1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask,
548                                   bool ConsecutiveStride, bool Reverse);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Create code for the loop exit value of the reduction.
598   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
599 
600   /// Clear NSW/NUW flags from reduction instructions if necessary.
601   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
602                                VPTransformState &State);
603 
604   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
605   /// means we need to add the appropriate incoming value from the middle
606   /// block as exiting edges from the scalar epilogue loop (if present) are
607   /// already in place, and we exit the vector loop exclusively to the middle
608   /// block.
609   void fixLCSSAPHIs(VPTransformState &State);
610 
611   /// Iteratively sink the scalarized operands of a predicated instruction into
612   /// the block that was created for it.
613   void sinkScalarOperands(Instruction *PredInst);
614 
615   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
616   /// represented as.
617   void truncateToMinimalBitwidths(VPTransformState &State);
618 
619   /// This function adds
620   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
621   /// to each vector element of Val. The sequence starts at StartIndex.
622   /// \p Opcode is relevant for FP induction variable.
623   virtual Value *
624   getStepVector(Value *Val, Value *StartIdx, Value *Step,
625                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
626 
627   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
628   /// variable on which to base the steps, \p Step is the size of the step, and
629   /// \p EntryVal is the value from the original loop that maps to the steps.
630   /// Note that \p EntryVal doesn't have to be an induction variable - it
631   /// can also be a truncate instruction.
632   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
633                         const InductionDescriptor &ID, VPValue *Def,
634                         VPValue *CastDef, VPTransformState &State);
635 
636   /// Create a vector induction phi node based on an existing scalar one. \p
637   /// EntryVal is the value from the original loop that maps to the vector phi
638   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
639   /// truncate instruction, instead of widening the original IV, we widen a
640   /// version of the IV truncated to \p EntryVal's type.
641   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
642                                        Value *Step, Value *Start,
643                                        Instruction *EntryVal, VPValue *Def,
644                                        VPValue *CastDef,
645                                        VPTransformState &State);
646 
647   /// Returns true if an instruction \p I should be scalarized instead of
648   /// vectorized for the chosen vectorization factor.
649   bool shouldScalarizeInstruction(Instruction *I) const;
650 
651   /// Returns true if we should generate a scalar version of \p IV.
652   bool needsScalarInduction(Instruction *IV) const;
653 
654   /// If there is a cast involved in the induction variable \p ID, which should
655   /// be ignored in the vectorized loop body, this function records the
656   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
657   /// cast. We had already proved that the casted Phi is equal to the uncasted
658   /// Phi in the vectorized loop (under a runtime guard), and therefore
659   /// there is no need to vectorize the cast - the same value can be used in the
660   /// vector loop for both the Phi and the cast.
661   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
662   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
663   ///
664   /// \p EntryVal is the value from the original loop that maps to the vector
665   /// phi node and is used to distinguish what is the IV currently being
666   /// processed - original one (if \p EntryVal is a phi corresponding to the
667   /// original IV) or the "newly-created" one based on the proof mentioned above
668   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
669   /// latter case \p EntryVal is a TruncInst and we must not record anything for
670   /// that IV, but it's error-prone to expect callers of this routine to care
671   /// about that, hence this explicit parameter.
672   void recordVectorLoopValueForInductionCast(
673       const InductionDescriptor &ID, const Instruction *EntryVal,
674       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
675       unsigned Part, unsigned Lane = UINT_MAX);
676 
677   /// Generate a shuffle sequence that will reverse the vector Vec.
678   virtual Value *reverseVector(Value *Vec);
679 
680   /// Returns (and creates if needed) the original loop trip count.
681   Value *getOrCreateTripCount(Loop *NewLoop);
682 
683   /// Returns (and creates if needed) the trip count of the widened loop.
684   Value *getOrCreateVectorTripCount(Loop *NewLoop);
685 
686   /// Returns a bitcasted value to the requested vector type.
687   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
688   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
689                                 const DataLayout &DL);
690 
691   /// Emit a bypass check to see if the vector trip count is zero, including if
692   /// it overflows.
693   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
694 
695   /// Emit a bypass check to see if all of the SCEV assumptions we've
696   /// had to make are correct. Returns the block containing the checks or
697   /// nullptr if no checks have been added.
698   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
699 
700   /// Emit bypass checks to check any memory assumptions we may have made.
701   /// Returns the block containing the checks or nullptr if no checks have been
702   /// added.
703   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
704 
705   /// Compute the transformed value of Index at offset StartValue using step
706   /// StepValue.
707   /// For integer induction, returns StartValue + Index * StepValue.
708   /// For pointer induction, returns StartValue[Index * StepValue].
709   /// FIXME: The newly created binary instructions should contain nsw/nuw
710   /// flags, which can be found from the original scalar operations.
711   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
712                               const DataLayout &DL,
713                               const InductionDescriptor &ID) const;
714 
715   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
716   /// vector loop preheader, middle block and scalar preheader. Also
717   /// allocate a loop object for the new vector loop and return it.
718   Loop *createVectorLoopSkeleton(StringRef Prefix);
719 
720   /// Create new phi nodes for the induction variables to resume iteration count
721   /// in the scalar epilogue, from where the vectorized loop left off (given by
722   /// \p VectorTripCount).
723   /// In cases where the loop skeleton is more complicated (eg. epilogue
724   /// vectorization) and the resume values can come from an additional bypass
725   /// block, the \p AdditionalBypass pair provides information about the bypass
726   /// block and the end value on the edge from bypass to this loop.
727   void createInductionResumeValues(
728       Loop *L, Value *VectorTripCount,
729       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
730 
731   /// Complete the loop skeleton by adding debug MDs, creating appropriate
732   /// conditional branches in the middle block, preparing the builder and
733   /// running the verifier. Take in the vector loop \p L as argument, and return
734   /// the preheader of the completed vector loop.
735   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
736 
737   /// Add additional metadata to \p To that was not present on \p Orig.
738   ///
739   /// Currently this is used to add the noalias annotations based on the
740   /// inserted memchecks.  Use this for instructions that are *cloned* into the
741   /// vector loop.
742   void addNewMetadata(Instruction *To, const Instruction *Orig);
743 
744   /// Add metadata from one instruction to another.
745   ///
746   /// This includes both the original MDs from \p From and additional ones (\see
747   /// addNewMetadata).  Use this for *newly created* instructions in the vector
748   /// loop.
749   void addMetadata(Instruction *To, Instruction *From);
750 
751   /// Similar to the previous function but it adds the metadata to a
752   /// vector of instructions.
753   void addMetadata(ArrayRef<Value *> To, Instruction *From);
754 
755   /// Allow subclasses to override and print debug traces before/after vplan
756   /// execution, when trace information is requested.
757   virtual void printDebugTracesAtStart(){};
758   virtual void printDebugTracesAtEnd(){};
759 
760   /// The original loop.
761   Loop *OrigLoop;
762 
763   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
764   /// dynamic knowledge to simplify SCEV expressions and converts them to a
765   /// more usable form.
766   PredicatedScalarEvolution &PSE;
767 
768   /// Loop Info.
769   LoopInfo *LI;
770 
771   /// Dominator Tree.
772   DominatorTree *DT;
773 
774   /// Alias Analysis.
775   AAResults *AA;
776 
777   /// Target Library Info.
778   const TargetLibraryInfo *TLI;
779 
780   /// Target Transform Info.
781   const TargetTransformInfo *TTI;
782 
783   /// Assumption Cache.
784   AssumptionCache *AC;
785 
786   /// Interface to emit optimization remarks.
787   OptimizationRemarkEmitter *ORE;
788 
789   /// LoopVersioning.  It's only set up (non-null) if memchecks were
790   /// used.
791   ///
792   /// This is currently only used to add no-alias metadata based on the
793   /// memchecks.  The actually versioning is performed manually.
794   std::unique_ptr<LoopVersioning> LVer;
795 
796   /// The vectorization SIMD factor to use. Each vector will have this many
797   /// vector elements.
798   ElementCount VF;
799 
800   /// The vectorization unroll factor to use. Each scalar is vectorized to this
801   /// many different vector instructions.
802   unsigned UF;
803 
804   /// The builder that we use
805   IRBuilder<> Builder;
806 
807   // --- Vectorization state ---
808 
809   /// The vector-loop preheader.
810   BasicBlock *LoopVectorPreHeader;
811 
812   /// The scalar-loop preheader.
813   BasicBlock *LoopScalarPreHeader;
814 
815   /// Middle Block between the vector and the scalar.
816   BasicBlock *LoopMiddleBlock;
817 
818   /// The unique ExitBlock of the scalar loop if one exists.  Note that
819   /// there can be multiple exiting edges reaching this block.
820   BasicBlock *LoopExitBlock;
821 
822   /// The vector loop body.
823   BasicBlock *LoopVectorBody;
824 
825   /// The scalar loop body.
826   BasicBlock *LoopScalarBody;
827 
828   /// A list of all bypass blocks. The first block is the entry of the loop.
829   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
830 
831   /// The new Induction variable which was added to the new block.
832   PHINode *Induction = nullptr;
833 
834   /// The induction variable of the old basic block.
835   PHINode *OldInduction = nullptr;
836 
837   /// Store instructions that were predicated.
838   SmallVector<Instruction *, 4> PredicatedInstructions;
839 
840   /// Trip count of the original loop.
841   Value *TripCount = nullptr;
842 
843   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
844   Value *VectorTripCount = nullptr;
845 
846   /// The legality analysis.
847   LoopVectorizationLegality *Legal;
848 
849   /// The profitablity analysis.
850   LoopVectorizationCostModel *Cost;
851 
852   // Record whether runtime checks are added.
853   bool AddedSafetyChecks = false;
854 
855   // Holds the end values for each induction variable. We save the end values
856   // so we can later fix-up the external users of the induction variables.
857   DenseMap<PHINode *, Value *> IVEndValues;
858 
859   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
860   // fixed up at the end of vector code generation.
861   SmallVector<PHINode *, 8> OrigPHIsToFix;
862 
863   /// BFI and PSI are used to check for profile guided size optimizations.
864   BlockFrequencyInfo *BFI;
865   ProfileSummaryInfo *PSI;
866 
867   // Whether this loop should be optimized for size based on profile guided size
868   // optimizatios.
869   bool OptForSizeBasedOnProfile;
870 
871   /// Structure to hold information about generated runtime checks, responsible
872   /// for cleaning the checks, if vectorization turns out unprofitable.
873   GeneratedRTChecks &RTChecks;
874 };
875 
876 class InnerLoopUnroller : public InnerLoopVectorizer {
877 public:
878   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
879                     LoopInfo *LI, DominatorTree *DT,
880                     const TargetLibraryInfo *TLI,
881                     const TargetTransformInfo *TTI, AssumptionCache *AC,
882                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
883                     LoopVectorizationLegality *LVL,
884                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
885                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
886       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
887                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
888                             BFI, PSI, Check) {}
889 
890 private:
891   Value *getBroadcastInstrs(Value *V) override;
892   Value *getStepVector(
893       Value *Val, Value *StartIdx, Value *Step,
894       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
895   Value *reverseVector(Value *Vec) override;
896 };
897 
898 /// Encapsulate information regarding vectorization of a loop and its epilogue.
899 /// This information is meant to be updated and used across two stages of
900 /// epilogue vectorization.
901 struct EpilogueLoopVectorizationInfo {
902   ElementCount MainLoopVF = ElementCount::getFixed(0);
903   unsigned MainLoopUF = 0;
904   ElementCount EpilogueVF = ElementCount::getFixed(0);
905   unsigned EpilogueUF = 0;
906   BasicBlock *MainLoopIterationCountCheck = nullptr;
907   BasicBlock *EpilogueIterationCountCheck = nullptr;
908   BasicBlock *SCEVSafetyCheck = nullptr;
909   BasicBlock *MemSafetyCheck = nullptr;
910   Value *TripCount = nullptr;
911   Value *VectorTripCount = nullptr;
912 
913   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
914                                 ElementCount EVF, unsigned EUF)
915       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1123   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1124   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1125   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1126   return B.CreateSIToFP(RuntimeVF, FTy);
1127 }
1128 
1129 void reportVectorizationFailure(const StringRef DebugMsg,
1130                                 const StringRef OREMsg, const StringRef ORETag,
1131                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1132                                 Instruction *I) {
1133   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1134   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1135   ORE->emit(
1136       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1137       << "loop not vectorized: " << OREMsg);
1138 }
1139 
1140 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1141                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1142                              Instruction *I) {
1143   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1144   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1145   ORE->emit(
1146       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1147       << Msg);
1148 }
1149 
1150 } // end namespace llvm
1151 
1152 #ifndef NDEBUG
1153 /// \return string containing a file name and a line # for the given loop.
1154 static std::string getDebugLocString(const Loop *L) {
1155   std::string Result;
1156   if (L) {
1157     raw_string_ostream OS(Result);
1158     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1159       LoopDbgLoc.print(OS);
1160     else
1161       // Just print the module name.
1162       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1163     OS.flush();
1164   }
1165   return Result;
1166 }
1167 #endif
1168 
1169 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1170                                          const Instruction *Orig) {
1171   // If the loop was versioned with memchecks, add the corresponding no-alias
1172   // metadata.
1173   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1174     LVer->annotateInstWithNoAlias(To, Orig);
1175 }
1176 
1177 void InnerLoopVectorizer::addMetadata(Instruction *To,
1178                                       Instruction *From) {
1179   propagateMetadata(To, From);
1180   addNewMetadata(To, From);
1181 }
1182 
1183 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1184                                       Instruction *From) {
1185   for (Value *V : To) {
1186     if (Instruction *I = dyn_cast<Instruction>(V))
1187       addMetadata(I, From);
1188   }
1189 }
1190 
1191 namespace llvm {
1192 
1193 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1194 // lowered.
1195 enum ScalarEpilogueLowering {
1196 
1197   // The default: allowing scalar epilogues.
1198   CM_ScalarEpilogueAllowed,
1199 
1200   // Vectorization with OptForSize: don't allow epilogues.
1201   CM_ScalarEpilogueNotAllowedOptSize,
1202 
1203   // A special case of vectorisation with OptForSize: loops with a very small
1204   // trip count are considered for vectorization under OptForSize, thereby
1205   // making sure the cost of their loop body is dominant, free of runtime
1206   // guards and scalar iteration overheads.
1207   CM_ScalarEpilogueNotAllowedLowTripLoop,
1208 
1209   // Loop hint predicate indicating an epilogue is undesired.
1210   CM_ScalarEpilogueNotNeededUsePredicate,
1211 
1212   // Directive indicating we must either tail fold or not vectorize
1213   CM_ScalarEpilogueNotAllowedUsePredicate
1214 };
1215 
1216 /// ElementCountComparator creates a total ordering for ElementCount
1217 /// for the purposes of using it in a set structure.
1218 struct ElementCountComparator {
1219   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1220     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1221            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1222   }
1223 };
1224 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1225 
1226 /// LoopVectorizationCostModel - estimates the expected speedups due to
1227 /// vectorization.
1228 /// In many cases vectorization is not profitable. This can happen because of
1229 /// a number of reasons. In this class we mainly attempt to predict the
1230 /// expected speedup/slowdowns due to the supported instruction set. We use the
1231 /// TargetTransformInfo to query the different backends for the cost of
1232 /// different operations.
1233 class LoopVectorizationCostModel {
1234 public:
1235   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1236                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1237                              LoopVectorizationLegality *Legal,
1238                              const TargetTransformInfo &TTI,
1239                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1240                              AssumptionCache *AC,
1241                              OptimizationRemarkEmitter *ORE, const Function *F,
1242                              const LoopVectorizeHints *Hints,
1243                              InterleavedAccessInfo &IAI)
1244       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1245         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1246         Hints(Hints), InterleaveInfo(IAI) {}
1247 
1248   /// \return An upper bound for the vectorization factors (both fixed and
1249   /// scalable). If the factors are 0, vectorization and interleaving should be
1250   /// avoided up front.
1251   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1252 
1253   /// \return True if runtime checks are required for vectorization, and false
1254   /// otherwise.
1255   bool runtimeChecksRequired();
1256 
1257   /// \return The most profitable vectorization factor and the cost of that VF.
1258   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1259   /// then this vectorization factor will be selected if vectorization is
1260   /// possible.
1261   VectorizationFactor
1262   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1263 
1264   VectorizationFactor
1265   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1266                                     const LoopVectorizationPlanner &LVP);
1267 
1268   /// Setup cost-based decisions for user vectorization factor.
1269   /// \return true if the UserVF is a feasible VF to be chosen.
1270   bool selectUserVectorizationFactor(ElementCount UserVF) {
1271     collectUniformsAndScalars(UserVF);
1272     collectInstsToScalarize(UserVF);
1273     return expectedCost(UserVF).first.isValid();
1274   }
1275 
1276   /// \return The size (in bits) of the smallest and widest types in the code
1277   /// that needs to be vectorized. We ignore values that remain scalar such as
1278   /// 64 bit loop indices.
1279   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1280 
1281   /// \return The desired interleave count.
1282   /// If interleave count has been specified by metadata it will be returned.
1283   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1284   /// are the selected vectorization factor and the cost of the selected VF.
1285   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1286 
1287   /// Memory access instruction may be vectorized in more than one way.
1288   /// Form of instruction after vectorization depends on cost.
1289   /// This function takes cost-based decisions for Load/Store instructions
1290   /// and collects them in a map. This decisions map is used for building
1291   /// the lists of loop-uniform and loop-scalar instructions.
1292   /// The calculated cost is saved with widening decision in order to
1293   /// avoid redundant calculations.
1294   void setCostBasedWideningDecision(ElementCount VF);
1295 
1296   /// A struct that represents some properties of the register usage
1297   /// of a loop.
1298   struct RegisterUsage {
1299     /// Holds the number of loop invariant values that are used in the loop.
1300     /// The key is ClassID of target-provided register class.
1301     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1302     /// Holds the maximum number of concurrent live intervals in the loop.
1303     /// The key is ClassID of target-provided register class.
1304     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1305   };
1306 
1307   /// \return Returns information about the register usages of the loop for the
1308   /// given vectorization factors.
1309   SmallVector<RegisterUsage, 8>
1310   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1311 
1312   /// Collect values we want to ignore in the cost model.
1313   void collectValuesToIgnore();
1314 
1315   /// Collect all element types in the loop for which widening is needed.
1316   void collectElementTypesForWidening();
1317 
1318   /// Split reductions into those that happen in the loop, and those that happen
1319   /// outside. In loop reductions are collected into InLoopReductionChains.
1320   void collectInLoopReductions();
1321 
1322   /// Returns true if we should use strict in-order reductions for the given
1323   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1324   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1325   /// of FP operations.
1326   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1327     return !Hints->allowReordering() && RdxDesc.isOrdered();
1328   }
1329 
1330   /// \returns The smallest bitwidth each instruction can be represented with.
1331   /// The vector equivalents of these instructions should be truncated to this
1332   /// type.
1333   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1334     return MinBWs;
1335   }
1336 
1337   /// \returns True if it is more profitable to scalarize instruction \p I for
1338   /// vectorization factor \p VF.
1339   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1340     assert(VF.isVector() &&
1341            "Profitable to scalarize relevant only for VF > 1.");
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto Scalars = InstsToScalarize.find(VF);
1349     assert(Scalars != InstsToScalarize.end() &&
1350            "VF not yet analyzed for scalarization profitability");
1351     return Scalars->second.find(I) != Scalars->second.end();
1352   }
1353 
1354   /// Returns true if \p I is known to be uniform after vectorization.
1355   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1356     if (VF.isScalar())
1357       return true;
1358 
1359     // Cost model is not run in the VPlan-native path - return conservative
1360     // result until this changes.
1361     if (EnableVPlanNativePath)
1362       return false;
1363 
1364     auto UniformsPerVF = Uniforms.find(VF);
1365     assert(UniformsPerVF != Uniforms.end() &&
1366            "VF not yet analyzed for uniformity");
1367     return UniformsPerVF->second.count(I);
1368   }
1369 
1370   /// Returns true if \p I is known to be scalar after vectorization.
1371   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1372     if (VF.isScalar())
1373       return true;
1374 
1375     // Cost model is not run in the VPlan-native path - return conservative
1376     // result until this changes.
1377     if (EnableVPlanNativePath)
1378       return false;
1379 
1380     auto ScalarsPerVF = Scalars.find(VF);
1381     assert(ScalarsPerVF != Scalars.end() &&
1382            "Scalar values are not calculated for VF");
1383     return ScalarsPerVF->second.count(I);
1384   }
1385 
1386   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1387   /// for vectorization factor \p VF.
1388   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1389     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1390            !isProfitableToScalarize(I, VF) &&
1391            !isScalarAfterVectorization(I, VF);
1392   }
1393 
1394   /// Decision that was taken during cost calculation for memory instruction.
1395   enum InstWidening {
1396     CM_Unknown,
1397     CM_Widen,         // For consecutive accesses with stride +1.
1398     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1399     CM_Interleave,
1400     CM_GatherScatter,
1401     CM_Scalarize
1402   };
1403 
1404   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1405   /// instruction \p I and vector width \p VF.
1406   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1407                            InstructionCost Cost) {
1408     assert(VF.isVector() && "Expected VF >=2");
1409     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1410   }
1411 
1412   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1413   /// interleaving group \p Grp and vector width \p VF.
1414   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1415                            ElementCount VF, InstWidening W,
1416                            InstructionCost Cost) {
1417     assert(VF.isVector() && "Expected VF >=2");
1418     /// Broadcast this decicion to all instructions inside the group.
1419     /// But the cost will be assigned to one instruction only.
1420     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1421       if (auto *I = Grp->getMember(i)) {
1422         if (Grp->getInsertPos() == I)
1423           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1424         else
1425           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1426       }
1427     }
1428   }
1429 
1430   /// Return the cost model decision for the given instruction \p I and vector
1431   /// width \p VF. Return CM_Unknown if this instruction did not pass
1432   /// through the cost modeling.
1433   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1434     assert(VF.isVector() && "Expected VF to be a vector VF");
1435     // Cost model is not run in the VPlan-native path - return conservative
1436     // result until this changes.
1437     if (EnableVPlanNativePath)
1438       return CM_GatherScatter;
1439 
1440     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1441     auto Itr = WideningDecisions.find(InstOnVF);
1442     if (Itr == WideningDecisions.end())
1443       return CM_Unknown;
1444     return Itr->second.first;
1445   }
1446 
1447   /// Return the vectorization cost for the given instruction \p I and vector
1448   /// width \p VF.
1449   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1450     assert(VF.isVector() && "Expected VF >=2");
1451     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1452     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1453            "The cost is not calculated");
1454     return WideningDecisions[InstOnVF].second;
1455   }
1456 
1457   /// Return True if instruction \p I is an optimizable truncate whose operand
1458   /// is an induction variable. Such a truncate will be removed by adding a new
1459   /// induction variable with the destination type.
1460   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1461     // If the instruction is not a truncate, return false.
1462     auto *Trunc = dyn_cast<TruncInst>(I);
1463     if (!Trunc)
1464       return false;
1465 
1466     // Get the source and destination types of the truncate.
1467     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1468     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1469 
1470     // If the truncate is free for the given types, return false. Replacing a
1471     // free truncate with an induction variable would add an induction variable
1472     // update instruction to each iteration of the loop. We exclude from this
1473     // check the primary induction variable since it will need an update
1474     // instruction regardless.
1475     Value *Op = Trunc->getOperand(0);
1476     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1477       return false;
1478 
1479     // If the truncated value is not an induction variable, return false.
1480     return Legal->isInductionPhi(Op);
1481   }
1482 
1483   /// Collects the instructions to scalarize for each predicated instruction in
1484   /// the loop.
1485   void collectInstsToScalarize(ElementCount VF);
1486 
1487   /// Collect Uniform and Scalar values for the given \p VF.
1488   /// The sets depend on CM decision for Load/Store instructions
1489   /// that may be vectorized as interleave, gather-scatter or scalarized.
1490   void collectUniformsAndScalars(ElementCount VF) {
1491     // Do the analysis once.
1492     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1493       return;
1494     setCostBasedWideningDecision(VF);
1495     collectLoopUniforms(VF);
1496     collectLoopScalars(VF);
1497   }
1498 
1499   /// Returns true if the target machine supports masked store operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(DataType, Ptr) &&
1503            TTI.isLegalMaskedStore(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine supports masked load operation
1507   /// for the given \p DataType and kind of access to \p Ptr.
1508   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1509     return Legal->isConsecutivePtr(DataType, Ptr) &&
1510            TTI.isLegalMaskedLoad(DataType, Alignment);
1511   }
1512 
1513   /// Returns true if the target machine can represent \p V as a masked gather
1514   /// or scatter operation.
1515   bool isLegalGatherOrScatter(Value *V) {
1516     bool LI = isa<LoadInst>(V);
1517     bool SI = isa<StoreInst>(V);
1518     if (!LI && !SI)
1519       return false;
1520     auto *Ty = getLoadStoreType(V);
1521     Align Align = getLoadStoreAlignment(V);
1522     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1523            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1524   }
1525 
1526   /// Returns true if the target machine supports all of the reduction
1527   /// variables found for the given VF.
1528   bool canVectorizeReductions(ElementCount VF) const {
1529     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1530       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1531       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1532     }));
1533   }
1534 
1535   /// Returns true if \p I is an instruction that will be scalarized with
1536   /// predication. Such instructions include conditional stores and
1537   /// instructions that may divide by zero.
1538   /// If a non-zero VF has been calculated, we check if I will be scalarized
1539   /// predication for that VF.
1540   bool isScalarWithPredication(Instruction *I) const;
1541 
1542   // Returns true if \p I is an instruction that will be predicated either
1543   // through scalar predication or masked load/store or masked gather/scatter.
1544   // Superset of instructions that return true for isScalarWithPredication.
1545   bool isPredicatedInst(Instruction *I) {
1546     if (!blockNeedsPredication(I->getParent()))
1547       return false;
1548     // Loads and stores that need some form of masked operation are predicated
1549     // instructions.
1550     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1551       return Legal->isMaskRequired(I);
1552     return isScalarWithPredication(I);
1553   }
1554 
1555   /// Returns true if \p I is a memory instruction with consecutive memory
1556   /// access that can be widened.
1557   bool
1558   memoryInstructionCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Returns true if \p I is a memory instruction in an interleaved-group
1562   /// of memory accesses that can be vectorized with wide vector loads/stores
1563   /// and shuffles.
1564   bool
1565   interleavedAccessCanBeWidened(Instruction *I,
1566                                 ElementCount VF = ElementCount::getFixed(1));
1567 
1568   /// Check if \p Instr belongs to any interleaved access group.
1569   bool isAccessInterleaved(Instruction *Instr) {
1570     return InterleaveInfo.isInterleaved(Instr);
1571   }
1572 
1573   /// Get the interleaved access group that \p Instr belongs to.
1574   const InterleaveGroup<Instruction> *
1575   getInterleavedAccessGroup(Instruction *Instr) {
1576     return InterleaveInfo.getInterleaveGroup(Instr);
1577   }
1578 
1579   /// Returns true if we're required to use a scalar epilogue for at least
1580   /// the final iteration of the original loop.
1581   bool requiresScalarEpilogue(ElementCount VF) const {
1582     if (!isScalarEpilogueAllowed())
1583       return false;
1584     // If we might exit from anywhere but the latch, must run the exiting
1585     // iteration in scalar form.
1586     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1587       return true;
1588     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1589   }
1590 
1591   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1592   /// loop hint annotation.
1593   bool isScalarEpilogueAllowed() const {
1594     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1595   }
1596 
1597   /// Returns true if all loop blocks should be masked to fold tail loop.
1598   bool foldTailByMasking() const { return FoldTailByMasking; }
1599 
1600   bool blockNeedsPredication(BasicBlock *BB) const {
1601     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1602   }
1603 
1604   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1605   /// nodes to the chain of instructions representing the reductions. Uses a
1606   /// MapVector to ensure deterministic iteration order.
1607   using ReductionChainMap =
1608       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1609 
1610   /// Return the chain of instructions representing an inloop reduction.
1611   const ReductionChainMap &getInLoopReductionChains() const {
1612     return InLoopReductionChains;
1613   }
1614 
1615   /// Returns true if the Phi is part of an inloop reduction.
1616   bool isInLoopReduction(PHINode *Phi) const {
1617     return InLoopReductionChains.count(Phi);
1618   }
1619 
1620   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1621   /// with factor VF.  Return the cost of the instruction, including
1622   /// scalarization overhead if it's needed.
1623   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1624 
1625   /// Estimate cost of a call instruction CI if it were vectorized with factor
1626   /// VF. Return the cost of the instruction, including scalarization overhead
1627   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1628   /// scalarized -
1629   /// i.e. either vector version isn't available, or is too expensive.
1630   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1631                                     bool &NeedToScalarize) const;
1632 
1633   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1634   /// that of B.
1635   bool isMoreProfitable(const VectorizationFactor &A,
1636                         const VectorizationFactor &B) const;
1637 
1638   /// Invalidates decisions already taken by the cost model.
1639   void invalidateCostModelingDecisions() {
1640     WideningDecisions.clear();
1641     Uniforms.clear();
1642     Scalars.clear();
1643   }
1644 
1645 private:
1646   unsigned NumPredStores = 0;
1647 
1648   /// \return An upper bound for the vectorization factors for both
1649   /// fixed and scalable vectorization, where the minimum-known number of
1650   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1651   /// disabled or unsupported, then the scalable part will be equal to
1652   /// ElementCount::getScalable(0).
1653   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1654                                            ElementCount UserVF);
1655 
1656   /// \return the maximized element count based on the targets vector
1657   /// registers and the loop trip-count, but limited to a maximum safe VF.
1658   /// This is a helper function of computeFeasibleMaxVF.
1659   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1660   /// issue that occurred on one of the buildbots which cannot be reproduced
1661   /// without having access to the properietary compiler (see comments on
1662   /// D98509). The issue is currently under investigation and this workaround
1663   /// will be removed as soon as possible.
1664   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1665                                        unsigned SmallestType,
1666                                        unsigned WidestType,
1667                                        const ElementCount &MaxSafeVF);
1668 
1669   /// \return the maximum legal scalable VF, based on the safe max number
1670   /// of elements.
1671   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1672 
1673   /// The vectorization cost is a combination of the cost itself and a boolean
1674   /// indicating whether any of the contributing operations will actually
1675   /// operate on vector values after type legalization in the backend. If this
1676   /// latter value is false, then all operations will be scalarized (i.e. no
1677   /// vectorization has actually taken place).
1678   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1679 
1680   /// Returns the expected execution cost. The unit of the cost does
1681   /// not matter because we use the 'cost' units to compare different
1682   /// vector widths. The cost that is returned is *not* normalized by
1683   /// the factor width. If \p Invalid is not nullptr, this function
1684   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1685   /// each instruction that has an Invalid cost for the given VF.
1686   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1687   VectorizationCostTy
1688   expectedCost(ElementCount VF,
1689                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1690 
1691   /// Returns the execution time cost of an instruction for a given vector
1692   /// width. Vector width of one means scalar.
1693   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost-computation logic from getInstructionCost which provides
1696   /// the vector type as an output parameter.
1697   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1698                                      Type *&VectorTy);
1699 
1700   /// Return the cost of instructions in an inloop reduction pattern, if I is
1701   /// part of that pattern.
1702   Optional<InstructionCost>
1703   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1704                           TTI::TargetCostKind CostKind);
1705 
1706   /// Calculate vectorization cost of memory instruction \p I.
1707   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1708 
1709   /// The cost computation for scalarized memory instruction.
1710   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1711 
1712   /// The cost computation for interleaving group of memory instructions.
1713   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost computation for Gather/Scatter instruction.
1716   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost computation for widening instruction \p I with consecutive
1719   /// memory access.
1720   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1721 
1722   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1723   /// Load: scalar load + broadcast.
1724   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1725   /// element)
1726   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1727 
1728   /// Estimate the overhead of scalarizing an instruction. This is a
1729   /// convenience wrapper for the type-based getScalarizationOverhead API.
1730   InstructionCost getScalarizationOverhead(Instruction *I,
1731                                            ElementCount VF) const;
1732 
1733   /// Returns whether the instruction is a load or store and will be a emitted
1734   /// as a vector operation.
1735   bool isConsecutiveLoadOrStore(Instruction *I);
1736 
1737   /// Returns true if an artificially high cost for emulated masked memrefs
1738   /// should be used.
1739   bool useEmulatedMaskMemRefHack(Instruction *I);
1740 
1741   /// Map of scalar integer values to the smallest bitwidth they can be legally
1742   /// represented as. The vector equivalents of these values should be truncated
1743   /// to this type.
1744   MapVector<Instruction *, uint64_t> MinBWs;
1745 
1746   /// A type representing the costs for instructions if they were to be
1747   /// scalarized rather than vectorized. The entries are Instruction-Cost
1748   /// pairs.
1749   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1750 
1751   /// A set containing all BasicBlocks that are known to present after
1752   /// vectorization as a predicated block.
1753   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1754 
1755   /// Records whether it is allowed to have the original scalar loop execute at
1756   /// least once. This may be needed as a fallback loop in case runtime
1757   /// aliasing/dependence checks fail, or to handle the tail/remainder
1758   /// iterations when the trip count is unknown or doesn't divide by the VF,
1759   /// or as a peel-loop to handle gaps in interleave-groups.
1760   /// Under optsize and when the trip count is very small we don't allow any
1761   /// iterations to execute in the scalar loop.
1762   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1763 
1764   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1765   bool FoldTailByMasking = false;
1766 
1767   /// A map holding scalar costs for different vectorization factors. The
1768   /// presence of a cost for an instruction in the mapping indicates that the
1769   /// instruction will be scalarized when vectorizing with the associated
1770   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1771   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1772 
1773   /// Holds the instructions known to be uniform after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1776 
1777   /// Holds the instructions known to be scalar after vectorization.
1778   /// The data is collected per VF.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1780 
1781   /// Holds the instructions (address computations) that are forced to be
1782   /// scalarized.
1783   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1784 
1785   /// PHINodes of the reductions that should be expanded in-loop along with
1786   /// their associated chains of reduction operations, in program order from top
1787   /// (PHI) to bottom
1788   ReductionChainMap InLoopReductionChains;
1789 
1790   /// A Map of inloop reduction operations and their immediate chain operand.
1791   /// FIXME: This can be removed once reductions can be costed correctly in
1792   /// vplan. This was added to allow quick lookup to the inloop operations,
1793   /// without having to loop through InLoopReductionChains.
1794   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1795 
1796   /// Returns the expected difference in cost from scalarizing the expression
1797   /// feeding a predicated instruction \p PredInst. The instructions to
1798   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1799   /// non-negative return value implies the expression will be scalarized.
1800   /// Currently, only single-use chains are considered for scalarization.
1801   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1802                               ElementCount VF);
1803 
1804   /// Collect the instructions that are uniform after vectorization. An
1805   /// instruction is uniform if we represent it with a single scalar value in
1806   /// the vectorized loop corresponding to each vector iteration. Examples of
1807   /// uniform instructions include pointer operands of consecutive or
1808   /// interleaved memory accesses. Note that although uniformity implies an
1809   /// instruction will be scalar, the reverse is not true. In general, a
1810   /// scalarized instruction will be represented by VF scalar values in the
1811   /// vectorized loop, each corresponding to an iteration of the original
1812   /// scalar loop.
1813   void collectLoopUniforms(ElementCount VF);
1814 
1815   /// Collect the instructions that are scalar after vectorization. An
1816   /// instruction is scalar if it is known to be uniform or will be scalarized
1817   /// during vectorization. Non-uniform scalarized instructions will be
1818   /// represented by VF values in the vectorized loop, each corresponding to an
1819   /// iteration of the original scalar loop.
1820   void collectLoopScalars(ElementCount VF);
1821 
1822   /// Keeps cost model vectorization decision and cost for instructions.
1823   /// Right now it is used for memory instructions only.
1824   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1825                                 std::pair<InstWidening, InstructionCost>>;
1826 
1827   DecisionList WideningDecisions;
1828 
1829   /// Returns true if \p V is expected to be vectorized and it needs to be
1830   /// extracted.
1831   bool needsExtract(Value *V, ElementCount VF) const {
1832     Instruction *I = dyn_cast<Instruction>(V);
1833     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1834         TheLoop->isLoopInvariant(I))
1835       return false;
1836 
1837     // Assume we can vectorize V (and hence we need extraction) if the
1838     // scalars are not computed yet. This can happen, because it is called
1839     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1840     // the scalars are collected. That should be a safe assumption in most
1841     // cases, because we check if the operands have vectorizable types
1842     // beforehand in LoopVectorizationLegality.
1843     return Scalars.find(VF) == Scalars.end() ||
1844            !isScalarAfterVectorization(I, VF);
1845   };
1846 
1847   /// Returns a range containing only operands needing to be extracted.
1848   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1849                                                    ElementCount VF) const {
1850     return SmallVector<Value *, 4>(make_filter_range(
1851         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1852   }
1853 
1854   /// Determines if we have the infrastructure to vectorize loop \p L and its
1855   /// epilogue, assuming the main loop is vectorized by \p VF.
1856   bool isCandidateForEpilogueVectorization(const Loop &L,
1857                                            const ElementCount VF) const;
1858 
1859   /// Returns true if epilogue vectorization is considered profitable, and
1860   /// false otherwise.
1861   /// \p VF is the vectorization factor chosen for the original loop.
1862   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1863 
1864 public:
1865   /// The loop that we evaluate.
1866   Loop *TheLoop;
1867 
1868   /// Predicated scalar evolution analysis.
1869   PredicatedScalarEvolution &PSE;
1870 
1871   /// Loop Info analysis.
1872   LoopInfo *LI;
1873 
1874   /// Vectorization legality.
1875   LoopVectorizationLegality *Legal;
1876 
1877   /// Vector target information.
1878   const TargetTransformInfo &TTI;
1879 
1880   /// Target Library Info.
1881   const TargetLibraryInfo *TLI;
1882 
1883   /// Demanded bits analysis.
1884   DemandedBits *DB;
1885 
1886   /// Assumption cache.
1887   AssumptionCache *AC;
1888 
1889   /// Interface to emit optimization remarks.
1890   OptimizationRemarkEmitter *ORE;
1891 
1892   const Function *TheFunction;
1893 
1894   /// Loop Vectorize Hint.
1895   const LoopVectorizeHints *Hints;
1896 
1897   /// The interleave access information contains groups of interleaved accesses
1898   /// with the same stride and close to each other.
1899   InterleavedAccessInfo &InterleaveInfo;
1900 
1901   /// Values to ignore in the cost model.
1902   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1903 
1904   /// Values to ignore in the cost model when VF > 1.
1905   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1906 
1907   /// All element types found in the loop.
1908   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1909 
1910   /// Profitable vector factors.
1911   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1912 };
1913 } // end namespace llvm
1914 
1915 /// Helper struct to manage generating runtime checks for vectorization.
1916 ///
1917 /// The runtime checks are created up-front in temporary blocks to allow better
1918 /// estimating the cost and un-linked from the existing IR. After deciding to
1919 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1920 /// temporary blocks are completely removed.
1921 class GeneratedRTChecks {
1922   /// Basic block which contains the generated SCEV checks, if any.
1923   BasicBlock *SCEVCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated SCEV checks. If it is
1926   /// nullptr, either no SCEV checks have been generated or they have been used.
1927   Value *SCEVCheckCond = nullptr;
1928 
1929   /// Basic block which contains the generated memory runtime checks, if any.
1930   BasicBlock *MemCheckBlock = nullptr;
1931 
1932   /// The value representing the result of the generated memory runtime checks.
1933   /// If it is nullptr, either no memory runtime checks have been generated or
1934   /// they have been used.
1935   Value *MemRuntimeCheckCond = nullptr;
1936 
1937   DominatorTree *DT;
1938   LoopInfo *LI;
1939 
1940   SCEVExpander SCEVExp;
1941   SCEVExpander MemCheckExp;
1942 
1943 public:
1944   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1945                     const DataLayout &DL)
1946       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1947         MemCheckExp(SE, DL, "scev.check") {}
1948 
1949   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1950   /// accurately estimate the cost of the runtime checks. The blocks are
1951   /// un-linked from the IR and is added back during vector code generation. If
1952   /// there is no vector code generation, the check blocks are removed
1953   /// completely.
1954   void Create(Loop *L, const LoopAccessInfo &LAI,
1955               const SCEVUnionPredicate &UnionPred) {
1956 
1957     BasicBlock *LoopHeader = L->getHeader();
1958     BasicBlock *Preheader = L->getLoopPreheader();
1959 
1960     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1961     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1962     // may be used by SCEVExpander. The blocks will be un-linked from their
1963     // predecessors and removed from LI & DT at the end of the function.
