1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/PatternMatch.h" 121 #include "llvm/IR/Type.h" 122 #include "llvm/IR/Use.h" 123 #include "llvm/IR/User.h" 124 #include "llvm/IR/Value.h" 125 #include "llvm/IR/ValueHandle.h" 126 #include "llvm/IR/Verifier.h" 127 #include "llvm/InitializePasses.h" 128 #include "llvm/Pass.h" 129 #include "llvm/Support/Casting.h" 130 #include "llvm/Support/CommandLine.h" 131 #include "llvm/Support/Compiler.h" 132 #include "llvm/Support/Debug.h" 133 #include "llvm/Support/ErrorHandling.h" 134 #include "llvm/Support/InstructionCost.h" 135 #include "llvm/Support/MathExtras.h" 136 #include "llvm/Support/raw_ostream.h" 137 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 138 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 139 #include "llvm/Transforms/Utils/LoopSimplify.h" 140 #include "llvm/Transforms/Utils/LoopUtils.h" 141 #include "llvm/Transforms/Utils/LoopVersioning.h" 142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 143 #include "llvm/Transforms/Utils/SizeOpts.h" 144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 145 #include <algorithm> 146 #include <cassert> 147 #include <cstdint> 148 #include <cstdlib> 149 #include <functional> 150 #include <iterator> 151 #include <limits> 152 #include <memory> 153 #include <string> 154 #include <tuple> 155 #include <utility> 156 157 using namespace llvm; 158 159 #define LV_NAME "loop-vectorize" 160 #define DEBUG_TYPE LV_NAME 161 162 #ifndef NDEBUG 163 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 164 #endif 165 166 /// @{ 167 /// Metadata attribute names 168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 169 const char LLVMLoopVectorizeFollowupVectorized[] = 170 "llvm.loop.vectorize.followup_vectorized"; 171 const char LLVMLoopVectorizeFollowupEpilogue[] = 172 "llvm.loop.vectorize.followup_epilogue"; 173 /// @} 174 175 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 178 179 static cl::opt<bool> EnableEpilogueVectorization( 180 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 181 cl::desc("Enable vectorization of epilogue loops.")); 182 183 static cl::opt<unsigned> EpilogueVectorizationForceVF( 184 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 185 cl::desc("When epilogue vectorization is enabled, and a value greater than " 186 "1 is specified, forces the given VF for all applicable epilogue " 187 "loops.")); 188 189 static cl::opt<unsigned> EpilogueVectorizationMinVF( 190 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 191 cl::desc("Only loops with vectorization factor equal to or larger than " 192 "the specified value are considered for epilogue vectorization.")); 193 194 /// Loops with a known constant trip count below this number are vectorized only 195 /// if no scalar iteration overheads are incurred. 196 static cl::opt<unsigned> TinyTripCountVectorThreshold( 197 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 198 cl::desc("Loops with a constant trip count that is smaller than this " 199 "value are vectorized only if no scalar iteration overheads " 200 "are incurred.")); 201 202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 203 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 204 cl::desc("The maximum allowed number of runtime memory checks with a " 205 "vectorize(enable) pragma.")); 206 207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 208 // that predication is preferred, and this lists all options. I.e., the 209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 210 // and predicate the instructions accordingly. If tail-folding fails, there are 211 // different fallback strategies depending on these values: 212 namespace PreferPredicateTy { 213 enum Option { 214 ScalarEpilogue = 0, 215 PredicateElseScalarEpilogue, 216 PredicateOrDontVectorize 217 }; 218 } // namespace PreferPredicateTy 219 220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 221 "prefer-predicate-over-epilogue", 222 cl::init(PreferPredicateTy::ScalarEpilogue), 223 cl::Hidden, 224 cl::desc("Tail-folding and predication preferences over creating a scalar " 225 "epilogue loop."), 226 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 227 "scalar-epilogue", 228 "Don't tail-predicate loops, create scalar epilogue"), 229 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 230 "predicate-else-scalar-epilogue", 231 "prefer tail-folding, create scalar epilogue if tail " 232 "folding fails."), 233 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 234 "predicate-dont-vectorize", 235 "prefers tail-folding, don't attempt vectorization if " 236 "tail-folding fails."))); 237 238 static cl::opt<bool> MaximizeBandwidth( 239 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 240 cl::desc("Maximize bandwidth when selecting vectorization factor which " 241 "will be determined by the smallest type in loop.")); 242 243 static cl::opt<bool> EnableInterleavedMemAccesses( 244 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 246 247 /// An interleave-group may need masking if it resides in a block that needs 248 /// predication, or in order to mask away gaps. 249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 250 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 251 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 252 253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 254 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 255 cl::desc("We don't interleave loops with a estimated constant trip count " 256 "below this number")); 257 258 static cl::opt<unsigned> ForceTargetNumScalarRegs( 259 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 260 cl::desc("A flag that overrides the target's number of scalar registers.")); 261 262 static cl::opt<unsigned> ForceTargetNumVectorRegs( 263 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 264 cl::desc("A flag that overrides the target's number of vector registers.")); 265 266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 267 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 268 cl::desc("A flag that overrides the target's max interleave factor for " 269 "scalar loops.")); 270 271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 272 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 273 cl::desc("A flag that overrides the target's max interleave factor for " 274 "vectorized loops.")); 275 276 static cl::opt<unsigned> ForceTargetInstructionCost( 277 "force-target-instruction-cost", cl::init(0), cl::Hidden, 278 cl::desc("A flag that overrides the target's expected cost for " 279 "an instruction to a single constant value. Mostly " 280 "useful for getting consistent testing.")); 281 282 static cl::opt<bool> ForceTargetSupportsScalableVectors( 283 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 284 cl::desc( 285 "Pretend that scalable vectors are supported, even if the target does " 286 "not support them. This flag should only be used for testing.")); 287 288 static cl::opt<unsigned> SmallLoopCost( 289 "small-loop-cost", cl::init(20), cl::Hidden, 290 cl::desc( 291 "The cost of a loop that is considered 'small' by the interleaver.")); 292 293 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 294 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 295 cl::desc("Enable the use of the block frequency analysis to access PGO " 296 "heuristics minimizing code growth in cold regions and being more " 297 "aggressive in hot regions.")); 298 299 // Runtime interleave loops for load/store throughput. 300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 301 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 302 cl::desc( 303 "Enable runtime interleaving until load/store ports are saturated")); 304 305 /// Interleave small loops with scalar reductions. 306 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 307 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 308 cl::desc("Enable interleaving for loops with small iteration counts that " 309 "contain scalar reductions to expose ILP.")); 310 311 /// The number of stores in a loop that are allowed to need predication. 312 static cl::opt<unsigned> NumberOfStoresToPredicate( 313 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 314 cl::desc("Max number of stores to be predicated behind an if.")); 315 316 static cl::opt<bool> EnableIndVarRegisterHeur( 317 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 318 cl::desc("Count the induction variable only once when interleaving")); 319 320 static cl::opt<bool> EnableCondStoresVectorization( 321 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 322 cl::desc("Enable if predication of stores during vectorization.")); 323 324 static cl::opt<unsigned> MaxNestedScalarReductionIC( 325 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 326 cl::desc("The maximum interleave count to use when interleaving a scalar " 327 "reduction in a nested loop.")); 328 329 static cl::opt<bool> 330 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 331 cl::Hidden, 332 cl::desc("Prefer in-loop vector reductions, " 333 "overriding the targets preference.")); 334 335 cl::opt<bool> ForceOrderedReductions( 336 "force-ordered-reductions", cl::init(false), cl::Hidden, 337 cl::desc("Enable the vectorisation of loops with in-order (strict) " 338 "FP reductions")); 339 340 static cl::opt<bool> PreferPredicatedReductionSelect( 341 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 342 cl::desc( 343 "Prefer predicating a reduction operation over an after loop select.")); 344 345 cl::opt<bool> EnableVPlanNativePath( 346 "enable-vplan-native-path", cl::init(false), cl::Hidden, 347 cl::desc("Enable VPlan-native vectorization path with " 348 "support for outer loop vectorization.")); 349 350 // FIXME: Remove this switch once we have divergence analysis. Currently we 351 // assume divergent non-backedge branches when this switch is true. 352 cl::opt<bool> EnableVPlanPredication( 353 "enable-vplan-predication", cl::init(false), cl::Hidden, 354 cl::desc("Enable VPlan-native vectorization path predicator with " 355 "support for outer loop vectorization.")); 356 357 // This flag enables the stress testing of the VPlan H-CFG construction in the 358 // VPlan-native vectorization path. It must be used in conjuction with 359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 360 // verification of the H-CFGs built. 361 static cl::opt<bool> VPlanBuildStressTest( 362 "vplan-build-stress-test", cl::init(false), cl::Hidden, 363 cl::desc( 364 "Build VPlan for every supported loop nest in the function and bail " 365 "out right after the build (stress test the VPlan H-CFG construction " 366 "in the VPlan-native vectorization path).")); 367 368 cl::opt<bool> llvm::EnableLoopInterleaving( 369 "interleave-loops", cl::init(true), cl::Hidden, 370 cl::desc("Enable loop interleaving in Loop vectorization passes")); 371 cl::opt<bool> llvm::EnableLoopVectorization( 372 "vectorize-loops", cl::init(true), cl::Hidden, 373 cl::desc("Run the Loop vectorization passes")); 374 375 cl::opt<bool> PrintVPlansInDotFormat( 376 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 377 cl::desc("Use dot format instead of plain text when dumping VPlans")); 378 379 /// A helper function that returns true if the given type is irregular. The 380 /// type is irregular if its allocated size doesn't equal the store size of an 381 /// element of the corresponding vector type. 382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 383 // Determine if an array of N elements of type Ty is "bitcast compatible" 384 // with a <N x Ty> vector. 385 // This is only true if there is no padding between the array elements. 386 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 387 } 388 389 /// A helper function that returns the reciprocal of the block probability of 390 /// predicated blocks. If we return X, we are assuming the predicated block 391 /// will execute once for every X iterations of the loop header. 392 /// 393 /// TODO: We should use actual block probability here, if available. Currently, 394 /// we always assume predicated blocks have a 50% chance of executing. 395 static unsigned getReciprocalPredBlockProb() { return 2; } 396 397 /// A helper function that returns an integer or floating-point constant with 398 /// value C. 399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 400 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 401 : ConstantFP::get(Ty, C); 402 } 403 404 /// Returns "best known" trip count for the specified loop \p L as defined by 405 /// the following procedure: 406 /// 1) Returns exact trip count if it is known. 407 /// 2) Returns expected trip count according to profile data if any. 408 /// 3) Returns upper bound estimate if it is known. 409 /// 4) Returns None if all of the above failed. 410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 411 // Check if exact trip count is known. 412 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 413 return ExpectedTC; 414 415 // Check if there is an expected trip count available from profile data. 416 if (LoopVectorizeWithBlockFrequency) 417 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 418 return EstimatedTC; 419 420 // Check if upper bound estimate is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 422 return ExpectedTC; 423 424 return None; 425 } 426 427 // Forward declare GeneratedRTChecks. 428 class GeneratedRTChecks; 429 430 namespace llvm { 431 432 /// InnerLoopVectorizer vectorizes loops which contain only one basic 433 /// block to a specified vectorization factor (VF). 434 /// This class performs the widening of scalars into vectors, or multiple 435 /// scalars. This class also implements the following features: 436 /// * It inserts an epilogue loop for handling loops that don't have iteration 437 /// counts that are known to be a multiple of the vectorization factor. 438 /// * It handles the code generation for reduction variables. 439 /// * Scalarization (implementation using scalars) of un-vectorizable 440 /// instructions. 441 /// InnerLoopVectorizer does not perform any vectorization-legality 442 /// checks, and relies on the caller to check for the different legality 443 /// aspects. The InnerLoopVectorizer relies on the 444 /// LoopVectorizationLegality class to provide information about the induction 445 /// and reduction variables that were found to a given vectorization factor. 446 class InnerLoopVectorizer { 447 public: 448 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 449 LoopInfo *LI, DominatorTree *DT, 450 const TargetLibraryInfo *TLI, 451 const TargetTransformInfo *TTI, AssumptionCache *AC, 452 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 453 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 454 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 455 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 456 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 457 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 458 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 459 PSI(PSI), RTChecks(RTChecks) { 460 // Query this against the original loop and save it here because the profile 461 // of the original loop header may change as the transformation happens. 462 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 463 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 464 } 465 466 virtual ~InnerLoopVectorizer() = default; 467 468 /// Create a new empty loop that will contain vectorized instructions later 469 /// on, while the old loop will be used as the scalar remainder. Control flow 470 /// is generated around the vectorized (and scalar epilogue) loops consisting 471 /// of various checks and bypasses. Return the pre-header block of the new 472 /// loop. 473 /// In the case of epilogue vectorization, this function is overriden to 474 /// handle the more complex control flow around the loops. 475 virtual BasicBlock *createVectorizedLoopSkeleton(); 476 477 /// Widen a single instruction within the innermost loop. 478 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 479 VPTransformState &State); 480 481 /// Widen a single call instruction within the innermost loop. 482 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 483 VPTransformState &State); 484 485 /// Widen a single select instruction within the innermost loop. 486 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 487 bool InvariantCond, VPTransformState &State); 488 489 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 490 void fixVectorizedLoop(VPTransformState &State); 491 492 // Return true if any runtime check is added. 493 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 494 495 /// A type for vectorized values in the new loop. Each value from the 496 /// original loop, when vectorized, is represented by UF vector values in the 497 /// new unrolled loop, where UF is the unroll factor. 498 using VectorParts = SmallVector<Value *, 2>; 499 500 /// Vectorize a single GetElementPtrInst based on information gathered and 501 /// decisions taken during planning. 502 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 503 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 504 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 505 506 /// Vectorize a single first-order recurrence or pointer induction PHINode in 507 /// a block. This method handles the induction variable canonicalization. It 508 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 509 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 510 VPTransformState &State); 511 512 /// A helper function to scalarize a single Instruction in the innermost loop. 513 /// Generates a sequence of scalar instances for each lane between \p MinLane 514 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 515 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 516 /// Instr's operands. 517 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 518 const VPIteration &Instance, bool IfPredicateInstr, 519 VPTransformState &State); 520 521 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 522 /// is provided, the integer induction variable will first be truncated to 523 /// the corresponding type. 524 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 525 VPValue *Def, VPValue *CastDef, 526 VPTransformState &State); 527 528 /// Construct the vector value of a scalarized value \p V one lane at a time. 529 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 530 VPTransformState &State); 531 532 /// Try to vectorize interleaved access group \p Group with the base address 533 /// given in \p Addr, optionally masking the vector operations if \p 534 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 535 /// values in the vectorized loop. 536 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 537 ArrayRef<VPValue *> VPDefs, 538 VPTransformState &State, VPValue *Addr, 539 ArrayRef<VPValue *> StoredValues, 540 VPValue *BlockInMask = nullptr); 541 542 /// Vectorize Load and Store instructions with the base address given in \p 543 /// Addr, optionally masking the vector operations if \p BlockInMask is 544 /// non-null. Use \p State to translate given VPValues to IR values in the 545 /// vectorized loop. 546 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 547 VPValue *Def, VPValue *Addr, 548 VPValue *StoredValue, VPValue *BlockInMask); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Create the exit value of first order recurrences in the middle block and 594 /// update their users. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Fix a reduction cross-iteration phi. This is the second phase of 598 /// vectorizing this phi node. 599 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 600 601 /// Clear NSW/NUW flags from reduction instructions if necessary. 602 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 603 VPTransformState &State); 604 605 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 606 /// means we need to add the appropriate incoming value from the middle 607 /// block as exiting edges from the scalar epilogue loop (if present) are 608 /// already in place, and we exit the vector loop exclusively to the middle 609 /// block. 610 void fixLCSSAPHIs(VPTransformState &State); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(VPTransformState &State); 619 620 /// This function adds 621 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 622 /// to each vector element of Val. The sequence starts at StartIndex. 623 /// \p Opcode is relevant for FP induction variable. 624 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 625 Instruction::BinaryOps Opcode = 626 Instruction::BinaryOpsEnd); 627 628 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 629 /// variable on which to base the steps, \p Step is the size of the step, and 630 /// \p EntryVal is the value from the original loop that maps to the steps. 631 /// Note that \p EntryVal doesn't have to be an induction variable - it 632 /// can also be a truncate instruction. 633 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 634 const InductionDescriptor &ID, VPValue *Def, 635 VPValue *CastDef, VPTransformState &State); 636 637 /// Create a vector induction phi node based on an existing scalar one. \p 638 /// EntryVal is the value from the original loop that maps to the vector phi 639 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 640 /// truncate instruction, instead of widening the original IV, we widen a 641 /// version of the IV truncated to \p EntryVal's type. 642 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 643 Value *Step, Value *Start, 644 Instruction *EntryVal, VPValue *Def, 645 VPValue *CastDef, 646 VPTransformState &State); 647 648 /// Returns true if an instruction \p I should be scalarized instead of 649 /// vectorized for the chosen vectorization factor. 650 bool shouldScalarizeInstruction(Instruction *I) const; 651 652 /// Returns true if we should generate a scalar version of \p IV. 653 bool needsScalarInduction(Instruction *IV) const; 654 655 /// If there is a cast involved in the induction variable \p ID, which should 656 /// be ignored in the vectorized loop body, this function records the 657 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 658 /// cast. We had already proved that the casted Phi is equal to the uncasted 659 /// Phi in the vectorized loop (under a runtime guard), and therefore 660 /// there is no need to vectorize the cast - the same value can be used in the 661 /// vector loop for both the Phi and the cast. 662 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 663 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 664 /// 665 /// \p EntryVal is the value from the original loop that maps to the vector 666 /// phi node and is used to distinguish what is the IV currently being 667 /// processed - original one (if \p EntryVal is a phi corresponding to the 668 /// original IV) or the "newly-created" one based on the proof mentioned above 669 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 670 /// latter case \p EntryVal is a TruncInst and we must not record anything for 671 /// that IV, but it's error-prone to expect callers of this routine to care 672 /// about that, hence this explicit parameter. 673 void recordVectorLoopValueForInductionCast( 674 const InductionDescriptor &ID, const Instruction *EntryVal, 675 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 676 unsigned Part, unsigned Lane = UINT_MAX); 677 678 /// Generate a shuffle sequence that will reverse the vector Vec. 679 virtual Value *reverseVector(Value *Vec); 680 681 /// Returns (and creates if needed) the original loop trip count. 682 Value *getOrCreateTripCount(Loop *NewLoop); 683 684 /// Returns (and creates if needed) the trip count of the widened loop. 685 Value *getOrCreateVectorTripCount(Loop *NewLoop); 686 687 /// Returns a bitcasted value to the requested vector type. 688 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 689 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 690 const DataLayout &DL); 691 692 /// Emit a bypass check to see if the vector trip count is zero, including if 693 /// it overflows. 694 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 695 696 /// Emit a bypass check to see if all of the SCEV assumptions we've 697 /// had to make are correct. Returns the block containing the checks or 698 /// nullptr if no checks have been added. 699 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 /// Returns the block containing the checks or nullptr if no checks have been 703 /// added. 704 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 /// In cases where the loop skeleton is more complicated (eg. epilogue 725 /// vectorization) and the resume values can come from an additional bypass 726 /// block, the \p AdditionalBypass pair provides information about the bypass 727 /// block and the end value on the edge from bypass to this loop. 728 void createInductionResumeValues( 729 Loop *L, Value *VectorTripCount, 730 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 731 732 /// Complete the loop skeleton by adding debug MDs, creating appropriate 733 /// conditional branches in the middle block, preparing the builder and 734 /// running the verifier. Take in the vector loop \p L as argument, and return 735 /// the preheader of the completed vector loop. 736 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 737 738 /// Add additional metadata to \p To that was not present on \p Orig. 739 /// 740 /// Currently this is used to add the noalias annotations based on the 741 /// inserted memchecks. Use this for instructions that are *cloned* into the 742 /// vector loop. 743 void addNewMetadata(Instruction *To, const Instruction *Orig); 744 745 /// Add metadata from one instruction to another. 746 /// 747 /// This includes both the original MDs from \p From and additional ones (\see 748 /// addNewMetadata). Use this for *newly created* instructions in the vector 749 /// loop. 750 void addMetadata(Instruction *To, Instruction *From); 751 752 /// Similar to the previous function but it adds the metadata to a 753 /// vector of instructions. 754 void addMetadata(ArrayRef<Value *> To, Instruction *From); 755 756 /// Allow subclasses to override and print debug traces before/after vplan 757 /// execution, when trace information is requested. 758 virtual void printDebugTracesAtStart(){}; 759 virtual void printDebugTracesAtEnd(){}; 760 761 /// The original loop. 762 Loop *OrigLoop; 763 764 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 765 /// dynamic knowledge to simplify SCEV expressions and converts them to a 766 /// more usable form. 767 PredicatedScalarEvolution &PSE; 768 769 /// Loop Info. 770 LoopInfo *LI; 771 772 /// Dominator Tree. 773 DominatorTree *DT; 774 775 /// Alias Analysis. 776 AAResults *AA; 777 778 /// Target Library Info. 779 const TargetLibraryInfo *TLI; 780 781 /// Target Transform Info. 782 const TargetTransformInfo *TTI; 783 784 /// Assumption Cache. 785 AssumptionCache *AC; 786 787 /// Interface to emit optimization remarks. 788 OptimizationRemarkEmitter *ORE; 789 790 /// LoopVersioning. It's only set up (non-null) if memchecks were 791 /// used. 792 /// 793 /// This is currently only used to add no-alias metadata based on the 794 /// memchecks. The actually versioning is performed manually. 795 std::unique_ptr<LoopVersioning> LVer; 796 797 /// The vectorization SIMD factor to use. Each vector will have this many 798 /// vector elements. 799 ElementCount VF; 800 801 /// The vectorization unroll factor to use. Each scalar is vectorized to this 802 /// many different vector instructions. 803 unsigned UF; 804 805 /// The builder that we use 806 IRBuilder<> Builder; 807 808 // --- Vectorization state --- 809 810 /// The vector-loop preheader. 811 BasicBlock *LoopVectorPreHeader; 812 813 /// The scalar-loop preheader. 814 BasicBlock *LoopScalarPreHeader; 815 816 /// Middle Block between the vector and the scalar. 817 BasicBlock *LoopMiddleBlock; 818 819 /// The unique ExitBlock of the scalar loop if one exists. Note that 820 /// there can be multiple exiting edges reaching this block. 821 BasicBlock *LoopExitBlock; 822 823 /// The vector loop body. 824 BasicBlock *LoopVectorBody; 825 826 /// The scalar loop body. 827 BasicBlock *LoopScalarBody; 828 829 /// A list of all bypass blocks. The first block is the entry of the loop. 830 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 831 832 /// The new Induction variable which was added to the new block. 833 PHINode *Induction = nullptr; 834 835 /// The induction variable of the old basic block. 836 PHINode *OldInduction = nullptr; 837 838 /// Store instructions that were predicated. 839 SmallVector<Instruction *, 4> PredicatedInstructions; 840 841 /// Trip count of the original loop. 842 Value *TripCount = nullptr; 843 844 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 845 Value *VectorTripCount = nullptr; 846 847 /// The legality analysis. 848 LoopVectorizationLegality *Legal; 849 850 /// The profitablity analysis. 851 LoopVectorizationCostModel *Cost; 852 853 // Record whether runtime checks are added. 854 bool AddedSafetyChecks = false; 855 856 // Holds the end values for each induction variable. We save the end values 857 // so we can later fix-up the external users of the induction variables. 858 DenseMap<PHINode *, Value *> IVEndValues; 859 860 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 861 // fixed up at the end of vector code generation. 862 SmallVector<PHINode *, 8> OrigPHIsToFix; 863 864 /// BFI and PSI are used to check for profile guided size optimizations. 865 BlockFrequencyInfo *BFI; 866 ProfileSummaryInfo *PSI; 867 868 // Whether this loop should be optimized for size based on profile guided size 869 // optimizatios. 870 bool OptForSizeBasedOnProfile; 871 872 /// Structure to hold information about generated runtime checks, responsible 873 /// for cleaning the checks, if vectorization turns out unprofitable. 874 GeneratedRTChecks &RTChecks; 875 }; 876 877 class InnerLoopUnroller : public InnerLoopVectorizer { 878 public: 879 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 880 LoopInfo *LI, DominatorTree *DT, 881 const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 884 LoopVectorizationLegality *LVL, 885 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 886 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 889 BFI, PSI, Check) {} 890 891 private: 892 Value *getBroadcastInstrs(Value *V) override; 893 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 894 Instruction::BinaryOps Opcode = 895 Instruction::BinaryOpsEnd) override; 896 Value *reverseVector(Value *Vec) override; 897 }; 898 899 /// Encapsulate information regarding vectorization of a loop and its epilogue. 900 /// This information is meant to be updated and used across two stages of 901 /// epilogue vectorization. 902 struct EpilogueLoopVectorizationInfo { 903 ElementCount MainLoopVF = ElementCount::getFixed(0); 904 unsigned MainLoopUF = 0; 905 ElementCount EpilogueVF = ElementCount::getFixed(0); 906 unsigned EpilogueUF = 0; 907 BasicBlock *MainLoopIterationCountCheck = nullptr; 908 BasicBlock *EpilogueIterationCountCheck = nullptr; 909 BasicBlock *SCEVSafetyCheck = nullptr; 910 BasicBlock *MemSafetyCheck = nullptr; 911 Value *TripCount = nullptr; 912 Value *VectorTripCount = nullptr; 913 914 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 915 unsigned EUF) 916 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 917 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 918 assert(EUF == 1 && 919 "A high UF for the epilogue loop is likely not beneficial."); 920 } 921 }; 922 923 /// An extension of the inner loop vectorizer that creates a skeleton for a 924 /// vectorized loop that has its epilogue (residual) also vectorized. 925 /// The idea is to run the vplan on a given loop twice, firstly to setup the 926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 927 /// from the first step and vectorize the epilogue. This is achieved by 928 /// deriving two concrete strategy classes from this base class and invoking 929 /// them in succession from the loop vectorizer planner. 930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 931 public: 932 InnerLoopAndEpilogueVectorizer( 933 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 934 DominatorTree *DT, const TargetLibraryInfo *TLI, 935 const TargetTransformInfo *TTI, AssumptionCache *AC, 936 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 937 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 938 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 939 GeneratedRTChecks &Checks) 940 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 941 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 942 Checks), 943 EPI(EPI) {} 944 945 // Override this function to handle the more complex control flow around the 946 // three loops. 947 BasicBlock *createVectorizedLoopSkeleton() final override { 948 return createEpilogueVectorizedLoopSkeleton(); 949 } 950 951 /// The interface for creating a vectorized skeleton using one of two 952 /// different strategies, each corresponding to one execution of the vplan 953 /// as described above. 954 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 955 956 /// Holds and updates state information required to vectorize the main loop 957 /// and its epilogue in two separate passes. This setup helps us avoid 958 /// regenerating and recomputing runtime safety checks. It also helps us to 959 /// shorten the iteration-count-check path length for the cases where the 960 /// iteration count of the loop is so small that the main vector loop is 961 /// completely skipped. 962 EpilogueLoopVectorizationInfo &EPI; 963 }; 964 965 /// A specialized derived class of inner loop vectorizer that performs 966 /// vectorization of *main* loops in the process of vectorizing loops and their 967 /// epilogues. 968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 969 public: 970 EpilogueVectorizerMainLoop( 971 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 972 DominatorTree *DT, const TargetLibraryInfo *TLI, 973 const TargetTransformInfo *TTI, AssumptionCache *AC, 974 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 975 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 976 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 977 GeneratedRTChecks &Check) 978 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 979 EPI, LVL, CM, BFI, PSI, Check) {} 980 /// Implements the interface for creating a vectorized skeleton using the 981 /// *main loop* strategy (ie the first pass of vplan execution). 982 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 983 984 protected: 985 /// Emits an iteration count bypass check once for the main loop (when \p 986 /// ForEpilogue is false) and once for the epilogue loop (when \p 987 /// ForEpilogue is true). 988 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 989 bool ForEpilogue); 990 void printDebugTracesAtStart() override; 991 void printDebugTracesAtEnd() override; 992 }; 993 994 // A specialized derived class of inner loop vectorizer that performs 995 // vectorization of *epilogue* loops in the process of vectorizing loops and 996 // their epilogues. 997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 998 public: 999 EpilogueVectorizerEpilogueLoop( 1000 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1001 DominatorTree *DT, const TargetLibraryInfo *TLI, 1002 const TargetTransformInfo *TTI, AssumptionCache *AC, 1003 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1004 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1005 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1006 GeneratedRTChecks &Checks) 1007 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1008 EPI, LVL, CM, BFI, PSI, Checks) {} 1009 /// Implements the interface for creating a vectorized skeleton using the 1010 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1011 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1012 1013 protected: 1014 /// Emits an iteration count bypass check after the main vector loop has 1015 /// finished to see if there are any iterations left to execute by either 1016 /// the vector epilogue or the scalar epilogue. 1017 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1018 BasicBlock *Bypass, 1019 BasicBlock *Insert); 1020 void printDebugTracesAtStart() override; 1021 void printDebugTracesAtEnd() override; 1022 }; 1023 } // end namespace llvm 1024 1025 /// Look for a meaningful debug location on the instruction or it's 1026 /// operands. 1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1028 if (!I) 1029 return I; 1030 1031 DebugLoc Empty; 1032 if (I->getDebugLoc() != Empty) 1033 return I; 1034 1035 for (Use &Op : I->operands()) { 1036 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1037 if (OpInst->getDebugLoc() != Empty) 1038 return OpInst; 1039 } 1040 1041 return I; 1042 } 1043 1044 void InnerLoopVectorizer::setDebugLocFromInst( 1045 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1046 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1047 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1048 const DILocation *DIL = Inst->getDebugLoc(); 1049 1050 // When a FSDiscriminator is enabled, we don't need to add the multiply 1051 // factors to the discriminators. 1052 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1053 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1054 // FIXME: For scalable vectors, assume vscale=1. 1055 auto NewDIL = 1056 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1057 if (NewDIL) 1058 B->SetCurrentDebugLocation(NewDIL.getValue()); 1059 else 1060 LLVM_DEBUG(dbgs() 1061 << "Failed to create new discriminator: " 1062 << DIL->getFilename() << " Line: " << DIL->getLine()); 1063 } else 1064 B->SetCurrentDebugLocation(DIL); 1065 } else 1066 B->SetCurrentDebugLocation(DebugLoc()); 1067 } 1068 1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1070 /// is passed, the message relates to that particular instruction. 