scalarized memory instruction. 1710 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1711 1712 /// The cost computation for interleaving group of memory instructions. 1713 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost computation for Gather/Scatter instruction. 1716 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost computation for widening instruction \p I with consecutive 1719 /// memory access. 1720 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1721 1722 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1723 /// Load: scalar load + broadcast. 1724 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1725 /// element) 1726 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1727 1728 /// Estimate the overhead of scalarizing an instruction. This is a 1729 /// convenience wrapper for the type-based getScalarizationOverhead API. 1730 InstructionCost getScalarizationOverhead(Instruction *I, 1731 ElementCount VF) const; 1732 1733 /// Returns whether the instruction is a load or store and will be a emitted 1734 /// as a vector operation. 1735 bool isConsecutiveLoadOrStore(Instruction *I); 1736 1737 /// Returns true if an artificially high cost for emulated masked memrefs 1738 /// should be used. 1739 bool useEmulatedMaskMemRefHack(Instruction *I); 1740 1741 /// Map of scalar integer values to the smallest bitwidth they can be legally 1742 /// represented as. The vector equivalents of these values should be truncated 1743 /// to this type. 1744 MapVector<Instruction *, uint64_t> MinBWs; 1745 1746 /// A type representing the costs for instructions if they were to be 1747 /// scalarized rather than vectorized. The entries are Instruction-Cost 1748 /// pairs. 1749 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1750 1751 /// A set containing all BasicBlocks that are known to present after 1752 /// vectorization as a predicated block. 1753 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1754 1755 /// Records whether it is allowed to have the original scalar loop execute at 1756 /// least once. This may be needed as a fallback loop in case runtime 1757 /// aliasing/dependence checks fail, or to handle the tail/remainder 1758 /// iterations when the trip count is unknown or doesn't divide by the VF, 1759 /// or as a peel-loop to handle gaps in interleave-groups. 1760 /// Under optsize and when the trip count is very small we don't allow any 1761 /// iterations to execute in the scalar loop. 1762 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1763 1764 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1765 bool FoldTailByMasking = false; 1766 1767 /// A map holding scalar costs for different vectorization factors. The 1768 /// presence of a cost for an instruction in the mapping indicates that the 1769 /// instruction will be scalarized when vectorizing with the associated 1770 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1771 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1772 1773 /// Holds the instructions known to be uniform after vectorization. 1774 /// The data is collected per VF. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1776 1777 /// Holds the instructions known to be scalar after vectorization. 1778 /// The data is collected per VF. 1779 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1780 1781 /// Holds the instructions (address computations) that are forced to be 1782 /// scalarized. 1783 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1784 1785 /// PHINodes of the reductions that should be expanded in-loop along with 1786 /// their associated chains of reduction operations, in program order from top 1787 /// (PHI) to bottom 1788 ReductionChainMap InLoopReductionChains; 1789 1790 /// A Map of inloop reduction operations and their immediate chain operand. 1791 /// FIXME: This can be removed once reductions can be costed correctly in 1792 /// vplan. This was added to allow quick lookup to the inloop operations, 1793 /// without having to loop through InLoopReductionChains. 1794 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1795 1796 /// Returns the expected difference in cost from scalarizing the expression 1797 /// feeding a predicated instruction \p PredInst. The instructions to 1798 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1799 /// non-negative return value implies the expression will be scalarized. 1800 /// Currently, only single-use chains are considered for scalarization. 1801 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1802 ElementCount VF); 1803 1804 /// Collect the instructions that are uniform after vectorization. An 1805 /// instruction is uniform if we represent it with a single scalar value in 1806 /// the vectorized loop corresponding to each vector iteration. Examples of 1807 /// uniform instructions include pointer operands of consecutive or 1808 /// interleaved memory accesses. Note that although uniformity implies an 1809 /// instruction will be scalar, the reverse is not true. In general, a 1810 /// scalarized instruction will be represented by VF scalar values in the 1811 /// vectorized loop, each corresponding to an iteration of the original 1812 /// scalar loop. 1813 void collectLoopUniforms(ElementCount VF); 1814 1815 /// Collect the instructions that are scalar after vectorization. An 1816 /// instruction is scalar if it is known to be uniform or will be scalarized 1817 /// during vectorization. Non-uniform scalarized instructions will be 1818 /// represented by VF values in the vectorized loop, each corresponding to an 1819 /// iteration of the original scalar loop. 1820 void collectLoopScalars(ElementCount VF); 1821 1822 /// Keeps cost model vectorization decision and cost for instructions. 1823 /// Right now it is used for memory instructions only. 1824 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1825 std::pair<InstWidening, InstructionCost>>; 1826 1827 DecisionList WideningDecisions; 1828 1829 /// Returns true if \p V is expected to be vectorized and it needs to be 1830 /// extracted. 1831 bool needsExtract(Value *V, ElementCount VF) const { 1832 Instruction *I = dyn_cast<Instruction>(V); 1833 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1834 TheLoop->isLoopInvariant(I)) 1835 return false; 1836 1837 // Assume we can vectorize V (and hence we need extraction) if the 1838 // scalars are not computed yet. This can happen, because it is called 1839 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1840 // the scalars are collected. That should be a safe assumption in most 1841 // cases, because we check if the operands have vectorizable types 1842 // beforehand in LoopVectorizationLegality. 1843 return Scalars.find(VF) == Scalars.end() || 1844 !isScalarAfterVectorization(I, VF); 1845 }; 1846 1847 /// Returns a range containing only operands needing to be extracted. 1848 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1849 ElementCount VF) const { 1850 return SmallVector<Value *, 4>(make_filter_range( 1851 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1852 } 1853 1854 /// Determines if we have the infrastructure to vectorize loop \p L and its 1855 /// epilogue, assuming the main loop is vectorized by \p VF. 1856 bool isCandidateForEpilogueVectorization(const Loop &L, 1857 const ElementCount VF) const; 1858 1859 /// Returns true if epilogue vectorization is considered profitable, and 1860 /// false otherwise. 1861 /// \p VF is the vectorization factor chosen for the original loop. 1862 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1863 1864 public: 1865 /// The loop that we evaluate. 1866 Loop *TheLoop; 1867 1868 /// Predicated scalar evolution analysis. 1869 PredicatedScalarEvolution &PSE; 1870 1871 /// Loop Info analysis. 1872 LoopInfo *LI; 1873 1874 /// Vectorization legality. 1875 LoopVectorizationLegality *Legal; 1876 1877 /// Vector target information. 1878 const TargetTransformInfo &TTI; 1879 1880 /// Target Library Info. 1881 const TargetLibraryInfo *TLI; 1882 1883 /// Demanded bits analysis. 1884 DemandedBits *DB; 1885 1886 /// Assumption cache. 1887 AssumptionCache *AC; 1888 1889 /// Interface to emit optimization remarks. 1890 OptimizationRemarkEmitter *ORE; 1891 1892 const Function *TheFunction; 1893 1894 /// Loop Vectorize Hint. 1895 const LoopVectorizeHints *Hints; 1896 1897 /// The interleave access information contains groups of interleaved accesses 1898 /// with the same stride and close to each other. 1899 InterleavedAccessInfo &InterleaveInfo; 1900 1901 /// Values to ignore in the cost model. 1902 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1903 1904 /// Values to ignore in the cost model when VF > 1. 1905 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1906 1907 /// All element types found in the loop. 1908 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1909 1910 /// Profitable vector factors. 1911 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1912 }; 1913 } // end namespace llvm 1914 1915 /// Helper struct to manage generating runtime checks for vectorization. 1916 /// 1917 /// The runtime checks are created up-front in temporary blocks to allow better 1918 /// estimating the cost and un-linked from the existing IR. After deciding to 1919 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1920 /// temporary blocks are completely removed. 1921 class GeneratedRTChecks { 1922 /// Basic block which contains the generated SCEV checks, if any. 1923 BasicBlock *SCEVCheckBlock = nullptr; 1924 1925 /// The value representing the result of the generated SCEV checks. If it is 1926 /// nullptr, either no SCEV checks have been generated or they have been used. 1927 Value *SCEVCheckCond = nullptr; 1928 1929 /// Basic block which contains the generated memory runtime checks, if any. 1930 BasicBlock *MemCheckBlock = nullptr; 1931 1932 /// The value representing the result of the generated memory runtime checks. 1933 /// If it is nullptr, either no memory runtime checks have been generated or 1934 /// they have been used. 1935 Value *MemRuntimeCheckCond = nullptr; 1936 1937 DominatorTree *DT; 1938 LoopInfo *LI; 1939 1940 SCEVExpander SCEVExp; 1941 SCEVExpander MemCheckExp; 1942 1943 public: 1944 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1945 const DataLayout &DL) 1946 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1947 MemCheckExp(SE, DL, "scev.check") {} 1948 1949 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1950 /// accurately estimate the cost of the runtime checks. The blocks are 1951 /// un-linked from the IR and is added back during vector code generation. If 1952 /// there is no vector code generation, the check blocks are removed 1953 /// completely. 1954 void Create(Loop *L, const LoopAccessInfo &LAI, 1955 const SCEVUnionPredicate &UnionPred) { 1956 1957 BasicBlock *LoopHeader = L->getHeader(); 1958 BasicBlock *Preheader = L->getLoopPreheader(); 1959 1960 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1961 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1962 // may be used by SCEVExpander. The blocks will be un-linked from their 1963 // predecessors and removed from LI & DT at the end of the function. 1964 if (!UnionPred.isAlwaysTrue()) { 1965 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1966 nullptr, "vector.scevcheck"); 1967 1968 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1969 &UnionPred, SCEVCheckBlock->getTerminator()); 1970 } 1971 1972 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1973 if (RtPtrChecking.Need) { 1974 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1975 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1976 "vector.memcheck"); 1977 1978 MemRuntimeCheckCond = 1979 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1980 RtPtrChecking.getChecks(), MemCheckExp); 1981 assert(MemRuntimeCheckCond && 1982 "no RT checks generated although RtPtrChecking " 1983 "claimed checks are required"); 1984 } 1985 1986 if (!MemCheckBlock && !SCEVCheckBlock) 1987 return; 1988 1989 // Unhook the temporary block with the checks, update various places 1990 // accordingly. 1991 if (SCEVCheckBlock) 1992 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1993 if (MemCheckBlock) 1994 MemCheckBlock->replaceAllUsesWith(Preheader); 1995 1996 if (SCEVCheckBlock) { 1997 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1998 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1999 Preheader->getTerminator()->eraseFromParent(); 2000 } 2001 if (MemCheckBlock) { 2002 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2003 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2004 Preheader->getTerminator()->eraseFromParent(); 2005 } 2006 2007 DT->changeImmediateDominator(LoopHeader, Preheader); 2008 if (MemCheckBlock) { 2009 DT->eraseNode(MemCheckBlock); 2010 LI->removeBlock(MemCheckBlock); 2011 } 2012 if (SCEVCheckBlock) { 2013 DT->eraseNode(SCEVCheckBlock); 2014 LI->removeBlock(SCEVCheckBlock); 2015 } 2016 } 2017 2018 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2019 /// unused. 2020 ~GeneratedRTChecks() { 2021 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2022 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2023 if (!SCEVCheckCond) 2024 SCEVCleaner.markResultUsed(); 2025 2026 if (!MemRuntimeCheckCond) 2027 MemCheckCleaner.markResultUsed(); 2028 2029 if (MemRuntimeCheckCond) { 2030 auto &SE = *MemCheckExp.getSE(); 2031 // Memory runtime check generation creates compares that use expanded 2032 // values. Remove them before running the SCEVExpanderCleaners. 2033 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2034 if (MemCheckExp.isInsertedInstruction(&I)) 2035 continue; 2036 SE.forgetValue(&I); 2037 SE.eraseValueFromMap(&I); 2038 I.eraseFromParent(); 2039 } 2040 } 2041 MemCheckCleaner.cleanup(); 2042 SCEVCleaner.cleanup(); 2043 2044 if (SCEVCheckCond) 2045 SCEVCheckBlock->eraseFromParent(); 2046 if (MemRuntimeCheckCond) 2047 MemCheckBlock->eraseFromParent(); 2048 } 2049 2050 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2051 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2052 /// depending on the generated condition. 2053 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2054 BasicBlock *LoopVectorPreHeader, 2055 BasicBlock *LoopExitBlock) { 2056 if (!SCEVCheckCond) 2057 return nullptr; 2058 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2059 if (C->isZero()) 2060 return nullptr; 2061 2062 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2063 2064 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2065 // Create new preheader for vector loop. 2066 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2067 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2068 2069 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2070 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2071 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2072 SCEVCheckBlock); 2073 2074 DT->addNewBlock(SCEVCheckBlock, Pred); 2075 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2076 2077 ReplaceInstWithInst( 2078 SCEVCheckBlock->getTerminator(), 2079 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2080 // Mark the check as used, to prevent it from being removed during cleanup. 2081 SCEVCheckCond = nullptr; 2082 return SCEVCheckBlock; 2083 } 2084 2085 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2086 /// the branches to branch to the vector preheader or \p Bypass, depending on 2087 /// the generated condition. 2088 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2089 BasicBlock *LoopVectorPreHeader) { 2090 // Check if we generated code that checks in runtime if arrays overlap. 2091 if (!MemRuntimeCheckCond) 2092 return nullptr; 2093 2094 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2095 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2096 MemCheckBlock); 2097 2098 DT->addNewBlock(MemCheckBlock, Pred); 2099 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2100 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2101 2102 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2103 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2104 2105 ReplaceInstWithInst( 2106 MemCheckBlock->getTerminator(), 2107 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2108 MemCheckBlock->getTerminator()->setDebugLoc( 2109 Pred->getTerminator()->getDebugLoc()); 2110 2111 // Mark the check as used, to prevent it from being removed during cleanup. 2112 MemRuntimeCheckCond = nullptr; 2113 return MemCheckBlock; 2114 } 2115 }; 2116 2117 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2118 // vectorization. The loop needs to be annotated with #pragma omp simd 2119 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2120 // vector length information is not provided, vectorization is not considered 2121 // explicit. Interleave hints are not allowed either. These limitations will be 2122 // relaxed in the future. 2123 // Please, note that we are currently forced to abuse the pragma 'clang 2124 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2125 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2126 // provides *explicit vectorization hints* (LV can bypass legal checks and 2127 // assume that vectorization is legal). However, both hints are implemented 2128 // using the same metadata (llvm.loop.vectorize, processed by 2129 // LoopVectorizeHints). This will be fixed in the future when the native IR 2130 // representation for pragma 'omp simd' is introduced. 2131 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2132 OptimizationRemarkEmitter *ORE) { 2133 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2134 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2135 2136 // Only outer loops with an explicit vectorization hint are supported. 2137 // Unannotated outer loops are ignored. 2138 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2139 return false; 2140 2141 Function *Fn = OuterLp->getHeader()->getParent(); 2142 if (!Hints.allowVectorization(Fn, OuterLp, 2143 true /*VectorizeOnlyWhenForced*/)) { 2144 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2145 return false; 2146 } 2147 2148 if (Hints.getInterleave() > 1) { 2149 // TODO: Interleave support is future work. 2150 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2151 "outer loops.\n"); 2152 Hints.emitRemarkWithHints(); 2153 return false; 2154 } 2155 2156 return true; 2157 } 2158 2159 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2160 OptimizationRemarkEmitter *ORE, 2161 SmallVectorImpl<Loop *> &V) { 2162 // Collect inner loops and outer loops without irreducible control flow. For 2163 // now, only collect outer loops that have explicit vectorization hints. If we 2164 // are stress testing the VPlan H-CFG construction, we collect the outermost 2165 // loop of every loop nest. 2166 if (L.isInnermost() || VPlanBuildStressTest || 2167 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2168 LoopBlocksRPO RPOT(&L); 2169 RPOT.perform(LI); 2170 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2171 V.push_back(&L); 2172 // TODO: Collect inner loops inside marked outer loops in case 2173 // vectorization fails for the outer loop. Do not invoke 2174 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2175 // already known to be reducible. We can use an inherited attribute for 2176 // that. 2177 return; 2178 } 2179 } 2180 for (Loop *InnerL : L) 2181 collectSupportedLoops(*InnerL, LI, ORE, V); 2182 } 2183 2184 namespace { 2185 2186 /// The LoopVectorize Pass. 2187 struct LoopVectorize : public FunctionPass { 2188 /// Pass identification, replacement for typeid 2189 static char ID; 2190 2191 LoopVectorizePass Impl; 2192 2193 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2194 bool VectorizeOnlyWhenForced = false) 2195 : FunctionPass(ID), 2196 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2197 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2198 } 2199 2200 bool runOnFunction(Function &F) override { 2201 if (skipFunction(F)) 2202 return false; 2203 2204 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2205 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2206 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2207 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2208 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2209 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2210 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2211 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2212 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2213 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2214 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2215 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2216 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2217 2218 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2219 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2220 2221 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2222 GetLAA, *ORE, PSI).MadeAnyChange; 2223 } 2224 2225 void getAnalysisUsage(AnalysisUsage &AU) const override { 2226 AU.addRequired<AssumptionCacheTracker>(); 2227 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2228 AU.addRequired<DominatorTreeWrapperPass>(); 2229 AU.addRequired<LoopInfoWrapperPass>(); 2230 AU.addRequired<ScalarEvolutionWrapperPass>(); 2231 AU.addRequired<TargetTransformInfoWrapperPass>(); 2232 AU.addRequired<AAResultsWrapperPass>(); 2233 AU.addRequired<LoopAccessLegacyAnalysis>(); 2234 AU.addRequired<DemandedBitsWrapperPass>(); 2235 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2236 AU.addRequired<InjectTLIMappingsLegacy>(); 2237 2238 // We currently do not preserve loopinfo/dominator analyses with outer loop 2239 // vectorization. Until this is addressed, mark these analyses as preserved 2240 // only for non-VPlan-native path. 2241 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2242 if (!EnableVPlanNativePath) { 2243 AU.addPreserved<LoopInfoWrapperPass>(); 2244 AU.addPreserved<DominatorTreeWrapperPass>(); 2245 } 2246 2247 AU.addPreserved<BasicAAWrapperPass>(); 2248 AU.addPreserved<GlobalsAAWrapperPass>(); 2249 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2250 } 2251 }; 2252 2253 } // end anonymous namespace 2254 2255 //===----------------------------------------------------------------------===// 2256 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2257 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2258 //===----------------------------------------------------------------------===// 2259 2260 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2261 // We need to place the broadcast of invariant variables outside the loop, 2262 // but only if it's proven safe to do so. Else, broadcast will be inside 2263 // vector loop body. 2264 Instruction *Instr = dyn_cast<Instruction>(V); 2265 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2266 (!Instr || 2267 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2268 // Place the code for broadcasting invariant variables in the new preheader. 2269 IRBuilder<>::InsertPointGuard Guard(Builder); 2270 if (SafeToHoist) 2271 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2272 2273 // Broadcast the scalar into all locations in the vector. 2274 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2275 2276 return Shuf; 2277 } 2278 2279 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2280 const InductionDescriptor &II, Value *Step, Value *Start, 2281 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2282 VPTransformState &State) { 2283 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2284 "Expected either an induction phi-node or a truncate of it!"); 2285 2286 // Construct the initial value of the vector IV in the vector loop preheader 2287 auto CurrIP = Builder.saveIP(); 2288 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2289 if (isa<TruncInst>(EntryVal)) { 2290 assert(Start->getType()->isIntegerTy() && 2291 "Truncation requires an integer type"); 2292 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2293 Step = Builder.CreateTrunc(Step, TruncType); 2294 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2295 } 2296 2297 Value *Zero; 2298 if (Start->getType()->isFloatingPointTy()) 2299 Zero = ConstantFP::get(Start->getType(), 0); 2300 else 2301 Zero = ConstantInt::get(Start->getType(), 0); 2302 2303 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2304 Value *SteppedStart = 2305 getStepVector(SplatStart, Zero, Step, II.getInductionOpcode()); 2306 2307 // We create vector phi nodes for both integer and floating-point induction 2308 // variables. Here, we determine the kind of arithmetic we will perform. 2309 Instruction::BinaryOps AddOp; 2310 Instruction::BinaryOps MulOp; 2311 if (Step->getType()->isIntegerTy()) { 2312 AddOp = Instruction::Add; 2313 MulOp = Instruction::Mul; 2314 } else { 2315 AddOp = II.getInductionOpcode(); 2316 MulOp = Instruction::FMul; 2317 } 2318 2319 // Multiply the vectorization factor by the step using integer or 2320 // floating-point arithmetic as appropriate. 2321 Type *StepType = Step->getType(); 2322 Value *RuntimeVF; 2323 if (Step->getType()->isFloatingPointTy()) 2324 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF); 2325 else 2326 RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2327 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2328 2329 // Create a vector splat to use in the induction update. 2330 // 2331 // FIXME: If the step is non-constant, we create the vector splat with 2332 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2333 // handle a constant vector splat. 2334 Value *SplatVF = isa<Constant>(Mul) 2335 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2336 : Builder.CreateVectorSplat(VF, Mul); 2337 Builder.restoreIP(CurrIP); 2338 2339 // We may need to add the step a number of times, depending on the unroll 2340 // factor. The last of those goes into the PHI. 2341 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2342 &*LoopVectorBody->getFirstInsertionPt()); 2343 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2344 Instruction *LastInduction = VecInd; 2345 for (unsigned Part = 0; Part < UF; ++Part) { 2346 State.set(Def, LastInduction, Part); 2347 2348 if (isa<TruncInst>(EntryVal)) 2349 addMetadata(LastInduction, EntryVal); 2350 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2351 State, Part); 2352 2353 LastInduction = cast<Instruction>( 2354 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2355 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2356 } 2357 2358 // Move the last step to the end of the latch block. This ensures consistent 2359 // placement of all induction updates. 2360 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2361 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2362 auto *ICmp = cast<Instruction>(Br->getCondition()); 2363 LastInduction->moveBefore(ICmp); 2364 LastInduction->setName("vec.ind.next"); 2365 2366 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2367 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2368 } 2369 2370 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2371 return Cost->isScalarAfterVectorization(I, VF) || 2372 Cost->isProfitableToScalarize(I, VF); 2373 } 2374 2375 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2376 if (shouldScalarizeInstruction(IV)) 2377 return true; 2378 auto isScalarInst = [&](User *U) -> bool { 2379 auto *I = cast<Instruction>(U); 2380 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2381 }; 2382 return llvm::any_of(IV->users(), isScalarInst); 2383 } 2384 2385 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2386 const InductionDescriptor &ID, const Instruction *EntryVal, 2387 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2388 unsigned Part, unsigned Lane) { 2389 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2390 "Expected either an induction phi-node or a truncate of it!"); 2391 2392 // This induction variable is not the phi from the original loop but the 2393 // newly-created IV based on the proof that casted Phi is equal to the 2394 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2395 // re-uses the same InductionDescriptor that original IV uses but we don't 2396 // have to do any recording in this case - that is done when original IV is 2397 // processed. 2398 if (isa<TruncInst>(EntryVal)) 2399 return; 2400 2401 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2402 if (Casts.empty()) 2403 return; 2404 // Only the first Cast instruction in the Casts vector is of interest. 2405 // The rest of the Casts (if exist) have no uses outside the 2406 // induction update chain itself. 2407 if (Lane < UINT_MAX) 2408 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2409 else 2410 State.set(CastDef, VectorLoopVal, Part); 2411 } 2412 2413 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2414 TruncInst *Trunc, VPValue *Def, 2415 VPValue *CastDef, 2416 VPTransformState &State) { 2417 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2418 "Primary induction variable must have an integer type"); 2419 2420 auto II = Legal->getInductionVars().find(IV); 2421 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2422 2423 auto ID = II->second; 2424 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2425 2426 // The value from the original loop to which we are mapping the new induction 2427 // variable. 2428 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2429 2430 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2431 2432 // Generate code for the induction step. Note that induction steps are 2433 // required to be loop-invariant 2434 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2435 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2436 "Induction step should be loop invariant"); 2437 if (PSE.getSE()->isSCEVable(IV->getType())) { 2438 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2439 return Exp.expandCodeFor(Step, Step->getType(), 2440 LoopVectorPreHeader->getTerminator()); 2441 } 2442 return cast<SCEVUnknown>(Step)->getValue(); 2443 }; 2444 2445 // The scalar value to broadcast. This is derived from the canonical 2446 // induction variable. If a truncation type is given, truncate the canonical 2447 // induction variable and step. Otherwise, derive these values from the 2448 // induction descriptor. 2449 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2450 Value *ScalarIV = Induction; 2451 if (IV != OldInduction) { 2452 ScalarIV = IV->getType()->isIntegerTy() 2453 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2454 : Builder.CreateCast(Instruction::SIToFP, Induction, 2455 IV->getType()); 2456 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2457 ScalarIV->setName("offset.idx"); 2458 } 2459 if (Trunc) { 2460 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2461 assert(Step->getType()->isIntegerTy() && 2462 "Truncation requires an integer step"); 2463 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2464 Step = Builder.CreateTrunc(Step, TruncType); 2465 } 2466 return ScalarIV; 2467 }; 2468 2469 // Create the vector values from the scalar IV, in the absence of creating a 2470 // vector IV. 2471 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2472 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2473 for (unsigned Part = 0; Part < UF; ++Part) { 2474 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2475 Value *StartIdx; 2476 if (Step->getType()->isFloatingPointTy()) 2477 StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part); 2478 else 2479 StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part); 2480 2481 Value *EntryPart = 2482 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode()); 2483 State.set(Def, EntryPart, Part); 2484 if (Trunc) 2485 addMetadata(EntryPart, Trunc); 2486 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2487 State, Part); 2488 } 2489 }; 2490 2491 // Fast-math-flags propagate from the original induction instruction. 2492 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2493 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2494 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2495 2496 // Now do the actual transformations, and start with creating the step value. 2497 Value *Step = CreateStepValue(ID.getStep()); 2498 if (VF.isZero() || VF.isScalar()) { 2499 Value *ScalarIV = CreateScalarIV(Step); 2500 CreateSplatIV(ScalarIV, Step); 2501 return; 2502 } 2503 2504 // Determine if we want a scalar version of the induction variable. This is 2505 // true if the induction variable itself is not widened, or if it has at 2506 // least one user in the loop that is not widened. 2507 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2508 if (!NeedsScalarIV) { 2509 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2510 State); 2511 return; 2512 } 2513 2514 // Try to create a new independent vector induction variable. If we can't 2515 // create the phi node, we will splat the scalar induction variable in each 2516 // loop iteration. 2517 if (!shouldScalarizeInstruction(EntryVal)) { 2518 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2519 State); 2520 Value *ScalarIV = CreateScalarIV(Step); 2521 // Create scalar steps that can be used by instructions we will later 2522 // scalarize. Note that the addition of the scalar steps will not increase 2523 // the number of instructions in the loop in the common case prior to 2524 // InstCombine. We will be trading one vector extract for each scalar step. 2525 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2526 return; 2527 } 2528 2529 // All IV users are scalar instructions, so only emit a scalar IV, not a 2530 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2531 // predicate used by the masked loads/stores. 2532 Value *ScalarIV = CreateScalarIV(Step); 2533 if (!Cost->isScalarEpilogueAllowed()) 2534 CreateSplatIV(ScalarIV, Step); 2535 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2536 } 2537 2538 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx, 2539 Value *Step, 2540 Instruction::BinaryOps BinOp) { 2541 // Create and check the types. 2542 auto *ValVTy = cast<VectorType>(Val->getType()); 2543 ElementCount VLen = ValVTy->getElementCount(); 2544 2545 Type *STy = Val->getType()->getScalarType(); 2546 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2547 "Induction Step must be an integer or FP"); 2548 assert(Step->getType() == STy && "Step has wrong type"); 2549 2550 SmallVector<Constant *, 8> Indices; 2551 2552 // Create a vector of consecutive numbers from zero to VF. 2553 VectorType *InitVecValVTy = ValVTy; 2554 Type *InitVecValSTy = STy; 2555 if (STy->isFloatingPointTy()) { 2556 InitVecValSTy = 2557 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2558 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2559 } 2560 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2561 2562 // Splat the StartIdx 2563 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2564 2565 if (STy->isIntegerTy()) { 2566 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2567 Step = Builder.CreateVectorSplat(VLen, Step); 2568 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2569 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2570 // which can be found from the original scalar operations. 2571 Step = Builder.CreateMul(InitVec, Step); 2572 return Builder.CreateAdd(Val, Step, "induction"); 2573 } 2574 2575 // Floating point induction. 2576 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2577 "Binary Opcode should be specified for FP induction"); 2578 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2579 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2580 2581 Step = Builder.CreateVectorSplat(VLen, Step); 2582 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2583 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2584 } 2585 2586 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2587 Instruction *EntryVal, 2588 const InductionDescriptor &ID, 2589 VPValue *Def, VPValue *CastDef, 2590 VPTransformState &State) { 2591 // We shouldn't have to build scalar steps if we aren't vectorizing. 2592 assert(VF.isVector() && "VF should be greater than one"); 2593 // Get the value type and ensure it and the step have the same integer type. 2594 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2595 assert(ScalarIVTy == Step->getType() && 2596 "Val and Step should have the same type"); 2597 2598 // We build scalar steps for both integer and floating-point induction 2599 // variables. Here, we determine the kind of arithmetic we will perform. 2600 Instruction::BinaryOps AddOp; 2601 Instruction::BinaryOps MulOp; 2602 if (ScalarIVTy->isIntegerTy()) { 2603 AddOp = Instruction::Add; 2604 MulOp = Instruction::Mul; 2605 } else { 2606 AddOp = ID.getInductionOpcode(); 2607 MulOp = Instruction::FMul; 2608 } 2609 2610 // Determine the number of scalars we need to generate for each unroll 2611 // iteration. If EntryVal is uniform, we only need to generate the first 2612 // lane. Otherwise, we generate all VF values. 2613 bool IsUniform = 2614 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2615 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2616 // Compute the scalar steps and save the results in State. 2617 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2618 ScalarIVTy->getScalarSizeInBits()); 2619 Type *VecIVTy = nullptr; 2620 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2621 if (!IsUniform && VF.isScalable()) { 2622 VecIVTy = VectorType::get(ScalarIVTy, VF); 2623 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2624 SplatStep = Builder.CreateVectorSplat(VF, Step); 2625 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2626 } 2627 2628 for (unsigned Part = 0; Part < UF; ++Part) { 2629 Value *StartIdx0 = 2630 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2631 2632 if (!IsUniform && VF.isScalable()) { 2633 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2634 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2635 if (ScalarIVTy->isFloatingPointTy()) 2636 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2637 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2638 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2639 State.set(Def, Add, Part); 2640 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2641 Part); 2642 // It's useful to record the lane values too for the known minimum number 2643 // of elements so we do those below. This improves the code quality when 2644 // trying to extract the first element, for example. 2645 } 2646 2647 if (ScalarIVTy->isFloatingPointTy()) 2648 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2649 2650 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2651 Value *StartIdx = Builder.CreateBinOp( 2652 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2653 // The step returned by `createStepForVF` is a runtime-evaluated value 2654 // when VF is scalable. Otherwise, it should be folded into a Constant. 2655 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2656 "Expected StartIdx to be folded to a constant when VF is not " 2657 "scalable"); 2658 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2659 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2660 State.set(Def, Add, VPIteration(Part, Lane)); 2661 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2662 Part, Lane); 2663 } 2664 } 2665 } 2666 2667 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2668 const VPIteration &Instance, 2669 VPTransformState &State) { 2670 Value *ScalarInst = State.get(Def, Instance); 2671 Value *VectorValue = State.get(Def, Instance.Part); 2672 VectorValue = Builder.CreateInsertElement( 2673 VectorValue, ScalarInst, 2674 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2675 State.set(Def, VectorValue, Instance.Part); 2676 } 2677 2678 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2679 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2680 return Builder.CreateVectorReverse(Vec, "reverse"); 2681 } 2682 2683 // Return whether we allow using masked interleave-groups (for dealing with 2684 // strided loads/stores that reside in predicated blocks, or for dealing 2685 // with gaps). 2686 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2687 // If an override option has been passed in for interleaved accesses, use it. 2688 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2689 return EnableMaskedInterleavedMemAccesses; 2690 2691 return TTI.enableMaskedInterleavedAccessVectorization(); 2692 } 2693 2694 // Try to vectorize the interleave group that \p Instr belongs to. 2695 // 2696 // E.g. Translate following interleaved load group (factor = 3): 2697 // for (i = 0; i < N; i+=3) { 2698 // R = Pic[i]; // Member of index 0 2699 // G = Pic[i+1]; // Member of index 1 2700 // B = Pic[i+2]; // Member of index 2 2701 // ... // do something to R, G, B 2702 // } 2703 // To: 2704 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2705 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2706 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2707 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2708 // 2709 // Or translate following interleaved store group (factor = 3): 2710 // for (i = 0; i < N; i+=3) { 2711 // ... do something to R, G, B 2712 // Pic[i] = R; // Member of index 0 2713 // Pic[i+1] = G; // Member of index 1 2714 // Pic[i+2] = B; // Member of index 2 2715 // } 2716 // To: 2717 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2718 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2719 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2720 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2721 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2722 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2723 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2724 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2725 VPValue *BlockInMask) { 2726 Instruction *Instr = Group->getInsertPos(); 2727 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2728 2729 // Prepare for the vector type of the interleaved load/store. 2730 Type *ScalarTy = getLoadStoreType(Instr); 2731 unsigned InterleaveFactor = Group->getFactor(); 2732 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2733 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2734 2735 // Prepare for the new pointers. 2736 SmallVector<Value *, 2> AddrParts; 2737 unsigned Index = Group->getIndex(Instr); 2738 2739 // TODO: extend the masked interleaved-group support to reversed access. 2740 assert((!BlockInMask || !Group->isReverse()) && 2741 "Reversed masked interleave-group not supported."); 2742 2743 // If the group is reverse, adjust the index to refer to the last vector lane 2744 // instead of the first. We adjust the index from the first vector lane, 2745 // rather than directly getting the pointer for lane VF - 1, because the 2746 // pointer operand of the interleaved access is supposed to be uniform. For 2747 // uniform instructions, we're only required to generate a value for the 2748 // first vector lane in each unroll iteration. 2749 if (Group->isReverse()) 2750 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2751 2752 for (unsigned Part = 0; Part < UF; Part++) { 2753 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2754 setDebugLocFromInst(AddrPart); 2755 2756 // Notice current instruction could be any index. Need to adjust the address 2757 // to the member of index 0. 2758 // 2759 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2760 // b = A[i]; // Member of index 0 2761 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2762 // 2763 // E.g. A[i+1] = a; // Member of index 1 2764 // A[i] = b; // Member of index 0 2765 // A[i+2] = c; // Member of index 2 (Current instruction) 2766 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2767 2768 bool InBounds = false; 2769 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2770 InBounds = gep->isInBounds(); 2771 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2772 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2773 2774 // Cast to the vector pointer type. 2775 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2776 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2777 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2778 } 2779 2780 setDebugLocFromInst(Instr); 2781 Value *PoisonVec = PoisonValue::get(VecTy); 2782 2783 Value *MaskForGaps = nullptr; 2784 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2785 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2786 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2787 } 2788 2789 // Vectorize the interleaved load group. 2790 if (isa<LoadInst>(Instr)) { 2791 // For each unroll part, create a wide load for the group. 