1964     if (!UnionPred.isAlwaysTrue()) {
1965       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1966                                   nullptr, "vector.scevcheck");
1967 
1968       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1969           &UnionPred, SCEVCheckBlock->getTerminator());
1970     }
1971 
1972     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1973     if (RtPtrChecking.Need) {
1974       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1975       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1976                                  "vector.memcheck");
1977 
1978       MemRuntimeCheckCond =
1979           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1980                            RtPtrChecking.getChecks(), MemCheckExp);
1981       assert(MemRuntimeCheckCond &&
1982              "no RT checks generated although RtPtrChecking "
1983              "claimed checks are required");
1984     }
1985 
1986     if (!MemCheckBlock && !SCEVCheckBlock)
1987       return;
1988 
1989     // Unhook the temporary block with the checks, update various places
1990     // accordingly.
1991     if (SCEVCheckBlock)
1992       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1993     if (MemCheckBlock)
1994       MemCheckBlock->replaceAllUsesWith(Preheader);
1995 
1996     if (SCEVCheckBlock) {
1997       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1998       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1999       Preheader->getTerminator()->eraseFromParent();
2000     }
2001     if (MemCheckBlock) {
2002       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2003       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2004       Preheader->getTerminator()->eraseFromParent();
2005     }
2006 
2007     DT->changeImmediateDominator(LoopHeader, Preheader);
2008     if (MemCheckBlock) {
2009       DT->eraseNode(MemCheckBlock);
2010       LI->removeBlock(MemCheckBlock);
2011     }
2012     if (SCEVCheckBlock) {
2013       DT->eraseNode(SCEVCheckBlock);
2014       LI->removeBlock(SCEVCheckBlock);
2015     }
2016   }
2017 
2018   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2019   /// unused.
2020   ~GeneratedRTChecks() {
2021     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2022     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2023     if (!SCEVCheckCond)
2024       SCEVCleaner.markResultUsed();
2025 
2026     if (!MemRuntimeCheckCond)
2027       MemCheckCleaner.markResultUsed();
2028 
2029     if (MemRuntimeCheckCond) {
2030       auto &SE = *MemCheckExp.getSE();
2031       // Memory runtime check generation creates compares that use expanded
2032       // values. Remove them before running the SCEVExpanderCleaners.
2033       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2034         if (MemCheckExp.isInsertedInstruction(&I))
2035           continue;
2036         SE.forgetValue(&I);
2037         SE.eraseValueFromMap(&I);
2038         I.eraseFromParent();
2039       }
2040     }
2041     MemCheckCleaner.cleanup();
2042     SCEVCleaner.cleanup();
2043 
2044     if (SCEVCheckCond)
2045       SCEVCheckBlock->eraseFromParent();
2046     if (MemRuntimeCheckCond)
2047       MemCheckBlock->eraseFromParent();
2048   }
2049 
2050   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2051   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2052   /// depending on the generated condition.
2053   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2054                              BasicBlock *LoopVectorPreHeader,
2055                              BasicBlock *LoopExitBlock) {
2056     if (!SCEVCheckCond)
2057       return nullptr;
2058     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2059       if (C->isZero())
2060         return nullptr;
2061 
2062     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2063 
2064     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2065     // Create new preheader for vector loop.
2066     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2067       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2068 
2069     SCEVCheckBlock->getTerminator()->eraseFromParent();
2070     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2071     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2072                                                 SCEVCheckBlock);
2073 
2074     DT->addNewBlock(SCEVCheckBlock, Pred);
2075     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2076 
2077     ReplaceInstWithInst(
2078         SCEVCheckBlock->getTerminator(),
2079         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2080     // Mark the check as used, to prevent it from being removed during cleanup.
2081     SCEVCheckCond = nullptr;
2082     return SCEVCheckBlock;
2083   }
2084 
2085   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2086   /// the branches to branch to the vector preheader or \p Bypass, depending on
2087   /// the generated condition.
2088   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2089                                    BasicBlock *LoopVectorPreHeader) {
2090     // Check if we generated code that checks in runtime if arrays overlap.
2091     if (!MemRuntimeCheckCond)
2092       return nullptr;
2093 
2094     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2095     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2096                                                 MemCheckBlock);
2097 
2098     DT->addNewBlock(MemCheckBlock, Pred);
2099     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2100     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2101 
2102     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2103       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2104 
2105     ReplaceInstWithInst(
2106         MemCheckBlock->getTerminator(),
2107         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2108     MemCheckBlock->getTerminator()->setDebugLoc(
2109         Pred->getTerminator()->getDebugLoc());
2110 
2111     // Mark the check as used, to prevent it from being removed during cleanup.
2112     MemRuntimeCheckCond = nullptr;
2113     return MemCheckBlock;
2114   }
2115 };
2116 
2117 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2118 // vectorization. The loop needs to be annotated with #pragma omp simd
2119 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2120 // vector length information is not provided, vectorization is not considered
2121 // explicit. Interleave hints are not allowed either. These limitations will be
2122 // relaxed in the future.
2123 // Please, note that we are currently forced to abuse the pragma 'clang
2124 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2125 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2126 // provides *explicit vectorization hints* (LV can bypass legal checks and
2127 // assume that vectorization is legal). However, both hints are implemented
2128 // using the same metadata (llvm.loop.vectorize, processed by
2129 // LoopVectorizeHints). This will be fixed in the future when the native IR
2130 // representation for pragma 'omp simd' is introduced.
2131 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2132                                    OptimizationRemarkEmitter *ORE) {
2133   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2134   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2135 
2136   // Only outer loops with an explicit vectorization hint are supported.
2137   // Unannotated outer loops are ignored.
2138   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2139     return false;
2140 
2141   Function *Fn = OuterLp->getHeader()->getParent();
2142   if (!Hints.allowVectorization(Fn, OuterLp,
2143                                 true /*VectorizeOnlyWhenForced*/)) {
2144     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2145     return false;
2146   }
2147 
2148   if (Hints.getInterleave() > 1) {
2149     // TODO: Interleave support is future work.
2150     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2151                          "outer loops.\n");
2152     Hints.emitRemarkWithHints();
2153     return false;
2154   }
2155 
2156   return true;
2157 }
2158 
2159 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2160                                   OptimizationRemarkEmitter *ORE,
2161                                   SmallVectorImpl<Loop *> &V) {
2162   // Collect inner loops and outer loops without irreducible control flow. For
2163   // now, only collect outer loops that have explicit vectorization hints. If we
2164   // are stress testing the VPlan H-CFG construction, we collect the outermost
2165   // loop of every loop nest.
2166   if (L.isInnermost() || VPlanBuildStressTest ||
2167       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2168     LoopBlocksRPO RPOT(&L);
2169     RPOT.perform(LI);
2170     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2171       V.push_back(&L);
2172       // TODO: Collect inner loops inside marked outer loops in case
2173       // vectorization fails for the outer loop. Do not invoke
2174       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2175       // already known to be reducible. We can use an inherited attribute for
2176       // that.
2177       return;
2178     }
2179   }
2180   for (Loop *InnerL : L)
2181     collectSupportedLoops(*InnerL, LI, ORE, V);
2182 }
2183 
2184 namespace {
2185 
2186 /// The LoopVectorize Pass.
2187 struct LoopVectorize : public FunctionPass {
2188   /// Pass identification, replacement for typeid
2189   static char ID;
2190 
2191   LoopVectorizePass Impl;
2192 
2193   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2194                          bool VectorizeOnlyWhenForced = false)
2195       : FunctionPass(ID),
2196         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2197     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2198   }
2199 
2200   bool runOnFunction(Function &F) override {
2201     if (skipFunction(F))
2202       return false;
2203 
2204     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2205     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2206     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2207     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2208     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2209     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2210     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2211     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2212     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2213     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2214     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2215     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2216     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2217 
2218     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2219         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2220 
2221     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2222                         GetLAA, *ORE, PSI).MadeAnyChange;
2223   }
2224 
2225   void getAnalysisUsage(AnalysisUsage &AU) const override {
2226     AU.addRequired<AssumptionCacheTracker>();
2227     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2228     AU.addRequired<DominatorTreeWrapperPass>();
2229     AU.addRequired<LoopInfoWrapperPass>();
2230     AU.addRequired<ScalarEvolutionWrapperPass>();
2231     AU.addRequired<TargetTransformInfoWrapperPass>();
2232     AU.addRequired<AAResultsWrapperPass>();
2233     AU.addRequired<LoopAccessLegacyAnalysis>();
2234     AU.addRequired<DemandedBitsWrapperPass>();
2235     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2236     AU.addRequired<InjectTLIMappingsLegacy>();
2237 
2238     // We currently do not preserve loopinfo/dominator analyses with outer loop
2239     // vectorization. Until this is addressed, mark these analyses as preserved
2240     // only for non-VPlan-native path.
2241     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2242     if (!EnableVPlanNativePath) {
2243       AU.addPreserved<LoopInfoWrapperPass>();
2244       AU.addPreserved<DominatorTreeWrapperPass>();
2245     }
2246 
2247     AU.addPreserved<BasicAAWrapperPass>();
2248     AU.addPreserved<GlobalsAAWrapperPass>();
2249     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2250   }
2251 };
2252 
2253 } // end anonymous namespace
2254 
2255 //===----------------------------------------------------------------------===//
2256 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2257 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2258 //===----------------------------------------------------------------------===//
2259 
2260 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2261   // We need to place the broadcast of invariant variables outside the loop,
2262   // but only if it's proven safe to do so. Else, broadcast will be inside
2263   // vector loop body.
2264   Instruction *Instr = dyn_cast<Instruction>(V);
2265   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2266                      (!Instr ||
2267                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2268   // Place the code for broadcasting invariant variables in the new preheader.
2269   IRBuilder<>::InsertPointGuard Guard(Builder);
2270   if (SafeToHoist)
2271     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2272 
2273   // Broadcast the scalar into all locations in the vector.
2274   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2275 
2276   return Shuf;
2277 }
2278 
2279 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2280     const InductionDescriptor &II, Value *Step, Value *Start,
2281     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2282     VPTransformState &State) {
2283   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2284          "Expected either an induction phi-node or a truncate of it!");
2285 
2286   // Construct the initial value of the vector IV in the vector loop preheader
2287   auto CurrIP = Builder.saveIP();
2288   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2289   if (isa<TruncInst>(EntryVal)) {
2290     assert(Start->getType()->isIntegerTy() &&
2291            "Truncation requires an integer type");
2292     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2293     Step = Builder.CreateTrunc(Step, TruncType);
2294     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2295   }
2296 
2297   Value *Zero;
2298   if (Start->getType()->isFloatingPointTy())
2299     Zero = ConstantFP::get(Start->getType(), 0);
2300   else
2301     Zero = ConstantInt::get(Start->getType(), 0);
2302 
2303   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2304   Value *SteppedStart =
2305       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2306 
2307   // We create vector phi nodes for both integer and floating-point induction
2308   // variables. Here, we determine the kind of arithmetic we will perform.
2309   Instruction::BinaryOps AddOp;
2310   Instruction::BinaryOps MulOp;
2311   if (Step->getType()->isIntegerTy()) {
2312     AddOp = Instruction::Add;
2313     MulOp = Instruction::Mul;
2314   } else {
2315     AddOp = II.getInductionOpcode();
2316     MulOp = Instruction::FMul;
2317   }
2318 
2319   // Multiply the vectorization factor by the step using integer or
2320   // floating-point arithmetic as appropriate.
2321   Type *StepType = Step->getType();
2322   Value *RuntimeVF;
2323   if (Step->getType()->isFloatingPointTy())
2324     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2325   else
2326     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2327   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2328 
2329   // Create a vector splat to use in the induction update.
2330   //
2331   // FIXME: If the step is non-constant, we create the vector splat with
2332   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2333   //        handle a constant vector splat.
2334   Value *SplatVF = isa<Constant>(Mul)
2335                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2336                        : Builder.CreateVectorSplat(VF, Mul);
2337   Builder.restoreIP(CurrIP);
2338 
2339   // We may need to add the step a number of times, depending on the unroll
2340   // factor. The last of those goes into the PHI.
2341   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2342                                     &*LoopVectorBody->getFirstInsertionPt());
2343   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2344   Instruction *LastInduction = VecInd;
2345   for (unsigned Part = 0; Part < UF; ++Part) {
2346     State.set(Def, LastInduction, Part);
2347 
2348     if (isa<TruncInst>(EntryVal))
2349       addMetadata(LastInduction, EntryVal);
2350     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2351                                           State, Part);
2352 
2353     LastInduction = cast<Instruction>(
2354         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2355     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2356   }
2357 
2358   // Move the last step to the end of the latch block. This ensures consistent
2359   // placement of all induction updates.
2360   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2361   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2362   auto *ICmp = cast<Instruction>(Br->getCondition());
2363   LastInduction->moveBefore(ICmp);
2364   LastInduction->setName("vec.ind.next");
2365 
2366   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2367   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2368 }
2369 
2370 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2371   return Cost->isScalarAfterVectorization(I, VF) ||
2372          Cost->isProfitableToScalarize(I, VF);
2373 }
2374 
2375 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2376   if (shouldScalarizeInstruction(IV))
2377     return true;
2378   auto isScalarInst = [&](User *U) -> bool {
2379     auto *I = cast<Instruction>(U);
2380     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2381   };
2382   return llvm::any_of(IV->users(), isScalarInst);
2383 }
2384 
2385 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2386     const InductionDescriptor &ID, const Instruction *EntryVal,
2387     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2388     unsigned Part, unsigned Lane) {
2389   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2390          "Expected either an induction phi-node or a truncate of it!");
2391 
2392   // This induction variable is not the phi from the original loop but the
2393   // newly-created IV based on the proof that casted Phi is equal to the
2394   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2395   // re-uses the same InductionDescriptor that original IV uses but we don't
2396   // have to do any recording in this case - that is done when original IV is
2397   // processed.
2398   if (isa<TruncInst>(EntryVal))
2399     return;
2400 
2401   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2402   if (Casts.empty())
2403     return;
2404   // Only the first Cast instruction in the Casts vector is of interest.
2405   // The rest of the Casts (if exist) have no uses outside the
2406   // induction update chain itself.
2407   if (Lane < UINT_MAX)
2408     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2409   else
2410     State.set(CastDef, VectorLoopVal, Part);
2411 }
2412 
2413 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2414                                                 TruncInst *Trunc, VPValue *Def,
2415                                                 VPValue *CastDef,
2416                                                 VPTransformState &State) {
2417   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2418          "Primary induction variable must have an integer type");
2419 
2420   auto II = Legal->getInductionVars().find(IV);
2421   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2422 
2423   auto ID = II->second;
2424   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2425 
2426   // The value from the original loop to which we are mapping the new induction
2427   // variable.
2428   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2429 
2430   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2431 
2432   // Generate code for the induction step. Note that induction steps are
2433   // required to be loop-invariant
2434   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2435     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2436            "Induction step should be loop invariant");
2437     if (PSE.getSE()->isSCEVable(IV->getType())) {
2438       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2439       return Exp.expandCodeFor(Step, Step->getType(),
2440                                LoopVectorPreHeader->getTerminator());
2441     }
2442     return cast<SCEVUnknown>(Step)->getValue();
2443   };
2444 
2445   // The scalar value to broadcast. This is derived from the canonical
2446   // induction variable. If a truncation type is given, truncate the canonical
2447   // induction variable and step. Otherwise, derive these values from the
2448   // induction descriptor.
2449   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2450     Value *ScalarIV = Induction;
2451     if (IV != OldInduction) {
2452       ScalarIV = IV->getType()->isIntegerTy()
2453                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2454                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2455                                           IV->getType());
2456       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2457       ScalarIV->setName("offset.idx");
2458     }
2459     if (Trunc) {
2460       auto *TruncType = cast<IntegerType>(Trunc->getType());
2461       assert(Step->getType()->isIntegerTy() &&
2462              "Truncation requires an integer step");
2463       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2464       Step = Builder.CreateTrunc(Step, TruncType);
2465     }
2466     return ScalarIV;
2467   };
2468 
2469   // Create the vector values from the scalar IV, in the absence of creating a
2470   // vector IV.
2471   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2472     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2473     for (unsigned Part = 0; Part < UF; ++Part) {
2474       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2475       Value *StartIdx;
2476       if (Step->getType()->isFloatingPointTy())
2477         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2478       else
2479         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2480 
2481       Value *EntryPart =
2482           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2483       State.set(Def, EntryPart, Part);
2484       if (Trunc)
2485         addMetadata(EntryPart, Trunc);
2486       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2487                                             State, Part);
2488     }
2489   };
2490 
2491   // Fast-math-flags propagate from the original induction instruction.
2492   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2493   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2494     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2495 
2496   // Now do the actual transformations, and start with creating the step value.
2497   Value *Step = CreateStepValue(ID.getStep());
2498   if (VF.isZero() || VF.isScalar()) {
2499     Value *ScalarIV = CreateScalarIV(Step);
2500     CreateSplatIV(ScalarIV, Step);
2501     return;
2502   }
2503 
2504   // Determine if we want a scalar version of the induction variable. This is
2505   // true if the induction variable itself is not widened, or if it has at
2506   // least one user in the loop that is not widened.
2507   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2508   if (!NeedsScalarIV) {
2509     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2510                                     State);
2511     return;
2512   }
2513 
2514   // Try to create a new independent vector induction variable. If we can't
2515   // create the phi node, we will splat the scalar induction variable in each
2516   // loop iteration.
2517   if (!shouldScalarizeInstruction(EntryVal)) {
2518     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2519                                     State);
2520     Value *ScalarIV = CreateScalarIV(Step);
2521     // Create scalar steps that can be used by instructions we will later
2522     // scalarize. Note that the addition of the scalar steps will not increase
2523     // the number of instructions in the loop in the common case prior to
2524     // InstCombine. We will be trading one vector extract for each scalar step.
2525     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2526     return;
2527   }
2528 
2529   // All IV users are scalar instructions, so only emit a scalar IV, not a
2530   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2531   // predicate used by the masked loads/stores.
2532   Value *ScalarIV = CreateScalarIV(Step);
2533   if (!Cost->isScalarEpilogueAllowed())
2534     CreateSplatIV(ScalarIV, Step);
2535   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2536 }
2537 
2538 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2539                                           Value *Step,
2540                                           Instruction::BinaryOps BinOp) {
2541   // Create and check the types.
2542   auto *ValVTy = cast<VectorType>(Val->getType());
2543   ElementCount VLen = ValVTy->getElementCount();
2544 
2545   Type *STy = Val->getType()->getScalarType();
2546   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2547          "Induction Step must be an integer or FP");
2548   assert(Step->getType() == STy && "Step has wrong type");
2549 
2550   SmallVector<Constant *, 8> Indices;
2551 
2552   // Create a vector of consecutive numbers from zero to VF.
2553   VectorType *InitVecValVTy = ValVTy;
2554   Type *InitVecValSTy = STy;
2555   if (STy->isFloatingPointTy()) {
2556     InitVecValSTy =
2557         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2558     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2559   }
2560   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2561 
2562   // Splat the StartIdx
2563   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2564 
2565   if (STy->isIntegerTy()) {
2566     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2567     Step = Builder.CreateVectorSplat(VLen, Step);
2568     assert(Step->getType() == Val->getType() && "Invalid step vec");
2569     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2570     // which can be found from the original scalar operations.
2571     Step = Builder.CreateMul(InitVec, Step);
2572     return Builder.CreateAdd(Val, Step, "induction");
2573   }
2574 
2575   // Floating point induction.
2576   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2577          "Binary Opcode should be specified for FP induction");
2578   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2579   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2580 
2581   Step = Builder.CreateVectorSplat(VLen, Step);
2582   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2583   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2584 }
2585 
2586 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2587                                            Instruction *EntryVal,
2588                                            const InductionDescriptor &ID,
2589                                            VPValue *Def, VPValue *CastDef,
2590                                            VPTransformState &State) {
2591   // We shouldn't have to build scalar steps if we aren't vectorizing.
2592   assert(VF.isVector() && "VF should be greater than one");
2593   // Get the value type and ensure it and the step have the same integer type.
2594   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2595   assert(ScalarIVTy == Step->getType() &&
2596          "Val and Step should have the same type");
2597 
2598   // We build scalar steps for both integer and floating-point induction
2599   // variables. Here, we determine the kind of arithmetic we will perform.
2600   Instruction::BinaryOps AddOp;
2601   Instruction::BinaryOps MulOp;
2602   if (ScalarIVTy->isIntegerTy()) {
2603     AddOp = Instruction::Add;
2604     MulOp = Instruction::Mul;
2605   } else {
2606     AddOp = ID.getInductionOpcode();
2607     MulOp = Instruction::FMul;
2608   }
2609 
2610   // Determine the number of scalars we need to generate for each unroll
2611   // iteration. If EntryVal is uniform, we only need to generate the first
2612   // lane. Otherwise, we generate all VF values.
2613   bool IsUniform =
2614       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2615   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2616   // Compute the scalar steps and save the results in State.
2617   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2618                                      ScalarIVTy->getScalarSizeInBits());
2619   Type *VecIVTy = nullptr;
2620   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2621   if (!IsUniform && VF.isScalable()) {
2622     VecIVTy = VectorType::get(ScalarIVTy, VF);
2623     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2624     SplatStep = Builder.CreateVectorSplat(VF, Step);
2625     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2626   }
2627 
2628   for (unsigned Part = 0; Part < UF; ++Part) {
2629     Value *StartIdx0 =
2630         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2631 
2632     if (!IsUniform && VF.isScalable()) {
2633       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2634       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2635       if (ScalarIVTy->isFloatingPointTy())
2636         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2637       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2638       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2639       State.set(Def, Add, Part);
2640       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2641                                             Part);
2642       // It's useful to record the lane values too for the known minimum number
2643       // of elements so we do those below. This improves the code quality when
2644       // trying to extract the first element, for example.
2645     }
2646 
2647     if (ScalarIVTy->isFloatingPointTy())
2648       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2649 
2650     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2651       Value *StartIdx = Builder.CreateBinOp(
2652           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2653       // The step returned by `createStepForVF` is a runtime-evaluated value
2654       // when VF is scalable. Otherwise, it should be folded into a Constant.
2655       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2656              "Expected StartIdx to be folded to a constant when VF is not "
2657              "scalable");
2658       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2659       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2660       State.set(Def, Add, VPIteration(Part, Lane));
2661       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2662                                             Part, Lane);
2663     }
2664   }
2665 }
2666 
2667 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2668                                                     const VPIteration &Instance,
2669                                                     VPTransformState &State) {
2670   Value *ScalarInst = State.get(Def, Instance);
2671   Value *VectorValue = State.get(Def, Instance.Part);
2672   VectorValue = Builder.CreateInsertElement(
2673       VectorValue, ScalarInst,
2674       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2675   State.set(Def, VectorValue, Instance.Part);
2676 }
2677 
2678 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2679   assert(Vec->getType()->isVectorTy() && "Invalid type");
2680   return Builder.CreateVectorReverse(Vec, "reverse");
2681 }
2682 
2683 // Return whether we allow using masked interleave-groups (for dealing with
2684 // strided loads/stores that reside in predicated blocks, or for dealing
2685 // with gaps).
2686 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2687   // If an override option has been passed in for interleaved accesses, use it.
2688   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2689     return EnableMaskedInterleavedMemAccesses;
2690 
2691   return TTI.enableMaskedInterleavedAccessVectorization();
2692 }
2693 
2694 // Try to vectorize the interleave group that \p Instr belongs to.
2695 //
2696 // E.g. Translate following interleaved load group (factor = 3):
2697 //   for (i = 0; i < N; i+=3) {
2698 //     R = Pic[i];             // Member of index 0
2699 //     G = Pic[i+1];           // Member of index 1
2700 //     B = Pic[i+2];           // Member of index 2
2701 //     ... // do something to R, G, B
2702 //   }
2703 // To:
2704 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2705 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2706 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2707 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2708 //
2709 // Or translate following interleaved store group (factor = 3):
2710 //   for (i = 0; i < N; i+=3) {
2711 //     ... do something to R, G, B
2712 //     Pic[i]   = R;           // Member of index 0
2713 //     Pic[i+1] = G;           // Member of index 1
2714 //     Pic[i+2] = B;           // Member of index 2
2715 //   }
2716 // To:
2717 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2718 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2719 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2720 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2721 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2722 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2723     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2724     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2725     VPValue *BlockInMask) {
2726   Instruction *Instr = Group->getInsertPos();
2727   const DataLayout &DL = Instr->getModule()->getDataLayout();
2728 
2729   // Prepare for the vector type of the interleaved load/store.
2730   Type *ScalarTy = getLoadStoreType(Instr);
2731   unsigned InterleaveFactor = Group->getFactor();
2732   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2733   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2734 
2735   // Prepare for the new pointers.
2736   SmallVector<Value *, 2> AddrParts;
2737   unsigned Index = Group->getIndex(Instr);
2738 
2739   // TODO: extend the masked interleaved-group support to reversed access.
2740   assert((!BlockInMask || !Group->isReverse()) &&
2741          "Reversed masked interleave-group not supported.");
2742 
2743   // If the group is reverse, adjust the index to refer to the last vector lane
2744   // instead of the first. We adjust the index from the first vector lane,
2745   // rather than directly getting the pointer for lane VF - 1, because the
2746   // pointer operand of the interleaved access is supposed to be uniform. For
2747   // uniform instructions, we're only required to generate a value for the
2748   // first vector lane in each unroll iteration.
2749   if (Group->isReverse())
2750     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2751 
2752   for (unsigned Part = 0; Part < UF; Part++) {
2753     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2754     setDebugLocFromInst(AddrPart);
2755 
2756     // Notice current instruction could be any index. Need to adjust the address
2757     // to the member of index 0.
2758     //
2759     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2760     //       b = A[i];       // Member of index 0
2761     // Current pointer is pointed to A[i+1], adjust it to A[i].
2762     //
2763     // E.g.  A[i+1] = a;     // Member of index 1
2764     //       A[i]   = b;     // Member of index 0
2765     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2766     // Current pointer is pointed to A[i+2], adjust it to A[i].
2767 
2768     bool InBounds = false;
2769     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2770       InBounds = gep->isInBounds();
2771     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2772     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2773 
2774     // Cast to the vector pointer type.
2775     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2776     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2777     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2778   }
2779 
2780   setDebugLocFromInst(Instr);
2781   Value *PoisonVec = PoisonValue::get(VecTy);
2782 
2783   Value *MaskForGaps = nullptr;
2784   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2785     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2786     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2787   }
2788 
2789   // Vectorize the interleaved load group.
2790   if (isa<LoadInst>(Instr)) {
2791     // For each unroll part, create a wide load for the group.
2792     SmallVector<Value *, 2> NewLoads;
2793     for (unsigned Part = 0; Part < UF; Part++) {
2794       Instruction *NewLoad;
2795       if (BlockInMask || MaskForGaps) {
2796         assert(useMaskedInterleavedAccesses(*TTI) &&
2797                "masked interleaved groups are not allowed.");
2798         Value *GroupMask = MaskForGaps;
2799         if (BlockInMask) {
2800           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2801           Value *ShuffledMask = Builder.CreateShuffleVector(
2802               BlockInMaskPart,
2803               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2804               "interleaved.mask");
2805           GroupMask = MaskForGaps
2806                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2807                                                 MaskForGaps)
2808                           : ShuffledMask;
2809         }
2810         NewLoad =
2811             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2812                                      GroupMask, PoisonVec, "wide.masked.vec");
2813       }
2814       else
2815         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2816                                             Group->getAlign(), "wide.vec");
2817       Group->addMetadata(NewLoad);
2818       NewLoads.push_back(NewLoad);
2819     }
2820 
2821     // For each member in the group, shuffle out the appropriate data from the
2822     // wide loads.
2823     unsigned J = 0;
2824     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2825       Instruction *Member = Group->getMember(I);
2826 
2827       // Skip the gaps in the group.
2828       if (!Member)
2829         continue;
2830 
2831       auto StrideMask =
2832           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2833       for (unsigned Part = 0; Part < UF; Part++) {
2834         Value *StridedVec = Builder.CreateShuffleVector(
2835             NewLoads[Part], StrideMask, "strided.vec");
2836 
2837         // If this member has different type, cast the result type.
2838         if (Member->getType() != ScalarTy) {
2839           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2840           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2841           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2842         }
2843 
2844         if (Group->isReverse())
2845           StridedVec = reverseVector(StridedVec);
2846 
2847         State.set(VPDefs[J], StridedVec, Part);
2848       }
2849       ++J;
2850     }
2851     return;
2852   }
2853 
2854   // The sub vector type for current instruction.
2855   auto *SubVT = VectorType::get(ScalarTy, VF);
2856 
2857   // Vectorize the interleaved store group.
2858   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2859   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2860          "masked interleaved groups are not allowed.");
2861   assert((!MaskForGaps || !VF.isScalable()) &&
2862          "masking gaps for scalable vectors is not yet supported.");
2863   for (unsigned Part = 0; Part < UF; Part++) {
2864     // Collect the stored vector from each member.
2865     SmallVector<Value *, 4> StoredVecs;
2866     for (unsigned i = 0; i < InterleaveFactor; i++) {
2867       assert((Group->getMember(i) || MaskForGaps) &&
2868              "Fail to get a member from an interleaved store group");
2869       Instruction *Member = Group->getMember(i);
2870 
2871       // Skip the gaps in the group.
2872       if (!Member) {
2873         Value *Undef = PoisonValue::get(SubVT);
2874         StoredVecs.push_back(Undef);
2875         continue;
2876       }
2877 
2878       Value *StoredVec = State.get(StoredValues[i], Part);
2879 
2880       if (Group->isReverse())
2881         StoredVec = reverseVector(StoredVec);
2882 
2883       // If this member has different type, cast it to a unified type.
2884 
2885       if (StoredVec->getType() != SubVT)
2886         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2887 
2888       StoredVecs.push_back(StoredVec);
2889     }
2890 
2891     // Concatenate all vectors into a wide vector.
2892     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2893 
2894     // Interleave the elements in the wide vector.
2895     Value *IVec = Builder.CreateShuffleVector(
2896         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2897         "interleaved.vec");
2898 
2899     Instruction *NewStoreInstr;
2900     if (BlockInMask || MaskForGaps) {
2901       Value *GroupMask = MaskForGaps;
2902       if (BlockInMask) {
2903         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2904         Value *ShuffledMask = Builder.CreateShuffleVector(
2905             BlockInMaskPart,
2906             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2907             "interleaved.mask");
2908         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2909                                                       ShuffledMask, MaskForGaps)
2910                                 : ShuffledMask;
2911       }
2912       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2913                                                 Group->getAlign(), GroupMask);
2914     } else
2915       NewStoreInstr =
2916           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2917 
2918     Group->addMetadata(NewStoreInstr);
2919   }
2920 }
2921 
2922 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2923     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2924     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
2925     bool Reverse) {
2926   // Attempt to issue a wide load.
2927   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2928   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2929 
2930   assert((LI || SI) && "Invalid Load/Store instruction");
2931   assert((!SI || StoredValue) && "No stored value provided for widened store");
2932   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2933 
2934   Type *ScalarDataTy = getLoadStoreType(Instr);
2935 
2936   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2937   const Align Alignment = getLoadStoreAlignment(Instr);
2938   bool CreateGatherScatter = !ConsecutiveStride;
2939 
2940   VectorParts BlockInMaskParts(UF);
2941   bool isMaskRequired = BlockInMask;
2942   if (isMaskRequired)
2943     for (unsigned Part = 0; Part < UF; ++Part)
2944       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2945 
2946   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2947     // Calculate the pointer for the specific unroll-part.
2948     GetElementPtrInst *PartPtr = nullptr;
2949 
2950     bool InBounds = false;
2951     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2952       InBounds = gep->isInBounds();
2953     if (Reverse) {
2954       // If the address is consecutive but reversed, then the
2955       // wide store needs to start at the last vector element.
2956       // RunTimeVF =  VScale * VF.getKnownMinValue()
2957       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2958       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2959       // NumElt = -Part * RunTimeVF
2960       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2961       // LastLane = 1 - RunTimeVF
2962       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2963       PartPtr =
2964           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2965       PartPtr->setIsInBounds(InBounds);
2966       PartPtr = cast<GetElementPtrInst>(
2967           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2968       PartPtr->setIsInBounds(InBounds);
2969       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2970         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2971     } else {
2972       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2973       PartPtr = cast<GetElementPtrInst>(
2974           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2975       PartPtr->setIsInBounds(InBounds);
2976     }
2977 
2978     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2979     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2980   };
2981 
2982   // Handle Stores:
2983   if (SI) {
2984     setDebugLocFromInst(SI);
2985 
2986     for (unsigned Part = 0; Part < UF; ++Part) {
2987       Instruction *NewSI = nullptr;
2988       Value *StoredVal = State.get(StoredValue, Part);
2989       if (CreateGatherScatter) {
2990         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2991         Value *VectorGep = State.get(Addr, Part);
2992         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2993                                             MaskPart);
2994       } else {
2995         if (Reverse) {
2996           // If we store to reverse consecutive memory locations, then we need
2997           // to reverse the order of elements in the stored value.
2998           StoredVal = reverseVector(StoredVal);
2999           // We don't want to update the value in the map as it might be used in
3000           // another expression. So don't call resetVectorValue(StoredVal).
3001         }
3002         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3003         if (isMaskRequired)
3004           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3005                                             BlockInMaskParts[Part]);
3006         else
3007           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3008       }
3009       addMetadata(NewSI, SI);
3010     }
3011     return;
3012   }
3013 
3014   // Handle loads.
3015   assert(LI && "Must have a load instruction");
3016   setDebugLocFromInst(LI);
3017   for (unsigned Part = 0; Part < UF; ++Part) {
3018     Value *NewLI;
3019     if (CreateGatherScatter) {
3020       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3021       Value *VectorGep = State.get(Addr, Part);
3022       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3023                                          nullptr, "wide.masked.gather");
3024       addMetadata(NewLI, LI);
3025     } else {
3026       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3027       if (isMaskRequired)
3028         NewLI = Builder.CreateMaskedLoad(
3029             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3030             PoisonValue::get(DataTy), "wide.masked.load");
3031       else
3032         NewLI =
3033             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3034 
3035       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3036       addMetadata(NewLI, LI);
3037       if (Reverse)
3038         NewLI = reverseVector(NewLI);
3039     }
3040 
3041     State.set(Def, NewLI, Part);
3042   }
3043 }
3044 
3045 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3046                                                VPUser &User,
3047                                                const VPIteration &Instance,
3048                                                bool IfPredicateInstr,
3049                                                VPTransformState &State) {
3050   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3051 
3052   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3053   // the first lane and part.
3054   if (isa<NoAliasScopeDeclInst>(Instr))
3055     if (!Instance.isFirstIteration())
3056       return;
3057 
3058   setDebugLocFromInst(Instr);
3059 
3060   // Does this instruction return a value ?
3061   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3062 
3063   Instruction *Cloned = Instr->clone();
3064   if (!IsVoidRetTy)
3065     Cloned->setName(Instr->getName() + ".cloned");
3066 
3067   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3068                                Builder.GetInsertPoint());
3069   // Replace the operands of the cloned instructions with their scalar
3070   // equivalents in the new loop.
3071   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3072     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3073     auto InputInstance = Instance;
3074     if (!Operand || !OrigLoop->contains(Operand) ||
3075         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3076       InputInstance.Lane = VPLane::getFirstLane();
3077     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3078     Cloned->setOperand(op, NewOp);
3079   }
3080   addNewMetadata(Cloned, Instr);
3081 
3082   // Place the cloned scalar in the new loop.
3083   Builder.Insert(Cloned);
3084 
3085   State.set(Def, Cloned, Instance);
3086 
3087   // If we just cloned a new assumption, add it the assumption cache.
3088   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3089     AC->registerAssumption(II);
3090 
3091   // End if-block.
3092   if (IfPredicateInstr)
3093     PredicatedInstructions.push_back(Cloned);
3094 }
3095 
3096 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3097                                                       Value *End, Value *Step,
3098                                                       Instruction *DL) {
3099   BasicBlock *Header = L->getHeader();
3100   BasicBlock *Latch = L->getLoopLatch();
3101   // As we're just creating this loop, it's possible no latch exists
3102   // yet. If so, use the header as this will be a single block loop.
3103   if (!Latch)
3104     Latch = Header;
3105 
3106   IRBuilder<> B(&*Header->getFirstInsertionPt());
3107   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3108   setDebugLocFromInst(OldInst, &B);
3109   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3110 
3111   B.SetInsertPoint(Latch->getTerminator());
3112   setDebugLocFromInst(OldInst, &B);
3113 
3114   // Create i+1 and fill the PHINode.
3115   //
3116   // If the tail is not folded, we know that End - Start >= Step (either
3117   // statically or through the minimum iteration checks). We also know that both
3118   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3119   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3120   // overflows and we can mark the induction increment as NUW.
3121   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3122                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3123   Induction->addIncoming(Start, L->getLoopPreheader());
3124   Induction->addIncoming(Next, Latch);
3125   // Create the compare.
3126   Value *ICmp = B.CreateICmpEQ(Next, End);
3127   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3128 
3129   // Now we have two terminators. Remove the old one from the block.
3130   Latch->getTerminator()->eraseFromParent();
3131 
3132   return Induction;
3133 }
3134 
3135 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3136   if (TripCount)
3137     return TripCount;
3138 
3139   assert(L && "Create Trip Count for null loop.");
3140   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3141   // Find the loop boundaries.
3142   ScalarEvolution *SE = PSE.getSE();
3143   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3144   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3145          "Invalid loop count");
3146 
3147   Type *IdxTy = Legal->getWidestInductionType();
3148   assert(IdxTy && "No type for induction");
3149 
3150   // The exit count might have the type of i64 while the phi is i32. This can
3151   // happen if we have an induction variable that is sign extended before the
3152   // compare. The only way that we get a backedge taken count is that the
3153   // induction variable was signed and as such will not overflow. In such a case
3154   // truncation is legal.
3155   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3156       IdxTy->getPrimitiveSizeInBits())
3157     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3158   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3159 
3160   // Get the total trip count from the count by adding 1.
3161   const SCEV *ExitCount = SE->getAddExpr(
3162       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3163 
3164   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3165 
3166   // Expand the trip count and place the new instructions in the preheader.
3167   // Notice that the pre-header does not change, only the loop body.
3168   SCEVExpander Exp(*SE, DL, "induction");
3169 
3170   // Count holds the overall loop count (N).
3171   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3172                                 L->getLoopPreheader()->getTerminator());
3173 
3174   if (TripCount->getType()->isPointerTy())
3175     TripCount =
3176         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3177                                     L->getLoopPreheader()->getTerminator());
3178 
3179   return TripCount;
3180 }
3181 
3182 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3183   if (VectorTripCount)
3184     return VectorTripCount;
3185 
3186   Value *TC = getOrCreateTripCount(L);
3187   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3188 
3189   Type *Ty = TC->getType();
3190   // This is where we can make the step a runtime constant.
3191   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3192 
3193   // If the tail is to be folded by masking, round the number of iterations N
3194   // up to a multiple of Step instead of rounding down. This is done by first
3195   // adding Step-1 and then rounding down. Note that it's ok if this addition
3196   // overflows: the vector induction variable will eventually wrap to zero given
3197   // that it starts at zero and its Step is a power of two; the loop will then
3198   // exit, with the last early-exit vector comparison also producing all-true.
3199   if (Cost->foldTailByMasking()) {
3200     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3201            "VF*UF must be a power of 2 when folding tail by masking");
3202     assert(!VF.isScalable() &&
3203            "Tail folding not yet supported for scalable vectors");
3204     TC = Builder.CreateAdd(
3205         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3206   }
3207 
3208   // Now we need to generate the expression for the part of the loop that the
3209   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3210   // iterations are not required for correctness, or N - Step, otherwise. Step
3211   // is equal to the vectorization factor (number of SIMD elements) times the
3212   // unroll factor (number of SIMD instructions).
3213   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3214 
3215   // There are cases where we *must* run at least one iteration in the remainder
3216   // loop.  See the cost model for when this can happen.  If the step evenly
3217   // divides the trip count, we set the remainder to be equal to the step. If
3218   // the step does not evenly divide the trip count, no adjustment is necessary
3219   // since there will already be scalar iterations. Note that the minimum
3220   // iterations check ensures that N >= Step.
3221   if (Cost->requiresScalarEpilogue(VF)) {
3222     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3223     R = Builder.CreateSelect(IsZero, Step, R);
3224   }
3225 
3226   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3227 
3228   return VectorTripCount;
3229 }
3230 
3231 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3232                                                    const DataLayout &DL) {
3233   // Verify that V is a vector type with same number of elements as DstVTy.
3234   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3235   unsigned VF = DstFVTy->getNumElements();
3236   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3237   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3238   Type *SrcElemTy = SrcVecTy->getElementType();
3239   Type *DstElemTy = DstFVTy->getElementType();
3240   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3241          "Vector elements must have same size");
3242 
3243   // Do a direct cast if element types are castable.