1071 #ifndef NDEBUG 1072 static void debugVectorizationMessage(const StringRef Prefix, 1073 const StringRef DebugMsg, 1074 Instruction *I) { 1075 dbgs() << "LV: " << Prefix << DebugMsg; 1076 if (I != nullptr) 1077 dbgs() << " " << *I; 1078 else 1079 dbgs() << '.'; 1080 dbgs() << '\n'; 1081 } 1082 #endif 1083 1084 /// Create an analysis remark that explains why vectorization failed 1085 /// 1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1087 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1088 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1089 /// the location of the remark. \return the remark object that can be 1090 /// streamed to. 1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1092 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1093 Value *CodeRegion = TheLoop->getHeader(); 1094 DebugLoc DL = TheLoop->getStartLoc(); 1095 1096 if (I) { 1097 CodeRegion = I->getParent(); 1098 // If there is no debug location attached to the instruction, revert back to 1099 // using the loop's. 1100 if (I->getDebugLoc()) 1101 DL = I->getDebugLoc(); 1102 } 1103 1104 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1105 } 1106 1107 /// Return a value for Step multiplied by VF. 1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1109 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1110 Constant *StepVal = ConstantInt::get( 1111 Step->getType(), 1112 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1113 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1114 } 1115 1116 namespace llvm { 1117 1118 /// Return the runtime value for VF. 1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1120 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1121 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1122 } 1123 1124 void reportVectorizationFailure(const StringRef DebugMsg, 1125 const StringRef OREMsg, const StringRef ORETag, 1126 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1127 Instruction *I) { 1128 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1129 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1130 ORE->emit( 1131 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1132 << "loop not vectorized: " << OREMsg); 1133 } 1134 1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1136 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1137 Instruction *I) { 1138 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1139 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1140 ORE->emit( 1141 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1142 << Msg); 1143 } 1144 1145 } // end namespace llvm 1146 1147 #ifndef NDEBUG 1148 /// \return string containing a file name and a line # for the given loop. 1149 static std::string getDebugLocString(const Loop *L) { 1150 std::string Result; 1151 if (L) { 1152 raw_string_ostream OS(Result); 1153 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1154 LoopDbgLoc.print(OS); 1155 else 1156 // Just print the module name. 1157 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1158 OS.flush(); 1159 } 1160 return Result; 1161 } 1162 #endif 1163 1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1165 const Instruction *Orig) { 1166 // If the loop was versioned with memchecks, add the corresponding no-alias 1167 // metadata. 1168 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1169 LVer->annotateInstWithNoAlias(To, Orig); 1170 } 1171 1172 void InnerLoopVectorizer::addMetadata(Instruction *To, 1173 Instruction *From) { 1174 propagateMetadata(To, From); 1175 addNewMetadata(To, From); 1176 } 1177 1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1179 Instruction *From) { 1180 for (Value *V : To) { 1181 if (Instruction *I = dyn_cast<Instruction>(V)) 1182 addMetadata(I, From); 1183 } 1184 } 1185 1186 namespace llvm { 1187 1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1189 // lowered. 1190 enum ScalarEpilogueLowering { 1191 1192 // The default: allowing scalar epilogues. 1193 CM_ScalarEpilogueAllowed, 1194 1195 // Vectorization with OptForSize: don't allow epilogues. 1196 CM_ScalarEpilogueNotAllowedOptSize, 1197 1198 // A special case of vectorisation with OptForSize: loops with a very small 1199 // trip count are considered for vectorization under OptForSize, thereby 1200 // making sure the cost of their loop body is dominant, free of runtime 1201 // guards and scalar iteration overheads. 1202 CM_ScalarEpilogueNotAllowedLowTripLoop, 1203 1204 // Loop hint predicate indicating an epilogue is undesired. 1205 CM_ScalarEpilogueNotNeededUsePredicate, 1206 1207 // Directive indicating we must either tail fold or not vectorize 1208 CM_ScalarEpilogueNotAllowedUsePredicate 1209 }; 1210 1211 /// ElementCountComparator creates a total ordering for ElementCount 1212 /// for the purposes of using it in a set structure. 1213 struct ElementCountComparator { 1214 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1215 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1216 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1217 } 1218 }; 1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1220 1221 /// LoopVectorizationCostModel - estimates the expected speedups due to 1222 /// vectorization. 1223 /// In many cases vectorization is not profitable. This can happen because of 1224 /// a number of reasons. In this class we mainly attempt to predict the 1225 /// expected speedup/slowdowns due to the supported instruction set. We use the 1226 /// TargetTransformInfo to query the different backends for the cost of 1227 /// different operations. 1228 class LoopVectorizationCostModel { 1229 public: 1230 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1231 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1232 LoopVectorizationLegality *Legal, 1233 const TargetTransformInfo &TTI, 1234 const TargetLibraryInfo *TLI, DemandedBits *DB, 1235 AssumptionCache *AC, 1236 OptimizationRemarkEmitter *ORE, const Function *F, 1237 const LoopVectorizeHints *Hints, 1238 InterleavedAccessInfo &IAI) 1239 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1240 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1241 Hints(Hints), InterleaveInfo(IAI) {} 1242 1243 /// \return An upper bound for the vectorization factors (both fixed and 1244 /// scalable). If the factors are 0, vectorization and interleaving should be 1245 /// avoided up front. 1246 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1247 1248 /// \return True if runtime checks are required for vectorization, and false 1249 /// otherwise. 1250 bool runtimeChecksRequired(); 1251 1252 /// \return The most profitable vectorization factor and the cost of that VF. 1253 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1254 /// then this vectorization factor will be selected if vectorization is 1255 /// possible. 1256 VectorizationFactor 1257 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1258 1259 VectorizationFactor 1260 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1261 const LoopVectorizationPlanner &LVP); 1262 1263 /// Setup cost-based decisions for user vectorization factor. 1264 /// \return true if the UserVF is a feasible VF to be chosen. 1265 bool selectUserVectorizationFactor(ElementCount UserVF) { 1266 collectUniformsAndScalars(UserVF); 1267 collectInstsToScalarize(UserVF); 1268 return expectedCost(UserVF).first.isValid(); 1269 } 1270 1271 /// \return The size (in bits) of the smallest and widest types in the code 1272 /// that needs to be vectorized. We ignore values that remain scalar such as 1273 /// 64 bit loop indices. 1274 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1275 1276 /// \return The desired interleave count. 1277 /// If interleave count has been specified by metadata it will be returned. 1278 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1279 /// are the selected vectorization factor and the cost of the selected VF. 1280 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1281 1282 /// Memory access instruction may be vectorized in more than one way. 1283 /// Form of instruction after vectorization depends on cost. 1284 /// This function takes cost-based decisions for Load/Store instructions 1285 /// and collects them in a map. This decisions map is used for building 1286 /// the lists of loop-uniform and loop-scalar instructions. 1287 /// The calculated cost is saved with widening decision in order to 1288 /// avoid redundant calculations. 1289 void setCostBasedWideningDecision(ElementCount VF); 1290 1291 /// A struct that represents some properties of the register usage 1292 /// of a loop. 1293 struct RegisterUsage { 1294 /// Holds the number of loop invariant values that are used in the loop. 1295 /// The key is ClassID of target-provided register class. 1296 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1297 /// Holds the maximum number of concurrent live intervals in the loop. 1298 /// The key is ClassID of target-provided register class. 1299 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1300 }; 1301 1302 /// \return Returns information about the register usages of the loop for the 1303 /// given vectorization factors. 1304 SmallVector<RegisterUsage, 8> 1305 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1306 1307 /// Collect values we want to ignore in the cost model. 1308 void collectValuesToIgnore(); 1309 1310 /// Collect all element types in the loop for which widening is needed. 1311 void collectElementTypesForWidening(); 1312 1313 /// Split reductions into those that happen in the loop, and those that happen 1314 /// outside. In loop reductions are collected into InLoopReductionChains. 1315 void collectInLoopReductions(); 1316 1317 /// Returns true if we should use strict in-order reductions for the given 1318 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1319 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1320 /// of FP operations. 1321 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1322 return ForceOrderedReductions && !Hints->allowReordering() && 1323 RdxDesc.isOrdered(); 1324 } 1325 1326 /// \returns The smallest bitwidth each instruction can be represented with. 1327 /// The vector equivalents of these instructions should be truncated to this 1328 /// type. 1329 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1330 return MinBWs; 1331 } 1332 1333 /// \returns True if it is more profitable to scalarize instruction \p I for 1334 /// vectorization factor \p VF. 1335 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1336 assert(VF.isVector() && 1337 "Profitable to scalarize relevant only for VF > 1."); 1338 1339 // Cost model is not run in the VPlan-native path - return conservative 1340 // result until this changes. 1341 if (EnableVPlanNativePath) 1342 return false; 1343 1344 auto Scalars = InstsToScalarize.find(VF); 1345 assert(Scalars != InstsToScalarize.end() && 1346 "VF not yet analyzed for scalarization profitability"); 1347 return Scalars->second.find(I) != Scalars->second.end(); 1348 } 1349 1350 /// Returns true if \p I is known to be uniform after vectorization. 1351 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1352 if (VF.isScalar()) 1353 return true; 1354 1355 // Cost model is not run in the VPlan-native path - return conservative 1356 // result until this changes. 1357 if (EnableVPlanNativePath) 1358 return false; 1359 1360 auto UniformsPerVF = Uniforms.find(VF); 1361 assert(UniformsPerVF != Uniforms.end() && 1362 "VF not yet analyzed for uniformity"); 1363 return UniformsPerVF->second.count(I); 1364 } 1365 1366 /// Returns true if \p I is known to be scalar after vectorization. 1367 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1368 if (VF.isScalar()) 1369 return true; 1370 1371 // Cost model is not run in the VPlan-native path - return conservative 1372 // result until this changes. 1373 if (EnableVPlanNativePath) 1374 return false; 1375 1376 auto ScalarsPerVF = Scalars.find(VF); 1377 assert(ScalarsPerVF != Scalars.end() && 1378 "Scalar values are not calculated for VF"); 1379 return ScalarsPerVF->second.count(I); 1380 } 1381 1382 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1383 /// for vectorization factor \p VF. 1384 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1385 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1386 !isProfitableToScalarize(I, VF) && 1387 !isScalarAfterVectorization(I, VF); 1388 } 1389 1390 /// Decision that was taken during cost calculation for memory instruction. 1391 enum InstWidening { 1392 CM_Unknown, 1393 CM_Widen, // For consecutive accesses with stride +1. 1394 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1395 CM_Interleave, 1396 CM_GatherScatter, 1397 CM_Scalarize 1398 }; 1399 1400 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1401 /// instruction \p I and vector width \p VF. 1402 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1403 InstructionCost Cost) { 1404 assert(VF.isVector() && "Expected VF >=2"); 1405 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1406 } 1407 1408 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1409 /// interleaving group \p Grp and vector width \p VF. 1410 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1411 ElementCount VF, InstWidening W, 1412 InstructionCost Cost) { 1413 assert(VF.isVector() && "Expected VF >=2"); 1414 /// Broadcast this decicion to all instructions inside the group. 1415 /// But the cost will be assigned to one instruction only. 1416 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1417 if (auto *I = Grp->getMember(i)) { 1418 if (Grp->getInsertPos() == I) 1419 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1420 else 1421 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1422 } 1423 } 1424 } 1425 1426 /// Return the cost model decision for the given instruction \p I and vector 1427 /// width \p VF. Return CM_Unknown if this instruction did not pass 1428 /// through the cost modeling. 1429 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1430 assert(VF.isVector() && "Expected VF to be a vector VF"); 1431 // Cost model is not run in the VPlan-native path - return conservative 1432 // result until this changes. 1433 if (EnableVPlanNativePath) 1434 return CM_GatherScatter; 1435 1436 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1437 auto Itr = WideningDecisions.find(InstOnVF); 1438 if (Itr == WideningDecisions.end()) 1439 return CM_Unknown; 1440 return Itr->second.first; 1441 } 1442 1443 /// Return the vectorization cost for the given instruction \p I and vector 1444 /// width \p VF. 1445 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1446 assert(VF.isVector() && "Expected VF >=2"); 1447 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1448 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1449 "The cost is not calculated"); 1450 return WideningDecisions[InstOnVF].second; 1451 } 1452 1453 /// Return True if instruction \p I is an optimizable truncate whose operand 1454 /// is an induction variable. Such a truncate will be removed by adding a new 1455 /// induction variable with the destination type. 1456 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1457 // If the instruction is not a truncate, return false. 1458 auto *Trunc = dyn_cast<TruncInst>(I); 1459 if (!Trunc) 1460 return false; 1461 1462 // Get the source and destination types of the truncate. 1463 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1464 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1465 1466 // If the truncate is free for the given types, return false. Replacing a 1467 // free truncate with an induction variable would add an induction variable 1468 // update instruction to each iteration of the loop. We exclude from this 1469 // check the primary induction variable since it will need an update 1470 // instruction regardless. 1471 Value *Op = Trunc->getOperand(0); 1472 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1473 return false; 1474 1475 // If the truncated value is not an induction variable, return false. 1476 return Legal->isInductionPhi(Op); 1477 } 1478 1479 /// Collects the instructions to scalarize for each predicated instruction in 1480 /// the loop. 1481 void collectInstsToScalarize(ElementCount VF); 1482 1483 /// Collect Uniform and Scalar values for the given \p VF. 1484 /// The sets depend on CM decision for Load/Store instructions 1485 /// that may be vectorized as interleave, gather-scatter or scalarized. 1486 void collectUniformsAndScalars(ElementCount VF) { 1487 // Do the analysis once. 1488 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1489 return; 1490 setCostBasedWideningDecision(VF); 1491 collectLoopUniforms(VF); 1492 collectLoopScalars(VF); 1493 } 1494 1495 /// Returns true if the target machine supports masked store operation 1496 /// for the given \p DataType and kind of access to \p Ptr. 1497 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1498 return Legal->isConsecutivePtr(Ptr) && 1499 TTI.isLegalMaskedStore(DataType, Alignment); 1500 } 1501 1502 /// Returns true if the target machine supports masked load operation 1503 /// for the given \p DataType and kind of access to \p Ptr. 1504 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1505 return Legal->isConsecutivePtr(Ptr) && 1506 TTI.isLegalMaskedLoad(DataType, Alignment); 1507 } 1508 1509 /// Returns true if the target machine can represent \p V as a masked gather 1510 /// or scatter operation. 1511 bool isLegalGatherOrScatter(Value *V) { 1512 bool LI = isa<LoadInst>(V); 1513 bool SI = isa<StoreInst>(V); 1514 if (!LI && !SI) 1515 return false; 1516 auto *Ty = getLoadStoreType(V); 1517 Align Align = getLoadStoreAlignment(V); 1518 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1519 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1520 } 1521 1522 /// Returns true if the target machine supports all of the reduction 1523 /// variables found for the given VF. 1524 bool canVectorizeReductions(ElementCount VF) const { 1525 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1526 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1527 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1528 })); 1529 } 1530 1531 /// Returns true if \p I is an instruction that will be scalarized with 1532 /// predication. Such instructions include conditional stores and 1533 /// instructions that may divide by zero. 1534 /// If a non-zero VF has been calculated, we check if I will be scalarized 1535 /// predication for that VF. 1536 bool isScalarWithPredication(Instruction *I) const; 1537 1538 // Returns true if \p I is an instruction that will be predicated either 1539 // through scalar predication or masked load/store or masked gather/scatter. 1540 // Superset of instructions that return true for isScalarWithPredication. 1541 bool isPredicatedInst(Instruction *I) { 1542 if (!blockNeedsPredication(I->getParent())) 1543 return false; 1544 // Loads and stores that need some form of masked operation are predicated 1545 // instructions. 1546 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1547 return Legal->isMaskRequired(I); 1548 return isScalarWithPredication(I); 1549 } 1550 1551 /// Returns true if \p I is a memory instruction with consecutive memory 1552 /// access that can be widened. 1553 bool 1554 memoryInstructionCanBeWidened(Instruction *I, 1555 ElementCount VF = ElementCount::getFixed(1)); 1556 1557 /// Returns true if \p I is a memory instruction in an interleaved-group 1558 /// of memory accesses that can be vectorized with wide vector loads/stores 1559 /// and shuffles. 1560 bool 1561 interleavedAccessCanBeWidened(Instruction *I, 1562 ElementCount VF = ElementCount::getFixed(1)); 1563 1564 /// Check if \p Instr belongs to any interleaved access group. 1565 bool isAccessInterleaved(Instruction *Instr) { 1566 return InterleaveInfo.isInterleaved(Instr); 1567 } 1568 1569 /// Get the interleaved access group that \p Instr belongs to. 1570 const InterleaveGroup<Instruction> * 1571 getInterleavedAccessGroup(Instruction *Instr) { 1572 return InterleaveInfo.getInterleaveGroup(Instr); 1573 } 1574 1575 /// Returns true if we're required to use a scalar epilogue for at least 1576 /// the final iteration of the original loop. 1577 bool requiresScalarEpilogue(ElementCount VF) const { 1578 if (!isScalarEpilogueAllowed()) 1579 return false; 1580 // If we might exit from anywhere but the latch, must run the exiting 1581 // iteration in scalar form. 1582 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1583 return true; 1584 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1585 } 1586 1587 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1588 /// loop hint annotation. 1589 bool isScalarEpilogueAllowed() const { 1590 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1591 } 1592 1593 /// Returns true if all loop blocks should be masked to fold tail loop. 1594 bool foldTailByMasking() const { return FoldTailByMasking; } 1595 1596 bool blockNeedsPredication(BasicBlock *BB) const { 1597 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1598 } 1599 1600 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1601 /// nodes to the chain of instructions representing the reductions. Uses a 1602 /// MapVector to ensure deterministic iteration order. 1603 using ReductionChainMap = 1604 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1605 1606 /// Return the chain of instructions representing an inloop reduction. 1607 const ReductionChainMap &getInLoopReductionChains() const { 1608 return InLoopReductionChains; 1609 } 1610 1611 /// Returns true if the Phi is part of an inloop reduction. 1612 bool isInLoopReduction(PHINode *Phi) const { 1613 return InLoopReductionChains.count(Phi); 1614 } 1615 1616 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1617 /// with factor VF. Return the cost of the instruction, including 1618 /// scalarization overhead if it's needed. 1619 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1620 1621 /// Estimate cost of a call instruction CI if it were vectorized with factor 1622 /// VF. Return the cost of the instruction, including scalarization overhead 1623 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1624 /// scalarized - 1625 /// i.e. either vector version isn't available, or is too expensive. 1626 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1627 bool &NeedToScalarize) const; 1628 1629 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1630 /// that of B. 1631 bool isMoreProfitable(const VectorizationFactor &A, 1632 const VectorizationFactor &B) const; 1633 1634 /// Invalidates decisions already taken by the cost model. 1635 void invalidateCostModelingDecisions() { 1636 WideningDecisions.clear(); 1637 Uniforms.clear(); 1638 Scalars.clear(); 1639 } 1640 1641 private: 1642 unsigned NumPredStores = 0; 1643 1644 /// \return An upper bound for the vectorization factors for both 1645 /// fixed and scalable vectorization, where the minimum-known number of 1646 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1647 /// disabled or unsupported, then the scalable part will be equal to 1648 /// ElementCount::getScalable(0). 1649 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1650 ElementCount UserVF); 1651 1652 /// \return the maximized element count based on the targets vector 1653 /// registers and the loop trip-count, but limited to a maximum safe VF. 1654 /// This is a helper function of computeFeasibleMaxVF. 1655 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1656 /// issue that occurred on one of the buildbots which cannot be reproduced 1657 /// without having access to the properietary compiler (see comments on 1658 /// D98509). The issue is currently under investigation and this workaround 1659 /// will be removed as soon as possible. 1660 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1661 unsigned SmallestType, 1662 unsigned WidestType, 1663 const ElementCount &MaxSafeVF); 1664 1665 /// \return the maximum legal scalable VF, based on the safe max number 1666 /// of elements. 1667 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1668 1669 /// The vectorization cost is a combination of the cost itself and a boolean 1670 /// indicating whether any of the contributing operations will actually 1671 /// operate on vector values after type legalization in the backend. If this 1672 /// latter value is false, then all operations will be scalarized (i.e. no 1673 /// vectorization has actually taken place). 1674 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1675 1676 /// Returns the expected execution cost. The unit of the cost does 1677 /// not matter because we use the 'cost' units to compare different 1678 /// vector widths. The cost that is returned is *not* normalized by 1679 /// the factor width. If \p Invalid is not nullptr, this function 1680 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1681 /// each instruction that has an Invalid cost for the given VF. 1682 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1683 VectorizationCostTy 1684 expectedCost(ElementCount VF, 1685 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1686 1687 /// Returns the execution time cost of an instruction for a given vector 1688 /// width. Vector width of one means scalar. 1689 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1690 1691 /// The cost-computation logic from getInstructionCost which provides 1692 /// the vector type as an output parameter. 1693 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1694 Type *&VectorTy); 1695 1696 /// Return the cost of instructions in an inloop reduction pattern, if I is 1697 /// part of that pattern. 1698 Optional<InstructionCost> 1699 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1700 TTI::TargetCostKind CostKind); 1701 1702 /// Calculate vectorization cost of memory instruction \p I. 1703 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost computation for scalarized memory instruction. 1706 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost computation for interleaving group of memory instructions. 1709 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost computation for Gather/Scatter instruction. 1712 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1713 1714 /// The cost computation for widening instruction \p I with consecutive 1715 /// memory access. 1716 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1717 1718 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1719 /// Load: scalar load + broadcast. 1720 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1721 /// element) 1722 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1723 1724 /// Estimate the overhead of scalarizing an instruction. This is a 1725 /// convenience wrapper for the type-based getScalarizationOverhead API. 1726 InstructionCost getScalarizationOverhead(Instruction *I, 1727 ElementCount VF) const; 1728 1729 /// Returns whether the instruction is a load or store and will be a emitted 1730 /// as a vector operation. 1731 bool isConsecutiveLoadOrStore(Instruction *I); 1732 1733 /// Returns true if an artificially high cost for emulated masked memrefs 1734 /// should be used. 1735 bool useEmulatedMaskMemRefHack(Instruction *I); 1736 1737 /// Map of scalar integer values to the smallest bitwidth they can be legally 1738 /// represented as. The vector equivalents of these values should be truncated 1739 /// to this type. 1740 MapVector<Instruction *, uint64_t> MinBWs; 1741 1742 /// A type representing the costs for instructions if they were to be 1743 /// scalarized rather than vectorized. The entries are Instruction-Cost 1744 /// pairs. 1745 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1746 1747 /// A set containing all BasicBlocks that are known to present after 1748 /// vectorization as a predicated block. 1749 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1750 1751 /// Records whether it is allowed to have the original scalar loop execute at 1752 /// least once. This may be needed as a fallback loop in case runtime 1753 /// aliasing/dependence checks fail, or to handle the tail/remainder 1754 /// iterations when the trip count is unknown or doesn't divide by the VF, 1755 /// or as a peel-loop to handle gaps in interleave-groups. 1756 /// Under optsize and when the trip count is very small we don't allow any 1757 /// iterations to execute in the scalar loop. 1758 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1759 1760 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1761 bool FoldTailByMasking = false; 1762 1763 /// A map holding scalar costs for different vectorization factors. The 1764 /// presence of a cost for an instruction in the mapping indicates that the 1765 /// instruction will be scalarized when vectorizing with the associated 1766 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1767 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1768 1769 /// Holds the instructions known to be uniform after vectorization. 1770 /// The data is collected per VF. 1771 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1772 1773 /// Holds the instructions known to be scalar after vectorization. 1774 /// The data is collected per VF. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1776 1777 /// Holds the instructions (address computations) that are forced to be 1778 /// scalarized. 1779 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1780 1781 /// PHINodes of the reductions that should be expanded in-loop along with 1782 /// their associated chains of reduction operations, in program order from top 1783 /// (PHI) to bottom 1784 ReductionChainMap InLoopReductionChains; 1785 1786 /// A Map of inloop reduction operations and their immediate chain operand. 1787 /// FIXME: This can be removed once reductions can be costed correctly in 1788 /// vplan. This was added to allow quick lookup to the inloop operations, 1789 /// without having to loop through InLoopReductionChains. 1790 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1791 1792 /// Returns the expected difference in cost from scalarizing the expression 1793 /// feeding a predicated instruction \p PredInst. The instructions to 1794 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1795 /// non-negative return value implies the expression will be scalarized. 1796 /// Currently, only single-use chains are considered for scalarization. 1797 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1798 ElementCount VF); 1799 1800 /// Collect the instructions that are uniform after vectorization. An 1801 /// instruction is uniform if we represent it with a single scalar value in 1802 /// the vectorized loop corresponding to each vector iteration. Examples of 1803 /// uniform instructions include pointer operands of consecutive or 1804 /// interleaved memory accesses. Note that although uniformity implies an 1805 /// instruction will be scalar, the reverse is not true. In general, a 1806 /// scalarized instruction will be represented by VF scalar values in the 1807 /// vectorized loop, each corresponding to an iteration of the original 1808 /// scalar loop. 1809 void collectLoopUniforms(ElementCount VF); 1810 1811 /// Collect the instructions that are scalar after vectorization. An 1812 /// instruction is scalar if it is known to be uniform or will be scalarized 1813 /// during vectorization. Non-uniform scalarized instructions will be 1814 /// represented by VF values in the vectorized loop, each corresponding to an 1815 /// iteration of the original scalar loop. 1816 void collectLoopScalars(ElementCount VF); 1817 1818 /// Keeps cost model vectorization decision and cost for instructions. 1819 /// Right now it is used for memory instructions only. 1820 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1821 std::pair<InstWidening, InstructionCost>>; 1822 1823 DecisionList WideningDecisions; 1824 1825 /// Returns true if \p V is expected to be vectorized and it needs to be 1826 /// extracted. 1827 bool needsExtract(Value *V, ElementCount VF) const { 1828 Instruction *I = dyn_cast<Instruction>(V); 1829 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1830 TheLoop->isLoopInvariant(I)) 1831 return false; 1832 1833 // Assume we can vectorize V (and hence we need extraction) if the 1834 // scalars are not computed yet. This can happen, because it is called 1835 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1836 // the scalars are collected. That should be a safe assumption in most 1837 // cases, because we check if the operands have vectorizable types 1838 // beforehand in LoopVectorizationLegality. 1839 return Scalars.find(VF) == Scalars.end() || 1840 !isScalarAfterVectorization(I, VF); 1841 }; 1842 1843 /// Returns a range containing only operands needing to be extracted. 1844 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1845 ElementCount VF) const { 1846 return SmallVector<Value *, 4>(make_filter_range( 1847 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1848 } 1849 1850 /// Determines if we have the infrastructure to vectorize loop \p L and its 1851 /// epilogue, assuming the main loop is vectorized by \p VF. 1852 bool isCandidateForEpilogueVectorization(const Loop &L, 1853 const ElementCount VF) const; 1854 1855 /// Returns true if epilogue vectorization is considered profitable, and 1856 /// false otherwise. 1857 /// \p VF is the vectorization factor chosen for the original loop. 1858 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1859 1860 public: 1861 /// The loop that we evaluate. 1862 Loop *TheLoop; 1863 1864 /// Predicated scalar evolution analysis. 1865 PredicatedScalarEvolution &PSE; 1866 1867 /// Loop Info analysis. 1868 LoopInfo *LI; 1869 1870 /// Vectorization legality. 1871 LoopVectorizationLegality *Legal; 1872 1873 /// Vector target information. 1874 const TargetTransformInfo &TTI; 1875 1876 /// Target Library Info. 1877 const TargetLibraryInfo *TLI; 1878 1879 /// Demanded bits analysis. 1880 DemandedBits *DB; 1881 1882 /// Assumption cache. 1883 AssumptionCache *AC; 1884 1885 /// Interface to emit optimization remarks. 1886 OptimizationRemarkEmitter *ORE; 1887 1888 const Function *TheFunction; 1889 1890 /// Loop Vectorize Hint. 1891 const LoopVectorizeHints *Hints; 1892 1893 /// The interleave access information contains groups of interleaved accesses 1894 /// with the same stride and close to each other. 1895 InterleavedAccessInfo &InterleaveInfo; 1896 1897 /// Values to ignore in the cost model. 1898 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1899 1900 /// Values to ignore in the cost model when VF > 1. 1901 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1902 1903 /// All element types found in the loop. 1904 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1905 1906 /// Profitable vector factors. 1907 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1908 }; 1909 } // end namespace llvm 1910 1911 /// Helper struct to manage generating runtime checks for vectorization. 1912 /// 1913 /// The runtime checks are created up-front in temporary blocks to allow better 1914 /// estimating the cost and un-linked from the existing IR. After deciding to 1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1916 /// temporary blocks are completely removed. 1917 class GeneratedRTChecks { 1918 /// Basic block which contains the generated SCEV checks, if any. 1919 BasicBlock *SCEVCheckBlock = nullptr; 1920 1921 /// The value representing the result of the generated SCEV checks. If it is 1922 /// nullptr, either no SCEV checks have been generated or they have been used. 1923 Value *SCEVCheckCond = nullptr; 1924 1925 /// Basic block which contains the generated memory runtime checks, if any. 1926 BasicBlock *MemCheckBlock = nullptr; 1927 1928 /// The value representing the result of the generated memory runtime checks. 1929 /// If it is nullptr, either no memory runtime checks have been generated or 1930 /// they have been used. 1931 Instruction *MemRuntimeCheckCond = nullptr; 1932 1933 DominatorTree *DT; 1934 LoopInfo *LI; 1935 1936 SCEVExpander SCEVExp; 1937 SCEVExpander MemCheckExp; 1938 1939 public: 1940 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1941 const DataLayout &DL) 1942 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1943 MemCheckExp(SE, DL, "scev.check") {} 1944 1945 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1946 /// accurately estimate the cost of the runtime checks. The blocks are 1947 /// un-linked from the IR and is added back during vector code generation. If 1948 /// there is no vector code generation, the check blocks are removed 1949 /// completely. 1950 void Create(Loop *L, const LoopAccessInfo &LAI, 1951 const SCEVUnionPredicate &UnionPred) { 1952 1953 BasicBlock *LoopHeader = L->getHeader(); 1954 BasicBlock *Preheader = L->getLoopPreheader(); 1955 1956 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1957 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1958 // may be used by SCEVExpander. The blocks will be un-linked from their 1959 // predecessors and removed from LI & DT at the end of the function. 1960 if (!UnionPred.isAlwaysTrue()) { 1961 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1962 nullptr, "vector.scevcheck"); 1963 1964 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1965 &UnionPred, SCEVCheckBlock->getTerminator()); 1966 } 1967 1968 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1969 if (RtPtrChecking.Need) { 1970 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1971 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1972 "vector.memcheck"); 1973 1974 std::tie(std::ignore, MemRuntimeCheckCond) = 1975 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1976 RtPtrChecking.getChecks(), MemCheckExp); 1977 assert(MemRuntimeCheckCond && 1978 "no RT checks generated although RtPtrChecking " 1979 "claimed checks are required"); 1980 } 1981 1982 if (!MemCheckBlock && !SCEVCheckBlock) 1983 return; 1984 1985 // Unhook the temporary block with the checks, update various places 1986 // accordingly. 1987 if (SCEVCheckBlock) 1988 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1989 if (MemCheckBlock) 1990 MemCheckBlock->replaceAllUsesWith(Preheader); 1991 1992 if (SCEVCheckBlock) { 1993 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1994 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1995 Preheader->getTerminator()->eraseFromParent(); 1996 } 1997 if (MemCheckBlock) { 1998 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1999 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2000 Preheader->getTerminator()->eraseFromParent(); 2001 } 2002 2003 DT->changeImmediateDominator(LoopHeader, Preheader); 2004 if (MemCheckBlock) { 2005 DT->eraseNode(MemCheckBlock); 2006 LI->removeBlock(MemCheckBlock); 2007 } 2008 if (SCEVCheckBlock) { 2009 DT->eraseNode(SCEVCheckBlock); 2010 LI->removeBlock(SCEVCheckBlock); 2011 } 2012 } 2013 2014 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2015 /// unused. 