2792 SmallVector<Value *, 2> NewLoads; 2793 for (unsigned Part = 0; Part < UF; Part++) { 2794 Instruction *NewLoad; 2795 if (BlockInMask || MaskForGaps) { 2796 assert(useMaskedInterleavedAccesses(*TTI) && 2797 "masked interleaved groups are not allowed."); 2798 Value *GroupMask = MaskForGaps; 2799 if (BlockInMask) { 2800 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2801 Value *ShuffledMask = Builder.CreateShuffleVector( 2802 BlockInMaskPart, 2803 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2804 "interleaved.mask"); 2805 GroupMask = MaskForGaps 2806 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2807 MaskForGaps) 2808 : ShuffledMask; 2809 } 2810 NewLoad = 2811 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2812 GroupMask, PoisonVec, "wide.masked.vec"); 2813 } 2814 else 2815 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2816 Group->getAlign(), "wide.vec"); 2817 Group->addMetadata(NewLoad); 2818 NewLoads.push_back(NewLoad); 2819 } 2820 2821 // For each member in the group, shuffle out the appropriate data from the 2822 // wide loads. 2823 unsigned J = 0; 2824 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2825 Instruction *Member = Group->getMember(I); 2826 2827 // Skip the gaps in the group. 2828 if (!Member) 2829 continue; 2830 2831 auto StrideMask = 2832 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2833 for (unsigned Part = 0; Part < UF; Part++) { 2834 Value *StridedVec = Builder.CreateShuffleVector( 2835 NewLoads[Part], StrideMask, "strided.vec"); 2836 2837 // If this member has different type, cast the result type. 2838 if (Member->getType() != ScalarTy) { 2839 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2840 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2841 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2842 } 2843 2844 if (Group->isReverse()) 2845 StridedVec = reverseVector(StridedVec); 2846 2847 State.set(VPDefs[J], StridedVec, Part); 2848 } 2849 ++J; 2850 } 2851 return; 2852 } 2853 2854 // The sub vector type for current instruction. 2855 auto *SubVT = VectorType::get(ScalarTy, VF); 2856 2857 // Vectorize the interleaved store group. 2858 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2859 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2860 "masked interleaved groups are not allowed."); 2861 assert((!MaskForGaps || !VF.isScalable()) && 2862 "masking gaps for scalable vectors is not yet supported."); 2863 for (unsigned Part = 0; Part < UF; Part++) { 2864 // Collect the stored vector from each member. 2865 SmallVector<Value *, 4> StoredVecs; 2866 for (unsigned i = 0; i < InterleaveFactor; i++) { 2867 assert((Group->getMember(i) || MaskForGaps) && 2868 "Fail to get a member from an interleaved store group"); 2869 Instruction *Member = Group->getMember(i); 2870 2871 // Skip the gaps in the group. 2872 if (!Member) { 2873 Value *Undef = PoisonValue::get(SubVT); 2874 StoredVecs.push_back(Undef); 2875 continue; 2876 } 2877 2878 Value *StoredVec = State.get(StoredValues[i], Part); 2879 2880 if (Group->isReverse()) 2881 StoredVec = reverseVector(StoredVec); 2882 2883 // If this member has different type, cast it to a unified type. 2884 2885 if (StoredVec->getType() != SubVT) 2886 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2887 2888 StoredVecs.push_back(StoredVec); 2889 } 2890 2891 // Concatenate all vectors into a wide vector. 2892 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2893 2894 // Interleave the elements in the wide vector. 2895 Value *IVec = Builder.CreateShuffleVector( 2896 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2897 "interleaved.vec"); 2898 2899 Instruction *NewStoreInstr; 2900 if (BlockInMask || MaskForGaps) { 2901 Value *GroupMask = MaskForGaps; 2902 if (BlockInMask) { 2903 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2904 Value *ShuffledMask = Builder.CreateShuffleVector( 2905 BlockInMaskPart, 2906 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2907 "interleaved.mask"); 2908 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2909 ShuffledMask, MaskForGaps) 2910 : ShuffledMask; 2911 } 2912 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2913 Group->getAlign(), GroupMask); 2914 } else 2915 NewStoreInstr = 2916 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2917 2918 Group->addMetadata(NewStoreInstr); 2919 } 2920 } 2921 2922 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2923 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2924 VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride, 2925 bool Reverse) { 2926 // Attempt to issue a wide load. 2927 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2928 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2929 2930 assert((LI || SI) && "Invalid Load/Store instruction"); 2931 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2932 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2933 2934 Type *ScalarDataTy = getLoadStoreType(Instr); 2935 2936 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2937 const Align Alignment = getLoadStoreAlignment(Instr); 2938 bool CreateGatherScatter = !ConsecutiveStride; 2939 2940 VectorParts BlockInMaskParts(UF); 2941 bool isMaskRequired = BlockInMask; 2942 if (isMaskRequired) 2943 for (unsigned Part = 0; Part < UF; ++Part) 2944 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2945 2946 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2947 // Calculate the pointer for the specific unroll-part. 2948 GetElementPtrInst *PartPtr = nullptr; 2949 2950 bool InBounds = false; 2951 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2952 InBounds = gep->isInBounds(); 2953 if (Reverse) { 2954 // If the address is consecutive but reversed, then the 2955 // wide store needs to start at the last vector element. 2956 // RunTimeVF = VScale * VF.getKnownMinValue() 2957 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2958 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2959 // NumElt = -Part * RunTimeVF 2960 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2961 // LastLane = 1 - RunTimeVF 2962 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2963 PartPtr = 2964 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2965 PartPtr->setIsInBounds(InBounds); 2966 PartPtr = cast<GetElementPtrInst>( 2967 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2968 PartPtr->setIsInBounds(InBounds); 2969 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2970 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2971 } else { 2972 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2973 PartPtr = cast<GetElementPtrInst>( 2974 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2975 PartPtr->setIsInBounds(InBounds); 2976 } 2977 2978 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2979 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2980 }; 2981 2982 // Handle Stores: 2983 if (SI) { 2984 setDebugLocFromInst(SI); 2985 2986 for (unsigned Part = 0; Part < UF; ++Part) { 2987 Instruction *NewSI = nullptr; 2988 Value *StoredVal = State.get(StoredValue, Part); 2989 if (CreateGatherScatter) { 2990 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2991 Value *VectorGep = State.get(Addr, Part); 2992 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2993 MaskPart); 2994 } else { 2995 if (Reverse) { 2996 // If we store to reverse consecutive memory locations, then we need 2997 // to reverse the order of elements in the stored value. 2998 StoredVal = reverseVector(StoredVal); 2999 // We don't want to update the value in the map as it might be used in 3000 // another expression. So don't call resetVectorValue(StoredVal). 3001 } 3002 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3003 if (isMaskRequired) 3004 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3005 BlockInMaskParts[Part]); 3006 else 3007 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3008 } 3009 addMetadata(NewSI, SI); 3010 } 3011 return; 3012 } 3013 3014 // Handle loads. 3015 assert(LI && "Must have a load instruction"); 3016 setDebugLocFromInst(LI); 3017 for (unsigned Part = 0; Part < UF; ++Part) { 3018 Value *NewLI; 3019 if (CreateGatherScatter) { 3020 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3021 Value *VectorGep = State.get(Addr, Part); 3022 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3023 nullptr, "wide.masked.gather"); 3024 addMetadata(NewLI, LI); 3025 } else { 3026 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3027 if (isMaskRequired) 3028 NewLI = Builder.CreateMaskedLoad( 3029 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3030 PoisonValue::get(DataTy), "wide.masked.load"); 3031 else 3032 NewLI = 3033 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3034 3035 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3036 addMetadata(NewLI, LI); 3037 if (Reverse) 3038 NewLI = reverseVector(NewLI); 3039 } 3040 3041 State.set(Def, NewLI, Part); 3042 } 3043 } 3044 3045 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3046 VPUser &User, 3047 const VPIteration &Instance, 3048 bool IfPredicateInstr, 3049 VPTransformState &State) { 3050 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3051 3052 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3053 // the first lane and part. 3054 if (isa<NoAliasScopeDeclInst>(Instr)) 3055 if (!Instance.isFirstIteration()) 3056 return; 3057 3058 setDebugLocFromInst(Instr); 3059 3060 // Does this instruction return a value ? 3061 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3062 3063 Instruction *Cloned = Instr->clone(); 3064 if (!IsVoidRetTy) 3065 Cloned->setName(Instr->getName() + ".cloned"); 3066 3067 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3068 Builder.GetInsertPoint()); 3069 // Replace the operands of the cloned instructions with their scalar 3070 // equivalents in the new loop. 3071 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3072 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3073 auto InputInstance = Instance; 3074 if (!Operand || !OrigLoop->contains(Operand) || 3075 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3076 InputInstance.Lane = VPLane::getFirstLane(); 3077 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3078 Cloned->setOperand(op, NewOp); 3079 } 3080 addNewMetadata(Cloned, Instr); 3081 3082 // Place the cloned scalar in the new loop. 3083 Builder.Insert(Cloned); 3084 3085 State.set(Def, Cloned, Instance); 3086 3087 // If we just cloned a new assumption, add it the assumption cache. 3088 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3089 AC->registerAssumption(II); 3090 3091 // End if-block. 3092 if (IfPredicateInstr) 3093 PredicatedInstructions.push_back(Cloned); 3094 } 3095 3096 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3097 Value *End, Value *Step, 3098 Instruction *DL) { 3099 BasicBlock *Header = L->getHeader(); 3100 BasicBlock *Latch = L->getLoopLatch(); 3101 // As we're just creating this loop, it's possible no latch exists 3102 // yet. If so, use the header as this will be a single block loop. 3103 if (!Latch) 3104 Latch = Header; 3105 3106 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3107 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3108 setDebugLocFromInst(OldInst, &B); 3109 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3110 3111 B.SetInsertPoint(Latch->getTerminator()); 3112 setDebugLocFromInst(OldInst, &B); 3113 3114 // Create i+1 and fill the PHINode. 3115 // 3116 // If the tail is not folded, we know that End - Start >= Step (either 3117 // statically or through the minimum iteration checks). We also know that both 3118 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3119 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3120 // overflows and we can mark the induction increment as NUW. 3121 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3122 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3123 Induction->addIncoming(Start, L->getLoopPreheader()); 3124 Induction->addIncoming(Next, Latch); 3125 // Create the compare. 3126 Value *ICmp = B.CreateICmpEQ(Next, End); 3127 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3128 3129 // Now we have two terminators. Remove the old one from the block. 3130 Latch->getTerminator()->eraseFromParent(); 3131 3132 return Induction; 3133 } 3134 3135 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3136 if (TripCount) 3137 return TripCount; 3138 3139 assert(L && "Create Trip Count for null loop."); 3140 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3141 // Find the loop boundaries. 3142 ScalarEvolution *SE = PSE.getSE(); 3143 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3144 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3145 "Invalid loop count"); 3146 3147 Type *IdxTy = Legal->getWidestInductionType(); 3148 assert(IdxTy && "No type for induction"); 3149 3150 // The exit count might have the type of i64 while the phi is i32. This can 3151 // happen if we have an induction variable that is sign extended before the 3152 // compare. The only way that we get a backedge taken count is that the 3153 // induction variable was signed and as such will not overflow. In such a case 3154 // truncation is legal. 3155 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3156 IdxTy->getPrimitiveSizeInBits()) 3157 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3158 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3159 3160 // Get the total trip count from the count by adding 1. 3161 const SCEV *ExitCount = SE->getAddExpr( 3162 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3163 3164 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3165 3166 // Expand the trip count and place the new instructions in the preheader. 3167 // Notice that the pre-header does not change, only the loop body. 3168 SCEVExpander Exp(*SE, DL, "induction"); 3169 3170 // Count holds the overall loop count (N). 3171 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3172 L->getLoopPreheader()->getTerminator()); 3173 3174 if (TripCount->getType()->isPointerTy()) 3175 TripCount = 3176 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3177 L->getLoopPreheader()->getTerminator()); 3178 3179 return TripCount; 3180 } 3181 3182 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3183 if (VectorTripCount) 3184 return VectorTripCount; 3185 3186 Value *TC = getOrCreateTripCount(L); 3187 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3188 3189 Type *Ty = TC->getType(); 3190 // This is where we can make the step a runtime constant. 3191 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3192 3193 // If the tail is to be folded by masking, round the number of iterations N 3194 // up to a multiple of Step instead of rounding down. This is done by first 3195 // adding Step-1 and then rounding down. Note that it's ok if this addition 3196 // overflows: the vector induction variable will eventually wrap to zero given 3197 // that it starts at zero and its Step is a power of two; the loop will then 3198 // exit, with the last early-exit vector comparison also producing all-true. 3199 if (Cost->foldTailByMasking()) { 3200 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3201 "VF*UF must be a power of 2 when folding tail by masking"); 3202 assert(!VF.isScalable() && 3203 "Tail folding not yet supported for scalable vectors"); 3204 TC = Builder.CreateAdd( 3205 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3206 } 3207 3208 // Now we need to generate the expression for the part of the loop that the 3209 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3210 // iterations are not required for correctness, or N - Step, otherwise. Step 3211 // is equal to the vectorization factor (number of SIMD elements) times the 3212 // unroll factor (number of SIMD instructions). 3213 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3214 3215 // There are cases where we *must* run at least one iteration in the remainder 3216 // loop. See the cost model for when this can happen. If the step evenly 3217 // divides the trip count, we set the remainder to be equal to the step. If 3218 // the step does not evenly divide the trip count, no adjustment is necessary 3219 // since there will already be scalar iterations. Note that the minimum 3220 // iterations check ensures that N >= Step. 3221 if (Cost->requiresScalarEpilogue(VF)) { 3222 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3223 R = Builder.CreateSelect(IsZero, Step, R); 3224 } 3225 3226 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3227 3228 return VectorTripCount; 3229 } 3230 3231 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3232 const DataLayout &DL) { 3233 // Verify that V is a vector type with same number of elements as DstVTy. 3234 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3235 unsigned VF = DstFVTy->getNumElements(); 3236 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3237 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3238 Type *SrcElemTy = SrcVecTy->getElementType(); 3239 Type *DstElemTy = DstFVTy->getElementType(); 3240 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3241 "Vector elements must have same size"); 3242 3243 // Do a direct cast if element types are castable. 3244 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3245 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3246 } 3247 // V cannot be directly casted to desired vector type. 3248 // May happen when V is a floating point vector but DstVTy is a vector of 3249 // pointers or vice-versa. Handle this using a two-step bitcast using an 3250 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3251 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3252 "Only one type should be a pointer type"); 3253 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3254 "Only one type should be a floating point type"); 3255 Type *IntTy = 3256 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3257 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3258 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3259 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3260 } 3261 3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3263 BasicBlock *Bypass) { 3264 Value *Count = getOrCreateTripCount(L); 3265 // Reuse existing vector loop preheader for TC checks. 3266 // Note that new preheader block is generated for vector loop. 3267 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3268 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3269 3270 // Generate code to check if the loop's trip count is less than VF * UF, or 3271 // equal to it in case a scalar epilogue is required; this implies that the 3272 // vector trip count is zero. This check also covers the case where adding one 3273 // to the backedge-taken count overflowed leading to an incorrect trip count 3274 // of zero. In this case we will also jump to the scalar loop. 3275 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3276 : ICmpInst::ICMP_ULT; 3277 3278 // If tail is to be folded, vector loop takes care of all iterations. 3279 Value *CheckMinIters = Builder.getFalse(); 3280 if (!Cost->foldTailByMasking()) { 3281 Value *Step = 3282 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3283 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3284 } 3285 // Create new preheader for vector loop. 3286 LoopVectorPreHeader = 3287 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3288 "vector.ph"); 3289 3290 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3291 DT->getNode(Bypass)->getIDom()) && 3292 "TC check is expected to dominate Bypass"); 3293 3294 // Update dominator for Bypass & LoopExit (if needed). 3295 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3296 if (!Cost->requiresScalarEpilogue(VF)) 3297 // If there is an epilogue which must run, there's no edge from the 3298 // middle block to exit blocks and thus no need to update the immediate 3299 // dominator of the exit blocks. 3300 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3301 3302 ReplaceInstWithInst( 3303 TCCheckBlock->getTerminator(), 3304 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3305 LoopBypassBlocks.push_back(TCCheckBlock); 3306 } 3307 3308 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3309 3310 BasicBlock *const SCEVCheckBlock = 3311 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3312 if (!SCEVCheckBlock) 3313 return nullptr; 3314 3315 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3316 (OptForSizeBasedOnProfile && 3317 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3318 "Cannot SCEV check stride or overflow when optimizing for size"); 3319 3320 3321 // Update dominator only if this is first RT check. 3322 if (LoopBypassBlocks.empty()) { 3323 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3324 if (!Cost->requiresScalarEpilogue(VF)) 3325 // If there is an epilogue which must run, there's no edge from the 3326 // middle block to exit blocks and thus no need to update the immediate 3327 // dominator of the exit blocks. 3328 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3329 } 3330 3331 LoopBypassBlocks.push_back(SCEVCheckBlock); 3332 AddedSafetyChecks = true; 3333 return SCEVCheckBlock; 3334 } 3335 3336 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3337 BasicBlock *Bypass) { 3338 // VPlan-native path does not do any analysis for runtime checks currently. 3339 if (EnableVPlanNativePath) 3340 return nullptr; 3341 3342 BasicBlock *const MemCheckBlock = 3343 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3344 3345 // Check if we generated code that checks in runtime if arrays overlap. We put 3346 // the checks into a separate block to make the more common case of few 3347 // elements faster. 3348 if (!MemCheckBlock) 3349 return nullptr; 3350 3351 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3352 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3353 "Cannot emit memory checks when optimizing for size, unless forced " 3354 "to vectorize."); 3355 ORE->emit([&]() { 3356 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3357 L->getStartLoc(), L->getHeader()) 3358 << "Code-size may be reduced by not forcing " 3359 "vectorization, or by source-code modifications " 3360 "eliminating the need for runtime checks " 3361 "(e.g., adding 'restrict')."; 3362 }); 3363 } 3364 3365 LoopBypassBlocks.push_back(MemCheckBlock); 3366 3367 AddedSafetyChecks = true; 3368 3369 // We currently don't use LoopVersioning for the actual loop cloning but we 3370 // still use it to add the noalias metadata. 3371 LVer = std::make_unique<LoopVersioning>( 3372 *Legal->getLAI(), 3373 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3374 DT, PSE.getSE()); 3375 LVer->prepareNoAliasMetadata(); 3376 return MemCheckBlock; 3377 } 3378 3379 Value *InnerLoopVectorizer::emitTransformedIndex( 3380 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3381 const InductionDescriptor &ID) const { 3382 3383 SCEVExpander Exp(*SE, DL, "induction"); 3384 auto Step = ID.getStep(); 3385 auto StartValue = ID.getStartValue(); 3386 assert(Index->getType()->getScalarType() == Step->getType() && 3387 "Index scalar type does not match StepValue type"); 3388 3389 // Note: the IR at this point is broken. We cannot use SE to create any new 3390 // SCEV and then expand it, hoping that SCEV's simplification will give us 3391 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3392 // lead to various SCEV crashes. So all we can do is to use builder and rely 3393 // on InstCombine for future simplifications. Here we handle some trivial 3394 // cases only. 3395 auto CreateAdd = [&B](Value *X, Value *Y) { 3396 assert(X->getType() == Y->getType() && "Types don't match!"); 3397 if (auto *CX = dyn_cast<ConstantInt>(X)) 3398 if (CX->isZero()) 3399 return Y; 3400 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3401 if (CY->isZero()) 3402 return X; 3403 return B.CreateAdd(X, Y); 3404 }; 3405 3406 // We allow X to be a vector type, in which case Y will potentially be 3407 // splatted into a vector with the same element count. 3408 auto CreateMul = [&B](Value *X, Value *Y) { 3409 assert(X->getType()->getScalarType() == Y->getType() && 3410 "Types don't match!"); 3411 if (auto *CX = dyn_cast<ConstantInt>(X)) 3412 if (CX->isOne()) 3413 return Y; 3414 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3415 if (CY->isOne()) 3416 return X; 3417 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3418 if (XVTy && !isa<VectorType>(Y->getType())) 3419 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3420 return B.CreateMul(X, Y); 3421 }; 3422 3423 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3424 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3425 // the DomTree is not kept up-to-date for additional blocks generated in the 3426 // vector loop. By using the header as insertion point, we guarantee that the 3427 // expanded instructions dominate all their uses. 3428 auto GetInsertPoint = [this, &B]() { 3429 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3430 if (InsertBB != LoopVectorBody && 3431 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3432 return LoopVectorBody->getTerminator(); 3433 return &*B.GetInsertPoint(); 3434 }; 3435 3436 switch (ID.getKind()) { 3437 case InductionDescriptor::IK_IntInduction: { 3438 assert(!isa<VectorType>(Index->getType()) && 3439 "Vector indices not supported for integer inductions yet"); 3440 assert(Index->getType() == StartValue->getType() && 3441 "Index type does not match StartValue type"); 3442 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3443 return B.CreateSub(StartValue, Index); 3444 auto *Offset = CreateMul( 3445 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3446 return CreateAdd(StartValue, Offset); 3447 } 3448 case InductionDescriptor::IK_PtrInduction: { 3449 assert(isa<SCEVConstant>(Step) && 3450 "Expected constant step for pointer induction"); 3451 return B.CreateGEP( 3452 ID.getElementType(), StartValue, 3453 CreateMul(Index, 3454 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3455 GetInsertPoint()))); 3456 } 3457 case InductionDescriptor::IK_FpInduction: { 3458 assert(!isa<VectorType>(Index->getType()) && 3459 "Vector indices not supported for FP inductions yet"); 3460 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3461 auto InductionBinOp = ID.getInductionBinOp(); 3462 assert(InductionBinOp && 3463 (InductionBinOp->getOpcode() == Instruction::FAdd || 3464 InductionBinOp->getOpcode() == Instruction::FSub) && 3465 "Original bin op should be defined for FP induction"); 3466 3467 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3468 Value *MulExp = B.CreateFMul(StepValue, Index); 3469 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3470 "induction"); 3471 } 3472 case InductionDescriptor::IK_NoInduction: 3473 return nullptr; 3474 } 3475 llvm_unreachable("invalid enum"); 3476 } 3477 3478 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3479 LoopScalarBody = OrigLoop->getHeader(); 3480 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3481 assert(LoopVectorPreHeader && "Invalid loop structure"); 3482 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3483 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3484 "multiple exit loop without required epilogue?"); 3485 3486 LoopMiddleBlock = 3487 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3488 LI, nullptr, Twine(Prefix) + "middle.block"); 3489 LoopScalarPreHeader = 3490 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3491 nullptr, Twine(Prefix) + "scalar.ph"); 3492 3493 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3494 3495 // Set up the middle block terminator. Two cases: 3496 // 1) If we know that we must execute the scalar epilogue, emit an 3497 // unconditional branch. 3498 // 2) Otherwise, we must have a single unique exit block (due to how we 3499 // implement the multiple exit case). In this case, set up a conditonal 3500 // branch from the middle block to the loop scalar preheader, and the 3501 // exit block. completeLoopSkeleton will update the condition to use an 3502 // iteration check, if required to decide whether to execute the remainder. 3503 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3504 BranchInst::Create(LoopScalarPreHeader) : 3505 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3506 Builder.getTrue()); 3507 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3508 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3509 3510 // We intentionally don't let SplitBlock to update LoopInfo since 3511 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3512 // LoopVectorBody is explicitly added to the correct place few lines later. 3513 LoopVectorBody = 3514 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3515 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3516 3517 // Update dominator for loop exit. 3518 if (!Cost->requiresScalarEpilogue(VF)) 3519 // If there is an epilogue which must run, there's no edge from the 3520 // middle block to exit blocks and thus no need to update the immediate 3521 // dominator of the exit blocks. 3522 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3523 3524 // Create and register the new vector loop. 3525 Loop *Lp = LI->AllocateLoop(); 3526 Loop *ParentLoop = OrigLoop->getParentLoop(); 3527 3528 // Insert the new loop into the loop nest and register the new basic blocks 3529 // before calling any utilities such as SCEV that require valid LoopInfo. 3530 if (ParentLoop) { 3531 ParentLoop->addChildLoop(Lp); 3532 } else { 3533 LI->addTopLevelLoop(Lp); 3534 } 3535 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3536 return Lp; 3537 } 3538 3539 void InnerLoopVectorizer::createInductionResumeValues( 3540 Loop *L, Value *VectorTripCount, 3541 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3542 assert(VectorTripCount && L && "Expected valid arguments"); 3543 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3544 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3545 "Inconsistent information about additional bypass."); 3546 // We are going to resume the execution of the scalar loop. 3547 // Go over all of the induction variables that we found and fix the 3548 // PHIs that are left in the scalar version of the loop. 3549 // The starting values of PHI nodes depend on the counter of the last 3550 // iteration in the vectorized loop. 3551 // If we come from a bypass edge then we need to start from the original 3552 // start value. 3553 for (auto &InductionEntry : Legal->getInductionVars()) { 3554 PHINode *OrigPhi = InductionEntry.first; 3555 InductionDescriptor II = InductionEntry.second; 3556 3557 // Create phi nodes to merge from the backedge-taken check block. 3558 PHINode *BCResumeVal = 3559 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3560 LoopScalarPreHeader->getTerminator()); 3561 // Copy original phi DL over to the new one. 3562 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3563 Value *&EndValue = IVEndValues[OrigPhi]; 3564 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3565 if (OrigPhi == OldInduction) { 3566 // We know what the end value is. 3567 EndValue = VectorTripCount; 3568 } else { 3569 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3570 3571 // Fast-math-flags propagate from the original induction instruction. 3572 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3573 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3574 3575 Type *StepType = II.getStep()->getType(); 3576 Instruction::CastOps CastOp = 3577 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3578 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3579 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3580 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3581 EndValue->setName("ind.end"); 3582 3583 // Compute the end value for the additional bypass (if applicable). 3584 if (AdditionalBypass.first) { 3585 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3586 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3587 StepType, true); 3588 CRD = 3589 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3590 EndValueFromAdditionalBypass = 3591 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3592 EndValueFromAdditionalBypass->setName("ind.end"); 3593 } 3594 } 3595 // The new PHI merges the original incoming value, in case of a bypass, 3596 // or the value at the end of the vectorized loop. 3597 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3598 3599 // Fix the scalar body counter (PHI node). 3600 // The old induction's phi node in the scalar body needs the truncated 3601 // value. 3602 for (BasicBlock *BB : LoopBypassBlocks) 3603 BCResumeVal->addIncoming(II.getStartValue(), BB); 3604 3605 if (AdditionalBypass.first) 3606 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3607 EndValueFromAdditionalBypass); 3608 3609 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3610 } 3611 } 3612 3613 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3614 MDNode *OrigLoopID) { 3615 assert(L && "Expected valid loop."); 3616 3617 // The trip counts should be cached by now. 3618 Value *Count = getOrCreateTripCount(L); 3619 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3620 3621 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3622 3623 // Add a check in the middle block to see if we have completed 3624 // all of the iterations in the first vector loop. Three cases: 3625 // 1) If we require a scalar epilogue, there is no conditional branch as 3626 // we unconditionally branch to the scalar preheader. Do nothing. 3627 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3628 // Thus if tail is to be folded, we know we don't need to run the 3629 // remainder and we can use the previous value for the condition (true). 3630 // 3) Otherwise, construct a runtime check. 3631 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3632 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3633 Count, VectorTripCount, "cmp.n", 3634 LoopMiddleBlock->getTerminator()); 3635 3636 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3637 // of the corresponding compare because they may have ended up with 3638 // different line numbers and we want to avoid awkward line stepping while 3639 // debugging. Eg. if the compare has got a line number inside the loop. 3640 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3641 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3642 } 3643 3644 // Get ready to start creating new instructions into the vectorized body. 3645 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3646 "Inconsistent vector loop preheader"); 3647 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3648 3649 Optional<MDNode *> VectorizedLoopID = 3650 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3651 LLVMLoopVectorizeFollowupVectorized}); 3652 if (VectorizedLoopID.hasValue()) { 3653 L->setLoopID(VectorizedLoopID.getValue()); 3654 3655 // Do not setAlreadyVectorized if loop attributes have been defined 3656 // explicitly. 3657 return LoopVectorPreHeader; 3658 } 3659 3660 // Keep all loop hints from the original loop on the vector loop (we'll 3661 // replace the vectorizer-specific hints below). 3662 if (MDNode *LID = OrigLoop->getLoopID()) 3663 L->setLoopID(LID); 3664 3665 LoopVectorizeHints Hints(L, true, *ORE); 3666 Hints.setAlreadyVectorized(); 3667 3668 #ifdef EXPENSIVE_CHECKS 3669 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3670 LI->verify(*DT); 3671 #endif 3672 3673 return LoopVectorPreHeader; 3674 } 3675 3676 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3677 /* 3678 In this function we generate a new loop. The new loop will contain 3679 the vectorized instructions while the old loop will continue to run the 3680 scalar remainder. 3681 3682 [ ] <-- loop iteration number check. 3683 / | 3684 / v 3685 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3686 | / | 3687 | / v 3688 || [ ] <-- vector pre header. 3689 |/ | 3690 | v 3691 | [ ] \ 3692 | [ ]_| <-- vector loop. 3693 | | 3694 | v 3695 \ -[ ] <--- middle-block. 3696 \/ | 3697 /\ v 3698 | ->[ ] <--- new preheader. 3699 | | 3700 (opt) v <-- edge from middle to exit iff epilogue is not required. 3701 | [ ] \ 3702 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3703 \ | 3704 \ v 3705 >[ ] <-- exit block(s). 3706 ... 3707 */ 3708 3709 // Get the metadata of the original loop before it gets modified. 3710 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3711 3712 // Workaround! Compute the trip count of the original loop and cache it 3713 // before we start modifying the CFG. This code has a systemic problem 3714 // wherein it tries to run analysis over partially constructed IR; this is 3715 // wrong, and not simply for SCEV. The trip count of the original loop 3716 // simply happens to be prone to hitting this in practice. In theory, we 3717 // can hit the same issue for any SCEV, or ValueTracking query done during 3718 // mutation. See PR49900. 3719 getOrCreateTripCount(OrigLoop); 3720 3721 // Create an empty vector loop, and prepare basic blocks for the runtime 3722 // checks. 3723 Loop *Lp = createVectorLoopSkeleton(""); 3724 3725 // Now, compare the new count to zero. If it is zero skip the vector loop and 3726 // jump to the scalar loop. This check also covers the case where the 3727 // backedge-taken count is uint##_max: adding one to it will overflow leading 3728 // to an incorrect trip count of zero. In this (rare) case we will also jump 3729 // to the scalar loop. 3730 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3731 3732 // Generate the code to check any assumptions that we've made for SCEV 3733 // expressions. 3734 emitSCEVChecks(Lp, LoopScalarPreHeader); 3735 3736 // Generate the code that checks in runtime if arrays overlap. We put the 3737 // checks into a separate block to make the more common case of few elements 3738 // faster. 3739 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3740 3741 // Some loops have a single integer induction variable, while other loops 3742 // don't. One example is c++ iterators that often have multiple pointer 3743 // induction variables. In the code below we also support a case where we 3744 // don't have a single induction variable. 3745 // 3746 // We try to obtain an induction variable from the original loop as hard 3747 // as possible. However if we don't find one that: 3748 // - is an integer 3749 // - counts from zero, stepping by one 3750 // - is the size of the widest induction variable type 3751 // then we create a new one. 3752 OldInduction = Legal->getPrimaryInduction(); 3753 Type *IdxTy = Legal->getWidestInductionType(); 3754 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3755 // The loop step is equal to the vectorization factor (num of SIMD elements) 3756 // times the unroll factor (num of SIMD instructions). 3757 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3758 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3759 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3760 Induction = 3761 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3762 getDebugLocFromInstOrOperands(OldInduction)); 3763 3764 // Emit phis for the new starting index of the scalar loop. 3765 createInductionResumeValues(Lp, CountRoundDown); 3766 3767 return completeLoopSkeleton(Lp, OrigLoopID); 3768 } 3769 3770 // Fix up external users of the induction variable. At this point, we are 3771 // in LCSSA form, with all external PHIs that use the IV having one input value, 3772 // coming from the remainder loop. We need those PHIs to also have a correct 3773 // value for the IV when arriving directly from the middle block. 3774 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3775 const InductionDescriptor &II, 3776 Value *CountRoundDown, Value *EndValue, 3777 BasicBlock *MiddleBlock) { 3778 // There are two kinds of external IV usages - those that use the value 3779 // computed in the last iteration (the PHI) and those that use the penultimate 3780 // value (the value that feeds into the phi from the loop latch). 3781 // We allow both, but they, obviously, have different values. 3782 3783 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3784 3785 DenseMap<Value *, Value *> MissingVals; 3786 3787 // An external user of the last iteration's value should see the value that 3788 // the remainder loop uses to initialize its own IV. 3789 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3790 for (User *U : PostInc->users()) { 3791 Instruction *UI = cast<Instruction>(U); 3792 if (!OrigLoop->contains(UI)) { 3793 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3794 MissingVals[UI] = EndValue; 3795 } 3796 } 3797 3798 // An external user of the penultimate value need to see EndValue - Step. 3799 // The simplest way to get this is to recompute it from the constituent SCEVs, 3800 // that is Start + (Step * (CRD - 1)). 3801 for (User *U : OrigPhi->users()) { 3802 auto *UI = cast<Instruction>(U); 3803 if (!OrigLoop->contains(UI)) { 3804 const DataLayout &DL = 3805 OrigLoop->getHeader()->getModule()->getDataLayout(); 3806 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3807 3808 IRBuilder<> B(MiddleBlock->getTerminator()); 3809 3810 // Fast-math-flags propagate from the original induction instruction. 3811 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3812 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3813 3814 Value *CountMinusOne = B.CreateSub( 3815 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3816 Value *CMO = 3817 !II.getStep()->getType()->isIntegerTy() 3818 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3819 II.getStep()->getType()) 3820 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3821 CMO->setName("cast.cmo"); 3822 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3823 Escape->setName("ind.escape"); 3824 MissingVals[UI] = Escape; 3825 } 3826 } 3827 3828 for (auto &I : MissingVals) { 3829 PHINode *PHI = cast<PHINode>(I.first); 3830 // One corner case we have to handle is two IVs "chasing" each-other, 3831 // that is %IV2 = phi [...], [ %IV1, %latch ] 3832 // In this case, if IV1 has an external use, we need to avoid adding both 3833 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3834 // don't already have an incoming value for the middle block. 3835 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3836 PHI->addIncoming(I.second, MiddleBlock); 3837 } 3838 } 3839 3840 namespace { 3841 3842 struct CSEDenseMapInfo { 3843 static bool canHandle(const Instruction *I) { 3844 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3845 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3846 } 3847 3848 static inline Instruction *getEmptyKey() { 3849 return DenseMapInfo<Instruction *>::getEmptyKey(); 3850 } 3851 3852 static inline Instruction *getTombstoneKey() { 3853 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3854 } 3855 3856 static unsigned getHashValue(const Instruction *I) { 3857 assert(canHandle(I) && "Unknown instruction!"); 3858 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3859 I->value_op_end())); 3860 } 3861 3862 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3863 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3864 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3865 return LHS == RHS; 3866 return LHS->isIdenticalTo(RHS); 3867 } 3868 }; 3869 3870 } // end anonymous namespace 3871 3872 ///Perform cse of induction variable instructions. 3873 static void cse(BasicBlock *BB) { 3874 // Perform simple cse. 3875 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3876 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3877 if (!CSEDenseMapInfo::canHandle(&In)) 3878 continue; 3879 3880 // Check if we can replace this instruction with any of the 3881 // visited instructions. 3882 if (Instruction *V = CSEMap.lookup(&In)) { 3883 In.replaceAllUsesWith(V); 3884 In.eraseFromParent(); 3885 continue; 3886 } 3887 3888 CSEMap[&In] = &In; 3889 } 3890 } 3891 3892 InstructionCost 3893 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3894 bool &NeedToScalarize) const { 3895 Function *F = CI->getCalledFunction(); 3896 Type *ScalarRetTy = CI->getType(); 3897 SmallVector<Type *, 4> Tys, ScalarTys; 3898 for (auto &ArgOp : CI->args()) 3899 ScalarTys.push_back(ArgOp->getType()); 3900 3901 // Estimate cost of scalarized vector call. The source operands are assumed 3902 // to be vectors, so we need to extract individual elements from there, 3903 // execute VF scalar calls, and then gather the result into the vector return 3904 // value. 3905 InstructionCost ScalarCallCost = 3906 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3907 if (VF.isScalar()) 3908 return ScalarCallCost; 3909 3910 // Compute corresponding vector type for return value and arguments. 3911 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3912 for (Type *ScalarTy : ScalarTys) 3913 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3914 3915 // Compute costs of unpacking argument values for the scalar calls and 3916 // packing the return values to a vector. 3917 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3918 3919 InstructionCost Cost = 3920 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3921 3922 // If we can't emit a vector call for this function, then the currently found 3923 // cost is the cost we need to return. 