3244   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3245     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3246   }
3247   // V cannot be directly casted to desired vector type.
3248   // May happen when V is a floating point vector but DstVTy is a vector of
3249   // pointers or vice-versa. Handle this using a two-step bitcast using an
3250   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3251   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3252          "Only one type should be a pointer type");
3253   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3254          "Only one type should be a floating point type");
3255   Type *IntTy =
3256       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3257   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3258   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3259   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3260 }
3261 
3262 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3263                                                          BasicBlock *Bypass) {
3264   Value *Count = getOrCreateTripCount(L);
3265   // Reuse existing vector loop preheader for TC checks.
3266   // Note that new preheader block is generated for vector loop.
3267   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3268   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3269 
3270   // Generate code to check if the loop's trip count is less than VF * UF, or
3271   // equal to it in case a scalar epilogue is required; this implies that the
3272   // vector trip count is zero. This check also covers the case where adding one
3273   // to the backedge-taken count overflowed leading to an incorrect trip count
3274   // of zero. In this case we will also jump to the scalar loop.
3275   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3276                                             : ICmpInst::ICMP_ULT;
3277 
3278   // If tail is to be folded, vector loop takes care of all iterations.
3279   Value *CheckMinIters = Builder.getFalse();
3280   if (!Cost->foldTailByMasking()) {
3281     Value *Step =
3282         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3283     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3284   }
3285   // Create new preheader for vector loop.
3286   LoopVectorPreHeader =
3287       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3288                  "vector.ph");
3289 
3290   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3291                                DT->getNode(Bypass)->getIDom()) &&
3292          "TC check is expected to dominate Bypass");
3293 
3294   // Update dominator for Bypass & LoopExit (if needed).
3295   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3296   if (!Cost->requiresScalarEpilogue(VF))
3297     // If there is an epilogue which must run, there's no edge from the
3298     // middle block to exit blocks  and thus no need to update the immediate
3299     // dominator of the exit blocks.
3300     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3301 
3302   ReplaceInstWithInst(
3303       TCCheckBlock->getTerminator(),
3304       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3305   LoopBypassBlocks.push_back(TCCheckBlock);
3306 }
3307 
3308 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3309 
3310   BasicBlock *const SCEVCheckBlock =
3311       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3312   if (!SCEVCheckBlock)
3313     return nullptr;
3314 
3315   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3316            (OptForSizeBasedOnProfile &&
3317             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3318          "Cannot SCEV check stride or overflow when optimizing for size");
3319 
3320 
3321   // Update dominator only if this is first RT check.
3322   if (LoopBypassBlocks.empty()) {
3323     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3324     if (!Cost->requiresScalarEpilogue(VF))
3325       // If there is an epilogue which must run, there's no edge from the
3326       // middle block to exit blocks  and thus no need to update the immediate
3327       // dominator of the exit blocks.
3328       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3329   }
3330 
3331   LoopBypassBlocks.push_back(SCEVCheckBlock);
3332   AddedSafetyChecks = true;
3333   return SCEVCheckBlock;
3334 }
3335 
3336 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3337                                                       BasicBlock *Bypass) {
3338   // VPlan-native path does not do any analysis for runtime checks currently.
3339   if (EnableVPlanNativePath)
3340     return nullptr;
3341 
3342   BasicBlock *const MemCheckBlock =
3343       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3344 
3345   // Check if we generated code that checks in runtime if arrays overlap. We put
3346   // the checks into a separate block to make the more common case of few
3347   // elements faster.
3348   if (!MemCheckBlock)
3349     return nullptr;
3350 
3351   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3352     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3353            "Cannot emit memory checks when optimizing for size, unless forced "
3354            "to vectorize.");
3355     ORE->emit([&]() {
3356       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3357                                         L->getStartLoc(), L->getHeader())
3358              << "Code-size may be reduced by not forcing "
3359                 "vectorization, or by source-code modifications "
3360                 "eliminating the need for runtime checks "
3361                 "(e.g., adding 'restrict').";
3362     });
3363   }
3364 
3365   LoopBypassBlocks.push_back(MemCheckBlock);
3366 
3367   AddedSafetyChecks = true;
3368 
3369   // We currently don't use LoopVersioning for the actual loop cloning but we
3370   // still use it to add the noalias metadata.
3371   LVer = std::make_unique<LoopVersioning>(
3372       *Legal->getLAI(),
3373       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3374       DT, PSE.getSE());
3375   LVer->prepareNoAliasMetadata();
3376   return MemCheckBlock;
3377 }
3378 
3379 Value *InnerLoopVectorizer::emitTransformedIndex(
3380     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3381     const InductionDescriptor &ID) const {
3382 
3383   SCEVExpander Exp(*SE, DL, "induction");
3384   auto Step = ID.getStep();
3385   auto StartValue = ID.getStartValue();
3386   assert(Index->getType()->getScalarType() == Step->getType() &&
3387          "Index scalar type does not match StepValue type");
3388 
3389   // Note: the IR at this point is broken. We cannot use SE to create any new
3390   // SCEV and then expand it, hoping that SCEV's simplification will give us
3391   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3392   // lead to various SCEV crashes. So all we can do is to use builder and rely
3393   // on InstCombine for future simplifications. Here we handle some trivial
3394   // cases only.
3395   auto CreateAdd = [&B](Value *X, Value *Y) {
3396     assert(X->getType() == Y->getType() && "Types don't match!");
3397     if (auto *CX = dyn_cast<ConstantInt>(X))
3398       if (CX->isZero())
3399         return Y;
3400     if (auto *CY = dyn_cast<ConstantInt>(Y))
3401       if (CY->isZero())
3402         return X;
3403     return B.CreateAdd(X, Y);
3404   };
3405 
3406   // We allow X to be a vector type, in which case Y will potentially be
3407   // splatted into a vector with the same element count.
3408   auto CreateMul = [&B](Value *X, Value *Y) {
3409     assert(X->getType()->getScalarType() == Y->getType() &&
3410            "Types don't match!");
3411     if (auto *CX = dyn_cast<ConstantInt>(X))
3412       if (CX->isOne())
3413         return Y;
3414     if (auto *CY = dyn_cast<ConstantInt>(Y))
3415       if (CY->isOne())
3416         return X;
3417     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3418     if (XVTy && !isa<VectorType>(Y->getType()))
3419       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3420     return B.CreateMul(X, Y);
3421   };
3422 
3423   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3424   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3425   // the DomTree is not kept up-to-date for additional blocks generated in the
3426   // vector loop. By using the header as insertion point, we guarantee that the
3427   // expanded instructions dominate all their uses.
3428   auto GetInsertPoint = [this, &B]() {
3429     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3430     if (InsertBB != LoopVectorBody &&
3431         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3432       return LoopVectorBody->getTerminator();
3433     return &*B.GetInsertPoint();
3434   };
3435 
3436   switch (ID.getKind()) {
3437   case InductionDescriptor::IK_IntInduction: {
3438     assert(!isa<VectorType>(Index->getType()) &&
3439            "Vector indices not supported for integer inductions yet");
3440     assert(Index->getType() == StartValue->getType() &&
3441            "Index type does not match StartValue type");
3442     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3443       return B.CreateSub(StartValue, Index);
3444     auto *Offset = CreateMul(
3445         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3446     return CreateAdd(StartValue, Offset);
3447   }
3448   case InductionDescriptor::IK_PtrInduction: {
3449     assert(isa<SCEVConstant>(Step) &&
3450            "Expected constant step for pointer induction");
3451     return B.CreateGEP(
3452         ID.getElementType(), StartValue,
3453         CreateMul(Index,
3454                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3455                                     GetInsertPoint())));
3456   }
3457   case InductionDescriptor::IK_FpInduction: {
3458     assert(!isa<VectorType>(Index->getType()) &&
3459            "Vector indices not supported for FP inductions yet");
3460     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3461     auto InductionBinOp = ID.getInductionBinOp();
3462     assert(InductionBinOp &&
3463            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3464             InductionBinOp->getOpcode() == Instruction::FSub) &&
3465            "Original bin op should be defined for FP induction");
3466 
3467     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3468     Value *MulExp = B.CreateFMul(StepValue, Index);
3469     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3470                          "induction");
3471   }
3472   case InductionDescriptor::IK_NoInduction:
3473     return nullptr;
3474   }
3475   llvm_unreachable("invalid enum");
3476 }
3477 
3478 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3479   LoopScalarBody = OrigLoop->getHeader();
3480   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3481   assert(LoopVectorPreHeader && "Invalid loop structure");
3482   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3483   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3484          "multiple exit loop without required epilogue?");
3485 
3486   LoopMiddleBlock =
3487       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3488                  LI, nullptr, Twine(Prefix) + "middle.block");
3489   LoopScalarPreHeader =
3490       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3491                  nullptr, Twine(Prefix) + "scalar.ph");
3492 
3493   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3494 
3495   // Set up the middle block terminator.  Two cases:
3496   // 1) If we know that we must execute the scalar epilogue, emit an
3497   //    unconditional branch.
3498   // 2) Otherwise, we must have a single unique exit block (due to how we
3499   //    implement the multiple exit case).  In this case, set up a conditonal
3500   //    branch from the middle block to the loop scalar preheader, and the
3501   //    exit block.  completeLoopSkeleton will update the condition to use an
3502   //    iteration check, if required to decide whether to execute the remainder.
3503   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3504     BranchInst::Create(LoopScalarPreHeader) :
3505     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3506                        Builder.getTrue());
3507   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3508   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3509 
3510   // We intentionally don't let SplitBlock to update LoopInfo since
3511   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3512   // LoopVectorBody is explicitly added to the correct place few lines later.
3513   LoopVectorBody =
3514       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3515                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3516 
3517   // Update dominator for loop exit.
3518   if (!Cost->requiresScalarEpilogue(VF))
3519     // If there is an epilogue which must run, there's no edge from the
3520     // middle block to exit blocks  and thus no need to update the immediate
3521     // dominator of the exit blocks.
3522     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3523 
3524   // Create and register the new vector loop.
3525   Loop *Lp = LI->AllocateLoop();
3526   Loop *ParentLoop = OrigLoop->getParentLoop();
3527 
3528   // Insert the new loop into the loop nest and register the new basic blocks
3529   // before calling any utilities such as SCEV that require valid LoopInfo.
3530   if (ParentLoop) {
3531     ParentLoop->addChildLoop(Lp);
3532   } else {
3533     LI->addTopLevelLoop(Lp);
3534   }
3535   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3536   return Lp;
3537 }
3538 
3539 void InnerLoopVectorizer::createInductionResumeValues(
3540     Loop *L, Value *VectorTripCount,
3541     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3542   assert(VectorTripCount && L && "Expected valid arguments");
3543   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3544           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3545          "Inconsistent information about additional bypass.");
3546   // We are going to resume the execution of the scalar loop.
3547   // Go over all of the induction variables that we found and fix the
3548   // PHIs that are left in the scalar version of the loop.
3549   // The starting values of PHI nodes depend on the counter of the last
3550   // iteration in the vectorized loop.
3551   // If we come from a bypass edge then we need to start from the original
3552   // start value.
3553   for (auto &InductionEntry : Legal->getInductionVars()) {
3554     PHINode *OrigPhi = InductionEntry.first;
3555     InductionDescriptor II = InductionEntry.second;
3556 
3557     // Create phi nodes to merge from the  backedge-taken check block.
3558     PHINode *BCResumeVal =
3559         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3560                         LoopScalarPreHeader->getTerminator());
3561     // Copy original phi DL over to the new one.
3562     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3563     Value *&EndValue = IVEndValues[OrigPhi];
3564     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3565     if (OrigPhi == OldInduction) {
3566       // We know what the end value is.
3567       EndValue = VectorTripCount;
3568     } else {
3569       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3570 
3571       // Fast-math-flags propagate from the original induction instruction.
3572       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3573         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3574 
3575       Type *StepType = II.getStep()->getType();
3576       Instruction::CastOps CastOp =
3577           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3578       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3579       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3580       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3581       EndValue->setName("ind.end");
3582 
3583       // Compute the end value for the additional bypass (if applicable).
3584       if (AdditionalBypass.first) {
3585         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3586         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3587                                          StepType, true);
3588         CRD =
3589             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3590         EndValueFromAdditionalBypass =
3591             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3592         EndValueFromAdditionalBypass->setName("ind.end");
3593       }
3594     }
3595     // The new PHI merges the original incoming value, in case of a bypass,
3596     // or the value at the end of the vectorized loop.
3597     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3598 
3599     // Fix the scalar body counter (PHI node).
3600     // The old induction's phi node in the scalar body needs the truncated
3601     // value.
3602     for (BasicBlock *BB : LoopBypassBlocks)
3603       BCResumeVal->addIncoming(II.getStartValue(), BB);
3604 
3605     if (AdditionalBypass.first)
3606       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3607                                             EndValueFromAdditionalBypass);
3608 
3609     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3610   }
3611 }
3612 
3613 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3614                                                       MDNode *OrigLoopID) {
3615   assert(L && "Expected valid loop.");
3616 
3617   // The trip counts should be cached by now.
3618   Value *Count = getOrCreateTripCount(L);
3619   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3620 
3621   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3622 
3623   // Add a check in the middle block to see if we have completed
3624   // all of the iterations in the first vector loop.  Three cases:
3625   // 1) If we require a scalar epilogue, there is no conditional branch as
3626   //    we unconditionally branch to the scalar preheader.  Do nothing.
3627   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3628   //    Thus if tail is to be folded, we know we don't need to run the
3629   //    remainder and we can use the previous value for the condition (true).
3630   // 3) Otherwise, construct a runtime check.
3631   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3632     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3633                                         Count, VectorTripCount, "cmp.n",
3634                                         LoopMiddleBlock->getTerminator());
3635 
3636     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3637     // of the corresponding compare because they may have ended up with
3638     // different line numbers and we want to avoid awkward line stepping while
3639     // debugging. Eg. if the compare has got a line number inside the loop.
3640     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3641     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3642   }
3643 
3644   // Get ready to start creating new instructions into the vectorized body.
3645   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3646          "Inconsistent vector loop preheader");
3647   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3648 
3649   Optional<MDNode *> VectorizedLoopID =
3650       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3651                                       LLVMLoopVectorizeFollowupVectorized});
3652   if (VectorizedLoopID.hasValue()) {
3653     L->setLoopID(VectorizedLoopID.getValue());
3654 
3655     // Do not setAlreadyVectorized if loop attributes have been defined
3656     // explicitly.
3657     return LoopVectorPreHeader;
3658   }
3659 
3660   // Keep all loop hints from the original loop on the vector loop (we'll
3661   // replace the vectorizer-specific hints below).
3662   if (MDNode *LID = OrigLoop->getLoopID())
3663     L->setLoopID(LID);
3664 
3665   LoopVectorizeHints Hints(L, true, *ORE);
3666   Hints.setAlreadyVectorized();
3667 
3668 #ifdef EXPENSIVE_CHECKS
3669   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3670   LI->verify(*DT);
3671 #endif
3672 
3673   return LoopVectorPreHeader;
3674 }
3675 
3676 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3677   /*
3678    In this function we generate a new loop. The new loop will contain
3679    the vectorized instructions while the old loop will continue to run the
3680    scalar remainder.
3681 
3682        [ ] <-- loop iteration number check.
3683     /   |
3684    /    v
3685   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3686   |  /  |
3687   | /   v
3688   ||   [ ]     <-- vector pre header.
3689   |/    |
3690   |     v
3691   |    [  ] \
3692   |    [  ]_|   <-- vector loop.
3693   |     |
3694   |     v
3695   \   -[ ]   <--- middle-block.
3696    \/   |
3697    /\   v
3698    | ->[ ]     <--- new preheader.
3699    |    |
3700  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3701    |   [ ] \
3702    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3703     \   |
3704      \  v
3705       >[ ]     <-- exit block(s).
3706    ...
3707    */
3708 
3709   // Get the metadata of the original loop before it gets modified.
3710   MDNode *OrigLoopID = OrigLoop->getLoopID();
3711 
3712   // Workaround!  Compute the trip count of the original loop and cache it
3713   // before we start modifying the CFG.  This code has a systemic problem
3714   // wherein it tries to run analysis over partially constructed IR; this is
3715   // wrong, and not simply for SCEV.  The trip count of the original loop
3716   // simply happens to be prone to hitting this in practice.  In theory, we
3717   // can hit the same issue for any SCEV, or ValueTracking query done during
3718   // mutation.  See PR49900.
3719   getOrCreateTripCount(OrigLoop);
3720 
3721   // Create an empty vector loop, and prepare basic blocks for the runtime
3722   // checks.
3723   Loop *Lp = createVectorLoopSkeleton("");
3724 
3725   // Now, compare the new count to zero. If it is zero skip the vector loop and
3726   // jump to the scalar loop. This check also covers the case where the
3727   // backedge-taken count is uint##_max: adding one to it will overflow leading
3728   // to an incorrect trip count of zero. In this (rare) case we will also jump
3729   // to the scalar loop.
3730   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3731 
3732   // Generate the code to check any assumptions that we've made for SCEV
3733   // expressions.
3734   emitSCEVChecks(Lp, LoopScalarPreHeader);
3735 
3736   // Generate the code that checks in runtime if arrays overlap. We put the
3737   // checks into a separate block to make the more common case of few elements
3738   // faster.
3739   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3740 
3741   // Some loops have a single integer induction variable, while other loops
3742   // don't. One example is c++ iterators that often have multiple pointer
3743   // induction variables. In the code below we also support a case where we
3744   // don't have a single induction variable.
3745   //
3746   // We try to obtain an induction variable from the original loop as hard
3747   // as possible. However if we don't find one that:
3748   //   - is an integer
3749   //   - counts from zero, stepping by one
3750   //   - is the size of the widest induction variable type
3751   // then we create a new one.
3752   OldInduction = Legal->getPrimaryInduction();
3753   Type *IdxTy = Legal->getWidestInductionType();
3754   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3755   // The loop step is equal to the vectorization factor (num of SIMD elements)
3756   // times the unroll factor (num of SIMD instructions).
3757   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3758   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3759   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3760   Induction =
3761       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3762                               getDebugLocFromInstOrOperands(OldInduction));
3763 
3764   // Emit phis for the new starting index of the scalar loop.
3765   createInductionResumeValues(Lp, CountRoundDown);
3766 
3767   return completeLoopSkeleton(Lp, OrigLoopID);
3768 }
3769 
3770 // Fix up external users of the induction variable. At this point, we are
3771 // in LCSSA form, with all external PHIs that use the IV having one input value,
3772 // coming from the remainder loop. We need those PHIs to also have a correct
3773 // value for the IV when arriving directly from the middle block.
3774 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3775                                        const InductionDescriptor &II,
3776                                        Value *CountRoundDown, Value *EndValue,
3777                                        BasicBlock *MiddleBlock) {
3778   // There are two kinds of external IV usages - those that use the value
3779   // computed in the last iteration (the PHI) and those that use the penultimate
3780   // value (the value that feeds into the phi from the loop latch).
3781   // We allow both, but they, obviously, have different values.
3782 
3783   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3784 
3785   DenseMap<Value *, Value *> MissingVals;
3786 
3787   // An external user of the last iteration's value should see the value that
3788   // the remainder loop uses to initialize its own IV.
3789   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3790   for (User *U : PostInc->users()) {
3791     Instruction *UI = cast<Instruction>(U);
3792     if (!OrigLoop->contains(UI)) {
3793       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3794       MissingVals[UI] = EndValue;
3795     }
3796   }
3797 
3798   // An external user of the penultimate value need to see EndValue - Step.
3799   // The simplest way to get this is to recompute it from the constituent SCEVs,
3800   // that is Start + (Step * (CRD - 1)).
3801   for (User *U : OrigPhi->users()) {
3802     auto *UI = cast<Instruction>(U);
3803     if (!OrigLoop->contains(UI)) {
3804       const DataLayout &DL =
3805           OrigLoop->getHeader()->getModule()->getDataLayout();
3806       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3807 
3808       IRBuilder<> B(MiddleBlock->getTerminator());
3809 
3810       // Fast-math-flags propagate from the original induction instruction.
3811       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3812         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3813 
3814       Value *CountMinusOne = B.CreateSub(
3815           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3816       Value *CMO =
3817           !II.getStep()->getType()->isIntegerTy()
3818               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3819                              II.getStep()->getType())
3820               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3821       CMO->setName("cast.cmo");
3822       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3823       Escape->setName("ind.escape");
3824       MissingVals[UI] = Escape;
3825     }
3826   }
3827 
3828   for (auto &I : MissingVals) {
3829     PHINode *PHI = cast<PHINode>(I.first);
3830     // One corner case we have to handle is two IVs "chasing" each-other,
3831     // that is %IV2 = phi [...], [ %IV1, %latch ]
3832     // In this case, if IV1 has an external use, we need to avoid adding both
3833     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3834     // don't already have an incoming value for the middle block.
3835     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3836       PHI->addIncoming(I.second, MiddleBlock);
3837   }
3838 }
3839 
3840 namespace {
3841 
3842 struct CSEDenseMapInfo {
3843   static bool canHandle(const Instruction *I) {
3844     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3845            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3846   }
3847 
3848   static inline Instruction *getEmptyKey() {
3849     return DenseMapInfo<Instruction *>::getEmptyKey();
3850   }
3851 
3852   static inline Instruction *getTombstoneKey() {
3853     return DenseMapInfo<Instruction *>::getTombstoneKey();
3854   }
3855 
3856   static unsigned getHashValue(const Instruction *I) {
3857     assert(canHandle(I) && "Unknown instruction!");
3858     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3859                                                            I->value_op_end()));
3860   }
3861 
3862   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3863     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3864         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3865       return LHS == RHS;
3866     return LHS->isIdenticalTo(RHS);
3867   }
3868 };
3869 
3870 } // end anonymous namespace
3871 
3872 ///Perform cse of induction variable instructions.
3873 static void cse(BasicBlock *BB) {
3874   // Perform simple cse.
3875   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3876   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3877     if (!CSEDenseMapInfo::canHandle(&In))
3878       continue;
3879 
3880     // Check if we can replace this instruction with any of the
3881     // visited instructions.
3882     if (Instruction *V = CSEMap.lookup(&In)) {
3883       In.replaceAllUsesWith(V);
3884       In.eraseFromParent();
3885       continue;
3886     }
3887 
3888     CSEMap[&In] = &In;
3889   }
3890 }
3891 
3892 InstructionCost
3893 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3894                                               bool &NeedToScalarize) const {
3895   Function *F = CI->getCalledFunction();
3896   Type *ScalarRetTy = CI->getType();
3897   SmallVector<Type *, 4> Tys, ScalarTys;
3898   for (auto &ArgOp : CI->args())
3899     ScalarTys.push_back(ArgOp->getType());
3900 
3901   // Estimate cost of scalarized vector call. The source operands are assumed
3902   // to be vectors, so we need to extract individual elements from there,
3903   // execute VF scalar calls, and then gather the result into the vector return
3904   // value.
3905   InstructionCost ScalarCallCost =
3906       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3907   if (VF.isScalar())
3908     return ScalarCallCost;
3909 
3910   // Compute corresponding vector type for return value and arguments.
3911   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3912   for (Type *ScalarTy : ScalarTys)
3913     Tys.push_back(ToVectorTy(ScalarTy, VF));
3914 
3915   // Compute costs of unpacking argument values for the scalar calls and
3916   // packing the return values to a vector.
3917   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3918 
3919   InstructionCost Cost =
3920       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3921 
3922   // If we can't emit a vector call for this function, then the currently found
3923   // cost is the cost we need to return.
3924   NeedToScalarize = true;
3925   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3926   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3927 
3928   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3929     return Cost;
3930 
3931   // If the corresponding vector cost is cheaper, return its cost.
3932   InstructionCost VectorCallCost =
3933       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3934   if (VectorCallCost < Cost) {
3935     NeedToScalarize = false;
3936     Cost = VectorCallCost;
3937   }
3938   return Cost;
3939 }
3940 
3941 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3942   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3943     return Elt;
3944   return VectorType::get(Elt, VF);
3945 }
3946 
3947 InstructionCost
3948 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3949                                                    ElementCount VF) const {
3950   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3951   assert(ID && "Expected intrinsic call!");
3952   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3953   FastMathFlags FMF;
3954   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3955     FMF = FPMO->getFastMathFlags();
3956 
3957   SmallVector<const Value *> Arguments(CI->args());
3958   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3959   SmallVector<Type *> ParamTys;
3960   std::transform(FTy->param_begin(), FTy->param_end(),
3961                  std::back_inserter(ParamTys),
3962                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3963 
3964   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3965                                     dyn_cast<IntrinsicInst>(CI));
3966   return TTI.getIntrinsicInstrCost(CostAttrs,
3967                                    TargetTransformInfo::TCK_RecipThroughput);
3968 }
3969 
3970 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3971   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3972   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3973   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3974 }
3975 
3976 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3977   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3978   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3979   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3980 }
3981 
3982 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3983   // For every instruction `I` in MinBWs, truncate the operands, create a
3984   // truncated version of `I` and reextend its result. InstCombine runs
3985   // later and will remove any ext/trunc pairs.
3986   SmallPtrSet<Value *, 4> Erased;
3987   for (const auto &KV : Cost->getMinimalBitwidths()) {
3988     // If the value wasn't vectorized, we must maintain the original scalar
3989     // type. The absence of the value from State indicates that it
3990     // wasn't vectorized.
3991     // FIXME: Should not rely on getVPValue at this point.
3992     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3993     if (!State.hasAnyVectorValue(Def))
3994       continue;
3995     for (unsigned Part = 0; Part < UF; ++Part) {
3996       Value *I = State.get(Def, Part);
3997       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3998         continue;
3999       Type *OriginalTy = I->getType();
4000       Type *ScalarTruncatedTy =
4001           IntegerType::get(OriginalTy->getContext(), KV.second);
4002       auto *TruncatedTy = VectorType::get(
4003           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4004       if (TruncatedTy == OriginalTy)
4005         continue;
4006 
4007       IRBuilder<> B(cast<Instruction>(I));
4008       auto ShrinkOperand = [&](Value *V) -> Value * {
4009         if (auto *ZI = dyn_cast<ZExtInst>(V))
4010           if (ZI->getSrcTy() == TruncatedTy)
4011             return ZI->getOperand(0);
4012         return B.CreateZExtOrTrunc(V, TruncatedTy);
4013       };
4014 
4015       // The actual instruction modification depends on the instruction type,
4016       // unfortunately.
4017       Value *NewI = nullptr;
4018       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4019         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4020                              ShrinkOperand(BO->getOperand(1)));
4021 
4022         // Any wrapping introduced by shrinking this operation shouldn't be
4023         // considered undefined behavior. So, we can't unconditionally copy
4024         // arithmetic wrapping flags to NewI.
4025         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4026       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4027         NewI =
4028             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4029                          ShrinkOperand(CI->getOperand(1)));
4030       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4031         NewI = B.CreateSelect(SI->getCondition(),
4032                               ShrinkOperand(SI->getTrueValue()),
4033                               ShrinkOperand(SI->getFalseValue()));
4034       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4035         switch (CI->getOpcode()) {
4036         default:
4037           llvm_unreachable("Unhandled cast!");
4038         case Instruction::Trunc:
4039           NewI = ShrinkOperand(CI->getOperand(0));
4040           break;
4041         case Instruction::SExt:
4042           NewI = B.CreateSExtOrTrunc(
4043               CI->getOperand(0),
4044               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4045           break;
4046         case Instruction::ZExt:
4047           NewI = B.CreateZExtOrTrunc(
4048               CI->getOperand(0),
4049               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4050           break;
4051         }
4052       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4053         auto Elements0 =
4054             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4055         auto *O0 = B.CreateZExtOrTrunc(
4056             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4057         auto Elements1 =
4058             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4059         auto *O1 = B.CreateZExtOrTrunc(
4060             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4061 
4062         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4063       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4064         // Don't do anything with the operands, just extend the result.
4065         continue;
4066       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4067         auto Elements =
4068             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4069         auto *O0 = B.CreateZExtOrTrunc(
4070             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4071         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4072         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4073       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4074         auto Elements =
4075             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4076         auto *O0 = B.CreateZExtOrTrunc(
4077             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4078         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4079       } else {
4080         // If we don't know what to do, be conservative and don't do anything.
4081         continue;
4082       }
4083 
4084       // Lastly, extend the result.
4085       NewI->takeName(cast<Instruction>(I));
4086       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4087       I->replaceAllUsesWith(Res);
4088       cast<Instruction>(I)->eraseFromParent();
4089       Erased.insert(I);
4090       State.reset(Def, Res, Part);
4091     }
4092   }
4093 
4094   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4095   for (const auto &KV : Cost->getMinimalBitwidths()) {
4096     // If the value wasn't vectorized, we must maintain the original scalar
4097     // type. The absence of the value from State indicates that it
4098     // wasn't vectorized.
4099     // FIXME: Should not rely on getVPValue at this point.
4100     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4101     if (!State.hasAnyVectorValue(Def))
4102       continue;
4103     for (unsigned Part = 0; Part < UF; ++Part) {
4104       Value *I = State.get(Def, Part);
4105       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4106       if (Inst && Inst->use_empty()) {
4107         Value *NewI = Inst->getOperand(0);
4108         Inst->eraseFromParent();
4109         State.reset(Def, NewI, Part);
4110       }
4111     }
4112   }
4113 }
4114 
4115 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4116   // Insert truncates and extends for any truncated instructions as hints to
4117   // InstCombine.
4118   if (VF.isVector())
4119     truncateToMinimalBitwidths(State);
4120 
4121   // Fix widened non-induction PHIs by setting up the PHI operands.
4122   if (OrigPHIsToFix.size()) {
4123     assert(EnableVPlanNativePath &&
4124            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4125     fixNonInductionPHIs(State);
4126   }
4127 
4128   // At this point every instruction in the original loop is widened to a
4129   // vector form. Now we need to fix the recurrences in the loop. These PHI
4130   // nodes are currently empty because we did not want to introduce cycles.
4131   // This is the second stage of vectorizing recurrences.
4132   fixCrossIterationPHIs(State);
4133 
4134   // Forget the original basic block.
4135   PSE.getSE()->forgetLoop(OrigLoop);
4136 
4137   // If we inserted an edge from the middle block to the unique exit block,
4138   // update uses outside the loop (phis) to account for the newly inserted
4139   // edge.
4140   if (!Cost->requiresScalarEpilogue(VF)) {
4141     // Fix-up external users of the induction variables.
4142     for (auto &Entry : Legal->getInductionVars())
4143       fixupIVUsers(Entry.first, Entry.second,
4144                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4145                    IVEndValues[Entry.first], LoopMiddleBlock);
4146 
4147     fixLCSSAPHIs(State);
4148   }
4149 
4150   for (Instruction *PI : PredicatedInstructions)
4151     sinkScalarOperands(&*PI);
4152 
4153   // Remove redundant induction instructions.
4154   cse(LoopVectorBody);
4155 
4156   // Set/update profile weights for the vector and remainder loops as original
4157   // loop iterations are now distributed among them. Note that original loop
4158   // represented by LoopScalarBody becomes remainder loop after vectorization.
4159   //
4160   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4161   // end up getting slightly roughened result but that should be OK since
4162   // profile is not inherently precise anyway. Note also possible bypass of
4163   // vector code caused by legality checks is ignored, assigning all the weight
4164   // to the vector loop, optimistically.
4165   //
4166   // For scalable vectorization we can't know at compile time how many iterations
4167   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4168   // vscale of '1'.
4169   setProfileInfoAfterUnrolling(
4170       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4171       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4172 }
4173 
4174 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4175   // In order to support recurrences we need to be able to vectorize Phi nodes.
4176   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4177   // stage #2: We now need to fix the recurrences by adding incoming edges to
4178   // the currently empty PHI nodes. At this point every instruction in the
4179   // original loop is widened to a vector form so we can use them to construct
4180   // the incoming edges.
4181   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4182   for (VPRecipeBase &R : Header->phis()) {
4183     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4184       fixReduction(ReductionPhi, State);
4185     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4186       fixFirstOrderRecurrence(FOR, State);
4187   }
4188 }
4189 
4190 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4191                                                   VPTransformState &State) {
4192   // This is the second phase of vectorizing first-order recurrences. An
4193   // overview of the transformation is described below. Suppose we have the
4194   // following loop.
4195   //
4196   //   for (int i = 0; i < n; ++i)
4197   //     b[i] = a[i] - a[i - 1];
4198   //
4199   // There is a first-order recurrence on "a". For this loop, the shorthand
4200   // scalar IR looks like:
4201   //
4202   //   scalar.ph:
4203   //     s_init = a[-1]
4204   //     br scalar.body
4205   //
4206   //   scalar.body:
4207   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4208   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4209   //     s2 = a[i]
4210   //     b[i] = s2 - s1
4211   //     br cond, scalar.body, ...
4212   //
4213   // In this example, s1 is a recurrence because it's value depends on the
4214   // previous iteration. In the first phase of vectorization, we created a
4215   // vector phi v1 for s1. We now complete the vectorization and produce the
4216   // shorthand vector IR shown below (for VF = 4, UF = 1).
4217   //
4218   //   vector.ph:
4219   //     v_init = vector(..., ..., ..., a[-1])
4220   //     br vector.body
4221   //
4222   //   vector.body
4223   //     i = phi [0, vector.ph], [i+4, vector.body]
4224   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4225   //     v2 = a[i, i+1, i+2, i+3];
4226   //     v3 = vector(v1(3), v2(0, 1, 2))
4227   //     b[i, i+1, i+2, i+3] = v2 - v3
4228   //     br cond, vector.body, middle.block
4229   //
4230   //   middle.block:
4231   //     x = v2(3)
4232   //     br scalar.ph
4233   //
4234   //   scalar.ph:
4235   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4236   //     br scalar.body
4237   //
4238   // After execution completes the vector loop, we extract the next value of
4239   // the recurrence (x) to use as the initial value in the scalar loop.
4240 
4241   // Extract the last vector element in the middle block. This will be the
4242   // initial value for the recurrence when jumping to the scalar loop.
4243   VPValue *PreviousDef = PhiR->getBackedgeValue();
4244   Value *Incoming = State.get(PreviousDef, UF - 1);
4245   auto *ExtractForScalar = Incoming;
4246   auto *IdxTy = Builder.getInt32Ty();
4247   if (VF.isVector()) {
4248     auto *One = ConstantInt::get(IdxTy, 1);
4249     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4250     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4251     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4252     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4253                                                     "vector.recur.extract");
4254   }
4255   // Extract the second last element in the middle block if the
4256   // Phi is used outside the loop. We need to extract the phi itself
4257   // and not the last element (the phi update in the current iteration). This
4258   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4259   // when the scalar loop is not run at all.
4260   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4261   if (VF.isVector()) {
4262     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4263     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4264     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4265         Incoming, Idx, "vector.recur.extract.for.phi");
4266   } else if (UF > 1)
4267     // When loop is unrolled without vectorizing, initialize
4268     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4269     // of `Incoming`. This is analogous to the vectorized case above: extracting
4270     // the second last element when VF > 1.
4271     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4272 
4273   // Fix the initial value of the original recurrence in the scalar loop.
4274   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4275   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4276   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4277   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4278   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4279     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4280     Start->addIncoming(Incoming, BB);
4281   }
4282 
4283   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4284   Phi->setName("scalar.recur");
4285 
4286   // Finally, fix users of the recurrence outside the loop. The users will need
4287   // either the last value of the scalar recurrence or the last value of the
4288   // vector recurrence we extracted in the middle block. Since the loop is in
4289   // LCSSA form, we just need to find all the phi nodes for the original scalar
4290   // recurrence in the exit block, and then add an edge for the middle block.
4291   // Note that LCSSA does not imply single entry when the original scalar loop
4292   // had multiple exiting edges (as we always run the last iteration in the
4293   // scalar epilogue); in that case, there is no edge from middle to exit and
4294   // and thus no phis which needed updated.
4295   if (!Cost->requiresScalarEpilogue(VF))
4296     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4297       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4298         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4299 }
4300 
4301 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4302                                        VPTransformState &State) {
4303   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4304   // Get it's reduction variable descriptor.
4305   assert(Legal->isReductionVariable(OrigPhi) &&
4306          "Unable to find the reduction variable");
4307   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4308 
4309   RecurKind RK = RdxDesc.getRecurrenceKind();
4310   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4311   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4312   setDebugLocFromInst(ReductionStartValue);
4313 
4314   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4315   // This is the vector-clone of the value that leaves the loop.
4316   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4317 
4318   // Wrap flags are in general invalid after vectorization, clear them.
4319   clearReductionWrapFlags(RdxDesc, State);
4320 
4321   // Before each round, move the insertion point right between
4322   // the PHIs and the values we are going to write.
4323   // This allows us to write both PHINodes and the extractelement
4324   // instructions.
4325   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4326 
4327   setDebugLocFromInst(LoopExitInst);
4328 
4329   Type *PhiTy = OrigPhi->getType();
4330   // If tail is folded by masking, the vector value to leave the loop should be
4331   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4332   // instead of the former. For an inloop reduction the reduction will already
4333   // be predicated, and does not need to be handled here.
4334   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4335     for (unsigned Part = 0; Part < UF; ++Part) {
4336       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4337       Value *Sel = nullptr;
4338       for (User *U : VecLoopExitInst->users()) {
4339         if (isa<SelectInst>(U)) {
4340           assert(!Sel && "Reduction exit feeding two selects");
4341           Sel = U;
4342         } else
4343           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4344       }
4345       assert(Sel && "Reduction exit feeds no select");
4346       State.reset(LoopExitInstDef, Sel, Part);
4347 
4348       // If the target can create a predicated operator for the reduction at no
4349       // extra cost in the loop (for example a predicated vadd), it can be
4350       // cheaper for the select to remain in the loop than be sunk out of it,
4351       // and so use the select value for the phi instead of the old
4352       // LoopExitValue.
4353       if (PreferPredicatedReductionSelect ||
4354           TTI->preferPredicatedReductionSelect(
4355               RdxDesc.getOpcode(), PhiTy,
4356               TargetTransformInfo::ReductionFlags())) {
4357         auto *VecRdxPhi =
4358             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4359         VecRdxPhi->setIncomingValueForBlock(
4360             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4361       }
4362     }
4363   }
4364 
4365   // If the vector reduction can be performed in a smaller type, we truncate
4366   // then extend the loop exit value to enable InstCombine to evaluate the
4367   // entire expression in the smaller type.
4368   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4369     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4370     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4371     Builder.SetInsertPoint(
4372         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4373     VectorParts RdxParts(UF);
4374     for (unsigned Part = 0; Part < UF; ++Part) {
4375       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4376       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4377       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4378                                         : Builder.CreateZExt(Trunc, VecTy);
4379       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4380            UI != RdxParts[Part]->user_end();)
4381         if (*UI != Trunc) {
4382           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4383           RdxParts[Part] = Extnd;
4384         } else {
4385           ++UI;
4386         }
4387     }
4388     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4389     for (unsigned Part = 0; Part < UF; ++Part) {
4390       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4391       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4392     }
4393   }
4394 
4395   // Reduce all of the unrolled parts into a single vector.
4396   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4397   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4398 
4399   // The middle block terminator has already been assigned a DebugLoc here (the
4400   // OrigLoop's single latch terminator). We want the whole middle block to
4401   // appear to execute on this line because: (a) it is all compiler generated,
4402   // (b) these instructions are always executed after evaluating the latch
4403   // conditional branch, and (c) other passes may add new predecessors which
4404   // terminate on this line. This is the easiest way to ensure we don't
4405   // accidentally cause an extra step back into the loop while debugging.
4406   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4407   if (PhiR->isOrdered())
4408     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4409   else {
4410     // Floating-point operations should have some FMF to enable the reduction.
4411     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4412     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4413     for (unsigned Part = 1; Part < UF; ++Part) {
4414       Value *RdxPart = State.get(LoopExitInstDef, Part);
4415       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4416         ReducedPartRdx = Builder.CreateBinOp(
4417             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4418       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4419         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4420                                            ReducedPartRdx, RdxPart);
4421       else
4422         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4423     }
4424   }
4425 
4426   // Create the reduction after the loop. Note that inloop reductions create the
4427   // target reduction in the loop using a Reduction recipe.
4428   if (VF.isVector() && !PhiR->isInLoop()) {
4429     ReducedPartRdx =
4430         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4431     // If the reduction can be performed in a smaller type, we need to extend
4432     // the reduction to the wider type before we branch to the original loop.
4433     if (PhiTy != RdxDesc.getRecurrenceType())
4434       ReducedPartRdx = RdxDesc.isSigned()
4435                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4436                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4437   }
4438 
4439   // Create a phi node that merges control-flow from the backedge-taken check
4440   // block and the middle block.