2016 ~GeneratedRTChecks() { 2017 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2018 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2019 if (!SCEVCheckCond) 2020 SCEVCleaner.markResultUsed(); 2021 2022 if (!MemRuntimeCheckCond) 2023 MemCheckCleaner.markResultUsed(); 2024 2025 if (MemRuntimeCheckCond) { 2026 auto &SE = *MemCheckExp.getSE(); 2027 // Memory runtime check generation creates compares that use expanded 2028 // values. Remove them before running the SCEVExpanderCleaners. 2029 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2030 if (MemCheckExp.isInsertedInstruction(&I)) 2031 continue; 2032 SE.forgetValue(&I); 2033 SE.eraseValueFromMap(&I); 2034 I.eraseFromParent(); 2035 } 2036 } 2037 MemCheckCleaner.cleanup(); 2038 SCEVCleaner.cleanup(); 2039 2040 if (SCEVCheckCond) 2041 SCEVCheckBlock->eraseFromParent(); 2042 if (MemRuntimeCheckCond) 2043 MemCheckBlock->eraseFromParent(); 2044 } 2045 2046 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2047 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2048 /// depending on the generated condition. 2049 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2050 BasicBlock *LoopVectorPreHeader, 2051 BasicBlock *LoopExitBlock) { 2052 if (!SCEVCheckCond) 2053 return nullptr; 2054 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2055 if (C->isZero()) 2056 return nullptr; 2057 2058 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2059 2060 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2061 // Create new preheader for vector loop. 2062 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2063 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2064 2065 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2066 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2067 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2068 SCEVCheckBlock); 2069 2070 DT->addNewBlock(SCEVCheckBlock, Pred); 2071 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2072 2073 ReplaceInstWithInst( 2074 SCEVCheckBlock->getTerminator(), 2075 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2076 // Mark the check as used, to prevent it from being removed during cleanup. 2077 SCEVCheckCond = nullptr; 2078 return SCEVCheckBlock; 2079 } 2080 2081 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2082 /// the branches to branch to the vector preheader or \p Bypass, depending on 2083 /// the generated condition. 2084 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2085 BasicBlock *LoopVectorPreHeader) { 2086 // Check if we generated code that checks in runtime if arrays overlap. 2087 if (!MemRuntimeCheckCond) 2088 return nullptr; 2089 2090 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2091 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2092 MemCheckBlock); 2093 2094 DT->addNewBlock(MemCheckBlock, Pred); 2095 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2096 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2097 2098 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2099 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2100 2101 ReplaceInstWithInst( 2102 MemCheckBlock->getTerminator(), 2103 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2104 MemCheckBlock->getTerminator()->setDebugLoc( 2105 Pred->getTerminator()->getDebugLoc()); 2106 2107 // Mark the check as used, to prevent it from being removed during cleanup. 2108 MemRuntimeCheckCond = nullptr; 2109 return MemCheckBlock; 2110 } 2111 }; 2112 2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2114 // vectorization. The loop needs to be annotated with #pragma omp simd 2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2116 // vector length information is not provided, vectorization is not considered 2117 // explicit. Interleave hints are not allowed either. These limitations will be 2118 // relaxed in the future. 2119 // Please, note that we are currently forced to abuse the pragma 'clang 2120 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2122 // provides *explicit vectorization hints* (LV can bypass legal checks and 2123 // assume that vectorization is legal). However, both hints are implemented 2124 // using the same metadata (llvm.loop.vectorize, processed by 2125 // LoopVectorizeHints). This will be fixed in the future when the native IR 2126 // representation for pragma 'omp simd' is introduced. 2127 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2128 OptimizationRemarkEmitter *ORE) { 2129 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2130 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2131 2132 // Only outer loops with an explicit vectorization hint are supported. 2133 // Unannotated outer loops are ignored. 2134 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2135 return false; 2136 2137 Function *Fn = OuterLp->getHeader()->getParent(); 2138 if (!Hints.allowVectorization(Fn, OuterLp, 2139 true /*VectorizeOnlyWhenForced*/)) { 2140 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2141 return false; 2142 } 2143 2144 if (Hints.getInterleave() > 1) { 2145 // TODO: Interleave support is future work. 2146 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2147 "outer loops.\n"); 2148 Hints.emitRemarkWithHints(); 2149 return false; 2150 } 2151 2152 return true; 2153 } 2154 2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2156 OptimizationRemarkEmitter *ORE, 2157 SmallVectorImpl<Loop *> &V) { 2158 // Collect inner loops and outer loops without irreducible control flow. For 2159 // now, only collect outer loops that have explicit vectorization hints. If we 2160 // are stress testing the VPlan H-CFG construction, we collect the outermost 2161 // loop of every loop nest. 2162 if (L.isInnermost() || VPlanBuildStressTest || 2163 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2164 LoopBlocksRPO RPOT(&L); 2165 RPOT.perform(LI); 2166 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2167 V.push_back(&L); 2168 // TODO: Collect inner loops inside marked outer loops in case 2169 // vectorization fails for the outer loop. Do not invoke 2170 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2171 // already known to be reducible. We can use an inherited attribute for 2172 // that. 2173 return; 2174 } 2175 } 2176 for (Loop *InnerL : L) 2177 collectSupportedLoops(*InnerL, LI, ORE, V); 2178 } 2179 2180 namespace { 2181 2182 /// The LoopVectorize Pass. 2183 struct LoopVectorize : public FunctionPass { 2184 /// Pass identification, replacement for typeid 2185 static char ID; 2186 2187 LoopVectorizePass Impl; 2188 2189 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2190 bool VectorizeOnlyWhenForced = false) 2191 : FunctionPass(ID), 2192 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2193 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2194 } 2195 2196 bool runOnFunction(Function &F) override { 2197 if (skipFunction(F)) 2198 return false; 2199 2200 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2201 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2202 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2203 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2204 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2205 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2206 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2207 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2208 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2209 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2210 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2211 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2212 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2213 2214 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2215 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2216 2217 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2218 GetLAA, *ORE, PSI).MadeAnyChange; 2219 } 2220 2221 void getAnalysisUsage(AnalysisUsage &AU) const override { 2222 AU.addRequired<AssumptionCacheTracker>(); 2223 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2224 AU.addRequired<DominatorTreeWrapperPass>(); 2225 AU.addRequired<LoopInfoWrapperPass>(); 2226 AU.addRequired<ScalarEvolutionWrapperPass>(); 2227 AU.addRequired<TargetTransformInfoWrapperPass>(); 2228 AU.addRequired<AAResultsWrapperPass>(); 2229 AU.addRequired<LoopAccessLegacyAnalysis>(); 2230 AU.addRequired<DemandedBitsWrapperPass>(); 2231 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2232 AU.addRequired<InjectTLIMappingsLegacy>(); 2233 2234 // We currently do not preserve loopinfo/dominator analyses with outer loop 2235 // vectorization. Until this is addressed, mark these analyses as preserved 2236 // only for non-VPlan-native path. 2237 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2238 if (!EnableVPlanNativePath) { 2239 AU.addPreserved<LoopInfoWrapperPass>(); 2240 AU.addPreserved<DominatorTreeWrapperPass>(); 2241 } 2242 2243 AU.addPreserved<BasicAAWrapperPass>(); 2244 AU.addPreserved<GlobalsAAWrapperPass>(); 2245 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2246 } 2247 }; 2248 2249 } // end anonymous namespace 2250 2251 //===----------------------------------------------------------------------===// 2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2253 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2254 //===----------------------------------------------------------------------===// 2255 2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2257 // We need to place the broadcast of invariant variables outside the loop, 2258 // but only if it's proven safe to do so. Else, broadcast will be inside 2259 // vector loop body. 2260 Instruction *Instr = dyn_cast<Instruction>(V); 2261 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2262 (!Instr || 2263 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2264 // Place the code for broadcasting invariant variables in the new preheader. 2265 IRBuilder<>::InsertPointGuard Guard(Builder); 2266 if (SafeToHoist) 2267 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2268 2269 // Broadcast the scalar into all locations in the vector. 2270 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2271 2272 return Shuf; 2273 } 2274 2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2276 const InductionDescriptor &II, Value *Step, Value *Start, 2277 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2278 VPTransformState &State) { 2279 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2280 "Expected either an induction phi-node or a truncate of it!"); 2281 2282 // Construct the initial value of the vector IV in the vector loop preheader 2283 auto CurrIP = Builder.saveIP(); 2284 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2285 if (isa<TruncInst>(EntryVal)) { 2286 assert(Start->getType()->isIntegerTy() && 2287 "Truncation requires an integer type"); 2288 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2289 Step = Builder.CreateTrunc(Step, TruncType); 2290 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2291 } 2292 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2293 Value *SteppedStart = 2294 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2295 2296 // We create vector phi nodes for both integer and floating-point induction 2297 // variables. Here, we determine the kind of arithmetic we will perform. 2298 Instruction::BinaryOps AddOp; 2299 Instruction::BinaryOps MulOp; 2300 if (Step->getType()->isIntegerTy()) { 2301 AddOp = Instruction::Add; 2302 MulOp = Instruction::Mul; 2303 } else { 2304 AddOp = II.getInductionOpcode(); 2305 MulOp = Instruction::FMul; 2306 } 2307 2308 // Multiply the vectorization factor by the step using integer or 2309 // floating-point arithmetic as appropriate. 2310 Type *StepType = Step->getType(); 2311 if (Step->getType()->isFloatingPointTy()) 2312 StepType = IntegerType::get(StepType->getContext(), 2313 StepType->getScalarSizeInBits()); 2314 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2315 if (Step->getType()->isFloatingPointTy()) 2316 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2317 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2318 2319 // Create a vector splat to use in the induction update. 2320 // 2321 // FIXME: If the step is non-constant, we create the vector splat with 2322 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2323 // handle a constant vector splat. 2324 Value *SplatVF = isa<Constant>(Mul) 2325 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2326 : Builder.CreateVectorSplat(VF, Mul); 2327 Builder.restoreIP(CurrIP); 2328 2329 // We may need to add the step a number of times, depending on the unroll 2330 // factor. The last of those goes into the PHI. 2331 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2332 &*LoopVectorBody->getFirstInsertionPt()); 2333 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2334 Instruction *LastInduction = VecInd; 2335 for (unsigned Part = 0; Part < UF; ++Part) { 2336 State.set(Def, LastInduction, Part); 2337 2338 if (isa<TruncInst>(EntryVal)) 2339 addMetadata(LastInduction, EntryVal); 2340 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2341 State, Part); 2342 2343 LastInduction = cast<Instruction>( 2344 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2345 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2346 } 2347 2348 // Move the last step to the end of the latch block. This ensures consistent 2349 // placement of all induction updates. 2350 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2351 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2352 auto *ICmp = cast<Instruction>(Br->getCondition()); 2353 LastInduction->moveBefore(ICmp); 2354 LastInduction->setName("vec.ind.next"); 2355 2356 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2357 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2358 } 2359 2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2361 return Cost->isScalarAfterVectorization(I, VF) || 2362 Cost->isProfitableToScalarize(I, VF); 2363 } 2364 2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2366 if (shouldScalarizeInstruction(IV)) 2367 return true; 2368 auto isScalarInst = [&](User *U) -> bool { 2369 auto *I = cast<Instruction>(U); 2370 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2371 }; 2372 return llvm::any_of(IV->users(), isScalarInst); 2373 } 2374 2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2376 const InductionDescriptor &ID, const Instruction *EntryVal, 2377 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2378 unsigned Part, unsigned Lane) { 2379 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2380 "Expected either an induction phi-node or a truncate of it!"); 2381 2382 // This induction variable is not the phi from the original loop but the 2383 // newly-created IV based on the proof that casted Phi is equal to the 2384 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2385 // re-uses the same InductionDescriptor that original IV uses but we don't 2386 // have to do any recording in this case - that is done when original IV is 2387 // processed. 2388 if (isa<TruncInst>(EntryVal)) 2389 return; 2390 2391 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2392 if (Casts.empty()) 2393 return; 2394 // Only the first Cast instruction in the Casts vector is of interest. 2395 // The rest of the Casts (if exist) have no uses outside the 2396 // induction update chain itself. 2397 if (Lane < UINT_MAX) 2398 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2399 else 2400 State.set(CastDef, VectorLoopVal, Part); 2401 } 2402 2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2404 TruncInst *Trunc, VPValue *Def, 2405 VPValue *CastDef, 2406 VPTransformState &State) { 2407 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2408 "Primary induction variable must have an integer type"); 2409 2410 auto II = Legal->getInductionVars().find(IV); 2411 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2412 2413 auto ID = II->second; 2414 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2415 2416 // The value from the original loop to which we are mapping the new induction 2417 // variable. 2418 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2419 2420 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2421 2422 // Generate code for the induction step. Note that induction steps are 2423 // required to be loop-invariant 2424 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2425 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2426 "Induction step should be loop invariant"); 2427 if (PSE.getSE()->isSCEVable(IV->getType())) { 2428 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2429 return Exp.expandCodeFor(Step, Step->getType(), 2430 LoopVectorPreHeader->getTerminator()); 2431 } 2432 return cast<SCEVUnknown>(Step)->getValue(); 2433 }; 2434 2435 // The scalar value to broadcast. This is derived from the canonical 2436 // induction variable. If a truncation type is given, truncate the canonical 2437 // induction variable and step. Otherwise, derive these values from the 2438 // induction descriptor. 2439 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2440 Value *ScalarIV = Induction; 2441 if (IV != OldInduction) { 2442 ScalarIV = IV->getType()->isIntegerTy() 2443 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2444 : Builder.CreateCast(Instruction::SIToFP, Induction, 2445 IV->getType()); 2446 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2447 ScalarIV->setName("offset.idx"); 2448 } 2449 if (Trunc) { 2450 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2451 assert(Step->getType()->isIntegerTy() && 2452 "Truncation requires an integer step"); 2453 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2454 Step = Builder.CreateTrunc(Step, TruncType); 2455 } 2456 return ScalarIV; 2457 }; 2458 2459 // Create the vector values from the scalar IV, in the absence of creating a 2460 // vector IV. 2461 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2462 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2463 for (unsigned Part = 0; Part < UF; ++Part) { 2464 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2465 Value *EntryPart = 2466 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2467 ID.getInductionOpcode()); 2468 State.set(Def, EntryPart, Part); 2469 if (Trunc) 2470 addMetadata(EntryPart, Trunc); 2471 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2472 State, Part); 2473 } 2474 }; 2475 2476 // Fast-math-flags propagate from the original induction instruction. 2477 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2478 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2479 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2480 2481 // Now do the actual transformations, and start with creating the step value. 2482 Value *Step = CreateStepValue(ID.getStep()); 2483 if (VF.isZero() || VF.isScalar()) { 2484 Value *ScalarIV = CreateScalarIV(Step); 2485 CreateSplatIV(ScalarIV, Step); 2486 return; 2487 } 2488 2489 // Determine if we want a scalar version of the induction variable. This is 2490 // true if the induction variable itself is not widened, or if it has at 2491 // least one user in the loop that is not widened. 2492 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2493 if (!NeedsScalarIV) { 2494 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2495 State); 2496 return; 2497 } 2498 2499 // Try to create a new independent vector induction variable. If we can't 2500 // create the phi node, we will splat the scalar induction variable in each 2501 // loop iteration. 2502 if (!shouldScalarizeInstruction(EntryVal)) { 2503 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2504 State); 2505 Value *ScalarIV = CreateScalarIV(Step); 2506 // Create scalar steps that can be used by instructions we will later 2507 // scalarize. Note that the addition of the scalar steps will not increase 2508 // the number of instructions in the loop in the common case prior to 2509 // InstCombine. We will be trading one vector extract for each scalar step. 2510 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2511 return; 2512 } 2513 2514 // All IV users are scalar instructions, so only emit a scalar IV, not a 2515 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2516 // predicate used by the masked loads/stores. 2517 Value *ScalarIV = CreateScalarIV(Step); 2518 if (!Cost->isScalarEpilogueAllowed()) 2519 CreateSplatIV(ScalarIV, Step); 2520 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2521 } 2522 2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2524 Instruction::BinaryOps BinOp) { 2525 // Create and check the types. 2526 auto *ValVTy = cast<VectorType>(Val->getType()); 2527 ElementCount VLen = ValVTy->getElementCount(); 2528 2529 Type *STy = Val->getType()->getScalarType(); 2530 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2531 "Induction Step must be an integer or FP"); 2532 assert(Step->getType() == STy && "Step has wrong type"); 2533 2534 SmallVector<Constant *, 8> Indices; 2535 2536 // Create a vector of consecutive numbers from zero to VF. 2537 VectorType *InitVecValVTy = ValVTy; 2538 Type *InitVecValSTy = STy; 2539 if (STy->isFloatingPointTy()) { 2540 InitVecValSTy = 2541 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2542 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2543 } 2544 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2545 2546 // Add on StartIdx 2547 Value *StartIdxSplat = Builder.CreateVectorSplat( 2548 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2549 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2550 2551 if (STy->isIntegerTy()) { 2552 Step = Builder.CreateVectorSplat(VLen, Step); 2553 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2554 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2555 // which can be found from the original scalar operations. 2556 Step = Builder.CreateMul(InitVec, Step); 2557 return Builder.CreateAdd(Val, Step, "induction"); 2558 } 2559 2560 // Floating point induction. 2561 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2562 "Binary Opcode should be specified for FP induction"); 2563 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2564 Step = Builder.CreateVectorSplat(VLen, Step); 2565 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2566 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2567 } 2568 2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2570 Instruction *EntryVal, 2571 const InductionDescriptor &ID, 2572 VPValue *Def, VPValue *CastDef, 2573 VPTransformState &State) { 2574 // We shouldn't have to build scalar steps if we aren't vectorizing. 2575 assert(VF.isVector() && "VF should be greater than one"); 2576 // Get the value type and ensure it and the step have the same integer type. 2577 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2578 assert(ScalarIVTy == Step->getType() && 2579 "Val and Step should have the same type"); 2580 2581 // We build scalar steps for both integer and floating-point induction 2582 // variables. Here, we determine the kind of arithmetic we will perform. 2583 Instruction::BinaryOps AddOp; 2584 Instruction::BinaryOps MulOp; 2585 if (ScalarIVTy->isIntegerTy()) { 2586 AddOp = Instruction::Add; 2587 MulOp = Instruction::Mul; 2588 } else { 2589 AddOp = ID.getInductionOpcode(); 2590 MulOp = Instruction::FMul; 2591 } 2592 2593 // Determine the number of scalars we need to generate for each unroll 2594 // iteration. If EntryVal is uniform, we only need to generate the first 2595 // lane. Otherwise, we generate all VF values. 2596 bool IsUniform = 2597 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2598 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2599 // Compute the scalar steps and save the results in State. 2600 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2601 ScalarIVTy->getScalarSizeInBits()); 2602 Type *VecIVTy = nullptr; 2603 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2604 if (!IsUniform && VF.isScalable()) { 2605 VecIVTy = VectorType::get(ScalarIVTy, VF); 2606 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2607 SplatStep = Builder.CreateVectorSplat(VF, Step); 2608 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2609 } 2610 2611 for (unsigned Part = 0; Part < UF; ++Part) { 2612 Value *StartIdx0 = 2613 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2614 2615 if (!IsUniform && VF.isScalable()) { 2616 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2617 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2618 if (ScalarIVTy->isFloatingPointTy()) 2619 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2620 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2621 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2622 State.set(Def, Add, Part); 2623 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2624 Part); 2625 // It's useful to record the lane values too for the known minimum number 2626 // of elements so we do those below. This improves the code quality when 2627 // trying to extract the first element, for example. 2628 } 2629 2630 if (ScalarIVTy->isFloatingPointTy()) 2631 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2632 2633 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2634 Value *StartIdx = Builder.CreateBinOp( 2635 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2636 // The step returned by `createStepForVF` is a runtime-evaluated value 2637 // when VF is scalable. Otherwise, it should be folded into a Constant. 2638 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2639 "Expected StartIdx to be folded to a constant when VF is not " 2640 "scalable"); 2641 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2642 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2643 State.set(Def, Add, VPIteration(Part, Lane)); 2644 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2645 Part, Lane); 2646 } 2647 } 2648 } 2649 2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2651 const VPIteration &Instance, 2652 VPTransformState &State) { 2653 Value *ScalarInst = State.get(Def, Instance); 2654 Value *VectorValue = State.get(Def, Instance.Part); 2655 VectorValue = Builder.CreateInsertElement( 2656 VectorValue, ScalarInst, 2657 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2658 State.set(Def, VectorValue, Instance.Part); 2659 } 2660 2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2662 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2663 return Builder.CreateVectorReverse(Vec, "reverse"); 2664 } 2665 2666 // Return whether we allow using masked interleave-groups (for dealing with 2667 // strided loads/stores that reside in predicated blocks, or for dealing 2668 // with gaps). 2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2670 // If an override option has been passed in for interleaved accesses, use it. 2671 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2672 return EnableMaskedInterleavedMemAccesses; 2673 2674 return TTI.enableMaskedInterleavedAccessVectorization(); 2675 } 2676 2677 // Try to vectorize the interleave group that \p Instr belongs to. 2678 // 2679 // E.g. Translate following interleaved load group (factor = 3): 2680 // for (i = 0; i < N; i+=3) { 2681 // R = Pic[i]; // Member of index 0 2682 // G = Pic[i+1]; // Member of index 1 2683 // B = Pic[i+2]; // Member of index 2 2684 // ... // do something to R, G, B 2685 // } 2686 // To: 2687 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2688 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2689 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2690 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2691 // 2692 // Or translate following interleaved store group (factor = 3): 2693 // for (i = 0; i < N; i+=3) { 2694 // ... do something to R, G, B 2695 // Pic[i] = R; // Member of index 0 2696 // Pic[i+1] = G; // Member of index 1 2697 // Pic[i+2] = B; // Member of index 2 2698 // } 2699 // To: 2700 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2701 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2702 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2703 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2704 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2705 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2706 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2707 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2708 VPValue *BlockInMask) { 2709 Instruction *Instr = Group->getInsertPos(); 2710 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2711 2712 // Prepare for the vector type of the interleaved load/store. 2713 Type *ScalarTy = getLoadStoreType(Instr); 2714 unsigned InterleaveFactor = Group->getFactor(); 2715 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2716 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2717 2718 // Prepare for the new pointers. 2719 SmallVector<Value *, 2> AddrParts; 2720 unsigned Index = Group->getIndex(Instr); 2721 2722 // TODO: extend the masked interleaved-group support to reversed access. 2723 assert((!BlockInMask || !Group->isReverse()) && 2724 "Reversed masked interleave-group not supported."); 2725 2726 // If the group is reverse, adjust the index to refer to the last vector lane 2727 // instead of the first. We adjust the index from the first vector lane, 2728 // rather than directly getting the pointer for lane VF - 1, because the 2729 // pointer operand of the interleaved access is supposed to be uniform. For 2730 // uniform instructions, we're only required to generate a value for the 2731 // first vector lane in each unroll iteration. 2732 if (Group->isReverse()) 2733 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2734 2735 for (unsigned Part = 0; Part < UF; Part++) { 2736 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2737 setDebugLocFromInst(AddrPart); 2738 2739 // Notice current instruction could be any index. Need to adjust the address 2740 // to the member of index 0. 2741 // 2742 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2743 // b = A[i]; // Member of index 0 2744 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2745 // 2746 // E.g. A[i+1] = a; // Member of index 1 2747 // A[i] = b; // Member of index 0 2748 // A[i+2] = c; // Member of index 2 (Current instruction) 2749 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2750 2751 bool InBounds = false; 2752 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2753 InBounds = gep->isInBounds(); 2754 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2755 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2756 2757 // Cast to the vector pointer type. 2758 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2759 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2760 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2761 } 2762 2763 setDebugLocFromInst(Instr); 2764 Value *PoisonVec = PoisonValue::get(VecTy); 2765 2766 Value *MaskForGaps = nullptr; 2767 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2768 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2769 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2770 } 2771 2772 // Vectorize the interleaved load group. 2773 if (isa<LoadInst>(Instr)) { 2774 // For each unroll part, create a wide load for the group. 2775 SmallVector<Value *, 2> NewLoads; 2776 for (unsigned Part = 0; Part < UF; Part++) { 2777 Instruction *NewLoad; 2778 if (BlockInMask || MaskForGaps) { 2779 assert(useMaskedInterleavedAccesses(*TTI) && 2780 "masked interleaved groups are not allowed."); 2781 Value *GroupMask = MaskForGaps; 2782 if (BlockInMask) { 2783 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2784 Value *ShuffledMask = Builder.CreateShuffleVector( 2785 BlockInMaskPart, 2786 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2787 "interleaved.mask"); 2788 GroupMask = MaskForGaps 2789 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2790 MaskForGaps) 2791 : ShuffledMask; 2792 } 2793 NewLoad = 2794 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2795 GroupMask, PoisonVec, "wide.masked.vec"); 2796 } 2797 else 2798 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2799 Group->getAlign(), "wide.vec"); 2800 Group->addMetadata(NewLoad); 2801 NewLoads.push_back(NewLoad); 2802 } 2803 2804 // For each member in the group, shuffle out the appropriate data from the 2805 // wide loads. 2806 unsigned J = 0; 2807 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2808 Instruction *Member = Group->getMember(I); 2809 2810 // Skip the gaps in the group. 2811 if (!Member) 2812 continue; 2813 2814 auto StrideMask = 2815 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2816 for (unsigned Part = 0; Part < UF; Part++) { 2817 Value *StridedVec = Builder.CreateShuffleVector( 2818 NewLoads[Part], StrideMask, "strided.vec"); 2819 2820 // If this member has different type, cast the result type. 2821 if (Member->getType() != ScalarTy) { 2822 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2823 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2824 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2825 } 2826 2827 if (Group->isReverse()) 2828 StridedVec = reverseVector(StridedVec); 2829 2830 State.set(VPDefs[J], StridedVec, Part); 2831 } 2832 ++J; 2833 } 2834 return; 2835 } 2836 2837 // The sub vector type for current instruction. 2838 auto *SubVT = VectorType::get(ScalarTy, VF); 2839 2840 // Vectorize the interleaved store group. 2841 for (unsigned Part = 0; Part < UF; Part++) { 2842 // Collect the stored vector from each member. 2843 SmallVector<Value *, 4> StoredVecs; 2844 for (unsigned i = 0; i < InterleaveFactor; i++) { 2845 // Interleaved store group doesn't allow a gap, so each index has a member 2846 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2847 2848 Value *StoredVec = State.get(StoredValues[i], Part); 2849 2850 if (Group->isReverse()) 2851 StoredVec = reverseVector(StoredVec); 2852 2853 // If this member has different type, cast it to a unified type. 2854 2855 if (StoredVec->getType() != SubVT) 2856 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2857 2858 StoredVecs.push_back(StoredVec); 2859 } 2860 2861 // Concatenate all vectors into a wide vector. 2862 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2863 2864 // Interleave the elements in the wide vector. 2865 Value *IVec = Builder.CreateShuffleVector( 2866 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2867 "interleaved.vec"); 2868 2869 Instruction *NewStoreInstr; 2870 if (BlockInMask) { 2871 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2872 Value *ShuffledMask = Builder.CreateShuffleVector( 2873 BlockInMaskPart, 2874 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2875 "interleaved.mask"); 2876 NewStoreInstr = Builder.CreateMaskedStore( 2877 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2878 } 2879 else 2880 NewStoreInstr = 2881 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2882 2883 Group->addMetadata(NewStoreInstr); 2884 } 2885 } 2886 2887 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2888 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2889 VPValue *StoredValue, VPValue *BlockInMask) { 2890 // Attempt to issue a wide load. 2891 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2892 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2893 2894 assert((LI || SI) && "Invalid Load/Store instruction"); 2895 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2896 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2897 2898 LoopVectorizationCostModel::InstWidening Decision = 2899 Cost->getWideningDecision(Instr, VF); 2900 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2901 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2902 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2903 "CM decision is not to widen the memory instruction"); 2904 2905 Type *ScalarDataTy = getLoadStoreType(Instr); 2906 2907 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2908 const Align Alignment = getLoadStoreAlignment(Instr); 2909 2910 // Determine if the pointer operand of the access is either consecutive or 2911 // reverse consecutive. 2912 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2913 bool ConsecutiveStride = 2914 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2915 bool CreateGatherScatter = 2916 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2917 2918 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2919 // gather/scatter. Otherwise Decision should have been to Scalarize. 2920 assert((ConsecutiveStride || CreateGatherScatter) && 2921 "The instruction should be scalarized"); 2922 (void)ConsecutiveStride; 2923 2924 VectorParts BlockInMaskParts(UF); 2925 bool isMaskRequired = BlockInMask; 2926 if (isMaskRequired) 2927 for (unsigned Part = 0; Part < UF; ++Part) 2928 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2929 2930 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2931 // Calculate the pointer for the specific unroll-part. 2932 GetElementPtrInst *PartPtr = nullptr; 2933 2934 bool InBounds = false; 2935 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2936 InBounds = gep->isInBounds(); 2937 if (Reverse) { 2938 // If the address is consecutive but reversed, then the 2939 // wide store needs to start at the last vector element. 2940 // RunTimeVF = VScale * VF.getKnownMinValue() 2941 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2942 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2943 // NumElt = -Part * RunTimeVF 2944 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2945 // LastLane = 1 - RunTimeVF 2946 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2947 PartPtr = 2948 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2949 PartPtr->setIsInBounds(InBounds); 2950 PartPtr = cast<GetElementPtrInst>( 2951 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2952 PartPtr->setIsInBounds(InBounds); 2953 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2954 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2955 } else { 2956 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2957 PartPtr = cast<GetElementPtrInst>( 2958 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2959 PartPtr->setIsInBounds(InBounds); 2960 } 2961 2962 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2963 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2964 }; 2965 2966 // Handle Stores: 2967 if (SI) { 2968 setDebugLocFromInst(SI); 2969 2970 for (unsigned Part = 0; Part < UF; ++Part) { 2971 Instruction *NewSI = nullptr; 2972 Value *StoredVal = State.get(StoredValue, Part); 2973 if (CreateGatherScatter) { 2974 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2975 Value *VectorGep = State.get(Addr, Part); 2976 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2977 MaskPart); 2978 } else { 2979 if (Reverse) { 2980 // If we store to reverse consecutive memory locations, then we need 2981 // to reverse the order of elements in the stored value. 