3924 NeedToScalarize = true; 3925 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3926 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3927 3928 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3929 return Cost; 3930 3931 // If the corresponding vector cost is cheaper, return its cost. 3932 InstructionCost VectorCallCost = 3933 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3934 if (VectorCallCost < Cost) { 3935 NeedToScalarize = false; 3936 Cost = VectorCallCost; 3937 } 3938 return Cost; 3939 } 3940 3941 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3942 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3943 return Elt; 3944 return VectorType::get(Elt, VF); 3945 } 3946 3947 InstructionCost 3948 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3949 ElementCount VF) const { 3950 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3951 assert(ID && "Expected intrinsic call!"); 3952 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3953 FastMathFlags FMF; 3954 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3955 FMF = FPMO->getFastMathFlags(); 3956 3957 SmallVector<const Value *> Arguments(CI->args()); 3958 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3959 SmallVector<Type *> ParamTys; 3960 std::transform(FTy->param_begin(), FTy->param_end(), 3961 std::back_inserter(ParamTys), 3962 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3963 3964 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3965 dyn_cast<IntrinsicInst>(CI)); 3966 return TTI.getIntrinsicInstrCost(CostAttrs, 3967 TargetTransformInfo::TCK_RecipThroughput); 3968 } 3969 3970 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3971 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3972 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3973 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3974 } 3975 3976 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3977 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3978 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3979 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3980 } 3981 3982 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3983 // For every instruction `I` in MinBWs, truncate the operands, create a 3984 // truncated version of `I` and reextend its result. InstCombine runs 3985 // later and will remove any ext/trunc pairs. 3986 SmallPtrSet<Value *, 4> Erased; 3987 for (const auto &KV : Cost->getMinimalBitwidths()) { 3988 // If the value wasn't vectorized, we must maintain the original scalar 3989 // type. The absence of the value from State indicates that it 3990 // wasn't vectorized. 3991 // FIXME: Should not rely on getVPValue at this point. 3992 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3993 if (!State.hasAnyVectorValue(Def)) 3994 continue; 3995 for (unsigned Part = 0; Part < UF; ++Part) { 3996 Value *I = State.get(Def, Part); 3997 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3998 continue; 3999 Type *OriginalTy = I->getType(); 4000 Type *ScalarTruncatedTy = 4001 IntegerType::get(OriginalTy->getContext(), KV.second); 4002 auto *TruncatedTy = VectorType::get( 4003 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4004 if (TruncatedTy == OriginalTy) 4005 continue; 4006 4007 IRBuilder<> B(cast<Instruction>(I)); 4008 auto ShrinkOperand = [&](Value *V) -> Value * { 4009 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4010 if (ZI->getSrcTy() == TruncatedTy) 4011 return ZI->getOperand(0); 4012 return B.CreateZExtOrTrunc(V, TruncatedTy); 4013 }; 4014 4015 // The actual instruction modification depends on the instruction type, 4016 // unfortunately. 4017 Value *NewI = nullptr; 4018 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4019 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4020 ShrinkOperand(BO->getOperand(1))); 4021 4022 // Any wrapping introduced by shrinking this operation shouldn't be 4023 // considered undefined behavior. So, we can't unconditionally copy 4024 // arithmetic wrapping flags to NewI. 4025 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4026 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4027 NewI = 4028 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4029 ShrinkOperand(CI->getOperand(1))); 4030 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4031 NewI = B.CreateSelect(SI->getCondition(), 4032 ShrinkOperand(SI->getTrueValue()), 4033 ShrinkOperand(SI->getFalseValue())); 4034 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4035 switch (CI->getOpcode()) { 4036 default: 4037 llvm_unreachable("Unhandled cast!"); 4038 case Instruction::Trunc: 4039 NewI = ShrinkOperand(CI->getOperand(0)); 4040 break; 4041 case Instruction::SExt: 4042 NewI = B.CreateSExtOrTrunc( 4043 CI->getOperand(0), 4044 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4045 break; 4046 case Instruction::ZExt: 4047 NewI = B.CreateZExtOrTrunc( 4048 CI->getOperand(0), 4049 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4050 break; 4051 } 4052 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4053 auto Elements0 = 4054 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4055 auto *O0 = B.CreateZExtOrTrunc( 4056 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4057 auto Elements1 = 4058 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4059 auto *O1 = B.CreateZExtOrTrunc( 4060 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4061 4062 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4063 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4064 // Don't do anything with the operands, just extend the result. 4065 continue; 4066 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4067 auto Elements = 4068 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4069 auto *O0 = B.CreateZExtOrTrunc( 4070 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4071 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4072 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4073 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4074 auto Elements = 4075 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4076 auto *O0 = B.CreateZExtOrTrunc( 4077 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4078 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4079 } else { 4080 // If we don't know what to do, be conservative and don't do anything. 4081 continue; 4082 } 4083 4084 // Lastly, extend the result. 4085 NewI->takeName(cast<Instruction>(I)); 4086 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4087 I->replaceAllUsesWith(Res); 4088 cast<Instruction>(I)->eraseFromParent(); 4089 Erased.insert(I); 4090 State.reset(Def, Res, Part); 4091 } 4092 } 4093 4094 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4095 for (const auto &KV : Cost->getMinimalBitwidths()) { 4096 // If the value wasn't vectorized, we must maintain the original scalar 4097 // type. The absence of the value from State indicates that it 4098 // wasn't vectorized. 4099 // FIXME: Should not rely on getVPValue at this point. 4100 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4101 if (!State.hasAnyVectorValue(Def)) 4102 continue; 4103 for (unsigned Part = 0; Part < UF; ++Part) { 4104 Value *I = State.get(Def, Part); 4105 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4106 if (Inst && Inst->use_empty()) { 4107 Value *NewI = Inst->getOperand(0); 4108 Inst->eraseFromParent(); 4109 State.reset(Def, NewI, Part); 4110 } 4111 } 4112 } 4113 } 4114 4115 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4116 // Insert truncates and extends for any truncated instructions as hints to 4117 // InstCombine. 4118 if (VF.isVector()) 4119 truncateToMinimalBitwidths(State); 4120 4121 // Fix widened non-induction PHIs by setting up the PHI operands. 4122 if (OrigPHIsToFix.size()) { 4123 assert(EnableVPlanNativePath && 4124 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4125 fixNonInductionPHIs(State); 4126 } 4127 4128 // At this point every instruction in the original loop is widened to a 4129 // vector form. Now we need to fix the recurrences in the loop. These PHI 4130 // nodes are currently empty because we did not want to introduce cycles. 4131 // This is the second stage of vectorizing recurrences. 4132 fixCrossIterationPHIs(State); 4133 4134 // Forget the original basic block. 4135 PSE.getSE()->forgetLoop(OrigLoop); 4136 4137 // If we inserted an edge from the middle block to the unique exit block, 4138 // update uses outside the loop (phis) to account for the newly inserted 4139 // edge. 4140 if (!Cost->requiresScalarEpilogue(VF)) { 4141 // Fix-up external users of the induction variables. 4142 for (auto &Entry : Legal->getInductionVars()) 4143 fixupIVUsers(Entry.first, Entry.second, 4144 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4145 IVEndValues[Entry.first], LoopMiddleBlock); 4146 4147 fixLCSSAPHIs(State); 4148 } 4149 4150 for (Instruction *PI : PredicatedInstructions) 4151 sinkScalarOperands(&*PI); 4152 4153 // Remove redundant induction instructions. 4154 cse(LoopVectorBody); 4155 4156 // Set/update profile weights for the vector and remainder loops as original 4157 // loop iterations are now distributed among them. Note that original loop 4158 // represented by LoopScalarBody becomes remainder loop after vectorization. 4159 // 4160 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4161 // end up getting slightly roughened result but that should be OK since 4162 // profile is not inherently precise anyway. Note also possible bypass of 4163 // vector code caused by legality checks is ignored, assigning all the weight 4164 // to the vector loop, optimistically. 4165 // 4166 // For scalable vectorization we can't know at compile time how many iterations 4167 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4168 // vscale of '1'. 4169 setProfileInfoAfterUnrolling( 4170 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4171 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4172 } 4173 4174 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4175 // In order to support recurrences we need to be able to vectorize Phi nodes. 4176 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4177 // stage #2: We now need to fix the recurrences by adding incoming edges to 4178 // the currently empty PHI nodes. At this point every instruction in the 4179 // original loop is widened to a vector form so we can use them to construct 4180 // the incoming edges. 4181 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4182 for (VPRecipeBase &R : Header->phis()) { 4183 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4184 fixReduction(ReductionPhi, State); 4185 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4186 fixFirstOrderRecurrence(FOR, State); 4187 } 4188 } 4189 4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4191 VPTransformState &State) { 4192 // This is the second phase of vectorizing first-order recurrences. An 4193 // overview of the transformation is described below. Suppose we have the 4194 // following loop. 4195 // 4196 // for (int i = 0; i < n; ++i) 4197 // b[i] = a[i] - a[i - 1]; 4198 // 4199 // There is a first-order recurrence on "a". For this loop, the shorthand 4200 // scalar IR looks like: 4201 // 4202 // scalar.ph: 4203 // s_init = a[-1] 4204 // br scalar.body 4205 // 4206 // scalar.body: 4207 // i = phi [0, scalar.ph], [i+1, scalar.body] 4208 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4209 // s2 = a[i] 4210 // b[i] = s2 - s1 4211 // br cond, scalar.body, ... 4212 // 4213 // In this example, s1 is a recurrence because it's value depends on the 4214 // previous iteration. In the first phase of vectorization, we created a 4215 // vector phi v1 for s1. We now complete the vectorization and produce the 4216 // shorthand vector IR shown below (for VF = 4, UF = 1). 4217 // 4218 // vector.ph: 4219 // v_init = vector(..., ..., ..., a[-1]) 4220 // br vector.body 4221 // 4222 // vector.body 4223 // i = phi [0, vector.ph], [i+4, vector.body] 4224 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4225 // v2 = a[i, i+1, i+2, i+3]; 4226 // v3 = vector(v1(3), v2(0, 1, 2)) 4227 // b[i, i+1, i+2, i+3] = v2 - v3 4228 // br cond, vector.body, middle.block 4229 // 4230 // middle.block: 4231 // x = v2(3) 4232 // br scalar.ph 4233 // 4234 // scalar.ph: 4235 // s_init = phi [x, middle.block], [a[-1], otherwise] 4236 // br scalar.body 4237 // 4238 // After execution completes the vector loop, we extract the next value of 4239 // the recurrence (x) to use as the initial value in the scalar loop. 4240 4241 // Extract the last vector element in the middle block. This will be the 4242 // initial value for the recurrence when jumping to the scalar loop. 4243 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4244 Value *Incoming = State.get(PreviousDef, UF - 1); 4245 auto *ExtractForScalar = Incoming; 4246 auto *IdxTy = Builder.getInt32Ty(); 4247 if (VF.isVector()) { 4248 auto *One = ConstantInt::get(IdxTy, 1); 4249 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4250 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4251 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4252 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4253 "vector.recur.extract"); 4254 } 4255 // Extract the second last element in the middle block if the 4256 // Phi is used outside the loop. We need to extract the phi itself 4257 // and not the last element (the phi update in the current iteration). This 4258 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4259 // when the scalar loop is not run at all. 4260 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4261 if (VF.isVector()) { 4262 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4263 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4264 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4265 Incoming, Idx, "vector.recur.extract.for.phi"); 4266 } else if (UF > 1) 4267 // When loop is unrolled without vectorizing, initialize 4268 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4269 // of `Incoming`. This is analogous to the vectorized case above: extracting 4270 // the second last element when VF > 1. 4271 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4272 4273 // Fix the initial value of the original recurrence in the scalar loop. 4274 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4275 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4276 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4277 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4278 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4279 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4280 Start->addIncoming(Incoming, BB); 4281 } 4282 4283 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4284 Phi->setName("scalar.recur"); 4285 4286 // Finally, fix users of the recurrence outside the loop. The users will need 4287 // either the last value of the scalar recurrence or the last value of the 4288 // vector recurrence we extracted in the middle block. Since the loop is in 4289 // LCSSA form, we just need to find all the phi nodes for the original scalar 4290 // recurrence in the exit block, and then add an edge for the middle block. 4291 // Note that LCSSA does not imply single entry when the original scalar loop 4292 // had multiple exiting edges (as we always run the last iteration in the 4293 // scalar epilogue); in that case, there is no edge from middle to exit and 4294 // and thus no phis which needed updated. 4295 if (!Cost->requiresScalarEpilogue(VF)) 4296 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4297 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4298 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4299 } 4300 4301 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4302 VPTransformState &State) { 4303 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4304 // Get it's reduction variable descriptor. 4305 assert(Legal->isReductionVariable(OrigPhi) && 4306 "Unable to find the reduction variable"); 4307 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4308 4309 RecurKind RK = RdxDesc.getRecurrenceKind(); 4310 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4311 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4312 setDebugLocFromInst(ReductionStartValue); 4313 4314 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4315 // This is the vector-clone of the value that leaves the loop. 4316 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4317 4318 // Wrap flags are in general invalid after vectorization, clear them. 4319 clearReductionWrapFlags(RdxDesc, State); 4320 4321 // Before each round, move the insertion point right between 4322 // the PHIs and the values we are going to write. 4323 // This allows us to write both PHINodes and the extractelement 4324 // instructions. 4325 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4326 4327 setDebugLocFromInst(LoopExitInst); 4328 4329 Type *PhiTy = OrigPhi->getType(); 4330 // If tail is folded by masking, the vector value to leave the loop should be 4331 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4332 // instead of the former. For an inloop reduction the reduction will already 4333 // be predicated, and does not need to be handled here. 4334 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4335 for (unsigned Part = 0; Part < UF; ++Part) { 4336 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4337 Value *Sel = nullptr; 4338 for (User *U : VecLoopExitInst->users()) { 4339 if (isa<SelectInst>(U)) { 4340 assert(!Sel && "Reduction exit feeding two selects"); 4341 Sel = U; 4342 } else 4343 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4344 } 4345 assert(Sel && "Reduction exit feeds no select"); 4346 State.reset(LoopExitInstDef, Sel, Part); 4347 4348 // If the target can create a predicated operator for the reduction at no 4349 // extra cost in the loop (for example a predicated vadd), it can be 4350 // cheaper for the select to remain in the loop than be sunk out of it, 4351 // and so use the select value for the phi instead of the old 4352 // LoopExitValue. 4353 if (PreferPredicatedReductionSelect || 4354 TTI->preferPredicatedReductionSelect( 4355 RdxDesc.getOpcode(), PhiTy, 4356 TargetTransformInfo::ReductionFlags())) { 4357 auto *VecRdxPhi = 4358 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4359 VecRdxPhi->setIncomingValueForBlock( 4360 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4361 } 4362 } 4363 } 4364 4365 // If the vector reduction can be performed in a smaller type, we truncate 4366 // then extend the loop exit value to enable InstCombine to evaluate the 4367 // entire expression in the smaller type. 4368 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4369 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4370 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4371 Builder.SetInsertPoint( 4372 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4373 VectorParts RdxParts(UF); 4374 for (unsigned Part = 0; Part < UF; ++Part) { 4375 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4376 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4377 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4378 : Builder.CreateZExt(Trunc, VecTy); 4379 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4380 UI != RdxParts[Part]->user_end();) 4381 if (*UI != Trunc) { 4382 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4383 RdxParts[Part] = Extnd; 4384 } else { 4385 ++UI; 4386 } 4387 } 4388 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4389 for (unsigned Part = 0; Part < UF; ++Part) { 4390 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4391 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4392 } 4393 } 4394 4395 // Reduce all of the unrolled parts into a single vector. 4396 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4397 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4398 4399 // The middle block terminator has already been assigned a DebugLoc here (the 4400 // OrigLoop's single latch terminator). We want the whole middle block to 4401 // appear to execute on this line because: (a) it is all compiler generated, 4402 // (b) these instructions are always executed after evaluating the latch 4403 // conditional branch, and (c) other passes may add new predecessors which 4404 // terminate on this line. This is the easiest way to ensure we don't 4405 // accidentally cause an extra step back into the loop while debugging. 4406 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4407 if (PhiR->isOrdered()) 4408 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4409 else { 4410 // Floating-point operations should have some FMF to enable the reduction. 4411 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4412 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4413 for (unsigned Part = 1; Part < UF; ++Part) { 4414 Value *RdxPart = State.get(LoopExitInstDef, Part); 4415 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4416 ReducedPartRdx = Builder.CreateBinOp( 4417 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4418 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4419 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4420 ReducedPartRdx, RdxPart); 4421 else 4422 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4423 } 4424 } 4425 4426 // Create the reduction after the loop. Note that inloop reductions create the 4427 // target reduction in the loop using a Reduction recipe. 4428 if (VF.isVector() && !PhiR->isInLoop()) { 4429 ReducedPartRdx = 4430 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4431 // If the reduction can be performed in a smaller type, we need to extend 4432 // the reduction to the wider type before we branch to the original loop. 4433 if (PhiTy != RdxDesc.getRecurrenceType()) 4434 ReducedPartRdx = RdxDesc.isSigned() 4435 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4436 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4437 } 4438 4439 // Create a phi node that merges control-flow from the backedge-taken check 4440 // block and the middle block. 4441 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4442 LoopScalarPreHeader->getTerminator()); 4443 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4444 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4445 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4446 4447 // Now, we need to fix the users of the reduction variable 4448 // inside and outside of the scalar remainder loop. 4449 4450 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4451 // in the exit blocks. See comment on analogous loop in 4452 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4453 if (!Cost->requiresScalarEpilogue(VF)) 4454 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4455 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4456 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4457 4458 // Fix the scalar loop reduction variable with the incoming reduction sum 4459 // from the vector body and from the backedge value. 4460 int IncomingEdgeBlockIdx = 4461 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4462 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4463 // Pick the other block. 4464 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4465 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4466 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4467 } 4468 4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4470 VPTransformState &State) { 4471 RecurKind RK = RdxDesc.getRecurrenceKind(); 4472 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4473 return; 4474 4475 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4476 assert(LoopExitInstr && "null loop exit instruction"); 4477 SmallVector<Instruction *, 8> Worklist; 4478 SmallPtrSet<Instruction *, 8> Visited; 4479 Worklist.push_back(LoopExitInstr); 4480 Visited.insert(LoopExitInstr); 4481 4482 while (!Worklist.empty()) { 4483 Instruction *Cur = Worklist.pop_back_val(); 4484 if (isa<OverflowingBinaryOperator>(Cur)) 4485 for (unsigned Part = 0; Part < UF; ++Part) { 4486 // FIXME: Should not rely on getVPValue at this point. 4487 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4488 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4489 } 4490 4491 for (User *U : Cur->users()) { 4492 Instruction *UI = cast<Instruction>(U); 4493 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4494 Visited.insert(UI).second) 4495 Worklist.push_back(UI); 4496 } 4497 } 4498 } 4499 4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4501 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4502 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4503 // Some phis were already hand updated by the reduction and recurrence 4504 // code above, leave them alone. 4505 continue; 4506 4507 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4508 // Non-instruction incoming values will have only one value. 4509 4510 VPLane Lane = VPLane::getFirstLane(); 4511 if (isa<Instruction>(IncomingValue) && 4512 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4513 VF)) 4514 Lane = VPLane::getLastLaneForVF(VF); 4515 4516 // Can be a loop invariant incoming value or the last scalar value to be 4517 // extracted from the vectorized loop. 4518 // FIXME: Should not rely on getVPValue at this point. 4519 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4520 Value *lastIncomingValue = 4521 OrigLoop->isLoopInvariant(IncomingValue) 4522 ? IncomingValue 4523 : State.get(State.Plan->getVPValue(IncomingValue, true), 4524 VPIteration(UF - 1, Lane)); 4525 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4526 } 4527 } 4528 4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4530 // The basic block and loop containing the predicated instruction. 4531 auto *PredBB = PredInst->getParent(); 4532 auto *VectorLoop = LI->getLoopFor(PredBB); 4533 4534 // Initialize a worklist with the operands of the predicated instruction. 4535 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4536 4537 // Holds instructions that we need to analyze again. An instruction may be 4538 // reanalyzed if we don't yet know if we can sink it or not. 4539 SmallVector<Instruction *, 8> InstsToReanalyze; 4540 4541 // Returns true if a given use occurs in the predicated block. Phi nodes use 4542 // their operands in their corresponding predecessor blocks. 4543 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4544 auto *I = cast<Instruction>(U.getUser()); 4545 BasicBlock *BB = I->getParent(); 4546 if (auto *Phi = dyn_cast<PHINode>(I)) 4547 BB = Phi->getIncomingBlock( 4548 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4549 return BB == PredBB; 4550 }; 4551 4552 // Iteratively sink the scalarized operands of the predicated instruction 4553 // into the block we created for it. When an instruction is sunk, it's 4554 // operands are then added to the worklist. The algorithm ends after one pass 4555 // through the worklist doesn't sink a single instruction. 4556 bool Changed; 4557 do { 4558 // Add the instructions that need to be reanalyzed to the worklist, and 4559 // reset the changed indicator. 4560 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4561 InstsToReanalyze.clear(); 4562 Changed = false; 4563 4564 while (!Worklist.empty()) { 4565 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4566 4567 // We can't sink an instruction if it is a phi node, is not in the loop, 4568 // or may have side effects. 4569 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4570 I->mayHaveSideEffects()) 4571 continue; 4572 4573 // If the instruction is already in PredBB, check if we can sink its 4574 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4575 // sinking the scalar instruction I, hence it appears in PredBB; but it 4576 // may have failed to sink I's operands (recursively), which we try 4577 // (again) here. 4578 if (I->getParent() == PredBB) { 4579 Worklist.insert(I->op_begin(), I->op_end()); 4580 continue; 4581 } 4582 4583 // It's legal to sink the instruction if all its uses occur in the 4584 // predicated block. Otherwise, there's nothing to do yet, and we may 4585 // need to reanalyze the instruction. 4586 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4587 InstsToReanalyze.push_back(I); 4588 continue; 4589 } 4590 4591 // Move the instruction to the beginning of the predicated block, and add 4592 // it's operands to the worklist. 4593 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4594 Worklist.insert(I->op_begin(), I->op_end()); 4595 4596 // The sinking may have enabled other instructions to be sunk, so we will 4597 // need to iterate. 4598 Changed = true; 4599 } 4600 } while (Changed); 4601 } 4602 4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4604 for (PHINode *OrigPhi : OrigPHIsToFix) { 4605 VPWidenPHIRecipe *VPPhi = 4606 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4607 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4608 // Make sure the builder has a valid insert point. 4609 Builder.SetInsertPoint(NewPhi); 4610 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4611 VPValue *Inc = VPPhi->getIncomingValue(i); 4612 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4613 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4614 } 4615 } 4616 } 4617 4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4619 return Cost->useOrderedReductions(RdxDesc); 4620 } 4621 4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4623 VPUser &Operands, unsigned UF, 4624 ElementCount VF, bool IsPtrLoopInvariant, 4625 SmallBitVector &IsIndexLoopInvariant, 4626 VPTransformState &State) { 4627 // Construct a vector GEP by widening the operands of the scalar GEP as 4628 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4629 // results in a vector of pointers when at least one operand of the GEP 4630 // is vector-typed. Thus, to keep the representation compact, we only use 4631 // vector-typed operands for loop-varying values. 4632 4633 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4634 // If we are vectorizing, but the GEP has only loop-invariant operands, 4635 // the GEP we build (by only using vector-typed operands for 4636 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4637 // produce a vector of pointers, we need to either arbitrarily pick an 4638 // operand to broadcast, or broadcast a clone of the original GEP. 4639 // Here, we broadcast a clone of the original. 4640 // 4641 // TODO: If at some point we decide to scalarize instructions having 4642 // loop-invariant operands, this special case will no longer be 4643 // required. We would add the scalarization decision to 4644 // collectLoopScalars() and teach getVectorValue() to broadcast 4645 // the lane-zero scalar value. 4646 auto *Clone = Builder.Insert(GEP->clone()); 4647 for (unsigned Part = 0; Part < UF; ++Part) { 4648 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4649 State.set(VPDef, EntryPart, Part); 4650 addMetadata(EntryPart, GEP); 4651 } 4652 } else { 4653 // If the GEP has at least one loop-varying operand, we are sure to 4654 // produce a vector of pointers. But if we are only unrolling, we want 4655 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4656 // produce with the code below will be scalar (if VF == 1) or vector 4657 // (otherwise). Note that for the unroll-only case, we still maintain 4658 // values in the vector mapping with initVector, as we do for other 4659 // instructions. 4660 for (unsigned Part = 0; Part < UF; ++Part) { 4661 // The pointer operand of the new GEP. If it's loop-invariant, we 4662 // won't broadcast it. 4663 auto *Ptr = IsPtrLoopInvariant 4664 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4665 : State.get(Operands.getOperand(0), Part); 4666 4667 // Collect all the indices for the new GEP. If any index is 4668 // loop-invariant, we won't broadcast it. 4669 SmallVector<Value *, 4> Indices; 4670 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4671 VPValue *Operand = Operands.getOperand(I); 4672 if (IsIndexLoopInvariant[I - 1]) 4673 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4674 else 4675 Indices.push_back(State.get(Operand, Part)); 4676 } 4677 4678 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4679 // but it should be a vector, otherwise. 4680 auto *NewGEP = 4681 GEP->isInBounds() 4682 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4683 Indices) 4684 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4685 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4686 "NewGEP is not a pointer vector"); 4687 State.set(VPDef, NewGEP, Part); 4688 addMetadata(NewGEP, GEP); 4689 } 4690 } 4691 } 4692 4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4694 VPWidenPHIRecipe *PhiR, 4695 VPTransformState &State) { 4696 PHINode *P = cast<PHINode>(PN); 4697 if (EnableVPlanNativePath) { 4698 // Currently we enter here in the VPlan-native path for non-induction 4699 // PHIs where all control flow is uniform. We simply widen these PHIs. 4700 // Create a vector phi with no operands - the vector phi operands will be 4701 // set at the end of vector code generation. 4702 Type *VecTy = (State.VF.isScalar()) 4703 ? PN->getType() 4704 : VectorType::get(PN->getType(), State.VF); 4705 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4706 State.set(PhiR, VecPhi, 0); 4707 OrigPHIsToFix.push_back(P); 4708 4709 return; 4710 } 4711 4712 assert(PN->getParent() == OrigLoop->getHeader() && 4713 "Non-header phis should have been handled elsewhere"); 4714 4715 // In order to support recurrences we need to be able to vectorize Phi nodes. 4716 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4717 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4718 // this value when we vectorize all of the instructions that use the PHI. 4719 4720 assert(!Legal->isReductionVariable(P) && 4721 "reductions should be handled elsewhere"); 4722 4723 setDebugLocFromInst(P); 4724 4725 // This PHINode must be an induction variable. 4726 // Make sure that we know about it. 4727 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4728 4729 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4730 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4731 4732 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4733 // which can be found from the original scalar operations. 4734 switch (II.getKind()) { 4735 case InductionDescriptor::IK_NoInduction: 4736 llvm_unreachable("Unknown induction"); 4737 case InductionDescriptor::IK_IntInduction: 4738 case InductionDescriptor::IK_FpInduction: 4739 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4740 case InductionDescriptor::IK_PtrInduction: { 4741 // Handle the pointer induction variable case. 4742 assert(P->getType()->isPointerTy() && "Unexpected type."); 4743 4744 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4745 // This is the normalized GEP that starts counting at zero. 4746 Value *PtrInd = 4747 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4748 // Determine the number of scalars we need to generate for each unroll 4749 // iteration. If the instruction is uniform, we only need to generate the 4750 // first lane. Otherwise, we generate all VF values. 4751 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4752 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4753 4754 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4755 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4756 if (NeedsVectorIndex) { 4757 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4758 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4759 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4760 } 4761 4762 for (unsigned Part = 0; Part < UF; ++Part) { 4763 Value *PartStart = createStepForVF( 4764 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4765 4766 if (NeedsVectorIndex) { 4767 // Here we cache the whole vector, which means we can support the 4768 // extraction of any lane. However, in some cases the extractelement 4769 // instruction that is generated for scalar uses of this vector (e.g. 4770 // a load instruction) is not folded away. Therefore we still 4771 // calculate values for the first n lanes to avoid redundant moves 4772 // (when extracting the 0th element) and to produce scalar code (i.e. 4773 // additional add/gep instructions instead of expensive extractelement 4774 // instructions) when extracting higher-order elements. 4775 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4776 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4777 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4778 Value *SclrGep = 4779 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4780 SclrGep->setName("next.gep"); 4781 State.set(PhiR, SclrGep, Part); 4782 } 4783 4784 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4785 Value *Idx = Builder.CreateAdd( 4786 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4787 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4788 Value *SclrGep = 4789 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4790 SclrGep->setName("next.gep"); 4791 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4792 } 4793 } 4794 return; 4795 } 4796 assert(isa<SCEVConstant>(II.getStep()) && 4797 "Induction step not a SCEV constant!"); 4798 Type *PhiType = II.getStep()->getType(); 4799 4800 // Build a pointer phi 4801 Value *ScalarStartValue = II.getStartValue(); 4802 Type *ScStValueType = ScalarStartValue->getType(); 4803 PHINode *NewPointerPhi = 4804 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4805 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4806 4807 // A pointer induction, performed by using a gep 4808 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4809 Instruction *InductionLoc = LoopLatch->getTerminator(); 4810 const SCEV *ScalarStep = II.getStep(); 4811 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4812 Value *ScalarStepValue = 4813 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4814 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4815 Value *NumUnrolledElems = 4816 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4817 Value *InductionGEP = GetElementPtrInst::Create( 4818 II.getElementType(), NewPointerPhi, 4819 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4820 InductionLoc); 4821 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4822 4823 // Create UF many actual address geps that use the pointer 4824 // phi as base and a vectorized version of the step value 4825 // (<step*0, ..., step*N>) as offset. 4826 for (unsigned Part = 0; Part < State.UF; ++Part) { 4827 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4828 Value *StartOffsetScalar = 4829 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4830 Value *StartOffset = 4831 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4832 // Create a vector of consecutive numbers from zero to VF. 4833 StartOffset = 4834 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4835 4836 Value *GEP = Builder.CreateGEP( 4837 II.getElementType(), NewPointerPhi, 4838 Builder.CreateMul( 4839 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4840 "vector.gep")); 4841 State.set(PhiR, GEP, Part); 4842 } 4843 } 4844 } 4845 } 4846 4847 /// A helper function for checking whether an integer division-related 4848 /// instruction may divide by zero (in which case it must be predicated if 4849 /// executed conditionally in the scalar code). 4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4851 /// Non-zero divisors that are non compile-time constants will not be 4852 /// converted into multiplication, so we will still end up scalarizing 4853 /// the division, but can do so w/o predication. 4854 static bool mayDivideByZero(Instruction &I) { 4855 assert((I.getOpcode() == Instruction::UDiv || 4856 I.getOpcode() == Instruction::SDiv || 4857 I.getOpcode() == Instruction::URem || 4858 I.getOpcode() == Instruction::SRem) && 4859 "Unexpected instruction"); 4860 Value *Divisor = I.getOperand(1); 4861 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4862 return !CInt || CInt->isZero(); 4863 } 4864 4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4866 VPUser &User, 4867 VPTransformState &State) { 4868 switch (I.getOpcode()) { 4869 case Instruction::Call: 4870 case Instruction::Br: 4871 case Instruction::PHI: 4872 case Instruction::GetElementPtr: 4873 case Instruction::Select: 4874 llvm_unreachable("This instruction is handled by a different recipe."); 4875 case Instruction::UDiv: 4876 case Instruction::SDiv: 4877 case Instruction::SRem: 4878 case Instruction::URem: 4879 case Instruction::Add: 4880 case Instruction::FAdd: 4881 case Instruction::Sub: 4882 case Instruction::FSub: 4883 case Instruction::FNeg: 4884 case Instruction::Mul: 4885 case Instruction::FMul: 4886 case Instruction::FDiv: 4887 case Instruction::FRem: 4888 case Instruction::Shl: 4889 case Instruction::LShr: 4890 case Instruction::AShr: 4891 case Instruction::And: 4892 case Instruction::Or: 4893 case Instruction::Xor: { 4894 // Just widen unops and binops. 4895 setDebugLocFromInst(&I); 4896 4897 for (unsigned Part = 0; Part < UF; ++Part) { 4898 SmallVector<Value *, 2> Ops; 4899 for (VPValue *VPOp : User.operands()) 4900 Ops.push_back(State.get(VPOp, Part)); 4901 4902 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4903 4904 if (auto *VecOp = dyn_cast<Instruction>(V)) 4905 VecOp->copyIRFlags(&I); 4906 4907 // Use this vector value for all users of the original instruction. 4908 State.set(Def, V, Part); 4909 addMetadata(V, &I); 4910 } 4911 4912 break; 4913 } 4914 case Instruction::ICmp: 4915 case Instruction::FCmp: { 4916 // Widen compares. Generate vector compares. 4917 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4918 auto *Cmp = cast<CmpInst>(&I); 4919 setDebugLocFromInst(Cmp); 4920 for (unsigned Part = 0; Part < UF; ++Part) { 4921 Value *A = State.get(User.getOperand(0), Part); 4922 Value *B = State.get(User.getOperand(1), Part); 4923 Value *C = nullptr; 4924 if (FCmp) { 4925 // Propagate fast math flags. 4926 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4927 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4928 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4929 } else { 4930 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4931 } 4932 State.set(Def, C, Part); 4933 addMetadata(C, &I); 4934 } 4935 4936 break; 4937 } 4938 4939 case Instruction::ZExt: 4940 case Instruction::SExt: 4941 case Instruction::FPToUI: 4942 case Instruction::FPToSI: 4943 case Instruction::FPExt: 4944 case Instruction::PtrToInt: 4945 case Instruction::IntToPtr: 4946 case Instruction::SIToFP: 4947 case Instruction::UIToFP: 4948 case Instruction::Trunc: 4949 case Instruction::FPTrunc: 4950 case Instruction::BitCast: { 4951 auto *CI = cast<CastInst>(&I); 4952 setDebugLocFromInst(CI); 4953 4954 /// Vectorize casts. 4955 Type *DestTy = 4956 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4957 4958 for (unsigned Part = 0; Part < UF; ++Part) { 4959 Value *A = State.get(User.getOperand(0), Part); 4960 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4961 State.set(Def, Cast, Part); 4962 addMetadata(Cast, &I); 4963 } 4964 break; 4965 } 4966 default: 4967 // This instruction is not vectorized by simple widening. 4968 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4969 llvm_unreachable("Unhandled instruction!"); 4970 } // end of switch. 4971 } 4972 4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4974 VPUser &ArgOperands, 4975 VPTransformState &State) { 4976 assert(!isa<DbgInfoIntrinsic>(I) && 4977 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4978 setDebugLocFromInst(&I); 4979 4980 Module *M = I.getParent()->getParent()->getParent(); 4981 auto *CI = cast<CallInst>(&I); 4982 4983 SmallVector<Type *, 4> Tys; 4984 for (Value *ArgOperand : CI->args()) 4985 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4986 4987 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4988 4989 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4990 // version of the instruction. 4991 // Is it beneficial to perform intrinsic call compared to lib call? 4992 bool NeedToScalarize = false; 4993 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4994 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4995 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4996 assert((UseVectorIntrinsic || !NeedToScalarize) && 4997 "Instruction should be scalarized elsewhere."); 4998 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4999 "Either the intrinsic cost or vector call cost must be valid"); 5000 5001 for (unsigned Part = 0; Part < UF; ++Part) { 5002 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5003 SmallVector<Value *, 4> Args; 5004 for (auto &I : enumerate(ArgOperands.operands())) { 5005 // Some intrinsics have a scalar argument - don't replace it with a 5006 // vector. 