4441   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4442                                         LoopScalarPreHeader->getTerminator());
4443   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4444     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4445   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4446 
4447   // Now, we need to fix the users of the reduction variable
4448   // inside and outside of the scalar remainder loop.
4449 
4450   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4451   // in the exit blocks.  See comment on analogous loop in
4452   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4453   if (!Cost->requiresScalarEpilogue(VF))
4454     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4455       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         // FIXME: Should not rely on getVPValue at this point.
4487         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4488         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4489       }
4490 
4491     for (User *U : Cur->users()) {
4492       Instruction *UI = cast<Instruction>(U);
4493       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4494           Visited.insert(UI).second)
4495         Worklist.push_back(UI);
4496     }
4497   }
4498 }
4499 
4500 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4501   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4502     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4503       // Some phis were already hand updated by the reduction and recurrence
4504       // code above, leave them alone.
4505       continue;
4506 
4507     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4508     // Non-instruction incoming values will have only one value.
4509 
4510     VPLane Lane = VPLane::getFirstLane();
4511     if (isa<Instruction>(IncomingValue) &&
4512         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4513                                            VF))
4514       Lane = VPLane::getLastLaneForVF(VF);
4515 
4516     // Can be a loop invariant incoming value or the last scalar value to be
4517     // extracted from the vectorized loop.
4518     // FIXME: Should not rely on getVPValue at this point.
4519     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4520     Value *lastIncomingValue =
4521         OrigLoop->isLoopInvariant(IncomingValue)
4522             ? IncomingValue
4523             : State.get(State.Plan->getVPValue(IncomingValue, true),
4524                         VPIteration(UF - 1, Lane));
4525     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4526   }
4527 }
4528 
4529 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4530   // The basic block and loop containing the predicated instruction.
4531   auto *PredBB = PredInst->getParent();
4532   auto *VectorLoop = LI->getLoopFor(PredBB);
4533 
4534   // Initialize a worklist with the operands of the predicated instruction.
4535   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4536 
4537   // Holds instructions that we need to analyze again. An instruction may be
4538   // reanalyzed if we don't yet know if we can sink it or not.
4539   SmallVector<Instruction *, 8> InstsToReanalyze;
4540 
4541   // Returns true if a given use occurs in the predicated block. Phi nodes use
4542   // their operands in their corresponding predecessor blocks.
4543   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4544     auto *I = cast<Instruction>(U.getUser());
4545     BasicBlock *BB = I->getParent();
4546     if (auto *Phi = dyn_cast<PHINode>(I))
4547       BB = Phi->getIncomingBlock(
4548           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4549     return BB == PredBB;
4550   };
4551 
4552   // Iteratively sink the scalarized operands of the predicated instruction
4553   // into the block we created for it. When an instruction is sunk, it's
4554   // operands are then added to the worklist. The algorithm ends after one pass
4555   // through the worklist doesn't sink a single instruction.
4556   bool Changed;
4557   do {
4558     // Add the instructions that need to be reanalyzed to the worklist, and
4559     // reset the changed indicator.
4560     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4561     InstsToReanalyze.clear();
4562     Changed = false;
4563 
4564     while (!Worklist.empty()) {
4565       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4566 
4567       // We can't sink an instruction if it is a phi node, is not in the loop,
4568       // or may have side effects.
4569       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4570           I->mayHaveSideEffects())
4571         continue;
4572 
4573       // If the instruction is already in PredBB, check if we can sink its
4574       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4575       // sinking the scalar instruction I, hence it appears in PredBB; but it
4576       // may have failed to sink I's operands (recursively), which we try
4577       // (again) here.
4578       if (I->getParent() == PredBB) {
4579         Worklist.insert(I->op_begin(), I->op_end());
4580         continue;
4581       }
4582 
4583       // It's legal to sink the instruction if all its uses occur in the
4584       // predicated block. Otherwise, there's nothing to do yet, and we may
4585       // need to reanalyze the instruction.
4586       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4587         InstsToReanalyze.push_back(I);
4588         continue;
4589       }
4590 
4591       // Move the instruction to the beginning of the predicated block, and add
4592       // it's operands to the worklist.
4593       I->moveBefore(&*PredBB->getFirstInsertionPt());
4594       Worklist.insert(I->op_begin(), I->op_end());
4595 
4596       // The sinking may have enabled other instructions to be sunk, so we will
4597       // need to iterate.
4598       Changed = true;
4599     }
4600   } while (Changed);
4601 }
4602 
4603 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4604   for (PHINode *OrigPhi : OrigPHIsToFix) {
4605     VPWidenPHIRecipe *VPPhi =
4606         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4607     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4608     // Make sure the builder has a valid insert point.
4609     Builder.SetInsertPoint(NewPhi);
4610     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4611       VPValue *Inc = VPPhi->getIncomingValue(i);
4612       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4613       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4614     }
4615   }
4616 }
4617 
4618 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4619   return Cost->useOrderedReductions(RdxDesc);
4620 }
4621 
4622 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4623                                    VPUser &Operands, unsigned UF,
4624                                    ElementCount VF, bool IsPtrLoopInvariant,
4625                                    SmallBitVector &IsIndexLoopInvariant,
4626                                    VPTransformState &State) {
4627   // Construct a vector GEP by widening the operands of the scalar GEP as
4628   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4629   // results in a vector of pointers when at least one operand of the GEP
4630   // is vector-typed. Thus, to keep the representation compact, we only use
4631   // vector-typed operands for loop-varying values.
4632 
4633   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4634     // If we are vectorizing, but the GEP has only loop-invariant operands,
4635     // the GEP we build (by only using vector-typed operands for
4636     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4637     // produce a vector of pointers, we need to either arbitrarily pick an
4638     // operand to broadcast, or broadcast a clone of the original GEP.
4639     // Here, we broadcast a clone of the original.
4640     //
4641     // TODO: If at some point we decide to scalarize instructions having
4642     //       loop-invariant operands, this special case will no longer be
4643     //       required. We would add the scalarization decision to
4644     //       collectLoopScalars() and teach getVectorValue() to broadcast
4645     //       the lane-zero scalar value.
4646     auto *Clone = Builder.Insert(GEP->clone());
4647     for (unsigned Part = 0; Part < UF; ++Part) {
4648       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4649       State.set(VPDef, EntryPart, Part);
4650       addMetadata(EntryPart, GEP);
4651     }
4652   } else {
4653     // If the GEP has at least one loop-varying operand, we are sure to
4654     // produce a vector of pointers. But if we are only unrolling, we want
4655     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4656     // produce with the code below will be scalar (if VF == 1) or vector
4657     // (otherwise). Note that for the unroll-only case, we still maintain
4658     // values in the vector mapping with initVector, as we do for other
4659     // instructions.
4660     for (unsigned Part = 0; Part < UF; ++Part) {
4661       // The pointer operand of the new GEP. If it's loop-invariant, we
4662       // won't broadcast it.
4663       auto *Ptr = IsPtrLoopInvariant
4664                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4665                       : State.get(Operands.getOperand(0), Part);
4666 
4667       // Collect all the indices for the new GEP. If any index is
4668       // loop-invariant, we won't broadcast it.
4669       SmallVector<Value *, 4> Indices;
4670       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4671         VPValue *Operand = Operands.getOperand(I);
4672         if (IsIndexLoopInvariant[I - 1])
4673           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4674         else
4675           Indices.push_back(State.get(Operand, Part));
4676       }
4677 
4678       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4679       // but it should be a vector, otherwise.
4680       auto *NewGEP =
4681           GEP->isInBounds()
4682               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4683                                           Indices)
4684               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4685       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4686              "NewGEP is not a pointer vector");
4687       State.set(VPDef, NewGEP, Part);
4688       addMetadata(NewGEP, GEP);
4689     }
4690   }
4691 }
4692 
4693 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4694                                               VPWidenPHIRecipe *PhiR,
4695                                               VPTransformState &State) {
4696   PHINode *P = cast<PHINode>(PN);
4697   if (EnableVPlanNativePath) {
4698     // Currently we enter here in the VPlan-native path for non-induction
4699     // PHIs where all control flow is uniform. We simply widen these PHIs.
4700     // Create a vector phi with no operands - the vector phi operands will be
4701     // set at the end of vector code generation.
4702     Type *VecTy = (State.VF.isScalar())
4703                       ? PN->getType()
4704                       : VectorType::get(PN->getType(), State.VF);
4705     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4706     State.set(PhiR, VecPhi, 0);
4707     OrigPHIsToFix.push_back(P);
4708 
4709     return;
4710   }
4711 
4712   assert(PN->getParent() == OrigLoop->getHeader() &&
4713          "Non-header phis should have been handled elsewhere");
4714 
4715   // In order to support recurrences we need to be able to vectorize Phi nodes.
4716   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4717   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4718   // this value when we vectorize all of the instructions that use the PHI.
4719 
4720   assert(!Legal->isReductionVariable(P) &&
4721          "reductions should be handled elsewhere");
4722 
4723   setDebugLocFromInst(P);
4724 
4725   // This PHINode must be an induction variable.
4726   // Make sure that we know about it.
4727   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4728 
4729   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4730   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4731 
4732   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4733   // which can be found from the original scalar operations.
4734   switch (II.getKind()) {
4735   case InductionDescriptor::IK_NoInduction:
4736     llvm_unreachable("Unknown induction");
4737   case InductionDescriptor::IK_IntInduction:
4738   case InductionDescriptor::IK_FpInduction:
4739     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4740   case InductionDescriptor::IK_PtrInduction: {
4741     // Handle the pointer induction variable case.
4742     assert(P->getType()->isPointerTy() && "Unexpected type.");
4743 
4744     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4745       // This is the normalized GEP that starts counting at zero.
4746       Value *PtrInd =
4747           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4748       // Determine the number of scalars we need to generate for each unroll
4749       // iteration. If the instruction is uniform, we only need to generate the
4750       // first lane. Otherwise, we generate all VF values.
4751       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4752       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4753 
4754       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4755       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4756       if (NeedsVectorIndex) {
4757         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4758         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4759         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4760       }
4761 
4762       for (unsigned Part = 0; Part < UF; ++Part) {
4763         Value *PartStart = createStepForVF(
4764             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4765 
4766         if (NeedsVectorIndex) {
4767           // Here we cache the whole vector, which means we can support the
4768           // extraction of any lane. However, in some cases the extractelement
4769           // instruction that is generated for scalar uses of this vector (e.g.
4770           // a load instruction) is not folded away. Therefore we still
4771           // calculate values for the first n lanes to avoid redundant moves
4772           // (when extracting the 0th element) and to produce scalar code (i.e.
4773           // additional add/gep instructions instead of expensive extractelement
4774           // instructions) when extracting higher-order elements.
4775           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4776           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4777           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4778           Value *SclrGep =
4779               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4780           SclrGep->setName("next.gep");
4781           State.set(PhiR, SclrGep, Part);
4782         }
4783 
4784         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4785           Value *Idx = Builder.CreateAdd(
4786               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4787           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4788           Value *SclrGep =
4789               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4790           SclrGep->setName("next.gep");
4791           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4792         }
4793       }
4794       return;
4795     }
4796     assert(isa<SCEVConstant>(II.getStep()) &&
4797            "Induction step not a SCEV constant!");
4798     Type *PhiType = II.getStep()->getType();
4799 
4800     // Build a pointer phi
4801     Value *ScalarStartValue = II.getStartValue();
4802     Type *ScStValueType = ScalarStartValue->getType();
4803     PHINode *NewPointerPhi =
4804         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4805     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4806 
4807     // A pointer induction, performed by using a gep
4808     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4809     Instruction *InductionLoc = LoopLatch->getTerminator();
4810     const SCEV *ScalarStep = II.getStep();
4811     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4812     Value *ScalarStepValue =
4813         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4814     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4815     Value *NumUnrolledElems =
4816         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4817     Value *InductionGEP = GetElementPtrInst::Create(
4818         II.getElementType(), NewPointerPhi,
4819         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4820         InductionLoc);
4821     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4822 
4823     // Create UF many actual address geps that use the pointer
4824     // phi as base and a vectorized version of the step value
4825     // (<step*0, ..., step*N>) as offset.
4826     for (unsigned Part = 0; Part < State.UF; ++Part) {
4827       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4828       Value *StartOffsetScalar =
4829           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4830       Value *StartOffset =
4831           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4832       // Create a vector of consecutive numbers from zero to VF.
4833       StartOffset =
4834           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4835 
4836       Value *GEP = Builder.CreateGEP(
4837           II.getElementType(), NewPointerPhi,
4838           Builder.CreateMul(
4839               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4840               "vector.gep"));
4841       State.set(PhiR, GEP, Part);
4842     }
4843   }
4844   }
4845 }
4846 
4847 /// A helper function for checking whether an integer division-related
4848 /// instruction may divide by zero (in which case it must be predicated if
4849 /// executed conditionally in the scalar code).
4850 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4851 /// Non-zero divisors that are non compile-time constants will not be
4852 /// converted into multiplication, so we will still end up scalarizing
4853 /// the division, but can do so w/o predication.
4854 static bool mayDivideByZero(Instruction &I) {
4855   assert((I.getOpcode() == Instruction::UDiv ||
4856           I.getOpcode() == Instruction::SDiv ||
4857           I.getOpcode() == Instruction::URem ||
4858           I.getOpcode() == Instruction::SRem) &&
4859          "Unexpected instruction");
4860   Value *Divisor = I.getOperand(1);
4861   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4862   return !CInt || CInt->isZero();
4863 }
4864 
4865 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4866                                            VPUser &User,
4867                                            VPTransformState &State) {
4868   switch (I.getOpcode()) {
4869   case Instruction::Call:
4870   case Instruction::Br:
4871   case Instruction::PHI:
4872   case Instruction::GetElementPtr:
4873   case Instruction::Select:
4874     llvm_unreachable("This instruction is handled by a different recipe.");
4875   case Instruction::UDiv:
4876   case Instruction::SDiv:
4877   case Instruction::SRem:
4878   case Instruction::URem:
4879   case Instruction::Add:
4880   case Instruction::FAdd:
4881   case Instruction::Sub:
4882   case Instruction::FSub:
4883   case Instruction::FNeg:
4884   case Instruction::Mul:
4885   case Instruction::FMul:
4886   case Instruction::FDiv:
4887   case Instruction::FRem:
4888   case Instruction::Shl:
4889   case Instruction::LShr:
4890   case Instruction::AShr:
4891   case Instruction::And:
4892   case Instruction::Or:
4893   case Instruction::Xor: {
4894     // Just widen unops and binops.
4895     setDebugLocFromInst(&I);
4896 
4897     for (unsigned Part = 0; Part < UF; ++Part) {
4898       SmallVector<Value *, 2> Ops;
4899       for (VPValue *VPOp : User.operands())
4900         Ops.push_back(State.get(VPOp, Part));
4901 
4902       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4903 
4904       if (auto *VecOp = dyn_cast<Instruction>(V))
4905         VecOp->copyIRFlags(&I);
4906 
4907       // Use this vector value for all users of the original instruction.
4908       State.set(Def, V, Part);
4909       addMetadata(V, &I);
4910     }
4911 
4912     break;
4913   }
4914   case Instruction::ICmp:
4915   case Instruction::FCmp: {
4916     // Widen compares. Generate vector compares.
4917     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4918     auto *Cmp = cast<CmpInst>(&I);
4919     setDebugLocFromInst(Cmp);
4920     for (unsigned Part = 0; Part < UF; ++Part) {
4921       Value *A = State.get(User.getOperand(0), Part);
4922       Value *B = State.get(User.getOperand(1), Part);
4923       Value *C = nullptr;
4924       if (FCmp) {
4925         // Propagate fast math flags.
4926         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4927         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4928         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4929       } else {
4930         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4931       }
4932       State.set(Def, C, Part);
4933       addMetadata(C, &I);
4934     }
4935 
4936     break;
4937   }
4938 
4939   case Instruction::ZExt:
4940   case Instruction::SExt:
4941   case Instruction::FPToUI:
4942   case Instruction::FPToSI:
4943   case Instruction::FPExt:
4944   case Instruction::PtrToInt:
4945   case Instruction::IntToPtr:
4946   case Instruction::SIToFP:
4947   case Instruction::UIToFP:
4948   case Instruction::Trunc:
4949   case Instruction::FPTrunc:
4950   case Instruction::BitCast: {
4951     auto *CI = cast<CastInst>(&I);
4952     setDebugLocFromInst(CI);
4953 
4954     /// Vectorize casts.
4955     Type *DestTy =
4956         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4957 
4958     for (unsigned Part = 0; Part < UF; ++Part) {
4959       Value *A = State.get(User.getOperand(0), Part);
4960       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4961       State.set(Def, Cast, Part);
4962       addMetadata(Cast, &I);
4963     }
4964     break;
4965   }
4966   default:
4967     // This instruction is not vectorized by simple widening.
4968     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4969     llvm_unreachable("Unhandled instruction!");
4970   } // end of switch.
4971 }
4972 
4973 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4974                                                VPUser &ArgOperands,
4975                                                VPTransformState &State) {
4976   assert(!isa<DbgInfoIntrinsic>(I) &&
4977          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4978   setDebugLocFromInst(&I);
4979 
4980   Module *M = I.getParent()->getParent()->getParent();
4981   auto *CI = cast<CallInst>(&I);
4982 
4983   SmallVector<Type *, 4> Tys;
4984   for (Value *ArgOperand : CI->args())
4985     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4986 
4987   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4988 
4989   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4990   // version of the instruction.
4991   // Is it beneficial to perform intrinsic call compared to lib call?
4992   bool NeedToScalarize = false;
4993   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4994   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4995   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4996   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4997          "Instruction should be scalarized elsewhere.");
4998   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4999          "Either the intrinsic cost or vector call cost must be valid");
5000 
5001   for (unsigned Part = 0; Part < UF; ++Part) {
5002     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5003     SmallVector<Value *, 4> Args;
5004     for (auto &I : enumerate(ArgOperands.operands())) {
5005       // Some intrinsics have a scalar argument - don't replace it with a
5006       // vector.
5007       Value *Arg;
5008       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5009         Arg = State.get(I.value(), Part);
5010       else {
5011         Arg = State.get(I.value(), VPIteration(0, 0));
5012         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5013           TysForDecl.push_back(Arg->getType());
5014       }
5015       Args.push_back(Arg);
5016     }
5017 
5018     Function *VectorF;
5019     if (UseVectorIntrinsic) {
5020       // Use vector version of the intrinsic.
5021       if (VF.isVector())
5022         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5023       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5024       assert(VectorF && "Can't retrieve vector intrinsic.");
5025     } else {
5026       // Use vector version of the function call.
5027       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5028 #ifndef NDEBUG
5029       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5030              "Can't create vector function.");
5031 #endif
5032         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5033     }
5034       SmallVector<OperandBundleDef, 1> OpBundles;
5035       CI->getOperandBundlesAsDefs(OpBundles);
5036       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5037 
5038       if (isa<FPMathOperator>(V))
5039         V->copyFastMathFlags(CI);
5040 
5041       State.set(Def, V, Part);
5042       addMetadata(V, &I);
5043   }
5044 }
5045 
5046 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5047                                                  VPUser &Operands,
5048                                                  bool InvariantCond,
5049                                                  VPTransformState &State) {
5050   setDebugLocFromInst(&I);
5051 
5052   // The condition can be loop invariant  but still defined inside the
5053   // loop. This means that we can't just use the original 'cond' value.
5054   // We have to take the 'vectorized' value and pick the first lane.
5055   // Instcombine will make this a no-op.
5056   auto *InvarCond = InvariantCond
5057                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5058                         : nullptr;
5059 
5060   for (unsigned Part = 0; Part < UF; ++Part) {
5061     Value *Cond =
5062         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5063     Value *Op0 = State.get(Operands.getOperand(1), Part);
5064     Value *Op1 = State.get(Operands.getOperand(2), Part);
5065     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5066     State.set(VPDef, Sel, Part);
5067     addMetadata(Sel, &I);
5068   }
5069 }
5070 
5071 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5072   // We should not collect Scalars more than once per VF. Right now, this
5073   // function is called from collectUniformsAndScalars(), which already does
5074   // this check. Collecting Scalars for VF=1 does not make any sense.
5075   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5076          "This function should not be visited twice for the same VF");
5077 
5078   SmallSetVector<Instruction *, 8> Worklist;
5079 
5080   // These sets are used to seed the analysis with pointers used by memory
5081   // accesses that will remain scalar.
5082   SmallSetVector<Instruction *, 8> ScalarPtrs;
5083   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5084   auto *Latch = TheLoop->getLoopLatch();
5085 
5086   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5087   // The pointer operands of loads and stores will be scalar as long as the
5088   // memory access is not a gather or scatter operation. The value operand of a
5089   // store will remain scalar if the store is scalarized.
5090   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5091     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5092     assert(WideningDecision != CM_Unknown &&
5093            "Widening decision should be ready at this moment");
5094     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5095       if (Ptr == Store->getValueOperand())
5096         return WideningDecision == CM_Scalarize;
5097     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5098            "Ptr is neither a value or pointer operand");
5099     return WideningDecision != CM_GatherScatter;
5100   };
5101 
5102   // A helper that returns true if the given value is a bitcast or
5103   // getelementptr instruction contained in the loop.
5104   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5105     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5106             isa<GetElementPtrInst>(V)) &&
5107            !TheLoop->isLoopInvariant(V);
5108   };
5109 
5110   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5111     if (!isa<PHINode>(Ptr) ||
5112         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5113       return false;
5114     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5115     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5116       return false;
5117     return isScalarUse(MemAccess, Ptr);
5118   };
5119 
5120   // A helper that evaluates a memory access's use of a pointer. If the
5121   // pointer is actually the pointer induction of a loop, it is being
5122   // inserted into Worklist. If the use will be a scalar use, and the
5123   // pointer is only used by memory accesses, we place the pointer in
5124   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5125   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5126     if (isScalarPtrInduction(MemAccess, Ptr)) {
5127       Worklist.insert(cast<Instruction>(Ptr));
5128       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5129                         << "\n");
5130 
5131       Instruction *Update = cast<Instruction>(
5132           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5133 
5134       // If there is more than one user of Update (Ptr), we shouldn't assume it
5135       // will be scalar after vectorisation as other users of the instruction
5136       // may require widening. Otherwise, add it to ScalarPtrs.
5137       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5138         ScalarPtrs.insert(Update);
5139         return;
5140       }
5141     }
5142     // We only care about bitcast and getelementptr instructions contained in
5143     // the loop.
5144     if (!isLoopVaryingBitCastOrGEP(Ptr))
5145       return;
5146 
5147     // If the pointer has already been identified as scalar (e.g., if it was
5148     // also identified as uniform), there's nothing to do.
5149     auto *I = cast<Instruction>(Ptr);
5150     if (Worklist.count(I))
5151       return;
5152 
5153     // If the use of the pointer will be a scalar use, and all users of the
5154     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5155     // place the pointer in PossibleNonScalarPtrs.
5156     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5157           return isa<LoadInst>(U) || isa<StoreInst>(U);
5158         }))
5159       ScalarPtrs.insert(I);
5160     else
5161       PossibleNonScalarPtrs.insert(I);
5162   };
5163 
5164   // We seed the scalars analysis with three classes of instructions: (1)
5165   // instructions marked uniform-after-vectorization and (2) bitcast,
5166   // getelementptr and (pointer) phi instructions used by memory accesses
5167   // requiring a scalar use.
5168   //
5169   // (1) Add to the worklist all instructions that have been identified as
5170   // uniform-after-vectorization.
5171   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5172 
5173   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5174   // memory accesses requiring a scalar use. The pointer operands of loads and
5175   // stores will be scalar as long as the memory accesses is not a gather or
5176   // scatter operation. The value operand of a store will remain scalar if the
5177   // store is scalarized.
5178   for (auto *BB : TheLoop->blocks())
5179     for (auto &I : *BB) {
5180       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5181         evaluatePtrUse(Load, Load->getPointerOperand());
5182       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5183         evaluatePtrUse(Store, Store->getPointerOperand());
5184         evaluatePtrUse(Store, Store->getValueOperand());
5185       }
5186     }
5187   for (auto *I : ScalarPtrs)
5188     if (!PossibleNonScalarPtrs.count(I)) {
5189       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5190       Worklist.insert(I);
5191     }
5192 
5193   // Insert the forced scalars.
5194   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5195   // induction variable when the PHI user is scalarized.
5196   auto ForcedScalar = ForcedScalars.find(VF);
5197   if (ForcedScalar != ForcedScalars.end())
5198     for (auto *I : ForcedScalar->second)
5199       Worklist.insert(I);
5200 
5201   // Expand the worklist by looking through any bitcasts and getelementptr
5202   // instructions we've already identified as scalar. This is similar to the
5203   // expansion step in collectLoopUniforms(); however, here we're only
5204   // expanding to include additional bitcasts and getelementptr instructions.
5205   unsigned Idx = 0;
5206   while (Idx != Worklist.size()) {
5207     Instruction *Dst = Worklist[Idx++];
5208     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5209       continue;
5210     auto *Src = cast<Instruction>(Dst->getOperand(0));
5211     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5212           auto *J = cast<Instruction>(U);
5213           return !TheLoop->contains(J) || Worklist.count(J) ||
5214                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5215                   isScalarUse(J, Src));
5216         })) {
5217       Worklist.insert(Src);
5218       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5219     }
5220   }
5221 
5222   // An induction variable will remain scalar if all users of the induction
5223   // variable and induction variable update remain scalar.
5224   for (auto &Induction : Legal->getInductionVars()) {
5225     auto *Ind = Induction.first;
5226     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5227 
5228     // If tail-folding is applied, the primary induction variable will be used
5229     // to feed a vector compare.
5230     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5231       continue;
5232 
5233     // Determine if all users of the induction variable are scalar after
5234     // vectorization.
5235     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5236       auto *I = cast<Instruction>(U);
5237       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5238     });
5239     if (!ScalarInd)
5240       continue;
5241 
5242     // Determine if all users of the induction variable update instruction are
5243     // scalar after vectorization.
5244     auto ScalarIndUpdate =
5245         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5246           auto *I = cast<Instruction>(U);
5247           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5248         });
5249     if (!ScalarIndUpdate)
5250       continue;
5251 
5252     // The induction variable and its update instruction will remain scalar.
5253     Worklist.insert(Ind);
5254     Worklist.insert(IndUpdate);
5255     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5256     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5257                       << "\n");
5258   }
5259 
5260   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5261 }
5262 
5263 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5264   if (!blockNeedsPredication(I->getParent()))
5265     return false;
5266   switch(I->getOpcode()) {
5267   default:
5268     break;
5269   case Instruction::Load:
5270   case Instruction::Store: {
5271     if (!Legal->isMaskRequired(I))
5272       return false;
5273     auto *Ptr = getLoadStorePointerOperand(I);
5274     auto *Ty = getLoadStoreType(I);
5275     const Align Alignment = getLoadStoreAlignment(I);
5276     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5277                                 TTI.isLegalMaskedGather(Ty, Alignment))
5278                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5279                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5280   }
5281   case Instruction::UDiv:
5282   case Instruction::SDiv:
5283   case Instruction::SRem:
5284   case Instruction::URem:
5285     return mayDivideByZero(*I);
5286   }
5287   return false;
5288 }
5289 
5290 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5291     Instruction *I, ElementCount VF) {
5292   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5293   assert(getWideningDecision(I, VF) == CM_Unknown &&
5294          "Decision should not be set yet.");
5295   auto *Group = getInterleavedAccessGroup(I);
5296   assert(Group && "Must have a group.");
5297 
5298   // If the instruction's allocated size doesn't equal it's type size, it
5299   // requires padding and will be scalarized.
5300   auto &DL = I->getModule()->getDataLayout();
5301   auto *ScalarTy = getLoadStoreType(I);
5302   if (hasIrregularType(ScalarTy, DL))
5303     return false;
5304 
5305   // Check if masking is required.
5306   // A Group may need masking for one of two reasons: it resides in a block that
5307   // needs predication, or it was decided to use masking to deal with gaps
5308   // (either a gap at the end of a load-access that may result in a speculative
5309   // load, or any gaps in a store-access).
5310   bool PredicatedAccessRequiresMasking =
5311       blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5312   bool LoadAccessWithGapsRequiresEpilogMasking =
5313       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5314       !isScalarEpilogueAllowed();
5315   bool StoreAccessWithGapsRequiresMasking =
5316       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5317   if (!PredicatedAccessRequiresMasking &&
5318       !LoadAccessWithGapsRequiresEpilogMasking &&
5319       !StoreAccessWithGapsRequiresMasking)
5320     return true;
5321 
5322   // If masked interleaving is required, we expect that the user/target had
5323   // enabled it, because otherwise it either wouldn't have been created or
5324   // it should have been invalidated by the CostModel.
5325   assert(useMaskedInterleavedAccesses(TTI) &&
5326          "Masked interleave-groups for predicated accesses are not enabled.");
5327 
5328   if (Group->isReverse())
5329     return false;
5330 
5331   auto *Ty = getLoadStoreType(I);
5332   const Align Alignment = getLoadStoreAlignment(I);
5333   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5334                           : TTI.isLegalMaskedStore(Ty, Alignment);
5335 }
5336 
5337 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5338     Instruction *I, ElementCount VF) {
5339   // Get and ensure we have a valid memory instruction.
5340   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5341 
5342   auto *Ptr = getLoadStorePointerOperand(I);
5343   auto *ScalarTy = getLoadStoreType(I);
5344 
5345   // In order to be widened, the pointer should be consecutive, first of all.
5346   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5347     return false;
5348 
5349   // If the instruction is a store located in a predicated block, it will be
5350   // scalarized.
5351   if (isScalarWithPredication(I))
5352     return false;
5353 
5354   // If the instruction's allocated size doesn't equal it's type size, it
5355   // requires padding and will be scalarized.
5356   auto &DL = I->getModule()->getDataLayout();
5357   if (hasIrregularType(ScalarTy, DL))
5358     return false;
5359 
5360   return true;
5361 }
5362 
5363 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5364   // We should not collect Uniforms more than once per VF. Right now,
5365   // this function is called from collectUniformsAndScalars(), which
5366   // already does this check. Collecting Uniforms for VF=1 does not make any
5367   // sense.
5368 
5369   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5370          "This function should not be visited twice for the same VF");
5371 
5372   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5373   // not analyze again.  Uniforms.count(VF) will return 1.
5374   Uniforms[VF].clear();
5375 
5376   // We now know that the loop is vectorizable!
5377   // Collect instructions inside the loop that will remain uniform after
5378   // vectorization.
5379 
5380   // Global values, params and instructions outside of current loop are out of
5381   // scope.
5382   auto isOutOfScope = [&](Value *V) -> bool {
5383     Instruction *I = dyn_cast<Instruction>(V);
5384     return (!I || !TheLoop->contains(I));
5385   };
5386 
5387   SetVector<Instruction *> Worklist;
5388   BasicBlock *Latch = TheLoop->getLoopLatch();
5389 
5390   // Instructions that are scalar with predication must not be considered
5391   // uniform after vectorization, because that would create an erroneous
5392   // replicating region where only a single instance out of VF should be formed.
5393   // TODO: optimize such seldom cases if found important, see PR40816.
5394   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5395     if (isOutOfScope(I)) {
5396       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5397                         << *I << "\n");
5398       return;
5399     }
5400     if (isScalarWithPredication(I)) {
5401       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5402                         << *I << "\n");
5403       return;
5404     }
5405     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5406     Worklist.insert(I);
5407   };
5408 
5409   // Start with the conditional branch. If the branch condition is an
5410   // instruction contained in the loop that is only used by the branch, it is
5411   // uniform.
5412   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5413   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5414     addToWorklistIfAllowed(Cmp);
5415 
5416   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5417     InstWidening WideningDecision = getWideningDecision(I, VF);
5418     assert(WideningDecision != CM_Unknown &&
5419            "Widening decision should be ready at this moment");
5420 
5421     // A uniform memory op is itself uniform.  We exclude uniform stores
5422     // here as they demand the last lane, not the first one.
5423     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5424       assert(WideningDecision == CM_Scalarize);
5425       return true;
5426     }
5427 
5428     return (WideningDecision == CM_Widen ||
5429             WideningDecision == CM_Widen_Reverse ||
5430             WideningDecision == CM_Interleave);
5431   };
5432 
5433 
5434   // Returns true if Ptr is the pointer operand of a memory access instruction
5435   // I, and I is known to not require scalarization.
5436   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5437     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5438   };
5439 
5440   // Holds a list of values which are known to have at least one uniform use.
5441   // Note that there may be other uses which aren't uniform.  A "uniform use"
5442   // here is something which only demands lane 0 of the unrolled iterations;
5443   // it does not imply that all lanes produce the same value (e.g. this is not
5444   // the usual meaning of uniform)
5445   SetVector<Value *> HasUniformUse;
5446 
5447   // Scan the loop for instructions which are either a) known to have only
5448   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5449   for (auto *BB : TheLoop->blocks())
5450     for (auto &I : *BB) {
5451       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5452         switch (II->getIntrinsicID()) {
5453         case Intrinsic::sideeffect:
5454         case Intrinsic::experimental_noalias_scope_decl:
5455         case Intrinsic::assume:
5456         case Intrinsic::lifetime_start:
5457         case Intrinsic::lifetime_end:
5458           if (TheLoop->hasLoopInvariantOperands(&I))
5459             addToWorklistIfAllowed(&I);
5460           break;
5461         default:
5462           break;
5463         }
5464       }
5465 
5466       // ExtractValue instructions must be uniform, because the operands are
5467       // known to be loop-invariant.
5468       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5469         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5470                "Expected aggregate value to be loop invariant");
5471         addToWorklistIfAllowed(EVI);
5472         continue;
5473       }
5474 
5475       // If there's no pointer operand, there's nothing to do.
5476       auto *Ptr = getLoadStorePointerOperand(&I);
5477       if (!Ptr)
5478         continue;
5479 
5480       // A uniform memory op is itself uniform.  We exclude uniform stores
5481       // here as they demand the last lane, not the first one.
5482       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5483         addToWorklistIfAllowed(&I);
5484 
5485       if (isUniformDecision(&I, VF)) {
5486         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5487         HasUniformUse.insert(Ptr);
5488       }
5489     }
5490 
5491   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5492   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5493   // disallows uses outside the loop as well.
5494   for (auto *V : HasUniformUse) {
5495     if (isOutOfScope(V))
5496       continue;
5497     auto *I = cast<Instruction>(V);
5498     auto UsersAreMemAccesses =
5499       llvm::all_of(I->users(), [&](User *U) -> bool {
5500         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5501       });
5502     if (UsersAreMemAccesses)
5503       addToWorklistIfAllowed(I);
5504   }
5505 
5506   // Expand Worklist in topological order: whenever a new instruction
5507   // is added , its users should be already inside Worklist.  It ensures
5508   // a uniform instruction will only be used by uniform instructions.
5509   unsigned idx = 0;
5510   while (idx != Worklist.size()) {
5511     Instruction *I = Worklist[idx++];
5512 
5513     for (auto OV : I->operand_values()) {
5514       // isOutOfScope operands cannot be uniform instructions.
5515       if (isOutOfScope(OV))
5516         continue;
5517       // First order recurrence Phi's should typically be considered
5518       // non-uniform.
5519       auto *OP = dyn_cast<PHINode>(OV);
5520       if (OP && Legal->isFirstOrderRecurrence(OP))
5521         continue;
5522       // If all the users of the operand are uniform, then add the
5523       // operand into the uniform worklist.
5524       auto *OI = cast<Instruction>(OV);
5525       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5526             auto *J = cast<Instruction>(U);
5527             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5528           }))
5529         addToWorklistIfAllowed(OI);
5530     }
5531   }
5532 
5533   // For an instruction to be added into Worklist above, all its users inside
5534   // the loop should also be in Worklist. However, this condition cannot be
5535   // true for phi nodes that form a cyclic dependence. We must process phi
5536   // nodes separately. An induction variable will remain uniform if all users
5537   // of the induction variable and induction variable update remain uniform.
5538   // The code below handles both pointer and non-pointer induction variables.
5539   for (auto &Induction : Legal->getInductionVars()) {
5540     auto *Ind = Induction.first;
5541     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5542 
5543     // Determine if all users of the induction variable are uniform after
5544     // vectorization.
5545     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5546       auto *I = cast<Instruction>(U);
5547       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5548              isVectorizedMemAccessUse(I, Ind);
5549     });
5550     if (!UniformInd)
5551       continue;
5552 
5553     // Determine if all users of the induction variable update instruction are
5554     // uniform after vectorization.
5555     auto UniformIndUpdate =
5556         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5557           auto *I = cast<Instruction>(U);
5558           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5559                  isVectorizedMemAccessUse(I, IndUpdate);
5560         });
5561     if (!UniformIndUpdate)
5562       continue;
5563 
5564     // The induction variable and its update instruction will remain uniform.
5565     addToWorklistIfAllowed(Ind);
5566     addToWorklistIfAllowed(IndUpdate);
5567   }
5568 
5569   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5570 }
5571 
5572 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5573   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5574 
5575   if (Legal->getRuntimePointerChecking()->Need) {
5576     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5577         "runtime pointer checks needed. Enable vectorization of this "
5578         "loop with '#pragma clang loop vectorize(enable)' when "
5579         "compiling with -Os/-Oz",
5580         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5581     return true;
5582   }
5583 
5584   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5585     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5586         "runtime SCEV checks needed. Enable vectorization of this "
5587         "loop with '#pragma clang loop vectorize(enable)' when "
5588         "compiling with -Os/-Oz",
5589         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5590     return true;
5591   }
5592 
5593   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5594   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5595     reportVectorizationFailure("Runtime stride check for small trip count",
5596         "runtime stride == 1 checks needed. Enable vectorization of "
5597         "this loop without such check by compiling with -Os/-Oz",
5598         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5599     return true;
5600   }
5601 
5602   return false;
5603 }
5604 
5605 ElementCount
5606 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5607   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5608     return ElementCount::getScalable(0);
5609 
5610   if (Hints->isScalableVectorizationDisabled()) {
5611     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5612                             "ScalableVectorizationDisabled", ORE, TheLoop);
5613     return ElementCount::getScalable(0);
5614   }
5615 
5616   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5617 
5618   auto MaxScalableVF = ElementCount::getScalable(
5619       std::numeric_limits<ElementCount::ScalarTy>::max());
5620 
5621   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5622   // FIXME: While for scalable vectors this is currently sufficient, this should
5623   // be replaced by a more detailed mechanism that filters out specific VFs,
5624   // instead of invalidating vectorization for a whole set of VFs based on the
5625   // MaxVF.
5626 
5627   // Disable scalable vectorization if the loop contains unsupported reductions.
5628   if (!canVectorizeReductions(MaxScalableVF)) {
5629     reportVectorizationInfo(
5630         "Scalable vectorization not supported for the reduction "
5631         "operations found in this loop.",
5632         "ScalableVFUnfeasible", ORE, TheLoop);
5633     return ElementCount::getScalable(0);
5634   }
5635 
5636   // Disable scalable vectorization if the loop contains any instructions
5637   // with element types not supported for scalable vectors.
5638   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5639         return !Ty->isVoidTy() &&
5640                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5641       })) {
5642     reportVectorizationInfo("Scalable vectorization is not supported "
5643                             "for all element types found in this loop.",
5644                             "ScalableVFUnfeasible", ORE, TheLoop);
5645     return ElementCount::getScalable(0);
5646   }
5647 
5648   if (Legal->isSafeForAnyVectorWidth())
5649     return MaxScalableVF;
5650 
5651   // Limit MaxScalableVF by the maximum safe dependence distance.
5652   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5653   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5654     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5655                              .getVScaleRangeArgs()
5656                              .second;
5657     if (VScaleMax > 0)
5658       MaxVScale = VScaleMax;
5659   }
5660   MaxScalableVF = ElementCount::getScalable(
5661       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5662   if (!MaxScalableVF)
5663     reportVectorizationInfo(
5664         "Max legal vector width too small, scalable vectorization "
5665         "unfeasible.",
5666         "ScalableVFUnfeasible", ORE, TheLoop);
5667 
5668   return MaxScalableVF;
5669 }
5670 
5671 FixedScalableVFPair
5672 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5673                                                  ElementCount UserVF) {
5674   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5675   unsigned SmallestType, WidestType;
5676   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5677 
5678   // Get the maximum safe dependence distance in bits computed by LAA.
5679   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5680   // the memory accesses that is most restrictive (involved in the smallest
5681   // dependence distance).
5682   unsigned MaxSafeElements =
5683       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5684 
5685   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5686   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5687 
5688   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5689                     << ".\n");
5690   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5691                     << ".\n");
5692 
5693   // First analyze the UserVF, fall back if the UserVF should be ignored.