2982 StoredVal = reverseVector(StoredVal); 2983 // We don't want to update the value in the map as it might be used in 2984 // another expression. So don't call resetVectorValue(StoredVal). 2985 } 2986 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2987 if (isMaskRequired) 2988 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2989 BlockInMaskParts[Part]); 2990 else 2991 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2992 } 2993 addMetadata(NewSI, SI); 2994 } 2995 return; 2996 } 2997 2998 // Handle loads. 2999 assert(LI && "Must have a load instruction"); 3000 setDebugLocFromInst(LI); 3001 for (unsigned Part = 0; Part < UF; ++Part) { 3002 Value *NewLI; 3003 if (CreateGatherScatter) { 3004 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3005 Value *VectorGep = State.get(Addr, Part); 3006 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3007 nullptr, "wide.masked.gather"); 3008 addMetadata(NewLI, LI); 3009 } else { 3010 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3011 if (isMaskRequired) 3012 NewLI = Builder.CreateMaskedLoad( 3013 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3014 PoisonValue::get(DataTy), "wide.masked.load"); 3015 else 3016 NewLI = 3017 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3018 3019 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3020 addMetadata(NewLI, LI); 3021 if (Reverse) 3022 NewLI = reverseVector(NewLI); 3023 } 3024 3025 State.set(Def, NewLI, Part); 3026 } 3027 } 3028 3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3030 VPUser &User, 3031 const VPIteration &Instance, 3032 bool IfPredicateInstr, 3033 VPTransformState &State) { 3034 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3035 3036 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3037 // the first lane and part. 3038 if (isa<NoAliasScopeDeclInst>(Instr)) 3039 if (!Instance.isFirstIteration()) 3040 return; 3041 3042 setDebugLocFromInst(Instr); 3043 3044 // Does this instruction return a value ? 3045 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3046 3047 Instruction *Cloned = Instr->clone(); 3048 if (!IsVoidRetTy) 3049 Cloned->setName(Instr->getName() + ".cloned"); 3050 3051 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3052 Builder.GetInsertPoint()); 3053 // Replace the operands of the cloned instructions with their scalar 3054 // equivalents in the new loop. 3055 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3056 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3057 auto InputInstance = Instance; 3058 if (!Operand || !OrigLoop->contains(Operand) || 3059 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3060 InputInstance.Lane = VPLane::getFirstLane(); 3061 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3062 Cloned->setOperand(op, NewOp); 3063 } 3064 addNewMetadata(Cloned, Instr); 3065 3066 // Place the cloned scalar in the new loop. 3067 Builder.Insert(Cloned); 3068 3069 State.set(Def, Cloned, Instance); 3070 3071 // If we just cloned a new assumption, add it the assumption cache. 3072 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3073 AC->registerAssumption(II); 3074 3075 // End if-block. 3076 if (IfPredicateInstr) 3077 PredicatedInstructions.push_back(Cloned); 3078 } 3079 3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3081 Value *End, Value *Step, 3082 Instruction *DL) { 3083 BasicBlock *Header = L->getHeader(); 3084 BasicBlock *Latch = L->getLoopLatch(); 3085 // As we're just creating this loop, it's possible no latch exists 3086 // yet. If so, use the header as this will be a single block loop. 3087 if (!Latch) 3088 Latch = Header; 3089 3090 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3091 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3092 setDebugLocFromInst(OldInst, &B); 3093 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3094 3095 B.SetInsertPoint(Latch->getTerminator()); 3096 setDebugLocFromInst(OldInst, &B); 3097 3098 // Create i+1 and fill the PHINode. 3099 // 3100 // If the tail is not folded, we know that End - Start >= Step (either 3101 // statically or through the minimum iteration checks). We also know that both 3102 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3103 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3104 // overflows and we can mark the induction increment as NUW. 3105 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3106 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3107 Induction->addIncoming(Start, L->getLoopPreheader()); 3108 Induction->addIncoming(Next, Latch); 3109 // Create the compare. 3110 Value *ICmp = B.CreateICmpEQ(Next, End); 3111 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3112 3113 // Now we have two terminators. Remove the old one from the block. 3114 Latch->getTerminator()->eraseFromParent(); 3115 3116 return Induction; 3117 } 3118 3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3120 if (TripCount) 3121 return TripCount; 3122 3123 assert(L && "Create Trip Count for null loop."); 3124 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3125 // Find the loop boundaries. 3126 ScalarEvolution *SE = PSE.getSE(); 3127 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3128 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3129 "Invalid loop count"); 3130 3131 Type *IdxTy = Legal->getWidestInductionType(); 3132 assert(IdxTy && "No type for induction"); 3133 3134 // The exit count might have the type of i64 while the phi is i32. This can 3135 // happen if we have an induction variable that is sign extended before the 3136 // compare. The only way that we get a backedge taken count is that the 3137 // induction variable was signed and as such will not overflow. In such a case 3138 // truncation is legal. 3139 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3140 IdxTy->getPrimitiveSizeInBits()) 3141 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3142 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3143 3144 // Get the total trip count from the count by adding 1. 3145 const SCEV *ExitCount = SE->getAddExpr( 3146 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3147 3148 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3149 3150 // Expand the trip count and place the new instructions in the preheader. 3151 // Notice that the pre-header does not change, only the loop body. 3152 SCEVExpander Exp(*SE, DL, "induction"); 3153 3154 // Count holds the overall loop count (N). 3155 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3156 L->getLoopPreheader()->getTerminator()); 3157 3158 if (TripCount->getType()->isPointerTy()) 3159 TripCount = 3160 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3161 L->getLoopPreheader()->getTerminator()); 3162 3163 return TripCount; 3164 } 3165 3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3167 if (VectorTripCount) 3168 return VectorTripCount; 3169 3170 Value *TC = getOrCreateTripCount(L); 3171 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3172 3173 Type *Ty = TC->getType(); 3174 // This is where we can make the step a runtime constant. 3175 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3176 3177 // If the tail is to be folded by masking, round the number of iterations N 3178 // up to a multiple of Step instead of rounding down. This is done by first 3179 // adding Step-1 and then rounding down. Note that it's ok if this addition 3180 // overflows: the vector induction variable will eventually wrap to zero given 3181 // that it starts at zero and its Step is a power of two; the loop will then 3182 // exit, with the last early-exit vector comparison also producing all-true. 3183 if (Cost->foldTailByMasking()) { 3184 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3185 "VF*UF must be a power of 2 when folding tail by masking"); 3186 assert(!VF.isScalable() && 3187 "Tail folding not yet supported for scalable vectors"); 3188 TC = Builder.CreateAdd( 3189 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3190 } 3191 3192 // Now we need to generate the expression for the part of the loop that the 3193 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3194 // iterations are not required for correctness, or N - Step, otherwise. Step 3195 // is equal to the vectorization factor (number of SIMD elements) times the 3196 // unroll factor (number of SIMD instructions). 3197 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3198 3199 // There are cases where we *must* run at least one iteration in the remainder 3200 // loop. See the cost model for when this can happen. If the step evenly 3201 // divides the trip count, we set the remainder to be equal to the step. If 3202 // the step does not evenly divide the trip count, no adjustment is necessary 3203 // since there will already be scalar iterations. Note that the minimum 3204 // iterations check ensures that N >= Step. 3205 if (Cost->requiresScalarEpilogue(VF)) { 3206 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3207 R = Builder.CreateSelect(IsZero, Step, R); 3208 } 3209 3210 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3211 3212 return VectorTripCount; 3213 } 3214 3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3216 const DataLayout &DL) { 3217 // Verify that V is a vector type with same number of elements as DstVTy. 3218 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3219 unsigned VF = DstFVTy->getNumElements(); 3220 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3221 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3222 Type *SrcElemTy = SrcVecTy->getElementType(); 3223 Type *DstElemTy = DstFVTy->getElementType(); 3224 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3225 "Vector elements must have same size"); 3226 3227 // Do a direct cast if element types are castable. 3228 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3229 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3230 } 3231 // V cannot be directly casted to desired vector type. 3232 // May happen when V is a floating point vector but DstVTy is a vector of 3233 // pointers or vice-versa. Handle this using a two-step bitcast using an 3234 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3235 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3236 "Only one type should be a pointer type"); 3237 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3238 "Only one type should be a floating point type"); 3239 Type *IntTy = 3240 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3241 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3242 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3243 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3244 } 3245 3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3247 BasicBlock *Bypass) { 3248 Value *Count = getOrCreateTripCount(L); 3249 // Reuse existing vector loop preheader for TC checks. 3250 // Note that new preheader block is generated for vector loop. 3251 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3252 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3253 3254 // Generate code to check if the loop's trip count is less than VF * UF, or 3255 // equal to it in case a scalar epilogue is required; this implies that the 3256 // vector trip count is zero. This check also covers the case where adding one 3257 // to the backedge-taken count overflowed leading to an incorrect trip count 3258 // of zero. In this case we will also jump to the scalar loop. 3259 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3260 : ICmpInst::ICMP_ULT; 3261 3262 // If tail is to be folded, vector loop takes care of all iterations. 3263 Value *CheckMinIters = Builder.getFalse(); 3264 if (!Cost->foldTailByMasking()) { 3265 Value *Step = 3266 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3267 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3268 } 3269 // Create new preheader for vector loop. 3270 LoopVectorPreHeader = 3271 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3272 "vector.ph"); 3273 3274 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3275 DT->getNode(Bypass)->getIDom()) && 3276 "TC check is expected to dominate Bypass"); 3277 3278 // Update dominator for Bypass & LoopExit (if needed). 3279 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3280 if (!Cost->requiresScalarEpilogue(VF)) 3281 // If there is an epilogue which must run, there's no edge from the 3282 // middle block to exit blocks and thus no need to update the immediate 3283 // dominator of the exit blocks. 3284 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3285 3286 ReplaceInstWithInst( 3287 TCCheckBlock->getTerminator(), 3288 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3289 LoopBypassBlocks.push_back(TCCheckBlock); 3290 } 3291 3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3293 3294 BasicBlock *const SCEVCheckBlock = 3295 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3296 if (!SCEVCheckBlock) 3297 return nullptr; 3298 3299 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3300 (OptForSizeBasedOnProfile && 3301 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3302 "Cannot SCEV check stride or overflow when optimizing for size"); 3303 3304 3305 // Update dominator only if this is first RT check. 3306 if (LoopBypassBlocks.empty()) { 3307 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3308 if (!Cost->requiresScalarEpilogue(VF)) 3309 // If there is an epilogue which must run, there's no edge from the 3310 // middle block to exit blocks and thus no need to update the immediate 3311 // dominator of the exit blocks. 3312 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3313 } 3314 3315 LoopBypassBlocks.push_back(SCEVCheckBlock); 3316 AddedSafetyChecks = true; 3317 return SCEVCheckBlock; 3318 } 3319 3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3321 BasicBlock *Bypass) { 3322 // VPlan-native path does not do any analysis for runtime checks currently. 3323 if (EnableVPlanNativePath) 3324 return nullptr; 3325 3326 BasicBlock *const MemCheckBlock = 3327 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3328 3329 // Check if we generated code that checks in runtime if arrays overlap. We put 3330 // the checks into a separate block to make the more common case of few 3331 // elements faster. 3332 if (!MemCheckBlock) 3333 return nullptr; 3334 3335 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3336 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3337 "Cannot emit memory checks when optimizing for size, unless forced " 3338 "to vectorize."); 3339 ORE->emit([&]() { 3340 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3341 L->getStartLoc(), L->getHeader()) 3342 << "Code-size may be reduced by not forcing " 3343 "vectorization, or by source-code modifications " 3344 "eliminating the need for runtime checks " 3345 "(e.g., adding 'restrict')."; 3346 }); 3347 } 3348 3349 LoopBypassBlocks.push_back(MemCheckBlock); 3350 3351 AddedSafetyChecks = true; 3352 3353 // We currently don't use LoopVersioning for the actual loop cloning but we 3354 // still use it to add the noalias metadata. 3355 LVer = std::make_unique<LoopVersioning>( 3356 *Legal->getLAI(), 3357 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3358 DT, PSE.getSE()); 3359 LVer->prepareNoAliasMetadata(); 3360 return MemCheckBlock; 3361 } 3362 3363 Value *InnerLoopVectorizer::emitTransformedIndex( 3364 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3365 const InductionDescriptor &ID) const { 3366 3367 SCEVExpander Exp(*SE, DL, "induction"); 3368 auto Step = ID.getStep(); 3369 auto StartValue = ID.getStartValue(); 3370 assert(Index->getType()->getScalarType() == Step->getType() && 3371 "Index scalar type does not match StepValue type"); 3372 3373 // Note: the IR at this point is broken. We cannot use SE to create any new 3374 // SCEV and then expand it, hoping that SCEV's simplification will give us 3375 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3376 // lead to various SCEV crashes. So all we can do is to use builder and rely 3377 // on InstCombine for future simplifications. Here we handle some trivial 3378 // cases only. 3379 auto CreateAdd = [&B](Value *X, Value *Y) { 3380 assert(X->getType() == Y->getType() && "Types don't match!"); 3381 if (auto *CX = dyn_cast<ConstantInt>(X)) 3382 if (CX->isZero()) 3383 return Y; 3384 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3385 if (CY->isZero()) 3386 return X; 3387 return B.CreateAdd(X, Y); 3388 }; 3389 3390 // We allow X to be a vector type, in which case Y will potentially be 3391 // splatted into a vector with the same element count. 3392 auto CreateMul = [&B](Value *X, Value *Y) { 3393 assert(X->getType()->getScalarType() == Y->getType() && 3394 "Types don't match!"); 3395 if (auto *CX = dyn_cast<ConstantInt>(X)) 3396 if (CX->isOne()) 3397 return Y; 3398 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3399 if (CY->isOne()) 3400 return X; 3401 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3402 if (XVTy && !isa<VectorType>(Y->getType())) 3403 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3404 return B.CreateMul(X, Y); 3405 }; 3406 3407 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3408 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3409 // the DomTree is not kept up-to-date for additional blocks generated in the 3410 // vector loop. By using the header as insertion point, we guarantee that the 3411 // expanded instructions dominate all their uses. 3412 auto GetInsertPoint = [this, &B]() { 3413 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3414 if (InsertBB != LoopVectorBody && 3415 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3416 return LoopVectorBody->getTerminator(); 3417 return &*B.GetInsertPoint(); 3418 }; 3419 3420 switch (ID.getKind()) { 3421 case InductionDescriptor::IK_IntInduction: { 3422 assert(!isa<VectorType>(Index->getType()) && 3423 "Vector indices not supported for integer inductions yet"); 3424 assert(Index->getType() == StartValue->getType() && 3425 "Index type does not match StartValue type"); 3426 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3427 return B.CreateSub(StartValue, Index); 3428 auto *Offset = CreateMul( 3429 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3430 return CreateAdd(StartValue, Offset); 3431 } 3432 case InductionDescriptor::IK_PtrInduction: { 3433 assert(isa<SCEVConstant>(Step) && 3434 "Expected constant step for pointer induction"); 3435 return B.CreateGEP( 3436 StartValue->getType()->getPointerElementType(), StartValue, 3437 CreateMul(Index, 3438 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3439 GetInsertPoint()))); 3440 } 3441 case InductionDescriptor::IK_FpInduction: { 3442 assert(!isa<VectorType>(Index->getType()) && 3443 "Vector indices not supported for FP inductions yet"); 3444 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3445 auto InductionBinOp = ID.getInductionBinOp(); 3446 assert(InductionBinOp && 3447 (InductionBinOp->getOpcode() == Instruction::FAdd || 3448 InductionBinOp->getOpcode() == Instruction::FSub) && 3449 "Original bin op should be defined for FP induction"); 3450 3451 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3452 Value *MulExp = B.CreateFMul(StepValue, Index); 3453 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3454 "induction"); 3455 } 3456 case InductionDescriptor::IK_NoInduction: 3457 return nullptr; 3458 } 3459 llvm_unreachable("invalid enum"); 3460 } 3461 3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3463 LoopScalarBody = OrigLoop->getHeader(); 3464 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3465 assert(LoopVectorPreHeader && "Invalid loop structure"); 3466 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3467 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3468 "multiple exit loop without required epilogue?"); 3469 3470 LoopMiddleBlock = 3471 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3472 LI, nullptr, Twine(Prefix) + "middle.block"); 3473 LoopScalarPreHeader = 3474 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3475 nullptr, Twine(Prefix) + "scalar.ph"); 3476 3477 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3478 3479 // Set up the middle block terminator. Two cases: 3480 // 1) If we know that we must execute the scalar epilogue, emit an 3481 // unconditional branch. 3482 // 2) Otherwise, we must have a single unique exit block (due to how we 3483 // implement the multiple exit case). In this case, set up a conditonal 3484 // branch from the middle block to the loop scalar preheader, and the 3485 // exit block. completeLoopSkeleton will update the condition to use an 3486 // iteration check, if required to decide whether to execute the remainder. 3487 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3488 BranchInst::Create(LoopScalarPreHeader) : 3489 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3490 Builder.getTrue()); 3491 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3492 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3493 3494 // We intentionally don't let SplitBlock to update LoopInfo since 3495 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3496 // LoopVectorBody is explicitly added to the correct place few lines later. 3497 LoopVectorBody = 3498 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3499 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3500 3501 // Update dominator for loop exit. 3502 if (!Cost->requiresScalarEpilogue(VF)) 3503 // If there is an epilogue which must run, there's no edge from the 3504 // middle block to exit blocks and thus no need to update the immediate 3505 // dominator of the exit blocks. 3506 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3507 3508 // Create and register the new vector loop. 3509 Loop *Lp = LI->AllocateLoop(); 3510 Loop *ParentLoop = OrigLoop->getParentLoop(); 3511 3512 // Insert the new loop into the loop nest and register the new basic blocks 3513 // before calling any utilities such as SCEV that require valid LoopInfo. 3514 if (ParentLoop) { 3515 ParentLoop->addChildLoop(Lp); 3516 } else { 3517 LI->addTopLevelLoop(Lp); 3518 } 3519 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3520 return Lp; 3521 } 3522 3523 void InnerLoopVectorizer::createInductionResumeValues( 3524 Loop *L, Value *VectorTripCount, 3525 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3526 assert(VectorTripCount && L && "Expected valid arguments"); 3527 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3528 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3529 "Inconsistent information about additional bypass."); 3530 // We are going to resume the execution of the scalar loop. 3531 // Go over all of the induction variables that we found and fix the 3532 // PHIs that are left in the scalar version of the loop. 3533 // The starting values of PHI nodes depend on the counter of the last 3534 // iteration in the vectorized loop. 3535 // If we come from a bypass edge then we need to start from the original 3536 // start value. 3537 for (auto &InductionEntry : Legal->getInductionVars()) { 3538 PHINode *OrigPhi = InductionEntry.first; 3539 InductionDescriptor II = InductionEntry.second; 3540 3541 // Create phi nodes to merge from the backedge-taken check block. 3542 PHINode *BCResumeVal = 3543 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3544 LoopScalarPreHeader->getTerminator()); 3545 // Copy original phi DL over to the new one. 3546 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3547 Value *&EndValue = IVEndValues[OrigPhi]; 3548 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3549 if (OrigPhi == OldInduction) { 3550 // We know what the end value is. 3551 EndValue = VectorTripCount; 3552 } else { 3553 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3554 3555 // Fast-math-flags propagate from the original induction instruction. 3556 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3557 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3558 3559 Type *StepType = II.getStep()->getType(); 3560 Instruction::CastOps CastOp = 3561 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3562 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3563 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3564 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3565 EndValue->setName("ind.end"); 3566 3567 // Compute the end value for the additional bypass (if applicable). 3568 if (AdditionalBypass.first) { 3569 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3570 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3571 StepType, true); 3572 CRD = 3573 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3574 EndValueFromAdditionalBypass = 3575 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3576 EndValueFromAdditionalBypass->setName("ind.end"); 3577 } 3578 } 3579 // The new PHI merges the original incoming value, in case of a bypass, 3580 // or the value at the end of the vectorized loop. 3581 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3582 3583 // Fix the scalar body counter (PHI node). 3584 // The old induction's phi node in the scalar body needs the truncated 3585 // value. 3586 for (BasicBlock *BB : LoopBypassBlocks) 3587 BCResumeVal->addIncoming(II.getStartValue(), BB); 3588 3589 if (AdditionalBypass.first) 3590 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3591 EndValueFromAdditionalBypass); 3592 3593 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3594 } 3595 } 3596 3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3598 MDNode *OrigLoopID) { 3599 assert(L && "Expected valid loop."); 3600 3601 // The trip counts should be cached by now. 3602 Value *Count = getOrCreateTripCount(L); 3603 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3604 3605 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3606 3607 // Add a check in the middle block to see if we have completed 3608 // all of the iterations in the first vector loop. Three cases: 3609 // 1) If we require a scalar epilogue, there is no conditional branch as 3610 // we unconditionally branch to the scalar preheader. Do nothing. 3611 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3612 // Thus if tail is to be folded, we know we don't need to run the 3613 // remainder and we can use the previous value for the condition (true). 3614 // 3) Otherwise, construct a runtime check. 3615 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3616 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3617 Count, VectorTripCount, "cmp.n", 3618 LoopMiddleBlock->getTerminator()); 3619 3620 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3621 // of the corresponding compare because they may have ended up with 3622 // different line numbers and we want to avoid awkward line stepping while 3623 // debugging. Eg. if the compare has got a line number inside the loop. 3624 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3625 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3626 } 3627 3628 // Get ready to start creating new instructions into the vectorized body. 3629 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3630 "Inconsistent vector loop preheader"); 3631 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3632 3633 Optional<MDNode *> VectorizedLoopID = 3634 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3635 LLVMLoopVectorizeFollowupVectorized}); 3636 if (VectorizedLoopID.hasValue()) { 3637 L->setLoopID(VectorizedLoopID.getValue()); 3638 3639 // Do not setAlreadyVectorized if loop attributes have been defined 3640 // explicitly. 3641 return LoopVectorPreHeader; 3642 } 3643 3644 // Keep all loop hints from the original loop on the vector loop (we'll 3645 // replace the vectorizer-specific hints below). 3646 if (MDNode *LID = OrigLoop->getLoopID()) 3647 L->setLoopID(LID); 3648 3649 LoopVectorizeHints Hints(L, true, *ORE); 3650 Hints.setAlreadyVectorized(); 3651 3652 #ifdef EXPENSIVE_CHECKS 3653 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3654 LI->verify(*DT); 3655 #endif 3656 3657 return LoopVectorPreHeader; 3658 } 3659 3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3661 /* 3662 In this function we generate a new loop. The new loop will contain 3663 the vectorized instructions while the old loop will continue to run the 3664 scalar remainder. 3665 3666 [ ] <-- loop iteration number check. 3667 / | 3668 / v 3669 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3670 | / | 3671 | / v 3672 || [ ] <-- vector pre header. 3673 |/ | 3674 | v 3675 | [ ] \ 3676 | [ ]_| <-- vector loop. 3677 | | 3678 | v 3679 \ -[ ] <--- middle-block. 3680 \/ | 3681 /\ v 3682 | ->[ ] <--- new preheader. 3683 | | 3684 (opt) v <-- edge from middle to exit iff epilogue is not required. 3685 | [ ] \ 3686 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3687 \ | 3688 \ v 3689 >[ ] <-- exit block(s). 3690 ... 3691 */ 3692 3693 // Get the metadata of the original loop before it gets modified. 3694 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3695 3696 // Workaround! Compute the trip count of the original loop and cache it 3697 // before we start modifying the CFG. This code has a systemic problem 3698 // wherein it tries to run analysis over partially constructed IR; this is 3699 // wrong, and not simply for SCEV. The trip count of the original loop 3700 // simply happens to be prone to hitting this in practice. In theory, we 3701 // can hit the same issue for any SCEV, or ValueTracking query done during 3702 // mutation. See PR49900. 3703 getOrCreateTripCount(OrigLoop); 3704 3705 // Create an empty vector loop, and prepare basic blocks for the runtime 3706 // checks. 3707 Loop *Lp = createVectorLoopSkeleton(""); 3708 3709 // Now, compare the new count to zero. If it is zero skip the vector loop and 3710 // jump to the scalar loop. This check also covers the case where the 3711 // backedge-taken count is uint##_max: adding one to it will overflow leading 3712 // to an incorrect trip count of zero. In this (rare) case we will also jump 3713 // to the scalar loop. 3714 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3715 3716 // Generate the code to check any assumptions that we've made for SCEV 3717 // expressions. 3718 emitSCEVChecks(Lp, LoopScalarPreHeader); 3719 3720 // Generate the code that checks in runtime if arrays overlap. We put the 3721 // checks into a separate block to make the more common case of few elements 3722 // faster. 3723 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3724 3725 // Some loops have a single integer induction variable, while other loops 3726 // don't. One example is c++ iterators that often have multiple pointer 3727 // induction variables. In the code below we also support a case where we 3728 // don't have a single induction variable. 3729 // 3730 // We try to obtain an induction variable from the original loop as hard 3731 // as possible. However if we don't find one that: 3732 // - is an integer 3733 // - counts from zero, stepping by one 3734 // - is the size of the widest induction variable type 3735 // then we create a new one. 3736 OldInduction = Legal->getPrimaryInduction(); 3737 Type *IdxTy = Legal->getWidestInductionType(); 3738 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3739 // The loop step is equal to the vectorization factor (num of SIMD elements) 3740 // times the unroll factor (num of SIMD instructions). 3741 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3742 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3743 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3744 Induction = 3745 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3746 getDebugLocFromInstOrOperands(OldInduction)); 3747 3748 // Emit phis for the new starting index of the scalar loop. 3749 createInductionResumeValues(Lp, CountRoundDown); 3750 3751 return completeLoopSkeleton(Lp, OrigLoopID); 3752 } 3753 3754 // Fix up external users of the induction variable. At this point, we are 3755 // in LCSSA form, with all external PHIs that use the IV having one input value, 3756 // coming from the remainder loop. We need those PHIs to also have a correct 3757 // value for the IV when arriving directly from the middle block. 3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3759 const InductionDescriptor &II, 3760 Value *CountRoundDown, Value *EndValue, 3761 BasicBlock *MiddleBlock) { 3762 // There are two kinds of external IV usages - those that use the value 3763 // computed in the last iteration (the PHI) and those that use the penultimate 3764 // value (the value that feeds into the phi from the loop latch). 3765 // We allow both, but they, obviously, have different values. 3766 3767 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3768 3769 DenseMap<Value *, Value *> MissingVals; 3770 3771 // An external user of the last iteration's value should see the value that 3772 // the remainder loop uses to initialize its own IV. 3773 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3774 for (User *U : PostInc->users()) { 3775 Instruction *UI = cast<Instruction>(U); 3776 if (!OrigLoop->contains(UI)) { 3777 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3778 MissingVals[UI] = EndValue; 3779 } 3780 } 3781 3782 // An external user of the penultimate value need to see EndValue - Step. 3783 // The simplest way to get this is to recompute it from the constituent SCEVs, 3784 // that is Start + (Step * (CRD - 1)). 3785 for (User *U : OrigPhi->users()) { 3786 auto *UI = cast<Instruction>(U); 3787 if (!OrigLoop->contains(UI)) { 3788 const DataLayout &DL = 3789 OrigLoop->getHeader()->getModule()->getDataLayout(); 3790 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3791 3792 IRBuilder<> B(MiddleBlock->getTerminator()); 3793 3794 // Fast-math-flags propagate from the original induction instruction. 3795 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3796 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3797 3798 Value *CountMinusOne = B.CreateSub( 3799 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3800 Value *CMO = 3801 !II.getStep()->getType()->isIntegerTy() 3802 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3803 II.getStep()->getType()) 3804 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3805 CMO->setName("cast.cmo"); 3806 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3807 Escape->setName("ind.escape"); 3808 MissingVals[UI] = Escape; 3809 } 3810 } 3811 3812 for (auto &I : MissingVals) { 3813 PHINode *PHI = cast<PHINode>(I.first); 3814 // One corner case we have to handle is two IVs "chasing" each-other, 3815 // that is %IV2 = phi [...], [ %IV1, %latch ] 3816 // In this case, if IV1 has an external use, we need to avoid adding both 3817 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3818 // don't already have an incoming value for the middle block. 3819 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3820 PHI->addIncoming(I.second, MiddleBlock); 3821 } 3822 } 3823 3824 namespace { 3825 3826 struct CSEDenseMapInfo { 3827 static bool canHandle(const Instruction *I) { 3828 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3829 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3830 } 3831 3832 static inline Instruction *getEmptyKey() { 3833 return DenseMapInfo<Instruction *>::getEmptyKey(); 3834 } 3835 3836 static inline Instruction *getTombstoneKey() { 3837 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3838 } 3839 3840 static unsigned getHashValue(const Instruction *I) { 3841 assert(canHandle(I) && "Unknown instruction!"); 3842 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3843 I->value_op_end())); 3844 } 3845 3846 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3847 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3848 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3849 return LHS == RHS; 3850 return LHS->isIdenticalTo(RHS); 3851 } 3852 }; 3853 3854 } // end anonymous namespace 3855 3856 ///Perform cse of induction variable instructions. 3857 static void cse(BasicBlock *BB) { 3858 // Perform simple cse. 3859 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3860 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3861 Instruction *In = &*I++; 3862 3863 if (!CSEDenseMapInfo::canHandle(In)) 3864 continue; 3865 3866 // Check if we can replace this instruction with any of the 3867 // visited instructions. 3868 if (Instruction *V = CSEMap.lookup(In)) { 3869 In->replaceAllUsesWith(V); 3870 In->eraseFromParent(); 3871 continue; 3872 } 3873 3874 CSEMap[In] = In; 3875 } 3876 } 3877 3878 InstructionCost 3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3880 bool &NeedToScalarize) const { 3881 Function *F = CI->getCalledFunction(); 3882 Type *ScalarRetTy = CI->getType(); 3883 SmallVector<Type *, 4> Tys, ScalarTys; 3884 for (auto &ArgOp : CI->arg_operands()) 3885 ScalarTys.push_back(ArgOp->getType()); 3886 3887 // Estimate cost of scalarized vector call. The source operands are assumed 3888 // to be vectors, so we need to extract individual elements from there, 3889 // execute VF scalar calls, and then gather the result into the vector return 3890 // value. 3891 InstructionCost ScalarCallCost = 3892 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3893 if (VF.isScalar()) 3894 return ScalarCallCost; 3895 3896 // Compute corresponding vector type for return value and arguments. 3897 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3898 for (Type *ScalarTy : ScalarTys) 3899 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3900 3901 // Compute costs of unpacking argument values for the scalar calls and 3902 // packing the return values to a vector. 3903 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3904 3905 InstructionCost Cost = 3906 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3907 3908 // If we can't emit a vector call for this function, then the currently found 3909 // cost is the cost we need to return. 