5007 Value *Arg; 5008 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5009 Arg = State.get(I.value(), Part); 5010 else { 5011 Arg = State.get(I.value(), VPIteration(0, 0)); 5012 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5013 TysForDecl.push_back(Arg->getType()); 5014 } 5015 Args.push_back(Arg); 5016 } 5017 5018 Function *VectorF; 5019 if (UseVectorIntrinsic) { 5020 // Use vector version of the intrinsic. 5021 if (VF.isVector()) 5022 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5023 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5024 assert(VectorF && "Can't retrieve vector intrinsic."); 5025 } else { 5026 // Use vector version of the function call. 5027 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5028 #ifndef NDEBUG 5029 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5030 "Can't create vector function."); 5031 #endif 5032 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5033 } 5034 SmallVector<OperandBundleDef, 1> OpBundles; 5035 CI->getOperandBundlesAsDefs(OpBundles); 5036 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5037 5038 if (isa<FPMathOperator>(V)) 5039 V->copyFastMathFlags(CI); 5040 5041 State.set(Def, V, Part); 5042 addMetadata(V, &I); 5043 } 5044 } 5045 5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5047 VPUser &Operands, 5048 bool InvariantCond, 5049 VPTransformState &State) { 5050 setDebugLocFromInst(&I); 5051 5052 // The condition can be loop invariant but still defined inside the 5053 // loop. This means that we can't just use the original 'cond' value. 5054 // We have to take the 'vectorized' value and pick the first lane. 5055 // Instcombine will make this a no-op. 5056 auto *InvarCond = InvariantCond 5057 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5058 : nullptr; 5059 5060 for (unsigned Part = 0; Part < UF; ++Part) { 5061 Value *Cond = 5062 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5063 Value *Op0 = State.get(Operands.getOperand(1), Part); 5064 Value *Op1 = State.get(Operands.getOperand(2), Part); 5065 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5066 State.set(VPDef, Sel, Part); 5067 addMetadata(Sel, &I); 5068 } 5069 } 5070 5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5072 // We should not collect Scalars more than once per VF. Right now, this 5073 // function is called from collectUniformsAndScalars(), which already does 5074 // this check. Collecting Scalars for VF=1 does not make any sense. 5075 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5076 "This function should not be visited twice for the same VF"); 5077 5078 SmallSetVector<Instruction *, 8> Worklist; 5079 5080 // These sets are used to seed the analysis with pointers used by memory 5081 // accesses that will remain scalar. 5082 SmallSetVector<Instruction *, 8> ScalarPtrs; 5083 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5084 auto *Latch = TheLoop->getLoopLatch(); 5085 5086 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5087 // The pointer operands of loads and stores will be scalar as long as the 5088 // memory access is not a gather or scatter operation. The value operand of a 5089 // store will remain scalar if the store is scalarized. 5090 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5091 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5092 assert(WideningDecision != CM_Unknown && 5093 "Widening decision should be ready at this moment"); 5094 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5095 if (Ptr == Store->getValueOperand()) 5096 return WideningDecision == CM_Scalarize; 5097 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5098 "Ptr is neither a value or pointer operand"); 5099 return WideningDecision != CM_GatherScatter; 5100 }; 5101 5102 // A helper that returns true if the given value is a bitcast or 5103 // getelementptr instruction contained in the loop. 5104 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5105 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5106 isa<GetElementPtrInst>(V)) && 5107 !TheLoop->isLoopInvariant(V); 5108 }; 5109 5110 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5111 if (!isa<PHINode>(Ptr) || 5112 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5113 return false; 5114 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5115 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5116 return false; 5117 return isScalarUse(MemAccess, Ptr); 5118 }; 5119 5120 // A helper that evaluates a memory access's use of a pointer. If the 5121 // pointer is actually the pointer induction of a loop, it is being 5122 // inserted into Worklist. If the use will be a scalar use, and the 5123 // pointer is only used by memory accesses, we place the pointer in 5124 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5125 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5126 if (isScalarPtrInduction(MemAccess, Ptr)) { 5127 Worklist.insert(cast<Instruction>(Ptr)); 5128 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5129 << "\n"); 5130 5131 Instruction *Update = cast<Instruction>( 5132 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5133 5134 // If there is more than one user of Update (Ptr), we shouldn't assume it 5135 // will be scalar after vectorisation as other users of the instruction 5136 // may require widening. Otherwise, add it to ScalarPtrs. 5137 if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) { 5138 ScalarPtrs.insert(Update); 5139 return; 5140 } 5141 } 5142 // We only care about bitcast and getelementptr instructions contained in 5143 // the loop. 5144 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5145 return; 5146 5147 // If the pointer has already been identified as scalar (e.g., if it was 5148 // also identified as uniform), there's nothing to do. 5149 auto *I = cast<Instruction>(Ptr); 5150 if (Worklist.count(I)) 5151 return; 5152 5153 // If the use of the pointer will be a scalar use, and all users of the 5154 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5155 // place the pointer in PossibleNonScalarPtrs. 5156 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5157 return isa<LoadInst>(U) || isa<StoreInst>(U); 5158 })) 5159 ScalarPtrs.insert(I); 5160 else 5161 PossibleNonScalarPtrs.insert(I); 5162 }; 5163 5164 // We seed the scalars analysis with three classes of instructions: (1) 5165 // instructions marked uniform-after-vectorization and (2) bitcast, 5166 // getelementptr and (pointer) phi instructions used by memory accesses 5167 // requiring a scalar use. 5168 // 5169 // (1) Add to the worklist all instructions that have been identified as 5170 // uniform-after-vectorization. 5171 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5172 5173 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5174 // memory accesses requiring a scalar use. The pointer operands of loads and 5175 // stores will be scalar as long as the memory accesses is not a gather or 5176 // scatter operation. The value operand of a store will remain scalar if the 5177 // store is scalarized. 5178 for (auto *BB : TheLoop->blocks()) 5179 for (auto &I : *BB) { 5180 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5181 evaluatePtrUse(Load, Load->getPointerOperand()); 5182 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5183 evaluatePtrUse(Store, Store->getPointerOperand()); 5184 evaluatePtrUse(Store, Store->getValueOperand()); 5185 } 5186 } 5187 for (auto *I : ScalarPtrs) 5188 if (!PossibleNonScalarPtrs.count(I)) { 5189 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5190 Worklist.insert(I); 5191 } 5192 5193 // Insert the forced scalars. 5194 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5195 // induction variable when the PHI user is scalarized. 5196 auto ForcedScalar = ForcedScalars.find(VF); 5197 if (ForcedScalar != ForcedScalars.end()) 5198 for (auto *I : ForcedScalar->second) 5199 Worklist.insert(I); 5200 5201 // Expand the worklist by looking through any bitcasts and getelementptr 5202 // instructions we've already identified as scalar. This is similar to the 5203 // expansion step in collectLoopUniforms(); however, here we're only 5204 // expanding to include additional bitcasts and getelementptr instructions. 5205 unsigned Idx = 0; 5206 while (Idx != Worklist.size()) { 5207 Instruction *Dst = Worklist[Idx++]; 5208 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5209 continue; 5210 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5211 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5212 auto *J = cast<Instruction>(U); 5213 return !TheLoop->contains(J) || Worklist.count(J) || 5214 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5215 isScalarUse(J, Src)); 5216 })) { 5217 Worklist.insert(Src); 5218 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5219 } 5220 } 5221 5222 // An induction variable will remain scalar if all users of the induction 5223 // variable and induction variable update remain scalar. 5224 for (auto &Induction : Legal->getInductionVars()) { 5225 auto *Ind = Induction.first; 5226 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5227 5228 // If tail-folding is applied, the primary induction variable will be used 5229 // to feed a vector compare. 5230 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5231 continue; 5232 5233 // Determine if all users of the induction variable are scalar after 5234 // vectorization. 5235 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5236 auto *I = cast<Instruction>(U); 5237 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5238 }); 5239 if (!ScalarInd) 5240 continue; 5241 5242 // Determine if all users of the induction variable update instruction are 5243 // scalar after vectorization. 5244 auto ScalarIndUpdate = 5245 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5246 auto *I = cast<Instruction>(U); 5247 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5248 }); 5249 if (!ScalarIndUpdate) 5250 continue; 5251 5252 // The induction variable and its update instruction will remain scalar. 5253 Worklist.insert(Ind); 5254 Worklist.insert(IndUpdate); 5255 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5256 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5257 << "\n"); 5258 } 5259 5260 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5261 } 5262 5263 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5264 if (!blockNeedsPredication(I->getParent())) 5265 return false; 5266 switch(I->getOpcode()) { 5267 default: 5268 break; 5269 case Instruction::Load: 5270 case Instruction::Store: { 5271 if (!Legal->isMaskRequired(I)) 5272 return false; 5273 auto *Ptr = getLoadStorePointerOperand(I); 5274 auto *Ty = getLoadStoreType(I); 5275 const Align Alignment = getLoadStoreAlignment(I); 5276 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5277 TTI.isLegalMaskedGather(Ty, Alignment)) 5278 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5279 TTI.isLegalMaskedScatter(Ty, Alignment)); 5280 } 5281 case Instruction::UDiv: 5282 case Instruction::SDiv: 5283 case Instruction::SRem: 5284 case Instruction::URem: 5285 return mayDivideByZero(*I); 5286 } 5287 return false; 5288 } 5289 5290 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5291 Instruction *I, ElementCount VF) { 5292 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5293 assert(getWideningDecision(I, VF) == CM_Unknown && 5294 "Decision should not be set yet."); 5295 auto *Group = getInterleavedAccessGroup(I); 5296 assert(Group && "Must have a group."); 5297 5298 // If the instruction's allocated size doesn't equal it's type size, it 5299 // requires padding and will be scalarized. 5300 auto &DL = I->getModule()->getDataLayout(); 5301 auto *ScalarTy = getLoadStoreType(I); 5302 if (hasIrregularType(ScalarTy, DL)) 5303 return false; 5304 5305 // Check if masking is required. 5306 // A Group may need masking for one of two reasons: it resides in a block that 5307 // needs predication, or it was decided to use masking to deal with gaps 5308 // (either a gap at the end of a load-access that may result in a speculative 5309 // load, or any gaps in a store-access). 5310 bool PredicatedAccessRequiresMasking = 5311 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5312 bool LoadAccessWithGapsRequiresEpilogMasking = 5313 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5314 !isScalarEpilogueAllowed(); 5315 bool StoreAccessWithGapsRequiresMasking = 5316 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5317 if (!PredicatedAccessRequiresMasking && 5318 !LoadAccessWithGapsRequiresEpilogMasking && 5319 !StoreAccessWithGapsRequiresMasking) 5320 return true; 5321 5322 // If masked interleaving is required, we expect that the user/target had 5323 // enabled it, because otherwise it either wouldn't have been created or 5324 // it should have been invalidated by the CostModel. 5325 assert(useMaskedInterleavedAccesses(TTI) && 5326 "Masked interleave-groups for predicated accesses are not enabled."); 5327 5328 if (Group->isReverse()) 5329 return false; 5330 5331 auto *Ty = getLoadStoreType(I); 5332 const Align Alignment = getLoadStoreAlignment(I); 5333 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5334 : TTI.isLegalMaskedStore(Ty, Alignment); 5335 } 5336 5337 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5338 Instruction *I, ElementCount VF) { 5339 // Get and ensure we have a valid memory instruction. 5340 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5341 5342 auto *Ptr = getLoadStorePointerOperand(I); 5343 auto *ScalarTy = getLoadStoreType(I); 5344 5345 // In order to be widened, the pointer should be consecutive, first of all. 5346 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5347 return false; 5348 5349 // If the instruction is a store located in a predicated block, it will be 5350 // scalarized. 5351 if (isScalarWithPredication(I)) 5352 return false; 5353 5354 // If the instruction's allocated size doesn't equal it's type size, it 5355 // requires padding and will be scalarized. 5356 auto &DL = I->getModule()->getDataLayout(); 5357 if (hasIrregularType(ScalarTy, DL)) 5358 return false; 5359 5360 return true; 5361 } 5362 5363 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5364 // We should not collect Uniforms more than once per VF. Right now, 5365 // this function is called from collectUniformsAndScalars(), which 5366 // already does this check. Collecting Uniforms for VF=1 does not make any 5367 // sense. 5368 5369 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5370 "This function should not be visited twice for the same VF"); 5371 5372 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5373 // not analyze again. Uniforms.count(VF) will return 1. 5374 Uniforms[VF].clear(); 5375 5376 // We now know that the loop is vectorizable! 5377 // Collect instructions inside the loop that will remain uniform after 5378 // vectorization. 5379 5380 // Global values, params and instructions outside of current loop are out of 5381 // scope. 5382 auto isOutOfScope = [&](Value *V) -> bool { 5383 Instruction *I = dyn_cast<Instruction>(V); 5384 return (!I || !TheLoop->contains(I)); 5385 }; 5386 5387 SetVector<Instruction *> Worklist; 5388 BasicBlock *Latch = TheLoop->getLoopLatch(); 5389 5390 // Instructions that are scalar with predication must not be considered 5391 // uniform after vectorization, because that would create an erroneous 5392 // replicating region where only a single instance out of VF should be formed. 5393 // TODO: optimize such seldom cases if found important, see PR40816. 5394 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5395 if (isOutOfScope(I)) { 5396 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5397 << *I << "\n"); 5398 return; 5399 } 5400 if (isScalarWithPredication(I)) { 5401 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5402 << *I << "\n"); 5403 return; 5404 } 5405 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5406 Worklist.insert(I); 5407 }; 5408 5409 // Start with the conditional branch. If the branch condition is an 5410 // instruction contained in the loop that is only used by the branch, it is 5411 // uniform. 5412 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5413 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5414 addToWorklistIfAllowed(Cmp); 5415 5416 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5417 InstWidening WideningDecision = getWideningDecision(I, VF); 5418 assert(WideningDecision != CM_Unknown && 5419 "Widening decision should be ready at this moment"); 5420 5421 // A uniform memory op is itself uniform. We exclude uniform stores 5422 // here as they demand the last lane, not the first one. 5423 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5424 assert(WideningDecision == CM_Scalarize); 5425 return true; 5426 } 5427 5428 return (WideningDecision == CM_Widen || 5429 WideningDecision == CM_Widen_Reverse || 5430 WideningDecision == CM_Interleave); 5431 }; 5432 5433 5434 // Returns true if Ptr is the pointer operand of a memory access instruction 5435 // I, and I is known to not require scalarization. 5436 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5437 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5438 }; 5439 5440 // Holds a list of values which are known to have at least one uniform use. 5441 // Note that there may be other uses which aren't uniform. A "uniform use" 5442 // here is something which only demands lane 0 of the unrolled iterations; 5443 // it does not imply that all lanes produce the same value (e.g. this is not 5444 // the usual meaning of uniform) 5445 SetVector<Value *> HasUniformUse; 5446 5447 // Scan the loop for instructions which are either a) known to have only 5448 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5449 for (auto *BB : TheLoop->blocks()) 5450 for (auto &I : *BB) { 5451 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5452 switch (II->getIntrinsicID()) { 5453 case Intrinsic::sideeffect: 5454 case Intrinsic::experimental_noalias_scope_decl: 5455 case Intrinsic::assume: 5456 case Intrinsic::lifetime_start: 5457 case Intrinsic::lifetime_end: 5458 if (TheLoop->hasLoopInvariantOperands(&I)) 5459 addToWorklistIfAllowed(&I); 5460 break; 5461 default: 5462 break; 5463 } 5464 } 5465 5466 // ExtractValue instructions must be uniform, because the operands are 5467 // known to be loop-invariant. 5468 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5469 assert(isOutOfScope(EVI->getAggregateOperand()) && 5470 "Expected aggregate value to be loop invariant"); 5471 addToWorklistIfAllowed(EVI); 5472 continue; 5473 } 5474 5475 // If there's no pointer operand, there's nothing to do. 5476 auto *Ptr = getLoadStorePointerOperand(&I); 5477 if (!Ptr) 5478 continue; 5479 5480 // A uniform memory op is itself uniform. We exclude uniform stores 5481 // here as they demand the last lane, not the first one. 5482 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5483 addToWorklistIfAllowed(&I); 5484 5485 if (isUniformDecision(&I, VF)) { 5486 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5487 HasUniformUse.insert(Ptr); 5488 } 5489 } 5490 5491 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5492 // demanding) users. Since loops are assumed to be in LCSSA form, this 5493 // disallows uses outside the loop as well. 5494 for (auto *V : HasUniformUse) { 5495 if (isOutOfScope(V)) 5496 continue; 5497 auto *I = cast<Instruction>(V); 5498 auto UsersAreMemAccesses = 5499 llvm::all_of(I->users(), [&](User *U) -> bool { 5500 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5501 }); 5502 if (UsersAreMemAccesses) 5503 addToWorklistIfAllowed(I); 5504 } 5505 5506 // Expand Worklist in topological order: whenever a new instruction 5507 // is added , its users should be already inside Worklist. It ensures 5508 // a uniform instruction will only be used by uniform instructions. 5509 unsigned idx = 0; 5510 while (idx != Worklist.size()) { 5511 Instruction *I = Worklist[idx++]; 5512 5513 for (auto OV : I->operand_values()) { 5514 // isOutOfScope operands cannot be uniform instructions. 5515 if (isOutOfScope(OV)) 5516 continue; 5517 // First order recurrence Phi's should typically be considered 5518 // non-uniform. 5519 auto *OP = dyn_cast<PHINode>(OV); 5520 if (OP && Legal->isFirstOrderRecurrence(OP)) 5521 continue; 5522 // If all the users of the operand are uniform, then add the 5523 // operand into the uniform worklist. 5524 auto *OI = cast<Instruction>(OV); 5525 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5526 auto *J = cast<Instruction>(U); 5527 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5528 })) 5529 addToWorklistIfAllowed(OI); 5530 } 5531 } 5532 5533 // For an instruction to be added into Worklist above, all its users inside 5534 // the loop should also be in Worklist. However, this condition cannot be 5535 // true for phi nodes that form a cyclic dependence. We must process phi 5536 // nodes separately. An induction variable will remain uniform if all users 5537 // of the induction variable and induction variable update remain uniform. 5538 // The code below handles both pointer and non-pointer induction variables. 5539 for (auto &Induction : Legal->getInductionVars()) { 5540 auto *Ind = Induction.first; 5541 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5542 5543 // Determine if all users of the induction variable are uniform after 5544 // vectorization. 5545 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5546 auto *I = cast<Instruction>(U); 5547 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5548 isVectorizedMemAccessUse(I, Ind); 5549 }); 5550 if (!UniformInd) 5551 continue; 5552 5553 // Determine if all users of the induction variable update instruction are 5554 // uniform after vectorization. 5555 auto UniformIndUpdate = 5556 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5557 auto *I = cast<Instruction>(U); 5558 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5559 isVectorizedMemAccessUse(I, IndUpdate); 5560 }); 5561 if (!UniformIndUpdate) 5562 continue; 5563 5564 // The induction variable and its update instruction will remain uniform. 5565 addToWorklistIfAllowed(Ind); 5566 addToWorklistIfAllowed(IndUpdate); 5567 } 5568 5569 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5570 } 5571 5572 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5573 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5574 5575 if (Legal->getRuntimePointerChecking()->Need) { 5576 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5577 "runtime pointer checks needed. Enable vectorization of this " 5578 "loop with '#pragma clang loop vectorize(enable)' when " 5579 "compiling with -Os/-Oz", 5580 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5581 return true; 5582 } 5583 5584 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5585 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5586 "runtime SCEV checks needed. Enable vectorization of this " 5587 "loop with '#pragma clang loop vectorize(enable)' when " 5588 "compiling with -Os/-Oz", 5589 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5590 return true; 5591 } 5592 5593 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5594 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5595 reportVectorizationFailure("Runtime stride check for small trip count", 5596 "runtime stride == 1 checks needed. Enable vectorization of " 5597 "this loop without such check by compiling with -Os/-Oz", 5598 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5599 return true; 5600 } 5601 5602 return false; 5603 } 5604 5605 ElementCount 5606 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5607 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5608 return ElementCount::getScalable(0); 5609 5610 if (Hints->isScalableVectorizationDisabled()) { 5611 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5612 "ScalableVectorizationDisabled", ORE, TheLoop); 5613 return ElementCount::getScalable(0); 5614 } 5615 5616 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5617 5618 auto MaxScalableVF = ElementCount::getScalable( 5619 std::numeric_limits<ElementCount::ScalarTy>::max()); 5620 5621 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5622 // FIXME: While for scalable vectors this is currently sufficient, this should 5623 // be replaced by a more detailed mechanism that filters out specific VFs, 5624 // instead of invalidating vectorization for a whole set of VFs based on the 5625 // MaxVF. 5626 5627 // Disable scalable vectorization if the loop contains unsupported reductions. 5628 if (!canVectorizeReductions(MaxScalableVF)) { 5629 reportVectorizationInfo( 5630 "Scalable vectorization not supported for the reduction " 5631 "operations found in this loop.", 5632 "ScalableVFUnfeasible", ORE, TheLoop); 5633 return ElementCount::getScalable(0); 5634 } 5635 5636 // Disable scalable vectorization if the loop contains any instructions 5637 // with element types not supported for scalable vectors. 5638 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5639 return !Ty->isVoidTy() && 5640 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5641 })) { 5642 reportVectorizationInfo("Scalable vectorization is not supported " 5643 "for all element types found in this loop.", 5644 "ScalableVFUnfeasible", ORE, TheLoop); 5645 return ElementCount::getScalable(0); 5646 } 5647 5648 if (Legal->isSafeForAnyVectorWidth()) 5649 return MaxScalableVF; 5650 5651 // Limit MaxScalableVF by the maximum safe dependence distance. 5652 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5653 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5654 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5655 .getVScaleRangeArgs() 5656 .second; 5657 if (VScaleMax > 0) 5658 MaxVScale = VScaleMax; 5659 } 5660 MaxScalableVF = ElementCount::getScalable( 5661 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5662 if (!MaxScalableVF) 5663 reportVectorizationInfo( 5664 "Max legal vector width too small, scalable vectorization " 5665 "unfeasible.", 5666 "ScalableVFUnfeasible", ORE, TheLoop); 5667 5668 return MaxScalableVF; 5669 } 5670 5671 FixedScalableVFPair 5672 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5673 ElementCount UserVF) { 5674 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5675 unsigned SmallestType, WidestType; 5676 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5677 5678 // Get the maximum safe dependence distance in bits computed by LAA. 5679 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5680 // the memory accesses that is most restrictive (involved in the smallest 5681 // dependence distance). 5682 unsigned MaxSafeElements = 5683 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5684 5685 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5686 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5687 5688 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5689 << ".\n"); 5690 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5691 << ".\n"); 5692 5693 // First analyze the UserVF, fall back if the UserVF should be ignored. 5694 if (UserVF) { 5695 auto MaxSafeUserVF = 5696 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5697 5698 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5699 // If `VF=vscale x N` is safe, then so is `VF=N` 5700 if (UserVF.isScalable()) 5701 return FixedScalableVFPair( 5702 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5703 else 5704 return UserVF; 5705 } 5706 5707 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5708 5709 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5710 // is better to ignore the hint and let the compiler choose a suitable VF. 5711 if (!UserVF.isScalable()) { 5712 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5713 << " is unsafe, clamping to max safe VF=" 5714 << MaxSafeFixedVF << ".\n"); 5715 ORE->emit([&]() { 5716 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5717 TheLoop->getStartLoc(), 5718 TheLoop->getHeader()) 5719 << "User-specified vectorization factor " 5720 << ore::NV("UserVectorizationFactor", UserVF) 5721 << " is unsafe, clamping to maximum safe vectorization factor " 5722 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5723 }); 5724 return MaxSafeFixedVF; 5725 } 5726 5727 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5728 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5729 << " is ignored because scalable vectors are not " 5730 "available.\n"); 5731 ORE->emit([&]() { 5732 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5733 TheLoop->getStartLoc(), 5734 TheLoop->getHeader()) 5735 << "User-specified vectorization factor " 5736 << ore::NV("UserVectorizationFactor", UserVF) 5737 << " is ignored because the target does not support scalable " 5738 "vectors. The compiler will pick a more suitable value."; 5739 }); 5740 } else { 5741 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5742 << " is unsafe. Ignoring scalable UserVF.\n"); 5743 ORE->emit([&]() { 5744 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5745 TheLoop->getStartLoc(), 5746 TheLoop->getHeader()) 5747 << "User-specified vectorization factor " 5748 << ore::NV("UserVectorizationFactor", UserVF) 5749 << " is unsafe. Ignoring the hint to let the compiler pick a " 5750 "more suitable value."; 5751 }); 5752 } 5753 } 5754 5755 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5756 << " / " << WidestType << " bits.\n"); 5757 5758 FixedScalableVFPair Result(ElementCount::getFixed(1), 5759 ElementCount::getScalable(0)); 5760 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5761 WidestType, MaxSafeFixedVF)) 5762 Result.FixedVF = MaxVF; 5763 5764 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5765 WidestType, MaxSafeScalableVF)) 5766 if (MaxVF.isScalable()) { 5767 Result.ScalableVF = MaxVF; 5768 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5769 << "\n"); 5770 } 5771 5772 return Result; 5773 } 5774 5775 FixedScalableVFPair 5776 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5777 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5778 // TODO: It may by useful to do since it's still likely to be dynamically 5779 // uniform if the target can skip. 5780 reportVectorizationFailure( 5781 "Not inserting runtime ptr check for divergent target", 5782 "runtime pointer checks needed. Not enabled for divergent target", 5783 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5784 return FixedScalableVFPair::getNone(); 5785 } 5786 5787 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5788 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5789 if (TC == 1) { 5790 reportVectorizationFailure("Single iteration (non) loop", 5791 "loop trip count is one, irrelevant for vectorization", 5792 "SingleIterationLoop", ORE, TheLoop); 5793 return FixedScalableVFPair::getNone(); 5794 } 5795 5796 switch (ScalarEpilogueStatus) { 5797 case CM_ScalarEpilogueAllowed: 5798 return computeFeasibleMaxVF(TC, UserVF); 5799 case CM_ScalarEpilogueNotAllowedUsePredicate: 5800 LLVM_FALLTHROUGH; 5801 case CM_ScalarEpilogueNotNeededUsePredicate: 5802 LLVM_DEBUG( 5803 dbgs() << "LV: vector predicate hint/switch found.\n" 5804 << "LV: Not allowing scalar epilogue, creating predicated " 5805 << "vector loop.\n"); 5806 break; 5807 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5808 // fallthrough as a special case of OptForSize 5809 case CM_ScalarEpilogueNotAllowedOptSize: 5810 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5811 LLVM_DEBUG( 5812 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5813 else 5814 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5815 << "count.\n"); 5816 5817 // Bail if runtime checks are required, which are not good when optimising 5818 // for size. 5819 if (runtimeChecksRequired()) 5820 return FixedScalableVFPair::getNone(); 5821 5822 break; 5823 } 5824 5825 // The only loops we can vectorize without a scalar epilogue, are loops with 5826 // a bottom-test and a single exiting block. We'd have to handle the fact 5827 // that not every instruction executes on the last iteration. This will 5828 // require a lane mask which varies through the vector loop body. (TODO) 5829 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5830 // If there was a tail-folding hint/switch, but we can't fold the tail by 5831 // masking, fallback to a vectorization with a scalar epilogue. 5832 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5833 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5834 "scalar epilogue instead.\n"); 5835 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5836 return computeFeasibleMaxVF(TC, UserVF); 5837 } 5838 return FixedScalableVFPair::getNone(); 5839 } 5840 5841 // Now try the tail folding 5842 5843 // Invalidate interleave groups that require an epilogue if we can't mask 5844 // the interleave-group. 5845 if (!useMaskedInterleavedAccesses(TTI)) { 5846 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5847 "No decisions should have been taken at this point"); 5848 // Note: There is no need to invalidate any cost modeling decisions here, as 5849 // non where taken so far. 5850 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5851 } 5852 5853 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5854 // Avoid tail folding if the trip count is known to be a multiple of any VF 5855 // we chose. 5856 // FIXME: The condition below pessimises the case for fixed-width vectors, 5857 // when scalable VFs are also candidates for vectorization. 5858 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5859 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5860 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5861 "MaxFixedVF must be a power of 2"); 5862 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5863 : MaxFixedVF.getFixedValue(); 5864 ScalarEvolution *SE = PSE.getSE(); 5865 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5866 const SCEV *ExitCount = SE->getAddExpr( 5867 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5868 const SCEV *Rem = SE->getURemExpr( 5869 SE->applyLoopGuards(ExitCount, TheLoop), 5870 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5871 if (Rem->isZero()) { 5872 // Accept MaxFixedVF if we do not have a tail. 5873 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5874 return MaxFactors; 5875 } 5876 } 5877 5878 // For scalable vectors, don't use tail folding as this is currently not yet 5879 // supported. The code is likely to have ended up here if the tripcount is 5880 // low, in which case it makes sense not to use scalable vectors. 5881 if (MaxFactors.ScalableVF.isVector()) 5882 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5883 5884 // If we don't know the precise trip count, or if the trip count that we 5885 // found modulo the vectorization factor is not zero, try to fold the tail 5886 // by masking. 5887 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5888 if (Legal->prepareToFoldTailByMasking()) { 5889 FoldTailByMasking = true; 5890 return MaxFactors; 5891 } 5892 5893 // If there was a tail-folding hint/switch, but we can't fold the tail by 5894 // masking, fallback to a vectorization with a scalar epilogue. 5895 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5896 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5897 "scalar epilogue instead.\n"); 5898 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5899 return MaxFactors; 5900 } 5901 5902 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5903 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5904 return FixedScalableVFPair::getNone(); 5905 } 5906 5907 if (TC == 0) { 5908 reportVectorizationFailure( 5909 "Unable to calculate the loop count due to complex control flow", 5910 "unable to calculate the loop count due to complex control flow", 5911 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5912 return FixedScalableVFPair::getNone(); 5913 } 5914 5915 reportVectorizationFailure( 5916 "Cannot optimize for size and vectorize at the same time.", 5917 "cannot optimize for size and vectorize at the same time. " 5918 "Enable vectorization of this loop with '#pragma clang loop " 5919 "vectorize(enable)' when compiling with -Os/-Oz", 5920 "NoTailLoopWithOptForSize", ORE, TheLoop); 5921 return FixedScalableVFPair::getNone(); 5922 } 5923 5924 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5925 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5926 const ElementCount &MaxSafeVF) { 5927 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5928 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5929 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5930 : TargetTransformInfo::RGK_FixedWidthVector); 5931 5932 // Convenience function to return the minimum of two ElementCounts. 5933 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5934 assert((LHS.isScalable() == RHS.isScalable()) && 5935 "Scalable flags must match"); 5936 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5937 }; 5938 5939 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5940 // Note that both WidestRegister and WidestType may not be a powers of 2. 5941 auto MaxVectorElementCount = ElementCount::get( 5942 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5943 ComputeScalableMaxVF); 5944 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5945 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5946 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5947 5948 if (!MaxVectorElementCount) { 5949 LLVM_DEBUG(dbgs() << "LV: The target has no " 5950 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5951 << " vector registers.\n"); 5952 return ElementCount::getFixed(1); 5953 } 5954 5955 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5956 if (ConstTripCount && 5957 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5958 isPowerOf2_32(ConstTripCount)) { 5959 // We need to clamp the VF to be the ConstTripCount. There is no point in 5960 // choosing a higher viable VF as done in the loop below. If 5961 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5962 // the TC is less than or equal to the known number of lanes. 5963 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5964 << ConstTripCount << "\n"); 5965 return TripCountEC; 5966 } 5967 5968 ElementCount MaxVF = MaxVectorElementCount; 5969 if (TTI.shouldMaximizeVectorBandwidth() || 5970 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5971 auto MaxVectorElementCountMaxBW = ElementCount::get( 5972 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5973 ComputeScalableMaxVF); 5974 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5975 5976 // Collect all viable vectorization factors larger than the default MaxVF 5977 // (i.e. MaxVectorElementCount). 5978 SmallVector<ElementCount, 8> VFs; 5979 for (ElementCount VS = MaxVectorElementCount * 2; 5980 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5981 VFs.push_back(VS); 5982 5983 // For each VF calculate its register usage. 5984 auto RUs = calculateRegisterUsage(VFs); 5985 5986 // Select the largest VF which doesn't require more registers than existing 5987 // ones. 5988 for (int i = RUs.size() - 1; i >= 0; --i) { 5989 bool Selected = true; 5990 for (auto &pair : RUs[i].MaxLocalUsers) { 5991 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5992 if (pair.second > TargetNumRegisters) 5993 Selected = false; 5994 } 5995 if (Selected) { 5996 MaxVF = VFs[i]; 5997 break; 5998 } 5999 } 6000 if (ElementCount MinVF = 6001 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6002 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6003 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6004 << ") with target's minimum: " << MinVF << '\n'); 6005 MaxVF = MinVF; 6006 } 6007 } 6008 } 6009 return MaxVF; 6010 } 6011 6012 bool LoopVectorizationCostModel::isMoreProfitable( 6013 const VectorizationFactor &A, const VectorizationFactor &B) const { 6014 InstructionCost CostA = A.Cost; 6015 InstructionCost CostB = B.Cost; 6016 6017 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6018 6019 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6020 MaxTripCount) { 6021 // If we are folding the tail and the trip count is a known (possibly small) 6022 // constant, the trip count will be rounded up to an integer number of 6023 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6024 // which we compare directly. When not folding the tail, the total cost will 6025 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6026 // approximated with the per-lane cost below instead of using the tripcount 6027 // as here. 6028 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6029 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6030 return RTCostA < RTCostB; 6031 } 6032 6033 // When set to preferred, for now assume vscale may be larger than 1, so 6034 // that scalable vectorization is slightly favorable over fixed-width 6035 // vectorization. 6036 if (Hints->isScalableVectorizationPreferred()) 6037 if (A.Width.isScalable() && !B.Width.isScalable()) 6038 return (CostA * B.Width.getKnownMinValue()) <= 6039 (CostB * A.Width.getKnownMinValue()); 6040 6041 // To avoid the need for FP division: 6042 // (CostA / A.Width) < (CostB / B.Width) 6043 // <=> (CostA * B.Width) < (CostB * A.Width) 6044 return (CostA * B.Width.getKnownMinValue()) < 6045 (CostB * A.Width.getKnownMinValue()); 6046 } 6047 6048 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6049 const ElementCountSet &VFCandidates) { 6050 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6051 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6052 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6053 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6054 "Expected Scalar VF to be a candidate"); 6055 6056 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6057 VectorizationFactor ChosenFactor = ScalarCost; 6058 6059 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6060 if (ForceVectorization && VFCandidates.size() > 1) { 6061 // Ignore scalar width, because the user explicitly wants vectorization. 6062 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6063 // evaluation. 6064 ChosenFactor.Cost = InstructionCost::getMax(); 6065 } 6066 6067 SmallVector<InstructionVFPair> InvalidCosts; 6068 for (const auto &i : VFCandidates) { 6069 // The cost for scalar VF=1 is already calculated, so ignore it. 6070 if (i.isScalar()) 6071 continue; 6072 6073 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6074 VectorizationFactor Candidate(i, C.first); 6075 LLVM_DEBUG( 6076 dbgs() << "LV: Vector loop of width " << i << " costs: " 6077 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6078 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6079 << ".\n"); 6080 6081 if (!C.second && !ForceVectorization) { 6082 LLVM_DEBUG( 6083 dbgs() << "LV: Not considering vector loop of width " << i 6084 << " because it will not generate any vector instructions.\n"); 6085 continue; 6086 } 6087 6088 // If profitable add it to ProfitableVF list. 6089 if (isMoreProfitable(Candidate, ScalarCost)) 6090 ProfitableVFs.push_back(Candidate); 6091 6092 if (isMoreProfitable(Candidate, ChosenFactor)) 6093 ChosenFactor = Candidate; 6094 } 6095 6096 // Emit a report of VFs with invalid costs in the loop. 6097 if (!InvalidCosts.empty()) { 6098 // Group the remarks per instruction, keeping the instruction order from 6099 // InvalidCosts. 6100 std::map<Instruction *, unsigned> Numbering; 6101 unsigned I = 0; 6102 for (auto &Pair : InvalidCosts) 6103 if (!Numbering.count(Pair.first)) 6104 Numbering[Pair.first] = I++; 6105 6106 // Sort the list, first on instruction(number) then on VF. 6107 llvm::sort(InvalidCosts, 6108 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6109 if (Numbering[A.first] != Numbering[B.first]) 6110 return Numbering[A.first] < Numbering[B.first]; 6111 ElementCountComparator ECC; 6112 return ECC(A.second, B.second); 6113 }); 6114 6115 // For a list of ordered instruction-vf pairs: 6116 // [(load, vf1), (load, vf2), (store, vf1)] 6117 // Group the instructions together to emit separate remarks for: 6118 // load (vf1, vf2) 6119 // store (vf1) 6120 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6121 auto Subset = ArrayRef<InstructionVFPair>(); 6122 do { 6123 if (Subset.empty()) 6124 Subset = Tail.take_front(1); 6125 6126 Instruction *I = Subset.front().first; 6127 6128 // If the next instruction is different, or if there are no other pairs, 6129 // emit a remark for the collated subset. e.g. 6130 // [(load, vf1), (load, vf2))] 6131 // to emit: 6132 // remark: invalid costs for 'load' at VF=(vf, vf2) 6133 if (Subset == Tail || Tail[Subset.size()].first != I) { 6134 std::string OutString; 6135 raw_string_ostream OS(OutString); 6136 assert(!Subset.empty() && "Unexpected empty range"); 6137 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6138 for (auto &Pair : Subset) 6139 OS << (Pair.second == Subset.front().second ? "" : ", ") 6140 << Pair.second; 6141 OS << "):"; 6142 if (auto *CI = dyn_cast<CallInst>(I)) 6143 OS << " call to " << CI->getCalledFunction()->getName(); 6144 else 6145 OS << " " << I->getOpcodeName(); 6146 OS.flush(); 6147 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6148 Tail = Tail.drop_front(Subset.size()); 6149 Subset = {}; 6150 } else 6151 // Grow the subset by one element 6152 Subset = Tail.take_front(Subset.size() + 1); 6153 } while (!Tail.empty()); 6154 } 6155 6156 if (!EnableCondStoresVectorization && NumPredStores) { 6157 reportVectorizationFailure("There are conditional stores.", 6158 "store that is conditionally executed prevents vectorization", 6159 "ConditionalStore", ORE, TheLoop); 6160 ChosenFactor = ScalarCost; 6161 } 6162 6163 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6164 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6165 << "LV: Vectorization seems to be not beneficial, " 6166 << "but was forced by a user.