5694   if (UserVF) {
5695     auto MaxSafeUserVF =
5696         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5697 
5698     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5699       // If `VF=vscale x N` is safe, then so is `VF=N`
5700       if (UserVF.isScalable())
5701         return FixedScalableVFPair(
5702             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5703       else
5704         return UserVF;
5705     }
5706 
5707     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5708 
5709     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5710     // is better to ignore the hint and let the compiler choose a suitable VF.
5711     if (!UserVF.isScalable()) {
5712       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5713                         << " is unsafe, clamping to max safe VF="
5714                         << MaxSafeFixedVF << ".\n");
5715       ORE->emit([&]() {
5716         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5717                                           TheLoop->getStartLoc(),
5718                                           TheLoop->getHeader())
5719                << "User-specified vectorization factor "
5720                << ore::NV("UserVectorizationFactor", UserVF)
5721                << " is unsafe, clamping to maximum safe vectorization factor "
5722                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5723       });
5724       return MaxSafeFixedVF;
5725     }
5726 
5727     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5728       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5729                         << " is ignored because scalable vectors are not "
5730                            "available.\n");
5731       ORE->emit([&]() {
5732         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5733                                           TheLoop->getStartLoc(),
5734                                           TheLoop->getHeader())
5735                << "User-specified vectorization factor "
5736                << ore::NV("UserVectorizationFactor", UserVF)
5737                << " is ignored because the target does not support scalable "
5738                   "vectors. The compiler will pick a more suitable value.";
5739       });
5740     } else {
5741       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5742                         << " is unsafe. Ignoring scalable UserVF.\n");
5743       ORE->emit([&]() {
5744         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5745                                           TheLoop->getStartLoc(),
5746                                           TheLoop->getHeader())
5747                << "User-specified vectorization factor "
5748                << ore::NV("UserVectorizationFactor", UserVF)
5749                << " is unsafe. Ignoring the hint to let the compiler pick a "
5750                   "more suitable value.";
5751       });
5752     }
5753   }
5754 
5755   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5756                     << " / " << WidestType << " bits.\n");
5757 
5758   FixedScalableVFPair Result(ElementCount::getFixed(1),
5759                              ElementCount::getScalable(0));
5760   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5761                                            WidestType, MaxSafeFixedVF))
5762     Result.FixedVF = MaxVF;
5763 
5764   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5765                                            WidestType, MaxSafeScalableVF))
5766     if (MaxVF.isScalable()) {
5767       Result.ScalableVF = MaxVF;
5768       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5769                         << "\n");
5770     }
5771 
5772   return Result;
5773 }
5774 
5775 FixedScalableVFPair
5776 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5777   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5778     // TODO: It may by useful to do since it's still likely to be dynamically
5779     // uniform if the target can skip.
5780     reportVectorizationFailure(
5781         "Not inserting runtime ptr check for divergent target",
5782         "runtime pointer checks needed. Not enabled for divergent target",
5783         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5784     return FixedScalableVFPair::getNone();
5785   }
5786 
5787   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5788   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5789   if (TC == 1) {
5790     reportVectorizationFailure("Single iteration (non) loop",
5791         "loop trip count is one, irrelevant for vectorization",
5792         "SingleIterationLoop", ORE, TheLoop);
5793     return FixedScalableVFPair::getNone();
5794   }
5795 
5796   switch (ScalarEpilogueStatus) {
5797   case CM_ScalarEpilogueAllowed:
5798     return computeFeasibleMaxVF(TC, UserVF);
5799   case CM_ScalarEpilogueNotAllowedUsePredicate:
5800     LLVM_FALLTHROUGH;
5801   case CM_ScalarEpilogueNotNeededUsePredicate:
5802     LLVM_DEBUG(
5803         dbgs() << "LV: vector predicate hint/switch found.\n"
5804                << "LV: Not allowing scalar epilogue, creating predicated "
5805                << "vector loop.\n");
5806     break;
5807   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5808     // fallthrough as a special case of OptForSize
5809   case CM_ScalarEpilogueNotAllowedOptSize:
5810     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5811       LLVM_DEBUG(
5812           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5813     else
5814       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5815                         << "count.\n");
5816 
5817     // Bail if runtime checks are required, which are not good when optimising
5818     // for size.
5819     if (runtimeChecksRequired())
5820       return FixedScalableVFPair::getNone();
5821 
5822     break;
5823   }
5824 
5825   // The only loops we can vectorize without a scalar epilogue, are loops with
5826   // a bottom-test and a single exiting block. We'd have to handle the fact
5827   // that not every instruction executes on the last iteration.  This will
5828   // require a lane mask which varies through the vector loop body.  (TODO)
5829   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5830     // If there was a tail-folding hint/switch, but we can't fold the tail by
5831     // masking, fallback to a vectorization with a scalar epilogue.
5832     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5833       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5834                            "scalar epilogue instead.\n");
5835       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5836       return computeFeasibleMaxVF(TC, UserVF);
5837     }
5838     return FixedScalableVFPair::getNone();
5839   }
5840 
5841   // Now try the tail folding
5842 
5843   // Invalidate interleave groups that require an epilogue if we can't mask
5844   // the interleave-group.
5845   if (!useMaskedInterleavedAccesses(TTI)) {
5846     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5847            "No decisions should have been taken at this point");
5848     // Note: There is no need to invalidate any cost modeling decisions here, as
5849     // non where taken so far.
5850     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5851   }
5852 
5853   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5854   // Avoid tail folding if the trip count is known to be a multiple of any VF
5855   // we chose.
5856   // FIXME: The condition below pessimises the case for fixed-width vectors,
5857   // when scalable VFs are also candidates for vectorization.
5858   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5859     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5860     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5861            "MaxFixedVF must be a power of 2");
5862     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5863                                    : MaxFixedVF.getFixedValue();
5864     ScalarEvolution *SE = PSE.getSE();
5865     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5866     const SCEV *ExitCount = SE->getAddExpr(
5867         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5868     const SCEV *Rem = SE->getURemExpr(
5869         SE->applyLoopGuards(ExitCount, TheLoop),
5870         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5871     if (Rem->isZero()) {
5872       // Accept MaxFixedVF if we do not have a tail.
5873       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5874       return MaxFactors;
5875     }
5876   }
5877 
5878   // For scalable vectors, don't use tail folding as this is currently not yet
5879   // supported. The code is likely to have ended up here if the tripcount is
5880   // low, in which case it makes sense not to use scalable vectors.
5881   if (MaxFactors.ScalableVF.isVector())
5882     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5883 
5884   // If we don't know the precise trip count, or if the trip count that we
5885   // found modulo the vectorization factor is not zero, try to fold the tail
5886   // by masking.
5887   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5888   if (Legal->prepareToFoldTailByMasking()) {
5889     FoldTailByMasking = true;
5890     return MaxFactors;
5891   }
5892 
5893   // If there was a tail-folding hint/switch, but we can't fold the tail by
5894   // masking, fallback to a vectorization with a scalar epilogue.
5895   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5896     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5897                          "scalar epilogue instead.\n");
5898     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5899     return MaxFactors;
5900   }
5901 
5902   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5903     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5904     return FixedScalableVFPair::getNone();
5905   }
5906 
5907   if (TC == 0) {
5908     reportVectorizationFailure(
5909         "Unable to calculate the loop count due to complex control flow",
5910         "unable to calculate the loop count due to complex control flow",
5911         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5912     return FixedScalableVFPair::getNone();
5913   }
5914 
5915   reportVectorizationFailure(
5916       "Cannot optimize for size and vectorize at the same time.",
5917       "cannot optimize for size and vectorize at the same time. "
5918       "Enable vectorization of this loop with '#pragma clang loop "
5919       "vectorize(enable)' when compiling with -Os/-Oz",
5920       "NoTailLoopWithOptForSize", ORE, TheLoop);
5921   return FixedScalableVFPair::getNone();
5922 }
5923 
5924 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5925     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5926     const ElementCount &MaxSafeVF) {
5927   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5928   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5929       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5930                            : TargetTransformInfo::RGK_FixedWidthVector);
5931 
5932   // Convenience function to return the minimum of two ElementCounts.
5933   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5934     assert((LHS.isScalable() == RHS.isScalable()) &&
5935            "Scalable flags must match");
5936     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5937   };
5938 
5939   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5940   // Note that both WidestRegister and WidestType may not be a powers of 2.
5941   auto MaxVectorElementCount = ElementCount::get(
5942       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5943       ComputeScalableMaxVF);
5944   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5945   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5946                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5947 
5948   if (!MaxVectorElementCount) {
5949     LLVM_DEBUG(dbgs() << "LV: The target has no "
5950                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5951                       << " vector registers.\n");
5952     return ElementCount::getFixed(1);
5953   }
5954 
5955   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5956   if (ConstTripCount &&
5957       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5958       isPowerOf2_32(ConstTripCount)) {
5959     // We need to clamp the VF to be the ConstTripCount. There is no point in
5960     // choosing a higher viable VF as done in the loop below. If
5961     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5962     // the TC is less than or equal to the known number of lanes.
5963     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5964                       << ConstTripCount << "\n");
5965     return TripCountEC;
5966   }
5967 
5968   ElementCount MaxVF = MaxVectorElementCount;
5969   if (TTI.shouldMaximizeVectorBandwidth() ||
5970       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5971     auto MaxVectorElementCountMaxBW = ElementCount::get(
5972         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5973         ComputeScalableMaxVF);
5974     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5975 
5976     // Collect all viable vectorization factors larger than the default MaxVF
5977     // (i.e. MaxVectorElementCount).
5978     SmallVector<ElementCount, 8> VFs;
5979     for (ElementCount VS = MaxVectorElementCount * 2;
5980          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5981       VFs.push_back(VS);
5982 
5983     // For each VF calculate its register usage.
5984     auto RUs = calculateRegisterUsage(VFs);
5985 
5986     // Select the largest VF which doesn't require more registers than existing
5987     // ones.
5988     for (int i = RUs.size() - 1; i >= 0; --i) {
5989       bool Selected = true;
5990       for (auto &pair : RUs[i].MaxLocalUsers) {
5991         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5992         if (pair.second > TargetNumRegisters)
5993           Selected = false;
5994       }
5995       if (Selected) {
5996         MaxVF = VFs[i];
5997         break;
5998       }
5999     }
6000     if (ElementCount MinVF =
6001             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6002       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6003         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6004                           << ") with target's minimum: " << MinVF << '\n');
6005         MaxVF = MinVF;
6006       }
6007     }
6008   }
6009   return MaxVF;
6010 }
6011 
6012 bool LoopVectorizationCostModel::isMoreProfitable(
6013     const VectorizationFactor &A, const VectorizationFactor &B) const {
6014   InstructionCost CostA = A.Cost;
6015   InstructionCost CostB = B.Cost;
6016 
6017   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6018 
6019   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6020       MaxTripCount) {
6021     // If we are folding the tail and the trip count is a known (possibly small)
6022     // constant, the trip count will be rounded up to an integer number of
6023     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6024     // which we compare directly. When not folding the tail, the total cost will
6025     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6026     // approximated with the per-lane cost below instead of using the tripcount
6027     // as here.
6028     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6029     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6030     return RTCostA < RTCostB;
6031   }
6032 
6033   // When set to preferred, for now assume vscale may be larger than 1, so
6034   // that scalable vectorization is slightly favorable over fixed-width
6035   // vectorization.
6036   if (Hints->isScalableVectorizationPreferred())
6037     if (A.Width.isScalable() && !B.Width.isScalable())
6038       return (CostA * B.Width.getKnownMinValue()) <=
6039              (CostB * A.Width.getKnownMinValue());
6040 
6041   // To avoid the need for FP division:
6042   //      (CostA / A.Width) < (CostB / B.Width)
6043   // <=>  (CostA * B.Width) < (CostB * A.Width)
6044   return (CostA * B.Width.getKnownMinValue()) <
6045          (CostB * A.Width.getKnownMinValue());
6046 }
6047 
6048 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6049     const ElementCountSet &VFCandidates) {
6050   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6051   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6052   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6053   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6054          "Expected Scalar VF to be a candidate");
6055 
6056   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6057   VectorizationFactor ChosenFactor = ScalarCost;
6058 
6059   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6060   if (ForceVectorization && VFCandidates.size() > 1) {
6061     // Ignore scalar width, because the user explicitly wants vectorization.
6062     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6063     // evaluation.
6064     ChosenFactor.Cost = InstructionCost::getMax();
6065   }
6066 
6067   SmallVector<InstructionVFPair> InvalidCosts;
6068   for (const auto &i : VFCandidates) {
6069     // The cost for scalar VF=1 is already calculated, so ignore it.
6070     if (i.isScalar())
6071       continue;
6072 
6073     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6074     VectorizationFactor Candidate(i, C.first);
6075     LLVM_DEBUG(
6076         dbgs() << "LV: Vector loop of width " << i << " costs: "
6077                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6078                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6079                << ".\n");
6080 
6081     if (!C.second && !ForceVectorization) {
6082       LLVM_DEBUG(
6083           dbgs() << "LV: Not considering vector loop of width " << i
6084                  << " because it will not generate any vector instructions.\n");
6085       continue;
6086     }
6087 
6088     // If profitable add it to ProfitableVF list.
6089     if (isMoreProfitable(Candidate, ScalarCost))
6090       ProfitableVFs.push_back(Candidate);
6091 
6092     if (isMoreProfitable(Candidate, ChosenFactor))
6093       ChosenFactor = Candidate;
6094   }
6095 
6096   // Emit a report of VFs with invalid costs in the loop.
6097   if (!InvalidCosts.empty()) {
6098     // Group the remarks per instruction, keeping the instruction order from
6099     // InvalidCosts.
6100     std::map<Instruction *, unsigned> Numbering;
6101     unsigned I = 0;
6102     for (auto &Pair : InvalidCosts)
6103       if (!Numbering.count(Pair.first))
6104         Numbering[Pair.first] = I++;
6105 
6106     // Sort the list, first on instruction(number) then on VF.
6107     llvm::sort(InvalidCosts,
6108                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6109                  if (Numbering[A.first] != Numbering[B.first])
6110                    return Numbering[A.first] < Numbering[B.first];
6111                  ElementCountComparator ECC;
6112                  return ECC(A.second, B.second);
6113                });
6114 
6115     // For a list of ordered instruction-vf pairs:
6116     //   [(load, vf1), (load, vf2), (store, vf1)]
6117     // Group the instructions together to emit separate remarks for:
6118     //   load  (vf1, vf2)
6119     //   store (vf1)
6120     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6121     auto Subset = ArrayRef<InstructionVFPair>();
6122     do {
6123       if (Subset.empty())
6124         Subset = Tail.take_front(1);
6125 
6126       Instruction *I = Subset.front().first;
6127 
6128       // If the next instruction is different, or if there are no other pairs,
6129       // emit a remark for the collated subset. e.g.
6130       //   [(load, vf1), (load, vf2))]
6131       // to emit:
6132       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6133       if (Subset == Tail || Tail[Subset.size()].first != I) {
6134         std::string OutString;
6135         raw_string_ostream OS(OutString);
6136         assert(!Subset.empty() && "Unexpected empty range");
6137         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6138         for (auto &Pair : Subset)
6139           OS << (Pair.second == Subset.front().second ? "" : ", ")
6140              << Pair.second;
6141         OS << "):";
6142         if (auto *CI = dyn_cast<CallInst>(I))
6143           OS << " call to " << CI->getCalledFunction()->getName();
6144         else
6145           OS << " " << I->getOpcodeName();
6146         OS.flush();
6147         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6148         Tail = Tail.drop_front(Subset.size());
6149         Subset = {};
6150       } else
6151         // Grow the subset by one element
6152         Subset = Tail.take_front(Subset.size() + 1);
6153     } while (!Tail.empty());
6154   }
6155 
6156   if (!EnableCondStoresVectorization && NumPredStores) {
6157     reportVectorizationFailure("There are conditional stores.",
6158         "store that is conditionally executed prevents vectorization",
6159         "ConditionalStore", ORE, TheLoop);
6160     ChosenFactor = ScalarCost;
6161   }
6162 
6163   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6164                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6165              << "LV: Vectorization seems to be not beneficial, "
6166              << "but was forced by a user.\n");
6167   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6168   return ChosenFactor;
6169 }
6170 
6171 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6172     const Loop &L, ElementCount VF) const {
6173   // Cross iteration phis such as reductions need special handling and are
6174   // currently unsupported.
6175   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6176         return Legal->isFirstOrderRecurrence(&Phi) ||
6177                Legal->isReductionVariable(&Phi);
6178       }))
6179     return false;
6180 
6181   // Phis with uses outside of the loop require special handling and are
6182   // currently unsupported.
6183   for (auto &Entry : Legal->getInductionVars()) {
6184     // Look for uses of the value of the induction at the last iteration.
6185     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6186     for (User *U : PostInc->users())
6187       if (!L.contains(cast<Instruction>(U)))
6188         return false;
6189     // Look for uses of penultimate value of the induction.
6190     for (User *U : Entry.first->users())
6191       if (!L.contains(cast<Instruction>(U)))
6192         return false;
6193   }
6194 
6195   // Induction variables that are widened require special handling that is
6196   // currently not supported.
6197   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6198         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6199                  this->isProfitableToScalarize(Entry.first, VF));
6200       }))
6201     return false;
6202 
6203   // Epilogue vectorization code has not been auditted to ensure it handles
6204   // non-latch exits properly.  It may be fine, but it needs auditted and
6205   // tested.
6206   if (L.getExitingBlock() != L.getLoopLatch())
6207     return false;
6208 
6209   return true;
6210 }
6211 
6212 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6213     const ElementCount VF) const {
6214   // FIXME: We need a much better cost-model to take different parameters such
6215   // as register pressure, code size increase and cost of extra branches into
6216   // account. For now we apply a very crude heuristic and only consider loops
6217   // with vectorization factors larger than a certain value.
6218   // We also consider epilogue vectorization unprofitable for targets that don't
6219   // consider interleaving beneficial (eg. MVE).
6220   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6221     return false;
6222   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6223     return true;
6224   return false;
6225 }
6226 
6227 VectorizationFactor
6228 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6229     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6230   VectorizationFactor Result = VectorizationFactor::Disabled();
6231   if (!EnableEpilogueVectorization) {
6232     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6233     return Result;
6234   }
6235 
6236   if (!isScalarEpilogueAllowed()) {
6237     LLVM_DEBUG(
6238         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6239                   "allowed.\n";);
6240     return Result;
6241   }
6242 
6243   // FIXME: This can be fixed for scalable vectors later, because at this stage
6244   // the LoopVectorizer will only consider vectorizing a loop with scalable
6245   // vectors when the loop has a hint to enable vectorization for a given VF.
6246   if (MainLoopVF.isScalable()) {
6247     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6248                          "yet supported.\n");
6249     return Result;
6250   }
6251 
6252   // Not really a cost consideration, but check for unsupported cases here to
6253   // simplify the logic.
6254   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6255     LLVM_DEBUG(
6256         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6257                   "not a supported candidate.\n";);
6258     return Result;
6259   }
6260 
6261   if (EpilogueVectorizationForceVF > 1) {
6262     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6263     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6264     if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC}))
6265       return {ForcedEC, 0};
6266     else {
6267       LLVM_DEBUG(
6268           dbgs()
6269               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6270       return Result;
6271     }
6272   }
6273 
6274   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6275       TheLoop->getHeader()->getParent()->hasMinSize()) {
6276     LLVM_DEBUG(
6277         dbgs()
6278             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6279     return Result;
6280   }
6281 
6282   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6283     return Result;
6284 
6285   for (auto &NextVF : ProfitableVFs)
6286     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6287         (Result.Width.getFixedValue() == 1 ||
6288          isMoreProfitable(NextVF, Result)) &&
6289         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6290       Result = NextVF;
6291 
6292   if (Result != VectorizationFactor::Disabled())
6293     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6294                       << Result.Width.getFixedValue() << "\n";);
6295   return Result;
6296 }
6297 
6298 std::pair<unsigned, unsigned>
6299 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6300   unsigned MinWidth = -1U;
6301   unsigned MaxWidth = 8;
6302   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6303   for (Type *T : ElementTypesInLoop) {
6304     MinWidth = std::min<unsigned>(
6305         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6306     MaxWidth = std::max<unsigned>(
6307         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6308   }
6309   return {MinWidth, MaxWidth};
6310 }
6311 
6312 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6313   ElementTypesInLoop.clear();
6314   // For each block.
6315   for (BasicBlock *BB : TheLoop->blocks()) {
6316     // For each instruction in the loop.
6317     for (Instruction &I : BB->instructionsWithoutDebug()) {
6318       Type *T = I.getType();
6319 
6320       // Skip ignored values.
6321       if (ValuesToIgnore.count(&I))
6322         continue;
6323 
6324       // Only examine Loads, Stores and PHINodes.
6325       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6326         continue;
6327 
6328       // Examine PHI nodes that are reduction variables. Update the type to
6329       // account for the recurrence type.
6330       if (auto *PN = dyn_cast<PHINode>(&I)) {
6331         if (!Legal->isReductionVariable(PN))
6332           continue;
6333         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6334         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6335             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6336                                       RdxDesc.getRecurrenceType(),
6337                                       TargetTransformInfo::ReductionFlags()))
6338           continue;
6339         T = RdxDesc.getRecurrenceType();
6340       }
6341 
6342       // Examine the stored values.
6343       if (auto *ST = dyn_cast<StoreInst>(&I))
6344         T = ST->getValueOperand()->getType();
6345 
6346       // Ignore loaded pointer types and stored pointer types that are not
6347       // vectorizable.
6348       //
6349       // FIXME: The check here attempts to predict whether a load or store will
6350       //        be vectorized. We only know this for certain after a VF has
6351       //        been selected. Here, we assume that if an access can be
6352       //        vectorized, it will be. We should also look at extending this
6353       //        optimization to non-pointer types.
6354       //
6355       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6356           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6357         continue;
6358 
6359       ElementTypesInLoop.insert(T);
6360     }
6361   }
6362 }
6363 
6364 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6365                                                            unsigned LoopCost) {
6366   // -- The interleave heuristics --
6367   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6368   // There are many micro-architectural considerations that we can't predict
6369   // at this level. For example, frontend pressure (on decode or fetch) due to
6370   // code size, or the number and capabilities of the execution ports.
6371   //
6372   // We use the following heuristics to select the interleave count:
6373   // 1. If the code has reductions, then we interleave to break the cross
6374   // iteration dependency.
6375   // 2. If the loop is really small, then we interleave to reduce the loop
6376   // overhead.
6377   // 3. We don't interleave if we think that we will spill registers to memory
6378   // due to the increased register pressure.
6379 
6380   if (!isScalarEpilogueAllowed())
6381     return 1;
6382 
6383   // We used the distance for the interleave count.
6384   if (Legal->getMaxSafeDepDistBytes() != -1U)
6385     return 1;
6386 
6387   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6388   const bool HasReductions = !Legal->getReductionVars().empty();
6389   // Do not interleave loops with a relatively small known or estimated trip
6390   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6391   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6392   // because with the above conditions interleaving can expose ILP and break
6393   // cross iteration dependences for reductions.
6394   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6395       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6396     return 1;
6397 
6398   RegisterUsage R = calculateRegisterUsage({VF})[0];
6399   // We divide by these constants so assume that we have at least one
6400   // instruction that uses at least one register.
6401   for (auto& pair : R.MaxLocalUsers) {
6402     pair.second = std::max(pair.second, 1U);
6403   }
6404 
6405   // We calculate the interleave count using the following formula.
6406   // Subtract the number of loop invariants from the number of available
6407   // registers. These registers are used by all of the interleaved instances.
6408   // Next, divide the remaining registers by the number of registers that is
6409   // required by the loop, in order to estimate how many parallel instances
6410   // fit without causing spills. All of this is rounded down if necessary to be
6411   // a power of two. We want power of two interleave count to simplify any
6412   // addressing operations or alignment considerations.
6413   // We also want power of two interleave counts to ensure that the induction
6414   // variable of the vector loop wraps to zero, when tail is folded by masking;
6415   // this currently happens when OptForSize, in which case IC is set to 1 above.
6416   unsigned IC = UINT_MAX;
6417 
6418   for (auto& pair : R.MaxLocalUsers) {
6419     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6420     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6421                       << " registers of "
6422                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6423     if (VF.isScalar()) {
6424       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6425         TargetNumRegisters = ForceTargetNumScalarRegs;
6426     } else {
6427       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6428         TargetNumRegisters = ForceTargetNumVectorRegs;
6429     }
6430     unsigned MaxLocalUsers = pair.second;
6431     unsigned LoopInvariantRegs = 0;
6432     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6433       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6434 
6435     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6436     // Don't count the induction variable as interleaved.
6437     if (EnableIndVarRegisterHeur) {
6438       TmpIC =
6439           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6440                         std::max(1U, (MaxLocalUsers - 1)));
6441     }
6442 
6443     IC = std::min(IC, TmpIC);
6444   }
6445 
6446   // Clamp the interleave ranges to reasonable counts.
6447   unsigned MaxInterleaveCount =
6448       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6449 
6450   // Check if the user has overridden the max.
6451   if (VF.isScalar()) {
6452     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6453       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6454   } else {
6455     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6456       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6457   }
6458 
6459   // If trip count is known or estimated compile time constant, limit the
6460   // interleave count to be less than the trip count divided by VF, provided it
6461   // is at least 1.
6462   //
6463   // For scalable vectors we can't know if interleaving is beneficial. It may
6464   // not be beneficial for small loops if none of the lanes in the second vector
6465   // iterations is enabled. However, for larger loops, there is likely to be a
6466   // similar benefit as for fixed-width vectors. For now, we choose to leave
6467   // the InterleaveCount as if vscale is '1', although if some information about
6468   // the vector is known (e.g. min vector size), we can make a better decision.
6469   if (BestKnownTC) {
6470     MaxInterleaveCount =
6471         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6472     // Make sure MaxInterleaveCount is greater than 0.
6473     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6474   }
6475 
6476   assert(MaxInterleaveCount > 0 &&
6477          "Maximum interleave count must be greater than 0");
6478 
6479   // Clamp the calculated IC to be between the 1 and the max interleave count
6480   // that the target and trip count allows.
6481   if (IC > MaxInterleaveCount)
6482     IC = MaxInterleaveCount;
6483   else
6484     // Make sure IC is greater than 0.
6485     IC = std::max(1u, IC);
6486 
6487   assert(IC > 0 && "Interleave count must be greater than 0.");
6488 
6489   // If we did not calculate the cost for VF (because the user selected the VF)
6490   // then we calculate the cost of VF here.
6491   if (LoopCost == 0) {
6492     InstructionCost C = expectedCost(VF).first;
6493     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6494     LoopCost = *C.getValue();
6495   }
6496 
6497   assert(LoopCost && "Non-zero loop cost expected");
6498 
6499   // Interleave if we vectorized this loop and there is a reduction that could
6500   // benefit from interleaving.
6501   if (VF.isVector() && HasReductions) {
6502     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6503     return IC;
6504   }
6505 
6506   // Note that if we've already vectorized the loop we will have done the
6507   // runtime check and so interleaving won't require further checks.
6508   bool InterleavingRequiresRuntimePointerCheck =
6509       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6510 
6511   // We want to interleave small loops in order to reduce the loop overhead and
6512   // potentially expose ILP opportunities.
6513   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6514                     << "LV: IC is " << IC << '\n'
6515                     << "LV: VF is " << VF << '\n');
6516   const bool AggressivelyInterleaveReductions =
6517       TTI.enableAggressiveInterleaving(HasReductions);
6518   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6519     // We assume that the cost overhead is 1 and we use the cost model
6520     // to estimate the cost of the loop and interleave until the cost of the
6521     // loop overhead is about 5% of the cost of the loop.
6522     unsigned SmallIC =
6523         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6524 
6525     // Interleave until store/load ports (estimated by max interleave count) are
6526     // saturated.
6527     unsigned NumStores = Legal->getNumStores();
6528     unsigned NumLoads = Legal->getNumLoads();
6529     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6530     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6531 
6532     // There is little point in interleaving for reductions containing selects
6533     // and compares when VF=1 since it may just create more overhead than it's
6534     // worth for loops with small trip counts. This is because we still have to
6535     // do the final reduction after the loop.
6536     bool HasSelectCmpReductions =
6537         HasReductions &&
6538         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6539           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6540           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6541               RdxDesc.getRecurrenceKind());
6542         });
6543     if (HasSelectCmpReductions) {
6544       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6545       return 1;
6546     }
6547 
6548     // If we have a scalar reduction (vector reductions are already dealt with
6549     // by this point), we can increase the critical path length if the loop
6550     // we're interleaving is inside another loop. For tree-wise reductions
6551     // set the limit to 2, and for ordered reductions it's best to disable
6552     // interleaving entirely.
6553     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6554       bool HasOrderedReductions =
6555           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6556             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6557             return RdxDesc.isOrdered();
6558           });
6559       if (HasOrderedReductions) {
6560         LLVM_DEBUG(
6561             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6562         return 1;
6563       }
6564 
6565       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6566       SmallIC = std::min(SmallIC, F);
6567       StoresIC = std::min(StoresIC, F);
6568       LoadsIC = std::min(LoadsIC, F);
6569     }
6570 
6571     if (EnableLoadStoreRuntimeInterleave &&
6572         std::max(StoresIC, LoadsIC) > SmallIC) {
6573       LLVM_DEBUG(
6574           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6575       return std::max(StoresIC, LoadsIC);
6576     }
6577 
6578     // If there are scalar reductions and TTI has enabled aggressive
6579     // interleaving for reductions, we will interleave to expose ILP.
6580     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6581         AggressivelyInterleaveReductions) {
6582       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6583       // Interleave no less than SmallIC but not as aggressive as the normal IC
6584       // to satisfy the rare situation when resources are too limited.
6585       return std::max(IC / 2, SmallIC);
6586     } else {
6587       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6588       return SmallIC;
6589     }
6590   }
6591 
6592   // Interleave if this is a large loop (small loops are already dealt with by
6593   // this point) that could benefit from interleaving.
6594   if (AggressivelyInterleaveReductions) {
6595     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6596     return IC;
6597   }
6598 
6599   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6600   return 1;
6601 }
6602 
6603 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6604 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6605   // This function calculates the register usage by measuring the highest number
6606   // of values that are alive at a single location. Obviously, this is a very
6607   // rough estimation. We scan the loop in a topological order in order and
6608   // assign a number to each instruction. We use RPO to ensure that defs are
6609   // met before their users. We assume that each instruction that has in-loop
6610   // users starts an interval. We record every time that an in-loop value is
6611   // used, so we have a list of the first and last occurrences of each
6612   // instruction. Next, we transpose this data structure into a multi map that
6613   // holds the list of intervals that *end* at a specific location. This multi
6614   // map allows us to perform a linear search. We scan the instructions linearly
6615   // and record each time that a new interval starts, by placing it in a set.
6616   // If we find this value in the multi-map then we remove it from the set.
6617   // The max register usage is the maximum size of the set.
6618   // We also search for instructions that are defined outside the loop, but are
6619   // used inside the loop. We need this number separately from the max-interval
6620   // usage number because when we unroll, loop-invariant values do not take
6621   // more register.
6622   LoopBlocksDFS DFS(TheLoop);
6623   DFS.perform(LI);
6624 
6625   RegisterUsage RU;
6626 
6627   // Each 'key' in the map opens a new interval. The values
6628   // of the map are the index of the 'last seen' usage of the
6629   // instruction that is the key.
6630   using IntervalMap = DenseMap<Instruction *, unsigned>;
6631 
6632   // Maps instruction to its index.
6633   SmallVector<Instruction *, 64> IdxToInstr;
6634   // Marks the end of each interval.
6635   IntervalMap EndPoint;
6636   // Saves the list of instruction indices that are used in the loop.
6637   SmallPtrSet<Instruction *, 8> Ends;
6638   // Saves the list of values that are used in the loop but are
6639   // defined outside the loop, such as arguments and constants.
6640   SmallPtrSet<Value *, 8> LoopInvariants;
6641 
6642   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6643     for (Instruction &I : BB->instructionsWithoutDebug()) {
6644       IdxToInstr.push_back(&I);
6645 
6646       // Save the end location of each USE.
6647       for (Value *U : I.operands()) {
6648         auto *Instr = dyn_cast<Instruction>(U);
6649 
6650         // Ignore non-instruction values such as arguments, constants, etc.
6651         if (!Instr)
6652           continue;
6653 
6654         // If this instruction is outside the loop then record it and continue.
6655         if (!TheLoop->contains(Instr)) {
6656           LoopInvariants.insert(Instr);
6657           continue;
6658         }
6659 
6660         // Overwrite previous end points.
6661         EndPoint[Instr] = IdxToInstr.size();
6662         Ends.insert(Instr);
6663       }
6664     }
6665   }
6666 
6667   // Saves the list of intervals that end with the index in 'key'.
6668   using InstrList = SmallVector<Instruction *, 2>;
6669   DenseMap<unsigned, InstrList> TransposeEnds;
6670 
6671   // Transpose the EndPoints to a list of values that end at each index.
6672   for (auto &Interval : EndPoint)
6673     TransposeEnds[Interval.second].push_back(Interval.first);
6674 
6675   SmallPtrSet<Instruction *, 8> OpenIntervals;
6676   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6677   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6678 
6679   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6680 
6681   // A lambda that gets the register usage for the given type and VF.
6682   const auto &TTICapture = TTI;
6683   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6684     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6685       return 0;
6686     InstructionCost::CostType RegUsage =
6687         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6688     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6689            "Nonsensical values for register usage.");
6690     return RegUsage;
6691   };
6692 
6693   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6694     Instruction *I = IdxToInstr[i];
6695 
6696     // Remove all of the instructions that end at this location.
6697     InstrList &List = TransposeEnds[i];
6698     for (Instruction *ToRemove : List)
6699       OpenIntervals.erase(ToRemove);
6700 
6701     // Ignore instructions that are never used within the loop.
6702     if (!Ends.count(I))
6703       continue;
6704 
6705     // Skip ignored values.
6706     if (ValuesToIgnore.count(I))
6707       continue;
6708 
6709     // For each VF find the maximum usage of registers.
6710     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6711       // Count the number of live intervals.
6712       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6713 
6714       if (VFs[j].isScalar()) {
6715         for (auto Inst : OpenIntervals) {
6716           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6717           if (RegUsage.find(ClassID) == RegUsage.end())
6718             RegUsage[ClassID] = 1;
6719           else
6720             RegUsage[ClassID] += 1;
6721         }
6722       } else {
6723         collectUniformsAndScalars(VFs[j]);
6724         for (auto Inst : OpenIntervals) {
6725           // Skip ignored values for VF > 1.
6726           if (VecValuesToIgnore.count(Inst))
6727             continue;
6728           if (isScalarAfterVectorization(Inst, VFs[j])) {
6729             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6730             if (RegUsage.find(ClassID) == RegUsage.end())
6731               RegUsage[ClassID] = 1;
6732             else
6733               RegUsage[ClassID] += 1;
6734           } else {
6735             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6736             if (RegUsage.find(ClassID) == RegUsage.end())
6737               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6738             else
6739               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6740           }
6741         }
6742       }
6743 
6744       for (auto& pair : RegUsage) {
6745         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6746           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6747         else
6748           MaxUsages[j][pair.first] = pair.second;
6749       }
6750     }
6751 
6752     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6753                       << OpenIntervals.size() << '\n');
6754 
6755     // Add the current instruction to the list of open intervals.
6756     OpenIntervals.insert(I);
6757   }
6758 
6759   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6760     SmallMapVector<unsigned, unsigned, 4> Invariant;
6761 
6762     for (auto Inst : LoopInvariants) {
6763       unsigned Usage =
6764           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6765       unsigned ClassID =
6766           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6767       if (Invariant.find(ClassID) == Invariant.end())
6768         Invariant[ClassID] = Usage;
6769       else
6770         Invariant[ClassID] += Usage;
6771     }
6772 
6773     LLVM_DEBUG({
6774       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6775       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6776              << " item\n";
6777       for (const auto &pair : MaxUsages[i]) {
6778         dbgs() << "LV(REG): RegisterClass: "
6779                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6780                << " registers\n";
6781       }
6782       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6783              << " item\n";
6784       for (const auto &pair : Invariant) {
6785         dbgs() << "LV(REG): RegisterClass: "
6786                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6787                << " registers\n";
6788       }
6789     });
6790 
6791     RU.LoopInvariantRegs = Invariant;
6792     RU.MaxLocalUsers = MaxUsages[i];
6793     RUs[i] = RU;
6794   }
6795 
6796   return RUs;
6797 }
6798 
6799 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6800   // TODO: Cost model for emulated masked load/store is completely
6801   // broken. This hack guides the cost model to use an artificially
6802   // high enough value to practically disable vectorization with such
6803   // operations, except where previously deployed legality hack allowed
6804   // using very low cost values. This is to avoid regressions coming simply
6805   // from moving "masked load/store" check from legality to cost model.
6806   // Masked Load/Gather emulation was previously never allowed.
6807   // Limited number of Masked Store/Scatter emulation was allowed.
6808   assert(isPredicatedInst(I) &&
6809          "Expecting a scalar emulated instruction");
6810   return isa<LoadInst>(I) ||
6811          (isa<StoreInst>(I) &&
6812           NumPredStores > NumberOfStoresToPredicate);
6813 }
6814 
6815 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6816   // If we aren't vectorizing the loop, or if we've already collected the
6817   // instructions to scalarize, there's nothing to do. Collection may already
6818   // have occurred if we have a user-selected VF and are now computing the
6819   // expected cost for interleaving.
6820   if (VF.isScalar() || VF.isZero() ||
6821       InstsToScalarize.find(VF) != InstsToScalarize.end())
6822     return;
6823 
6824   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6825   // not profitable to scalarize any instructions, the presence of VF in the
6826   // map will indicate that we've analyzed it already.
6827   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6828 
6829   // Find all the instructions that are scalar with predication in the loop and
6830   // determine if it would be better to not if-convert the blocks they are in.
6831   // If so, we also record the instructions to scalarize.
6832   for (BasicBlock *BB : TheLoop->blocks()) {
6833     if (!blockNeedsPredication(BB))
6834       continue;
6835     for (Instruction &I : *BB)
6836       if (isScalarWithPredication(&I)) {
6837         ScalarCostsTy ScalarCosts;
6838         // Do not apply discount if scalable, because that would lead to
6839         // invalid scalarization costs.
6840         // Do not apply discount logic if hacked cost is needed
6841         // for emulated masked memrefs.
6842         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6843             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6844           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6845         // Remember that BB will remain after vectorization.
6846         PredicatedBBsAfterVectorization.insert(BB);
6847       }
6848   }
6849 }
6850 
6851 int LoopVectorizationCostModel::computePredInstDiscount(
6852     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6853   assert(!isUniformAfterVectorization(PredInst, VF) &&
6854          "Instruction marked uniform-after-vectorization will be predicated");
6855 
6856   // Initialize the discount to zero, meaning that the scalar version and the
6857   // vector version cost the same.
6858   InstructionCost Discount = 0;
6859 
6860   // Holds instructions to analyze. The instructions we visit are mapped in
6861   // ScalarCosts. Those instructions are the ones that would be scalarized if
6862   // we find that the scalar version costs less.
6863   SmallVector<Instruction *, 8> Worklist;
6864 
6865   // Returns true if the given instruction can be scalarized.
6866   auto canBeScalarized = [&](Instruction *I) -> bool {
6867     // We only attempt to scalarize instructions forming a single-use chain
6868     // from the original predicated block that would otherwise be vectorized.
6869     // Although not strictly necessary, we give up on instructions we know will
6870     // already be scalar to avoid traversing chains that are unlikely to be
6871     // beneficial.
6872     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6873         isScalarAfterVectorization(I, VF))
6874       return false;
6875 
6876     // If the instruction is scalar with predication, it will be analyzed
6877     // separately. We ignore it within the context of PredInst.
6878     if (isScalarWithPredication(I))
6879       return false;
6880 
6881     // If any of the instruction's operands are uniform after vectorization,
6882     // the instruction cannot be scalarized. This prevents, for example, a
6883     // masked load from being scalarized.
6884     //
6885     // We assume we will only emit a value for lane zero of an instruction
6886     // marked uniform after vectorization, rather than VF identical values.
6887     // Thus, if we scalarize an instruction that uses a uniform, we would
6888     // create uses of values corresponding to the lanes we aren't emitting code
6889     // for. This behavior can be changed by allowing getScalarValue to clone
6890     // the lane zero values for uniforms rather than asserting.
6891     for (Use &U : I->operands())
6892       if (auto *J = dyn_cast<Instruction>(U.get()))
6893         if (isUniformAfterVectorization(J, VF))
6894           return false;
6895 
6896     // Otherwise, we can scalarize the instruction.