3910 NeedToScalarize = true; 3911 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3912 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3913 3914 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3915 return Cost; 3916 3917 // If the corresponding vector cost is cheaper, return its cost. 3918 InstructionCost VectorCallCost = 3919 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3920 if (VectorCallCost < Cost) { 3921 NeedToScalarize = false; 3922 Cost = VectorCallCost; 3923 } 3924 return Cost; 3925 } 3926 3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3928 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3929 return Elt; 3930 return VectorType::get(Elt, VF); 3931 } 3932 3933 InstructionCost 3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3935 ElementCount VF) const { 3936 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3937 assert(ID && "Expected intrinsic call!"); 3938 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3939 FastMathFlags FMF; 3940 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3941 FMF = FPMO->getFastMathFlags(); 3942 3943 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3944 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3945 SmallVector<Type *> ParamTys; 3946 std::transform(FTy->param_begin(), FTy->param_end(), 3947 std::back_inserter(ParamTys), 3948 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3949 3950 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3951 dyn_cast<IntrinsicInst>(CI)); 3952 return TTI.getIntrinsicInstrCost(CostAttrs, 3953 TargetTransformInfo::TCK_RecipThroughput); 3954 } 3955 3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3957 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3958 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3959 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3960 } 3961 3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3963 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3964 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3965 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3966 } 3967 3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3969 // For every instruction `I` in MinBWs, truncate the operands, create a 3970 // truncated version of `I` and reextend its result. InstCombine runs 3971 // later and will remove any ext/trunc pairs. 3972 SmallPtrSet<Value *, 4> Erased; 3973 for (const auto &KV : Cost->getMinimalBitwidths()) { 3974 // If the value wasn't vectorized, we must maintain the original scalar 3975 // type. The absence of the value from State indicates that it 3976 // wasn't vectorized. 3977 VPValue *Def = State.Plan->getVPValue(KV.first); 3978 if (!State.hasAnyVectorValue(Def)) 3979 continue; 3980 for (unsigned Part = 0; Part < UF; ++Part) { 3981 Value *I = State.get(Def, Part); 3982 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3983 continue; 3984 Type *OriginalTy = I->getType(); 3985 Type *ScalarTruncatedTy = 3986 IntegerType::get(OriginalTy->getContext(), KV.second); 3987 auto *TruncatedTy = VectorType::get( 3988 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3989 if (TruncatedTy == OriginalTy) 3990 continue; 3991 3992 IRBuilder<> B(cast<Instruction>(I)); 3993 auto ShrinkOperand = [&](Value *V) -> Value * { 3994 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3995 if (ZI->getSrcTy() == TruncatedTy) 3996 return ZI->getOperand(0); 3997 return B.CreateZExtOrTrunc(V, TruncatedTy); 3998 }; 3999 4000 // The actual instruction modification depends on the instruction type, 4001 // unfortunately. 4002 Value *NewI = nullptr; 4003 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4004 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4005 ShrinkOperand(BO->getOperand(1))); 4006 4007 // Any wrapping introduced by shrinking this operation shouldn't be 4008 // considered undefined behavior. So, we can't unconditionally copy 4009 // arithmetic wrapping flags to NewI. 4010 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4011 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4012 NewI = 4013 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4014 ShrinkOperand(CI->getOperand(1))); 4015 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4016 NewI = B.CreateSelect(SI->getCondition(), 4017 ShrinkOperand(SI->getTrueValue()), 4018 ShrinkOperand(SI->getFalseValue())); 4019 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4020 switch (CI->getOpcode()) { 4021 default: 4022 llvm_unreachable("Unhandled cast!"); 4023 case Instruction::Trunc: 4024 NewI = ShrinkOperand(CI->getOperand(0)); 4025 break; 4026 case Instruction::SExt: 4027 NewI = B.CreateSExtOrTrunc( 4028 CI->getOperand(0), 4029 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4030 break; 4031 case Instruction::ZExt: 4032 NewI = B.CreateZExtOrTrunc( 4033 CI->getOperand(0), 4034 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4035 break; 4036 } 4037 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4038 auto Elements0 = 4039 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4040 auto *O0 = B.CreateZExtOrTrunc( 4041 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4042 auto Elements1 = 4043 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4044 auto *O1 = B.CreateZExtOrTrunc( 4045 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4046 4047 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4048 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4049 // Don't do anything with the operands, just extend the result. 4050 continue; 4051 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4052 auto Elements = 4053 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4054 auto *O0 = B.CreateZExtOrTrunc( 4055 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4056 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4057 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4058 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4059 auto Elements = 4060 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4061 auto *O0 = B.CreateZExtOrTrunc( 4062 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4063 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4064 } else { 4065 // If we don't know what to do, be conservative and don't do anything. 4066 continue; 4067 } 4068 4069 // Lastly, extend the result. 4070 NewI->takeName(cast<Instruction>(I)); 4071 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4072 I->replaceAllUsesWith(Res); 4073 cast<Instruction>(I)->eraseFromParent(); 4074 Erased.insert(I); 4075 State.reset(Def, Res, Part); 4076 } 4077 } 4078 4079 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4080 for (const auto &KV : Cost->getMinimalBitwidths()) { 4081 // If the value wasn't vectorized, we must maintain the original scalar 4082 // type. The absence of the value from State indicates that it 4083 // wasn't vectorized. 4084 VPValue *Def = State.Plan->getVPValue(KV.first); 4085 if (!State.hasAnyVectorValue(Def)) 4086 continue; 4087 for (unsigned Part = 0; Part < UF; ++Part) { 4088 Value *I = State.get(Def, Part); 4089 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4090 if (Inst && Inst->use_empty()) { 4091 Value *NewI = Inst->getOperand(0); 4092 Inst->eraseFromParent(); 4093 State.reset(Def, NewI, Part); 4094 } 4095 } 4096 } 4097 } 4098 4099 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4100 // Insert truncates and extends for any truncated instructions as hints to 4101 // InstCombine. 4102 if (VF.isVector()) 4103 truncateToMinimalBitwidths(State); 4104 4105 // Fix widened non-induction PHIs by setting up the PHI operands. 4106 if (OrigPHIsToFix.size()) { 4107 assert(EnableVPlanNativePath && 4108 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4109 fixNonInductionPHIs(State); 4110 } 4111 4112 // At this point every instruction in the original loop is widened to a 4113 // vector form. Now we need to fix the recurrences in the loop. These PHI 4114 // nodes are currently empty because we did not want to introduce cycles. 4115 // This is the second stage of vectorizing recurrences. 4116 fixCrossIterationPHIs(State); 4117 4118 // Forget the original basic block. 4119 PSE.getSE()->forgetLoop(OrigLoop); 4120 4121 // If we inserted an edge from the middle block to the unique exit block, 4122 // update uses outside the loop (phis) to account for the newly inserted 4123 // edge. 4124 if (!Cost->requiresScalarEpilogue(VF)) { 4125 // Fix-up external users of the induction variables. 4126 for (auto &Entry : Legal->getInductionVars()) 4127 fixupIVUsers(Entry.first, Entry.second, 4128 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4129 IVEndValues[Entry.first], LoopMiddleBlock); 4130 4131 fixLCSSAPHIs(State); 4132 } 4133 4134 for (Instruction *PI : PredicatedInstructions) 4135 sinkScalarOperands(&*PI); 4136 4137 // Remove redundant induction instructions. 4138 cse(LoopVectorBody); 4139 4140 // Set/update profile weights for the vector and remainder loops as original 4141 // loop iterations are now distributed among them. Note that original loop 4142 // represented by LoopScalarBody becomes remainder loop after vectorization. 4143 // 4144 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4145 // end up getting slightly roughened result but that should be OK since 4146 // profile is not inherently precise anyway. Note also possible bypass of 4147 // vector code caused by legality checks is ignored, assigning all the weight 4148 // to the vector loop, optimistically. 4149 // 4150 // For scalable vectorization we can't know at compile time how many iterations 4151 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4152 // vscale of '1'. 4153 setProfileInfoAfterUnrolling( 4154 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4155 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4156 } 4157 4158 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4159 // In order to support recurrences we need to be able to vectorize Phi nodes. 4160 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4161 // stage #2: We now need to fix the recurrences by adding incoming edges to 4162 // the currently empty PHI nodes. At this point every instruction in the 4163 // original loop is widened to a vector form so we can use them to construct 4164 // the incoming edges. 4165 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4166 for (VPRecipeBase &R : Header->phis()) { 4167 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4168 fixReduction(ReductionPhi, State); 4169 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4170 fixFirstOrderRecurrence(FOR, State); 4171 } 4172 } 4173 4174 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4175 VPTransformState &State) { 4176 // This is the second phase of vectorizing first-order recurrences. An 4177 // overview of the transformation is described below. Suppose we have the 4178 // following loop. 4179 // 4180 // for (int i = 0; i < n; ++i) 4181 // b[i] = a[i] - a[i - 1]; 4182 // 4183 // There is a first-order recurrence on "a". For this loop, the shorthand 4184 // scalar IR looks like: 4185 // 4186 // scalar.ph: 4187 // s_init = a[-1] 4188 // br scalar.body 4189 // 4190 // scalar.body: 4191 // i = phi [0, scalar.ph], [i+1, scalar.body] 4192 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4193 // s2 = a[i] 4194 // b[i] = s2 - s1 4195 // br cond, scalar.body, ... 4196 // 4197 // In this example, s1 is a recurrence because it's value depends on the 4198 // previous iteration. In the first phase of vectorization, we created a 4199 // vector phi v1 for s1. We now complete the vectorization and produce the 4200 // shorthand vector IR shown below (for VF = 4, UF = 1). 4201 // 4202 // vector.ph: 4203 // v_init = vector(..., ..., ..., a[-1]) 4204 // br vector.body 4205 // 4206 // vector.body 4207 // i = phi [0, vector.ph], [i+4, vector.body] 4208 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4209 // v2 = a[i, i+1, i+2, i+3]; 4210 // v3 = vector(v1(3), v2(0, 1, 2)) 4211 // b[i, i+1, i+2, i+3] = v2 - v3 4212 // br cond, vector.body, middle.block 4213 // 4214 // middle.block: 4215 // x = v2(3) 4216 // br scalar.ph 4217 // 4218 // scalar.ph: 4219 // s_init = phi [x, middle.block], [a[-1], otherwise] 4220 // br scalar.body 4221 // 4222 // After execution completes the vector loop, we extract the next value of 4223 // the recurrence (x) to use as the initial value in the scalar loop. 4224 4225 // Extract the last vector element in the middle block. This will be the 4226 // initial value for the recurrence when jumping to the scalar loop. 4227 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4228 Value *Incoming = State.get(PreviousDef, UF - 1); 4229 auto *ExtractForScalar = Incoming; 4230 auto *IdxTy = Builder.getInt32Ty(); 4231 if (VF.isVector()) { 4232 auto *One = ConstantInt::get(IdxTy, 1); 4233 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4234 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4235 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4236 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4237 "vector.recur.extract"); 4238 } 4239 // Extract the second last element in the middle block if the 4240 // Phi is used outside the loop. We need to extract the phi itself 4241 // and not the last element (the phi update in the current iteration). This 4242 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4243 // when the scalar loop is not run at all. 4244 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4245 if (VF.isVector()) { 4246 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4247 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4248 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4249 Incoming, Idx, "vector.recur.extract.for.phi"); 4250 } else if (UF > 1) 4251 // When loop is unrolled without vectorizing, initialize 4252 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4253 // of `Incoming`. This is analogous to the vectorized case above: extracting 4254 // the second last element when VF > 1. 4255 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4256 4257 // Fix the initial value of the original recurrence in the scalar loop. 4258 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4259 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4260 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4261 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4262 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4263 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4264 Start->addIncoming(Incoming, BB); 4265 } 4266 4267 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4268 Phi->setName("scalar.recur"); 4269 4270 // Finally, fix users of the recurrence outside the loop. The users will need 4271 // either the last value of the scalar recurrence or the last value of the 4272 // vector recurrence we extracted in the middle block. Since the loop is in 4273 // LCSSA form, we just need to find all the phi nodes for the original scalar 4274 // recurrence in the exit block, and then add an edge for the middle block. 4275 // Note that LCSSA does not imply single entry when the original scalar loop 4276 // had multiple exiting edges (as we always run the last iteration in the 4277 // scalar epilogue); in that case, there is no edge from middle to exit and 4278 // and thus no phis which needed updated. 4279 if (!Cost->requiresScalarEpilogue(VF)) 4280 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4281 if (any_of(LCSSAPhi.incoming_values(), 4282 [Phi](Value *V) { return V == Phi; })) 4283 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4284 } 4285 4286 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4287 VPTransformState &State) { 4288 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4289 // Get it's reduction variable descriptor. 4290 assert(Legal->isReductionVariable(OrigPhi) && 4291 "Unable to find the reduction variable"); 4292 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4293 4294 RecurKind RK = RdxDesc.getRecurrenceKind(); 4295 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4296 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4297 setDebugLocFromInst(ReductionStartValue); 4298 4299 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4300 // This is the vector-clone of the value that leaves the loop. 4301 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4302 4303 // Wrap flags are in general invalid after vectorization, clear them. 4304 clearReductionWrapFlags(RdxDesc, State); 4305 4306 // Fix the vector-loop phi. 4307 4308 // Reductions do not have to start at zero. They can start with 4309 // any loop invariant values. 4310 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4311 4312 unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF; 4313 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 4314 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4315 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4316 if (PhiR->isOrdered()) 4317 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4318 4319 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4320 } 4321 4322 // Before each round, move the insertion point right between 4323 // the PHIs and the values we are going to write. 4324 // This allows us to write both PHINodes and the extractelement 4325 // instructions. 4326 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4327 4328 setDebugLocFromInst(LoopExitInst); 4329 4330 Type *PhiTy = OrigPhi->getType(); 4331 // If tail is folded by masking, the vector value to leave the loop should be 4332 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4333 // instead of the former. For an inloop reduction the reduction will already 4334 // be predicated, and does not need to be handled here. 4335 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4336 for (unsigned Part = 0; Part < UF; ++Part) { 4337 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4338 Value *Sel = nullptr; 4339 for (User *U : VecLoopExitInst->users()) { 4340 if (isa<SelectInst>(U)) { 4341 assert(!Sel && "Reduction exit feeding two selects"); 4342 Sel = U; 4343 } else 4344 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4345 } 4346 assert(Sel && "Reduction exit feeds no select"); 4347 State.reset(LoopExitInstDef, Sel, Part); 4348 4349 // If the target can create a predicated operator for the reduction at no 4350 // extra cost in the loop (for example a predicated vadd), it can be 4351 // cheaper for the select to remain in the loop than be sunk out of it, 4352 // and so use the select value for the phi instead of the old 4353 // LoopExitValue. 4354 if (PreferPredicatedReductionSelect || 4355 TTI->preferPredicatedReductionSelect( 4356 RdxDesc.getOpcode(), PhiTy, 4357 TargetTransformInfo::ReductionFlags())) { 4358 auto *VecRdxPhi = 4359 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4360 VecRdxPhi->setIncomingValueForBlock( 4361 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4362 } 4363 } 4364 } 4365 4366 // If the vector reduction can be performed in a smaller type, we truncate 4367 // then extend the loop exit value to enable InstCombine to evaluate the 4368 // entire expression in the smaller type. 4369 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4370 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4371 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4372 Builder.SetInsertPoint( 4373 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4374 VectorParts RdxParts(UF); 4375 for (unsigned Part = 0; Part < UF; ++Part) { 4376 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4377 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4378 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4379 : Builder.CreateZExt(Trunc, VecTy); 4380 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4381 UI != RdxParts[Part]->user_end();) 4382 if (*UI != Trunc) { 4383 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4384 RdxParts[Part] = Extnd; 4385 } else { 4386 ++UI; 4387 } 4388 } 4389 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4390 for (unsigned Part = 0; Part < UF; ++Part) { 4391 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4392 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4393 } 4394 } 4395 4396 // Reduce all of the unrolled parts into a single vector. 4397 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4398 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4399 4400 // The middle block terminator has already been assigned a DebugLoc here (the 4401 // OrigLoop's single latch terminator). We want the whole middle block to 4402 // appear to execute on this line because: (a) it is all compiler generated, 4403 // (b) these instructions are always executed after evaluating the latch 4404 // conditional branch, and (c) other passes may add new predecessors which 4405 // terminate on this line. This is the easiest way to ensure we don't 4406 // accidentally cause an extra step back into the loop while debugging. 4407 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4408 if (PhiR->isOrdered()) 4409 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4410 else { 4411 // Floating-point operations should have some FMF to enable the reduction. 4412 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4413 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4414 for (unsigned Part = 1; Part < UF; ++Part) { 4415 Value *RdxPart = State.get(LoopExitInstDef, Part); 4416 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4417 ReducedPartRdx = Builder.CreateBinOp( 4418 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4419 } else { 4420 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4421 } 4422 } 4423 } 4424 4425 // Create the reduction after the loop. Note that inloop reductions create the 4426 // target reduction in the loop using a Reduction recipe. 4427 if (VF.isVector() && !PhiR->isInLoop()) { 4428 ReducedPartRdx = 4429 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4430 // If the reduction can be performed in a smaller type, we need to extend 4431 // the reduction to the wider type before we branch to the original loop. 4432 if (PhiTy != RdxDesc.getRecurrenceType()) 4433 ReducedPartRdx = RdxDesc.isSigned() 4434 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4435 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4436 } 4437 4438 // Create a phi node that merges control-flow from the backedge-taken check 4439 // block and the middle block. 4440 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4441 LoopScalarPreHeader->getTerminator()); 4442 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4443 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4444 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4445 4446 // Now, we need to fix the users of the reduction variable 4447 // inside and outside of the scalar remainder loop. 4448 4449 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4450 // in the exit blocks. See comment on analogous loop in 4451 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4452 if (!Cost->requiresScalarEpilogue(VF)) 4453 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4454 if (any_of(LCSSAPhi.incoming_values(), 4455 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4456 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4457 4458 // Fix the scalar loop reduction variable with the incoming reduction sum 4459 // from the vector body and from the backedge value. 4460 int IncomingEdgeBlockIdx = 4461 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4462 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4463 // Pick the other block. 4464 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4465 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4466 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4467 } 4468 4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4470 VPTransformState &State) { 4471 RecurKind RK = RdxDesc.getRecurrenceKind(); 4472 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4473 return; 4474 4475 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4476 assert(LoopExitInstr && "null loop exit instruction"); 4477 SmallVector<Instruction *, 8> Worklist; 4478 SmallPtrSet<Instruction *, 8> Visited; 4479 Worklist.push_back(LoopExitInstr); 4480 Visited.insert(LoopExitInstr); 4481 4482 while (!Worklist.empty()) { 4483 Instruction *Cur = Worklist.pop_back_val(); 4484 if (isa<OverflowingBinaryOperator>(Cur)) 4485 for (unsigned Part = 0; Part < UF; ++Part) { 4486 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4487 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4488 } 4489 4490 for (User *U : Cur->users()) { 4491 Instruction *UI = cast<Instruction>(U); 4492 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4493 Visited.insert(UI).second) 4494 Worklist.push_back(UI); 4495 } 4496 } 4497 } 4498 4499 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4500 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4501 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4502 // Some phis were already hand updated by the reduction and recurrence 4503 // code above, leave them alone. 4504 continue; 4505 4506 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4507 // Non-instruction incoming values will have only one value. 4508 4509 VPLane Lane = VPLane::getFirstLane(); 4510 if (isa<Instruction>(IncomingValue) && 4511 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4512 VF)) 4513 Lane = VPLane::getLastLaneForVF(VF); 4514 4515 // Can be a loop invariant incoming value or the last scalar value to be 4516 // extracted from the vectorized loop. 4517 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4518 Value *lastIncomingValue = 4519 OrigLoop->isLoopInvariant(IncomingValue) 4520 ? IncomingValue 4521 : State.get(State.Plan->getVPValue(IncomingValue), 4522 VPIteration(UF - 1, Lane)); 4523 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4524 } 4525 } 4526 4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4528 // The basic block and loop containing the predicated instruction. 4529 auto *PredBB = PredInst->getParent(); 4530 auto *VectorLoop = LI->getLoopFor(PredBB); 4531 4532 // Initialize a worklist with the operands of the predicated instruction. 4533 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4534 4535 // Holds instructions that we need to analyze again. An instruction may be 4536 // reanalyzed if we don't yet know if we can sink it or not. 4537 SmallVector<Instruction *, 8> InstsToReanalyze; 4538 4539 // Returns true if a given use occurs in the predicated block. Phi nodes use 4540 // their operands in their corresponding predecessor blocks. 4541 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4542 auto *I = cast<Instruction>(U.getUser()); 4543 BasicBlock *BB = I->getParent(); 4544 if (auto *Phi = dyn_cast<PHINode>(I)) 4545 BB = Phi->getIncomingBlock( 4546 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4547 return BB == PredBB; 4548 }; 4549 4550 // Iteratively sink the scalarized operands of the predicated instruction 4551 // into the block we created for it. When an instruction is sunk, it's 4552 // operands are then added to the worklist. The algorithm ends after one pass 4553 // through the worklist doesn't sink a single instruction. 4554 bool Changed; 4555 do { 4556 // Add the instructions that need to be reanalyzed to the worklist, and 4557 // reset the changed indicator. 4558 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4559 InstsToReanalyze.clear(); 4560 Changed = false; 4561 4562 while (!Worklist.empty()) { 4563 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4564 4565 // We can't sink an instruction if it is a phi node, is not in the loop, 4566 // or may have side effects. 4567 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4568 I->mayHaveSideEffects()) 4569 continue; 4570 4571 // If the instruction is already in PredBB, check if we can sink its 4572 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4573 // sinking the scalar instruction I, hence it appears in PredBB; but it 4574 // may have failed to sink I's operands (recursively), which we try 4575 // (again) here. 4576 if (I->getParent() == PredBB) { 4577 Worklist.insert(I->op_begin(), I->op_end()); 4578 continue; 4579 } 4580 4581 // It's legal to sink the instruction if all its uses occur in the 4582 // predicated block. Otherwise, there's nothing to do yet, and we may 4583 // need to reanalyze the instruction. 4584 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4585 InstsToReanalyze.push_back(I); 4586 continue; 4587 } 4588 4589 // Move the instruction to the beginning of the predicated block, and add 4590 // it's operands to the worklist. 4591 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4592 Worklist.insert(I->op_begin(), I->op_end()); 4593 4594 // The sinking may have enabled other instructions to be sunk, so we will 4595 // need to iterate. 4596 Changed = true; 4597 } 4598 } while (Changed); 4599 } 4600 4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4602 for (PHINode *OrigPhi : OrigPHIsToFix) { 4603 VPWidenPHIRecipe *VPPhi = 4604 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4605 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4606 // Make sure the builder has a valid insert point. 4607 Builder.SetInsertPoint(NewPhi); 4608 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4609 VPValue *Inc = VPPhi->getIncomingValue(i); 4610 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4611 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4612 } 4613 } 4614 } 4615 4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4617 return Cost->useOrderedReductions(RdxDesc); 4618 } 4619 4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4621 VPUser &Operands, unsigned UF, 4622 ElementCount VF, bool IsPtrLoopInvariant, 4623 SmallBitVector &IsIndexLoopInvariant, 4624 VPTransformState &State) { 4625 // Construct a vector GEP by widening the operands of the scalar GEP as 4626 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4627 // results in a vector of pointers when at least one operand of the GEP 4628 // is vector-typed. Thus, to keep the representation compact, we only use 4629 // vector-typed operands for loop-varying values. 4630 4631 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4632 // If we are vectorizing, but the GEP has only loop-invariant operands, 4633 // the GEP we build (by only using vector-typed operands for 4634 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4635 // produce a vector of pointers, we need to either arbitrarily pick an 4636 // operand to broadcast, or broadcast a clone of the original GEP. 4637 // Here, we broadcast a clone of the original. 4638 // 4639 // TODO: If at some point we decide to scalarize instructions having 4640 // loop-invariant operands, this special case will no longer be 4641 // required. We would add the scalarization decision to 4642 // collectLoopScalars() and teach getVectorValue() to broadcast 4643 // the lane-zero scalar value. 4644 auto *Clone = Builder.Insert(GEP->clone()); 4645 for (unsigned Part = 0; Part < UF; ++Part) { 4646 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4647 State.set(VPDef, EntryPart, Part); 4648 addMetadata(EntryPart, GEP); 4649 } 4650 } else { 4651 // If the GEP has at least one loop-varying operand, we are sure to 4652 // produce a vector of pointers. But if we are only unrolling, we want 4653 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4654 // produce with the code below will be scalar (if VF == 1) or vector 4655 // (otherwise). Note that for the unroll-only case, we still maintain 4656 // values in the vector mapping with initVector, as we do for other 4657 // instructions. 4658 for (unsigned Part = 0; Part < UF; ++Part) { 4659 // The pointer operand of the new GEP. If it's loop-invariant, we 4660 // won't broadcast it. 4661 auto *Ptr = IsPtrLoopInvariant 4662 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4663 : State.get(Operands.getOperand(0), Part); 4664 4665 // Collect all the indices for the new GEP. If any index is 4666 // loop-invariant, we won't broadcast it. 4667 SmallVector<Value *, 4> Indices; 4668 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4669 VPValue *Operand = Operands.getOperand(I); 4670 if (IsIndexLoopInvariant[I - 1]) 4671 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4672 else 4673 Indices.push_back(State.get(Operand, Part)); 4674 } 4675 4676 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4677 // but it should be a vector, otherwise. 4678 auto *NewGEP = 4679 GEP->isInBounds() 4680 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4681 Indices) 4682 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4683 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4684 "NewGEP is not a pointer vector"); 4685 State.set(VPDef, NewGEP, Part); 4686 addMetadata(NewGEP, GEP); 4687 } 4688 } 4689 } 4690 4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4692 VPWidenPHIRecipe *PhiR, 4693 VPTransformState &State) { 4694 PHINode *P = cast<PHINode>(PN); 4695 if (EnableVPlanNativePath) { 4696 // Currently we enter here in the VPlan-native path for non-induction 4697 // PHIs where all control flow is uniform. We simply widen these PHIs. 4698 // Create a vector phi with no operands - the vector phi operands will be 4699 // set at the end of vector code generation. 4700 Type *VecTy = (State.VF.isScalar()) 4701 ? PN->getType() 4702 : VectorType::get(PN->getType(), State.VF); 4703 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4704 State.set(PhiR, VecPhi, 0); 4705 OrigPHIsToFix.push_back(P); 4706 4707 return; 4708 } 4709 4710 assert(PN->getParent() == OrigLoop->getHeader() && 4711 "Non-header phis should have been handled elsewhere"); 4712 4713 // In order to support recurrences we need to be able to vectorize Phi nodes. 4714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4715 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4716 // this value when we vectorize all of the instructions that use the PHI. 4717 4718 assert(!Legal->isReductionVariable(P) && 4719 "reductions should be handled elsewhere"); 4720 4721 setDebugLocFromInst(P); 4722 4723 // This PHINode must be an induction variable. 4724 // Make sure that we know about it. 4725 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4726 4727 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4728 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4729 4730 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4731 // which can be found from the original scalar operations. 4732 switch (II.getKind()) { 4733 case InductionDescriptor::IK_NoInduction: 4734 llvm_unreachable("Unknown induction"); 4735 case InductionDescriptor::IK_IntInduction: 4736 case InductionDescriptor::IK_FpInduction: 4737 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4738 case InductionDescriptor::IK_PtrInduction: { 4739 // Handle the pointer induction variable case. 4740 assert(P->getType()->isPointerTy() && "Unexpected type."); 4741 4742 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4743 // This is the normalized GEP that starts counting at zero. 4744 Value *PtrInd = 4745 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4746 // Determine the number of scalars we need to generate for each unroll 4747 // iteration. If the instruction is uniform, we only need to generate the 4748 // first lane. Otherwise, we generate all VF values. 4749 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4750 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4751 4752 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4753 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4754 if (NeedsVectorIndex) { 4755 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4756 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4757 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4758 } 4759 4760 for (unsigned Part = 0; Part < UF; ++Part) { 4761 Value *PartStart = createStepForVF( 4762 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4763 4764 if (NeedsVectorIndex) { 4765 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4766 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4767 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4768 Value *SclrGep = 4769 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4770 SclrGep->setName("next.gep"); 4771 State.set(PhiR, SclrGep, Part); 4772 // We've cached the whole vector, which means we can support the 4773 // extraction of any lane. 4774 continue; 4775 } 4776 4777 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4778 Value *Idx = Builder.CreateAdd( 4779 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4780 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4781 Value *SclrGep = 4782 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4783 SclrGep->setName("next.gep"); 4784 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4785 } 4786 } 4787 return; 4788 } 4789 assert(isa<SCEVConstant>(II.getStep()) && 4790 "Induction step not a SCEV constant!"); 4791 Type *PhiType = II.getStep()->getType(); 4792 4793 // Build a pointer phi 4794 Value *ScalarStartValue = II.getStartValue(); 4795 Type *ScStValueType = ScalarStartValue->getType(); 4796 PHINode *NewPointerPhi = 4797 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4798 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4799 4800 // A pointer induction, performed by using a gep 4801 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4802 Instruction *InductionLoc = LoopLatch->getTerminator(); 4803 const SCEV *ScalarStep = II.getStep(); 4804 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4805 Value *ScalarStepValue = 4806 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4807 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4808 Value *NumUnrolledElems = 4809 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4810 Value *InductionGEP = GetElementPtrInst::Create( 4811 ScStValueType->getPointerElementType(), NewPointerPhi, 4812 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4813 InductionLoc); 4814 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4815 4816 // Create UF many actual address geps that use the pointer 4817 // phi as base and a vectorized version of the step value 4818 // (<step*0, ..., step*N>) as offset. 4819 for (unsigned Part = 0; Part < State.UF; ++Part) { 4820 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4821 Value *StartOffsetScalar = 4822 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4823 Value *StartOffset = 4824 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4825 // Create a vector of consecutive numbers from zero to VF. 4826 StartOffset = 4827 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4828 4829 Value *GEP = Builder.CreateGEP( 4830 ScStValueType->getPointerElementType(), NewPointerPhi, 4831 Builder.CreateMul( 4832 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4833 "vector.gep")); 4834 State.set(PhiR, GEP, Part); 4835 } 4836 } 4837 } 4838 } 4839 4840 /// A helper function for checking whether an integer division-related 4841 /// instruction may divide by zero (in which case it must be predicated if 4842 /// executed conditionally in the scalar code). 