\n"); 6167 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6168 return ChosenFactor; 6169 } 6170 6171 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6172 const Loop &L, ElementCount VF) const { 6173 // Cross iteration phis such as reductions need special handling and are 6174 // currently unsupported. 6175 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6176 return Legal->isFirstOrderRecurrence(&Phi) || 6177 Legal->isReductionVariable(&Phi); 6178 })) 6179 return false; 6180 6181 // Phis with uses outside of the loop require special handling and are 6182 // currently unsupported. 6183 for (auto &Entry : Legal->getInductionVars()) { 6184 // Look for uses of the value of the induction at the last iteration. 6185 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6186 for (User *U : PostInc->users()) 6187 if (!L.contains(cast<Instruction>(U))) 6188 return false; 6189 // Look for uses of penultimate value of the induction. 6190 for (User *U : Entry.first->users()) 6191 if (!L.contains(cast<Instruction>(U))) 6192 return false; 6193 } 6194 6195 // Induction variables that are widened require special handling that is 6196 // currently not supported. 6197 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6198 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6199 this->isProfitableToScalarize(Entry.first, VF)); 6200 })) 6201 return false; 6202 6203 // Epilogue vectorization code has not been auditted to ensure it handles 6204 // non-latch exits properly. It may be fine, but it needs auditted and 6205 // tested. 6206 if (L.getExitingBlock() != L.getLoopLatch()) 6207 return false; 6208 6209 return true; 6210 } 6211 6212 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6213 const ElementCount VF) const { 6214 // FIXME: We need a much better cost-model to take different parameters such 6215 // as register pressure, code size increase and cost of extra branches into 6216 // account. For now we apply a very crude heuristic and only consider loops 6217 // with vectorization factors larger than a certain value. 6218 // We also consider epilogue vectorization unprofitable for targets that don't 6219 // consider interleaving beneficial (eg. MVE). 6220 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6221 return false; 6222 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6223 return true; 6224 return false; 6225 } 6226 6227 VectorizationFactor 6228 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6229 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6230 VectorizationFactor Result = VectorizationFactor::Disabled(); 6231 if (!EnableEpilogueVectorization) { 6232 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6233 return Result; 6234 } 6235 6236 if (!isScalarEpilogueAllowed()) { 6237 LLVM_DEBUG( 6238 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6239 "allowed.\n";); 6240 return Result; 6241 } 6242 6243 // FIXME: This can be fixed for scalable vectors later, because at this stage 6244 // the LoopVectorizer will only consider vectorizing a loop with scalable 6245 // vectors when the loop has a hint to enable vectorization for a given VF. 6246 if (MainLoopVF.isScalable()) { 6247 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6248 "yet supported.\n"); 6249 return Result; 6250 } 6251 6252 // Not really a cost consideration, but check for unsupported cases here to 6253 // simplify the logic. 6254 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6255 LLVM_DEBUG( 6256 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6257 "not a supported candidate.\n";); 6258 return Result; 6259 } 6260 6261 if (EpilogueVectorizationForceVF > 1) { 6262 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6263 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 6264 if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC})) 6265 return {ForcedEC, 0}; 6266 else { 6267 LLVM_DEBUG( 6268 dbgs() 6269 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6270 return Result; 6271 } 6272 } 6273 6274 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6275 TheLoop->getHeader()->getParent()->hasMinSize()) { 6276 LLVM_DEBUG( 6277 dbgs() 6278 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6279 return Result; 6280 } 6281 6282 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6283 return Result; 6284 6285 for (auto &NextVF : ProfitableVFs) 6286 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6287 (Result.Width.getFixedValue() == 1 || 6288 isMoreProfitable(NextVF, Result)) && 6289 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6290 Result = NextVF; 6291 6292 if (Result != VectorizationFactor::Disabled()) 6293 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6294 << Result.Width.getFixedValue() << "\n";); 6295 return Result; 6296 } 6297 6298 std::pair<unsigned, unsigned> 6299 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6300 unsigned MinWidth = -1U; 6301 unsigned MaxWidth = 8; 6302 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6303 for (Type *T : ElementTypesInLoop) { 6304 MinWidth = std::min<unsigned>( 6305 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6306 MaxWidth = std::max<unsigned>( 6307 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6308 } 6309 return {MinWidth, MaxWidth}; 6310 } 6311 6312 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6313 ElementTypesInLoop.clear(); 6314 // For each block. 6315 for (BasicBlock *BB : TheLoop->blocks()) { 6316 // For each instruction in the loop. 6317 for (Instruction &I : BB->instructionsWithoutDebug()) { 6318 Type *T = I.getType(); 6319 6320 // Skip ignored values. 6321 if (ValuesToIgnore.count(&I)) 6322 continue; 6323 6324 // Only examine Loads, Stores and PHINodes. 6325 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6326 continue; 6327 6328 // Examine PHI nodes that are reduction variables. Update the type to 6329 // account for the recurrence type. 6330 if (auto *PN = dyn_cast<PHINode>(&I)) { 6331 if (!Legal->isReductionVariable(PN)) 6332 continue; 6333 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6334 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6335 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6336 RdxDesc.getRecurrenceType(), 6337 TargetTransformInfo::ReductionFlags())) 6338 continue; 6339 T = RdxDesc.getRecurrenceType(); 6340 } 6341 6342 // Examine the stored values. 6343 if (auto *ST = dyn_cast<StoreInst>(&I)) 6344 T = ST->getValueOperand()->getType(); 6345 6346 // Ignore loaded pointer types and stored pointer types that are not 6347 // vectorizable. 6348 // 6349 // FIXME: The check here attempts to predict whether a load or store will 6350 // be vectorized. We only know this for certain after a VF has 6351 // been selected. Here, we assume that if an access can be 6352 // vectorized, it will be. We should also look at extending this 6353 // optimization to non-pointer types. 6354 // 6355 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6356 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6357 continue; 6358 6359 ElementTypesInLoop.insert(T); 6360 } 6361 } 6362 } 6363 6364 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6365 unsigned LoopCost) { 6366 // -- The interleave heuristics -- 6367 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6368 // There are many micro-architectural considerations that we can't predict 6369 // at this level. For example, frontend pressure (on decode or fetch) due to 6370 // code size, or the number and capabilities of the execution ports. 6371 // 6372 // We use the following heuristics to select the interleave count: 6373 // 1. If the code has reductions, then we interleave to break the cross 6374 // iteration dependency. 6375 // 2. If the loop is really small, then we interleave to reduce the loop 6376 // overhead. 6377 // 3. We don't interleave if we think that we will spill registers to memory 6378 // due to the increased register pressure. 6379 6380 if (!isScalarEpilogueAllowed()) 6381 return 1; 6382 6383 // We used the distance for the interleave count. 6384 if (Legal->getMaxSafeDepDistBytes() != -1U) 6385 return 1; 6386 6387 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6388 const bool HasReductions = !Legal->getReductionVars().empty(); 6389 // Do not interleave loops with a relatively small known or estimated trip 6390 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6391 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6392 // because with the above conditions interleaving can expose ILP and break 6393 // cross iteration dependences for reductions. 6394 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6395 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6396 return 1; 6397 6398 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6399 // We divide by these constants so assume that we have at least one 6400 // instruction that uses at least one register. 6401 for (auto& pair : R.MaxLocalUsers) { 6402 pair.second = std::max(pair.second, 1U); 6403 } 6404 6405 // We calculate the interleave count using the following formula. 6406 // Subtract the number of loop invariants from the number of available 6407 // registers. These registers are used by all of the interleaved instances. 6408 // Next, divide the remaining registers by the number of registers that is 6409 // required by the loop, in order to estimate how many parallel instances 6410 // fit without causing spills. All of this is rounded down if necessary to be 6411 // a power of two. We want power of two interleave count to simplify any 6412 // addressing operations or alignment considerations. 6413 // We also want power of two interleave counts to ensure that the induction 6414 // variable of the vector loop wraps to zero, when tail is folded by masking; 6415 // this currently happens when OptForSize, in which case IC is set to 1 above. 6416 unsigned IC = UINT_MAX; 6417 6418 for (auto& pair : R.MaxLocalUsers) { 6419 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6420 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6421 << " registers of " 6422 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6423 if (VF.isScalar()) { 6424 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6425 TargetNumRegisters = ForceTargetNumScalarRegs; 6426 } else { 6427 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6428 TargetNumRegisters = ForceTargetNumVectorRegs; 6429 } 6430 unsigned MaxLocalUsers = pair.second; 6431 unsigned LoopInvariantRegs = 0; 6432 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6433 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6434 6435 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6436 // Don't count the induction variable as interleaved. 6437 if (EnableIndVarRegisterHeur) { 6438 TmpIC = 6439 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6440 std::max(1U, (MaxLocalUsers - 1))); 6441 } 6442 6443 IC = std::min(IC, TmpIC); 6444 } 6445 6446 // Clamp the interleave ranges to reasonable counts. 6447 unsigned MaxInterleaveCount = 6448 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6449 6450 // Check if the user has overridden the max. 6451 if (VF.isScalar()) { 6452 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6453 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6454 } else { 6455 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6456 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6457 } 6458 6459 // If trip count is known or estimated compile time constant, limit the 6460 // interleave count to be less than the trip count divided by VF, provided it 6461 // is at least 1. 6462 // 6463 // For scalable vectors we can't know if interleaving is beneficial. It may 6464 // not be beneficial for small loops if none of the lanes in the second vector 6465 // iterations is enabled. However, for larger loops, there is likely to be a 6466 // similar benefit as for fixed-width vectors. For now, we choose to leave 6467 // the InterleaveCount as if vscale is '1', although if some information about 6468 // the vector is known (e.g. min vector size), we can make a better decision. 6469 if (BestKnownTC) { 6470 MaxInterleaveCount = 6471 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6472 // Make sure MaxInterleaveCount is greater than 0. 6473 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6474 } 6475 6476 assert(MaxInterleaveCount > 0 && 6477 "Maximum interleave count must be greater than 0"); 6478 6479 // Clamp the calculated IC to be between the 1 and the max interleave count 6480 // that the target and trip count allows. 6481 if (IC > MaxInterleaveCount) 6482 IC = MaxInterleaveCount; 6483 else 6484 // Make sure IC is greater than 0. 6485 IC = std::max(1u, IC); 6486 6487 assert(IC > 0 && "Interleave count must be greater than 0."); 6488 6489 // If we did not calculate the cost for VF (because the user selected the VF) 6490 // then we calculate the cost of VF here. 6491 if (LoopCost == 0) { 6492 InstructionCost C = expectedCost(VF).first; 6493 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6494 LoopCost = *C.getValue(); 6495 } 6496 6497 assert(LoopCost && "Non-zero loop cost expected"); 6498 6499 // Interleave if we vectorized this loop and there is a reduction that could 6500 // benefit from interleaving. 6501 if (VF.isVector() && HasReductions) { 6502 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6503 return IC; 6504 } 6505 6506 // Note that if we've already vectorized the loop we will have done the 6507 // runtime check and so interleaving won't require further checks. 6508 bool InterleavingRequiresRuntimePointerCheck = 6509 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6510 6511 // We want to interleave small loops in order to reduce the loop overhead and 6512 // potentially expose ILP opportunities. 6513 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6514 << "LV: IC is " << IC << '\n' 6515 << "LV: VF is " << VF << '\n'); 6516 const bool AggressivelyInterleaveReductions = 6517 TTI.enableAggressiveInterleaving(HasReductions); 6518 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6519 // We assume that the cost overhead is 1 and we use the cost model 6520 // to estimate the cost of the loop and interleave until the cost of the 6521 // loop overhead is about 5% of the cost of the loop. 6522 unsigned SmallIC = 6523 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6524 6525 // Interleave until store/load ports (estimated by max interleave count) are 6526 // saturated. 6527 unsigned NumStores = Legal->getNumStores(); 6528 unsigned NumLoads = Legal->getNumLoads(); 6529 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6530 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6531 6532 // There is little point in interleaving for reductions containing selects 6533 // and compares when VF=1 since it may just create more overhead than it's 6534 // worth for loops with small trip counts. This is because we still have to 6535 // do the final reduction after the loop. 6536 bool HasSelectCmpReductions = 6537 HasReductions && 6538 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6539 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6540 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6541 RdxDesc.getRecurrenceKind()); 6542 }); 6543 if (HasSelectCmpReductions) { 6544 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6545 return 1; 6546 } 6547 6548 // If we have a scalar reduction (vector reductions are already dealt with 6549 // by this point), we can increase the critical path length if the loop 6550 // we're interleaving is inside another loop. For tree-wise reductions 6551 // set the limit to 2, and for ordered reductions it's best to disable 6552 // interleaving entirely. 6553 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6554 bool HasOrderedReductions = 6555 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6556 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6557 return RdxDesc.isOrdered(); 6558 }); 6559 if (HasOrderedReductions) { 6560 LLVM_DEBUG( 6561 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6562 return 1; 6563 } 6564 6565 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6566 SmallIC = std::min(SmallIC, F); 6567 StoresIC = std::min(StoresIC, F); 6568 LoadsIC = std::min(LoadsIC, F); 6569 } 6570 6571 if (EnableLoadStoreRuntimeInterleave && 6572 std::max(StoresIC, LoadsIC) > SmallIC) { 6573 LLVM_DEBUG( 6574 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6575 return std::max(StoresIC, LoadsIC); 6576 } 6577 6578 // If there are scalar reductions and TTI has enabled aggressive 6579 // interleaving for reductions, we will interleave to expose ILP. 6580 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6581 AggressivelyInterleaveReductions) { 6582 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6583 // Interleave no less than SmallIC but not as aggressive as the normal IC 6584 // to satisfy the rare situation when resources are too limited. 6585 return std::max(IC / 2, SmallIC); 6586 } else { 6587 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6588 return SmallIC; 6589 } 6590 } 6591 6592 // Interleave if this is a large loop (small loops are already dealt with by 6593 // this point) that could benefit from interleaving. 6594 if (AggressivelyInterleaveReductions) { 6595 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6596 return IC; 6597 } 6598 6599 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6600 return 1; 6601 } 6602 6603 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6604 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6605 // This function calculates the register usage by measuring the highest number 6606 // of values that are alive at a single location. Obviously, this is a very 6607 // rough estimation. We scan the loop in a topological order in order and 6608 // assign a number to each instruction. We use RPO to ensure that defs are 6609 // met before their users. We assume that each instruction that has in-loop 6610 // users starts an interval. We record every time that an in-loop value is 6611 // used, so we have a list of the first and last occurrences of each 6612 // instruction. Next, we transpose this data structure into a multi map that 6613 // holds the list of intervals that *end* at a specific location. This multi 6614 // map allows us to perform a linear search. We scan the instructions linearly 6615 // and record each time that a new interval starts, by placing it in a set. 6616 // If we find this value in the multi-map then we remove it from the set. 6617 // The max register usage is the maximum size of the set. 6618 // We also search for instructions that are defined outside the loop, but are 6619 // used inside the loop. We need this number separately from the max-interval 6620 // usage number because when we unroll, loop-invariant values do not take 6621 // more register. 6622 LoopBlocksDFS DFS(TheLoop); 6623 DFS.perform(LI); 6624 6625 RegisterUsage RU; 6626 6627 // Each 'key' in the map opens a new interval. The values 6628 // of the map are the index of the 'last seen' usage of the 6629 // instruction that is the key. 6630 using IntervalMap = DenseMap<Instruction *, unsigned>; 6631 6632 // Maps instruction to its index. 6633 SmallVector<Instruction *, 64> IdxToInstr; 6634 // Marks the end of each interval. 6635 IntervalMap EndPoint; 6636 // Saves the list of instruction indices that are used in the loop. 6637 SmallPtrSet<Instruction *, 8> Ends; 6638 // Saves the list of values that are used in the loop but are 6639 // defined outside the loop, such as arguments and constants. 6640 SmallPtrSet<Value *, 8> LoopInvariants; 6641 6642 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6643 for (Instruction &I : BB->instructionsWithoutDebug()) { 6644 IdxToInstr.push_back(&I); 6645 6646 // Save the end location of each USE. 6647 for (Value *U : I.operands()) { 6648 auto *Instr = dyn_cast<Instruction>(U); 6649 6650 // Ignore non-instruction values such as arguments, constants, etc. 6651 if (!Instr) 6652 continue; 6653 6654 // If this instruction is outside the loop then record it and continue. 6655 if (!TheLoop->contains(Instr)) { 6656 LoopInvariants.insert(Instr); 6657 continue; 6658 } 6659 6660 // Overwrite previous end points. 6661 EndPoint[Instr] = IdxToInstr.size(); 6662 Ends.insert(Instr); 6663 } 6664 } 6665 } 6666 6667 // Saves the list of intervals that end with the index in 'key'. 6668 using InstrList = SmallVector<Instruction *, 2>; 6669 DenseMap<unsigned, InstrList> TransposeEnds; 6670 6671 // Transpose the EndPoints to a list of values that end at each index. 6672 for (auto &Interval : EndPoint) 6673 TransposeEnds[Interval.second].push_back(Interval.first); 6674 6675 SmallPtrSet<Instruction *, 8> OpenIntervals; 6676 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6677 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6678 6679 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6680 6681 // A lambda that gets the register usage for the given type and VF. 6682 const auto &TTICapture = TTI; 6683 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6684 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6685 return 0; 6686 InstructionCost::CostType RegUsage = 6687 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6688 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6689 "Nonsensical values for register usage."); 6690 return RegUsage; 6691 }; 6692 6693 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6694 Instruction *I = IdxToInstr[i]; 6695 6696 // Remove all of the instructions that end at this location. 6697 InstrList &List = TransposeEnds[i]; 6698 for (Instruction *ToRemove : List) 6699 OpenIntervals.erase(ToRemove); 6700 6701 // Ignore instructions that are never used within the loop. 6702 if (!Ends.count(I)) 6703 continue; 6704 6705 // Skip ignored values. 6706 if (ValuesToIgnore.count(I)) 6707 continue; 6708 6709 // For each VF find the maximum usage of registers. 6710 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6711 // Count the number of live intervals. 6712 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6713 6714 if (VFs[j].isScalar()) { 6715 for (auto Inst : OpenIntervals) { 6716 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6717 if (RegUsage.find(ClassID) == RegUsage.end()) 6718 RegUsage[ClassID] = 1; 6719 else 6720 RegUsage[ClassID] += 1; 6721 } 6722 } else { 6723 collectUniformsAndScalars(VFs[j]); 6724 for (auto Inst : OpenIntervals) { 6725 // Skip ignored values for VF > 1. 6726 if (VecValuesToIgnore.count(Inst)) 6727 continue; 6728 if (isScalarAfterVectorization(Inst, VFs[j])) { 6729 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6730 if (RegUsage.find(ClassID) == RegUsage.end()) 6731 RegUsage[ClassID] = 1; 6732 else 6733 RegUsage[ClassID] += 1; 6734 } else { 6735 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6736 if (RegUsage.find(ClassID) == RegUsage.end()) 6737 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6738 else 6739 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6740 } 6741 } 6742 } 6743 6744 for (auto& pair : RegUsage) { 6745 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6746 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6747 else 6748 MaxUsages[j][pair.first] = pair.second; 6749 } 6750 } 6751 6752 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6753 << OpenIntervals.size() << '\n'); 6754 6755 // Add the current instruction to the list of open intervals. 6756 OpenIntervals.insert(I); 6757 } 6758 6759 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6760 SmallMapVector<unsigned, unsigned, 4> Invariant; 6761 6762 for (auto Inst : LoopInvariants) { 6763 unsigned Usage = 6764 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6765 unsigned ClassID = 6766 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6767 if (Invariant.find(ClassID) == Invariant.end()) 6768 Invariant[ClassID] = Usage; 6769 else 6770 Invariant[ClassID] += Usage; 6771 } 6772 6773 LLVM_DEBUG({ 6774 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6775 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6776 << " item\n"; 6777 for (const auto &pair : MaxUsages[i]) { 6778 dbgs() << "LV(REG): RegisterClass: " 6779 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6780 << " registers\n"; 6781 } 6782 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6783 << " item\n"; 6784 for (const auto &pair : Invariant) { 6785 dbgs() << "LV(REG): RegisterClass: " 6786 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6787 << " registers\n"; 6788 } 6789 }); 6790 6791 RU.LoopInvariantRegs = Invariant; 6792 RU.MaxLocalUsers = MaxUsages[i]; 6793 RUs[i] = RU; 6794 } 6795 6796 return RUs; 6797 } 6798 6799 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6800 // TODO: Cost model for emulated masked load/store is completely 6801 // broken. This hack guides the cost model to use an artificially 6802 // high enough value to practically disable vectorization with such 6803 // operations, except where previously deployed legality hack allowed 6804 // using very low cost values. This is to avoid regressions coming simply 6805 // from moving "masked load/store" check from legality to cost model. 6806 // Masked Load/Gather emulation was previously never allowed. 6807 // Limited number of Masked Store/Scatter emulation was allowed. 6808 assert(isPredicatedInst(I) && 6809 "Expecting a scalar emulated instruction"); 6810 return isa<LoadInst>(I) || 6811 (isa<StoreInst>(I) && 6812 NumPredStores > NumberOfStoresToPredicate); 6813 } 6814 6815 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6816 // If we aren't vectorizing the loop, or if we've already collected the 6817 // instructions to scalarize, there's nothing to do. Collection may already 6818 // have occurred if we have a user-selected VF and are now computing the 6819 // expected cost for interleaving. 6820 if (VF.isScalar() || VF.isZero() || 6821 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6822 return; 6823 6824 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6825 // not profitable to scalarize any instructions, the presence of VF in the 6826 // map will indicate that we've analyzed it already. 6827 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6828 6829 // Find all the instructions that are scalar with predication in the loop and 6830 // determine if it would be better to not if-convert the blocks they are in. 6831 // If so, we also record the instructions to scalarize. 6832 for (BasicBlock *BB : TheLoop->blocks()) { 6833 if (!blockNeedsPredication(BB)) 6834 continue; 6835 for (Instruction &I : *BB) 6836 if (isScalarWithPredication(&I)) { 6837 ScalarCostsTy ScalarCosts; 6838 // Do not apply discount if scalable, because that would lead to 6839 // invalid scalarization costs. 6840 // Do not apply discount logic if hacked cost is needed 6841 // for emulated masked memrefs. 6842 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6843 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6844 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6845 // Remember that BB will remain after vectorization. 6846 PredicatedBBsAfterVectorization.insert(BB); 6847 } 6848 } 6849 } 6850 6851 int LoopVectorizationCostModel::computePredInstDiscount( 6852 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6853 assert(!isUniformAfterVectorization(PredInst, VF) && 6854 "Instruction marked uniform-after-vectorization will be predicated"); 6855 6856 // Initialize the discount to zero, meaning that the scalar version and the 6857 // vector version cost the same. 6858 InstructionCost Discount = 0; 6859 6860 // Holds instructions to analyze. The instructions we visit are mapped in 6861 // ScalarCosts. Those instructions are the ones that would be scalarized if 6862 // we find that the scalar version costs less. 6863 SmallVector<Instruction *, 8> Worklist; 6864 6865 // Returns true if the given instruction can be scalarized. 6866 auto canBeScalarized = [&](Instruction *I) -> bool { 6867 // We only attempt to scalarize instructions forming a single-use chain 6868 // from the original predicated block that would otherwise be vectorized. 6869 // Although not strictly necessary, we give up on instructions we know will 6870 // already be scalar to avoid traversing chains that are unlikely to be 6871 // beneficial. 6872 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6873 isScalarAfterVectorization(I, VF)) 6874 return false; 6875 6876 // If the instruction is scalar with predication, it will be analyzed 6877 // separately. We ignore it within the context of PredInst. 6878 if (isScalarWithPredication(I)) 6879 return false; 6880 6881 // If any of the instruction's operands are uniform after vectorization, 6882 // the instruction cannot be scalarized. This prevents, for example, a 6883 // masked load from being scalarized. 6884 // 6885 // We assume we will only emit a value for lane zero of an instruction 6886 // marked uniform after vectorization, rather than VF identical values. 6887 // Thus, if we scalarize an instruction that uses a uniform, we would 6888 // create uses of values corresponding to the lanes we aren't emitting code 6889 // for. This behavior can be changed by allowing getScalarValue to clone 6890 // the lane zero values for uniforms rather than asserting. 6891 for (Use &U : I->operands()) 6892 if (auto *J = dyn_cast<Instruction>(U.get())) 6893 if (isUniformAfterVectorization(J, VF)) 6894 return false; 6895 6896 // Otherwise, we can scalarize the instruction. 6897 return true; 6898 }; 6899 6900 // Compute the expected cost discount from scalarizing the entire expression 6901 // feeding the predicated instruction. We currently only consider expressions 6902 // that are single-use instruction chains. 6903 Worklist.push_back(PredInst); 6904 while (!Worklist.empty()) { 6905 Instruction *I = Worklist.pop_back_val(); 6906 6907 // If we've already analyzed the instruction, there's nothing to do. 6908 if (ScalarCosts.find(I) != ScalarCosts.end()) 6909 continue; 6910 6911 // Compute the cost of the vector instruction. Note that this cost already 6912 // includes the scalarization overhead of the predicated instruction. 6913 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6914 6915 // Compute the cost of the scalarized instruction. This cost is the cost of 6916 // the instruction as if it wasn't if-converted and instead remained in the 6917 // predicated block. We will scale this cost by block probability after 6918 // computing the scalarization overhead. 6919 InstructionCost ScalarCost = 6920 VF.getFixedValue() * 6921 getInstructionCost(I, ElementCount::getFixed(1)).first; 6922 6923 // Compute the scalarization overhead of needed insertelement instructions 6924 // and phi nodes. 6925 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6926 ScalarCost += TTI.getScalarizationOverhead( 6927 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6928 APInt::getAllOnes(VF.getFixedValue()), true, false); 6929 ScalarCost += 6930 VF.getFixedValue() * 6931 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6932 } 6933 6934 // Compute the scalarization overhead of needed extractelement 6935 // instructions. For each of the instruction's operands, if the operand can 6936 // be scalarized, add it to the worklist; otherwise, account for the 6937 // overhead. 6938 for (Use &U : I->operands()) 6939 if (auto *J = dyn_cast<Instruction>(U.get())) { 6940 assert(VectorType::isValidElementType(J->getType()) && 6941 "Instruction has non-scalar type"); 6942 if (canBeScalarized(J)) 6943 Worklist.push_back(J); 6944 else if (needsExtract(J, VF)) { 6945 ScalarCost += TTI.getScalarizationOverhead( 6946 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6947 APInt::getAllOnes(VF.getFixedValue()), false, true); 6948 } 6949 } 6950 6951 // Scale the total scalar cost by block probability. 6952 ScalarCost /= getReciprocalPredBlockProb(); 6953 6954 // Compute the discount. A non-negative discount means the vector version 6955 // of the instruction costs more, and scalarizing would be beneficial. 6956 Discount += VectorCost - ScalarCost; 6957 ScalarCosts[I] = ScalarCost; 6958 } 6959 6960 return *Discount.getValue(); 6961 } 6962 6963 LoopVectorizationCostModel::VectorizationCostTy 6964 LoopVectorizationCostModel::expectedCost( 6965 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6966 VectorizationCostTy Cost; 6967 6968 // For each block. 6969 for (BasicBlock *BB : TheLoop->blocks()) { 6970 VectorizationCostTy BlockCost; 6971 6972 // For each instruction in the old loop. 6973 for (Instruction &I : BB->instructionsWithoutDebug()) { 6974 // Skip ignored values. 6975 if (ValuesToIgnore.count(&I) || 6976 (VF.isVector() && VecValuesToIgnore.count(&I))) 6977 continue; 6978 6979 VectorizationCostTy C = getInstructionCost(&I, VF); 6980 6981 // Check if we should override the cost. 6982 if (C.first.isValid() && 6983 ForceTargetInstructionCost.getNumOccurrences() > 0) 6984 C.first = InstructionCost(ForceTargetInstructionCost); 6985 6986 // Keep a list of instructions with invalid costs. 6987 if (Invalid && !C.first.isValid()) 6988 Invalid->emplace_back(&I, VF); 6989 6990 BlockCost.first += C.first; 6991 BlockCost.second |= C.second; 6992 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6993 << " for VF " << VF << " For instruction: " << I 6994 << '\n'); 6995 } 6996 6997 // If we are vectorizing a predicated block, it will have been 6998 // if-converted. This means that the block's instructions (aside from 6999 // stores and instructions that may divide by zero) will now be 7000 // unconditionally executed. For the scalar case, we may not always execute 7001 // the predicated block, if it is an if-else block. Thus, scale the block's 7002 // cost by the probability of executing it. blockNeedsPredication from 7003 // Legal is used so as to not include all blocks in tail folded loops. 7004 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 7005 BlockCost.first /= getReciprocalPredBlockProb(); 7006 7007 Cost.first += BlockCost.first; 7008 Cost.second |= BlockCost.second; 7009 } 7010 7011 return Cost; 7012 } 7013 7014 /// Gets Address Access SCEV after verifying that the access pattern 7015 /// is loop invariant except the induction variable dependence. 7016 /// 7017 /// This SCEV can be sent to the Target in order to estimate the address 7018 /// calculation cost. 7019 static const SCEV *getAddressAccessSCEV( 7020 Value *Ptr, 7021 LoopVectorizationLegality *Legal, 7022 PredicatedScalarEvolution &PSE, 7023 const Loop *TheLoop) { 7024 7025 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7026 if (!Gep) 7027 return nullptr; 7028 7029 // We are looking for a gep with all loop invariant indices except for one 7030 // which should be an induction variable. 7031 auto SE = PSE.getSE(); 7032 unsigned NumOperands = Gep->getNumOperands(); 7033 for (unsigned i = 1; i < NumOperands; ++i) { 7034 Value *Opd = Gep->getOperand(i); 7035 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7036 !Legal->isInductionVariable(Opd)) 7037 return nullptr; 7038 } 7039 7040 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7041 return PSE.getSCEV(Ptr); 7042 } 7043 7044 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7045 return Legal->hasStride(I->getOperand(0)) || 7046 Legal->hasStride(I->getOperand(1)); 7047 } 7048 7049 InstructionCost 7050 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7051 ElementCount VF) { 7052 assert(VF.isVector() && 7053 "Scalarization cost of instruction implies vectorization."); 7054 if (VF.isScalable()) 7055 return InstructionCost::getInvalid(); 7056 7057 Type *ValTy = getLoadStoreType(I); 7058 auto SE = PSE.getSE(); 7059 7060 unsigned AS = getLoadStoreAddressSpace(I); 7061 Value *Ptr = getLoadStorePointerOperand(I); 7062 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7063 7064 // Figure out whether the access is strided and get the stride value 7065 // if it's known in compile time 7066 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7067 7068 // Get the cost of the scalar memory instruction and address computation. 7069 InstructionCost Cost = 7070 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7071 7072 // Don't pass *I here, since it is scalar but will actually be part of a 7073 // vectorized loop where the user of it is a vectorized instruction. 7074 const Align Alignment = getLoadStoreAlignment(I); 7075 Cost += VF.getKnownMinValue() * 7076 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7077 AS, TTI::TCK_RecipThroughput); 7078 7079 // Get the overhead of the extractelement and insertelement instructions 7080 // we might create due to scalarization. 7081 Cost += getScalarizationOverhead(I, VF); 7082 7083 // If we have a predicated load/store, it will need extra i1 extracts and 7084 // conditional branches, but may not be executed for each vector lane. Scale 7085 // the cost by the probability of executing the predicated block. 7086 if (isPredicatedInst(I)) { 7087 Cost /= getReciprocalPredBlockProb(); 7088 7089 // Add the cost of an i1 extract and a branch 7090 auto *Vec_i1Ty = 7091 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7092 Cost += TTI.getScalarizationOverhead( 7093 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7094 /*Insert=*/false, /*Extract=*/true); 7095 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7096 7097 if (useEmulatedMaskMemRefHack(I)) 7098 // Artificially setting to a high enough value to practically disable 7099 // vectorization with such operations. 7100 Cost = 3000000; 7101 } 7102 7103 return Cost; 7104 } 7105 7106 InstructionCost 7107 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7108 ElementCount VF) { 7109 Type *ValTy = getLoadStoreType(I); 7110 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7111 Value *Ptr = getLoadStorePointerOperand(I); 7112 unsigned AS = getLoadStoreAddressSpace(I); 7113 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7114 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7115 7116 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7117 "Stride should be 1 or -1 for consecutive memory access"); 7118 const Align Alignment = getLoadStoreAlignment(I); 7119 InstructionCost Cost = 0; 7120 if (Legal->isMaskRequired(I)) 7121 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7122 CostKind); 7123 else 7124 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7125 CostKind, I); 7126 7127 bool Reverse = ConsecutiveStride < 0; 7128 if (Reverse) 7129 Cost += 7130 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7131 return Cost; 7132 } 7133 7134 InstructionCost 7135 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7136 ElementCount VF) { 7137 assert(Legal->isUniformMemOp(*I)); 7138 7139 Type *ValTy = getLoadStoreType(I); 7140 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7141 const Align Alignment = getLoadStoreAlignment(I); 7142 unsigned AS = getLoadStoreAddressSpace(I); 7143 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7144 if (isa<LoadInst>(I)) { 7145 return TTI.getAddressComputationCost(ValTy) + 7146 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7147 CostKind) + 7148 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7149 } 7150 StoreInst *SI = cast<StoreInst>(I); 7151 7152 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7153 return TTI.getAddressComputationCost(ValTy) + 7154 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7155 CostKind) + 7156 (isLoopInvariantStoreValue 7157 ? 0 7158 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7159 VF.getKnownMinValue() - 1)); 7160 } 7161 7162 InstructionCost 7163 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7164 ElementCount VF) { 7165 Type *ValTy = getLoadStoreType(I); 7166 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7167 const Align Alignment = getLoadStoreAlignment(I); 7168 const Value *Ptr = getLoadStorePointerOperand(I); 7169 7170 return TTI.getAddressComputationCost(VectorTy) + 7171 TTI.getGatherScatterOpCost( 7172 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7173 TargetTransformInfo::TCK_RecipThroughput, I); 7174 } 7175 7176 InstructionCost 7177 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7178 ElementCount VF) { 7179 // TODO: Once we have support for interleaving with scalable vectors 7180 // we can calculate the cost properly here. 7181 if (VF.isScalable()) 7182 return InstructionCost::getInvalid(); 7183 7184 Type *ValTy = getLoadStoreType(I); 7185 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7186 unsigned AS = getLoadStoreAddressSpace(I); 7187 7188 auto Group = getInterleavedAccessGroup(I); 7189 assert(Group && "Fail to get an interleaved access group."); 7190 7191 unsigned InterleaveFactor = Group->getFactor(); 7192 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7193 7194 // Holds the indices of existing members in the interleaved group. 7195 SmallVector<unsigned, 4> Indices; 7196 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7197 if (Group->getMember(IF)) 7198 Indices.push_back(IF); 7199 7200 // Calculate the cost of the whole interleaved group. 7201 bool UseMaskForGaps = 7202 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7203 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7204 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7205 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7206 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7207 7208 if (Group->isReverse()) { 7209 // TODO: Add support for reversed masked interleaved access. 7210 assert(!Legal->isMaskRequired(I) && 7211 "Reverse masked interleaved access not supported."); 7212 Cost += 7213 Group->getNumMembers() * 7214 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7215 } 7216 return Cost; 7217 } 7218 7219 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7220 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7221 using namespace llvm::PatternMatch; 7222 // Early exit for no inloop reductions 7223 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7224 return None; 7225 auto *VectorTy = cast<VectorType>(Ty); 7226 7227 // We are looking for a pattern of, and finding the minimal acceptable cost: 7228 // reduce(mul(ext(A), ext(B))) or 7229 // reduce(mul(A, B)) or 7230 // reduce(ext(A)) or 7231 // reduce(A). 7232 // The basic idea is that we walk down the tree to do that, finding the root 7233 // reduction instruction in InLoopReductionImmediateChains. From there we find 7234 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7235 // of the components. If the reduction cost is lower then we return it for the 7236 // reduction instruction and 0 for the other instructions in the pattern. If 7237 // it is not we return an invalid cost specifying the orignal cost method 7238 // should be used. 7239 Instruction *RetI = I; 7240 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7241 if (!RetI->hasOneUser()) 7242 return None; 7243 RetI = RetI->user_back(); 7244 } 7245 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7246 RetI->user_back()->getOpcode() == Instruction::Add) { 7247 if (!RetI->hasOneUser()) 7248 return None; 7249 RetI = RetI->user_back(); 7250 } 7251 7252 // Test if the found instruction is a reduction, and if not return an invalid 7253 // cost specifying the parent to use the original cost modelling. 7254 if (!InLoopReductionImmediateChains.count(RetI)) 7255 return None; 7256 7257 // Find the reduction this chain is a part of and calculate the basic cost of 7258 // the reduction on its own. 7259 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7260 Instruction *ReductionPhi = LastChain; 7261 while (!isa<PHINode>(ReductionPhi)) 7262 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7263 7264 const RecurrenceDescriptor &RdxDesc = 7265 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7266 7267 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7268 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7269 7270 // If we're using ordered reductions then we can just return the base cost 7271 // here, since getArithmeticReductionCost calculates the full ordered 7272 // reduction cost when FP reassociation is not allowed. 