6897     return true;
6898   };
6899 
6900   // Compute the expected cost discount from scalarizing the entire expression
6901   // feeding the predicated instruction. We currently only consider expressions
6902   // that are single-use instruction chains.
6903   Worklist.push_back(PredInst);
6904   while (!Worklist.empty()) {
6905     Instruction *I = Worklist.pop_back_val();
6906 
6907     // If we've already analyzed the instruction, there's nothing to do.
6908     if (ScalarCosts.find(I) != ScalarCosts.end())
6909       continue;
6910 
6911     // Compute the cost of the vector instruction. Note that this cost already
6912     // includes the scalarization overhead of the predicated instruction.
6913     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6914 
6915     // Compute the cost of the scalarized instruction. This cost is the cost of
6916     // the instruction as if it wasn't if-converted and instead remained in the
6917     // predicated block. We will scale this cost by block probability after
6918     // computing the scalarization overhead.
6919     InstructionCost ScalarCost =
6920         VF.getFixedValue() *
6921         getInstructionCost(I, ElementCount::getFixed(1)).first;
6922 
6923     // Compute the scalarization overhead of needed insertelement instructions
6924     // and phi nodes.
6925     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6926       ScalarCost += TTI.getScalarizationOverhead(
6927           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6928           APInt::getAllOnes(VF.getFixedValue()), true, false);
6929       ScalarCost +=
6930           VF.getFixedValue() *
6931           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6932     }
6933 
6934     // Compute the scalarization overhead of needed extractelement
6935     // instructions. For each of the instruction's operands, if the operand can
6936     // be scalarized, add it to the worklist; otherwise, account for the
6937     // overhead.
6938     for (Use &U : I->operands())
6939       if (auto *J = dyn_cast<Instruction>(U.get())) {
6940         assert(VectorType::isValidElementType(J->getType()) &&
6941                "Instruction has non-scalar type");
6942         if (canBeScalarized(J))
6943           Worklist.push_back(J);
6944         else if (needsExtract(J, VF)) {
6945           ScalarCost += TTI.getScalarizationOverhead(
6946               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6947               APInt::getAllOnes(VF.getFixedValue()), false, true);
6948         }
6949       }
6950 
6951     // Scale the total scalar cost by block probability.
6952     ScalarCost /= getReciprocalPredBlockProb();
6953 
6954     // Compute the discount. A non-negative discount means the vector version
6955     // of the instruction costs more, and scalarizing would be beneficial.
6956     Discount += VectorCost - ScalarCost;
6957     ScalarCosts[I] = ScalarCost;
6958   }
6959 
6960   return *Discount.getValue();
6961 }
6962 
6963 LoopVectorizationCostModel::VectorizationCostTy
6964 LoopVectorizationCostModel::expectedCost(
6965     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6966   VectorizationCostTy Cost;
6967 
6968   // For each block.
6969   for (BasicBlock *BB : TheLoop->blocks()) {
6970     VectorizationCostTy BlockCost;
6971 
6972     // For each instruction in the old loop.
6973     for (Instruction &I : BB->instructionsWithoutDebug()) {
6974       // Skip ignored values.
6975       if (ValuesToIgnore.count(&I) ||
6976           (VF.isVector() && VecValuesToIgnore.count(&I)))
6977         continue;
6978 
6979       VectorizationCostTy C = getInstructionCost(&I, VF);
6980 
6981       // Check if we should override the cost.
6982       if (C.first.isValid() &&
6983           ForceTargetInstructionCost.getNumOccurrences() > 0)
6984         C.first = InstructionCost(ForceTargetInstructionCost);
6985 
6986       // Keep a list of instructions with invalid costs.
6987       if (Invalid && !C.first.isValid())
6988         Invalid->emplace_back(&I, VF);
6989 
6990       BlockCost.first += C.first;
6991       BlockCost.second |= C.second;
6992       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6993                         << " for VF " << VF << " For instruction: " << I
6994                         << '\n');
6995     }
6996 
6997     // If we are vectorizing a predicated block, it will have been
6998     // if-converted. This means that the block's instructions (aside from
6999     // stores and instructions that may divide by zero) will now be
7000     // unconditionally executed. For the scalar case, we may not always execute
7001     // the predicated block, if it is an if-else block. Thus, scale the block's
7002     // cost by the probability of executing it. blockNeedsPredication from
7003     // Legal is used so as to not include all blocks in tail folded loops.
7004     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7005       BlockCost.first /= getReciprocalPredBlockProb();
7006 
7007     Cost.first += BlockCost.first;
7008     Cost.second |= BlockCost.second;
7009   }
7010 
7011   return Cost;
7012 }
7013 
7014 /// Gets Address Access SCEV after verifying that the access pattern
7015 /// is loop invariant except the induction variable dependence.
7016 ///
7017 /// This SCEV can be sent to the Target in order to estimate the address
7018 /// calculation cost.
7019 static const SCEV *getAddressAccessSCEV(
7020               Value *Ptr,
7021               LoopVectorizationLegality *Legal,
7022               PredicatedScalarEvolution &PSE,
7023               const Loop *TheLoop) {
7024 
7025   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7026   if (!Gep)
7027     return nullptr;
7028 
7029   // We are looking for a gep with all loop invariant indices except for one
7030   // which should be an induction variable.
7031   auto SE = PSE.getSE();
7032   unsigned NumOperands = Gep->getNumOperands();
7033   for (unsigned i = 1; i < NumOperands; ++i) {
7034     Value *Opd = Gep->getOperand(i);
7035     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7036         !Legal->isInductionVariable(Opd))
7037       return nullptr;
7038   }
7039 
7040   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7041   return PSE.getSCEV(Ptr);
7042 }
7043 
7044 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7045   return Legal->hasStride(I->getOperand(0)) ||
7046          Legal->hasStride(I->getOperand(1));
7047 }
7048 
7049 InstructionCost
7050 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7051                                                         ElementCount VF) {
7052   assert(VF.isVector() &&
7053          "Scalarization cost of instruction implies vectorization.");
7054   if (VF.isScalable())
7055     return InstructionCost::getInvalid();
7056 
7057   Type *ValTy = getLoadStoreType(I);
7058   auto SE = PSE.getSE();
7059 
7060   unsigned AS = getLoadStoreAddressSpace(I);
7061   Value *Ptr = getLoadStorePointerOperand(I);
7062   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7063 
7064   // Figure out whether the access is strided and get the stride value
7065   // if it's known in compile time
7066   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7067 
7068   // Get the cost of the scalar memory instruction and address computation.
7069   InstructionCost Cost =
7070       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7071 
7072   // Don't pass *I here, since it is scalar but will actually be part of a
7073   // vectorized loop where the user of it is a vectorized instruction.
7074   const Align Alignment = getLoadStoreAlignment(I);
7075   Cost += VF.getKnownMinValue() *
7076           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7077                               AS, TTI::TCK_RecipThroughput);
7078 
7079   // Get the overhead of the extractelement and insertelement instructions
7080   // we might create due to scalarization.
7081   Cost += getScalarizationOverhead(I, VF);
7082 
7083   // If we have a predicated load/store, it will need extra i1 extracts and
7084   // conditional branches, but may not be executed for each vector lane. Scale
7085   // the cost by the probability of executing the predicated block.
7086   if (isPredicatedInst(I)) {
7087     Cost /= getReciprocalPredBlockProb();
7088 
7089     // Add the cost of an i1 extract and a branch
7090     auto *Vec_i1Ty =
7091         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7092     Cost += TTI.getScalarizationOverhead(
7093         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7094         /*Insert=*/false, /*Extract=*/true);
7095     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7096 
7097     if (useEmulatedMaskMemRefHack(I))
7098       // Artificially setting to a high enough value to practically disable
7099       // vectorization with such operations.
7100       Cost = 3000000;
7101   }
7102 
7103   return Cost;
7104 }
7105 
7106 InstructionCost
7107 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7108                                                     ElementCount VF) {
7109   Type *ValTy = getLoadStoreType(I);
7110   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7111   Value *Ptr = getLoadStorePointerOperand(I);
7112   unsigned AS = getLoadStoreAddressSpace(I);
7113   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7114   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7115 
7116   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7117          "Stride should be 1 or -1 for consecutive memory access");
7118   const Align Alignment = getLoadStoreAlignment(I);
7119   InstructionCost Cost = 0;
7120   if (Legal->isMaskRequired(I))
7121     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7122                                       CostKind);
7123   else
7124     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7125                                 CostKind, I);
7126 
7127   bool Reverse = ConsecutiveStride < 0;
7128   if (Reverse)
7129     Cost +=
7130         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7131   return Cost;
7132 }
7133 
7134 InstructionCost
7135 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7136                                                 ElementCount VF) {
7137   assert(Legal->isUniformMemOp(*I));
7138 
7139   Type *ValTy = getLoadStoreType(I);
7140   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7141   const Align Alignment = getLoadStoreAlignment(I);
7142   unsigned AS = getLoadStoreAddressSpace(I);
7143   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7144   if (isa<LoadInst>(I)) {
7145     return TTI.getAddressComputationCost(ValTy) +
7146            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7147                                CostKind) +
7148            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7149   }
7150   StoreInst *SI = cast<StoreInst>(I);
7151 
7152   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7153   return TTI.getAddressComputationCost(ValTy) +
7154          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7155                              CostKind) +
7156          (isLoopInvariantStoreValue
7157               ? 0
7158               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7159                                        VF.getKnownMinValue() - 1));
7160 }
7161 
7162 InstructionCost
7163 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7164                                                  ElementCount VF) {
7165   Type *ValTy = getLoadStoreType(I);
7166   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7167   const Align Alignment = getLoadStoreAlignment(I);
7168   const Value *Ptr = getLoadStorePointerOperand(I);
7169 
7170   return TTI.getAddressComputationCost(VectorTy) +
7171          TTI.getGatherScatterOpCost(
7172              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7173              TargetTransformInfo::TCK_RecipThroughput, I);
7174 }
7175 
7176 InstructionCost
7177 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7178                                                    ElementCount VF) {
7179   // TODO: Once we have support for interleaving with scalable vectors
7180   // we can calculate the cost properly here.
7181   if (VF.isScalable())
7182     return InstructionCost::getInvalid();
7183 
7184   Type *ValTy = getLoadStoreType(I);
7185   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7186   unsigned AS = getLoadStoreAddressSpace(I);
7187 
7188   auto Group = getInterleavedAccessGroup(I);
7189   assert(Group && "Fail to get an interleaved access group.");
7190 
7191   unsigned InterleaveFactor = Group->getFactor();
7192   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7193 
7194   // Holds the indices of existing members in the interleaved group.
7195   SmallVector<unsigned, 4> Indices;
7196   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7197     if (Group->getMember(IF))
7198       Indices.push_back(IF);
7199 
7200   // Calculate the cost of the whole interleaved group.
7201   bool UseMaskForGaps =
7202       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7203       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7204   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7205       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7206       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7207 
7208   if (Group->isReverse()) {
7209     // TODO: Add support for reversed masked interleaved access.
7210     assert(!Legal->isMaskRequired(I) &&
7211            "Reverse masked interleaved access not supported.");
7212     Cost +=
7213         Group->getNumMembers() *
7214         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7215   }
7216   return Cost;
7217 }
7218 
7219 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7220     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7221   using namespace llvm::PatternMatch;
7222   // Early exit for no inloop reductions
7223   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7224     return None;
7225   auto *VectorTy = cast<VectorType>(Ty);
7226 
7227   // We are looking for a pattern of, and finding the minimal acceptable cost:
7228   //  reduce(mul(ext(A), ext(B))) or
7229   //  reduce(mul(A, B)) or
7230   //  reduce(ext(A)) or
7231   //  reduce(A).
7232   // The basic idea is that we walk down the tree to do that, finding the root
7233   // reduction instruction in InLoopReductionImmediateChains. From there we find
7234   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7235   // of the components. If the reduction cost is lower then we return it for the
7236   // reduction instruction and 0 for the other instructions in the pattern. If
7237   // it is not we return an invalid cost specifying the orignal cost method
7238   // should be used.
7239   Instruction *RetI = I;
7240   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7241     if (!RetI->hasOneUser())
7242       return None;
7243     RetI = RetI->user_back();
7244   }
7245   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7246       RetI->user_back()->getOpcode() == Instruction::Add) {
7247     if (!RetI->hasOneUser())
7248       return None;
7249     RetI = RetI->user_back();
7250   }
7251 
7252   // Test if the found instruction is a reduction, and if not return an invalid
7253   // cost specifying the parent to use the original cost modelling.
7254   if (!InLoopReductionImmediateChains.count(RetI))
7255     return None;
7256 
7257   // Find the reduction this chain is a part of and calculate the basic cost of
7258   // the reduction on its own.
7259   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7260   Instruction *ReductionPhi = LastChain;
7261   while (!isa<PHINode>(ReductionPhi))
7262     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7263 
7264   const RecurrenceDescriptor &RdxDesc =
7265       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7266 
7267   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7268       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7269 
7270   // If we're using ordered reductions then we can just return the base cost
7271   // here, since getArithmeticReductionCost calculates the full ordered
7272   // reduction cost when FP reassociation is not allowed.
7273   if (useOrderedReductions(RdxDesc))
7274     return BaseCost;
7275 
7276   // Get the operand that was not the reduction chain and match it to one of the
7277   // patterns, returning the better cost if it is found.
7278   Instruction *RedOp = RetI->getOperand(1) == LastChain
7279                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7280                            : dyn_cast<Instruction>(RetI->getOperand(1));
7281 
7282   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7283 
7284   Instruction *Op0, *Op1;
7285   if (RedOp &&
7286       match(RedOp,
7287             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7288       match(Op0, m_ZExtOrSExt(m_Value())) &&
7289       Op0->getOpcode() == Op1->getOpcode() &&
7290       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7291       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7292       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7293 
7294     // Matched reduce(ext(mul(ext(A), ext(B)))
7295     // Note that the extend opcodes need to all match, or if A==B they will have
7296     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7297     // which is equally fine.
7298     bool IsUnsigned = isa<ZExtInst>(Op0);
7299     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7300     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7301 
7302     InstructionCost ExtCost =
7303         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7304                              TTI::CastContextHint::None, CostKind, Op0);
7305     InstructionCost MulCost =
7306         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7307     InstructionCost Ext2Cost =
7308         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7309                              TTI::CastContextHint::None, CostKind, RedOp);
7310 
7311     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7312         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7313         CostKind);
7314 
7315     if (RedCost.isValid() &&
7316         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7317       return I == RetI ? RedCost : 0;
7318   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7319              !TheLoop->isLoopInvariant(RedOp)) {
7320     // Matched reduce(ext(A))
7321     bool IsUnsigned = isa<ZExtInst>(RedOp);
7322     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7323     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7324         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7325         CostKind);
7326 
7327     InstructionCost ExtCost =
7328         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7329                              TTI::CastContextHint::None, CostKind, RedOp);
7330     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7331       return I == RetI ? RedCost : 0;
7332   } else if (RedOp &&
7333              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7334     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7335         Op0->getOpcode() == Op1->getOpcode() &&
7336         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7337         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7338       bool IsUnsigned = isa<ZExtInst>(Op0);
7339       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7340       // Matched reduce(mul(ext, ext))
7341       InstructionCost ExtCost =
7342           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7343                                TTI::CastContextHint::None, CostKind, Op0);
7344       InstructionCost MulCost =
7345           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7346 
7347       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7348           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7349           CostKind);
7350 
7351       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7352         return I == RetI ? RedCost : 0;
7353     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7354       // Matched reduce(mul())
7355       InstructionCost MulCost =
7356           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7357 
7358       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7359           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7360           CostKind);
7361 
7362       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7363         return I == RetI ? RedCost : 0;
7364     }
7365   }
7366 
7367   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7368 }
7369 
7370 InstructionCost
7371 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7372                                                      ElementCount VF) {
7373   // Calculate scalar cost only. Vectorization cost should be ready at this
7374   // moment.
7375   if (VF.isScalar()) {
7376     Type *ValTy = getLoadStoreType(I);
7377     const Align Alignment = getLoadStoreAlignment(I);
7378     unsigned AS = getLoadStoreAddressSpace(I);
7379 
7380     return TTI.getAddressComputationCost(ValTy) +
7381            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7382                                TTI::TCK_RecipThroughput, I);
7383   }
7384   return getWideningCost(I, VF);
7385 }
7386 
7387 LoopVectorizationCostModel::VectorizationCostTy
7388 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7389                                                ElementCount VF) {
7390   // If we know that this instruction will remain uniform, check the cost of
7391   // the scalar version.
7392   if (isUniformAfterVectorization(I, VF))
7393     VF = ElementCount::getFixed(1);
7394 
7395   if (VF.isVector() && isProfitableToScalarize(I, VF))
7396     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7397 
7398   // Forced scalars do not have any scalarization overhead.
7399   auto ForcedScalar = ForcedScalars.find(VF);
7400   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7401     auto InstSet = ForcedScalar->second;
7402     if (InstSet.count(I))
7403       return VectorizationCostTy(
7404           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7405            VF.getKnownMinValue()),
7406           false);
7407   }
7408 
7409   Type *VectorTy;
7410   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7411 
7412   bool TypeNotScalarized =
7413       VF.isVector() && VectorTy->isVectorTy() &&
7414       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7415   return VectorizationCostTy(C, TypeNotScalarized);
7416 }
7417 
7418 InstructionCost
7419 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7420                                                      ElementCount VF) const {
7421 
7422   // There is no mechanism yet to create a scalable scalarization loop,
7423   // so this is currently Invalid.
7424   if (VF.isScalable())
7425     return InstructionCost::getInvalid();
7426 
7427   if (VF.isScalar())
7428     return 0;
7429 
7430   InstructionCost Cost = 0;
7431   Type *RetTy = ToVectorTy(I->getType(), VF);
7432   if (!RetTy->isVoidTy() &&
7433       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7434     Cost += TTI.getScalarizationOverhead(
7435         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7436         false);
7437 
7438   // Some targets keep addresses scalar.
7439   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7440     return Cost;
7441 
7442   // Some targets support efficient element stores.
7443   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7444     return Cost;
7445 
7446   // Collect operands to consider.
7447   CallInst *CI = dyn_cast<CallInst>(I);
7448   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7449 
7450   // Skip operands that do not require extraction/scalarization and do not incur
7451   // any overhead.
7452   SmallVector<Type *> Tys;
7453   for (auto *V : filterExtractingOperands(Ops, VF))
7454     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7455   return Cost + TTI.getOperandsScalarizationOverhead(
7456                     filterExtractingOperands(Ops, VF), Tys);
7457 }
7458 
7459 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7460   if (VF.isScalar())
7461     return;
7462   NumPredStores = 0;
7463   for (BasicBlock *BB : TheLoop->blocks()) {
7464     // For each instruction in the old loop.
7465     for (Instruction &I : *BB) {
7466       Value *Ptr =  getLoadStorePointerOperand(&I);
7467       if (!Ptr)
7468         continue;
7469 
7470       // TODO: We should generate better code and update the cost model for
7471       // predicated uniform stores. Today they are treated as any other
7472       // predicated store (see added test cases in
7473       // invariant-store-vectorization.ll).
7474       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7475         NumPredStores++;
7476 
7477       if (Legal->isUniformMemOp(I)) {
7478         // TODO: Avoid replicating loads and stores instead of
7479         // relying on instcombine to remove them.
7480         // Load: Scalar load + broadcast
7481         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7482         InstructionCost Cost;
7483         if (isa<StoreInst>(&I) && VF.isScalable() &&
7484             isLegalGatherOrScatter(&I)) {
7485           Cost = getGatherScatterCost(&I, VF);
7486           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7487         } else {
7488           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7489                  "Cannot yet scalarize uniform stores");
7490           Cost = getUniformMemOpCost(&I, VF);
7491           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7492         }
7493         continue;
7494       }
7495 
7496       // We assume that widening is the best solution when possible.
7497       if (memoryInstructionCanBeWidened(&I, VF)) {
7498         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7499         int ConsecutiveStride = Legal->isConsecutivePtr(
7500             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7501         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7502                "Expected consecutive stride.");
7503         InstWidening Decision =
7504             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7505         setWideningDecision(&I, VF, Decision, Cost);
7506         continue;
7507       }
7508 
7509       // Choose between Interleaving, Gather/Scatter or Scalarization.
7510       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7511       unsigned NumAccesses = 1;
7512       if (isAccessInterleaved(&I)) {
7513         auto Group = getInterleavedAccessGroup(&I);
7514         assert(Group && "Fail to get an interleaved access group.");
7515 
7516         // Make one decision for the whole group.
7517         if (getWideningDecision(&I, VF) != CM_Unknown)
7518           continue;
7519 
7520         NumAccesses = Group->getNumMembers();
7521         if (interleavedAccessCanBeWidened(&I, VF))
7522           InterleaveCost = getInterleaveGroupCost(&I, VF);
7523       }
7524 
7525       InstructionCost GatherScatterCost =
7526           isLegalGatherOrScatter(&I)
7527               ? getGatherScatterCost(&I, VF) * NumAccesses
7528               : InstructionCost::getInvalid();
7529 
7530       InstructionCost ScalarizationCost =
7531           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7532 
7533       // Choose better solution for the current VF,
7534       // write down this decision and use it during vectorization.
7535       InstructionCost Cost;
7536       InstWidening Decision;
7537       if (InterleaveCost <= GatherScatterCost &&
7538           InterleaveCost < ScalarizationCost) {
7539         Decision = CM_Interleave;
7540         Cost = InterleaveCost;
7541       } else if (GatherScatterCost < ScalarizationCost) {
7542         Decision = CM_GatherScatter;
7543         Cost = GatherScatterCost;
7544       } else {
7545         Decision = CM_Scalarize;
7546         Cost = ScalarizationCost;
7547       }
7548       // If the instructions belongs to an interleave group, the whole group
7549       // receives the same decision. The whole group receives the cost, but
7550       // the cost will actually be assigned to one instruction.
7551       if (auto Group = getInterleavedAccessGroup(&I))
7552         setWideningDecision(Group, VF, Decision, Cost);
7553       else
7554         setWideningDecision(&I, VF, Decision, Cost);
7555     }
7556   }
7557 
7558   // Make sure that any load of address and any other address computation
7559   // remains scalar unless there is gather/scatter support. This avoids
7560   // inevitable extracts into address registers, and also has the benefit of
7561   // activating LSR more, since that pass can't optimize vectorized
7562   // addresses.
7563   if (TTI.prefersVectorizedAddressing())
7564     return;
7565 
7566   // Start with all scalar pointer uses.
7567   SmallPtrSet<Instruction *, 8> AddrDefs;
7568   for (BasicBlock *BB : TheLoop->blocks())
7569     for (Instruction &I : *BB) {
7570       Instruction *PtrDef =
7571         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7572       if (PtrDef && TheLoop->contains(PtrDef) &&
7573           getWideningDecision(&I, VF) != CM_GatherScatter)
7574         AddrDefs.insert(PtrDef);
7575     }
7576 
7577   // Add all instructions used to generate the addresses.
7578   SmallVector<Instruction *, 4> Worklist;
7579   append_range(Worklist, AddrDefs);
7580   while (!Worklist.empty()) {
7581     Instruction *I = Worklist.pop_back_val();
7582     for (auto &Op : I->operands())
7583       if (auto *InstOp = dyn_cast<Instruction>(Op))
7584         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7585             AddrDefs.insert(InstOp).second)
7586           Worklist.push_back(InstOp);
7587   }
7588 
7589   for (auto *I : AddrDefs) {
7590     if (isa<LoadInst>(I)) {
7591       // Setting the desired widening decision should ideally be handled in
7592       // by cost functions, but since this involves the task of finding out
7593       // if the loaded register is involved in an address computation, it is
7594       // instead changed here when we know this is the case.
7595       InstWidening Decision = getWideningDecision(I, VF);
7596       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7597         // Scalarize a widened load of address.
7598         setWideningDecision(
7599             I, VF, CM_Scalarize,
7600             (VF.getKnownMinValue() *
7601              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7602       else if (auto Group = getInterleavedAccessGroup(I)) {
7603         // Scalarize an interleave group of address loads.
7604         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7605           if (Instruction *Member = Group->getMember(I))
7606             setWideningDecision(
7607                 Member, VF, CM_Scalarize,
7608                 (VF.getKnownMinValue() *
7609                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7610         }
7611       }
7612     } else
7613       // Make sure I gets scalarized and a cost estimate without
7614       // scalarization overhead.
7615       ForcedScalars[VF].insert(I);
7616   }
7617 }
7618 
7619 InstructionCost
7620 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7621                                                Type *&VectorTy) {
7622   Type *RetTy = I->getType();
7623   if (canTruncateToMinimalBitwidth(I, VF))
7624     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7625   auto SE = PSE.getSE();
7626   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7627 
7628   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7629                                                 ElementCount VF) -> bool {
7630     if (VF.isScalar())
7631       return true;
7632 
7633     auto Scalarized = InstsToScalarize.find(VF);
7634     assert(Scalarized != InstsToScalarize.end() &&
7635            "VF not yet analyzed for scalarization profitability");
7636     return !Scalarized->second.count(I) &&
7637            llvm::all_of(I->users(), [&](User *U) {
7638              auto *UI = cast<Instruction>(U);
7639              return !Scalarized->second.count(UI);
7640            });
7641   };
7642   (void) hasSingleCopyAfterVectorization;
7643 
7644   if (isScalarAfterVectorization(I, VF)) {
7645     // With the exception of GEPs and PHIs, after scalarization there should
7646     // only be one copy of the instruction generated in the loop. This is
7647     // because the VF is either 1, or any instructions that need scalarizing
7648     // have already been dealt with by the the time we get here. As a result,
7649     // it means we don't have to multiply the instruction cost by VF.
7650     assert(I->getOpcode() == Instruction::GetElementPtr ||
7651            I->getOpcode() == Instruction::PHI ||
7652            (I->getOpcode() == Instruction::BitCast &&
7653             I->getType()->isPointerTy()) ||
7654            hasSingleCopyAfterVectorization(I, VF));
7655     VectorTy = RetTy;
7656   } else
7657     VectorTy = ToVectorTy(RetTy, VF);
7658 
7659   // TODO: We need to estimate the cost of intrinsic calls.
7660   switch (I->getOpcode()) {
7661   case Instruction::GetElementPtr:
7662     // We mark this instruction as zero-cost because the cost of GEPs in
7663     // vectorized code depends on whether the corresponding memory instruction
7664     // is scalarized or not. Therefore, we handle GEPs with the memory
7665     // instruction cost.
7666     return 0;
7667   case Instruction::Br: {
7668     // In cases of scalarized and predicated instructions, there will be VF
7669     // predicated blocks in the vectorized loop. Each branch around these
7670     // blocks requires also an extract of its vector compare i1 element.
7671     bool ScalarPredicatedBB = false;
7672     BranchInst *BI = cast<BranchInst>(I);
7673     if (VF.isVector() && BI->isConditional() &&
7674         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7675          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7676       ScalarPredicatedBB = true;
7677 
7678     if (ScalarPredicatedBB) {
7679       // Not possible to scalarize scalable vector with predicated instructions.
7680       if (VF.isScalable())
7681         return InstructionCost::getInvalid();
7682       // Return cost for branches around scalarized and predicated blocks.
7683       auto *Vec_i1Ty =
7684           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7685       return (
7686           TTI.getScalarizationOverhead(
7687               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7688           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7689     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7690       // The back-edge branch will remain, as will all scalar branches.
7691       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7692     else
7693       // This branch will be eliminated by if-conversion.
7694       return 0;
7695     // Note: We currently assume zero cost for an unconditional branch inside
7696     // a predicated block since it will become a fall-through, although we
7697     // may decide in the future to call TTI for all branches.
7698   }
7699   case Instruction::PHI: {
7700     auto *Phi = cast<PHINode>(I);
7701 
7702     // First-order recurrences are replaced by vector shuffles inside the loop.
7703     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7704     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7705       return TTI.getShuffleCost(
7706           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7707           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7708 
7709     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7710     // converted into select instructions. We require N - 1 selects per phi
7711     // node, where N is the number of incoming values.
7712     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7713       return (Phi->getNumIncomingValues() - 1) *
7714              TTI.getCmpSelInstrCost(
7715                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7716                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7717                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7718 
7719     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7720   }
7721   case Instruction::UDiv:
7722   case Instruction::SDiv:
7723   case Instruction::URem:
7724   case Instruction::SRem:
7725     // If we have a predicated instruction, it may not be executed for each
7726     // vector lane. Get the scalarization cost and scale this amount by the
7727     // probability of executing the predicated block. If the instruction is not
7728     // predicated, we fall through to the next case.
7729     if (VF.isVector() && isScalarWithPredication(I)) {
7730       InstructionCost Cost = 0;
7731 
7732       // These instructions have a non-void type, so account for the phi nodes
7733       // that we will create. This cost is likely to be zero. The phi node
7734       // cost, if any, should be scaled by the block probability because it
7735       // models a copy at the end of each predicated block.
7736       Cost += VF.getKnownMinValue() *
7737               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7738 
7739       // The cost of the non-predicated instruction.
7740       Cost += VF.getKnownMinValue() *
7741               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7742 
7743       // The cost of insertelement and extractelement instructions needed for
7744       // scalarization.
7745       Cost += getScalarizationOverhead(I, VF);
7746 
7747       // Scale the cost by the probability of executing the predicated blocks.
7748       // This assumes the predicated block for each vector lane is equally
7749       // likely.
7750       return Cost / getReciprocalPredBlockProb();
7751     }
7752     LLVM_FALLTHROUGH;
7753   case Instruction::Add:
7754   case Instruction::FAdd:
7755   case Instruction::Sub:
7756   case Instruction::FSub:
7757   case Instruction::Mul:
7758   case Instruction::FMul:
7759   case Instruction::FDiv:
7760   case Instruction::FRem:
7761   case Instruction::Shl:
7762   case Instruction::LShr:
7763   case Instruction::AShr:
7764   case Instruction::And:
7765   case Instruction::Or:
7766   case Instruction::Xor: {
7767     // Since we will replace the stride by 1 the multiplication should go away.
7768     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7769       return 0;
7770 
7771     // Detect reduction patterns
7772     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7773       return *RedCost;
7774 
7775     // Certain instructions can be cheaper to vectorize if they have a constant
7776     // second vector operand. One example of this are shifts on x86.
7777     Value *Op2 = I->getOperand(1);
7778     TargetTransformInfo::OperandValueProperties Op2VP;
7779     TargetTransformInfo::OperandValueKind Op2VK =
7780         TTI.getOperandInfo(Op2, Op2VP);
7781     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7782       Op2VK = TargetTransformInfo::OK_UniformValue;
7783 
7784     SmallVector<const Value *, 4> Operands(I->operand_values());
7785     return TTI.getArithmeticInstrCost(
7786         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7787         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7788   }
7789   case Instruction::FNeg: {
7790     return TTI.getArithmeticInstrCost(
7791         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7792         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7793         TargetTransformInfo::OP_None, I->getOperand(0), I);
7794   }
7795   case Instruction::Select: {
7796     SelectInst *SI = cast<SelectInst>(I);
7797     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7798     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7799 
7800     const Value *Op0, *Op1;
7801     using namespace llvm::PatternMatch;
7802     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7803                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7804       // select x, y, false --> x & y
7805       // select x, true, y --> x | y
7806       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7807       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7808       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7809       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7810       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7811               Op1->getType()->getScalarSizeInBits() == 1);
7812 
7813       SmallVector<const Value *, 2> Operands{Op0, Op1};
7814       return TTI.getArithmeticInstrCost(
7815           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7816           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7817     }
7818 
7819     Type *CondTy = SI->getCondition()->getType();
7820     if (!ScalarCond)
7821       CondTy = VectorType::get(CondTy, VF);
7822     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7823                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7824   }
7825   case Instruction::ICmp:
7826   case Instruction::FCmp: {
7827     Type *ValTy = I->getOperand(0)->getType();
7828     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7829     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7830       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7831     VectorTy = ToVectorTy(ValTy, VF);
7832     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7833                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7834   }
7835   case Instruction::Store:
7836   case Instruction::Load: {
7837     ElementCount Width = VF;
7838     if (Width.isVector()) {
7839       InstWidening Decision = getWideningDecision(I, Width);
7840       assert(Decision != CM_Unknown &&
7841              "CM decision should be taken at this point");
7842       if (Decision == CM_Scalarize)
7843         Width = ElementCount::getFixed(1);
7844     }
7845     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7846     return getMemoryInstructionCost(I, VF);
7847   }
7848   case Instruction::BitCast:
7849     if (I->getType()->isPointerTy())
7850       return 0;
7851     LLVM_FALLTHROUGH;
7852   case Instruction::ZExt:
7853   case Instruction::SExt:
7854   case Instruction::FPToUI:
7855   case Instruction::FPToSI:
7856   case Instruction::FPExt:
7857   case Instruction::PtrToInt:
7858   case Instruction::IntToPtr:
7859   case Instruction::SIToFP:
7860   case Instruction::UIToFP:
7861   case Instruction::Trunc:
7862   case Instruction::FPTrunc: {
7863     // Computes the CastContextHint from a Load/Store instruction.
7864     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7865       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7866              "Expected a load or a store!");
7867 
7868       if (VF.isScalar() || !TheLoop->contains(I))
7869         return TTI::CastContextHint::Normal;
7870 
7871       switch (getWideningDecision(I, VF)) {
7872       case LoopVectorizationCostModel::CM_GatherScatter:
7873         return TTI::CastContextHint::GatherScatter;
7874       case LoopVectorizationCostModel::CM_Interleave:
7875         return TTI::CastContextHint::Interleave;
7876       case LoopVectorizationCostModel::CM_Scalarize:
7877       case LoopVectorizationCostModel::CM_Widen:
7878         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7879                                         : TTI::CastContextHint::Normal;
7880       case LoopVectorizationCostModel::CM_Widen_Reverse:
7881         return TTI::CastContextHint::Reversed;
7882       case LoopVectorizationCostModel::CM_Unknown:
7883         llvm_unreachable("Instr did not go through cost modelling?");
7884       }
7885 
7886       llvm_unreachable("Unhandled case!");
7887     };
7888 
7889     unsigned Opcode = I->getOpcode();
7890     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7891     // For Trunc, the context is the only user, which must be a StoreInst.
7892     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7893       if (I->hasOneUse())
7894         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7895           CCH = ComputeCCH(Store);
7896     }
7897     // For Z/Sext, the context is the operand, which must be a LoadInst.
7898     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7899              Opcode == Instruction::FPExt) {
7900       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7901         CCH = ComputeCCH(Load);
7902     }
7903 
7904     // We optimize the truncation of induction variables having constant
7905     // integer steps. The cost of these truncations is the same as the scalar
7906     // operation.
7907     if (isOptimizableIVTruncate(I, VF)) {
7908       auto *Trunc = cast<TruncInst>(I);
7909       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7910                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7911     }
7912 
7913     // Detect reduction patterns
7914     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7915       return *RedCost;
7916 
7917     Type *SrcScalarTy = I->getOperand(0)->getType();
7918     Type *SrcVecTy =
7919         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7920     if (canTruncateToMinimalBitwidth(I, VF)) {
7921       // This cast is going to be shrunk. This may remove the cast or it might
7922       // turn it into slightly different cast. For example, if MinBW == 16,
7923       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7924       //
7925       // Calculate the modified src and dest types.
7926       Type *MinVecTy = VectorTy;
7927       if (Opcode == Instruction::Trunc) {
7928         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7929         VectorTy =
7930             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7931       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7932         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7933         VectorTy =
7934             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7935       }
7936     }
7937 
7938     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7939   }
7940   case Instruction::Call: {
7941     bool NeedToScalarize;
7942     CallInst *CI = cast<CallInst>(I);
7943     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7944     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7945       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7946       return std::min(CallCost, IntrinsicCost);
7947     }
7948     return CallCost;
7949   }
7950   case Instruction::ExtractValue:
7951     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7952   case Instruction::Alloca:
7953     // We cannot easily widen alloca to a scalable alloca, as
7954     // the result would need to be a vector of pointers.
7955     if (VF.isScalable())
7956       return InstructionCost::getInvalid();
7957     LLVM_FALLTHROUGH;
7958   default:
7959     // This opcode is unknown. Assume that it is the same as 'mul'.
7960     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7961   } // end of switch.
7962 }
7963 
7964 char LoopVectorize::ID = 0;
7965 
7966 static const char lv_name[] = "Loop Vectorization";
7967 
7968 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7969 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7970 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7971 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7972 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7973 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7974 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7975 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7976 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7977 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7978 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7979 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7980 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7981 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7982 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7983 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7984 
7985 namespace llvm {
7986 
7987 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7988 
7989 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7990                               bool VectorizeOnlyWhenForced) {
7991   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7992 }
7993 
7994 } // end namespace llvm
7995 
7996 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7997   // Check if the pointer operand of a load or store instruction is
7998   // consecutive.
7999   if (auto *Ptr = getLoadStorePointerOperand(Inst))
8000     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
8001   return false;
8002 }
8003 
8004 void LoopVectorizationCostModel::collectValuesToIgnore() {
8005   // Ignore ephemeral values.
8006   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8007 
8008   // Ignore type-promoting instructions we identified during reduction
8009   // detection.
8010   for (auto &Reduction : Legal->getReductionVars()) {
8011     RecurrenceDescriptor &RedDes = Reduction.second;
8012     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8013     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8014   }
8015   // Ignore type-casting instructions we identified during induction
8016   // detection.
8017   for (auto &Induction : Legal->getInductionVars()) {
8018     InductionDescriptor &IndDes = Induction.second;
8019     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8020     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8021   }
8022 }
8023 
8024 void LoopVectorizationCostModel::collectInLoopReductions() {
8025   for (auto &Reduction : Legal->getReductionVars()) {
8026     PHINode *Phi = Reduction.first;
8027     RecurrenceDescriptor &RdxDesc = Reduction.second;
8028 
8029     // We don't collect reductions that are type promoted (yet).
8030     if (RdxDesc.getRecurrenceType() != Phi->getType())
8031       continue;
8032 
8033     // If the target would prefer this reduction to happen "in-loop", then we
8034     // want to record it as such.
8035     unsigned Opcode = RdxDesc.getOpcode();
8036     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8037         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8038                                    TargetTransformInfo::ReductionFlags()))
8039       continue;
8040 
8041     // Check that we can correctly put the reductions into the loop, by
8042     // finding the chain of operations that leads from the phi to the loop
8043     // exit value.
8044     SmallVector<Instruction *, 4> ReductionOperations =
8045         RdxDesc.getReductionOpChain(Phi, TheLoop);
8046     bool InLoop = !ReductionOperations.empty();
8047     if (InLoop) {
8048       InLoopReductionChains[Phi] = ReductionOperations;
8049       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8050       Instruction *LastChain = Phi;
8051       for (auto *I : ReductionOperations) {
8052         InLoopReductionImmediateChains[I] = LastChain;
8053         LastChain = I;
8054       }
8055     }
8056     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8057                       << " reduction for phi: " << *Phi << "\n");
8058   }
8059 }
8060 
8061 // TODO: we could return a pair of values that specify the max VF and
8062 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8063 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8064 // doesn't have a cost model that can choose which plan to execute if
8065 // more than one is generated.
8066 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8067                                  LoopVectorizationCostModel &CM) {
8068   unsigned WidestType;
8069   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8070   return WidestVectorRegBits / WidestType;
8071 }
8072 
8073 VectorizationFactor
8074 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8075   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8076   ElementCount VF = UserVF;
8077   // Outer loop handling: They may require CFG and instruction level
8078   // transformations before even evaluating whether vectorization is profitable.
8079   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8080   // the vectorization pipeline.
8081   if (!OrigLoop->isInnermost()) {
8082     // If the user doesn't provide a vectorization factor, determine a
8083     // reasonable one.
8084     if (UserVF.isZero()) {
8085       VF = ElementCount::getFixed(determineVPlanVF(
8086           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8087               .getFixedSize(),
8088           CM));
8089       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8090 
8091       // Make sure we have a VF > 1 for stress testing.
8092       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8093         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8094                           << "overriding computed VF.\n");
8095         VF = ElementCount::getFixed(4);
8096       }
8097     }
8098     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8099     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8100            "VF needs to be a power of two");
8101     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8102                       << "VF " << VF << " to build VPlans.\n");
8103     buildVPlans(VF, VF);
8104 
8105     // For VPlan build stress testing, we bail out after VPlan construction.
8106     if (VPlanBuildStressTest)
8107       return VectorizationFactor::Disabled();
8108 
8109     return {VF, 0 /*Cost*/};
8110   }
8111 
8112   LLVM_DEBUG(
8113       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8114                 "VPlan-native path.\n");
8115   return VectorizationFactor::Disabled();
8116 }
8117 
8118 Optional<VectorizationFactor>
8119 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8120   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8121   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8122   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8123     return None;
8124 
8125   // Invalidate interleave groups if all blocks of loop will be predicated.