4843 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4844 /// Non-zero divisors that are non compile-time constants will not be 4845 /// converted into multiplication, so we will still end up scalarizing 4846 /// the division, but can do so w/o predication. 4847 static bool mayDivideByZero(Instruction &I) { 4848 assert((I.getOpcode() == Instruction::UDiv || 4849 I.getOpcode() == Instruction::SDiv || 4850 I.getOpcode() == Instruction::URem || 4851 I.getOpcode() == Instruction::SRem) && 4852 "Unexpected instruction"); 4853 Value *Divisor = I.getOperand(1); 4854 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4855 return !CInt || CInt->isZero(); 4856 } 4857 4858 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4859 VPUser &User, 4860 VPTransformState &State) { 4861 switch (I.getOpcode()) { 4862 case Instruction::Call: 4863 case Instruction::Br: 4864 case Instruction::PHI: 4865 case Instruction::GetElementPtr: 4866 case Instruction::Select: 4867 llvm_unreachable("This instruction is handled by a different recipe."); 4868 case Instruction::UDiv: 4869 case Instruction::SDiv: 4870 case Instruction::SRem: 4871 case Instruction::URem: 4872 case Instruction::Add: 4873 case Instruction::FAdd: 4874 case Instruction::Sub: 4875 case Instruction::FSub: 4876 case Instruction::FNeg: 4877 case Instruction::Mul: 4878 case Instruction::FMul: 4879 case Instruction::FDiv: 4880 case Instruction::FRem: 4881 case Instruction::Shl: 4882 case Instruction::LShr: 4883 case Instruction::AShr: 4884 case Instruction::And: 4885 case Instruction::Or: 4886 case Instruction::Xor: { 4887 // Just widen unops and binops. 4888 setDebugLocFromInst(&I); 4889 4890 for (unsigned Part = 0; Part < UF; ++Part) { 4891 SmallVector<Value *, 2> Ops; 4892 for (VPValue *VPOp : User.operands()) 4893 Ops.push_back(State.get(VPOp, Part)); 4894 4895 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4896 4897 if (auto *VecOp = dyn_cast<Instruction>(V)) 4898 VecOp->copyIRFlags(&I); 4899 4900 // Use this vector value for all users of the original instruction. 4901 State.set(Def, V, Part); 4902 addMetadata(V, &I); 4903 } 4904 4905 break; 4906 } 4907 case Instruction::ICmp: 4908 case Instruction::FCmp: { 4909 // Widen compares. Generate vector compares. 4910 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4911 auto *Cmp = cast<CmpInst>(&I); 4912 setDebugLocFromInst(Cmp); 4913 for (unsigned Part = 0; Part < UF; ++Part) { 4914 Value *A = State.get(User.getOperand(0), Part); 4915 Value *B = State.get(User.getOperand(1), Part); 4916 Value *C = nullptr; 4917 if (FCmp) { 4918 // Propagate fast math flags. 4919 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4920 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4921 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4922 } else { 4923 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4924 } 4925 State.set(Def, C, Part); 4926 addMetadata(C, &I); 4927 } 4928 4929 break; 4930 } 4931 4932 case Instruction::ZExt: 4933 case Instruction::SExt: 4934 case Instruction::FPToUI: 4935 case Instruction::FPToSI: 4936 case Instruction::FPExt: 4937 case Instruction::PtrToInt: 4938 case Instruction::IntToPtr: 4939 case Instruction::SIToFP: 4940 case Instruction::UIToFP: 4941 case Instruction::Trunc: 4942 case Instruction::FPTrunc: 4943 case Instruction::BitCast: { 4944 auto *CI = cast<CastInst>(&I); 4945 setDebugLocFromInst(CI); 4946 4947 /// Vectorize casts. 4948 Type *DestTy = 4949 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4950 4951 for (unsigned Part = 0; Part < UF; ++Part) { 4952 Value *A = State.get(User.getOperand(0), Part); 4953 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4954 State.set(Def, Cast, Part); 4955 addMetadata(Cast, &I); 4956 } 4957 break; 4958 } 4959 default: 4960 // This instruction is not vectorized by simple widening. 4961 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4962 llvm_unreachable("Unhandled instruction!"); 4963 } // end of switch. 4964 } 4965 4966 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4967 VPUser &ArgOperands, 4968 VPTransformState &State) { 4969 assert(!isa<DbgInfoIntrinsic>(I) && 4970 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4971 setDebugLocFromInst(&I); 4972 4973 Module *M = I.getParent()->getParent()->getParent(); 4974 auto *CI = cast<CallInst>(&I); 4975 4976 SmallVector<Type *, 4> Tys; 4977 for (Value *ArgOperand : CI->arg_operands()) 4978 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4979 4980 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4981 4982 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4983 // version of the instruction. 4984 // Is it beneficial to perform intrinsic call compared to lib call? 4985 bool NeedToScalarize = false; 4986 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4987 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4988 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4989 assert((UseVectorIntrinsic || !NeedToScalarize) && 4990 "Instruction should be scalarized elsewhere."); 4991 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4992 "Either the intrinsic cost or vector call cost must be valid"); 4993 4994 for (unsigned Part = 0; Part < UF; ++Part) { 4995 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4996 SmallVector<Value *, 4> Args; 4997 for (auto &I : enumerate(ArgOperands.operands())) { 4998 // Some intrinsics have a scalar argument - don't replace it with a 4999 // vector. 5000 Value *Arg; 5001 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5002 Arg = State.get(I.value(), Part); 5003 else { 5004 Arg = State.get(I.value(), VPIteration(0, 0)); 5005 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5006 TysForDecl.push_back(Arg->getType()); 5007 } 5008 Args.push_back(Arg); 5009 } 5010 5011 Function *VectorF; 5012 if (UseVectorIntrinsic) { 5013 // Use vector version of the intrinsic. 5014 if (VF.isVector()) 5015 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5016 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5017 assert(VectorF && "Can't retrieve vector intrinsic."); 5018 } else { 5019 // Use vector version of the function call. 5020 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5021 #ifndef NDEBUG 5022 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5023 "Can't create vector function."); 5024 #endif 5025 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5026 } 5027 SmallVector<OperandBundleDef, 1> OpBundles; 5028 CI->getOperandBundlesAsDefs(OpBundles); 5029 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5030 5031 if (isa<FPMathOperator>(V)) 5032 V->copyFastMathFlags(CI); 5033 5034 State.set(Def, V, Part); 5035 addMetadata(V, &I); 5036 } 5037 } 5038 5039 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5040 VPUser &Operands, 5041 bool InvariantCond, 5042 VPTransformState &State) { 5043 setDebugLocFromInst(&I); 5044 5045 // The condition can be loop invariant but still defined inside the 5046 // loop. This means that we can't just use the original 'cond' value. 5047 // We have to take the 'vectorized' value and pick the first lane. 5048 // Instcombine will make this a no-op. 5049 auto *InvarCond = InvariantCond 5050 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5051 : nullptr; 5052 5053 for (unsigned Part = 0; Part < UF; ++Part) { 5054 Value *Cond = 5055 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5056 Value *Op0 = State.get(Operands.getOperand(1), Part); 5057 Value *Op1 = State.get(Operands.getOperand(2), Part); 5058 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5059 State.set(VPDef, Sel, Part); 5060 addMetadata(Sel, &I); 5061 } 5062 } 5063 5064 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5065 // We should not collect Scalars more than once per VF. Right now, this 5066 // function is called from collectUniformsAndScalars(), which already does 5067 // this check. Collecting Scalars for VF=1 does not make any sense. 5068 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5069 "This function should not be visited twice for the same VF"); 5070 5071 SmallSetVector<Instruction *, 8> Worklist; 5072 5073 // These sets are used to seed the analysis with pointers used by memory 5074 // accesses that will remain scalar. 5075 SmallSetVector<Instruction *, 8> ScalarPtrs; 5076 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5077 auto *Latch = TheLoop->getLoopLatch(); 5078 5079 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5080 // The pointer operands of loads and stores will be scalar as long as the 5081 // memory access is not a gather or scatter operation. The value operand of a 5082 // store will remain scalar if the store is scalarized. 5083 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5084 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5085 assert(WideningDecision != CM_Unknown && 5086 "Widening decision should be ready at this moment"); 5087 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5088 if (Ptr == Store->getValueOperand()) 5089 return WideningDecision == CM_Scalarize; 5090 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5091 "Ptr is neither a value or pointer operand"); 5092 return WideningDecision != CM_GatherScatter; 5093 }; 5094 5095 // A helper that returns true if the given value is a bitcast or 5096 // getelementptr instruction contained in the loop. 5097 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5098 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5099 isa<GetElementPtrInst>(V)) && 5100 !TheLoop->isLoopInvariant(V); 5101 }; 5102 5103 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5104 if (!isa<PHINode>(Ptr) || 5105 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5106 return false; 5107 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5108 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5109 return false; 5110 return isScalarUse(MemAccess, Ptr); 5111 }; 5112 5113 // A helper that evaluates a memory access's use of a pointer. If the 5114 // pointer is actually the pointer induction of a loop, it is being 5115 // inserted into Worklist. If the use will be a scalar use, and the 5116 // pointer is only used by memory accesses, we place the pointer in 5117 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5118 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5119 if (isScalarPtrInduction(MemAccess, Ptr)) { 5120 Worklist.insert(cast<Instruction>(Ptr)); 5121 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5122 << "\n"); 5123 5124 Instruction *Update = cast<Instruction>( 5125 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5126 ScalarPtrs.insert(Update); 5127 return; 5128 } 5129 // We only care about bitcast and getelementptr instructions contained in 5130 // the loop. 5131 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5132 return; 5133 5134 // If the pointer has already been identified as scalar (e.g., if it was 5135 // also identified as uniform), there's nothing to do. 5136 auto *I = cast<Instruction>(Ptr); 5137 if (Worklist.count(I)) 5138 return; 5139 5140 // If all users of the pointer will be memory accesses and scalar, place the 5141 // pointer in ScalarPtrs. Otherwise, place the pointer in 5142 // PossibleNonScalarPtrs. 5143 if (llvm::all_of(I->users(), [&](User *U) { 5144 return (isa<LoadInst>(U) || isa<StoreInst>(U)) && 5145 isScalarUse(cast<Instruction>(U), Ptr); 5146 })) 5147 ScalarPtrs.insert(I); 5148 else 5149 PossibleNonScalarPtrs.insert(I); 5150 }; 5151 5152 // We seed the scalars analysis with three classes of instructions: (1) 5153 // instructions marked uniform-after-vectorization and (2) bitcast, 5154 // getelementptr and (pointer) phi instructions used by memory accesses 5155 // requiring a scalar use. 5156 // 5157 // (1) Add to the worklist all instructions that have been identified as 5158 // uniform-after-vectorization. 5159 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5160 5161 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5162 // memory accesses requiring a scalar use. The pointer operands of loads and 5163 // stores will be scalar as long as the memory accesses is not a gather or 5164 // scatter operation. The value operand of a store will remain scalar if the 5165 // store is scalarized. 5166 for (auto *BB : TheLoop->blocks()) 5167 for (auto &I : *BB) { 5168 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5169 evaluatePtrUse(Load, Load->getPointerOperand()); 5170 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5171 evaluatePtrUse(Store, Store->getPointerOperand()); 5172 evaluatePtrUse(Store, Store->getValueOperand()); 5173 } 5174 } 5175 for (auto *I : ScalarPtrs) 5176 if (!PossibleNonScalarPtrs.count(I)) { 5177 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5178 Worklist.insert(I); 5179 } 5180 5181 // Insert the forced scalars. 5182 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5183 // induction variable when the PHI user is scalarized. 5184 auto ForcedScalar = ForcedScalars.find(VF); 5185 if (ForcedScalar != ForcedScalars.end()) 5186 for (auto *I : ForcedScalar->second) 5187 Worklist.insert(I); 5188 5189 // Expand the worklist by looking through any bitcasts and getelementptr 5190 // instructions we've already identified as scalar. This is similar to the 5191 // expansion step in collectLoopUniforms(); however, here we're only 5192 // expanding to include additional bitcasts and getelementptr instructions. 5193 unsigned Idx = 0; 5194 while (Idx != Worklist.size()) { 5195 Instruction *Dst = Worklist[Idx++]; 5196 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5197 continue; 5198 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5199 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5200 auto *J = cast<Instruction>(U); 5201 return !TheLoop->contains(J) || Worklist.count(J) || 5202 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5203 isScalarUse(J, Src)); 5204 })) { 5205 Worklist.insert(Src); 5206 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5207 } 5208 } 5209 5210 // An induction variable will remain scalar if all users of the induction 5211 // variable and induction variable update remain scalar. 5212 for (auto &Induction : Legal->getInductionVars()) { 5213 auto *Ind = Induction.first; 5214 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5215 5216 // If tail-folding is applied, the primary induction variable will be used 5217 // to feed a vector compare. 5218 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5219 continue; 5220 5221 // Determine if all users of the induction variable are scalar after 5222 // vectorization. 5223 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5224 auto *I = cast<Instruction>(U); 5225 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5226 }); 5227 if (!ScalarInd) 5228 continue; 5229 5230 // Determine if all users of the induction variable update instruction are 5231 // scalar after vectorization. 5232 auto ScalarIndUpdate = 5233 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5234 auto *I = cast<Instruction>(U); 5235 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5236 }); 5237 if (!ScalarIndUpdate) 5238 continue; 5239 5240 // The induction variable and its update instruction will remain scalar. 5241 Worklist.insert(Ind); 5242 Worklist.insert(IndUpdate); 5243 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5244 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5245 << "\n"); 5246 } 5247 5248 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5249 } 5250 5251 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5252 if (!blockNeedsPredication(I->getParent())) 5253 return false; 5254 switch(I->getOpcode()) { 5255 default: 5256 break; 5257 case Instruction::Load: 5258 case Instruction::Store: { 5259 if (!Legal->isMaskRequired(I)) 5260 return false; 5261 auto *Ptr = getLoadStorePointerOperand(I); 5262 auto *Ty = getLoadStoreType(I); 5263 const Align Alignment = getLoadStoreAlignment(I); 5264 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5265 TTI.isLegalMaskedGather(Ty, Alignment)) 5266 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5267 TTI.isLegalMaskedScatter(Ty, Alignment)); 5268 } 5269 case Instruction::UDiv: 5270 case Instruction::SDiv: 5271 case Instruction::SRem: 5272 case Instruction::URem: 5273 return mayDivideByZero(*I); 5274 } 5275 return false; 5276 } 5277 5278 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5279 Instruction *I, ElementCount VF) { 5280 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5281 assert(getWideningDecision(I, VF) == CM_Unknown && 5282 "Decision should not be set yet."); 5283 auto *Group = getInterleavedAccessGroup(I); 5284 assert(Group && "Must have a group."); 5285 5286 // If the instruction's allocated size doesn't equal it's type size, it 5287 // requires padding and will be scalarized. 5288 auto &DL = I->getModule()->getDataLayout(); 5289 auto *ScalarTy = getLoadStoreType(I); 5290 if (hasIrregularType(ScalarTy, DL)) 5291 return false; 5292 5293 // Check if masking is required. 5294 // A Group may need masking for one of two reasons: it resides in a block that 5295 // needs predication, or it was decided to use masking to deal with gaps. 5296 bool PredicatedAccessRequiresMasking = 5297 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5298 bool AccessWithGapsRequiresMasking = 5299 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5300 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5301 return true; 5302 5303 // If masked interleaving is required, we expect that the user/target had 5304 // enabled it, because otherwise it either wouldn't have been created or 5305 // it should have been invalidated by the CostModel. 5306 assert(useMaskedInterleavedAccesses(TTI) && 5307 "Masked interleave-groups for predicated accesses are not enabled."); 5308 5309 auto *Ty = getLoadStoreType(I); 5310 const Align Alignment = getLoadStoreAlignment(I); 5311 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5312 : TTI.isLegalMaskedStore(Ty, Alignment); 5313 } 5314 5315 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5316 Instruction *I, ElementCount VF) { 5317 // Get and ensure we have a valid memory instruction. 5318 LoadInst *LI = dyn_cast<LoadInst>(I); 5319 StoreInst *SI = dyn_cast<StoreInst>(I); 5320 assert((LI || SI) && "Invalid memory instruction"); 5321 5322 auto *Ptr = getLoadStorePointerOperand(I); 5323 5324 // In order to be widened, the pointer should be consecutive, first of all. 5325 if (!Legal->isConsecutivePtr(Ptr)) 5326 return false; 5327 5328 // If the instruction is a store located in a predicated block, it will be 5329 // scalarized. 5330 if (isScalarWithPredication(I)) 5331 return false; 5332 5333 // If the instruction's allocated size doesn't equal it's type size, it 5334 // requires padding and will be scalarized. 5335 auto &DL = I->getModule()->getDataLayout(); 5336 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5337 if (hasIrregularType(ScalarTy, DL)) 5338 return false; 5339 5340 return true; 5341 } 5342 5343 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5344 // We should not collect Uniforms more than once per VF. Right now, 5345 // this function is called from collectUniformsAndScalars(), which 5346 // already does this check. Collecting Uniforms for VF=1 does not make any 5347 // sense. 5348 5349 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5350 "This function should not be visited twice for the same VF"); 5351 5352 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5353 // not analyze again. Uniforms.count(VF) will return 1. 5354 Uniforms[VF].clear(); 5355 5356 // We now know that the loop is vectorizable! 5357 // Collect instructions inside the loop that will remain uniform after 5358 // vectorization. 5359 5360 // Global values, params and instructions outside of current loop are out of 5361 // scope. 5362 auto isOutOfScope = [&](Value *V) -> bool { 5363 Instruction *I = dyn_cast<Instruction>(V); 5364 return (!I || !TheLoop->contains(I)); 5365 }; 5366 5367 SetVector<Instruction *> Worklist; 5368 BasicBlock *Latch = TheLoop->getLoopLatch(); 5369 5370 // Instructions that are scalar with predication must not be considered 5371 // uniform after vectorization, because that would create an erroneous 5372 // replicating region where only a single instance out of VF should be formed. 5373 // TODO: optimize such seldom cases if found important, see PR40816. 5374 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5375 if (isOutOfScope(I)) { 5376 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5377 << *I << "\n"); 5378 return; 5379 } 5380 if (isScalarWithPredication(I)) { 5381 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5382 << *I << "\n"); 5383 return; 5384 } 5385 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5386 Worklist.insert(I); 5387 }; 5388 5389 // Start with the conditional branch. If the branch condition is an 5390 // instruction contained in the loop that is only used by the branch, it is 5391 // uniform. 5392 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5393 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5394 addToWorklistIfAllowed(Cmp); 5395 5396 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5397 InstWidening WideningDecision = getWideningDecision(I, VF); 5398 assert(WideningDecision != CM_Unknown && 5399 "Widening decision should be ready at this moment"); 5400 5401 // A uniform memory op is itself uniform. We exclude uniform stores 5402 // here as they demand the last lane, not the first one. 5403 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5404 assert(WideningDecision == CM_Scalarize); 5405 return true; 5406 } 5407 5408 return (WideningDecision == CM_Widen || 5409 WideningDecision == CM_Widen_Reverse || 5410 WideningDecision == CM_Interleave); 5411 }; 5412 5413 5414 // Returns true if Ptr is the pointer operand of a memory access instruction 5415 // I, and I is known to not require scalarization. 5416 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5417 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5418 }; 5419 5420 // Holds a list of values which are known to have at least one uniform use. 5421 // Note that there may be other uses which aren't uniform. A "uniform use" 5422 // here is something which only demands lane 0 of the unrolled iterations; 5423 // it does not imply that all lanes produce the same value (e.g. this is not 5424 // the usual meaning of uniform) 5425 SetVector<Value *> HasUniformUse; 5426 5427 // Scan the loop for instructions which are either a) known to have only 5428 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5429 for (auto *BB : TheLoop->blocks()) 5430 for (auto &I : *BB) { 5431 // If there's no pointer operand, there's nothing to do. 5432 auto *Ptr = getLoadStorePointerOperand(&I); 5433 if (!Ptr) 5434 continue; 5435 5436 // A uniform memory op is itself uniform. We exclude uniform stores 5437 // here as they demand the last lane, not the first one. 5438 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5439 addToWorklistIfAllowed(&I); 5440 5441 if (isUniformDecision(&I, VF)) { 5442 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5443 HasUniformUse.insert(Ptr); 5444 } 5445 } 5446 5447 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5448 // demanding) users. Since loops are assumed to be in LCSSA form, this 5449 // disallows uses outside the loop as well. 5450 for (auto *V : HasUniformUse) { 5451 if (isOutOfScope(V)) 5452 continue; 5453 auto *I = cast<Instruction>(V); 5454 auto UsersAreMemAccesses = 5455 llvm::all_of(I->users(), [&](User *U) -> bool { 5456 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5457 }); 5458 if (UsersAreMemAccesses) 5459 addToWorklistIfAllowed(I); 5460 } 5461 5462 // Expand Worklist in topological order: whenever a new instruction 5463 // is added , its users should be already inside Worklist. It ensures 5464 // a uniform instruction will only be used by uniform instructions. 5465 unsigned idx = 0; 5466 while (idx != Worklist.size()) { 5467 Instruction *I = Worklist[idx++]; 5468 5469 for (auto OV : I->operand_values()) { 5470 // isOutOfScope operands cannot be uniform instructions. 5471 if (isOutOfScope(OV)) 5472 continue; 5473 // First order recurrence Phi's should typically be considered 5474 // non-uniform. 5475 auto *OP = dyn_cast<PHINode>(OV); 5476 if (OP && Legal->isFirstOrderRecurrence(OP)) 5477 continue; 5478 // If all the users of the operand are uniform, then add the 5479 // operand into the uniform worklist. 5480 auto *OI = cast<Instruction>(OV); 5481 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5482 auto *J = cast<Instruction>(U); 5483 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5484 })) 5485 addToWorklistIfAllowed(OI); 5486 } 5487 } 5488 5489 // For an instruction to be added into Worklist above, all its users inside 5490 // the loop should also be in Worklist. However, this condition cannot be 5491 // true for phi nodes that form a cyclic dependence. We must process phi 5492 // nodes separately. An induction variable will remain uniform if all users 5493 // of the induction variable and induction variable update remain uniform. 5494 // The code below handles both pointer and non-pointer induction variables. 5495 for (auto &Induction : Legal->getInductionVars()) { 5496 auto *Ind = Induction.first; 5497 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5498 5499 // Determine if all users of the induction variable are uniform after 5500 // vectorization. 5501 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5502 auto *I = cast<Instruction>(U); 5503 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5504 isVectorizedMemAccessUse(I, Ind); 5505 }); 5506 if (!UniformInd) 5507 continue; 5508 5509 // Determine if all users of the induction variable update instruction are 5510 // uniform after vectorization. 5511 auto UniformIndUpdate = 5512 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5513 auto *I = cast<Instruction>(U); 5514 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5515 isVectorizedMemAccessUse(I, IndUpdate); 5516 }); 5517 if (!UniformIndUpdate) 5518 continue; 5519 5520 // The induction variable and its update instruction will remain uniform. 5521 addToWorklistIfAllowed(Ind); 5522 addToWorklistIfAllowed(IndUpdate); 5523 } 5524 5525 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5526 } 5527 5528 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5529 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5530 5531 if (Legal->getRuntimePointerChecking()->Need) { 5532 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5533 "runtime pointer checks needed. Enable vectorization of this " 5534 "loop with '#pragma clang loop vectorize(enable)' when " 5535 "compiling with -Os/-Oz", 5536 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5537 return true; 5538 } 5539 5540 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5541 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5542 "runtime SCEV checks needed. Enable vectorization of this " 5543 "loop with '#pragma clang loop vectorize(enable)' when " 5544 "compiling with -Os/-Oz", 5545 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5546 return true; 5547 } 5548 5549 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5550 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5551 reportVectorizationFailure("Runtime stride check for small trip count", 5552 "runtime stride == 1 checks needed. Enable vectorization of " 5553 "this loop without such check by compiling with -Os/-Oz", 5554 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5555 return true; 5556 } 5557 5558 return false; 5559 } 5560 5561 ElementCount 5562 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5563 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5564 reportVectorizationInfo( 5565 "Disabling scalable vectorization, because target does not " 5566 "support scalable vectors.", 5567 "ScalableVectorsUnsupported", ORE, TheLoop); 5568 return ElementCount::getScalable(0); 5569 } 5570 5571 if (Hints->isScalableVectorizationDisabled()) { 5572 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5573 "ScalableVectorizationDisabled", ORE, TheLoop); 5574 return ElementCount::getScalable(0); 5575 } 5576 5577 auto MaxScalableVF = ElementCount::getScalable( 5578 std::numeric_limits<ElementCount::ScalarTy>::max()); 5579 5580 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5581 // FIXME: While for scalable vectors this is currently sufficient, this should 5582 // be replaced by a more detailed mechanism that filters out specific VFs, 5583 // instead of invalidating vectorization for a whole set of VFs based on the 5584 // MaxVF. 5585 5586 // Disable scalable vectorization if the loop contains unsupported reductions. 5587 if (!canVectorizeReductions(MaxScalableVF)) { 5588 reportVectorizationInfo( 5589 "Scalable vectorization not supported for the reduction " 5590 "operations found in this loop.", 5591 "ScalableVFUnfeasible", ORE, TheLoop); 5592 return ElementCount::getScalable(0); 5593 } 5594 5595 // Disable scalable vectorization if the loop contains any instructions 5596 // with element types not supported for scalable vectors. 5597 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5598 return !Ty->isVoidTy() && 5599 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5600 })) { 5601 reportVectorizationInfo("Scalable vectorization is not supported " 5602 "for all element types found in this loop.", 5603 "ScalableVFUnfeasible", ORE, TheLoop); 5604 return ElementCount::getScalable(0); 5605 } 5606 5607 if (Legal->isSafeForAnyVectorWidth()) 5608 return MaxScalableVF; 5609 5610 // Limit MaxScalableVF by the maximum safe dependence distance. 5611 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5612 MaxScalableVF = ElementCount::getScalable( 5613 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5614 if (!MaxScalableVF) 5615 reportVectorizationInfo( 5616 "Max legal vector width too small, scalable vectorization " 5617 "unfeasible.", 5618 "ScalableVFUnfeasible", ORE, TheLoop); 5619 5620 return MaxScalableVF; 5621 } 5622 5623 FixedScalableVFPair 5624 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5625 ElementCount UserVF) { 5626 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5627 unsigned SmallestType, WidestType; 5628 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5629 5630 // Get the maximum safe dependence distance in bits computed by LAA. 5631 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5632 // the memory accesses that is most restrictive (involved in the smallest 5633 // dependence distance). 5634 unsigned MaxSafeElements = 5635 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5636 5637 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5638 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5639 5640 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5641 << ".\n"); 5642 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5643 << ".\n"); 5644 5645 // First analyze the UserVF, fall back if the UserVF should be ignored. 5646 if (UserVF) { 5647 auto MaxSafeUserVF = 5648 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5649 5650 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5651 // If `VF=vscale x N` is safe, then so is `VF=N` 5652 if (UserVF.isScalable()) 5653 return FixedScalableVFPair( 5654 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5655 else 5656 return UserVF; 5657 } 5658 5659 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5660 5661 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5662 // is better to ignore the hint and let the compiler choose a suitable VF. 5663 if (!UserVF.isScalable()) { 5664 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5665 << " is unsafe, clamping to max safe VF=" 5666 << MaxSafeFixedVF << ".\n"); 5667 ORE->emit([&]() { 5668 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5669 TheLoop->getStartLoc(), 5670 TheLoop->getHeader()) 5671 << "User-specified vectorization factor " 5672 << ore::NV("UserVectorizationFactor", UserVF) 5673 << " is unsafe, clamping to maximum safe vectorization factor " 5674 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5675 }); 5676 return MaxSafeFixedVF; 5677 } 5678 5679 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5680 << " is unsafe. Ignoring scalable UserVF.\n"); 5681 ORE->emit([&]() { 5682 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5683 TheLoop->getStartLoc(), 5684 TheLoop->getHeader()) 5685 << "User-specified vectorization factor " 5686 << ore::NV("UserVectorizationFactor", UserVF) 5687 << " is unsafe. Ignoring the hint to let the compiler pick a " 5688 "suitable VF."; 5689 }); 5690 } 5691 5692 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5693 << " / " << WidestType << " bits.\n"); 5694 5695 FixedScalableVFPair Result(ElementCount::getFixed(1), 5696 ElementCount::getScalable(0)); 5697 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5698 WidestType, MaxSafeFixedVF)) 5699 Result.FixedVF = MaxVF; 5700 5701 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5702 WidestType, MaxSafeScalableVF)) 5703 if (MaxVF.isScalable()) { 5704 Result.ScalableVF = MaxVF; 5705 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5706 << "\n"); 5707 } 5708 5709 return Result; 5710 } 5711 5712 FixedScalableVFPair 5713 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5714 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5715 // TODO: It may by useful to do since it's still likely to be dynamically 5716 // uniform if the target can skip. 5717 reportVectorizationFailure( 5718 "Not inserting runtime ptr check for divergent target", 5719 "runtime pointer checks needed. Not enabled for divergent target", 5720 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5721 return FixedScalableVFPair::getNone(); 5722 } 5723 5724 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5725 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5726 if (TC == 1) { 5727 reportVectorizationFailure("Single iteration (non) loop", 5728 "loop trip count is one, irrelevant for vectorization", 5729 "SingleIterationLoop", ORE, TheLoop); 5730 return FixedScalableVFPair::getNone(); 5731 } 5732 5733 switch (ScalarEpilogueStatus) { 5734 case CM_ScalarEpilogueAllowed: 5735 return computeFeasibleMaxVF(TC, UserVF); 5736 case CM_ScalarEpilogueNotAllowedUsePredicate: 5737 LLVM_FALLTHROUGH; 5738 case CM_ScalarEpilogueNotNeededUsePredicate: 5739 LLVM_DEBUG( 5740 dbgs() << "LV: vector predicate hint/switch found.\n" 5741 << "LV: Not allowing scalar epilogue, creating predicated " 5742 << "vector loop.\n"); 5743 break; 5744 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5745 // fallthrough as a special case of OptForSize 5746 case CM_ScalarEpilogueNotAllowedOptSize: 5747 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5748 LLVM_DEBUG( 5749 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5750 else 5751 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5752 << "count.\n"); 5753 5754 // Bail if runtime checks are required, which are not good when optimising 5755 // for size. 5756 if (runtimeChecksRequired()) 5757 return FixedScalableVFPair::getNone(); 5758 5759 break; 5760 } 5761 5762 // The only loops we can vectorize without a scalar epilogue, are loops with 5763 // a bottom-test and a single exiting block. We'd have to handle the fact 5764 // that not every instruction executes on the last iteration. This will 5765 // require a lane mask which varies through the vector loop body. (TODO) 5766 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5767 // If there was a tail-folding hint/switch, but we can't fold the tail by 5768 // masking, fallback to a vectorization with a scalar epilogue. 5769 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5770 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5771 "scalar epilogue instead.\n"); 5772 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5773 return computeFeasibleMaxVF(TC, UserVF); 5774 } 5775 return FixedScalableVFPair::getNone(); 5776 } 5777 5778 // Now try the tail folding 5779 5780 // Invalidate interleave groups that require an epilogue if we can't mask 5781 // the interleave-group. 5782 if (!useMaskedInterleavedAccesses(TTI)) { 5783 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5784 "No decisions should have been taken at this point"); 5785 // Note: There is no need to invalidate any cost modeling decisions here, as 5786 // non where taken so far. 5787 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5788 } 5789 5790 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5791 // Avoid tail folding if the trip count is known to be a multiple of any VF 5792 // we chose. 5793 // FIXME: The condition below pessimises the case for fixed-width vectors, 5794 // when scalable VFs are also candidates for vectorization. 5795 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5796 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5797 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5798 "MaxFixedVF must be a power of 2"); 5799 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5800 : MaxFixedVF.getFixedValue(); 5801 ScalarEvolution *SE = PSE.getSE(); 5802 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5803 const SCEV *ExitCount = SE->getAddExpr( 5804 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5805 const SCEV *Rem = SE->getURemExpr( 5806 SE->applyLoopGuards(ExitCount, TheLoop), 5807 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5808 if (Rem->isZero()) { 5809 // Accept MaxFixedVF if we do not have a tail. 5810 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5811 return MaxFactors; 5812 } 5813 } 5814 5815 // For scalable vectors, don't use tail folding as this is currently not yet 5816 // supported. The code is likely to have ended up here if the tripcount is 5817 // low, in which case it makes sense not to use scalable vectors. 5818 if (MaxFactors.ScalableVF.isVector()) 5819 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5820 5821 // If we don't know the precise trip count, or if the trip count that we 5822 // found modulo the vectorization factor is not zero, try to fold the tail 5823 // by masking. 5824 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5825 if (Legal->prepareToFoldTailByMasking()) { 5826 FoldTailByMasking = true; 5827 return MaxFactors; 5828 } 5829 5830 // If there was a tail-folding hint/switch, but we can't fold the tail by 5831 // masking, fallback to a vectorization with a scalar epilogue. 