7273 if (useOrderedReductions(RdxDesc)) 7274 return BaseCost; 7275 7276 // Get the operand that was not the reduction chain and match it to one of the 7277 // patterns, returning the better cost if it is found. 7278 Instruction *RedOp = RetI->getOperand(1) == LastChain 7279 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7280 : dyn_cast<Instruction>(RetI->getOperand(1)); 7281 7282 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7283 7284 Instruction *Op0, *Op1; 7285 if (RedOp && 7286 match(RedOp, 7287 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7288 match(Op0, m_ZExtOrSExt(m_Value())) && 7289 Op0->getOpcode() == Op1->getOpcode() && 7290 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7291 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7292 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7293 7294 // Matched reduce(ext(mul(ext(A), ext(B))) 7295 // Note that the extend opcodes need to all match, or if A==B they will have 7296 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7297 // which is equally fine. 7298 bool IsUnsigned = isa<ZExtInst>(Op0); 7299 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7300 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7301 7302 InstructionCost ExtCost = 7303 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7304 TTI::CastContextHint::None, CostKind, Op0); 7305 InstructionCost MulCost = 7306 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7307 InstructionCost Ext2Cost = 7308 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7309 TTI::CastContextHint::None, CostKind, RedOp); 7310 7311 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7312 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7313 CostKind); 7314 7315 if (RedCost.isValid() && 7316 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7317 return I == RetI ? RedCost : 0; 7318 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7319 !TheLoop->isLoopInvariant(RedOp)) { 7320 // Matched reduce(ext(A)) 7321 bool IsUnsigned = isa<ZExtInst>(RedOp); 7322 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7323 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7324 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7325 CostKind); 7326 7327 InstructionCost ExtCost = 7328 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7329 TTI::CastContextHint::None, CostKind, RedOp); 7330 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7331 return I == RetI ? RedCost : 0; 7332 } else if (RedOp && 7333 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7334 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7335 Op0->getOpcode() == Op1->getOpcode() && 7336 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7337 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7338 bool IsUnsigned = isa<ZExtInst>(Op0); 7339 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7340 // Matched reduce(mul(ext, ext)) 7341 InstructionCost ExtCost = 7342 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7343 TTI::CastContextHint::None, CostKind, Op0); 7344 InstructionCost MulCost = 7345 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7346 7347 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7348 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7349 CostKind); 7350 7351 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7352 return I == RetI ? RedCost : 0; 7353 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7354 // Matched reduce(mul()) 7355 InstructionCost MulCost = 7356 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7357 7358 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7359 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7360 CostKind); 7361 7362 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7363 return I == RetI ? RedCost : 0; 7364 } 7365 } 7366 7367 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7368 } 7369 7370 InstructionCost 7371 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7372 ElementCount VF) { 7373 // Calculate scalar cost only. Vectorization cost should be ready at this 7374 // moment. 7375 if (VF.isScalar()) { 7376 Type *ValTy = getLoadStoreType(I); 7377 const Align Alignment = getLoadStoreAlignment(I); 7378 unsigned AS = getLoadStoreAddressSpace(I); 7379 7380 return TTI.getAddressComputationCost(ValTy) + 7381 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7382 TTI::TCK_RecipThroughput, I); 7383 } 7384 return getWideningCost(I, VF); 7385 } 7386 7387 LoopVectorizationCostModel::VectorizationCostTy 7388 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7389 ElementCount VF) { 7390 // If we know that this instruction will remain uniform, check the cost of 7391 // the scalar version. 7392 if (isUniformAfterVectorization(I, VF)) 7393 VF = ElementCount::getFixed(1); 7394 7395 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7396 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7397 7398 // Forced scalars do not have any scalarization overhead. 7399 auto ForcedScalar = ForcedScalars.find(VF); 7400 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7401 auto InstSet = ForcedScalar->second; 7402 if (InstSet.count(I)) 7403 return VectorizationCostTy( 7404 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7405 VF.getKnownMinValue()), 7406 false); 7407 } 7408 7409 Type *VectorTy; 7410 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7411 7412 bool TypeNotScalarized = 7413 VF.isVector() && VectorTy->isVectorTy() && 7414 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7415 return VectorizationCostTy(C, TypeNotScalarized); 7416 } 7417 7418 InstructionCost 7419 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7420 ElementCount VF) const { 7421 7422 // There is no mechanism yet to create a scalable scalarization loop, 7423 // so this is currently Invalid. 7424 if (VF.isScalable()) 7425 return InstructionCost::getInvalid(); 7426 7427 if (VF.isScalar()) 7428 return 0; 7429 7430 InstructionCost Cost = 0; 7431 Type *RetTy = ToVectorTy(I->getType(), VF); 7432 if (!RetTy->isVoidTy() && 7433 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7434 Cost += TTI.getScalarizationOverhead( 7435 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7436 false); 7437 7438 // Some targets keep addresses scalar. 7439 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7440 return Cost; 7441 7442 // Some targets support efficient element stores. 7443 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7444 return Cost; 7445 7446 // Collect operands to consider. 7447 CallInst *CI = dyn_cast<CallInst>(I); 7448 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7449 7450 // Skip operands that do not require extraction/scalarization and do not incur 7451 // any overhead. 7452 SmallVector<Type *> Tys; 7453 for (auto *V : filterExtractingOperands(Ops, VF)) 7454 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7455 return Cost + TTI.getOperandsScalarizationOverhead( 7456 filterExtractingOperands(Ops, VF), Tys); 7457 } 7458 7459 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7460 if (VF.isScalar()) 7461 return; 7462 NumPredStores = 0; 7463 for (BasicBlock *BB : TheLoop->blocks()) { 7464 // For each instruction in the old loop. 7465 for (Instruction &I : *BB) { 7466 Value *Ptr = getLoadStorePointerOperand(&I); 7467 if (!Ptr) 7468 continue; 7469 7470 // TODO: We should generate better code and update the cost model for 7471 // predicated uniform stores. Today they are treated as any other 7472 // predicated store (see added test cases in 7473 // invariant-store-vectorization.ll). 7474 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7475 NumPredStores++; 7476 7477 if (Legal->isUniformMemOp(I)) { 7478 // TODO: Avoid replicating loads and stores instead of 7479 // relying on instcombine to remove them. 7480 // Load: Scalar load + broadcast 7481 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7482 InstructionCost Cost; 7483 if (isa<StoreInst>(&I) && VF.isScalable() && 7484 isLegalGatherOrScatter(&I)) { 7485 Cost = getGatherScatterCost(&I, VF); 7486 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7487 } else { 7488 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7489 "Cannot yet scalarize uniform stores"); 7490 Cost = getUniformMemOpCost(&I, VF); 7491 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7492 } 7493 continue; 7494 } 7495 7496 // We assume that widening is the best solution when possible. 7497 if (memoryInstructionCanBeWidened(&I, VF)) { 7498 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7499 int ConsecutiveStride = Legal->isConsecutivePtr( 7500 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7501 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7502 "Expected consecutive stride."); 7503 InstWidening Decision = 7504 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7505 setWideningDecision(&I, VF, Decision, Cost); 7506 continue; 7507 } 7508 7509 // Choose between Interleaving, Gather/Scatter or Scalarization. 7510 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7511 unsigned NumAccesses = 1; 7512 if (isAccessInterleaved(&I)) { 7513 auto Group = getInterleavedAccessGroup(&I); 7514 assert(Group && "Fail to get an interleaved access group."); 7515 7516 // Make one decision for the whole group. 7517 if (getWideningDecision(&I, VF) != CM_Unknown) 7518 continue; 7519 7520 NumAccesses = Group->getNumMembers(); 7521 if (interleavedAccessCanBeWidened(&I, VF)) 7522 InterleaveCost = getInterleaveGroupCost(&I, VF); 7523 } 7524 7525 InstructionCost GatherScatterCost = 7526 isLegalGatherOrScatter(&I) 7527 ? getGatherScatterCost(&I, VF) * NumAccesses 7528 : InstructionCost::getInvalid(); 7529 7530 InstructionCost ScalarizationCost = 7531 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7532 7533 // Choose better solution for the current VF, 7534 // write down this decision and use it during vectorization. 7535 InstructionCost Cost; 7536 InstWidening Decision; 7537 if (InterleaveCost <= GatherScatterCost && 7538 InterleaveCost < ScalarizationCost) { 7539 Decision = CM_Interleave; 7540 Cost = InterleaveCost; 7541 } else if (GatherScatterCost < ScalarizationCost) { 7542 Decision = CM_GatherScatter; 7543 Cost = GatherScatterCost; 7544 } else { 7545 Decision = CM_Scalarize; 7546 Cost = ScalarizationCost; 7547 } 7548 // If the instructions belongs to an interleave group, the whole group 7549 // receives the same decision. The whole group receives the cost, but 7550 // the cost will actually be assigned to one instruction. 7551 if (auto Group = getInterleavedAccessGroup(&I)) 7552 setWideningDecision(Group, VF, Decision, Cost); 7553 else 7554 setWideningDecision(&I, VF, Decision, Cost); 7555 } 7556 } 7557 7558 // Make sure that any load of address and any other address computation 7559 // remains scalar unless there is gather/scatter support. This avoids 7560 // inevitable extracts into address registers, and also has the benefit of 7561 // activating LSR more, since that pass can't optimize vectorized 7562 // addresses. 7563 if (TTI.prefersVectorizedAddressing()) 7564 return; 7565 7566 // Start with all scalar pointer uses. 7567 SmallPtrSet<Instruction *, 8> AddrDefs; 7568 for (BasicBlock *BB : TheLoop->blocks()) 7569 for (Instruction &I : *BB) { 7570 Instruction *PtrDef = 7571 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7572 if (PtrDef && TheLoop->contains(PtrDef) && 7573 getWideningDecision(&I, VF) != CM_GatherScatter) 7574 AddrDefs.insert(PtrDef); 7575 } 7576 7577 // Add all instructions used to generate the addresses. 7578 SmallVector<Instruction *, 4> Worklist; 7579 append_range(Worklist, AddrDefs); 7580 while (!Worklist.empty()) { 7581 Instruction *I = Worklist.pop_back_val(); 7582 for (auto &Op : I->operands()) 7583 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7584 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7585 AddrDefs.insert(InstOp).second) 7586 Worklist.push_back(InstOp); 7587 } 7588 7589 for (auto *I : AddrDefs) { 7590 if (isa<LoadInst>(I)) { 7591 // Setting the desired widening decision should ideally be handled in 7592 // by cost functions, but since this involves the task of finding out 7593 // if the loaded register is involved in an address computation, it is 7594 // instead changed here when we know this is the case. 7595 InstWidening Decision = getWideningDecision(I, VF); 7596 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7597 // Scalarize a widened load of address. 7598 setWideningDecision( 7599 I, VF, CM_Scalarize, 7600 (VF.getKnownMinValue() * 7601 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7602 else if (auto Group = getInterleavedAccessGroup(I)) { 7603 // Scalarize an interleave group of address loads. 7604 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7605 if (Instruction *Member = Group->getMember(I)) 7606 setWideningDecision( 7607 Member, VF, CM_Scalarize, 7608 (VF.getKnownMinValue() * 7609 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7610 } 7611 } 7612 } else 7613 // Make sure I gets scalarized and a cost estimate without 7614 // scalarization overhead. 7615 ForcedScalars[VF].insert(I); 7616 } 7617 } 7618 7619 InstructionCost 7620 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7621 Type *&VectorTy) { 7622 Type *RetTy = I->getType(); 7623 if (canTruncateToMinimalBitwidth(I, VF)) 7624 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7625 auto SE = PSE.getSE(); 7626 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7627 7628 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7629 ElementCount VF) -> bool { 7630 if (VF.isScalar()) 7631 return true; 7632 7633 auto Scalarized = InstsToScalarize.find(VF); 7634 assert(Scalarized != InstsToScalarize.end() && 7635 "VF not yet analyzed for scalarization profitability"); 7636 return !Scalarized->second.count(I) && 7637 llvm::all_of(I->users(), [&](User *U) { 7638 auto *UI = cast<Instruction>(U); 7639 return !Scalarized->second.count(UI); 7640 }); 7641 }; 7642 (void) hasSingleCopyAfterVectorization; 7643 7644 if (isScalarAfterVectorization(I, VF)) { 7645 // With the exception of GEPs and PHIs, after scalarization there should 7646 // only be one copy of the instruction generated in the loop. This is 7647 // because the VF is either 1, or any instructions that need scalarizing 7648 // have already been dealt with by the the time we get here. As a result, 7649 // it means we don't have to multiply the instruction cost by VF. 7650 assert(I->getOpcode() == Instruction::GetElementPtr || 7651 I->getOpcode() == Instruction::PHI || 7652 (I->getOpcode() == Instruction::BitCast && 7653 I->getType()->isPointerTy()) || 7654 hasSingleCopyAfterVectorization(I, VF)); 7655 VectorTy = RetTy; 7656 } else 7657 VectorTy = ToVectorTy(RetTy, VF); 7658 7659 // TODO: We need to estimate the cost of intrinsic calls. 7660 switch (I->getOpcode()) { 7661 case Instruction::GetElementPtr: 7662 // We mark this instruction as zero-cost because the cost of GEPs in 7663 // vectorized code depends on whether the corresponding memory instruction 7664 // is scalarized or not. Therefore, we handle GEPs with the memory 7665 // instruction cost. 7666 return 0; 7667 case Instruction::Br: { 7668 // In cases of scalarized and predicated instructions, there will be VF 7669 // predicated blocks in the vectorized loop. Each branch around these 7670 // blocks requires also an extract of its vector compare i1 element. 7671 bool ScalarPredicatedBB = false; 7672 BranchInst *BI = cast<BranchInst>(I); 7673 if (VF.isVector() && BI->isConditional() && 7674 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7675 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7676 ScalarPredicatedBB = true; 7677 7678 if (ScalarPredicatedBB) { 7679 // Not possible to scalarize scalable vector with predicated instructions. 7680 if (VF.isScalable()) 7681 return InstructionCost::getInvalid(); 7682 // Return cost for branches around scalarized and predicated blocks. 7683 auto *Vec_i1Ty = 7684 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7685 return ( 7686 TTI.getScalarizationOverhead( 7687 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7688 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7689 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7690 // The back-edge branch will remain, as will all scalar branches. 7691 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7692 else 7693 // This branch will be eliminated by if-conversion. 7694 return 0; 7695 // Note: We currently assume zero cost for an unconditional branch inside 7696 // a predicated block since it will become a fall-through, although we 7697 // may decide in the future to call TTI for all branches. 7698 } 7699 case Instruction::PHI: { 7700 auto *Phi = cast<PHINode>(I); 7701 7702 // First-order recurrences are replaced by vector shuffles inside the loop. 7703 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7704 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7705 return TTI.getShuffleCost( 7706 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7707 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7708 7709 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7710 // converted into select instructions. We require N - 1 selects per phi 7711 // node, where N is the number of incoming values. 7712 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7713 return (Phi->getNumIncomingValues() - 1) * 7714 TTI.getCmpSelInstrCost( 7715 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7716 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7717 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7718 7719 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7720 } 7721 case Instruction::UDiv: 7722 case Instruction::SDiv: 7723 case Instruction::URem: 7724 case Instruction::SRem: 7725 // If we have a predicated instruction, it may not be executed for each 7726 // vector lane. Get the scalarization cost and scale this amount by the 7727 // probability of executing the predicated block. If the instruction is not 7728 // predicated, we fall through to the next case. 7729 if (VF.isVector() && isScalarWithPredication(I)) { 7730 InstructionCost Cost = 0; 7731 7732 // These instructions have a non-void type, so account for the phi nodes 7733 // that we will create. This cost is likely to be zero. The phi node 7734 // cost, if any, should be scaled by the block probability because it 7735 // models a copy at the end of each predicated block. 7736 Cost += VF.getKnownMinValue() * 7737 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7738 7739 // The cost of the non-predicated instruction. 7740 Cost += VF.getKnownMinValue() * 7741 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7742 7743 // The cost of insertelement and extractelement instructions needed for 7744 // scalarization. 7745 Cost += getScalarizationOverhead(I, VF); 7746 7747 // Scale the cost by the probability of executing the predicated blocks. 7748 // This assumes the predicated block for each vector lane is equally 7749 // likely. 7750 return Cost / getReciprocalPredBlockProb(); 7751 } 7752 LLVM_FALLTHROUGH; 7753 case Instruction::Add: 7754 case Instruction::FAdd: 7755 case Instruction::Sub: 7756 case Instruction::FSub: 7757 case Instruction::Mul: 7758 case Instruction::FMul: 7759 case Instruction::FDiv: 7760 case Instruction::FRem: 7761 case Instruction::Shl: 7762 case Instruction::LShr: 7763 case Instruction::AShr: 7764 case Instruction::And: 7765 case Instruction::Or: 7766 case Instruction::Xor: { 7767 // Since we will replace the stride by 1 the multiplication should go away. 7768 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7769 return 0; 7770 7771 // Detect reduction patterns 7772 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7773 return *RedCost; 7774 7775 // Certain instructions can be cheaper to vectorize if they have a constant 7776 // second vector operand. One example of this are shifts on x86. 7777 Value *Op2 = I->getOperand(1); 7778 TargetTransformInfo::OperandValueProperties Op2VP; 7779 TargetTransformInfo::OperandValueKind Op2VK = 7780 TTI.getOperandInfo(Op2, Op2VP); 7781 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7782 Op2VK = TargetTransformInfo::OK_UniformValue; 7783 7784 SmallVector<const Value *, 4> Operands(I->operand_values()); 7785 return TTI.getArithmeticInstrCost( 7786 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7787 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7788 } 7789 case Instruction::FNeg: { 7790 return TTI.getArithmeticInstrCost( 7791 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7792 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7793 TargetTransformInfo::OP_None, I->getOperand(0), I); 7794 } 7795 case Instruction::Select: { 7796 SelectInst *SI = cast<SelectInst>(I); 7797 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7798 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7799 7800 const Value *Op0, *Op1; 7801 using namespace llvm::PatternMatch; 7802 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7803 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7804 // select x, y, false --> x & y 7805 // select x, true, y --> x | y 7806 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7807 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7808 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7809 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7810 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7811 Op1->getType()->getScalarSizeInBits() == 1); 7812 7813 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7814 return TTI.getArithmeticInstrCost( 7815 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7816 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7817 } 7818 7819 Type *CondTy = SI->getCondition()->getType(); 7820 if (!ScalarCond) 7821 CondTy = VectorType::get(CondTy, VF); 7822 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7823 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7824 } 7825 case Instruction::ICmp: 7826 case Instruction::FCmp: { 7827 Type *ValTy = I->getOperand(0)->getType(); 7828 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7829 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7830 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7831 VectorTy = ToVectorTy(ValTy, VF); 7832 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7833 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7834 } 7835 case Instruction::Store: 7836 case Instruction::Load: { 7837 ElementCount Width = VF; 7838 if (Width.isVector()) { 7839 InstWidening Decision = getWideningDecision(I, Width); 7840 assert(Decision != CM_Unknown && 7841 "CM decision should be taken at this point"); 7842 if (Decision == CM_Scalarize) 7843 Width = ElementCount::getFixed(1); 7844 } 7845 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7846 return getMemoryInstructionCost(I, VF); 7847 } 7848 case Instruction::BitCast: 7849 if (I->getType()->isPointerTy()) 7850 return 0; 7851 LLVM_FALLTHROUGH; 7852 case Instruction::ZExt: 7853 case Instruction::SExt: 7854 case Instruction::FPToUI: 7855 case Instruction::FPToSI: 7856 case Instruction::FPExt: 7857 case Instruction::PtrToInt: 7858 case Instruction::IntToPtr: 7859 case Instruction::SIToFP: 7860 case Instruction::UIToFP: 7861 case Instruction::Trunc: 7862 case Instruction::FPTrunc: { 7863 // Computes the CastContextHint from a Load/Store instruction. 7864 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7865 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7866 "Expected a load or a store!"); 7867 7868 if (VF.isScalar() || !TheLoop->contains(I)) 7869 return TTI::CastContextHint::Normal; 7870 7871 switch (getWideningDecision(I, VF)) { 7872 case LoopVectorizationCostModel::CM_GatherScatter: 7873 return TTI::CastContextHint::GatherScatter; 7874 case LoopVectorizationCostModel::CM_Interleave: 7875 return TTI::CastContextHint::Interleave; 7876 case LoopVectorizationCostModel::CM_Scalarize: 7877 case LoopVectorizationCostModel::CM_Widen: 7878 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7879 : TTI::CastContextHint::Normal; 7880 case LoopVectorizationCostModel::CM_Widen_Reverse: 7881 return TTI::CastContextHint::Reversed; 7882 case LoopVectorizationCostModel::CM_Unknown: 7883 llvm_unreachable("Instr did not go through cost modelling?"); 7884 } 7885 7886 llvm_unreachable("Unhandled case!"); 7887 }; 7888 7889 unsigned Opcode = I->getOpcode(); 7890 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7891 // For Trunc, the context is the only user, which must be a StoreInst. 7892 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7893 if (I->hasOneUse()) 7894 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7895 CCH = ComputeCCH(Store); 7896 } 7897 // For Z/Sext, the context is the operand, which must be a LoadInst. 7898 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7899 Opcode == Instruction::FPExt) { 7900 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7901 CCH = ComputeCCH(Load); 7902 } 7903 7904 // We optimize the truncation of induction variables having constant 7905 // integer steps. The cost of these truncations is the same as the scalar 7906 // operation. 7907 if (isOptimizableIVTruncate(I, VF)) { 7908 auto *Trunc = cast<TruncInst>(I); 7909 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7910 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7911 } 7912 7913 // Detect reduction patterns 7914 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7915 return *RedCost; 7916 7917 Type *SrcScalarTy = I->getOperand(0)->getType(); 7918 Type *SrcVecTy = 7919 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7920 if (canTruncateToMinimalBitwidth(I, VF)) { 7921 // This cast is going to be shrunk. This may remove the cast or it might 7922 // turn it into slightly different cast. For example, if MinBW == 16, 7923 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7924 // 7925 // Calculate the modified src and dest types. 7926 Type *MinVecTy = VectorTy; 7927 if (Opcode == Instruction::Trunc) { 7928 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7929 VectorTy = 7930 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7931 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7932 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7933 VectorTy = 7934 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7935 } 7936 } 7937 7938 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7939 } 7940 case Instruction::Call: { 7941 bool NeedToScalarize; 7942 CallInst *CI = cast<CallInst>(I); 7943 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7944 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7945 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7946 return std::min(CallCost, IntrinsicCost); 7947 } 7948 return CallCost; 7949 } 7950 case Instruction::ExtractValue: 7951 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7952 case Instruction::Alloca: 7953 // We cannot easily widen alloca to a scalable alloca, as 7954 // the result would need to be a vector of pointers. 7955 if (VF.isScalable()) 7956 return InstructionCost::getInvalid(); 7957 LLVM_FALLTHROUGH; 7958 default: 7959 // This opcode is unknown. Assume that it is the same as 'mul'. 7960 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7961 } // end of switch. 7962 } 7963 7964 char LoopVectorize::ID = 0; 7965 7966 static const char lv_name[] = "Loop Vectorization"; 7967 7968 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7969 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7970 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7971 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7972 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7973 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7974 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7975 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7976 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7977 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7978 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7979 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7980 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7981 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7982 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7983 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7984 7985 namespace llvm { 7986 7987 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7988 7989 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7990 bool VectorizeOnlyWhenForced) { 7991 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7992 } 7993 7994 } // end namespace llvm 7995 7996 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7997 // Check if the pointer operand of a load or store instruction is 7998 // consecutive. 7999 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 8000 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 8001 return false; 8002 } 8003 8004 void LoopVectorizationCostModel::collectValuesToIgnore() { 8005 // Ignore ephemeral values. 8006 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 8007 8008 // Ignore type-promoting instructions we identified during reduction 8009 // detection. 8010 for (auto &Reduction : Legal->getReductionVars()) { 8011 RecurrenceDescriptor &RedDes = Reduction.second; 8012 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 8013 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8014 } 8015 // Ignore type-casting instructions we identified during induction 8016 // detection. 8017 for (auto &Induction : Legal->getInductionVars()) { 8018 InductionDescriptor &IndDes = Induction.second; 8019 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8020 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8021 } 8022 } 8023 8024 void LoopVectorizationCostModel::collectInLoopReductions() { 8025 for (auto &Reduction : Legal->getReductionVars()) { 8026 PHINode *Phi = Reduction.first; 8027 RecurrenceDescriptor &RdxDesc = Reduction.second; 8028 8029 // We don't collect reductions that are type promoted (yet). 8030 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8031 continue; 8032 8033 // If the target would prefer this reduction to happen "in-loop", then we 8034 // want to record it as such. 8035 unsigned Opcode = RdxDesc.getOpcode(); 8036 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8037 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8038 TargetTransformInfo::ReductionFlags())) 8039 continue; 8040 8041 // Check that we can correctly put the reductions into the loop, by 8042 // finding the chain of operations that leads from the phi to the loop 8043 // exit value. 8044 SmallVector<Instruction *, 4> ReductionOperations = 8045 RdxDesc.getReductionOpChain(Phi, TheLoop); 8046 bool InLoop = !ReductionOperations.empty(); 8047 if (InLoop) { 8048 InLoopReductionChains[Phi] = ReductionOperations; 8049 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8050 Instruction *LastChain = Phi; 8051 for (auto *I : ReductionOperations) { 8052 InLoopReductionImmediateChains[I] = LastChain; 8053 LastChain = I; 8054 } 8055 } 8056 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8057 << " reduction for phi: " << *Phi << "\n"); 8058 } 8059 } 8060 8061 // TODO: we could return a pair of values that specify the max VF and 8062 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8063 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8064 // doesn't have a cost model that can choose which plan to execute if 8065 // more than one is generated. 8066 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8067 LoopVectorizationCostModel &CM) { 8068 unsigned WidestType; 8069 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8070 return WidestVectorRegBits / WidestType; 8071 } 8072 8073 VectorizationFactor 8074 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8075 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8076 ElementCount VF = UserVF; 8077 // Outer loop handling: They may require CFG and instruction level 8078 // transformations before even evaluating whether vectorization is profitable. 8079 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8080 // the vectorization pipeline. 8081 if (!OrigLoop->isInnermost()) { 8082 // If the user doesn't provide a vectorization factor, determine a 8083 // reasonable one. 8084 if (UserVF.isZero()) { 8085 VF = ElementCount::getFixed(determineVPlanVF( 8086 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8087 .getFixedSize(), 8088 CM)); 8089 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8090 8091 // Make sure we have a VF > 1 for stress testing. 8092 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8093 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8094 << "overriding computed VF.\n"); 8095 VF = ElementCount::getFixed(4); 8096 } 8097 } 8098 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8099 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8100 "VF needs to be a power of two"); 8101 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8102 << "VF " << VF << " to build VPlans.\n"); 8103 buildVPlans(VF, VF); 8104 8105 // For VPlan build stress testing, we bail out after VPlan construction. 8106 if (VPlanBuildStressTest) 8107 return VectorizationFactor::Disabled(); 8108 8109 return {VF, 0 /*Cost*/}; 8110 } 8111 8112 LLVM_DEBUG( 8113 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8114 "VPlan-native path.\n"); 8115 return VectorizationFactor::Disabled(); 8116 } 8117 8118 Optional<VectorizationFactor> 8119 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8120 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8121 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8122 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8123 return None; 8124 8125 // Invalidate interleave groups if all blocks of loop will be predicated. 8126 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8127 !useMaskedInterleavedAccesses(*TTI)) { 8128 LLVM_DEBUG( 8129 dbgs() 8130 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8131 "which requires masked-interleaved support.\n"); 8132 if (CM.InterleaveInfo.invalidateGroups()) 8133 // Invalidating interleave groups also requires invalidating all decisions 8134 // based on them, which includes widening decisions and uniform and scalar 8135 // values. 8136 CM.invalidateCostModelingDecisions(); 8137 } 8138 8139 ElementCount MaxUserVF = 8140 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8141 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8142 if (!UserVF.isZero() && UserVFIsLegal) { 8143 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8144 "VF needs to be a power of two"); 8145 // Collect the instructions (and their associated costs) that will be more 8146 // profitable to scalarize. 8147 if (CM.selectUserVectorizationFactor(UserVF)) { 8148 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8149 CM.collectInLoopReductions(); 8150 buildVPlansWithVPRecipes(UserVF, UserVF); 8151 LLVM_DEBUG(printPlans(dbgs())); 8152 return {{UserVF, 0}}; 8153 } else 8154 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8155 "InvalidCost", ORE, OrigLoop); 8156 } 8157 8158 // Populate the set of Vectorization Factor Candidates. 8159 ElementCountSet VFCandidates; 8160 for (auto VF = ElementCount::getFixed(1); 8161 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8162 VFCandidates.insert(VF); 8163 for (auto VF = ElementCount::getScalable(1); 8164 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8165 VFCandidates.insert(VF); 8166 8167 for (const auto &VF : VFCandidates) { 8168 // Collect Uniform and Scalar instructions after vectorization with VF. 8169 CM.collectUniformsAndScalars(VF); 8170 8171 // Collect the instructions (and their associated costs) that will be more 8172 // profitable to scalarize. 8173 if (VF.isVector()) 8174 CM.collectInstsToScalarize(VF); 8175 } 8176 8177 CM.collectInLoopReductions(); 8178 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8179 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8180 8181 LLVM_DEBUG(printPlans(dbgs())); 8182 if (!MaxFactors.hasVector()) 8183 return VectorizationFactor::Disabled(); 8184 8185 // Select the optimal vectorization factor. 8186 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8187 8188 // Check if it is profitable to vectorize with runtime checks. 8189 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8190 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8191 bool PragmaThresholdReached = 8192 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8193 bool ThresholdReached = 8194 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8195 if ((ThresholdReached && !Hints.allowReordering()) || 8196 PragmaThresholdReached) { 8197 ORE->emit([&]() { 8198 return OptimizationRemarkAnalysisAliasing( 8199 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8200 OrigLoop->getHeader()) 8201 << "loop not vectorized: cannot prove it is safe to reorder " 8202 "memory operations"; 8203 }); 8204 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8205 Hints.emitRemarkWithHints(); 8206 return VectorizationFactor::Disabled(); 8207 } 8208 } 8209 return SelectedVF; 8210 } 8211 8212 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 8213 assert(count_if(VPlans, 8214 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 8215 1 && 8216 "Best VF has not a single VPlan."); 8217 8218 for (const VPlanPtr &Plan : VPlans) { 8219 if (Plan->hasVF(VF)) 8220 return *Plan.get(); 8221 } 8222 llvm_unreachable("No plan found!"); 8223 } 8224 8225 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 8226 VPlan &BestVPlan, 8227 InnerLoopVectorizer &ILV, 8228 DominatorTree *DT) { 8229 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 8230 << '\n'); 8231 8232 // Perform the actual loop transformation. 8233 8234 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8235 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 8236 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8237 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8238 State.CanonicalIV = ILV.Induction; 8239 8240 ILV.printDebugTracesAtStart(); 8241 8242 //===------------------------------------------------===// 8243 // 8244 // Notice: any optimization or new instruction that go 8245 // into the code below should also be implemented in 8246 // the cost-model. 8247 // 8248 //===------------------------------------------------===// 8249 8250 // 2. Copy and widen instructions from the old loop into the new loop. 8251 BestVPlan.execute(&State); 8252 8253 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8254 // predication, updating analyses. 8255 ILV.fixVectorizedLoop(State); 8256 8257 ILV.printDebugTracesAtEnd(); 8258 } 8259 8260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8261 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8262 for (const auto &Plan : VPlans) 8263 if (PrintVPlansInDotFormat) 8264 Plan->printDOT(O); 8265 else 8266 Plan->print(O); 8267 } 8268 #endif 8269 8270 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8271 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8272 8273 // We create new control-flow for the vectorized loop, so the original exit 8274 // conditions will be dead after vectorization if it's only used by the 8275 // terminator 8276 SmallVector<BasicBlock*> ExitingBlocks; 8277 OrigLoop->getExitingBlocks(ExitingBlocks); 8278 for (auto *BB : ExitingBlocks) { 8279 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8280 if (!Cmp || !Cmp->hasOneUse()) 8281 continue; 8282 8283 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8284 if (!DeadInstructions.insert(Cmp).second) 8285 continue; 8286 8287 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8288 // TODO: can recurse through operands in general 8289 for (Value *Op : Cmp->operands()) { 8290 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8291 DeadInstructions.insert(cast<Instruction>(Op)); 8292 } 8293 } 8294 8295 // We create new "steps" for induction variable updates to which the original 8296 // induction variables map. An original update instruction will be dead if 8297 // all its users except the induction variable are dead. 8298 auto *Latch = OrigLoop->getLoopLatch(); 8299 for (auto &Induction : Legal->getInductionVars()) { 8300 PHINode *Ind = Induction.first; 8301 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8302 8303 // If the tail is to be folded by masking, the primary induction variable, 8304 // if exists, isn't dead: it will be used for masking. Don't kill it. 8305 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8306 continue; 8307 8308 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8309 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8310 })) 8311 DeadInstructions.insert(IndUpdate); 8312 8313 // We record as "Dead" also the type-casting instructions we had identified 8314 // during induction analysis. We don't need any handling for them in the 8315 // vectorized loop because we have proven that, under a proper runtime 8316 // test guarding the vectorized loop, the value of the phi, and the casted 8317 // value of the phi, are the same. The last instruction in this casting chain 8318 // will get its scalar/vector/widened def from the scalar/vector/widened def 8319 // of the respective phi node. Any other casts in the induction def-use chain 8320 // have no other uses outside the phi update chain, and will be ignored. 8321 InductionDescriptor &IndDes = Induction.second; 8322 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8323 DeadInstructions.insert(Casts.begin(), Casts.end()); 8324 } 8325 } 8326 8327 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8328 8329 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8330 8331 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx, 8332 Value *Step, 8333 Instruction::BinaryOps BinOp) { 8334 // When unrolling and the VF is 1, we only need to add a simple scalar. 8335 Type *Ty = Val->getType(); 8336 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8337 8338 if (Ty->isFloatingPointTy()) { 8339 // Floating-point operations inherit FMF via the builder's flags. 8340 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 8341 return Builder.CreateBinOp(BinOp, Val, MulOp); 8342 } 8343 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction"); 8344 } 8345 8346 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8347 SmallVector<Metadata *, 4> MDs; 8348 // Reserve first location for self reference to the LoopID metadata node. 8349 MDs.push_back(nullptr); 8350 bool IsUnrollMetadata = false; 8351 MDNode *LoopID = L->getLoopID(); 8352 if (LoopID) { 8353 // First find existing loop unrolling disable metadata. 8354 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8355 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8356 if (MD) { 8357 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8358 IsUnrollMetadata = 8359 S && S->getString().startswith("llvm.loop.unroll.disable"); 8360 } 8361 MDs.push_back(LoopID->getOperand(i)); 8362 } 8363 } 8364 8365 if (!IsUnrollMetadata) { 8366 // Add runtime unroll disable metadata. 8367 LLVMContext &Context = L->getHeader()->getContext(); 8368 SmallVector<Metadata *, 1> DisableOperands; 8369 DisableOperands.push_back( 8370 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8371 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8372 MDs.push_back(DisableNode); 8373 MDNode *NewLoopID = MDNode::get(Context, MDs); 8374 // Set operand 0 to refer to the loop id itself. 8375 NewLoopID->replaceOperandWith(0, NewLoopID); 8376 L->setLoopID(NewLoopID); 8377 } 8378 } 8379 8380 //===--------------------------------------------------------------------===// 8381 // EpilogueVectorizerMainLoop 8382 //===--------------------------------------------------------------------===// 8383 8384 /// This function is partially responsible for generating the control flow 8385 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8386 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8387 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8388 Loop *Lp = createVectorLoopSkeleton(""); 8389 8390 // Generate the code to check the minimum iteration count of the vector 8391 // epilogue (see below). 8392 EPI.EpilogueIterationCountCheck = 8393 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8394 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8395 8396 // Generate the code to check any assumptions that we've made for SCEV 8397 // expressions. 8398 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8399 8400 // Generate the code that checks at runtime if arrays overlap. We put the 8401 // checks into a separate block to make the more common case of few elements 8402 // faster. 