8126   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8127       !useMaskedInterleavedAccesses(*TTI)) {
8128     LLVM_DEBUG(
8129         dbgs()
8130         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8131            "which requires masked-interleaved support.\n");
8132     if (CM.InterleaveInfo.invalidateGroups())
8133       // Invalidating interleave groups also requires invalidating all decisions
8134       // based on them, which includes widening decisions and uniform and scalar
8135       // values.
8136       CM.invalidateCostModelingDecisions();
8137   }
8138 
8139   ElementCount MaxUserVF =
8140       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8141   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8142   if (!UserVF.isZero() && UserVFIsLegal) {
8143     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8144            "VF needs to be a power of two");
8145     // Collect the instructions (and their associated costs) that will be more
8146     // profitable to scalarize.
8147     if (CM.selectUserVectorizationFactor(UserVF)) {
8148       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8149       CM.collectInLoopReductions();
8150       buildVPlansWithVPRecipes(UserVF, UserVF);
8151       LLVM_DEBUG(printPlans(dbgs()));
8152       return {{UserVF, 0}};
8153     } else
8154       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8155                               "InvalidCost", ORE, OrigLoop);
8156   }
8157 
8158   // Populate the set of Vectorization Factor Candidates.
8159   ElementCountSet VFCandidates;
8160   for (auto VF = ElementCount::getFixed(1);
8161        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8162     VFCandidates.insert(VF);
8163   for (auto VF = ElementCount::getScalable(1);
8164        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8165     VFCandidates.insert(VF);
8166 
8167   for (const auto &VF : VFCandidates) {
8168     // Collect Uniform and Scalar instructions after vectorization with VF.
8169     CM.collectUniformsAndScalars(VF);
8170 
8171     // Collect the instructions (and their associated costs) that will be more
8172     // profitable to scalarize.
8173     if (VF.isVector())
8174       CM.collectInstsToScalarize(VF);
8175   }
8176 
8177   CM.collectInLoopReductions();
8178   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8179   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8180 
8181   LLVM_DEBUG(printPlans(dbgs()));
8182   if (!MaxFactors.hasVector())
8183     return VectorizationFactor::Disabled();
8184 
8185   // Select the optimal vectorization factor.
8186   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8187 
8188   // Check if it is profitable to vectorize with runtime checks.
8189   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8190   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8191     bool PragmaThresholdReached =
8192         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8193     bool ThresholdReached =
8194         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8195     if ((ThresholdReached && !Hints.allowReordering()) ||
8196         PragmaThresholdReached) {
8197       ORE->emit([&]() {
8198         return OptimizationRemarkAnalysisAliasing(
8199                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8200                    OrigLoop->getHeader())
8201                << "loop not vectorized: cannot prove it is safe to reorder "
8202                   "memory operations";
8203       });
8204       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8205       Hints.emitRemarkWithHints();
8206       return VectorizationFactor::Disabled();
8207     }
8208   }
8209   return SelectedVF;
8210 }
8211 
8212 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8213   assert(count_if(VPlans,
8214                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8215              1 &&
8216          "Best VF has not a single VPlan.");
8217 
8218   for (const VPlanPtr &Plan : VPlans) {
8219     if (Plan->hasVF(VF))
8220       return *Plan.get();
8221   }
8222   llvm_unreachable("No plan found!");
8223 }
8224 
8225 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8226                                            VPlan &BestVPlan,
8227                                            InnerLoopVectorizer &ILV,
8228                                            DominatorTree *DT) {
8229   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8230                     << '\n');
8231 
8232   // Perform the actual loop transformation.
8233 
8234   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8235   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8236   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8237   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8238   State.CanonicalIV = ILV.Induction;
8239 
8240   ILV.printDebugTracesAtStart();
8241 
8242   //===------------------------------------------------===//
8243   //
8244   // Notice: any optimization or new instruction that go
8245   // into the code below should also be implemented in
8246   // the cost-model.
8247   //
8248   //===------------------------------------------------===//
8249 
8250   // 2. Copy and widen instructions from the old loop into the new loop.
8251   BestVPlan.execute(&State);
8252 
8253   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8254   //    predication, updating analyses.
8255   ILV.fixVectorizedLoop(State);
8256 
8257   ILV.printDebugTracesAtEnd();
8258 }
8259 
8260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8261 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8262   for (const auto &Plan : VPlans)
8263     if (PrintVPlansInDotFormat)
8264       Plan->printDOT(O);
8265     else
8266       Plan->print(O);
8267 }
8268 #endif
8269 
8270 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8271     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8272 
8273   // We create new control-flow for the vectorized loop, so the original exit
8274   // conditions will be dead after vectorization if it's only used by the
8275   // terminator
8276   SmallVector<BasicBlock*> ExitingBlocks;
8277   OrigLoop->getExitingBlocks(ExitingBlocks);
8278   for (auto *BB : ExitingBlocks) {
8279     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8280     if (!Cmp || !Cmp->hasOneUse())
8281       continue;
8282 
8283     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8284     if (!DeadInstructions.insert(Cmp).second)
8285       continue;
8286 
8287     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8288     // TODO: can recurse through operands in general
8289     for (Value *Op : Cmp->operands()) {
8290       if (isa<TruncInst>(Op) && Op->hasOneUse())
8291           DeadInstructions.insert(cast<Instruction>(Op));
8292     }
8293   }
8294 
8295   // We create new "steps" for induction variable updates to which the original
8296   // induction variables map. An original update instruction will be dead if
8297   // all its users except the induction variable are dead.
8298   auto *Latch = OrigLoop->getLoopLatch();
8299   for (auto &Induction : Legal->getInductionVars()) {
8300     PHINode *Ind = Induction.first;
8301     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8302 
8303     // If the tail is to be folded by masking, the primary induction variable,
8304     // if exists, isn't dead: it will be used for masking. Don't kill it.
8305     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8306       continue;
8307 
8308     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8309           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8310         }))
8311       DeadInstructions.insert(IndUpdate);
8312 
8313     // We record as "Dead" also the type-casting instructions we had identified
8314     // during induction analysis. We don't need any handling for them in the
8315     // vectorized loop because we have proven that, under a proper runtime
8316     // test guarding the vectorized loop, the value of the phi, and the casted
8317     // value of the phi, are the same. The last instruction in this casting chain
8318     // will get its scalar/vector/widened def from the scalar/vector/widened def
8319     // of the respective phi node. Any other casts in the induction def-use chain
8320     // have no other uses outside the phi update chain, and will be ignored.
8321     InductionDescriptor &IndDes = Induction.second;
8322     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8323     DeadInstructions.insert(Casts.begin(), Casts.end());
8324   }
8325 }
8326 
8327 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8328 
8329 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8330 
8331 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8332                                         Value *Step,
8333                                         Instruction::BinaryOps BinOp) {
8334   // When unrolling and the VF is 1, we only need to add a simple scalar.
8335   Type *Ty = Val->getType();
8336   assert(!Ty->isVectorTy() && "Val must be a scalar");
8337 
8338   if (Ty->isFloatingPointTy()) {
8339     // Floating-point operations inherit FMF via the builder's flags.
8340     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8341     return Builder.CreateBinOp(BinOp, Val, MulOp);
8342   }
8343   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8344 }
8345 
8346 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8347   SmallVector<Metadata *, 4> MDs;
8348   // Reserve first location for self reference to the LoopID metadata node.
8349   MDs.push_back(nullptr);
8350   bool IsUnrollMetadata = false;
8351   MDNode *LoopID = L->getLoopID();
8352   if (LoopID) {
8353     // First find existing loop unrolling disable metadata.
8354     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8355       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8356       if (MD) {
8357         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8358         IsUnrollMetadata =
8359             S && S->getString().startswith("llvm.loop.unroll.disable");
8360       }
8361       MDs.push_back(LoopID->getOperand(i));
8362     }
8363   }
8364 
8365   if (!IsUnrollMetadata) {
8366     // Add runtime unroll disable metadata.
8367     LLVMContext &Context = L->getHeader()->getContext();
8368     SmallVector<Metadata *, 1> DisableOperands;
8369     DisableOperands.push_back(
8370         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8371     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8372     MDs.push_back(DisableNode);
8373     MDNode *NewLoopID = MDNode::get(Context, MDs);
8374     // Set operand 0 to refer to the loop id itself.
8375     NewLoopID->replaceOperandWith(0, NewLoopID);
8376     L->setLoopID(NewLoopID);
8377   }
8378 }
8379 
8380 //===--------------------------------------------------------------------===//
8381 // EpilogueVectorizerMainLoop
8382 //===--------------------------------------------------------------------===//
8383 
8384 /// This function is partially responsible for generating the control flow
8385 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8386 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8387   MDNode *OrigLoopID = OrigLoop->getLoopID();
8388   Loop *Lp = createVectorLoopSkeleton("");
8389 
8390   // Generate the code to check the minimum iteration count of the vector
8391   // epilogue (see below).
8392   EPI.EpilogueIterationCountCheck =
8393       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8394   EPI.EpilogueIterationCountCheck->setName("iter.check");
8395 
8396   // Generate the code to check any assumptions that we've made for SCEV
8397   // expressions.
8398   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8399 
8400   // Generate the code that checks at runtime if arrays overlap. We put the
8401   // checks into a separate block to make the more common case of few elements
8402   // faster.
8403   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8404 
8405   // Generate the iteration count check for the main loop, *after* the check
8406   // for the epilogue loop, so that the path-length is shorter for the case
8407   // that goes directly through the vector epilogue. The longer-path length for
8408   // the main loop is compensated for, by the gain from vectorizing the larger
8409   // trip count. Note: the branch will get updated later on when we vectorize
8410   // the epilogue.
8411   EPI.MainLoopIterationCountCheck =
8412       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8413 
8414   // Generate the induction variable.
8415   OldInduction = Legal->getPrimaryInduction();
8416   Type *IdxTy = Legal->getWidestInductionType();
8417   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8418   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8419   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8420   EPI.VectorTripCount = CountRoundDown;
8421   Induction =
8422       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8423                               getDebugLocFromInstOrOperands(OldInduction));
8424 
8425   // Skip induction resume value creation here because they will be created in
8426   // the second pass. If we created them here, they wouldn't be used anyway,
8427   // because the vplan in the second pass still contains the inductions from the
8428   // original loop.
8429 
8430   return completeLoopSkeleton(Lp, OrigLoopID);
8431 }
8432 
8433 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8434   LLVM_DEBUG({
8435     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8436            << "Main Loop VF:" << EPI.MainLoopVF
8437            << ", Main Loop UF:" << EPI.MainLoopUF
8438            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8439            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8440   });
8441 }
8442 
8443 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8444   DEBUG_WITH_TYPE(VerboseDebug, {
8445     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8446   });
8447 }
8448 
8449 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8450     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8451   assert(L && "Expected valid Loop.");
8452   assert(Bypass && "Expected valid bypass basic block.");
8453   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8454   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8455   Value *Count = getOrCreateTripCount(L);
8456   // Reuse existing vector loop preheader for TC checks.
8457   // Note that new preheader block is generated for vector loop.
8458   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8459   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8460 
8461   // Generate code to check if the loop's trip count is less than VF * UF of the
8462   // main vector loop.
8463   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8464       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8465 
8466   Value *CheckMinIters = Builder.CreateICmp(
8467       P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor),
8468       "min.iters.check");
8469 
8470   if (!ForEpilogue)
8471     TCCheckBlock->setName("vector.main.loop.iter.check");
8472 
8473   // Create new preheader for vector loop.
8474   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8475                                    DT, LI, nullptr, "vector.ph");
8476 
8477   if (ForEpilogue) {
8478     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8479                                  DT->getNode(Bypass)->getIDom()) &&
8480            "TC check is expected to dominate Bypass");
8481 
8482     // Update dominator for Bypass & LoopExit.
8483     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8484     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8485       // For loops with multiple exits, there's no edge from the middle block
8486       // to exit blocks (as the epilogue must run) and thus no need to update
8487       // the immediate dominator of the exit blocks.
8488       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8489 
8490     LoopBypassBlocks.push_back(TCCheckBlock);
8491 
8492     // Save the trip count so we don't have to regenerate it in the
8493     // vec.epilog.iter.check. This is safe to do because the trip count
8494     // generated here dominates the vector epilog iter check.
8495     EPI.TripCount = Count;
8496   }
8497 
8498   ReplaceInstWithInst(
8499       TCCheckBlock->getTerminator(),
8500       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8501 
8502   return TCCheckBlock;
8503 }
8504 
8505 //===--------------------------------------------------------------------===//
8506 // EpilogueVectorizerEpilogueLoop
8507 //===--------------------------------------------------------------------===//
8508 
8509 /// This function is partially responsible for generating the control flow
8510 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8511 BasicBlock *
8512 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8513   MDNode *OrigLoopID = OrigLoop->getLoopID();
8514   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8515 
8516   // Now, compare the remaining count and if there aren't enough iterations to
8517   // execute the vectorized epilogue skip to the scalar part.
8518   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8519   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8520   LoopVectorPreHeader =
8521       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8522                  LI, nullptr, "vec.epilog.ph");
8523   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8524                                           VecEpilogueIterationCountCheck);
8525 
8526   // Adjust the control flow taking the state info from the main loop
8527   // vectorization into account.
8528   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8529          "expected this to be saved from the previous pass.");
8530   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8531       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8532 
8533   DT->changeImmediateDominator(LoopVectorPreHeader,
8534                                EPI.MainLoopIterationCountCheck);
8535 
8536   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8537       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8538 
8539   if (EPI.SCEVSafetyCheck)
8540     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8541         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8542   if (EPI.MemSafetyCheck)
8543     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8544         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8545 
8546   DT->changeImmediateDominator(
8547       VecEpilogueIterationCountCheck,
8548       VecEpilogueIterationCountCheck->getSinglePredecessor());
8549 
8550   DT->changeImmediateDominator(LoopScalarPreHeader,
8551                                EPI.EpilogueIterationCountCheck);
8552   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8553     // If there is an epilogue which must run, there's no edge from the
8554     // middle block to exit blocks  and thus no need to update the immediate
8555     // dominator of the exit blocks.
8556     DT->changeImmediateDominator(LoopExitBlock,
8557                                  EPI.EpilogueIterationCountCheck);
8558 
8559   // Keep track of bypass blocks, as they feed start values to the induction
8560   // phis in the scalar loop preheader.
8561   if (EPI.SCEVSafetyCheck)
8562     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8563   if (EPI.MemSafetyCheck)
8564     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8565   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8566 
8567   // Generate a resume induction for the vector epilogue and put it in the
8568   // vector epilogue preheader
8569   Type *IdxTy = Legal->getWidestInductionType();
8570   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8571                                          LoopVectorPreHeader->getFirstNonPHI());
8572   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8573   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8574                            EPI.MainLoopIterationCountCheck);
8575 
8576   // Generate the induction variable.
8577   OldInduction = Legal->getPrimaryInduction();
8578   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8579   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8580   Value *StartIdx = EPResumeVal;
8581   Induction =
8582       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8583                               getDebugLocFromInstOrOperands(OldInduction));
8584 
8585   // Generate induction resume values. These variables save the new starting
8586   // indexes for the scalar loop. They are used to test if there are any tail
8587   // iterations left once the vector loop has completed.
8588   // Note that when the vectorized epilogue is skipped due to iteration count
8589   // check, then the resume value for the induction variable comes from
8590   // the trip count of the main vector loop, hence passing the AdditionalBypass
8591   // argument.
8592   createInductionResumeValues(Lp, CountRoundDown,
8593                               {VecEpilogueIterationCountCheck,
8594                                EPI.VectorTripCount} /* AdditionalBypass */);
8595 
8596   AddRuntimeUnrollDisableMetaData(Lp);
8597   return completeLoopSkeleton(Lp, OrigLoopID);
8598 }
8599 
8600 BasicBlock *
8601 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8602     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8603 
8604   assert(EPI.TripCount &&
8605          "Expected trip count to have been safed in the first pass.");
8606   assert(
8607       (!isa<Instruction>(EPI.TripCount) ||
8608        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8609       "saved trip count does not dominate insertion point.");
8610   Value *TC = EPI.TripCount;
8611   IRBuilder<> Builder(Insert->getTerminator());
8612   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8613 
8614   // Generate code to check if the loop's trip count is less than VF * UF of the
8615   // vector epilogue loop.
8616   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8617       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8618 
8619   Value *CheckMinIters = Builder.CreateICmp(
8620       P, Count,
8621       getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF),
8622       "min.epilog.iters.check");
8623 
8624   ReplaceInstWithInst(
8625       Insert->getTerminator(),
8626       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8627 
8628   LoopBypassBlocks.push_back(Insert);
8629   return Insert;
8630 }
8631 
8632 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8633   LLVM_DEBUG({
8634     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8635            << "Epilogue Loop VF:" << EPI.EpilogueVF
8636            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8637   });
8638 }
8639 
8640 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8641   DEBUG_WITH_TYPE(VerboseDebug, {
8642     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8643   });
8644 }
8645 
8646 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8647     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8648   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8649   bool PredicateAtRangeStart = Predicate(Range.Start);
8650 
8651   for (ElementCount TmpVF = Range.Start * 2;
8652        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8653     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8654       Range.End = TmpVF;
8655       break;
8656     }
8657 
8658   return PredicateAtRangeStart;
8659 }
8660 
8661 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8662 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8663 /// of VF's starting at a given VF and extending it as much as possible. Each
8664 /// vectorization decision can potentially shorten this sub-range during
8665 /// buildVPlan().
8666 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8667                                            ElementCount MaxVF) {
8668   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8669   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8670     VFRange SubRange = {VF, MaxVFPlusOne};
8671     VPlans.push_back(buildVPlan(SubRange));
8672     VF = SubRange.End;
8673   }
8674 }
8675 
8676 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8677                                          VPlanPtr &Plan) {
8678   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8679 
8680   // Look for cached value.
8681   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8682   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8683   if (ECEntryIt != EdgeMaskCache.end())
8684     return ECEntryIt->second;
8685 
8686   VPValue *SrcMask = createBlockInMask(Src, Plan);
8687 
8688   // The terminator has to be a branch inst!
8689   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8690   assert(BI && "Unexpected terminator found");
8691 
8692   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8693     return EdgeMaskCache[Edge] = SrcMask;
8694 
8695   // If source is an exiting block, we know the exit edge is dynamically dead
8696   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8697   // adding uses of an otherwise potentially dead instruction.
8698   if (OrigLoop->isLoopExiting(Src))
8699     return EdgeMaskCache[Edge] = SrcMask;
8700 
8701   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8702   assert(EdgeMask && "No Edge Mask found for condition");
8703 
8704   if (BI->getSuccessor(0) != Dst)
8705     EdgeMask = Builder.createNot(EdgeMask);
8706 
8707   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8708     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8709     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8710     // The select version does not introduce new UB if SrcMask is false and
8711     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8712     VPValue *False = Plan->getOrAddVPValue(
8713         ConstantInt::getFalse(BI->getCondition()->getType()));
8714     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8715   }
8716 
8717   return EdgeMaskCache[Edge] = EdgeMask;
8718 }
8719 
8720 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8721   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8722 
8723   // Look for cached value.
8724   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8725   if (BCEntryIt != BlockMaskCache.end())
8726     return BCEntryIt->second;
8727 
8728   // All-one mask is modelled as no-mask following the convention for masked
8729   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8730   VPValue *BlockMask = nullptr;
8731 
8732   if (OrigLoop->getHeader() == BB) {
8733     if (!CM.blockNeedsPredication(BB))
8734       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8735 
8736     // Create the block in mask as the first non-phi instruction in the block.
8737     VPBuilder::InsertPointGuard Guard(Builder);
8738     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8739     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8740 
8741     // Introduce the early-exit compare IV <= BTC to form header block mask.
8742     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8743     // Start by constructing the desired canonical IV.
8744     VPValue *IV = nullptr;
8745     if (Legal->getPrimaryInduction())
8746       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8747     else {
8748       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8749       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8750       IV = IVRecipe->getVPSingleValue();
8751     }
8752     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8753     bool TailFolded = !CM.isScalarEpilogueAllowed();
8754 
8755     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8756       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8757       // as a second argument, we only pass the IV here and extract the
8758       // tripcount from the transform state where codegen of the VP instructions
8759       // happen.
8760       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8761     } else {
8762       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8763     }
8764     return BlockMaskCache[BB] = BlockMask;
8765   }
8766 
8767   // This is the block mask. We OR all incoming edges.
8768   for (auto *Predecessor : predecessors(BB)) {
8769     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8770     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8771       return BlockMaskCache[BB] = EdgeMask;
8772 
8773     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8774       BlockMask = EdgeMask;
8775       continue;
8776     }
8777 
8778     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8779   }
8780 
8781   return BlockMaskCache[BB] = BlockMask;
8782 }
8783 
8784 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8785                                                 ArrayRef<VPValue *> Operands,
8786                                                 VFRange &Range,
8787                                                 VPlanPtr &Plan) {
8788   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8789          "Must be called with either a load or store");
8790 
8791   auto willWiden = [&](ElementCount VF) -> bool {
8792     if (VF.isScalar())
8793       return false;
8794     LoopVectorizationCostModel::InstWidening Decision =
8795         CM.getWideningDecision(I, VF);
8796     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8797            "CM decision should be taken at this point.");
8798     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8799       return true;
8800     if (CM.isScalarAfterVectorization(I, VF) ||
8801         CM.isProfitableToScalarize(I, VF))
8802       return false;
8803     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8804   };
8805 
8806   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8807     return nullptr;
8808 
8809   VPValue *Mask = nullptr;
8810   if (Legal->isMaskRequired(I))
8811     Mask = createBlockInMask(I->getParent(), Plan);
8812 
8813   // Determine if the pointer operand of the access is either consecutive or
8814   // reverse consecutive.
8815   LoopVectorizationCostModel::InstWidening Decision =
8816       CM.getWideningDecision(I, Range.Start);
8817   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8818   bool Consecutive =
8819       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8820 
8821   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8822     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8823                                               Consecutive, Reverse);
8824 
8825   StoreInst *Store = cast<StoreInst>(I);
8826   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8827                                             Mask, Consecutive, Reverse);
8828 }
8829 
8830 VPWidenIntOrFpInductionRecipe *
8831 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8832                                            ArrayRef<VPValue *> Operands) const {
8833   // Check if this is an integer or fp induction. If so, build the recipe that
8834   // produces its scalar and vector values.
8835   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8836   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8837       II.getKind() == InductionDescriptor::IK_FpInduction) {
8838     assert(II.getStartValue() ==
8839            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8840     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8841     return new VPWidenIntOrFpInductionRecipe(
8842         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8843   }
8844 
8845   return nullptr;
8846 }
8847 
8848 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8849     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8850     VPlan &Plan) const {
8851   // Optimize the special case where the source is a constant integer
8852   // induction variable. Notice that we can only optimize the 'trunc' case
8853   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8854   // (c) other casts depend on pointer size.
8855 
8856   // Determine whether \p K is a truncation based on an induction variable that
8857   // can be optimized.
8858   auto isOptimizableIVTruncate =
8859       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8860     return [=](ElementCount VF) -> bool {
8861       return CM.isOptimizableIVTruncate(K, VF);
8862     };
8863   };
8864 
8865   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8866           isOptimizableIVTruncate(I), Range)) {
8867 
8868     InductionDescriptor II =
8869         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8870     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8871     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8872                                              Start, nullptr, I);
8873   }
8874   return nullptr;
8875 }
8876 
8877 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8878                                                 ArrayRef<VPValue *> Operands,
8879                                                 VPlanPtr &Plan) {
8880   // If all incoming values are equal, the incoming VPValue can be used directly
8881   // instead of creating a new VPBlendRecipe.
8882   VPValue *FirstIncoming = Operands[0];
8883   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8884         return FirstIncoming == Inc;
8885       })) {
8886     return Operands[0];
8887   }
8888 
8889   // We know that all PHIs in non-header blocks are converted into selects, so
8890   // we don't have to worry about the insertion order and we can just use the
8891   // builder. At this point we generate the predication tree. There may be
8892   // duplications since this is a simple recursive scan, but future
8893   // optimizations will clean it up.
8894   SmallVector<VPValue *, 2> OperandsWithMask;
8895   unsigned NumIncoming = Phi->getNumIncomingValues();
8896 
8897   for (unsigned In = 0; In < NumIncoming; In++) {
8898     VPValue *EdgeMask =
8899       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8900     assert((EdgeMask || NumIncoming == 1) &&
8901            "Multiple predecessors with one having a full mask");
8902     OperandsWithMask.push_back(Operands[In]);
8903     if (EdgeMask)
8904       OperandsWithMask.push_back(EdgeMask);
8905   }
8906   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8907 }
8908 
8909 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8910                                                    ArrayRef<VPValue *> Operands,
8911                                                    VFRange &Range) const {
8912 
8913   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8914       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8915       Range);
8916 
8917   if (IsPredicated)
8918     return nullptr;
8919 
8920   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8921   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8922              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8923              ID == Intrinsic::pseudoprobe ||
8924              ID == Intrinsic::experimental_noalias_scope_decl))
8925     return nullptr;
8926 
8927   auto willWiden = [&](ElementCount VF) -> bool {
8928     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8929     // The following case may be scalarized depending on the VF.
8930     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8931     // version of the instruction.
8932     // Is it beneficial to perform intrinsic call compared to lib call?
8933     bool NeedToScalarize = false;
8934     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8935     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8936     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8937     return UseVectorIntrinsic || !NeedToScalarize;
8938   };
8939 
8940   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8941     return nullptr;
8942 
8943   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8944   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8945 }
8946 
8947 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8948   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8949          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8950   // Instruction should be widened, unless it is scalar after vectorization,
8951   // scalarization is profitable or it is predicated.
8952   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8953     return CM.isScalarAfterVectorization(I, VF) ||
8954            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8955   };
8956   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8957                                                              Range);
8958 }
8959 
8960 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8961                                            ArrayRef<VPValue *> Operands) const {
8962   auto IsVectorizableOpcode = [](unsigned Opcode) {
8963     switch (Opcode) {
8964     case Instruction::Add:
8965     case Instruction::And:
8966     case Instruction::AShr:
8967     case Instruction::BitCast:
8968     case Instruction::FAdd:
8969     case Instruction::FCmp:
8970     case Instruction::FDiv:
8971     case Instruction::FMul:
8972     case Instruction::FNeg:
8973     case Instruction::FPExt:
8974     case Instruction::FPToSI:
8975     case Instruction::FPToUI:
8976     case Instruction::FPTrunc:
8977     case Instruction::FRem:
8978     case Instruction::FSub:
8979     case Instruction::ICmp:
8980     case Instruction::IntToPtr:
8981     case Instruction::LShr:
8982     case Instruction::Mul:
8983     case Instruction::Or:
8984     case Instruction::PtrToInt:
8985     case Instruction::SDiv:
8986     case Instruction::Select:
8987     case Instruction::SExt:
8988     case Instruction::Shl:
8989     case Instruction::SIToFP:
8990     case Instruction::SRem:
8991     case Instruction::Sub:
8992     case Instruction::Trunc:
8993     case Instruction::UDiv:
8994     case Instruction::UIToFP:
8995     case Instruction::URem:
8996     case Instruction::Xor:
8997     case Instruction::ZExt:
8998       return true;
8999     }
9000     return false;
9001   };
9002 
9003   if (!IsVectorizableOpcode(I->getOpcode()))
9004     return nullptr;
9005 
9006   // Success: widen this instruction.
9007   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9008 }
9009 
9010 void VPRecipeBuilder::fixHeaderPhis() {
9011   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9012   for (VPWidenPHIRecipe *R : PhisToFix) {
9013     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9014     VPRecipeBase *IncR =
9015         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9016     R->addOperand(IncR->getVPSingleValue());
9017   }
9018 }
9019 
9020 VPBasicBlock *VPRecipeBuilder::handleReplication(
9021     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9022     VPlanPtr &Plan) {
9023   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9024       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9025       Range);
9026 
9027   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9028       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9029 
9030   // Even if the instruction is not marked as uniform, there are certain
9031   // intrinsic calls that can be effectively treated as such, so we check for
9032   // them here. Conservatively, we only do this for scalable vectors, since
9033   // for fixed-width VFs we can always fall back on full scalarization.
9034   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9035     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9036     case Intrinsic::assume:
9037     case Intrinsic::lifetime_start:
9038     case Intrinsic::lifetime_end:
9039       // For scalable vectors if one of the operands is variant then we still
9040       // want to mark as uniform, which will generate one instruction for just
9041       // the first lane of the vector. We can't scalarize the call in the same
9042       // way as for fixed-width vectors because we don't know how many lanes
9043       // there are.
9044       //
9045       // The reasons for doing it this way for scalable vectors are:
9046       //   1. For the assume intrinsic generating the instruction for the first
9047       //      lane is still be better than not generating any at all. For
9048       //      example, the input may be a splat across all lanes.
9049       //   2. For the lifetime start/end intrinsics the pointer operand only
9050       //      does anything useful when the input comes from a stack object,
9051       //      which suggests it should always be uniform. For non-stack objects
9052       //      the effect is to poison the object, which still allows us to
9053       //      remove the call.
9054       IsUniform = true;
9055       break;
9056     default:
9057       break;
9058     }
9059   }
9060 
9061   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9062                                        IsUniform, IsPredicated);
9063   setRecipe(I, Recipe);
9064   Plan->addVPValue(I, Recipe);
9065 
9066   // Find if I uses a predicated instruction. If so, it will use its scalar
9067   // value. Avoid hoisting the insert-element which packs the scalar value into
9068   // a vector value, as that happens iff all users use the vector value.
9069   for (VPValue *Op : Recipe->operands()) {
9070     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9071     if (!PredR)
9072       continue;
9073     auto *RepR =
9074         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9075     assert(RepR->isPredicated() &&
9076            "expected Replicate recipe to be predicated");
9077     RepR->setAlsoPack(false);
9078   }
9079 
9080   // Finalize the recipe for Instr, first if it is not predicated.
9081   if (!IsPredicated) {
9082     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9083     VPBB->appendRecipe(Recipe);
9084     return VPBB;
9085   }
9086   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9087   assert(VPBB->getSuccessors().empty() &&
9088          "VPBB has successors when handling predicated replication.");
9089   // Record predicated instructions for above packing optimizations.
9090   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9091   VPBlockUtils::insertBlockAfter(Region, VPBB);
9092   auto *RegSucc = new VPBasicBlock();
9093   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9094   return RegSucc;
9095 }
9096 
9097 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9098                                                       VPRecipeBase *PredRecipe,
9099                                                       VPlanPtr &Plan) {
9100   // Instructions marked for predication are replicated and placed under an
9101   // if-then construct to prevent side-effects.
9102 
9103   // Generate recipes to compute the block mask for this region.
9104   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9105 
9106   // Build the triangular if-then region.
9107   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9108   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9109   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9110   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9111   auto *PHIRecipe = Instr->getType()->isVoidTy()
9112                         ? nullptr
9113                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9114   if (PHIRecipe) {
9115     Plan->removeVPValueFor(Instr);
9116     Plan->addVPValue(Instr, PHIRecipe);
9117   }
9118   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9119   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9120   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9121 
9122   // Note: first set Entry as region entry and then connect successors starting
9123   // from it in order, to propagate the "parent" of each VPBasicBlock.
9124   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9125   VPBlockUtils::connectBlocks(Pred, Exit);
9126 
9127   return Region;
9128 }
9129 
9130 VPRecipeOrVPValueTy
9131 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9132                                         ArrayRef<VPValue *> Operands,
9133                                         VFRange &Range, VPlanPtr &Plan) {
9134   // First, check for specific widening recipes that deal with calls, memory
9135   // operations, inductions and Phi nodes.
9136   if (auto *CI = dyn_cast<CallInst>(Instr))
9137     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9138 
9139   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9140     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9141 
9142   VPRecipeBase *Recipe;
9143   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9144     if (Phi->getParent() != OrigLoop->getHeader())
9145       return tryToBlend(Phi, Operands, Plan);
9146     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9147       return toVPRecipeResult(Recipe);
9148 
9149     VPWidenPHIRecipe *PhiRecipe = nullptr;
9150     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9151       VPValue *StartV = Operands[0];
9152       if (Legal->isReductionVariable(Phi)) {
9153         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9154         assert(RdxDesc.getRecurrenceStartValue() ==
9155                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9156         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9157                                              CM.isInLoopReduction(Phi),
9158                                              CM.useOrderedReductions(RdxDesc));
9159       } else {
9160         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9161       }
9162 
9163       // Record the incoming value from the backedge, so we can add the incoming
9164       // value from the backedge after all recipes have been created.
9165       recordRecipeOf(cast<Instruction>(
9166           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9167       PhisToFix.push_back(PhiRecipe);
9168     } else {
9169       // TODO: record start and backedge value for remaining pointer induction
9170       // phis.
9171       assert(Phi->getType()->isPointerTy() &&
9172              "only pointer phis should be handled here");
9173       PhiRecipe = new VPWidenPHIRecipe(Phi);
9174     }
9175 
9176     return toVPRecipeResult(PhiRecipe);
9177   }
9178 
9179   if (isa<TruncInst>(Instr) &&
9180       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9181                                                Range, *Plan)))
9182     return toVPRecipeResult(Recipe);
9183 
9184   if (!shouldWiden(Instr, Range))
9185     return nullptr;
9186 
9187   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9188     return toVPRecipeResult(new VPWidenGEPRecipe(
9189         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9190 
9191   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9192     bool InvariantCond =
9193         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9194     return toVPRecipeResult(new VPWidenSelectRecipe(
9195         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9196   }
9197 
9198   return toVPRecipeResult(tryToWiden(Instr, Operands));
9199 }
9200 
9201 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9202                                                         ElementCount MaxVF) {
9203   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9204 
9205   // Collect instructions from the original loop that will become trivially dead
9206   // in the vectorized loop. We don't need to vectorize these instructions. For
9207   // example, original induction update instructions can become dead because we
9208   // separately emit induction "steps" when generating code for the new loop.
9209   // Similarly, we create a new latch condition when setting up the structure
9210   // of the new loop, so the old one can become dead.
9211   SmallPtrSet<Instruction *, 4> DeadInstructions;
9212   collectTriviallyDeadInstructions(DeadInstructions);
9213 
9214   // Add assume instructions we need to drop to DeadInstructions, to prevent
9215   // them from being added to the VPlan.
9216   // TODO: We only need to drop assumes in blocks that get flattend. If the
9217   // control flow is preserved, we should keep them.
9218   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9219   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9220 
9221   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9222   // Dead instructions do not need sinking. Remove them from SinkAfter.
9223   for (Instruction *I : DeadInstructions)
9224     SinkAfter.erase(I);
9225 
9226   // Cannot sink instructions after dead instructions (there won't be any
9227   // recipes for them). Instead, find the first non-dead previous instruction.
9228   for (auto &P : Legal->getSinkAfter()) {
9229     Instruction *SinkTarget = P.second;
9230     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9231     (void)FirstInst;
9232     while (DeadInstructions.contains(SinkTarget)) {
9233       assert(
9234           SinkTarget != FirstInst &&
9235           "Must find a live instruction (at least the one feeding the "
9236           "first-order recurrence PHI) before reaching beginning of the block");
9237       SinkTarget = SinkTarget->getPrevNode();
9238       assert(SinkTarget != P.first &&
9239              "sink source equals target, no sinking required");
9240     }
9241     P.second = SinkTarget;
9242   }
9243 
9244   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9245   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9246     VFRange SubRange = {VF, MaxVFPlusOne};
9247     VPlans.push_back(
9248         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9249     VF = SubRange.End;
9250   }
9251 }
9252 
9253 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9254     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9255     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9256 
9257   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9258 
9259   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9260 
9261   // ---------------------------------------------------------------------------
9262   // Pre-construction: record ingredients whose recipes we'll need to further
9263   // process after constructing the initial VPlan.
9264   // ---------------------------------------------------------------------------
9265 
9266   // Mark instructions we'll need to sink later and their targets as
9267   // ingredients whose recipe we'll need to record.
9268   for (auto &Entry : SinkAfter) {
9269     RecipeBuilder.recordRecipeOf(Entry.first);
9270     RecipeBuilder.recordRecipeOf(Entry.second);
9271   }
9272   for (auto &Reduction : CM.getInLoopReductionChains()) {
9273     PHINode *Phi = Reduction.first;
9274     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9275     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9276 
9277     RecipeBuilder.recordRecipeOf(Phi);
9278     for (auto &R : ReductionOperations) {
9279       RecipeBuilder.recordRecipeOf(R);
9280       // For min/max reducitons, where we have a pair of icmp/select, we also
9281       // need to record the ICmp recipe, so it can be removed later.
9282       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9283              "Only min/max recurrences allowed for inloop reductions");
9284       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9285         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9286     }
9287   }
9288 
9289   // For each interleave group which is relevant for this (possibly trimmed)
9290   // Range, add it to the set of groups to be later applied to the VPlan and add
9291   // placeholders for its members' Recipes which we'll be replacing with a
9292   // single VPInterleaveRecipe.
9293   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9294     auto applyIG = [IG, this](ElementCount VF) -> bool {
9295       return (VF.isVector() && // Query is illegal for VF == 1
9296               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9297                   LoopVectorizationCostModel::CM_Interleave);
9298     };
9299     if (!getDecisionAndClampRange(applyIG, Range))
9300       continue;
9301     InterleaveGroups.insert(IG);
9302     for (unsigned i = 0; i < IG->getFactor(); i++)
9303       if (Instruction *Member = IG->getMember(i))
9304         RecipeBuilder.recordRecipeOf(Member);
9305   };
9306 
9307   // ---------------------------------------------------------------------------
9308   // Build initial VPlan: Scan the body of the loop in a topological order to
9309   // visit each basic block after having visited its predecessor basic blocks.
9310   // ---------------------------------------------------------------------------
9311 
9312   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9313   auto Plan = std::make_unique<VPlan>();
9314 
9315   // Scan the body of the loop in a topological order to visit each basic block
9316   // after having visited its predecessor basic blocks.
9317   LoopBlocksDFS DFS(OrigLoop);
9318   DFS.perform(LI);
9319 
9320   VPBasicBlock *VPBB = nullptr;
9321   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9322     // Relevant instructions from basic block BB will be grouped into VPRecipe
9323     // ingredients and fill a new VPBasicBlock.
9324     unsigned VPBBsForBB = 0;
9325     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9326     if (VPBB)
9327       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9328     else
9329       Plan->setEntry(FirstVPBBForBB);
9330     VPBB = FirstVPBBForBB;
9331     Builder.setInsertPoint(VPBB);
9332 
9333     // Introduce each ingredient into VPlan.
9334     // TODO: Model and preserve debug instrinsics in VPlan.
9335     for (Instruction &I : BB->instructionsWithoutDebug()) {
9336       Instruction *Instr = &I;
9337 
9338       // First filter out irrelevant instructions, to ensure no recipes are
9339       // built for them.
9340       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9341         continue;
9342 
9343       SmallVector<VPValue *, 4> Operands;
9344       auto *Phi = dyn_cast<PHINode>(Instr);
9345       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9346         Operands.push_back(Plan->getOrAddVPValue(
9347             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9348       } else {
9349         auto OpRange = Plan->mapToVPValues(Instr->operands());
9350         Operands = {OpRange.begin(), OpRange.end()};
9351       }
9352       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9353               Instr, Operands, Range, Plan)) {
9354         // If Instr can be simplified to an existing VPValue, use it.
9355         if (RecipeOrValue.is<VPValue *>()) {
9356           auto *VPV = RecipeOrValue.get<VPValue *>();
9357           Plan->addVPValue(Instr, VPV);
9358           // If the re-used value is a recipe, register the recipe for the
9359           // instruction, in case the recipe for Instr needs to be recorded.
9360           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9361             RecipeBuilder.setRecipe(Instr, R);
9362           continue;
9363         }
9364         // Otherwise, add the new recipe.
9365         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9366         for (auto *Def : Recipe->definedValues()) {
9367           auto *UV = Def->getUnderlyingValue();
9368           Plan->addVPValue(UV, Def);
9369         }
9370 
9371         RecipeBuilder.setRecipe(Instr, Recipe);
9372         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe)) {
9373           // Make sure induction recipes are all kept in the header block.
9374           // VPWidenIntOrFpInductionRecipe may be generated when reaching a
9375           // Trunc of an induction Phi, where Trunc may not be in the header.
9376           auto *Header = Plan->getEntry()->getEntryBasicBlock();
9377           Header->insert(Recipe, Header->getFirstNonPhi());
9378         } else
9379           VPBB->appendRecipe(Recipe);
9380         continue;
9381       }
9382 
9383       // Otherwise, if all widening options failed, Instruction is to be
9384       // replicated. This may create a successor for VPBB.