5832 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5833 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5834 "scalar epilogue instead.\n"); 5835 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5836 return MaxFactors; 5837 } 5838 5839 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5840 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5841 return FixedScalableVFPair::getNone(); 5842 } 5843 5844 if (TC == 0) { 5845 reportVectorizationFailure( 5846 "Unable to calculate the loop count due to complex control flow", 5847 "unable to calculate the loop count due to complex control flow", 5848 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5849 return FixedScalableVFPair::getNone(); 5850 } 5851 5852 reportVectorizationFailure( 5853 "Cannot optimize for size and vectorize at the same time.", 5854 "cannot optimize for size and vectorize at the same time. " 5855 "Enable vectorization of this loop with '#pragma clang loop " 5856 "vectorize(enable)' when compiling with -Os/-Oz", 5857 "NoTailLoopWithOptForSize", ORE, TheLoop); 5858 return FixedScalableVFPair::getNone(); 5859 } 5860 5861 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5862 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5863 const ElementCount &MaxSafeVF) { 5864 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5865 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5866 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5867 : TargetTransformInfo::RGK_FixedWidthVector); 5868 5869 // Convenience function to return the minimum of two ElementCounts. 5870 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5871 assert((LHS.isScalable() == RHS.isScalable()) && 5872 "Scalable flags must match"); 5873 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5874 }; 5875 5876 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5877 // Note that both WidestRegister and WidestType may not be a powers of 2. 5878 auto MaxVectorElementCount = ElementCount::get( 5879 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5880 ComputeScalableMaxVF); 5881 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5882 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5883 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5884 5885 if (!MaxVectorElementCount) { 5886 LLVM_DEBUG(dbgs() << "LV: The target has no " 5887 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5888 << " vector registers.\n"); 5889 return ElementCount::getFixed(1); 5890 } 5891 5892 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5893 if (ConstTripCount && 5894 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5895 isPowerOf2_32(ConstTripCount)) { 5896 // We need to clamp the VF to be the ConstTripCount. There is no point in 5897 // choosing a higher viable VF as done in the loop below. If 5898 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5899 // the TC is less than or equal to the known number of lanes. 5900 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5901 << ConstTripCount << "\n"); 5902 return TripCountEC; 5903 } 5904 5905 ElementCount MaxVF = MaxVectorElementCount; 5906 if (TTI.shouldMaximizeVectorBandwidth() || 5907 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5908 auto MaxVectorElementCountMaxBW = ElementCount::get( 5909 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5910 ComputeScalableMaxVF); 5911 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5912 5913 // Collect all viable vectorization factors larger than the default MaxVF 5914 // (i.e. MaxVectorElementCount). 5915 SmallVector<ElementCount, 8> VFs; 5916 for (ElementCount VS = MaxVectorElementCount * 2; 5917 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5918 VFs.push_back(VS); 5919 5920 // For each VF calculate its register usage. 5921 auto RUs = calculateRegisterUsage(VFs); 5922 5923 // Select the largest VF which doesn't require more registers than existing 5924 // ones. 5925 for (int i = RUs.size() - 1; i >= 0; --i) { 5926 bool Selected = true; 5927 for (auto &pair : RUs[i].MaxLocalUsers) { 5928 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5929 if (pair.second > TargetNumRegisters) 5930 Selected = false; 5931 } 5932 if (Selected) { 5933 MaxVF = VFs[i]; 5934 break; 5935 } 5936 } 5937 if (ElementCount MinVF = 5938 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5939 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5940 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5941 << ") with target's minimum: " << MinVF << '\n'); 5942 MaxVF = MinVF; 5943 } 5944 } 5945 } 5946 return MaxVF; 5947 } 5948 5949 bool LoopVectorizationCostModel::isMoreProfitable( 5950 const VectorizationFactor &A, const VectorizationFactor &B) const { 5951 InstructionCost CostA = A.Cost; 5952 InstructionCost CostB = B.Cost; 5953 5954 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5955 5956 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5957 MaxTripCount) { 5958 // If we are folding the tail and the trip count is a known (possibly small) 5959 // constant, the trip count will be rounded up to an integer number of 5960 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5961 // which we compare directly. When not folding the tail, the total cost will 5962 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5963 // approximated with the per-lane cost below instead of using the tripcount 5964 // as here. 5965 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5966 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5967 return RTCostA < RTCostB; 5968 } 5969 5970 // When set to preferred, for now assume vscale may be larger than 1, so 5971 // that scalable vectorization is slightly favorable over fixed-width 5972 // vectorization. 5973 if (Hints->isScalableVectorizationPreferred()) 5974 if (A.Width.isScalable() && !B.Width.isScalable()) 5975 return (CostA * B.Width.getKnownMinValue()) <= 5976 (CostB * A.Width.getKnownMinValue()); 5977 5978 // To avoid the need for FP division: 5979 // (CostA / A.Width) < (CostB / B.Width) 5980 // <=> (CostA * B.Width) < (CostB * A.Width) 5981 return (CostA * B.Width.getKnownMinValue()) < 5982 (CostB * A.Width.getKnownMinValue()); 5983 } 5984 5985 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5986 const ElementCountSet &VFCandidates) { 5987 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5988 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5989 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5990 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5991 "Expected Scalar VF to be a candidate"); 5992 5993 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5994 VectorizationFactor ChosenFactor = ScalarCost; 5995 5996 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5997 if (ForceVectorization && VFCandidates.size() > 1) { 5998 // Ignore scalar width, because the user explicitly wants vectorization. 5999 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6000 // evaluation. 6001 ChosenFactor.Cost = InstructionCost::getMax(); 6002 } 6003 6004 SmallVector<InstructionVFPair> InvalidCosts; 6005 for (const auto &i : VFCandidates) { 6006 // The cost for scalar VF=1 is already calculated, so ignore it. 6007 if (i.isScalar()) 6008 continue; 6009 6010 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6011 VectorizationFactor Candidate(i, C.first); 6012 LLVM_DEBUG( 6013 dbgs() << "LV: Vector loop of width " << i << " costs: " 6014 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6015 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6016 << ".\n"); 6017 6018 if (!C.second && !ForceVectorization) { 6019 LLVM_DEBUG( 6020 dbgs() << "LV: Not considering vector loop of width " << i 6021 << " because it will not generate any vector instructions.\n"); 6022 continue; 6023 } 6024 6025 // If profitable add it to ProfitableVF list. 6026 if (isMoreProfitable(Candidate, ScalarCost)) 6027 ProfitableVFs.push_back(Candidate); 6028 6029 if (isMoreProfitable(Candidate, ChosenFactor)) 6030 ChosenFactor = Candidate; 6031 } 6032 6033 // Emit a report of VFs with invalid costs in the loop. 6034 if (!InvalidCosts.empty()) { 6035 // Group the remarks per instruction, keeping the instruction order from 6036 // InvalidCosts. 6037 std::map<Instruction *, unsigned> Numbering; 6038 unsigned I = 0; 6039 for (auto &Pair : InvalidCosts) 6040 if (!Numbering.count(Pair.first)) 6041 Numbering[Pair.first] = I++; 6042 6043 // Sort the list, first on instruction(number) then on VF. 6044 llvm::sort(InvalidCosts, 6045 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6046 if (Numbering[A.first] != Numbering[B.first]) 6047 return Numbering[A.first] < Numbering[B.first]; 6048 ElementCountComparator ECC; 6049 return ECC(A.second, B.second); 6050 }); 6051 6052 // For a list of ordered instruction-vf pairs: 6053 // [(load, vf1), (load, vf2), (store, vf1)] 6054 // Group the instructions together to emit separate remarks for: 6055 // load (vf1, vf2) 6056 // store (vf1) 6057 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6058 auto Subset = ArrayRef<InstructionVFPair>(); 6059 do { 6060 if (Subset.empty()) 6061 Subset = Tail.take_front(1); 6062 6063 Instruction *I = Subset.front().first; 6064 6065 // If the next instruction is different, or if there are no other pairs, 6066 // emit a remark for the collated subset. e.g. 6067 // [(load, vf1), (load, vf2))] 6068 // to emit: 6069 // remark: invalid costs for 'load' at VF=(vf, vf2) 6070 if (Subset == Tail || Tail[Subset.size()].first != I) { 6071 std::string OutString; 6072 raw_string_ostream OS(OutString); 6073 assert(!Subset.empty() && "Unexpected empty range"); 6074 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6075 for (auto &Pair : Subset) 6076 OS << (Pair.second == Subset.front().second ? "" : ", ") 6077 << Pair.second; 6078 OS << "):"; 6079 if (auto *CI = dyn_cast<CallInst>(I)) 6080 OS << " call to " << CI->getCalledFunction()->getName(); 6081 else 6082 OS << " " << I->getOpcodeName(); 6083 OS.flush(); 6084 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6085 Tail = Tail.drop_front(Subset.size()); 6086 Subset = {}; 6087 } else 6088 // Grow the subset by one element 6089 Subset = Tail.take_front(Subset.size() + 1); 6090 } while (!Tail.empty()); 6091 } 6092 6093 if (!EnableCondStoresVectorization && NumPredStores) { 6094 reportVectorizationFailure("There are conditional stores.", 6095 "store that is conditionally executed prevents vectorization", 6096 "ConditionalStore", ORE, TheLoop); 6097 ChosenFactor = ScalarCost; 6098 } 6099 6100 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6101 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6102 << "LV: Vectorization seems to be not beneficial, " 6103 << "but was forced by a user.\n"); 6104 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6105 return ChosenFactor; 6106 } 6107 6108 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6109 const Loop &L, ElementCount VF) const { 6110 // Cross iteration phis such as reductions need special handling and are 6111 // currently unsupported. 6112 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6113 return Legal->isFirstOrderRecurrence(&Phi) || 6114 Legal->isReductionVariable(&Phi); 6115 })) 6116 return false; 6117 6118 // Phis with uses outside of the loop require special handling and are 6119 // currently unsupported. 6120 for (auto &Entry : Legal->getInductionVars()) { 6121 // Look for uses of the value of the induction at the last iteration. 6122 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6123 for (User *U : PostInc->users()) 6124 if (!L.contains(cast<Instruction>(U))) 6125 return false; 6126 // Look for uses of penultimate value of the induction. 6127 for (User *U : Entry.first->users()) 6128 if (!L.contains(cast<Instruction>(U))) 6129 return false; 6130 } 6131 6132 // Induction variables that are widened require special handling that is 6133 // currently not supported. 6134 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6135 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6136 this->isProfitableToScalarize(Entry.first, VF)); 6137 })) 6138 return false; 6139 6140 // Epilogue vectorization code has not been auditted to ensure it handles 6141 // non-latch exits properly. It may be fine, but it needs auditted and 6142 // tested. 6143 if (L.getExitingBlock() != L.getLoopLatch()) 6144 return false; 6145 6146 return true; 6147 } 6148 6149 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6150 const ElementCount VF) const { 6151 // FIXME: We need a much better cost-model to take different parameters such 6152 // as register pressure, code size increase and cost of extra branches into 6153 // account. For now we apply a very crude heuristic and only consider loops 6154 // with vectorization factors larger than a certain value. 6155 // We also consider epilogue vectorization unprofitable for targets that don't 6156 // consider interleaving beneficial (eg. MVE). 6157 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6158 return false; 6159 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6160 return true; 6161 return false; 6162 } 6163 6164 VectorizationFactor 6165 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6166 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6167 VectorizationFactor Result = VectorizationFactor::Disabled(); 6168 if (!EnableEpilogueVectorization) { 6169 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6170 return Result; 6171 } 6172 6173 if (!isScalarEpilogueAllowed()) { 6174 LLVM_DEBUG( 6175 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6176 "allowed.\n";); 6177 return Result; 6178 } 6179 6180 // FIXME: This can be fixed for scalable vectors later, because at this stage 6181 // the LoopVectorizer will only consider vectorizing a loop with scalable 6182 // vectors when the loop has a hint to enable vectorization for a given VF. 6183 if (MainLoopVF.isScalable()) { 6184 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6185 "yet supported.\n"); 6186 return Result; 6187 } 6188 6189 // Not really a cost consideration, but check for unsupported cases here to 6190 // simplify the logic. 6191 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6192 LLVM_DEBUG( 6193 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6194 "not a supported candidate.\n";); 6195 return Result; 6196 } 6197 6198 if (EpilogueVectorizationForceVF > 1) { 6199 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6200 if (LVP.hasPlanWithVFs( 6201 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6202 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6203 else { 6204 LLVM_DEBUG( 6205 dbgs() 6206 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6207 return Result; 6208 } 6209 } 6210 6211 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6212 TheLoop->getHeader()->getParent()->hasMinSize()) { 6213 LLVM_DEBUG( 6214 dbgs() 6215 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6216 return Result; 6217 } 6218 6219 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6220 return Result; 6221 6222 for (auto &NextVF : ProfitableVFs) 6223 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6224 (Result.Width.getFixedValue() == 1 || 6225 isMoreProfitable(NextVF, Result)) && 6226 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6227 Result = NextVF; 6228 6229 if (Result != VectorizationFactor::Disabled()) 6230 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6231 << Result.Width.getFixedValue() << "\n";); 6232 return Result; 6233 } 6234 6235 std::pair<unsigned, unsigned> 6236 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6237 unsigned MinWidth = -1U; 6238 unsigned MaxWidth = 8; 6239 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6240 for (Type *T : ElementTypesInLoop) { 6241 MinWidth = std::min<unsigned>( 6242 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6243 MaxWidth = std::max<unsigned>( 6244 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6245 } 6246 return {MinWidth, MaxWidth}; 6247 } 6248 6249 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6250 ElementTypesInLoop.clear(); 6251 // For each block. 6252 for (BasicBlock *BB : TheLoop->blocks()) { 6253 // For each instruction in the loop. 6254 for (Instruction &I : BB->instructionsWithoutDebug()) { 6255 Type *T = I.getType(); 6256 6257 // Skip ignored values. 6258 if (ValuesToIgnore.count(&I)) 6259 continue; 6260 6261 // Only examine Loads, Stores and PHINodes. 6262 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6263 continue; 6264 6265 // Examine PHI nodes that are reduction variables. Update the type to 6266 // account for the recurrence type. 6267 if (auto *PN = dyn_cast<PHINode>(&I)) { 6268 if (!Legal->isReductionVariable(PN)) 6269 continue; 6270 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6271 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6272 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6273 RdxDesc.getRecurrenceType(), 6274 TargetTransformInfo::ReductionFlags())) 6275 continue; 6276 T = RdxDesc.getRecurrenceType(); 6277 } 6278 6279 // Examine the stored values. 6280 if (auto *ST = dyn_cast<StoreInst>(&I)) 6281 T = ST->getValueOperand()->getType(); 6282 6283 // Ignore loaded pointer types and stored pointer types that are not 6284 // vectorizable. 6285 // 6286 // FIXME: The check here attempts to predict whether a load or store will 6287 // be vectorized. We only know this for certain after a VF has 6288 // been selected. Here, we assume that if an access can be 6289 // vectorized, it will be. We should also look at extending this 6290 // optimization to non-pointer types. 6291 // 6292 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6293 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6294 continue; 6295 6296 ElementTypesInLoop.insert(T); 6297 } 6298 } 6299 } 6300 6301 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6302 unsigned LoopCost) { 6303 // -- The interleave heuristics -- 6304 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6305 // There are many micro-architectural considerations that we can't predict 6306 // at this level. For example, frontend pressure (on decode or fetch) due to 6307 // code size, or the number and capabilities of the execution ports. 6308 // 6309 // We use the following heuristics to select the interleave count: 6310 // 1. If the code has reductions, then we interleave to break the cross 6311 // iteration dependency. 6312 // 2. If the loop is really small, then we interleave to reduce the loop 6313 // overhead. 6314 // 3. We don't interleave if we think that we will spill registers to memory 6315 // due to the increased register pressure. 6316 6317 if (!isScalarEpilogueAllowed()) 6318 return 1; 6319 6320 // We used the distance for the interleave count. 6321 if (Legal->getMaxSafeDepDistBytes() != -1U) 6322 return 1; 6323 6324 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6325 const bool HasReductions = !Legal->getReductionVars().empty(); 6326 // Do not interleave loops with a relatively small known or estimated trip 6327 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6328 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6329 // because with the above conditions interleaving can expose ILP and break 6330 // cross iteration dependences for reductions. 6331 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6332 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6333 return 1; 6334 6335 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6336 // We divide by these constants so assume that we have at least one 6337 // instruction that uses at least one register. 6338 for (auto& pair : R.MaxLocalUsers) { 6339 pair.second = std::max(pair.second, 1U); 6340 } 6341 6342 // We calculate the interleave count using the following formula. 6343 // Subtract the number of loop invariants from the number of available 6344 // registers. These registers are used by all of the interleaved instances. 6345 // Next, divide the remaining registers by the number of registers that is 6346 // required by the loop, in order to estimate how many parallel instances 6347 // fit without causing spills. All of this is rounded down if necessary to be 6348 // a power of two. We want power of two interleave count to simplify any 6349 // addressing operations or alignment considerations. 6350 // We also want power of two interleave counts to ensure that the induction 6351 // variable of the vector loop wraps to zero, when tail is folded by masking; 6352 // this currently happens when OptForSize, in which case IC is set to 1 above. 6353 unsigned IC = UINT_MAX; 6354 6355 for (auto& pair : R.MaxLocalUsers) { 6356 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6357 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6358 << " registers of " 6359 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6360 if (VF.isScalar()) { 6361 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6362 TargetNumRegisters = ForceTargetNumScalarRegs; 6363 } else { 6364 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6365 TargetNumRegisters = ForceTargetNumVectorRegs; 6366 } 6367 unsigned MaxLocalUsers = pair.second; 6368 unsigned LoopInvariantRegs = 0; 6369 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6370 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6371 6372 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6373 // Don't count the induction variable as interleaved. 6374 if (EnableIndVarRegisterHeur) { 6375 TmpIC = 6376 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6377 std::max(1U, (MaxLocalUsers - 1))); 6378 } 6379 6380 IC = std::min(IC, TmpIC); 6381 } 6382 6383 // Clamp the interleave ranges to reasonable counts. 6384 unsigned MaxInterleaveCount = 6385 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6386 6387 // Check if the user has overridden the max. 6388 if (VF.isScalar()) { 6389 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6390 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6391 } else { 6392 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6393 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6394 } 6395 6396 // If trip count is known or estimated compile time constant, limit the 6397 // interleave count to be less than the trip count divided by VF, provided it 6398 // is at least 1. 6399 // 6400 // For scalable vectors we can't know if interleaving is beneficial. It may 6401 // not be beneficial for small loops if none of the lanes in the second vector 6402 // iterations is enabled. However, for larger loops, there is likely to be a 6403 // similar benefit as for fixed-width vectors. For now, we choose to leave 6404 // the InterleaveCount as if vscale is '1', although if some information about 6405 // the vector is known (e.g. min vector size), we can make a better decision. 6406 if (BestKnownTC) { 6407 MaxInterleaveCount = 6408 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6409 // Make sure MaxInterleaveCount is greater than 0. 6410 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6411 } 6412 6413 assert(MaxInterleaveCount > 0 && 6414 "Maximum interleave count must be greater than 0"); 6415 6416 // Clamp the calculated IC to be between the 1 and the max interleave count 6417 // that the target and trip count allows. 6418 if (IC > MaxInterleaveCount) 6419 IC = MaxInterleaveCount; 6420 else 6421 // Make sure IC is greater than 0. 6422 IC = std::max(1u, IC); 6423 6424 assert(IC > 0 && "Interleave count must be greater than 0."); 6425 6426 // If we did not calculate the cost for VF (because the user selected the VF) 6427 // then we calculate the cost of VF here. 6428 if (LoopCost == 0) { 6429 InstructionCost C = expectedCost(VF).first; 6430 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6431 LoopCost = *C.getValue(); 6432 } 6433 6434 assert(LoopCost && "Non-zero loop cost expected"); 6435 6436 // Interleave if we vectorized this loop and there is a reduction that could 6437 // benefit from interleaving. 6438 if (VF.isVector() && HasReductions) { 6439 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6440 return IC; 6441 } 6442 6443 // Note that if we've already vectorized the loop we will have done the 6444 // runtime check and so interleaving won't require further checks. 6445 bool InterleavingRequiresRuntimePointerCheck = 6446 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6447 6448 // We want to interleave small loops in order to reduce the loop overhead and 6449 // potentially expose ILP opportunities. 6450 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6451 << "LV: IC is " << IC << '\n' 6452 << "LV: VF is " << VF << '\n'); 6453 const bool AggressivelyInterleaveReductions = 6454 TTI.enableAggressiveInterleaving(HasReductions); 6455 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6456 // We assume that the cost overhead is 1 and we use the cost model 6457 // to estimate the cost of the loop and interleave until the cost of the 6458 // loop overhead is about 5% of the cost of the loop. 6459 unsigned SmallIC = 6460 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6461 6462 // Interleave until store/load ports (estimated by max interleave count) are 6463 // saturated. 6464 unsigned NumStores = Legal->getNumStores(); 6465 unsigned NumLoads = Legal->getNumLoads(); 6466 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6467 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6468 6469 // If we have a scalar reduction (vector reductions are already dealt with 6470 // by this point), we can increase the critical path length if the loop 6471 // we're interleaving is inside another loop. For tree-wise reductions 6472 // set the limit to 2, and for ordered reductions it's best to disable 6473 // interleaving entirely. 6474 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6475 bool HasOrderedReductions = 6476 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6477 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6478 return RdxDesc.isOrdered(); 6479 }); 6480 if (HasOrderedReductions) { 6481 LLVM_DEBUG( 6482 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6483 return 1; 6484 } 6485 6486 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6487 SmallIC = std::min(SmallIC, F); 6488 StoresIC = std::min(StoresIC, F); 6489 LoadsIC = std::min(LoadsIC, F); 6490 } 6491 6492 if (EnableLoadStoreRuntimeInterleave && 6493 std::max(StoresIC, LoadsIC) > SmallIC) { 6494 LLVM_DEBUG( 6495 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6496 return std::max(StoresIC, LoadsIC); 6497 } 6498 6499 // If there are scalar reductions and TTI has enabled aggressive 6500 // interleaving for reductions, we will interleave to expose ILP. 6501 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6502 AggressivelyInterleaveReductions) { 6503 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6504 // Interleave no less than SmallIC but not as aggressive as the normal IC 6505 // to satisfy the rare situation when resources are too limited. 6506 return std::max(IC / 2, SmallIC); 6507 } else { 6508 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6509 return SmallIC; 6510 } 6511 } 6512 6513 // Interleave if this is a large loop (small loops are already dealt with by 6514 // this point) that could benefit from interleaving. 6515 if (AggressivelyInterleaveReductions) { 6516 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6517 return IC; 6518 } 6519 6520 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6521 return 1; 6522 } 6523 6524 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6525 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6526 // This function calculates the register usage by measuring the highest number 6527 // of values that are alive at a single location. Obviously, this is a very 6528 // rough estimation. We scan the loop in a topological order in order and 6529 // assign a number to each instruction. We use RPO to ensure that defs are 6530 // met before their users. We assume that each instruction that has in-loop 6531 // users starts an interval. We record every time that an in-loop value is 6532 // used, so we have a list of the first and last occurrences of each 6533 // instruction. Next, we transpose this data structure into a multi map that 6534 // holds the list of intervals that *end* at a specific location. This multi 6535 // map allows us to perform a linear search. We scan the instructions linearly 6536 // and record each time that a new interval starts, by placing it in a set. 6537 // If we find this value in the multi-map then we remove it from the set. 6538 // The max register usage is the maximum size of the set. 6539 // We also search for instructions that are defined outside the loop, but are 6540 // used inside the loop. We need this number separately from the max-interval 6541 // usage number because when we unroll, loop-invariant values do not take 6542 // more register. 6543 LoopBlocksDFS DFS(TheLoop); 6544 DFS.perform(LI); 6545 6546 RegisterUsage RU; 6547 6548 // Each 'key' in the map opens a new interval. The values 6549 // of the map are the index of the 'last seen' usage of the 6550 // instruction that is the key. 6551 using IntervalMap = DenseMap<Instruction *, unsigned>; 6552 6553 // Maps instruction to its index. 6554 SmallVector<Instruction *, 64> IdxToInstr; 6555 // Marks the end of each interval. 6556 IntervalMap EndPoint; 6557 // Saves the list of instruction indices that are used in the loop. 6558 SmallPtrSet<Instruction *, 8> Ends; 6559 // Saves the list of values that are used in the loop but are 6560 // defined outside the loop, such as arguments and constants. 6561 SmallPtrSet<Value *, 8> LoopInvariants; 6562 6563 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6564 for (Instruction &I : BB->instructionsWithoutDebug()) { 6565 IdxToInstr.push_back(&I); 6566 6567 // Save the end location of each USE. 6568 for (Value *U : I.operands()) { 6569 auto *Instr = dyn_cast<Instruction>(U); 6570 6571 // Ignore non-instruction values such as arguments, constants, etc. 6572 if (!Instr) 6573 continue; 6574 6575 // If this instruction is outside the loop then record it and continue. 6576 if (!TheLoop->contains(Instr)) { 6577 LoopInvariants.insert(Instr); 6578 continue; 6579 } 6580 6581 // Overwrite previous end points. 6582 EndPoint[Instr] = IdxToInstr.size(); 6583 Ends.insert(Instr); 6584 } 6585 } 6586 } 6587 6588 // Saves the list of intervals that end with the index in 'key'. 6589 using InstrList = SmallVector<Instruction *, 2>; 6590 DenseMap<unsigned, InstrList> TransposeEnds; 6591 6592 // Transpose the EndPoints to a list of values that end at each index. 6593 for (auto &Interval : EndPoint) 6594 TransposeEnds[Interval.second].push_back(Interval.first); 6595 6596 SmallPtrSet<Instruction *, 8> OpenIntervals; 6597 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6598 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6599 6600 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6601 6602 // A lambda that gets the register usage for the given type and VF. 6603 const auto &TTICapture = TTI; 6604 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6605 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6606 return 0; 6607 InstructionCost::CostType RegUsage = 6608 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6609 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6610 "Nonsensical values for register usage."); 6611 return RegUsage; 6612 }; 6613 6614 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6615 Instruction *I = IdxToInstr[i]; 6616 6617 // Remove all of the instructions that end at this location. 6618 InstrList &List = TransposeEnds[i]; 6619 for (Instruction *ToRemove : List) 6620 OpenIntervals.erase(ToRemove); 6621 6622 // Ignore instructions that are never used within the loop. 6623 if (!Ends.count(I)) 6624 continue; 6625 6626 // Skip ignored values. 6627 if (ValuesToIgnore.count(I)) 6628 continue; 6629 6630 // For each VF find the maximum usage of registers. 6631 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6632 // Count the number of live intervals. 6633 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6634 6635 if (VFs[j].isScalar()) { 6636 for (auto Inst : OpenIntervals) { 6637 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6638 if (RegUsage.find(ClassID) == RegUsage.end()) 6639 RegUsage[ClassID] = 1; 6640 else 6641 RegUsage[ClassID] += 1; 6642 } 6643 } else { 6644 collectUniformsAndScalars(VFs[j]); 6645 for (auto Inst : OpenIntervals) { 6646 // Skip ignored values for VF > 1. 6647 if (VecValuesToIgnore.count(Inst)) 6648 continue; 6649 if (isScalarAfterVectorization(Inst, VFs[j])) { 6650 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6651 if (RegUsage.find(ClassID) == RegUsage.end()) 6652 RegUsage[ClassID] = 1; 6653 else 6654 RegUsage[ClassID] += 1; 6655 } else { 6656 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6657 if (RegUsage.find(ClassID) == RegUsage.end()) 6658 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6659 else 6660 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6661 } 6662 } 6663 } 6664 6665 for (auto& pair : RegUsage) { 6666 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6667 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6668 else 6669 MaxUsages[j][pair.first] = pair.second; 6670 } 6671 } 6672 6673 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6674 << OpenIntervals.size() << '\n'); 6675 6676 // Add the current instruction to the list of open intervals. 6677 OpenIntervals.insert(I); 6678 } 6679 6680 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6681 SmallMapVector<unsigned, unsigned, 4> Invariant; 6682 6683 for (auto Inst : LoopInvariants) { 6684 unsigned Usage = 6685 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6686 unsigned ClassID = 6687 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6688 if (Invariant.find(ClassID) == Invariant.end()) 6689 Invariant[ClassID] = Usage; 6690 else 6691 Invariant[ClassID] += Usage; 6692 } 6693 6694 LLVM_DEBUG({ 6695 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6696 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6697 << " item\n"; 6698 for (const auto &pair : MaxUsages[i]) { 6699 dbgs() << "LV(REG): RegisterClass: " 6700 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6701 << " registers\n"; 6702 } 6703 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6704 << " item\n"; 6705 for (const auto &pair : Invariant) { 6706 dbgs() << "LV(REG): RegisterClass: " 6707 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6708 << " registers\n"; 6709 } 6710 }); 6711 6712 RU.LoopInvariantRegs = Invariant; 6713 RU.MaxLocalUsers = MaxUsages[i]; 6714 RUs[i] = RU; 6715 } 6716 6717 return RUs; 6718 } 6719 6720 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6721 // TODO: Cost model for emulated masked load/store is completely 6722 // broken. This hack guides the cost model to use an artificially 6723 // high enough value to practically disable vectorization with such 6724 // operations, except where previously deployed legality hack allowed 6725 // using very low cost values. This is to avoid regressions coming simply 6726 // from moving "masked load/store" check from legality to cost model. 6727 // Masked Load/Gather emulation was previously never allowed. 6728 // Limited number of Masked Store/Scatter emulation was allowed. 6729 assert(isPredicatedInst(I) && 6730 "Expecting a scalar emulated instruction"); 6731 return isa<LoadInst>(I) || 6732 (isa<StoreInst>(I) && 6733 NumPredStores > NumberOfStoresToPredicate); 6734 } 6735 6736 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6737 // If we aren't vectorizing the loop, or if we've already collected the 6738 // instructions to scalarize, there's nothing to do. Collection may already 6739 // have occurred if we have a user-selected VF and are now computing the 6740 // expected cost for interleaving. 6741 if (VF.isScalar() || VF.isZero() || 6742 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6743 return; 6744 6745 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6746 // not profitable to scalarize any instructions, the presence of VF in the 6747 // map will indicate that we've analyzed it already. 6748 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6749 6750 // Find all the instructions that are scalar with predication in the loop and 6751 // determine if it would be better to not if-convert the blocks they are in. 6752 // If so, we also record the instructions to scalarize. 6753 for (BasicBlock *BB : TheLoop->blocks()) { 6754 if (!blockNeedsPredication(BB)) 6755 continue; 6756 for (Instruction &I : *BB) 6757 if (isScalarWithPredication(&I)) { 6758 ScalarCostsTy ScalarCosts; 6759 // Do not apply discount if scalable, because that would lead to 6760 // invalid scalarization costs. 6761 // Do not apply discount logic if hacked cost is needed 6762 // for emulated masked memrefs. 6763 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6764 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6765 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6766 // Remember that BB will remain after vectorization. 6767 PredicatedBBsAfterVectorization.insert(BB); 6768 } 6769 } 6770 } 6771 6772 int LoopVectorizationCostModel::computePredInstDiscount( 6773 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6774 assert(!isUniformAfterVectorization(PredInst, VF) && 6775 "Instruction marked uniform-after-vectorization will be predicated"); 6776 6777 // Initialize the discount to zero, meaning that the scalar version and the 6778 // vector version cost the same. 6779 InstructionCost Discount = 0; 6780 6781 // Holds instructions to analyze. The instructions we visit are mapped in 6782 // ScalarCosts. Those instructions are the ones that would be scalarized if 6783 // we find that the scalar version costs less. 6784 SmallVector<Instruction *, 8> Worklist; 6785 6786 // Returns true if the given instruction can be scalarized. 6787 auto canBeScalarized = [&](Instruction *I) -> bool { 6788 // We only attempt to scalarize instructions forming a single-use chain 6789 // from the original predicated block that would otherwise be vectorized. 6790 // Although not strictly necessary, we give up on instructions we know will 6791 // already be scalar to avoid traversing chains that are unlikely to be 6792 // beneficial. 6793 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6794 isScalarAfterVectorization(I, VF)) 6795 return false; 6796 6797 // If the instruction is scalar with predication, it will be analyzed 6798 // separately. We ignore it within the context of PredInst. 