8403 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8404 8405 // Generate the iteration count check for the main loop, *after* the check 8406 // for the epilogue loop, so that the path-length is shorter for the case 8407 // that goes directly through the vector epilogue. The longer-path length for 8408 // the main loop is compensated for, by the gain from vectorizing the larger 8409 // trip count. Note: the branch will get updated later on when we vectorize 8410 // the epilogue. 8411 EPI.MainLoopIterationCountCheck = 8412 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8413 8414 // Generate the induction variable. 8415 OldInduction = Legal->getPrimaryInduction(); 8416 Type *IdxTy = Legal->getWidestInductionType(); 8417 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8418 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8419 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8420 EPI.VectorTripCount = CountRoundDown; 8421 Induction = 8422 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8423 getDebugLocFromInstOrOperands(OldInduction)); 8424 8425 // Skip induction resume value creation here because they will be created in 8426 // the second pass. If we created them here, they wouldn't be used anyway, 8427 // because the vplan in the second pass still contains the inductions from the 8428 // original loop. 8429 8430 return completeLoopSkeleton(Lp, OrigLoopID); 8431 } 8432 8433 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8434 LLVM_DEBUG({ 8435 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8436 << "Main Loop VF:" << EPI.MainLoopVF 8437 << ", Main Loop UF:" << EPI.MainLoopUF 8438 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8439 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8440 }); 8441 } 8442 8443 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8444 DEBUG_WITH_TYPE(VerboseDebug, { 8445 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8446 }); 8447 } 8448 8449 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8450 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8451 assert(L && "Expected valid Loop."); 8452 assert(Bypass && "Expected valid bypass basic block."); 8453 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8454 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8455 Value *Count = getOrCreateTripCount(L); 8456 // Reuse existing vector loop preheader for TC checks. 8457 // Note that new preheader block is generated for vector loop. 8458 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8459 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8460 8461 // Generate code to check if the loop's trip count is less than VF * UF of the 8462 // main vector loop. 8463 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8464 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8465 8466 Value *CheckMinIters = Builder.CreateICmp( 8467 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8468 "min.iters.check"); 8469 8470 if (!ForEpilogue) 8471 TCCheckBlock->setName("vector.main.loop.iter.check"); 8472 8473 // Create new preheader for vector loop. 8474 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8475 DT, LI, nullptr, "vector.ph"); 8476 8477 if (ForEpilogue) { 8478 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8479 DT->getNode(Bypass)->getIDom()) && 8480 "TC check is expected to dominate Bypass"); 8481 8482 // Update dominator for Bypass & LoopExit. 8483 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8484 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8485 // For loops with multiple exits, there's no edge from the middle block 8486 // to exit blocks (as the epilogue must run) and thus no need to update 8487 // the immediate dominator of the exit blocks. 8488 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8489 8490 LoopBypassBlocks.push_back(TCCheckBlock); 8491 8492 // Save the trip count so we don't have to regenerate it in the 8493 // vec.epilog.iter.check. This is safe to do because the trip count 8494 // generated here dominates the vector epilog iter check. 8495 EPI.TripCount = Count; 8496 } 8497 8498 ReplaceInstWithInst( 8499 TCCheckBlock->getTerminator(), 8500 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8501 8502 return TCCheckBlock; 8503 } 8504 8505 //===--------------------------------------------------------------------===// 8506 // EpilogueVectorizerEpilogueLoop 8507 //===--------------------------------------------------------------------===// 8508 8509 /// This function is partially responsible for generating the control flow 8510 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8511 BasicBlock * 8512 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8513 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8514 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8515 8516 // Now, compare the remaining count and if there aren't enough iterations to 8517 // execute the vectorized epilogue skip to the scalar part. 8518 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8519 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8520 LoopVectorPreHeader = 8521 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8522 LI, nullptr, "vec.epilog.ph"); 8523 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8524 VecEpilogueIterationCountCheck); 8525 8526 // Adjust the control flow taking the state info from the main loop 8527 // vectorization into account. 8528 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8529 "expected this to be saved from the previous pass."); 8530 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8531 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8532 8533 DT->changeImmediateDominator(LoopVectorPreHeader, 8534 EPI.MainLoopIterationCountCheck); 8535 8536 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8537 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8538 8539 if (EPI.SCEVSafetyCheck) 8540 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8541 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8542 if (EPI.MemSafetyCheck) 8543 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8544 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8545 8546 DT->changeImmediateDominator( 8547 VecEpilogueIterationCountCheck, 8548 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8549 8550 DT->changeImmediateDominator(LoopScalarPreHeader, 8551 EPI.EpilogueIterationCountCheck); 8552 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8553 // If there is an epilogue which must run, there's no edge from the 8554 // middle block to exit blocks and thus no need to update the immediate 8555 // dominator of the exit blocks. 8556 DT->changeImmediateDominator(LoopExitBlock, 8557 EPI.EpilogueIterationCountCheck); 8558 8559 // Keep track of bypass blocks, as they feed start values to the induction 8560 // phis in the scalar loop preheader. 8561 if (EPI.SCEVSafetyCheck) 8562 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8563 if (EPI.MemSafetyCheck) 8564 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8565 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8566 8567 // Generate a resume induction for the vector epilogue and put it in the 8568 // vector epilogue preheader 8569 Type *IdxTy = Legal->getWidestInductionType(); 8570 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8571 LoopVectorPreHeader->getFirstNonPHI()); 8572 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8573 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8574 EPI.MainLoopIterationCountCheck); 8575 8576 // Generate the induction variable. 8577 OldInduction = Legal->getPrimaryInduction(); 8578 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8579 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8580 Value *StartIdx = EPResumeVal; 8581 Induction = 8582 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8583 getDebugLocFromInstOrOperands(OldInduction)); 8584 8585 // Generate induction resume values. These variables save the new starting 8586 // indexes for the scalar loop. They are used to test if there are any tail 8587 // iterations left once the vector loop has completed. 8588 // Note that when the vectorized epilogue is skipped due to iteration count 8589 // check, then the resume value for the induction variable comes from 8590 // the trip count of the main vector loop, hence passing the AdditionalBypass 8591 // argument. 8592 createInductionResumeValues(Lp, CountRoundDown, 8593 {VecEpilogueIterationCountCheck, 8594 EPI.VectorTripCount} /* AdditionalBypass */); 8595 8596 AddRuntimeUnrollDisableMetaData(Lp); 8597 return completeLoopSkeleton(Lp, OrigLoopID); 8598 } 8599 8600 BasicBlock * 8601 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8602 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8603 8604 assert(EPI.TripCount && 8605 "Expected trip count to have been safed in the first pass."); 8606 assert( 8607 (!isa<Instruction>(EPI.TripCount) || 8608 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8609 "saved trip count does not dominate insertion point."); 8610 Value *TC = EPI.TripCount; 8611 IRBuilder<> Builder(Insert->getTerminator()); 8612 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8613 8614 // Generate code to check if the loop's trip count is less than VF * UF of the 8615 // vector epilogue loop. 8616 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8617 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8618 8619 Value *CheckMinIters = Builder.CreateICmp( 8620 P, Count, 8621 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8622 "min.epilog.iters.check"); 8623 8624 ReplaceInstWithInst( 8625 Insert->getTerminator(), 8626 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8627 8628 LoopBypassBlocks.push_back(Insert); 8629 return Insert; 8630 } 8631 8632 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8633 LLVM_DEBUG({ 8634 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8635 << "Epilogue Loop VF:" << EPI.EpilogueVF 8636 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8637 }); 8638 } 8639 8640 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8641 DEBUG_WITH_TYPE(VerboseDebug, { 8642 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8643 }); 8644 } 8645 8646 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8647 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8648 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8649 bool PredicateAtRangeStart = Predicate(Range.Start); 8650 8651 for (ElementCount TmpVF = Range.Start * 2; 8652 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8653 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8654 Range.End = TmpVF; 8655 break; 8656 } 8657 8658 return PredicateAtRangeStart; 8659 } 8660 8661 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8662 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8663 /// of VF's starting at a given VF and extending it as much as possible. Each 8664 /// vectorization decision can potentially shorten this sub-range during 8665 /// buildVPlan(). 8666 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8667 ElementCount MaxVF) { 8668 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8669 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8670 VFRange SubRange = {VF, MaxVFPlusOne}; 8671 VPlans.push_back(buildVPlan(SubRange)); 8672 VF = SubRange.End; 8673 } 8674 } 8675 8676 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8677 VPlanPtr &Plan) { 8678 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8679 8680 // Look for cached value. 8681 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8682 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8683 if (ECEntryIt != EdgeMaskCache.end()) 8684 return ECEntryIt->second; 8685 8686 VPValue *SrcMask = createBlockInMask(Src, Plan); 8687 8688 // The terminator has to be a branch inst! 8689 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8690 assert(BI && "Unexpected terminator found"); 8691 8692 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8693 return EdgeMaskCache[Edge] = SrcMask; 8694 8695 // If source is an exiting block, we know the exit edge is dynamically dead 8696 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8697 // adding uses of an otherwise potentially dead instruction. 8698 if (OrigLoop->isLoopExiting(Src)) 8699 return EdgeMaskCache[Edge] = SrcMask; 8700 8701 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8702 assert(EdgeMask && "No Edge Mask found for condition"); 8703 8704 if (BI->getSuccessor(0) != Dst) 8705 EdgeMask = Builder.createNot(EdgeMask); 8706 8707 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8708 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8709 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8710 // The select version does not introduce new UB if SrcMask is false and 8711 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8712 VPValue *False = Plan->getOrAddVPValue( 8713 ConstantInt::getFalse(BI->getCondition()->getType())); 8714 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8715 } 8716 8717 return EdgeMaskCache[Edge] = EdgeMask; 8718 } 8719 8720 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8721 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8722 8723 // Look for cached value. 8724 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8725 if (BCEntryIt != BlockMaskCache.end()) 8726 return BCEntryIt->second; 8727 8728 // All-one mask is modelled as no-mask following the convention for masked 8729 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8730 VPValue *BlockMask = nullptr; 8731 8732 if (OrigLoop->getHeader() == BB) { 8733 if (!CM.blockNeedsPredication(BB)) 8734 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8735 8736 // Create the block in mask as the first non-phi instruction in the block. 8737 VPBuilder::InsertPointGuard Guard(Builder); 8738 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8739 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8740 8741 // Introduce the early-exit compare IV <= BTC to form header block mask. 8742 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8743 // Start by constructing the desired canonical IV. 8744 VPValue *IV = nullptr; 8745 if (Legal->getPrimaryInduction()) 8746 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8747 else { 8748 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8749 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8750 IV = IVRecipe->getVPSingleValue(); 8751 } 8752 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8753 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8754 8755 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8756 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8757 // as a second argument, we only pass the IV here and extract the 8758 // tripcount from the transform state where codegen of the VP instructions 8759 // happen. 8760 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8761 } else { 8762 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8763 } 8764 return BlockMaskCache[BB] = BlockMask; 8765 } 8766 8767 // This is the block mask. We OR all incoming edges. 8768 for (auto *Predecessor : predecessors(BB)) { 8769 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8770 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8771 return BlockMaskCache[BB] = EdgeMask; 8772 8773 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8774 BlockMask = EdgeMask; 8775 continue; 8776 } 8777 8778 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8779 } 8780 8781 return BlockMaskCache[BB] = BlockMask; 8782 } 8783 8784 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8785 ArrayRef<VPValue *> Operands, 8786 VFRange &Range, 8787 VPlanPtr &Plan) { 8788 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8789 "Must be called with either a load or store"); 8790 8791 auto willWiden = [&](ElementCount VF) -> bool { 8792 if (VF.isScalar()) 8793 return false; 8794 LoopVectorizationCostModel::InstWidening Decision = 8795 CM.getWideningDecision(I, VF); 8796 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8797 "CM decision should be taken at this point."); 8798 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8799 return true; 8800 if (CM.isScalarAfterVectorization(I, VF) || 8801 CM.isProfitableToScalarize(I, VF)) 8802 return false; 8803 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8804 }; 8805 8806 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8807 return nullptr; 8808 8809 VPValue *Mask = nullptr; 8810 if (Legal->isMaskRequired(I)) 8811 Mask = createBlockInMask(I->getParent(), Plan); 8812 8813 // Determine if the pointer operand of the access is either consecutive or 8814 // reverse consecutive. 8815 LoopVectorizationCostModel::InstWidening Decision = 8816 CM.getWideningDecision(I, Range.Start); 8817 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8818 bool Consecutive = 8819 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8820 8821 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8822 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8823 Consecutive, Reverse); 8824 8825 StoreInst *Store = cast<StoreInst>(I); 8826 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8827 Mask, Consecutive, Reverse); 8828 } 8829 8830 VPWidenIntOrFpInductionRecipe * 8831 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8832 ArrayRef<VPValue *> Operands) const { 8833 // Check if this is an integer or fp induction. If so, build the recipe that 8834 // produces its scalar and vector values. 8835 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8836 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8837 II.getKind() == InductionDescriptor::IK_FpInduction) { 8838 assert(II.getStartValue() == 8839 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8840 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8841 return new VPWidenIntOrFpInductionRecipe( 8842 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8843 } 8844 8845 return nullptr; 8846 } 8847 8848 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8849 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8850 VPlan &Plan) const { 8851 // Optimize the special case where the source is a constant integer 8852 // induction variable. Notice that we can only optimize the 'trunc' case 8853 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8854 // (c) other casts depend on pointer size. 8855 8856 // Determine whether \p K is a truncation based on an induction variable that 8857 // can be optimized. 8858 auto isOptimizableIVTruncate = 8859 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8860 return [=](ElementCount VF) -> bool { 8861 return CM.isOptimizableIVTruncate(K, VF); 8862 }; 8863 }; 8864 8865 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8866 isOptimizableIVTruncate(I), Range)) { 8867 8868 InductionDescriptor II = 8869 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8870 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8871 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8872 Start, nullptr, I); 8873 } 8874 return nullptr; 8875 } 8876 8877 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8878 ArrayRef<VPValue *> Operands, 8879 VPlanPtr &Plan) { 8880 // If all incoming values are equal, the incoming VPValue can be used directly 8881 // instead of creating a new VPBlendRecipe. 8882 VPValue *FirstIncoming = Operands[0]; 8883 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8884 return FirstIncoming == Inc; 8885 })) { 8886 return Operands[0]; 8887 } 8888 8889 // We know that all PHIs in non-header blocks are converted into selects, so 8890 // we don't have to worry about the insertion order and we can just use the 8891 // builder. At this point we generate the predication tree. There may be 8892 // duplications since this is a simple recursive scan, but future 8893 // optimizations will clean it up. 8894 SmallVector<VPValue *, 2> OperandsWithMask; 8895 unsigned NumIncoming = Phi->getNumIncomingValues(); 8896 8897 for (unsigned In = 0; In < NumIncoming; In++) { 8898 VPValue *EdgeMask = 8899 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8900 assert((EdgeMask || NumIncoming == 1) && 8901 "Multiple predecessors with one having a full mask"); 8902 OperandsWithMask.push_back(Operands[In]); 8903 if (EdgeMask) 8904 OperandsWithMask.push_back(EdgeMask); 8905 } 8906 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8907 } 8908 8909 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8910 ArrayRef<VPValue *> Operands, 8911 VFRange &Range) const { 8912 8913 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8914 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8915 Range); 8916 8917 if (IsPredicated) 8918 return nullptr; 8919 8920 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8921 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8922 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8923 ID == Intrinsic::pseudoprobe || 8924 ID == Intrinsic::experimental_noalias_scope_decl)) 8925 return nullptr; 8926 8927 auto willWiden = [&](ElementCount VF) -> bool { 8928 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8929 // The following case may be scalarized depending on the VF. 8930 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8931 // version of the instruction. 8932 // Is it beneficial to perform intrinsic call compared to lib call? 8933 bool NeedToScalarize = false; 8934 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8935 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8936 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8937 return UseVectorIntrinsic || !NeedToScalarize; 8938 }; 8939 8940 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8941 return nullptr; 8942 8943 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8944 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8945 } 8946 8947 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8948 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8949 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8950 // Instruction should be widened, unless it is scalar after vectorization, 8951 // scalarization is profitable or it is predicated. 8952 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8953 return CM.isScalarAfterVectorization(I, VF) || 8954 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8955 }; 8956 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8957 Range); 8958 } 8959 8960 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8961 ArrayRef<VPValue *> Operands) const { 8962 auto IsVectorizableOpcode = [](unsigned Opcode) { 8963 switch (Opcode) { 8964 case Instruction::Add: 8965 case Instruction::And: 8966 case Instruction::AShr: 8967 case Instruction::BitCast: 8968 case Instruction::FAdd: 8969 case Instruction::FCmp: 8970 case Instruction::FDiv: 8971 case Instruction::FMul: 8972 case Instruction::FNeg: 8973 case Instruction::FPExt: 8974 case Instruction::FPToSI: 8975 case Instruction::FPToUI: 8976 case Instruction::FPTrunc: 8977 case Instruction::FRem: 8978 case Instruction::FSub: 8979 case Instruction::ICmp: 8980 case Instruction::IntToPtr: 8981 case Instruction::LShr: 8982 case Instruction::Mul: 8983 case Instruction::Or: 8984 case Instruction::PtrToInt: 8985 case Instruction::SDiv: 8986 case Instruction::Select: 8987 case Instruction::SExt: 8988 case Instruction::Shl: 8989 case Instruction::SIToFP: 8990 case Instruction::SRem: 8991 case Instruction::Sub: 8992 case Instruction::Trunc: 8993 case Instruction::UDiv: 8994 case Instruction::UIToFP: 8995 case Instruction::URem: 8996 case Instruction::Xor: 8997 case Instruction::ZExt: 8998 return true; 8999 } 9000 return false; 9001 }; 9002 9003 if (!IsVectorizableOpcode(I->getOpcode())) 9004 return nullptr; 9005 9006 // Success: widen this instruction. 9007 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 9008 } 9009 9010 void VPRecipeBuilder::fixHeaderPhis() { 9011 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 9012 for (VPWidenPHIRecipe *R : PhisToFix) { 9013 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 9014 VPRecipeBase *IncR = 9015 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 9016 R->addOperand(IncR->getVPSingleValue()); 9017 } 9018 } 9019 9020 VPBasicBlock *VPRecipeBuilder::handleReplication( 9021 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 9022 VPlanPtr &Plan) { 9023 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 9024 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 9025 Range); 9026 9027 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 9028 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9029 9030 // Even if the instruction is not marked as uniform, there are certain 9031 // intrinsic calls that can be effectively treated as such, so we check for 9032 // them here. Conservatively, we only do this for scalable vectors, since 9033 // for fixed-width VFs we can always fall back on full scalarization. 9034 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9035 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9036 case Intrinsic::assume: 9037 case Intrinsic::lifetime_start: 9038 case Intrinsic::lifetime_end: 9039 // For scalable vectors if one of the operands is variant then we still 9040 // want to mark as uniform, which will generate one instruction for just 9041 // the first lane of the vector. We can't scalarize the call in the same 9042 // way as for fixed-width vectors because we don't know how many lanes 9043 // there are. 9044 // 9045 // The reasons for doing it this way for scalable vectors are: 9046 // 1. For the assume intrinsic generating the instruction for the first 9047 // lane is still be better than not generating any at all. For 9048 // example, the input may be a splat across all lanes. 9049 // 2. For the lifetime start/end intrinsics the pointer operand only 9050 // does anything useful when the input comes from a stack object, 9051 // which suggests it should always be uniform. For non-stack objects 9052 // the effect is to poison the object, which still allows us to 9053 // remove the call. 9054 IsUniform = true; 9055 break; 9056 default: 9057 break; 9058 } 9059 } 9060 9061 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9062 IsUniform, IsPredicated); 9063 setRecipe(I, Recipe); 9064 Plan->addVPValue(I, Recipe); 9065 9066 // Find if I uses a predicated instruction. If so, it will use its scalar 9067 // value. Avoid hoisting the insert-element which packs the scalar value into 9068 // a vector value, as that happens iff all users use the vector value. 9069 for (VPValue *Op : Recipe->operands()) { 9070 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9071 if (!PredR) 9072 continue; 9073 auto *RepR = 9074 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9075 assert(RepR->isPredicated() && 9076 "expected Replicate recipe to be predicated"); 9077 RepR->setAlsoPack(false); 9078 } 9079 9080 // Finalize the recipe for Instr, first if it is not predicated. 9081 if (!IsPredicated) { 9082 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9083 VPBB->appendRecipe(Recipe); 9084 return VPBB; 9085 } 9086 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9087 assert(VPBB->getSuccessors().empty() && 9088 "VPBB has successors when handling predicated replication."); 9089 // Record predicated instructions for above packing optimizations. 9090 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9091 VPBlockUtils::insertBlockAfter(Region, VPBB); 9092 auto *RegSucc = new VPBasicBlock(); 9093 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9094 return RegSucc; 9095 } 9096 9097 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9098 VPRecipeBase *PredRecipe, 9099 VPlanPtr &Plan) { 9100 // Instructions marked for predication are replicated and placed under an 9101 // if-then construct to prevent side-effects. 9102 9103 // Generate recipes to compute the block mask for this region. 9104 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9105 9106 // Build the triangular if-then region. 9107 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9108 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9109 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9110 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9111 auto *PHIRecipe = Instr->getType()->isVoidTy() 9112 ? nullptr 9113 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9114 if (PHIRecipe) { 9115 Plan->removeVPValueFor(Instr); 9116 Plan->addVPValue(Instr, PHIRecipe); 9117 } 9118 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9119 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9120 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9121 9122 // Note: first set Entry as region entry and then connect successors starting 9123 // from it in order, to propagate the "parent" of each VPBasicBlock. 9124 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9125 VPBlockUtils::connectBlocks(Pred, Exit); 9126 9127 return Region; 9128 } 9129 9130 VPRecipeOrVPValueTy 9131 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9132 ArrayRef<VPValue *> Operands, 9133 VFRange &Range, VPlanPtr &Plan) { 9134 // First, check for specific widening recipes that deal with calls, memory 9135 // operations, inductions and Phi nodes. 9136 if (auto *CI = dyn_cast<CallInst>(Instr)) 9137 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9138 9139 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9140 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9141 9142 VPRecipeBase *Recipe; 9143 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9144 if (Phi->getParent() != OrigLoop->getHeader()) 9145 return tryToBlend(Phi, Operands, Plan); 9146 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9147 return toVPRecipeResult(Recipe); 9148 9149 VPWidenPHIRecipe *PhiRecipe = nullptr; 9150 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9151 VPValue *StartV = Operands[0]; 9152 if (Legal->isReductionVariable(Phi)) { 9153 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9154 assert(RdxDesc.getRecurrenceStartValue() == 9155 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9156 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9157 CM.isInLoopReduction(Phi), 9158 CM.useOrderedReductions(RdxDesc)); 9159 } else { 9160 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9161 } 9162 9163 // Record the incoming value from the backedge, so we can add the incoming 9164 // value from the backedge after all recipes have been created. 9165 recordRecipeOf(cast<Instruction>( 9166 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9167 PhisToFix.push_back(PhiRecipe); 9168 } else { 9169 // TODO: record start and backedge value for remaining pointer induction 9170 // phis. 9171 assert(Phi->getType()->isPointerTy() && 9172 "only pointer phis should be handled here"); 9173 PhiRecipe = new VPWidenPHIRecipe(Phi); 9174 } 9175 9176 return toVPRecipeResult(PhiRecipe); 9177 } 9178 9179 if (isa<TruncInst>(Instr) && 9180 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9181 Range, *Plan))) 9182 return toVPRecipeResult(Recipe); 9183 9184 if (!shouldWiden(Instr, Range)) 9185 return nullptr; 9186 9187 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9188 return toVPRecipeResult(new VPWidenGEPRecipe( 9189 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9190 9191 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9192 bool InvariantCond = 9193 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9194 return toVPRecipeResult(new VPWidenSelectRecipe( 9195 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9196 } 9197 9198 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9199 } 9200 9201 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9202 ElementCount MaxVF) { 9203 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9204 9205 // Collect instructions from the original loop that will become trivially dead 9206 // in the vectorized loop. We don't need to vectorize these instructions. For 9207 // example, original induction update instructions can become dead because we 9208 // separately emit induction "steps" when generating code for the new loop. 9209 // Similarly, we create a new latch condition when setting up the structure 9210 // of the new loop, so the old one can become dead. 9211 SmallPtrSet<Instruction *, 4> DeadInstructions; 9212 collectTriviallyDeadInstructions(DeadInstructions); 9213 9214 // Add assume instructions we need to drop to DeadInstructions, to prevent 9215 // them from being added to the VPlan. 9216 // TODO: We only need to drop assumes in blocks that get flattend. If the 9217 // control flow is preserved, we should keep them. 9218 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9219 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9220 9221 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9222 // Dead instructions do not need sinking. Remove them from SinkAfter. 9223 for (Instruction *I : DeadInstructions) 9224 SinkAfter.erase(I); 9225 9226 // Cannot sink instructions after dead instructions (there won't be any 9227 // recipes for them). Instead, find the first non-dead previous instruction. 9228 for (auto &P : Legal->getSinkAfter()) { 9229 Instruction *SinkTarget = P.second; 9230 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9231 (void)FirstInst; 9232 while (DeadInstructions.contains(SinkTarget)) { 9233 assert( 9234 SinkTarget != FirstInst && 9235 "Must find a live instruction (at least the one feeding the " 9236 "first-order recurrence PHI) before reaching beginning of the block"); 9237 SinkTarget = SinkTarget->getPrevNode(); 9238 assert(SinkTarget != P.first && 9239 "sink source equals target, no sinking required"); 9240 } 9241 P.second = SinkTarget; 9242 } 9243 9244 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9245 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9246 VFRange SubRange = {VF, MaxVFPlusOne}; 9247 VPlans.push_back( 9248 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9249 VF = SubRange.End; 9250 } 9251 } 9252 9253 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9254 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9255 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9256 9257 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9258 9259 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9260 9261 // --------------------------------------------------------------------------- 9262 // Pre-construction: record ingredients whose recipes we'll need to further 9263 // process after constructing the initial VPlan. 9264 // --------------------------------------------------------------------------- 9265 9266 // Mark instructions we'll need to sink later and their targets as 9267 // ingredients whose recipe we'll need to record. 9268 for (auto &Entry : SinkAfter) { 9269 RecipeBuilder.recordRecipeOf(Entry.first); 9270 RecipeBuilder.recordRecipeOf(Entry.second); 9271 } 9272 for (auto &Reduction : CM.getInLoopReductionChains()) { 9273 PHINode *Phi = Reduction.first; 9274 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9275 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9276 9277 RecipeBuilder.recordRecipeOf(Phi); 9278 for (auto &R : ReductionOperations) { 9279 RecipeBuilder.recordRecipeOf(R); 9280 // For min/max reducitons, where we have a pair of icmp/select, we also 9281 // need to record the ICmp recipe, so it can be removed later. 9282 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9283 "Only min/max recurrences allowed for inloop reductions"); 9284 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9285 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9286 } 9287 } 9288 9289 // For each interleave group which is relevant for this (possibly trimmed) 9290 // Range, add it to the set of groups to be later applied to the VPlan and add 9291 // placeholders for its members' Recipes which we'll be replacing with a 9292 // single VPInterleaveRecipe. 9293 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9294 auto applyIG = [IG, this](ElementCount VF) -> bool { 9295 return (VF.isVector() && // Query is illegal for VF == 1 9296 CM.getWideningDecision(IG->getInsertPos(), VF) == 9297 LoopVectorizationCostModel::CM_Interleave); 9298 }; 9299 if (!getDecisionAndClampRange(applyIG, Range)) 9300 continue; 9301 InterleaveGroups.insert(IG); 9302 for (unsigned i = 0; i < IG->getFactor(); i++) 9303 if (Instruction *Member = IG->getMember(i)) 9304 RecipeBuilder.recordRecipeOf(Member); 9305 }; 9306 9307 // --------------------------------------------------------------------------- 9308 // Build initial VPlan: Scan the body of the loop in a topological order to 9309 // visit each basic block after having visited its predecessor basic blocks. 9310 // --------------------------------------------------------------------------- 9311 9312 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9313 auto Plan = std::make_unique<VPlan>(); 9314 9315 // Scan the body of the loop in a topological order to visit each basic block 9316 // after having visited its predecessor basic blocks. 9317 LoopBlocksDFS DFS(OrigLoop); 9318 DFS.perform(LI); 9319 9320 VPBasicBlock *VPBB = nullptr; 9321 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9322 // Relevant instructions from basic block BB will be grouped into VPRecipe 9323 // ingredients and fill a new VPBasicBlock. 9324 unsigned VPBBsForBB = 0; 9325 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9326 if (VPBB) 9327 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9328 else 9329 Plan->setEntry(FirstVPBBForBB); 9330 VPBB = FirstVPBBForBB; 9331 Builder.setInsertPoint(VPBB); 9332 9333 // Introduce each ingredient into VPlan. 9334 // TODO: Model and preserve debug instrinsics in VPlan. 9335 for (Instruction &I : BB->instructionsWithoutDebug()) { 9336 Instruction *Instr = &I; 9337 9338 // First filter out irrelevant instructions, to ensure no recipes are 9339 // built for them. 9340 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9341 continue; 9342 9343 SmallVector<VPValue *, 4> Operands; 9344 auto *Phi = dyn_cast<PHINode>(Instr); 9345 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9346 Operands.push_back(Plan->getOrAddVPValue( 9347 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9348 } else { 9349 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9350 Operands = {OpRange.begin(), OpRange.end()}; 9351 } 9352 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9353 Instr, Operands, Range, Plan)) { 9354 // If Instr can be simplified to an existing VPValue, use it. 9355 if (RecipeOrValue.is<VPValue *>()) { 9356 auto *VPV = RecipeOrValue.get<VPValue *>(); 9357 Plan->addVPValue(Instr, VPV); 9358 // If the re-used value is a recipe, register the recipe for the 9359 // instruction, in case the recipe for Instr needs to be recorded. 9360 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9361 RecipeBuilder.setRecipe(Instr, R); 9362 continue; 9363 } 9364 // Otherwise, add the new recipe. 9365 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9366 for (auto *Def : Recipe->definedValues()) { 9367 auto *UV = Def->getUnderlyingValue(); 9368 Plan->addVPValue(UV, Def); 9369 } 9370 9371 RecipeBuilder.setRecipe(Instr, Recipe); 9372 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe)) { 9373 // Make sure induction recipes are all kept in the header block. 9374 // VPWidenIntOrFpInductionRecipe may be generated when reaching a 9375 // Trunc of an induction Phi, where Trunc may not be in the header. 9376 auto *Header = Plan->getEntry()->getEntryBasicBlock(); 9377 Header->insert(Recipe, Header->getFirstNonPhi()); 9378 } else 9379 VPBB->appendRecipe(Recipe); 9380 continue; 9381 } 9382 9383 // Otherwise, if all widening options failed, Instruction is to be 9384 // replicated. This may create a successor for VPBB. 9385 VPBasicBlock *NextVPBB = 9386 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9387 if (NextVPBB != VPBB) { 9388 VPBB = NextVPBB; 9389 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9390 : ""); 9391 } 9392 } 9393 } 9394 9395 assert(isa<VPBasicBlock>(Plan->getEntry()) && 9396 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9397 "entry block must be set to a non-empty VPBasicBlock"); 9398 RecipeBuilder.fixHeaderPhis(); 9399 9400 // --------------------------------------------------------------------------- 9401 // Transform initial VPlan: Apply previously taken decisions, in order, to 9402 // bring the VPlan to its final state. 9403 // --------------------------------------------------------------------------- 9404 9405 // Apply Sink-After legal constraints. 9406 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9407 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9408 if (Region && Region->isReplicator()) { 9409 assert(Region->getNumSuccessors() == 1 && 9410 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9411 assert(R->getParent()->size() == 1 && 9412 "A recipe in an original replicator region must be the only " 9413 "recipe in its block"); 9414 return Region; 9415 } 9416 return nullptr; 9417 }; 9418 for (auto &Entry : SinkAfter) { 9419 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9420 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9421 9422 auto *TargetRegion = GetReplicateRegion(Target); 9423 auto *SinkRegion = GetReplicateRegion(Sink); 9424 if (!SinkRegion) { 9425 // If the sink source is not a replicate region, sink the recipe directly. 9426 if (TargetRegion) { 9427 // The target is in a replication region, make sure to move Sink to 9428 // the block after it, not into the replication region itself. 9429 VPBasicBlock *NextBlock = 9430 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9431 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9432 } else 9433 Sink->moveAfter(Target); 9434 continue; 9435 } 9436 9437 // The sink source is in a replicate region. Unhook the region from the CFG. 9438 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9439 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9440 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9441 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9442 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9443 9444 if (TargetRegion) { 9445 // The target recipe is also in a replicate region, move the sink region 9446 // after the target region. 9447 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9448 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9449 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9450 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9451 } else { 9452 // The sink source is in a replicate region, we need to move the whole 9453 // replicate region, which should only contain a single recipe in the 9454 // main block. 9455 auto *SplitBlock = 9456 Target->getParent()->splitAt(std::next(Target->getIterator())); 9457 9458 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9459 9460 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9461 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9462 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9463 if (VPBB == SplitPred) 9464 VPBB = SplitBlock; 9465 } 9466 } 9467 9468 // Adjust the recipes for any inloop reductions. 9469 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9470 9471 // Introduce a recipe to combine the incoming and previous values of a 9472 // first-order recurrence. 9473 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9474 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9475 if (!RecurPhi) 9476 continue; 9477 9478 auto *RecurSplice = cast<VPInstruction>( 9479 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9480 {RecurPhi, RecurPhi->getBackedgeValue()})); 9481 9482 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9483 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9484 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9485 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9486 } else 9487 RecurSplice->moveAfter(PrevRecipe); 9488 RecurPhi->replaceAllUsesWith(RecurSplice); 9489 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9490 // all users. 9491 RecurSplice->setOperand(0, RecurPhi); 9492 } 9493 9494 // Interleave memory: for each Interleave Group we marked earlier as relevant 9495 // for this VPlan, replace the Recipes widening its memory instructions with a 9496 // single VPInterleaveRecipe at its insertion point. 9497 for (auto IG : InterleaveGroups) { 9498 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9499 RecipeBuilder.getRecipe(IG->getInsertPos())); 9500 SmallVector<VPValue *, 4> StoredValues; 9501 for (unsigned i = 0; i < IG->getFactor(); ++i) 9502 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9503 auto *StoreR = 9504 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9505 StoredValues.push_back(StoreR->getStoredValue()); 9506 } 9507 9508 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9509 Recipe->getMask()); 9510 VPIG->insertBefore(Recipe); 9511 unsigned J = 0; 9512 for (unsigned i = 0; i < IG->getFactor(); ++i) 9513 if (Instruction *Member = IG->getMember(i)) { 9514 if (!Member->getType()->isVoidTy()) { 9515 VPValue *OriginalV = Plan->getVPValue(Member); 9516 Plan->removeVPValueFor(Member); 9517 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9518 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9519 J++; 9520 } 9521 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9522 } 9523 } 9524 9525 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9526 // in ways that accessing values using original IR values is incorrect. 