9385       VPBasicBlock *NextVPBB =
9386           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9387       if (NextVPBB != VPBB) {
9388         VPBB = NextVPBB;
9389         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9390                                     : "");
9391       }
9392     }
9393   }
9394 
9395   assert(isa<VPBasicBlock>(Plan->getEntry()) &&
9396          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9397          "entry block must be set to a non-empty VPBasicBlock");
9398   RecipeBuilder.fixHeaderPhis();
9399 
9400   // ---------------------------------------------------------------------------
9401   // Transform initial VPlan: Apply previously taken decisions, in order, to
9402   // bring the VPlan to its final state.
9403   // ---------------------------------------------------------------------------
9404 
9405   // Apply Sink-After legal constraints.
9406   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9407     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9408     if (Region && Region->isReplicator()) {
9409       assert(Region->getNumSuccessors() == 1 &&
9410              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9411       assert(R->getParent()->size() == 1 &&
9412              "A recipe in an original replicator region must be the only "
9413              "recipe in its block");
9414       return Region;
9415     }
9416     return nullptr;
9417   };
9418   for (auto &Entry : SinkAfter) {
9419     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9420     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9421 
9422     auto *TargetRegion = GetReplicateRegion(Target);
9423     auto *SinkRegion = GetReplicateRegion(Sink);
9424     if (!SinkRegion) {
9425       // If the sink source is not a replicate region, sink the recipe directly.
9426       if (TargetRegion) {
9427         // The target is in a replication region, make sure to move Sink to
9428         // the block after it, not into the replication region itself.
9429         VPBasicBlock *NextBlock =
9430             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9431         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9432       } else
9433         Sink->moveAfter(Target);
9434       continue;
9435     }
9436 
9437     // The sink source is in a replicate region. Unhook the region from the CFG.
9438     auto *SinkPred = SinkRegion->getSinglePredecessor();
9439     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9440     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9441     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9442     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9443 
9444     if (TargetRegion) {
9445       // The target recipe is also in a replicate region, move the sink region
9446       // after the target region.
9447       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9448       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9449       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9450       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9451     } else {
9452       // The sink source is in a replicate region, we need to move the whole
9453       // replicate region, which should only contain a single recipe in the
9454       // main block.
9455       auto *SplitBlock =
9456           Target->getParent()->splitAt(std::next(Target->getIterator()));
9457 
9458       auto *SplitPred = SplitBlock->getSinglePredecessor();
9459 
9460       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9461       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9462       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9463       if (VPBB == SplitPred)
9464         VPBB = SplitBlock;
9465     }
9466   }
9467 
9468   // Adjust the recipes for any inloop reductions.
9469   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9470 
9471   // Introduce a recipe to combine the incoming and previous values of a
9472   // first-order recurrence.
9473   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9474     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9475     if (!RecurPhi)
9476       continue;
9477 
9478     auto *RecurSplice = cast<VPInstruction>(
9479         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9480                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9481 
9482     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9483     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9484       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9485       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9486     } else
9487       RecurSplice->moveAfter(PrevRecipe);
9488     RecurPhi->replaceAllUsesWith(RecurSplice);
9489     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9490     // all users.
9491     RecurSplice->setOperand(0, RecurPhi);
9492   }
9493 
9494   // Interleave memory: for each Interleave Group we marked earlier as relevant
9495   // for this VPlan, replace the Recipes widening its memory instructions with a
9496   // single VPInterleaveRecipe at its insertion point.
9497   for (auto IG : InterleaveGroups) {
9498     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9499         RecipeBuilder.getRecipe(IG->getInsertPos()));
9500     SmallVector<VPValue *, 4> StoredValues;
9501     for (unsigned i = 0; i < IG->getFactor(); ++i)
9502       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9503         auto *StoreR =
9504             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9505         StoredValues.push_back(StoreR->getStoredValue());
9506       }
9507 
9508     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9509                                         Recipe->getMask());
9510     VPIG->insertBefore(Recipe);
9511     unsigned J = 0;
9512     for (unsigned i = 0; i < IG->getFactor(); ++i)
9513       if (Instruction *Member = IG->getMember(i)) {
9514         if (!Member->getType()->isVoidTy()) {
9515           VPValue *OriginalV = Plan->getVPValue(Member);
9516           Plan->removeVPValueFor(Member);
9517           Plan->addVPValue(Member, VPIG->getVPValue(J));
9518           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9519           J++;
9520         }
9521         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9522       }
9523   }
9524 
9525   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9526   // in ways that accessing values using original IR values is incorrect.
9527   Plan->disableValue2VPValue();
9528 
9529   VPlanTransforms::sinkScalarOperands(*Plan);
9530   VPlanTransforms::mergeReplicateRegions(*Plan);
9531 
9532   std::string PlanName;
9533   raw_string_ostream RSO(PlanName);
9534   ElementCount VF = Range.Start;
9535   Plan->addVF(VF);
9536   RSO << "Initial VPlan for VF={" << VF;
9537   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9538     Plan->addVF(VF);
9539     RSO << "," << VF;
9540   }
9541   RSO << "},UF>=1";
9542   RSO.flush();
9543   Plan->setName(PlanName);
9544 
9545   return Plan;
9546 }
9547 
9548 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9549   // Outer loop handling: They may require CFG and instruction level
9550   // transformations before even evaluating whether vectorization is profitable.
9551   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9552   // the vectorization pipeline.
9553   assert(!OrigLoop->isInnermost());
9554   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9555 
9556   // Create new empty VPlan
9557   auto Plan = std::make_unique<VPlan>();
9558 
9559   // Build hierarchical CFG
9560   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9561   HCFGBuilder.buildHierarchicalCFG();
9562 
9563   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9564        VF *= 2)
9565     Plan->addVF(VF);
9566 
9567   if (EnableVPlanPredication) {
9568     VPlanPredicator VPP(*Plan);
9569     VPP.predicate();
9570 
9571     // Avoid running transformation to recipes until masked code generation in
9572     // VPlan-native path is in place.
9573     return Plan;
9574   }
9575 
9576   SmallPtrSet<Instruction *, 1> DeadInstructions;
9577   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9578                                              Legal->getInductionVars(),
9579                                              DeadInstructions, *PSE.getSE());
9580   return Plan;
9581 }
9582 
9583 // Adjust the recipes for reductions. For in-loop reductions the chain of
9584 // instructions leading from the loop exit instr to the phi need to be converted
9585 // to reductions, with one operand being vector and the other being the scalar
9586 // reduction chain. For other reductions, a select is introduced between the phi
9587 // and live-out recipes when folding the tail.
9588 void LoopVectorizationPlanner::adjustRecipesForReductions(
9589     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9590     ElementCount MinVF) {
9591   for (auto &Reduction : CM.getInLoopReductionChains()) {
9592     PHINode *Phi = Reduction.first;
9593     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9594     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9595 
9596     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9597       continue;
9598 
9599     // ReductionOperations are orders top-down from the phi's use to the
9600     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9601     // which of the two operands will remain scalar and which will be reduced.
9602     // For minmax the chain will be the select instructions.
9603     Instruction *Chain = Phi;
9604     for (Instruction *R : ReductionOperations) {
9605       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9606       RecurKind Kind = RdxDesc.getRecurrenceKind();
9607 
9608       VPValue *ChainOp = Plan->getVPValue(Chain);
9609       unsigned FirstOpId;
9610       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9611              "Only min/max recurrences allowed for inloop reductions");
9612       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9613         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9614                "Expected to replace a VPWidenSelectSC");
9615         FirstOpId = 1;
9616       } else {
9617         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9618                "Expected to replace a VPWidenSC");
9619         FirstOpId = 0;
9620       }
9621       unsigned VecOpId =
9622           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9623       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9624 
9625       auto *CondOp = CM.foldTailByMasking()
9626                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9627                          : nullptr;
9628       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9629           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9630       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9631       Plan->removeVPValueFor(R);
9632       Plan->addVPValue(R, RedRecipe);
9633       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9634       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9635       WidenRecipe->eraseFromParent();
9636 
9637       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9638         VPRecipeBase *CompareRecipe =
9639             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9640         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9641                "Expected to replace a VPWidenSC");
9642         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9643                "Expected no remaining users");
9644         CompareRecipe->eraseFromParent();
9645       }
9646       Chain = R;
9647     }
9648   }
9649 
9650   // If tail is folded by masking, introduce selects between the phi
9651   // and the live-out instruction of each reduction, at the end of the latch.
9652   if (CM.foldTailByMasking()) {
9653     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9654       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9655       if (!PhiR || PhiR->isInLoop())
9656         continue;
9657       Builder.setInsertPoint(LatchVPBB);
9658       VPValue *Cond =
9659           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9660       VPValue *Red = PhiR->getBackedgeValue();
9661       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9662     }
9663   }
9664 }
9665 
9666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9667 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9668                                VPSlotTracker &SlotTracker) const {
9669   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9670   IG->getInsertPos()->printAsOperand(O, false);
9671   O << ", ";
9672   getAddr()->printAsOperand(O, SlotTracker);
9673   VPValue *Mask = getMask();
9674   if (Mask) {
9675     O << ", ";
9676     Mask->printAsOperand(O, SlotTracker);
9677   }
9678 
9679   unsigned OpIdx = 0;
9680   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9681     if (!IG->getMember(i))
9682       continue;
9683     if (getNumStoreOperands() > 0) {
9684       O << "\n" << Indent << "  store ";
9685       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9686       O << " to index " << i;
9687     } else {
9688       O << "\n" << Indent << "  ";
9689       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9690       O << " = load from index " << i;
9691     }
9692     ++OpIdx;
9693   }
9694 }
9695 #endif
9696 
9697 void VPWidenCallRecipe::execute(VPTransformState &State) {
9698   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9699                                   *this, State);
9700 }
9701 
9702 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9703   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9704                                     this, *this, InvariantCond, State);
9705 }
9706 
9707 void VPWidenRecipe::execute(VPTransformState &State) {
9708   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9709 }
9710 
9711 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9712   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9713                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9714                       IsIndexLoopInvariant, State);
9715 }
9716 
9717 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9718   assert(!State.Instance && "Int or FP induction being replicated.");
9719   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9720                                    getTruncInst(), getVPValue(0),
9721                                    getCastValue(), State);
9722 }
9723 
9724 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9725   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9726                                  State);
9727 }
9728 
9729 void VPBlendRecipe::execute(VPTransformState &State) {
9730   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9731   // We know that all PHIs in non-header blocks are converted into
9732   // selects, so we don't have to worry about the insertion order and we
9733   // can just use the builder.
9734   // At this point we generate the predication tree. There may be
9735   // duplications since this is a simple recursive scan, but future
9736   // optimizations will clean it up.
9737 
9738   unsigned NumIncoming = getNumIncomingValues();
9739 
9740   // Generate a sequence of selects of the form:
9741   // SELECT(Mask3, In3,
9742   //        SELECT(Mask2, In2,
9743   //               SELECT(Mask1, In1,
9744   //                      In0)))
9745   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9746   // are essentially undef are taken from In0.
9747   InnerLoopVectorizer::VectorParts Entry(State.UF);
9748   for (unsigned In = 0; In < NumIncoming; ++In) {
9749     for (unsigned Part = 0; Part < State.UF; ++Part) {
9750       // We might have single edge PHIs (blocks) - use an identity
9751       // 'select' for the first PHI operand.
9752       Value *In0 = State.get(getIncomingValue(In), Part);
9753       if (In == 0)
9754         Entry[Part] = In0; // Initialize with the first incoming value.
9755       else {
9756         // Select between the current value and the previous incoming edge
9757         // based on the incoming mask.
9758         Value *Cond = State.get(getMask(In), Part);
9759         Entry[Part] =
9760             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9761       }
9762     }
9763   }
9764   for (unsigned Part = 0; Part < State.UF; ++Part)
9765     State.set(this, Entry[Part], Part);
9766 }
9767 
9768 void VPInterleaveRecipe::execute(VPTransformState &State) {
9769   assert(!State.Instance && "Interleave group being replicated.");
9770   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9771                                       getStoredValues(), getMask());
9772 }
9773 
9774 void VPReductionRecipe::execute(VPTransformState &State) {
9775   assert(!State.Instance && "Reduction being replicated.");
9776   Value *PrevInChain = State.get(getChainOp(), 0);
9777   RecurKind Kind = RdxDesc->getRecurrenceKind();
9778   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9779   for (unsigned Part = 0; Part < State.UF; ++Part) {
9780     Value *NewVecOp = State.get(getVecOp(), Part);
9781     if (VPValue *Cond = getCondOp()) {
9782       Value *NewCond = State.get(Cond, Part);
9783       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9784       Value *Iden = RdxDesc->getRecurrenceIdentity(
9785           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9786       Value *IdenVec =
9787           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9788       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9789       NewVecOp = Select;
9790     }
9791     Value *NewRed;
9792     Value *NextInChain;
9793     if (IsOrdered) {
9794       if (State.VF.isVector())
9795         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9796                                         PrevInChain);
9797       else
9798         NewRed = State.Builder.CreateBinOp(
9799             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9800             NewVecOp);
9801       PrevInChain = NewRed;
9802     } else {
9803       PrevInChain = State.get(getChainOp(), Part);
9804       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9805     }
9806     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9807       NextInChain =
9808           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9809                          NewRed, PrevInChain);
9810     } else if (IsOrdered)
9811       NextInChain = NewRed;
9812     else
9813       NextInChain = State.Builder.CreateBinOp(
9814           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9815           PrevInChain);
9816     State.set(this, NextInChain, Part);
9817   }
9818 }
9819 
9820 void VPReplicateRecipe::execute(VPTransformState &State) {
9821   if (State.Instance) { // Generate a single instance.
9822     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9823     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9824                                     *State.Instance, IsPredicated, State);
9825     // Insert scalar instance packing it into a vector.
9826     if (AlsoPack && State.VF.isVector()) {
9827       // If we're constructing lane 0, initialize to start from poison.
9828       if (State.Instance->Lane.isFirstLane()) {
9829         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9830         Value *Poison = PoisonValue::get(
9831             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9832         State.set(this, Poison, State.Instance->Part);
9833       }
9834       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9835     }
9836     return;
9837   }
9838 
9839   // Generate scalar instances for all VF lanes of all UF parts, unless the
9840   // instruction is uniform inwhich case generate only the first lane for each
9841   // of the UF parts.
9842   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9843   assert((!State.VF.isScalable() || IsUniform) &&
9844          "Can't scalarize a scalable vector");
9845   for (unsigned Part = 0; Part < State.UF; ++Part)
9846     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9847       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9848                                       VPIteration(Part, Lane), IsPredicated,
9849                                       State);
9850 }
9851 
9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9853   assert(State.Instance && "Branch on Mask works only on single instance.");
9854 
9855   unsigned Part = State.Instance->Part;
9856   unsigned Lane = State.Instance->Lane.getKnownLane();
9857 
9858   Value *ConditionBit = nullptr;
9859   VPValue *BlockInMask = getMask();
9860   if (BlockInMask) {
9861     ConditionBit = State.get(BlockInMask, Part);
9862     if (ConditionBit->getType()->isVectorTy())
9863       ConditionBit = State.Builder.CreateExtractElement(
9864           ConditionBit, State.Builder.getInt32(Lane));
9865   } else // Block in mask is all-one.
9866     ConditionBit = State.Builder.getTrue();
9867 
9868   // Replace the temporary unreachable terminator with a new conditional branch,
9869   // whose two destinations will be set later when they are created.
9870   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9871   assert(isa<UnreachableInst>(CurrentTerminator) &&
9872          "Expected to replace unreachable terminator with conditional branch.");
9873   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9874   CondBr->setSuccessor(0, nullptr);
9875   ReplaceInstWithInst(CurrentTerminator, CondBr);
9876 }
9877 
9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9879   assert(State.Instance && "Predicated instruction PHI works per instance.");
9880   Instruction *ScalarPredInst =
9881       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9882   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9883   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9884   assert(PredicatingBB && "Predicated block has no single predecessor.");
9885   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9886          "operand must be VPReplicateRecipe");
9887 
9888   // By current pack/unpack logic we need to generate only a single phi node: if
9889   // a vector value for the predicated instruction exists at this point it means
9890   // the instruction has vector users only, and a phi for the vector value is
9891   // needed. In this case the recipe of the predicated instruction is marked to
9892   // also do that packing, thereby "hoisting" the insert-element sequence.
9893   // Otherwise, a phi node for the scalar value is needed.
9894   unsigned Part = State.Instance->Part;
9895   if (State.hasVectorValue(getOperand(0), Part)) {
9896     Value *VectorValue = State.get(getOperand(0), Part);
9897     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9898     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9899     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9900     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9901     if (State.hasVectorValue(this, Part))
9902       State.reset(this, VPhi, Part);
9903     else
9904       State.set(this, VPhi, Part);
9905     // NOTE: Currently we need to update the value of the operand, so the next
9906     // predicated iteration inserts its generated value in the correct vector.
9907     State.reset(getOperand(0), VPhi, Part);
9908   } else {
9909     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9910     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9911     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9912                      PredicatingBB);
9913     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9914     if (State.hasScalarValue(this, *State.Instance))
9915       State.reset(this, Phi, *State.Instance);
9916     else
9917       State.set(this, Phi, *State.Instance);
9918     // NOTE: Currently we need to update the value of the operand, so the next
9919     // predicated iteration inserts its generated value in the correct vector.
9920     State.reset(getOperand(0), Phi, *State.Instance);
9921   }
9922 }
9923 
9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9925   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9926   State.ILV->vectorizeMemoryInstruction(
9927       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9928       StoredValue, getMask(), Consecutive, Reverse);
9929 }
9930 
9931 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9932 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9933 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9934 // for predication.
9935 static ScalarEpilogueLowering getScalarEpilogueLowering(
9936     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9937     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9938     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9939     LoopVectorizationLegality &LVL) {
9940   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9941   // don't look at hints or options, and don't request a scalar epilogue.
9942   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9943   // LoopAccessInfo (due to code dependency and not being able to reliably get
9944   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9945   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9946   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9947   // back to the old way and vectorize with versioning when forced. See D81345.)
9948   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9949                                                       PGSOQueryType::IRPass) &&
9950                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9951     return CM_ScalarEpilogueNotAllowedOptSize;
9952 
9953   // 2) If set, obey the directives
9954   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9955     switch (PreferPredicateOverEpilogue) {
9956     case PreferPredicateTy::ScalarEpilogue:
9957       return CM_ScalarEpilogueAllowed;
9958     case PreferPredicateTy::PredicateElseScalarEpilogue:
9959       return CM_ScalarEpilogueNotNeededUsePredicate;
9960     case PreferPredicateTy::PredicateOrDontVectorize:
9961       return CM_ScalarEpilogueNotAllowedUsePredicate;
9962     };
9963   }
9964 
9965   // 3) If set, obey the hints
9966   switch (Hints.getPredicate()) {
9967   case LoopVectorizeHints::FK_Enabled:
9968     return CM_ScalarEpilogueNotNeededUsePredicate;
9969   case LoopVectorizeHints::FK_Disabled:
9970     return CM_ScalarEpilogueAllowed;
9971   };
9972 
9973   // 4) if the TTI hook indicates this is profitable, request predication.
9974   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9975                                        LVL.getLAI()))
9976     return CM_ScalarEpilogueNotNeededUsePredicate;
9977 
9978   return CM_ScalarEpilogueAllowed;
9979 }
9980 
9981 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9982   // If Values have been set for this Def return the one relevant for \p Part.
9983   if (hasVectorValue(Def, Part))
9984     return Data.PerPartOutput[Def][Part];
9985 
9986   if (!hasScalarValue(Def, {Part, 0})) {
9987     Value *IRV = Def->getLiveInIRValue();
9988     Value *B = ILV->getBroadcastInstrs(IRV);
9989     set(Def, B, Part);
9990     return B;
9991   }
9992 
9993   Value *ScalarValue = get(Def, {Part, 0});
9994   // If we aren't vectorizing, we can just copy the scalar map values over
9995   // to the vector map.
9996   if (VF.isScalar()) {
9997     set(Def, ScalarValue, Part);
9998     return ScalarValue;
9999   }
10000 
10001   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10002   bool IsUniform = RepR && RepR->isUniform();
10003 
10004   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10005   // Check if there is a scalar value for the selected lane.
10006   if (!hasScalarValue(Def, {Part, LastLane})) {
10007     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10008     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10009            "unexpected recipe found to be invariant");
10010     IsUniform = true;
10011     LastLane = 0;
10012   }
10013 
10014   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10015   // Set the insert point after the last scalarized instruction or after the
10016   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10017   // will directly follow the scalar definitions.
10018   auto OldIP = Builder.saveIP();
10019   auto NewIP =
10020       isa<PHINode>(LastInst)
10021           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10022           : std::next(BasicBlock::iterator(LastInst));
10023   Builder.SetInsertPoint(&*NewIP);
10024 
10025   // However, if we are vectorizing, we need to construct the vector values.
10026   // If the value is known to be uniform after vectorization, we can just
10027   // broadcast the scalar value corresponding to lane zero for each unroll
10028   // iteration. Otherwise, we construct the vector values using
10029   // insertelement instructions. Since the resulting vectors are stored in
10030   // State, we will only generate the insertelements once.
10031   Value *VectorValue = nullptr;
10032   if (IsUniform) {
10033     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10034     set(Def, VectorValue, Part);
10035   } else {
10036     // Initialize packing with insertelements to start from undef.
10037     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10038     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10039     set(Def, Undef, Part);
10040     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10041       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10042     VectorValue = get(Def, Part);
10043   }
10044   Builder.restoreIP(OldIP);
10045   return VectorValue;
10046 }
10047 
10048 // Process the loop in the VPlan-native vectorization path. This path builds
10049 // VPlan upfront in the vectorization pipeline, which allows to apply
10050 // VPlan-to-VPlan transformations from the very beginning without modifying the
10051 // input LLVM IR.
10052 static bool processLoopInVPlanNativePath(
10053     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10054     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10055     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10056     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10057     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10058     LoopVectorizationRequirements &Requirements) {
10059 
10060   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10061     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10062     return false;
10063   }
10064   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10065   Function *F = L->getHeader()->getParent();
10066   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10067 
10068   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10069       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10070 
10071   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10072                                 &Hints, IAI);
10073   // Use the planner for outer loop vectorization.
10074   // TODO: CM is not used at this point inside the planner. Turn CM into an
10075   // optional argument if we don't need it in the future.
10076   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10077                                Requirements, ORE);
10078 
10079   // Get user vectorization factor.
10080   ElementCount UserVF = Hints.getWidth();
10081 
10082   CM.collectElementTypesForWidening();
10083 
10084   // Plan how to best vectorize, return the best VF and its cost.
10085   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10086 
10087   // If we are stress testing VPlan builds, do not attempt to generate vector
10088   // code. Masked vector code generation support will follow soon.
10089   // Also, do not attempt to vectorize if no vector code will be produced.
10090   if (VPlanBuildStressTest || EnableVPlanPredication ||
10091       VectorizationFactor::Disabled() == VF)
10092     return false;
10093 
10094   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10095 
10096   {
10097     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10098                              F->getParent()->getDataLayout());
10099     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10100                            &CM, BFI, PSI, Checks);
10101     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10102                       << L->getHeader()->getParent()->getName() << "\"\n");
10103     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10104   }
10105 
10106   // Mark the loop as already vectorized to avoid vectorizing again.
10107   Hints.setAlreadyVectorized();
10108   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10109   return true;
10110 }
10111 
10112 // Emit a remark if there are stores to floats that required a floating point
10113 // extension. If the vectorized loop was generated with floating point there
10114 // will be a performance penalty from the conversion overhead and the change in
10115 // the vector width.
10116 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10117   SmallVector<Instruction *, 4> Worklist;
10118   for (BasicBlock *BB : L->getBlocks()) {
10119     for (Instruction &Inst : *BB) {
10120       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10121         if (S->getValueOperand()->getType()->isFloatTy())
10122           Worklist.push_back(S);
10123       }
10124     }
10125   }
10126 
10127   // Traverse the floating point stores upwards searching, for floating point
10128   // conversions.
10129   SmallPtrSet<const Instruction *, 4> Visited;
10130   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10131   while (!Worklist.empty()) {
10132     auto *I = Worklist.pop_back_val();
10133     if (!L->contains(I))
10134       continue;
10135     if (!Visited.insert(I).second)
10136       continue;
10137 
10138     // Emit a remark if the floating point store required a floating
10139     // point conversion.
10140     // TODO: More work could be done to identify the root cause such as a
10141     // constant or a function return type and point the user to it.
10142     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10143       ORE->emit([&]() {
10144         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10145                                           I->getDebugLoc(), L->getHeader())
10146                << "floating point conversion changes vector width. "
10147                << "Mixed floating point precision requires an up/down "
10148                << "cast that will negatively impact performance.";
10149       });
10150 
10151     for (Use &Op : I->operands())
10152       if (auto *OpI = dyn_cast<Instruction>(Op))
10153         Worklist.push_back(OpI);
10154   }
10155 }
10156 
10157 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10158     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10159                                !EnableLoopInterleaving),
10160       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10161                               !EnableLoopVectorization) {}
10162 
10163 bool LoopVectorizePass::processLoop(Loop *L) {
10164   assert((EnableVPlanNativePath || L->isInnermost()) &&
10165          "VPlan-native path is not enabled. Only process inner loops.");
10166 
10167 #ifndef NDEBUG
10168   const std::string DebugLocStr = getDebugLocString(L);
10169 #endif /* NDEBUG */
10170 
10171   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10172                     << L->getHeader()->getParent()->getName() << "\" from "
10173                     << DebugLocStr << "\n");
10174 
10175   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10176 
10177   LLVM_DEBUG(
10178       dbgs() << "LV: Loop hints:"
10179              << " force="
10180              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10181                      ? "disabled"
10182                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10183                             ? "enabled"
10184                             : "?"))
10185              << " width=" << Hints.getWidth()
10186              << " interleave=" << Hints.getInterleave() << "\n");
10187 
10188   // Function containing loop
10189   Function *F = L->getHeader()->getParent();
10190 
10191   // Looking at the diagnostic output is the only way to determine if a loop
10192   // was vectorized (other than looking at the IR or machine code), so it
10193   // is important to generate an optimization remark for each loop. Most of
10194   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10195   // generated as OptimizationRemark and OptimizationRemarkMissed are
10196   // less verbose reporting vectorized loops and unvectorized loops that may
10197   // benefit from vectorization, respectively.
10198 
10199   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10200     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10201     return false;
10202   }
10203 
10204   PredicatedScalarEvolution PSE(*SE, *L);
10205 
10206   // Check if it is legal to vectorize the loop.
10207   LoopVectorizationRequirements Requirements;
10208   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10209                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10210   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10211     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10212     Hints.emitRemarkWithHints();
10213     return false;
10214   }
10215 
10216   // Check the function attributes and profiles to find out if this function
10217   // should be optimized for size.
10218   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10219       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10220 
10221   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10222   // here. They may require CFG and instruction level transformations before
10223   // even evaluating whether vectorization is profitable. Since we cannot modify
10224   // the incoming IR, we need to build VPlan upfront in the vectorization
10225   // pipeline.
10226   if (!L->isInnermost())
10227     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10228                                         ORE, BFI, PSI, Hints, Requirements);
10229 
10230   assert(L->isInnermost() && "Inner loop expected.");
10231 
10232   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10233   // count by optimizing for size, to minimize overheads.
10234   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10235   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10236     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10237                       << "This loop is worth vectorizing only if no scalar "
10238                       << "iteration overheads are incurred.");
10239     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10240       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10241     else {
10242       LLVM_DEBUG(dbgs() << "\n");
10243       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10244     }
10245   }
10246 
10247   // Check the function attributes to see if implicit floats are allowed.
10248   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10249   // an integer loop and the vector instructions selected are purely integer
10250   // vector instructions?
10251   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10252     reportVectorizationFailure(
10253         "Can't vectorize when the NoImplicitFloat attribute is used",
10254         "loop not vectorized due to NoImplicitFloat attribute",
10255         "NoImplicitFloat", ORE, L);
10256     Hints.emitRemarkWithHints();
10257     return false;
10258   }
10259 
10260   // Check if the target supports potentially unsafe FP vectorization.
10261   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10262   // for the target we're vectorizing for, to make sure none of the
10263   // additional fp-math flags can help.
10264   if (Hints.isPotentiallyUnsafe() &&
10265       TTI->isFPVectorizationPotentiallyUnsafe()) {
10266     reportVectorizationFailure(
10267         "Potentially unsafe FP op prevents vectorization",
10268         "loop not vectorized due to unsafe FP support.",
10269         "UnsafeFP", ORE, L);
10270     Hints.emitRemarkWithHints();
10271     return false;
10272   }
10273 
10274   bool AllowOrderedReductions;
10275   // If the flag is set, use that instead and override the TTI behaviour.
10276   if (ForceOrderedReductions.getNumOccurrences() > 0)
10277     AllowOrderedReductions = ForceOrderedReductions;
10278   else
10279     AllowOrderedReductions = TTI->enableOrderedReductions();
10280   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10281     ORE->emit([&]() {
10282       auto *ExactFPMathInst = Requirements.getExactFPInst();
10283       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10284                                                  ExactFPMathInst->getDebugLoc(),
10285                                                  ExactFPMathInst->getParent())
10286              << "loop not vectorized: cannot prove it is safe to reorder "
10287                 "floating-point operations";
10288     });
10289     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10290                          "reorder floating-point operations\n");
10291     Hints.emitRemarkWithHints();
10292     return false;
10293   }
10294 
10295   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10296   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10297 
10298   // If an override option has been passed in for interleaved accesses, use it.
10299   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10300     UseInterleaved = EnableInterleavedMemAccesses;
10301 
10302   // Analyze interleaved memory accesses.
10303   if (UseInterleaved) {
10304     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10305   }
10306 
10307   // Use the cost model.
10308   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10309                                 F, &Hints, IAI);
10310   CM.collectValuesToIgnore();
10311   CM.collectElementTypesForWidening();
10312 
10313   // Use the planner for vectorization.
10314   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10315                                Requirements, ORE);
10316 
10317   // Get user vectorization factor and interleave count.
10318   ElementCount UserVF = Hints.getWidth();
10319   unsigned UserIC = Hints.getInterleave();
10320 
10321   // Plan how to best vectorize, return the best VF and its cost.
10322   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10323 
10324   VectorizationFactor VF = VectorizationFactor::Disabled();
10325   unsigned IC = 1;
10326 
10327   if (MaybeVF) {
10328     VF = *MaybeVF;
10329     // Select the interleave count.
10330     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10331   }
10332 
10333   // Identify the diagnostic messages that should be produced.
10334   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10335   bool VectorizeLoop = true, InterleaveLoop = true;
10336   if (VF.Width.isScalar()) {
10337     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10338     VecDiagMsg = std::make_pair(
10339         "VectorizationNotBeneficial",
10340         "the cost-model indicates that vectorization is not beneficial");
10341     VectorizeLoop = false;
10342   }
10343 
10344   if (!MaybeVF && UserIC > 1) {
10345     // Tell the user interleaving was avoided up-front, despite being explicitly
10346     // requested.
10347     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10348                          "interleaving should be avoided up front\n");
10349     IntDiagMsg = std::make_pair(
10350         "InterleavingAvoided",
10351         "Ignoring UserIC, because interleaving was avoided up front");
10352     InterleaveLoop = false;
10353   } else if (IC == 1 && UserIC <= 1) {
10354     // Tell the user interleaving is not beneficial.
10355     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10356     IntDiagMsg = std::make_pair(
10357         "InterleavingNotBeneficial",
10358         "the cost-model indicates that interleaving is not beneficial");
10359     InterleaveLoop = false;
10360     if (UserIC == 1) {
10361       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10362       IntDiagMsg.second +=
10363           " and is explicitly disabled or interleave count is set to 1";
10364     }
10365   } else if (IC > 1 && UserIC == 1) {
10366     // Tell the user interleaving is beneficial, but it explicitly disabled.
10367     LLVM_DEBUG(
10368         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10369     IntDiagMsg = std::make_pair(
10370         "InterleavingBeneficialButDisabled",
10371         "the cost-model indicates that interleaving is beneficial "
10372         "but is explicitly disabled or interleave count is set to 1");
10373     InterleaveLoop = false;
10374   }
10375 
10376   // Override IC if user provided an interleave count.
10377   IC = UserIC > 0 ? UserIC : IC;
10378 
10379   // Emit diagnostic messages, if any.
10380   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10381   if (!VectorizeLoop && !InterleaveLoop) {
10382     // Do not vectorize or interleaving the loop.
10383     ORE->emit([&]() {
10384       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10385                                       L->getStartLoc(), L->getHeader())
10386              << VecDiagMsg.second;
10387     });
10388     ORE->emit([&]() {
10389       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10390                                       L->getStartLoc(), L->getHeader())
10391              << IntDiagMsg.second;
10392     });
10393     return false;
10394   } else if (!VectorizeLoop && InterleaveLoop) {
10395     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10396     ORE->emit([&]() {
10397       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10398                                         L->getStartLoc(), L->getHeader())
10399              << VecDiagMsg.second;
10400     });
10401   } else if (VectorizeLoop && !InterleaveLoop) {
10402     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10403                       << ") in " << DebugLocStr << '\n');
10404     ORE->emit([&]() {
10405       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10406                                         L->getStartLoc(), L->getHeader())
10407              << IntDiagMsg.second;
10408     });
10409   } else if (VectorizeLoop && InterleaveLoop) {
10410     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10411                       << ") in " << DebugLocStr << '\n');
10412     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10413   }
10414 
10415   bool DisableRuntimeUnroll = false;
10416   MDNode *OrigLoopID = L->getLoopID();
10417   {
10418     // Optimistically generate runtime checks. Drop them if they turn out to not
10419     // be profitable. Limit the scope of Checks, so the cleanup happens
10420     // immediately after vector codegeneration is done.
10421     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10422                              F->getParent()->getDataLayout());
10423     if (!VF.Width.isScalar() || IC > 1)
10424       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10425     VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10426 
10427     using namespace ore;
10428     if (!VectorizeLoop) {
10429       assert(IC > 1 && "interleave count should not be 1 or 0");
10430       // If we decided that it is not legal to vectorize the loop, then
10431       // interleave it.
10432       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10433                                  &CM, BFI, PSI, Checks);
10434       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10435 
10436       ORE->emit([&]() {
10437         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10438                                   L->getHeader())
10439                << "interleaved loop (interleaved count: "
10440                << NV("InterleaveCount", IC) << ")";
10441       });
10442     } else {
10443       // If we decided that it is *legal* to vectorize the loop, then do it.
10444 
10445       // Consider vectorizing the epilogue too if it's profitable.
10446       VectorizationFactor EpilogueVF =
10447           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10448       if (EpilogueVF.Width.isVector()) {
10449 
10450         // The first pass vectorizes the main loop and creates a scalar epilogue
10451         // to be vectorized by executing the plan (potentially with a different
10452         // factor) again shortly afterwards.
10453         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10454         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10455                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10456 
10457         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestPlan, MainILV, DT);
10458         ++LoopsVectorized;
10459 
10460         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10461         formLCSSARecursively(*L, *DT, LI, SE);
10462 
10463         // Second pass vectorizes the epilogue and adjusts the control flow
10464         // edges from the first pass.
10465         EPI.MainLoopVF = EPI.EpilogueVF;
10466         EPI.MainLoopUF = EPI.EpilogueUF;
10467         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10468                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10469                                                  Checks);
10470         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestPlan, EpilogILV,
10471                         DT);
10472         ++LoopsEpilogueVectorized;
10473 
10474         if (!MainILV.areSafetyChecksAdded())
10475           DisableRuntimeUnroll = true;
10476       } else {
10477         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10478                                &LVL, &CM, BFI, PSI, Checks);
10479         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10480         ++LoopsVectorized;
10481 
10482         // Add metadata to disable runtime unrolling a scalar loop when there
10483         // are no runtime checks about strides and memory. A scalar loop that is
10484         // rarely used is not worth unrolling.
10485         if (!LB.areSafetyChecksAdded())
10486           DisableRuntimeUnroll = true;
10487       }
10488       // Report the vectorization decision.
10489       ORE->emit([&]() {
10490         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10491                                   L->getHeader())
10492                << "vectorized loop (vectorization width: "
10493                << NV("VectorizationFactor", VF.Width)
10494                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10495       });
10496     }
10497 
10498     if (ORE->allowExtraAnalysis(LV_NAME))
10499       checkMixedPrecision(L, ORE);
10500   }
10501 
10502   Optional<MDNode *> RemainderLoopID =
10503       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10504                                       LLVMLoopVectorizeFollowupEpilogue});
10505   if (RemainderLoopID.hasValue()) {
10506     L->setLoopID(RemainderLoopID.getValue());
10507   } else {
10508     if (DisableRuntimeUnroll)
10509       AddRuntimeUnrollDisableMetaData(L);
10510 
10511     // Mark the loop as already vectorized to avoid vectorizing again.
10512     Hints.setAlreadyVectorized();
10513   }
10514 
10515   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10516   return true;
10517 }
10518 
10519 LoopVectorizeResult LoopVectorizePass::runImpl(
10520     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10521     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10522     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10523     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10524     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10525   SE = &SE_;
10526   LI = &LI_;
10527   TTI = &TTI_;
10528   DT = &DT_;
10529   BFI = &BFI_;
10530   TLI = TLI_;
10531   AA = &AA_;
10532   AC = &AC_;
10533   GetLAA = &GetLAA_;
10534   DB = &DB_;
10535   ORE = &ORE_;
10536   PSI = PSI_;
10537 
10538   // Don't attempt if
10539   // 1. the target claims to have no vector registers, and
10540   // 2. interleaving won't help ILP.
10541   //
10542   // The second condition is necessary because, even if the target has no
10543   // vector registers, loop vectorization may still enable scalar
10544   // interleaving.
10545   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10546       TTI->getMaxInterleaveFactor(1) < 2)
10547     return LoopVectorizeResult(false, false);
10548 
10549   bool Changed = false, CFGChanged = false;
10550 
10551   // The vectorizer requires loops to be in simplified form.
10552   // Since simplification may add new inner loops, it has to run before the
10553   // legality and profitability checks. This means running the loop vectorizer
10554   // will simplify all loops, regardless of whether anything end up being
10555   // vectorized.
10556   for (auto &L : *LI)
10557     Changed |= CFGChanged |=
10558         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10559 
10560   // Build up a worklist of inner-loops to vectorize. This is necessary as
10561   // the act of vectorizing or partially unrolling a loop creates new loops
10562   // and can invalidate iterators across the loops.
10563   SmallVector<Loop *, 8> Worklist;
10564 
10565   for (Loop *L : *LI)
10566     collectSupportedLoops(*L, LI, ORE, Worklist);
10567 
10568   LoopsAnalyzed += Worklist.size();
10569 
10570   // Now walk the identified inner loops.
10571   while (!Worklist.empty()) {
10572     Loop *L = Worklist.pop_back_val();
10573 
10574     // For the inner loops we actually process, form LCSSA to simplify the
10575     // transform.
10576     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10577 
10578     Changed |= CFGChanged |= processLoop(L);
10579   }
10580 
10581   // Process each loop nest in the function.
10582   return LoopVectorizeResult(Changed, CFGChanged);
10583 }
10584 
10585 PreservedAnalyses LoopVectorizePass::run(Function &F,
10586                                          FunctionAnalysisManager &AM) {
10587     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10588     auto &LI = AM.getResult<LoopAnalysis>(F);
10589     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10590     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10591     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10592     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10593     auto &AA = AM.getResult<AAManager>(F);
10594     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10595     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10596     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10597 
10598     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10599     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10600         [&](Loop &L) -> const LoopAccessInfo & {
10601       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10602                                         TLI, TTI, nullptr, nullptr, nullptr};
10603       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10604     };
10605     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10606     ProfileSummaryInfo *PSI =
10607         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10608     LoopVectorizeResult Result =
10609         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10610     if (!Result.MadeAnyChange)
10611       return PreservedAnalyses::all();
10612     PreservedAnalyses PA;
10613 
10614     // We currently do not preserve loopinfo/dominator analyses with outer loop
10615     // vectorization. Until this is addressed, mark these analyses as preserved
10616     // only for non-VPlan-native path.
10617     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10618     if (!EnableVPlanNativePath) {
10619       PA.preserve<LoopAnalysis>();
10620       PA.preserve<DominatorTreeAnalysis>();
10621     }
10622     if (!Result.MadeCFGChange)
10623       PA.preserveSet<CFGAnalyses>();
10624     return PA;
10625 }
10626 
10627 void LoopVectorizePass::printPipeline(
10628     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10629   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10630       OS, MapClassName2PassName);
10631 
10632   OS << "<";
10633   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10634   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10635   OS << ">";
10636 }
10637