9527 Plan->disableValue2VPValue(); 9528 9529 VPlanTransforms::sinkScalarOperands(*Plan); 9530 VPlanTransforms::mergeReplicateRegions(*Plan); 9531 9532 std::string PlanName; 9533 raw_string_ostream RSO(PlanName); 9534 ElementCount VF = Range.Start; 9535 Plan->addVF(VF); 9536 RSO << "Initial VPlan for VF={" << VF; 9537 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9538 Plan->addVF(VF); 9539 RSO << "," << VF; 9540 } 9541 RSO << "},UF>=1"; 9542 RSO.flush(); 9543 Plan->setName(PlanName); 9544 9545 return Plan; 9546 } 9547 9548 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9549 // Outer loop handling: They may require CFG and instruction level 9550 // transformations before even evaluating whether vectorization is profitable. 9551 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9552 // the vectorization pipeline. 9553 assert(!OrigLoop->isInnermost()); 9554 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9555 9556 // Create new empty VPlan 9557 auto Plan = std::make_unique<VPlan>(); 9558 9559 // Build hierarchical CFG 9560 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9561 HCFGBuilder.buildHierarchicalCFG(); 9562 9563 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9564 VF *= 2) 9565 Plan->addVF(VF); 9566 9567 if (EnableVPlanPredication) { 9568 VPlanPredicator VPP(*Plan); 9569 VPP.predicate(); 9570 9571 // Avoid running transformation to recipes until masked code generation in 9572 // VPlan-native path is in place. 9573 return Plan; 9574 } 9575 9576 SmallPtrSet<Instruction *, 1> DeadInstructions; 9577 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9578 Legal->getInductionVars(), 9579 DeadInstructions, *PSE.getSE()); 9580 return Plan; 9581 } 9582 9583 // Adjust the recipes for reductions. For in-loop reductions the chain of 9584 // instructions leading from the loop exit instr to the phi need to be converted 9585 // to reductions, with one operand being vector and the other being the scalar 9586 // reduction chain. For other reductions, a select is introduced between the phi 9587 // and live-out recipes when folding the tail. 9588 void LoopVectorizationPlanner::adjustRecipesForReductions( 9589 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9590 ElementCount MinVF) { 9591 for (auto &Reduction : CM.getInLoopReductionChains()) { 9592 PHINode *Phi = Reduction.first; 9593 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9594 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9595 9596 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9597 continue; 9598 9599 // ReductionOperations are orders top-down from the phi's use to the 9600 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9601 // which of the two operands will remain scalar and which will be reduced. 9602 // For minmax the chain will be the select instructions. 9603 Instruction *Chain = Phi; 9604 for (Instruction *R : ReductionOperations) { 9605 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9606 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9607 9608 VPValue *ChainOp = Plan->getVPValue(Chain); 9609 unsigned FirstOpId; 9610 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9611 "Only min/max recurrences allowed for inloop reductions"); 9612 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9613 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9614 "Expected to replace a VPWidenSelectSC"); 9615 FirstOpId = 1; 9616 } else { 9617 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9618 "Expected to replace a VPWidenSC"); 9619 FirstOpId = 0; 9620 } 9621 unsigned VecOpId = 9622 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9623 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9624 9625 auto *CondOp = CM.foldTailByMasking() 9626 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9627 : nullptr; 9628 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9629 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9630 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9631 Plan->removeVPValueFor(R); 9632 Plan->addVPValue(R, RedRecipe); 9633 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9634 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9635 WidenRecipe->eraseFromParent(); 9636 9637 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9638 VPRecipeBase *CompareRecipe = 9639 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9640 assert(isa<VPWidenRecipe>(CompareRecipe) && 9641 "Expected to replace a VPWidenSC"); 9642 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9643 "Expected no remaining users"); 9644 CompareRecipe->eraseFromParent(); 9645 } 9646 Chain = R; 9647 } 9648 } 9649 9650 // If tail is folded by masking, introduce selects between the phi 9651 // and the live-out instruction of each reduction, at the end of the latch. 9652 if (CM.foldTailByMasking()) { 9653 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9654 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9655 if (!PhiR || PhiR->isInLoop()) 9656 continue; 9657 Builder.setInsertPoint(LatchVPBB); 9658 VPValue *Cond = 9659 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9660 VPValue *Red = PhiR->getBackedgeValue(); 9661 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9662 } 9663 } 9664 } 9665 9666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9667 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9668 VPSlotTracker &SlotTracker) const { 9669 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9670 IG->getInsertPos()->printAsOperand(O, false); 9671 O << ", "; 9672 getAddr()->printAsOperand(O, SlotTracker); 9673 VPValue *Mask = getMask(); 9674 if (Mask) { 9675 O << ", "; 9676 Mask->printAsOperand(O, SlotTracker); 9677 } 9678 9679 unsigned OpIdx = 0; 9680 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9681 if (!IG->getMember(i)) 9682 continue; 9683 if (getNumStoreOperands() > 0) { 9684 O << "\n" << Indent << " store "; 9685 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9686 O << " to index " << i; 9687 } else { 9688 O << "\n" << Indent << " "; 9689 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9690 O << " = load from index " << i; 9691 } 9692 ++OpIdx; 9693 } 9694 } 9695 #endif 9696 9697 void VPWidenCallRecipe::execute(VPTransformState &State) { 9698 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9699 *this, State); 9700 } 9701 9702 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9703 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9704 this, *this, InvariantCond, State); 9705 } 9706 9707 void VPWidenRecipe::execute(VPTransformState &State) { 9708 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9709 } 9710 9711 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9712 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9713 *this, State.UF, State.VF, IsPtrLoopInvariant, 9714 IsIndexLoopInvariant, State); 9715 } 9716 9717 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9718 assert(!State.Instance && "Int or FP induction being replicated."); 9719 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9720 getTruncInst(), getVPValue(0), 9721 getCastValue(), State); 9722 } 9723 9724 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9725 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9726 State); 9727 } 9728 9729 void VPBlendRecipe::execute(VPTransformState &State) { 9730 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9731 // We know that all PHIs in non-header blocks are converted into 9732 // selects, so we don't have to worry about the insertion order and we 9733 // can just use the builder. 9734 // At this point we generate the predication tree. There may be 9735 // duplications since this is a simple recursive scan, but future 9736 // optimizations will clean it up. 9737 9738 unsigned NumIncoming = getNumIncomingValues(); 9739 9740 // Generate a sequence of selects of the form: 9741 // SELECT(Mask3, In3, 9742 // SELECT(Mask2, In2, 9743 // SELECT(Mask1, In1, 9744 // In0))) 9745 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9746 // are essentially undef are taken from In0. 9747 InnerLoopVectorizer::VectorParts Entry(State.UF); 9748 for (unsigned In = 0; In < NumIncoming; ++In) { 9749 for (unsigned Part = 0; Part < State.UF; ++Part) { 9750 // We might have single edge PHIs (blocks) - use an identity 9751 // 'select' for the first PHI operand. 9752 Value *In0 = State.get(getIncomingValue(In), Part); 9753 if (In == 0) 9754 Entry[Part] = In0; // Initialize with the first incoming value. 9755 else { 9756 // Select between the current value and the previous incoming edge 9757 // based on the incoming mask. 9758 Value *Cond = State.get(getMask(In), Part); 9759 Entry[Part] = 9760 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9761 } 9762 } 9763 } 9764 for (unsigned Part = 0; Part < State.UF; ++Part) 9765 State.set(this, Entry[Part], Part); 9766 } 9767 9768 void VPInterleaveRecipe::execute(VPTransformState &State) { 9769 assert(!State.Instance && "Interleave group being replicated."); 9770 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9771 getStoredValues(), getMask()); 9772 } 9773 9774 void VPReductionRecipe::execute(VPTransformState &State) { 9775 assert(!State.Instance && "Reduction being replicated."); 9776 Value *PrevInChain = State.get(getChainOp(), 0); 9777 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9778 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9779 for (unsigned Part = 0; Part < State.UF; ++Part) { 9780 Value *NewVecOp = State.get(getVecOp(), Part); 9781 if (VPValue *Cond = getCondOp()) { 9782 Value *NewCond = State.get(Cond, Part); 9783 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9784 Value *Iden = RdxDesc->getRecurrenceIdentity( 9785 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9786 Value *IdenVec = 9787 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9788 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9789 NewVecOp = Select; 9790 } 9791 Value *NewRed; 9792 Value *NextInChain; 9793 if (IsOrdered) { 9794 if (State.VF.isVector()) 9795 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9796 PrevInChain); 9797 else 9798 NewRed = State.Builder.CreateBinOp( 9799 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9800 NewVecOp); 9801 PrevInChain = NewRed; 9802 } else { 9803 PrevInChain = State.get(getChainOp(), Part); 9804 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9805 } 9806 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9807 NextInChain = 9808 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9809 NewRed, PrevInChain); 9810 } else if (IsOrdered) 9811 NextInChain = NewRed; 9812 else 9813 NextInChain = State.Builder.CreateBinOp( 9814 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9815 PrevInChain); 9816 State.set(this, NextInChain, Part); 9817 } 9818 } 9819 9820 void VPReplicateRecipe::execute(VPTransformState &State) { 9821 if (State.Instance) { // Generate a single instance. 9822 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9823 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9824 *State.Instance, IsPredicated, State); 9825 // Insert scalar instance packing it into a vector. 9826 if (AlsoPack && State.VF.isVector()) { 9827 // If we're constructing lane 0, initialize to start from poison. 9828 if (State.Instance->Lane.isFirstLane()) { 9829 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9830 Value *Poison = PoisonValue::get( 9831 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9832 State.set(this, Poison, State.Instance->Part); 9833 } 9834 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9835 } 9836 return; 9837 } 9838 9839 // Generate scalar instances for all VF lanes of all UF parts, unless the 9840 // instruction is uniform inwhich case generate only the first lane for each 9841 // of the UF parts. 9842 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9843 assert((!State.VF.isScalable() || IsUniform) && 9844 "Can't scalarize a scalable vector"); 9845 for (unsigned Part = 0; Part < State.UF; ++Part) 9846 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9847 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9848 VPIteration(Part, Lane), IsPredicated, 9849 State); 9850 } 9851 9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9853 assert(State.Instance && "Branch on Mask works only on single instance."); 9854 9855 unsigned Part = State.Instance->Part; 9856 unsigned Lane = State.Instance->Lane.getKnownLane(); 9857 9858 Value *ConditionBit = nullptr; 9859 VPValue *BlockInMask = getMask(); 9860 if (BlockInMask) { 9861 ConditionBit = State.get(BlockInMask, Part); 9862 if (ConditionBit->getType()->isVectorTy()) 9863 ConditionBit = State.Builder.CreateExtractElement( 9864 ConditionBit, State.Builder.getInt32(Lane)); 9865 } else // Block in mask is all-one. 9866 ConditionBit = State.Builder.getTrue(); 9867 9868 // Replace the temporary unreachable terminator with a new conditional branch, 9869 // whose two destinations will be set later when they are created. 9870 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9871 assert(isa<UnreachableInst>(CurrentTerminator) && 9872 "Expected to replace unreachable terminator with conditional branch."); 9873 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9874 CondBr->setSuccessor(0, nullptr); 9875 ReplaceInstWithInst(CurrentTerminator, CondBr); 9876 } 9877 9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9879 assert(State.Instance && "Predicated instruction PHI works per instance."); 9880 Instruction *ScalarPredInst = 9881 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9882 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9883 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9884 assert(PredicatingBB && "Predicated block has no single predecessor."); 9885 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9886 "operand must be VPReplicateRecipe"); 9887 9888 // By current pack/unpack logic we need to generate only a single phi node: if 9889 // a vector value for the predicated instruction exists at this point it means 9890 // the instruction has vector users only, and a phi for the vector value is 9891 // needed. In this case the recipe of the predicated instruction is marked to 9892 // also do that packing, thereby "hoisting" the insert-element sequence. 9893 // Otherwise, a phi node for the scalar value is needed. 9894 unsigned Part = State.Instance->Part; 9895 if (State.hasVectorValue(getOperand(0), Part)) { 9896 Value *VectorValue = State.get(getOperand(0), Part); 9897 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9898 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9899 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9900 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9901 if (State.hasVectorValue(this, Part)) 9902 State.reset(this, VPhi, Part); 9903 else 9904 State.set(this, VPhi, Part); 9905 // NOTE: Currently we need to update the value of the operand, so the next 9906 // predicated iteration inserts its generated value in the correct vector. 9907 State.reset(getOperand(0), VPhi, Part); 9908 } else { 9909 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9910 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9911 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9912 PredicatingBB); 9913 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9914 if (State.hasScalarValue(this, *State.Instance)) 9915 State.reset(this, Phi, *State.Instance); 9916 else 9917 State.set(this, Phi, *State.Instance); 9918 // NOTE: Currently we need to update the value of the operand, so the next 9919 // predicated iteration inserts its generated value in the correct vector. 9920 State.reset(getOperand(0), Phi, *State.Instance); 9921 } 9922 } 9923 9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9925 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9926 State.ILV->vectorizeMemoryInstruction( 9927 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9928 StoredValue, getMask(), Consecutive, Reverse); 9929 } 9930 9931 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9932 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9933 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9934 // for predication. 9935 static ScalarEpilogueLowering getScalarEpilogueLowering( 9936 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9937 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9938 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9939 LoopVectorizationLegality &LVL) { 9940 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9941 // don't look at hints or options, and don't request a scalar epilogue. 9942 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9943 // LoopAccessInfo (due to code dependency and not being able to reliably get 9944 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9945 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9946 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9947 // back to the old way and vectorize with versioning when forced. See D81345.) 9948 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9949 PGSOQueryType::IRPass) && 9950 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9951 return CM_ScalarEpilogueNotAllowedOptSize; 9952 9953 // 2) If set, obey the directives 9954 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9955 switch (PreferPredicateOverEpilogue) { 9956 case PreferPredicateTy::ScalarEpilogue: 9957 return CM_ScalarEpilogueAllowed; 9958 case PreferPredicateTy::PredicateElseScalarEpilogue: 9959 return CM_ScalarEpilogueNotNeededUsePredicate; 9960 case PreferPredicateTy::PredicateOrDontVectorize: 9961 return CM_ScalarEpilogueNotAllowedUsePredicate; 9962 }; 9963 } 9964 9965 // 3) If set, obey the hints 9966 switch (Hints.getPredicate()) { 9967 case LoopVectorizeHints::FK_Enabled: 9968 return CM_ScalarEpilogueNotNeededUsePredicate; 9969 case LoopVectorizeHints::FK_Disabled: 9970 return CM_ScalarEpilogueAllowed; 9971 }; 9972 9973 // 4) if the TTI hook indicates this is profitable, request predication. 9974 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9975 LVL.getLAI())) 9976 return CM_ScalarEpilogueNotNeededUsePredicate; 9977 9978 return CM_ScalarEpilogueAllowed; 9979 } 9980 9981 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9982 // If Values have been set for this Def return the one relevant for \p Part. 9983 if (hasVectorValue(Def, Part)) 9984 return Data.PerPartOutput[Def][Part]; 9985 9986 if (!hasScalarValue(Def, {Part, 0})) { 9987 Value *IRV = Def->getLiveInIRValue(); 9988 Value *B = ILV->getBroadcastInstrs(IRV); 9989 set(Def, B, Part); 9990 return B; 9991 } 9992 9993 Value *ScalarValue = get(Def, {Part, 0}); 9994 // If we aren't vectorizing, we can just copy the scalar map values over 9995 // to the vector map. 9996 if (VF.isScalar()) { 9997 set(Def, ScalarValue, Part); 9998 return ScalarValue; 9999 } 10000 10001 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10002 bool IsUniform = RepR && RepR->isUniform(); 10003 10004 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10005 // Check if there is a scalar value for the selected lane. 10006 if (!hasScalarValue(Def, {Part, LastLane})) { 10007 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10008 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10009 "unexpected recipe found to be invariant"); 10010 IsUniform = true; 10011 LastLane = 0; 10012 } 10013 10014 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10015 // Set the insert point after the last scalarized instruction or after the 10016 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10017 // will directly follow the scalar definitions. 10018 auto OldIP = Builder.saveIP(); 10019 auto NewIP = 10020 isa<PHINode>(LastInst) 10021 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10022 : std::next(BasicBlock::iterator(LastInst)); 10023 Builder.SetInsertPoint(&*NewIP); 10024 10025 // However, if we are vectorizing, we need to construct the vector values. 10026 // If the value is known to be uniform after vectorization, we can just 10027 // broadcast the scalar value corresponding to lane zero for each unroll 10028 // iteration. Otherwise, we construct the vector values using 10029 // insertelement instructions. Since the resulting vectors are stored in 10030 // State, we will only generate the insertelements once. 10031 Value *VectorValue = nullptr; 10032 if (IsUniform) { 10033 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10034 set(Def, VectorValue, Part); 10035 } else { 10036 // Initialize packing with insertelements to start from undef. 10037 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10038 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10039 set(Def, Undef, Part); 10040 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10041 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10042 VectorValue = get(Def, Part); 10043 } 10044 Builder.restoreIP(OldIP); 10045 return VectorValue; 10046 } 10047 10048 // Process the loop in the VPlan-native vectorization path. This path builds 10049 // VPlan upfront in the vectorization pipeline, which allows to apply 10050 // VPlan-to-VPlan transformations from the very beginning without modifying the 10051 // input LLVM IR. 10052 static bool processLoopInVPlanNativePath( 10053 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10054 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10055 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10056 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10057 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10058 LoopVectorizationRequirements &Requirements) { 10059 10060 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10061 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10062 return false; 10063 } 10064 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10065 Function *F = L->getHeader()->getParent(); 10066 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10067 10068 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10069 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10070 10071 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10072 &Hints, IAI); 10073 // Use the planner for outer loop vectorization. 10074 // TODO: CM is not used at this point inside the planner. Turn CM into an 10075 // optional argument if we don't need it in the future. 10076 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10077 Requirements, ORE); 10078 10079 // Get user vectorization factor. 10080 ElementCount UserVF = Hints.getWidth(); 10081 10082 CM.collectElementTypesForWidening(); 10083 10084 // Plan how to best vectorize, return the best VF and its cost. 10085 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10086 10087 // If we are stress testing VPlan builds, do not attempt to generate vector 10088 // code. Masked vector code generation support will follow soon. 10089 // Also, do not attempt to vectorize if no vector code will be produced. 10090 if (VPlanBuildStressTest || EnableVPlanPredication || 10091 VectorizationFactor::Disabled() == VF) 10092 return false; 10093 10094 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10095 10096 { 10097 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10098 F->getParent()->getDataLayout()); 10099 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10100 &CM, BFI, PSI, Checks); 10101 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10102 << L->getHeader()->getParent()->getName() << "\"\n"); 10103 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10104 } 10105 10106 // Mark the loop as already vectorized to avoid vectorizing again. 10107 Hints.setAlreadyVectorized(); 10108 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10109 return true; 10110 } 10111 10112 // Emit a remark if there are stores to floats that required a floating point 10113 // extension. If the vectorized loop was generated with floating point there 10114 // will be a performance penalty from the conversion overhead and the change in 10115 // the vector width. 10116 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10117 SmallVector<Instruction *, 4> Worklist; 10118 for (BasicBlock *BB : L->getBlocks()) { 10119 for (Instruction &Inst : *BB) { 10120 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10121 if (S->getValueOperand()->getType()->isFloatTy()) 10122 Worklist.push_back(S); 10123 } 10124 } 10125 } 10126 10127 // Traverse the floating point stores upwards searching, for floating point 10128 // conversions. 10129 SmallPtrSet<const Instruction *, 4> Visited; 10130 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10131 while (!Worklist.empty()) { 10132 auto *I = Worklist.pop_back_val(); 10133 if (!L->contains(I)) 10134 continue; 10135 if (!Visited.insert(I).second) 10136 continue; 10137 10138 // Emit a remark if the floating point store required a floating 10139 // point conversion. 10140 // TODO: More work could be done to identify the root cause such as a 10141 // constant or a function return type and point the user to it. 10142 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10143 ORE->emit([&]() { 10144 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10145 I->getDebugLoc(), L->getHeader()) 10146 << "floating point conversion changes vector width. " 10147 << "Mixed floating point precision requires an up/down " 10148 << "cast that will negatively impact performance."; 10149 }); 10150 10151 for (Use &Op : I->operands()) 10152 if (auto *OpI = dyn_cast<Instruction>(Op)) 10153 Worklist.push_back(OpI); 10154 } 10155 } 10156 10157 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10158 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10159 !EnableLoopInterleaving), 10160 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10161 !EnableLoopVectorization) {} 10162 10163 bool LoopVectorizePass::processLoop(Loop *L) { 10164 assert((EnableVPlanNativePath || L->isInnermost()) && 10165 "VPlan-native path is not enabled. Only process inner loops."); 10166 10167 #ifndef NDEBUG 10168 const std::string DebugLocStr = getDebugLocString(L); 10169 #endif /* NDEBUG */ 10170 10171 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10172 << L->getHeader()->getParent()->getName() << "\" from " 10173 << DebugLocStr << "\n"); 10174 10175 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10176 10177 LLVM_DEBUG( 10178 dbgs() << "LV: Loop hints:" 10179 << " force=" 10180 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10181 ? "disabled" 10182 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10183 ? "enabled" 10184 : "?")) 10185 << " width=" << Hints.getWidth() 10186 << " interleave=" << Hints.getInterleave() << "\n"); 10187 10188 // Function containing loop 10189 Function *F = L->getHeader()->getParent(); 10190 10191 // Looking at the diagnostic output is the only way to determine if a loop 10192 // was vectorized (other than looking at the IR or machine code), so it 10193 // is important to generate an optimization remark for each loop. Most of 10194 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10195 // generated as OptimizationRemark and OptimizationRemarkMissed are 10196 // less verbose reporting vectorized loops and unvectorized loops that may 10197 // benefit from vectorization, respectively. 10198 10199 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10200 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10201 return false; 10202 } 10203 10204 PredicatedScalarEvolution PSE(*SE, *L); 10205 10206 // Check if it is legal to vectorize the loop. 10207 LoopVectorizationRequirements Requirements; 10208 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10209 &Requirements, &Hints, DB, AC, BFI, PSI); 10210 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10211 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10212 Hints.emitRemarkWithHints(); 10213 return false; 10214 } 10215 10216 // Check the function attributes and profiles to find out if this function 10217 // should be optimized for size. 10218 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10219 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10220 10221 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10222 // here. They may require CFG and instruction level transformations before 10223 // even evaluating whether vectorization is profitable. Since we cannot modify 10224 // the incoming IR, we need to build VPlan upfront in the vectorization 10225 // pipeline. 10226 if (!L->isInnermost()) 10227 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10228 ORE, BFI, PSI, Hints, Requirements); 10229 10230 assert(L->isInnermost() && "Inner loop expected."); 10231 10232 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10233 // count by optimizing for size, to minimize overheads. 10234 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10235 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10236 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10237 << "This loop is worth vectorizing only if no scalar " 10238 << "iteration overheads are incurred."); 10239 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10240 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10241 else { 10242 LLVM_DEBUG(dbgs() << "\n"); 10243 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10244 } 10245 } 10246 10247 // Check the function attributes to see if implicit floats are allowed. 10248 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10249 // an integer loop and the vector instructions selected are purely integer 10250 // vector instructions? 10251 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10252 reportVectorizationFailure( 10253 "Can't vectorize when the NoImplicitFloat attribute is used", 10254 "loop not vectorized due to NoImplicitFloat attribute", 10255 "NoImplicitFloat", ORE, L); 10256 Hints.emitRemarkWithHints(); 10257 return false; 10258 } 10259 10260 // Check if the target supports potentially unsafe FP vectorization. 10261 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10262 // for the target we're vectorizing for, to make sure none of the 10263 // additional fp-math flags can help. 10264 if (Hints.isPotentiallyUnsafe() && 10265 TTI->isFPVectorizationPotentiallyUnsafe()) { 10266 reportVectorizationFailure( 10267 "Potentially unsafe FP op prevents vectorization", 10268 "loop not vectorized due to unsafe FP support.", 10269 "UnsafeFP", ORE, L); 10270 Hints.emitRemarkWithHints(); 10271 return false; 10272 } 10273 10274 bool AllowOrderedReductions; 10275 // If the flag is set, use that instead and override the TTI behaviour. 10276 if (ForceOrderedReductions.getNumOccurrences() > 0) 10277 AllowOrderedReductions = ForceOrderedReductions; 10278 else 10279 AllowOrderedReductions = TTI->enableOrderedReductions(); 10280 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10281 ORE->emit([&]() { 10282 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10283 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10284 ExactFPMathInst->getDebugLoc(), 10285 ExactFPMathInst->getParent()) 10286 << "loop not vectorized: cannot prove it is safe to reorder " 10287 "floating-point operations"; 10288 }); 10289 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10290 "reorder floating-point operations\n"); 10291 Hints.emitRemarkWithHints(); 10292 return false; 10293 } 10294 10295 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10296 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10297 10298 // If an override option has been passed in for interleaved accesses, use it. 10299 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10300 UseInterleaved = EnableInterleavedMemAccesses; 10301 10302 // Analyze interleaved memory accesses. 10303 if (UseInterleaved) { 10304 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10305 } 10306 10307 // Use the cost model. 10308 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10309 F, &Hints, IAI); 10310 CM.collectValuesToIgnore(); 10311 CM.collectElementTypesForWidening(); 10312 10313 // Use the planner for vectorization. 10314 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10315 Requirements, ORE); 10316 10317 // Get user vectorization factor and interleave count. 10318 ElementCount UserVF = Hints.getWidth(); 10319 unsigned UserIC = Hints.getInterleave(); 10320 10321 // Plan how to best vectorize, return the best VF and its cost. 10322 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10323 10324 VectorizationFactor VF = VectorizationFactor::Disabled(); 10325 unsigned IC = 1; 10326 10327 if (MaybeVF) { 10328 VF = *MaybeVF; 10329 // Select the interleave count. 10330 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10331 } 10332 10333 // Identify the diagnostic messages that should be produced. 10334 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10335 bool VectorizeLoop = true, InterleaveLoop = true; 10336 if (VF.Width.isScalar()) { 10337 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10338 VecDiagMsg = std::make_pair( 10339 "VectorizationNotBeneficial", 10340 "the cost-model indicates that vectorization is not beneficial"); 10341 VectorizeLoop = false; 10342 } 10343 10344 if (!MaybeVF && UserIC > 1) { 10345 // Tell the user interleaving was avoided up-front, despite being explicitly 10346 // requested. 10347 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10348 "interleaving should be avoided up front\n"); 10349 IntDiagMsg = std::make_pair( 10350 "InterleavingAvoided", 10351 "Ignoring UserIC, because interleaving was avoided up front"); 10352 InterleaveLoop = false; 10353 } else if (IC == 1 && UserIC <= 1) { 10354 // Tell the user interleaving is not beneficial. 10355 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10356 IntDiagMsg = std::make_pair( 10357 "InterleavingNotBeneficial", 10358 "the cost-model indicates that interleaving is not beneficial"); 10359 InterleaveLoop = false; 10360 if (UserIC == 1) { 10361 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10362 IntDiagMsg.second += 10363 " and is explicitly disabled or interleave count is set to 1"; 10364 } 10365 } else if (IC > 1 && UserIC == 1) { 10366 // Tell the user interleaving is beneficial, but it explicitly disabled. 10367 LLVM_DEBUG( 10368 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10369 IntDiagMsg = std::make_pair( 10370 "InterleavingBeneficialButDisabled", 10371 "the cost-model indicates that interleaving is beneficial " 10372 "but is explicitly disabled or interleave count is set to 1"); 10373 InterleaveLoop = false; 10374 } 10375 10376 // Override IC if user provided an interleave count. 10377 IC = UserIC > 0 ? UserIC : IC; 10378 10379 // Emit diagnostic messages, if any. 10380 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10381 if (!VectorizeLoop && !InterleaveLoop) { 10382 // Do not vectorize or interleaving the loop. 10383 ORE->emit([&]() { 10384 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10385 L->getStartLoc(), L->getHeader()) 10386 << VecDiagMsg.second; 10387 }); 10388 ORE->emit([&]() { 10389 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10390 L->getStartLoc(), L->getHeader()) 10391 << IntDiagMsg.second; 10392 }); 10393 return false; 10394 } else if (!VectorizeLoop && InterleaveLoop) { 10395 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10396 ORE->emit([&]() { 10397 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10398 L->getStartLoc(), L->getHeader()) 10399 << VecDiagMsg.second; 10400 }); 10401 } else if (VectorizeLoop && !InterleaveLoop) { 10402 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10403 << ") in " << DebugLocStr << '\n'); 10404 ORE->emit([&]() { 10405 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10406 L->getStartLoc(), L->getHeader()) 10407 << IntDiagMsg.second; 10408 }); 10409 } else if (VectorizeLoop && InterleaveLoop) { 10410 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10411 << ") in " << DebugLocStr << '\n'); 10412 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10413 } 10414 10415 bool DisableRuntimeUnroll = false; 10416 MDNode *OrigLoopID = L->getLoopID(); 10417 { 10418 // Optimistically generate runtime checks. Drop them if they turn out to not 10419 // be profitable. Limit the scope of Checks, so the cleanup happens 10420 // immediately after vector codegeneration is done. 10421 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10422 F->getParent()->getDataLayout()); 10423 if (!VF.Width.isScalar() || IC > 1) 10424 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10425 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10426 10427 using namespace ore; 10428 if (!VectorizeLoop) { 10429 assert(IC > 1 && "interleave count should not be 1 or 0"); 10430 // If we decided that it is not legal to vectorize the loop, then 10431 // interleave it. 10432 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10433 &CM, BFI, PSI, Checks); 10434 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10435 10436 ORE->emit([&]() { 10437 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10438 L->getHeader()) 10439 << "interleaved loop (interleaved count: " 10440 << NV("InterleaveCount", IC) << ")"; 10441 }); 10442 } else { 10443 // If we decided that it is *legal* to vectorize the loop, then do it. 10444 10445 // Consider vectorizing the epilogue too if it's profitable. 10446 VectorizationFactor EpilogueVF = 10447 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10448 if (EpilogueVF.Width.isVector()) { 10449 10450 // The first pass vectorizes the main loop and creates a scalar epilogue 10451 // to be vectorized by executing the plan (potentially with a different 10452 // factor) again shortly afterwards. 10453 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10454 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10455 EPI, &LVL, &CM, BFI, PSI, Checks); 10456 10457 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestPlan, MainILV, DT); 10458 ++LoopsVectorized; 10459 10460 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10461 formLCSSARecursively(*L, *DT, LI, SE); 10462 10463 // Second pass vectorizes the epilogue and adjusts the control flow 10464 // edges from the first pass. 10465 EPI.MainLoopVF = EPI.EpilogueVF; 10466 EPI.MainLoopUF = EPI.EpilogueUF; 10467 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10468 ORE, EPI, &LVL, &CM, BFI, PSI, 10469 Checks); 10470 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestPlan, EpilogILV, 10471 DT); 10472 ++LoopsEpilogueVectorized; 10473 10474 if (!MainILV.areSafetyChecksAdded()) 10475 DisableRuntimeUnroll = true; 10476 } else { 10477 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10478 &LVL, &CM, BFI, PSI, Checks); 10479 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10480 ++LoopsVectorized; 10481 10482 // Add metadata to disable runtime unrolling a scalar loop when there 10483 // are no runtime checks about strides and memory. A scalar loop that is 10484 // rarely used is not worth unrolling. 10485 if (!LB.areSafetyChecksAdded()) 10486 DisableRuntimeUnroll = true; 10487 } 10488 // Report the vectorization decision. 10489 ORE->emit([&]() { 10490 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10491 L->getHeader()) 10492 << "vectorized loop (vectorization width: " 10493 << NV("VectorizationFactor", VF.Width) 10494 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10495 }); 10496 } 10497 10498 if (ORE->allowExtraAnalysis(LV_NAME)) 10499 checkMixedPrecision(L, ORE); 10500 } 10501 10502 Optional<MDNode *> RemainderLoopID = 10503 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10504 LLVMLoopVectorizeFollowupEpilogue}); 10505 if (RemainderLoopID.hasValue()) { 10506 L->setLoopID(RemainderLoopID.getValue()); 10507 } else { 10508 if (DisableRuntimeUnroll) 10509 AddRuntimeUnrollDisableMetaData(L); 10510 10511 // Mark the loop as already vectorized to avoid vectorizing again. 10512 Hints.setAlreadyVectorized(); 10513 } 10514 10515 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10516 return true; 10517 } 10518 10519 LoopVectorizeResult LoopVectorizePass::runImpl( 10520 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10521 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10522 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10523 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10524 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10525 SE = &SE_; 10526 LI = &LI_; 10527 TTI = &TTI_; 10528 DT = &DT_; 10529 BFI = &BFI_; 10530 TLI = TLI_; 10531 AA = &AA_; 10532 AC = &AC_; 10533 GetLAA = &GetLAA_; 10534 DB = &DB_; 10535 ORE = &ORE_; 10536 PSI = PSI_; 10537 10538 // Don't attempt if 10539 // 1. the target claims to have no vector registers, and 10540 // 2. interleaving won't help ILP. 10541 // 10542 // The second condition is necessary because, even if the target has no 10543 // vector registers, loop vectorization may still enable scalar 10544 // interleaving. 10545 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10546 TTI->getMaxInterleaveFactor(1) < 2) 10547 return LoopVectorizeResult(false, false); 10548 10549 bool Changed = false, CFGChanged = false; 10550 10551 // The vectorizer requires loops to be in simplified form. 10552 // Since simplification may add new inner loops, it has to run before the 10553 // legality and profitability checks. This means running the loop vectorizer 10554 // will simplify all loops, regardless of whether anything end up being 10555 // vectorized. 10556 for (auto &L : *LI) 10557 Changed |= CFGChanged |= 10558 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10559 10560 // Build up a worklist of inner-loops to vectorize. This is necessary as 10561 // the act of vectorizing or partially unrolling a loop creates new loops 10562 // and can invalidate iterators across the loops. 10563 SmallVector<Loop *, 8> Worklist; 10564 10565 for (Loop *L : *LI) 10566 collectSupportedLoops(*L, LI, ORE, Worklist); 10567 10568 LoopsAnalyzed += Worklist.size(); 10569 10570 // Now walk the identified inner loops. 10571 while (!Worklist.empty()) { 10572 Loop *L = Worklist.pop_back_val(); 10573 10574 // For the inner loops we actually process, form LCSSA to simplify the 10575 // transform. 10576 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10577 10578 Changed |= CFGChanged |= processLoop(L); 10579 } 10580 10581 // Process each loop nest in the function. 10582 return LoopVectorizeResult(Changed, CFGChanged); 10583 } 10584 10585 PreservedAnalyses LoopVectorizePass::run(Function &F, 10586 FunctionAnalysisManager &AM) { 10587 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10588 auto &LI = AM.getResult<LoopAnalysis>(F); 10589 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10590 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10591 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10592 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10593 auto &AA = AM.getResult<AAManager>(F); 10594 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10595 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10596 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10597 10598 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10599 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10600 [&](Loop &L) -> const LoopAccessInfo & { 10601 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10602 TLI, TTI, nullptr, nullptr, nullptr}; 10603 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10604 }; 10605 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10606 ProfileSummaryInfo *PSI = 10607 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10608 LoopVectorizeResult Result = 10609 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10610 if (!Result.MadeAnyChange) 10611 return PreservedAnalyses::all(); 10612 PreservedAnalyses PA; 10613 10614 // We currently do not preserve loopinfo/dominator analyses with outer loop 10615 // vectorization. Until this is addressed, mark these analyses as preserved 10616 // only for non-VPlan-native path. 10617 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10618 if (!EnableVPlanNativePath) { 10619 PA.preserve<LoopAnalysis>(); 10620 PA.preserve<DominatorTreeAnalysis>(); 10621 } 10622 if (!Result.MadeCFGChange) 10623 PA.preserveSet<CFGAnalyses>(); 10624 return PA; 10625 } 10626 10627 void LoopVectorizePass::printPipeline( 10628 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10629 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10630 OS, MapClassName2PassName); 10631 10632 OS << "<"; 10633 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10634 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10635 OS << ">"; 10636 } 10637