6799 if (isScalarWithPredication(I)) 6800 return false; 6801 6802 // If any of the instruction's operands are uniform after vectorization, 6803 // the instruction cannot be scalarized. This prevents, for example, a 6804 // masked load from being scalarized. 6805 // 6806 // We assume we will only emit a value for lane zero of an instruction 6807 // marked uniform after vectorization, rather than VF identical values. 6808 // Thus, if we scalarize an instruction that uses a uniform, we would 6809 // create uses of values corresponding to the lanes we aren't emitting code 6810 // for. This behavior can be changed by allowing getScalarValue to clone 6811 // the lane zero values for uniforms rather than asserting. 6812 for (Use &U : I->operands()) 6813 if (auto *J = dyn_cast<Instruction>(U.get())) 6814 if (isUniformAfterVectorization(J, VF)) 6815 return false; 6816 6817 // Otherwise, we can scalarize the instruction. 6818 return true; 6819 }; 6820 6821 // Compute the expected cost discount from scalarizing the entire expression 6822 // feeding the predicated instruction. We currently only consider expressions 6823 // that are single-use instruction chains. 6824 Worklist.push_back(PredInst); 6825 while (!Worklist.empty()) { 6826 Instruction *I = Worklist.pop_back_val(); 6827 6828 // If we've already analyzed the instruction, there's nothing to do. 6829 if (ScalarCosts.find(I) != ScalarCosts.end()) 6830 continue; 6831 6832 // Compute the cost of the vector instruction. Note that this cost already 6833 // includes the scalarization overhead of the predicated instruction. 6834 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6835 6836 // Compute the cost of the scalarized instruction. This cost is the cost of 6837 // the instruction as if it wasn't if-converted and instead remained in the 6838 // predicated block. We will scale this cost by block probability after 6839 // computing the scalarization overhead. 6840 InstructionCost ScalarCost = 6841 VF.getFixedValue() * 6842 getInstructionCost(I, ElementCount::getFixed(1)).first; 6843 6844 // Compute the scalarization overhead of needed insertelement instructions 6845 // and phi nodes. 6846 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6847 ScalarCost += TTI.getScalarizationOverhead( 6848 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6849 APInt::getAllOnesValue(VF.getFixedValue()), true, false); 6850 ScalarCost += 6851 VF.getFixedValue() * 6852 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6853 } 6854 6855 // Compute the scalarization overhead of needed extractelement 6856 // instructions. For each of the instruction's operands, if the operand can 6857 // be scalarized, add it to the worklist; otherwise, account for the 6858 // overhead. 6859 for (Use &U : I->operands()) 6860 if (auto *J = dyn_cast<Instruction>(U.get())) { 6861 assert(VectorType::isValidElementType(J->getType()) && 6862 "Instruction has non-scalar type"); 6863 if (canBeScalarized(J)) 6864 Worklist.push_back(J); 6865 else if (needsExtract(J, VF)) { 6866 ScalarCost += TTI.getScalarizationOverhead( 6867 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6868 APInt::getAllOnesValue(VF.getFixedValue()), false, true); 6869 } 6870 } 6871 6872 // Scale the total scalar cost by block probability. 6873 ScalarCost /= getReciprocalPredBlockProb(); 6874 6875 // Compute the discount. A non-negative discount means the vector version 6876 // of the instruction costs more, and scalarizing would be beneficial. 6877 Discount += VectorCost - ScalarCost; 6878 ScalarCosts[I] = ScalarCost; 6879 } 6880 6881 return *Discount.getValue(); 6882 } 6883 6884 LoopVectorizationCostModel::VectorizationCostTy 6885 LoopVectorizationCostModel::expectedCost( 6886 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6887 VectorizationCostTy Cost; 6888 6889 // For each block. 6890 for (BasicBlock *BB : TheLoop->blocks()) { 6891 VectorizationCostTy BlockCost; 6892 6893 // For each instruction in the old loop. 6894 for (Instruction &I : BB->instructionsWithoutDebug()) { 6895 // Skip ignored values. 6896 if (ValuesToIgnore.count(&I) || 6897 (VF.isVector() && VecValuesToIgnore.count(&I))) 6898 continue; 6899 6900 VectorizationCostTy C = getInstructionCost(&I, VF); 6901 6902 // Check if we should override the cost. 6903 if (C.first.isValid() && 6904 ForceTargetInstructionCost.getNumOccurrences() > 0) 6905 C.first = InstructionCost(ForceTargetInstructionCost); 6906 6907 // Keep a list of instructions with invalid costs. 6908 if (Invalid && !C.first.isValid()) 6909 Invalid->emplace_back(&I, VF); 6910 6911 BlockCost.first += C.first; 6912 BlockCost.second |= C.second; 6913 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6914 << " for VF " << VF << " For instruction: " << I 6915 << '\n'); 6916 } 6917 6918 // If we are vectorizing a predicated block, it will have been 6919 // if-converted. This means that the block's instructions (aside from 6920 // stores and instructions that may divide by zero) will now be 6921 // unconditionally executed. For the scalar case, we may not always execute 6922 // the predicated block, if it is an if-else block. Thus, scale the block's 6923 // cost by the probability of executing it. blockNeedsPredication from 6924 // Legal is used so as to not include all blocks in tail folded loops. 6925 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6926 BlockCost.first /= getReciprocalPredBlockProb(); 6927 6928 Cost.first += BlockCost.first; 6929 Cost.second |= BlockCost.second; 6930 } 6931 6932 return Cost; 6933 } 6934 6935 /// Gets Address Access SCEV after verifying that the access pattern 6936 /// is loop invariant except the induction variable dependence. 6937 /// 6938 /// This SCEV can be sent to the Target in order to estimate the address 6939 /// calculation cost. 6940 static const SCEV *getAddressAccessSCEV( 6941 Value *Ptr, 6942 LoopVectorizationLegality *Legal, 6943 PredicatedScalarEvolution &PSE, 6944 const Loop *TheLoop) { 6945 6946 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6947 if (!Gep) 6948 return nullptr; 6949 6950 // We are looking for a gep with all loop invariant indices except for one 6951 // which should be an induction variable. 6952 auto SE = PSE.getSE(); 6953 unsigned NumOperands = Gep->getNumOperands(); 6954 for (unsigned i = 1; i < NumOperands; ++i) { 6955 Value *Opd = Gep->getOperand(i); 6956 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6957 !Legal->isInductionVariable(Opd)) 6958 return nullptr; 6959 } 6960 6961 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6962 return PSE.getSCEV(Ptr); 6963 } 6964 6965 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6966 return Legal->hasStride(I->getOperand(0)) || 6967 Legal->hasStride(I->getOperand(1)); 6968 } 6969 6970 InstructionCost 6971 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6972 ElementCount VF) { 6973 assert(VF.isVector() && 6974 "Scalarization cost of instruction implies vectorization."); 6975 if (VF.isScalable()) 6976 return InstructionCost::getInvalid(); 6977 6978 Type *ValTy = getLoadStoreType(I); 6979 auto SE = PSE.getSE(); 6980 6981 unsigned AS = getLoadStoreAddressSpace(I); 6982 Value *Ptr = getLoadStorePointerOperand(I); 6983 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6984 6985 // Figure out whether the access is strided and get the stride value 6986 // if it's known in compile time 6987 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6988 6989 // Get the cost of the scalar memory instruction and address computation. 6990 InstructionCost Cost = 6991 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6992 6993 // Don't pass *I here, since it is scalar but will actually be part of a 6994 // vectorized loop where the user of it is a vectorized instruction. 6995 const Align Alignment = getLoadStoreAlignment(I); 6996 Cost += VF.getKnownMinValue() * 6997 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6998 AS, TTI::TCK_RecipThroughput); 6999 7000 // Get the overhead of the extractelement and insertelement instructions 7001 // we might create due to scalarization. 7002 Cost += getScalarizationOverhead(I, VF); 7003 7004 // If we have a predicated load/store, it will need extra i1 extracts and 7005 // conditional branches, but may not be executed for each vector lane. Scale 7006 // the cost by the probability of executing the predicated block. 7007 if (isPredicatedInst(I)) { 7008 Cost /= getReciprocalPredBlockProb(); 7009 7010 // Add the cost of an i1 extract and a branch 7011 auto *Vec_i1Ty = 7012 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7013 Cost += TTI.getScalarizationOverhead( 7014 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7015 /*Insert=*/false, /*Extract=*/true); 7016 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7017 7018 if (useEmulatedMaskMemRefHack(I)) 7019 // Artificially setting to a high enough value to practically disable 7020 // vectorization with such operations. 7021 Cost = 3000000; 7022 } 7023 7024 return Cost; 7025 } 7026 7027 InstructionCost 7028 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7029 ElementCount VF) { 7030 Type *ValTy = getLoadStoreType(I); 7031 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7032 Value *Ptr = getLoadStorePointerOperand(I); 7033 unsigned AS = getLoadStoreAddressSpace(I); 7034 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7035 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7036 7037 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7038 "Stride should be 1 or -1 for consecutive memory access"); 7039 const Align Alignment = getLoadStoreAlignment(I); 7040 InstructionCost Cost = 0; 7041 if (Legal->isMaskRequired(I)) 7042 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7043 CostKind); 7044 else 7045 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7046 CostKind, I); 7047 7048 bool Reverse = ConsecutiveStride < 0; 7049 if (Reverse) 7050 Cost += 7051 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7052 return Cost; 7053 } 7054 7055 InstructionCost 7056 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7057 ElementCount VF) { 7058 assert(Legal->isUniformMemOp(*I)); 7059 7060 Type *ValTy = getLoadStoreType(I); 7061 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7062 const Align Alignment = getLoadStoreAlignment(I); 7063 unsigned AS = getLoadStoreAddressSpace(I); 7064 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7065 if (isa<LoadInst>(I)) { 7066 return TTI.getAddressComputationCost(ValTy) + 7067 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7068 CostKind) + 7069 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7070 } 7071 StoreInst *SI = cast<StoreInst>(I); 7072 7073 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7074 return TTI.getAddressComputationCost(ValTy) + 7075 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7076 CostKind) + 7077 (isLoopInvariantStoreValue 7078 ? 0 7079 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7080 VF.getKnownMinValue() - 1)); 7081 } 7082 7083 InstructionCost 7084 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7085 ElementCount VF) { 7086 Type *ValTy = getLoadStoreType(I); 7087 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7088 const Align Alignment = getLoadStoreAlignment(I); 7089 const Value *Ptr = getLoadStorePointerOperand(I); 7090 7091 return TTI.getAddressComputationCost(VectorTy) + 7092 TTI.getGatherScatterOpCost( 7093 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7094 TargetTransformInfo::TCK_RecipThroughput, I); 7095 } 7096 7097 InstructionCost 7098 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7099 ElementCount VF) { 7100 // TODO: Once we have support for interleaving with scalable vectors 7101 // we can calculate the cost properly here. 7102 if (VF.isScalable()) 7103 return InstructionCost::getInvalid(); 7104 7105 Type *ValTy = getLoadStoreType(I); 7106 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7107 unsigned AS = getLoadStoreAddressSpace(I); 7108 7109 auto Group = getInterleavedAccessGroup(I); 7110 assert(Group && "Fail to get an interleaved access group."); 7111 7112 unsigned InterleaveFactor = Group->getFactor(); 7113 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7114 7115 // Holds the indices of existing members in an interleaved load group. 7116 // An interleaved store group doesn't need this as it doesn't allow gaps. 7117 SmallVector<unsigned, 4> Indices; 7118 if (isa<LoadInst>(I)) { 7119 for (unsigned i = 0; i < InterleaveFactor; i++) 7120 if (Group->getMember(i)) 7121 Indices.push_back(i); 7122 } 7123 7124 // Calculate the cost of the whole interleaved group. 7125 bool UseMaskForGaps = 7126 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7127 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7128 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7129 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7130 7131 if (Group->isReverse()) { 7132 // TODO: Add support for reversed masked interleaved access. 7133 assert(!Legal->isMaskRequired(I) && 7134 "Reverse masked interleaved access not supported."); 7135 Cost += 7136 Group->getNumMembers() * 7137 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7138 } 7139 return Cost; 7140 } 7141 7142 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7143 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7144 using namespace llvm::PatternMatch; 7145 // Early exit for no inloop reductions 7146 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7147 return None; 7148 auto *VectorTy = cast<VectorType>(Ty); 7149 7150 // We are looking for a pattern of, and finding the minimal acceptable cost: 7151 // reduce(mul(ext(A), ext(B))) or 7152 // reduce(mul(A, B)) or 7153 // reduce(ext(A)) or 7154 // reduce(A). 7155 // The basic idea is that we walk down the tree to do that, finding the root 7156 // reduction instruction in InLoopReductionImmediateChains. From there we find 7157 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7158 // of the components. If the reduction cost is lower then we return it for the 7159 // reduction instruction and 0 for the other instructions in the pattern. If 7160 // it is not we return an invalid cost specifying the orignal cost method 7161 // should be used. 7162 Instruction *RetI = I; 7163 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7164 if (!RetI->hasOneUser()) 7165 return None; 7166 RetI = RetI->user_back(); 7167 } 7168 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7169 RetI->user_back()->getOpcode() == Instruction::Add) { 7170 if (!RetI->hasOneUser()) 7171 return None; 7172 RetI = RetI->user_back(); 7173 } 7174 7175 // Test if the found instruction is a reduction, and if not return an invalid 7176 // cost specifying the parent to use the original cost modelling. 7177 if (!InLoopReductionImmediateChains.count(RetI)) 7178 return None; 7179 7180 // Find the reduction this chain is a part of and calculate the basic cost of 7181 // the reduction on its own. 7182 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7183 Instruction *ReductionPhi = LastChain; 7184 while (!isa<PHINode>(ReductionPhi)) 7185 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7186 7187 const RecurrenceDescriptor &RdxDesc = 7188 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7189 7190 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7191 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7192 7193 // If we're using ordered reductions then we can just return the base cost 7194 // here, since getArithmeticReductionCost calculates the full ordered 7195 // reduction cost when FP reassociation is not allowed. 7196 if (useOrderedReductions(RdxDesc)) 7197 return BaseCost; 7198 7199 // Get the operand that was not the reduction chain and match it to one of the 7200 // patterns, returning the better cost if it is found. 7201 Instruction *RedOp = RetI->getOperand(1) == LastChain 7202 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7203 : dyn_cast<Instruction>(RetI->getOperand(1)); 7204 7205 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7206 7207 Instruction *Op0, *Op1; 7208 if (RedOp && 7209 match(RedOp, 7210 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7211 match(Op0, m_ZExtOrSExt(m_Value())) && 7212 Op0->getOpcode() == Op1->getOpcode() && 7213 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7214 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7215 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7216 7217 // Matched reduce(ext(mul(ext(A), ext(B))) 7218 // Note that the extend opcodes need to all match, or if A==B they will have 7219 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7220 // which is equally fine. 7221 bool IsUnsigned = isa<ZExtInst>(Op0); 7222 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7223 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7224 7225 InstructionCost ExtCost = 7226 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7227 TTI::CastContextHint::None, CostKind, Op0); 7228 InstructionCost MulCost = 7229 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7230 InstructionCost Ext2Cost = 7231 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7232 TTI::CastContextHint::None, CostKind, RedOp); 7233 7234 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7235 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7236 CostKind); 7237 7238 if (RedCost.isValid() && 7239 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7240 return I == RetI ? RedCost : 0; 7241 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7242 !TheLoop->isLoopInvariant(RedOp)) { 7243 // Matched reduce(ext(A)) 7244 bool IsUnsigned = isa<ZExtInst>(RedOp); 7245 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7246 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7247 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7248 CostKind); 7249 7250 InstructionCost ExtCost = 7251 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7252 TTI::CastContextHint::None, CostKind, RedOp); 7253 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7254 return I == RetI ? RedCost : 0; 7255 } else if (RedOp && 7256 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7257 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7258 Op0->getOpcode() == Op1->getOpcode() && 7259 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7260 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7261 bool IsUnsigned = isa<ZExtInst>(Op0); 7262 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7263 // Matched reduce(mul(ext, ext)) 7264 InstructionCost ExtCost = 7265 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7266 TTI::CastContextHint::None, CostKind, Op0); 7267 InstructionCost MulCost = 7268 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7269 7270 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7271 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7272 CostKind); 7273 7274 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7275 return I == RetI ? RedCost : 0; 7276 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7277 // Matched reduce(mul()) 7278 InstructionCost MulCost = 7279 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7280 7281 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7282 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7283 CostKind); 7284 7285 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7286 return I == RetI ? RedCost : 0; 7287 } 7288 } 7289 7290 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7291 } 7292 7293 InstructionCost 7294 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7295 ElementCount VF) { 7296 // Calculate scalar cost only. Vectorization cost should be ready at this 7297 // moment. 7298 if (VF.isScalar()) { 7299 Type *ValTy = getLoadStoreType(I); 7300 const Align Alignment = getLoadStoreAlignment(I); 7301 unsigned AS = getLoadStoreAddressSpace(I); 7302 7303 return TTI.getAddressComputationCost(ValTy) + 7304 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7305 TTI::TCK_RecipThroughput, I); 7306 } 7307 return getWideningCost(I, VF); 7308 } 7309 7310 LoopVectorizationCostModel::VectorizationCostTy 7311 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7312 ElementCount VF) { 7313 // If we know that this instruction will remain uniform, check the cost of 7314 // the scalar version. 7315 if (isUniformAfterVectorization(I, VF)) 7316 VF = ElementCount::getFixed(1); 7317 7318 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7319 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7320 7321 // Forced scalars do not have any scalarization overhead. 7322 auto ForcedScalar = ForcedScalars.find(VF); 7323 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7324 auto InstSet = ForcedScalar->second; 7325 if (InstSet.count(I)) 7326 return VectorizationCostTy( 7327 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7328 VF.getKnownMinValue()), 7329 false); 7330 } 7331 7332 Type *VectorTy; 7333 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7334 7335 bool TypeNotScalarized = 7336 VF.isVector() && VectorTy->isVectorTy() && 7337 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7338 return VectorizationCostTy(C, TypeNotScalarized); 7339 } 7340 7341 InstructionCost 7342 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7343 ElementCount VF) const { 7344 7345 // There is no mechanism yet to create a scalable scalarization loop, 7346 // so this is currently Invalid. 7347 if (VF.isScalable()) 7348 return InstructionCost::getInvalid(); 7349 7350 if (VF.isScalar()) 7351 return 0; 7352 7353 InstructionCost Cost = 0; 7354 Type *RetTy = ToVectorTy(I->getType(), VF); 7355 if (!RetTy->isVoidTy() && 7356 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7357 Cost += TTI.getScalarizationOverhead( 7358 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7359 true, false); 7360 7361 // Some targets keep addresses scalar. 7362 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7363 return Cost; 7364 7365 // Some targets support efficient element stores. 7366 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7367 return Cost; 7368 7369 // Collect operands to consider. 7370 CallInst *CI = dyn_cast<CallInst>(I); 7371 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7372 7373 // Skip operands that do not require extraction/scalarization and do not incur 7374 // any overhead. 7375 SmallVector<Type *> Tys; 7376 for (auto *V : filterExtractingOperands(Ops, VF)) 7377 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7378 return Cost + TTI.getOperandsScalarizationOverhead( 7379 filterExtractingOperands(Ops, VF), Tys); 7380 } 7381 7382 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7383 if (VF.isScalar()) 7384 return; 7385 NumPredStores = 0; 7386 for (BasicBlock *BB : TheLoop->blocks()) { 7387 // For each instruction in the old loop. 7388 for (Instruction &I : *BB) { 7389 Value *Ptr = getLoadStorePointerOperand(&I); 7390 if (!Ptr) 7391 continue; 7392 7393 // TODO: We should generate better code and update the cost model for 7394 // predicated uniform stores. Today they are treated as any other 7395 // predicated store (see added test cases in 7396 // invariant-store-vectorization.ll). 7397 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7398 NumPredStores++; 7399 7400 if (Legal->isUniformMemOp(I)) { 7401 // TODO: Avoid replicating loads and stores instead of 7402 // relying on instcombine to remove them. 7403 // Load: Scalar load + broadcast 7404 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7405 InstructionCost Cost; 7406 if (isa<StoreInst>(&I) && VF.isScalable() && 7407 isLegalGatherOrScatter(&I)) { 7408 Cost = getGatherScatterCost(&I, VF); 7409 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7410 } else { 7411 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7412 "Cannot yet scalarize uniform stores"); 7413 Cost = getUniformMemOpCost(&I, VF); 7414 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7415 } 7416 continue; 7417 } 7418 7419 // We assume that widening is the best solution when possible. 7420 if (memoryInstructionCanBeWidened(&I, VF)) { 7421 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7422 int ConsecutiveStride = 7423 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7424 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7425 "Expected consecutive stride."); 7426 InstWidening Decision = 7427 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7428 setWideningDecision(&I, VF, Decision, Cost); 7429 continue; 7430 } 7431 7432 // Choose between Interleaving, Gather/Scatter or Scalarization. 7433 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7434 unsigned NumAccesses = 1; 7435 if (isAccessInterleaved(&I)) { 7436 auto Group = getInterleavedAccessGroup(&I); 7437 assert(Group && "Fail to get an interleaved access group."); 7438 7439 // Make one decision for the whole group. 7440 if (getWideningDecision(&I, VF) != CM_Unknown) 7441 continue; 7442 7443 NumAccesses = Group->getNumMembers(); 7444 if (interleavedAccessCanBeWidened(&I, VF)) 7445 InterleaveCost = getInterleaveGroupCost(&I, VF); 7446 } 7447 7448 InstructionCost GatherScatterCost = 7449 isLegalGatherOrScatter(&I) 7450 ? getGatherScatterCost(&I, VF) * NumAccesses 7451 : InstructionCost::getInvalid(); 7452 7453 InstructionCost ScalarizationCost = 7454 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7455 7456 // Choose better solution for the current VF, 7457 // write down this decision and use it during vectorization. 7458 InstructionCost Cost; 7459 InstWidening Decision; 7460 if (InterleaveCost <= GatherScatterCost && 7461 InterleaveCost < ScalarizationCost) { 7462 Decision = CM_Interleave; 7463 Cost = InterleaveCost; 7464 } else if (GatherScatterCost < ScalarizationCost) { 7465 Decision = CM_GatherScatter; 7466 Cost = GatherScatterCost; 7467 } else { 7468 Decision = CM_Scalarize; 7469 Cost = ScalarizationCost; 7470 } 7471 // If the instructions belongs to an interleave group, the whole group 7472 // receives the same decision. The whole group receives the cost, but 7473 // the cost will actually be assigned to one instruction. 7474 if (auto Group = getInterleavedAccessGroup(&I)) 7475 setWideningDecision(Group, VF, Decision, Cost); 7476 else 7477 setWideningDecision(&I, VF, Decision, Cost); 7478 } 7479 } 7480 7481 // Make sure that any load of address and any other address computation 7482 // remains scalar unless there is gather/scatter support. This avoids 7483 // inevitable extracts into address registers, and also has the benefit of 7484 // activating LSR more, since that pass can't optimize vectorized 7485 // addresses. 7486 if (TTI.prefersVectorizedAddressing()) 7487 return; 7488 7489 // Start with all scalar pointer uses. 7490 SmallPtrSet<Instruction *, 8> AddrDefs; 7491 for (BasicBlock *BB : TheLoop->blocks()) 7492 for (Instruction &I : *BB) { 7493 Instruction *PtrDef = 7494 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7495 if (PtrDef && TheLoop->contains(PtrDef) && 7496 getWideningDecision(&I, VF) != CM_GatherScatter) 7497 AddrDefs.insert(PtrDef); 7498 } 7499 7500 // Add all instructions used to generate the addresses. 7501 SmallVector<Instruction *, 4> Worklist; 7502 append_range(Worklist, AddrDefs); 7503 while (!Worklist.empty()) { 7504 Instruction *I = Worklist.pop_back_val(); 7505 for (auto &Op : I->operands()) 7506 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7507 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7508 AddrDefs.insert(InstOp).second) 7509 Worklist.push_back(InstOp); 7510 } 7511 7512 for (auto *I : AddrDefs) { 7513 if (isa<LoadInst>(I)) { 7514 // Setting the desired widening decision should ideally be handled in 7515 // by cost functions, but since this involves the task of finding out 7516 // if the loaded register is involved in an address computation, it is 7517 // instead changed here when we know this is the case. 7518 InstWidening Decision = getWideningDecision(I, VF); 7519 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7520 // Scalarize a widened load of address. 7521 setWideningDecision( 7522 I, VF, CM_Scalarize, 7523 (VF.getKnownMinValue() * 7524 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7525 else if (auto Group = getInterleavedAccessGroup(I)) { 7526 // Scalarize an interleave group of address loads. 7527 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7528 if (Instruction *Member = Group->getMember(I)) 7529 setWideningDecision( 7530 Member, VF, CM_Scalarize, 7531 (VF.getKnownMinValue() * 7532 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7533 } 7534 } 7535 } else 7536 // Make sure I gets scalarized and a cost estimate without 7537 // scalarization overhead. 7538 ForcedScalars[VF].insert(I); 7539 } 7540 } 7541 7542 InstructionCost 7543 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7544 Type *&VectorTy) { 7545 Type *RetTy = I->getType(); 7546 if (canTruncateToMinimalBitwidth(I, VF)) 7547 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7548 auto SE = PSE.getSE(); 7549 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7550 7551 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7552 ElementCount VF) -> bool { 7553 if (VF.isScalar()) 7554 return true; 7555 7556 auto Scalarized = InstsToScalarize.find(VF); 7557 assert(Scalarized != InstsToScalarize.end() && 7558 "VF not yet analyzed for scalarization profitability"); 7559 return !Scalarized->second.count(I) && 7560 llvm::all_of(I->users(), [&](User *U) { 7561 auto *UI = cast<Instruction>(U); 7562 return !Scalarized->second.count(UI); 7563 }); 7564 }; 7565 (void) hasSingleCopyAfterVectorization; 7566 7567 if (isScalarAfterVectorization(I, VF)) { 7568 // With the exception of GEPs and PHIs, after scalarization there should 7569 // only be one copy of the instruction generated in the loop. This is 7570 // because the VF is either 1, or any instructions that need scalarizing 7571 // have already been dealt with by the the time we get here. As a result, 7572 // it means we don't have to multiply the instruction cost by VF. 7573 assert(I->getOpcode() == Instruction::GetElementPtr || 7574 I->getOpcode() == Instruction::PHI || 7575 (I->getOpcode() == Instruction::BitCast && 7576 I->getType()->isPointerTy()) || 7577 hasSingleCopyAfterVectorization(I, VF)); 7578 VectorTy = RetTy; 7579 } else 7580 VectorTy = ToVectorTy(RetTy, VF); 7581 7582 // TODO: We need to estimate the cost of intrinsic calls. 7583 switch (I->getOpcode()) { 7584 case Instruction::GetElementPtr: 7585 // We mark this instruction as zero-cost because the cost of GEPs in 7586 // vectorized code depends on whether the corresponding memory instruction 7587 // is scalarized or not. Therefore, we handle GEPs with the memory 7588 // instruction cost. 7589 return 0; 7590 case Instruction::Br: { 7591 // In cases of scalarized and predicated instructions, there will be VF 7592 // predicated blocks in the vectorized loop. Each branch around these 7593 // blocks requires also an extract of its vector compare i1 element. 7594 bool ScalarPredicatedBB = false; 7595 BranchInst *BI = cast<BranchInst>(I); 7596 if (VF.isVector() && BI->isConditional() && 7597 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7598 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7599 ScalarPredicatedBB = true; 7600 7601 if (ScalarPredicatedBB) { 7602 // Not possible to scalarize scalable vector with predicated instructions. 7603 if (VF.isScalable()) 7604 return InstructionCost::getInvalid(); 7605 // Return cost for branches around scalarized and predicated blocks. 7606 auto *Vec_i1Ty = 7607 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7608 return ( 7609 TTI.getScalarizationOverhead( 7610 Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false, 7611 true) + 7612 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7613 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7614 // The back-edge branch will remain, as will all scalar branches. 7615 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7616 else 7617 // This branch will be eliminated by if-conversion. 7618 return 0; 7619 // Note: We currently assume zero cost for an unconditional branch inside 7620 // a predicated block since it will become a fall-through, although we 7621 // may decide in the future to call TTI for all branches. 7622 } 7623 case Instruction::PHI: { 7624 auto *Phi = cast<PHINode>(I); 7625 7626 // First-order recurrences are replaced by vector shuffles inside the loop. 7627 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7628 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7629 return TTI.getShuffleCost( 7630 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7631 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7632 7633 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7634 // converted into select instructions. We require N - 1 selects per phi 7635 // node, where N is the number of incoming values. 7636 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7637 return (Phi->getNumIncomingValues() - 1) * 7638 TTI.getCmpSelInstrCost( 7639 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7640 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7641 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7642 7643 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7644 } 7645 case Instruction::UDiv: 7646 case Instruction::SDiv: 7647 case Instruction::URem: 7648 case Instruction::SRem: 7649 // If we have a predicated instruction, it may not be executed for each 7650 // vector lane. Get the scalarization cost and scale this amount by the 7651 // probability of executing the predicated block. If the instruction is not 7652 // predicated, we fall through to the next case. 7653 if (VF.isVector() && isScalarWithPredication(I)) { 7654 InstructionCost Cost = 0; 7655 7656 // These instructions have a non-void type, so account for the phi nodes 7657 // that we will create. This cost is likely to be zero. The phi node 7658 // cost, if any, should be scaled by the block probability because it 7659 // models a copy at the end of each predicated block. 7660 Cost += VF.getKnownMinValue() * 7661 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7662 7663 // The cost of the non-predicated instruction. 7664 Cost += VF.getKnownMinValue() * 7665 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7666 7667 // The cost of insertelement and extractelement instructions needed for 7668 // scalarization. 7669 Cost += getScalarizationOverhead(I, VF); 7670 7671 // Scale the cost by the probability of executing the predicated blocks. 7672 // This assumes the predicated block for each vector lane is equally 7673 // likely. 7674 return Cost / getReciprocalPredBlockProb(); 7675 } 7676 LLVM_FALLTHROUGH; 7677 case Instruction::Add: 7678 case Instruction::FAdd: 7679 case Instruction::Sub: 7680 case Instruction::FSub: 7681 case Instruction::Mul: 7682 case Instruction::FMul: 7683 case Instruction::FDiv: 7684 case Instruction::FRem: 7685 case Instruction::Shl: 7686 case Instruction::LShr: 7687 case Instruction::AShr: 7688 case Instruction::And: 7689 case Instruction::Or: 7690 case Instruction::Xor: { 7691 // Since we will replace the stride by 1 the multiplication should go away. 7692 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7693 return 0; 7694 7695 // Detect reduction patterns 7696 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7697 return *RedCost; 7698 7699 // Certain instructions can be cheaper to vectorize if they have a constant 7700 // second vector operand. One example of this are shifts on x86. 7701 Value *Op2 = I->getOperand(1); 7702 TargetTransformInfo::OperandValueProperties Op2VP; 7703 TargetTransformInfo::OperandValueKind Op2VK = 7704 TTI.getOperandInfo(Op2, Op2VP); 7705 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7706 Op2VK = TargetTransformInfo::OK_UniformValue; 7707 7708 SmallVector<const Value *, 4> Operands(I->operand_values()); 7709 return TTI.getArithmeticInstrCost( 7710 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7711 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7712 } 7713 case Instruction::FNeg: { 7714 return TTI.getArithmeticInstrCost( 7715 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7716 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7717 TargetTransformInfo::OP_None, I->getOperand(0), I); 7718 } 7719 case Instruction::Select: { 7720 SelectInst *SI = cast<SelectInst>(I); 7721 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7722 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7723 7724 const Value *Op0, *Op1; 7725 using namespace llvm::PatternMatch; 7726 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7727 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7728 // select x, y, false --> x & y 7729 // select x, true, y --> x | y 7730 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7731 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7732 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7733 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7734 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7735 Op1->getType()->getScalarSizeInBits() == 1); 7736 7737 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7738 return TTI.getArithmeticInstrCost( 7739 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7740 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7741 } 7742 7743 Type *CondTy = SI->getCondition()->getType(); 7744 if (!ScalarCond) 7745 CondTy = VectorType::get(CondTy, VF); 7746 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7747 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7748 } 7749 case Instruction::ICmp: 7750 case Instruction::FCmp: { 7751 Type *ValTy = I->getOperand(0)->getType(); 7752 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7753 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7754 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7755 VectorTy = ToVectorTy(ValTy, VF); 7756 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7757 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7758 } 7759 case Instruction::Store: 7760 case Instruction::Load: { 7761 ElementCount Width = VF; 7762 if (Width.isVector()) { 7763 InstWidening Decision = getWideningDecision(I, Width); 7764 assert(Decision != CM_Unknown && 7765 "CM decision should be taken at this point"); 7766 if (Decision == CM_Scalarize) 7767 Width = ElementCount::getFixed(1); 7768 } 7769 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7770 return getMemoryInstructionCost(I, VF); 7771 } 7772 case Instruction::BitCast: 7773 if (I->getType()->isPointerTy()) 7774 return 0; 7775 LLVM_FALLTHROUGH; 7776 case Instruction::ZExt: 7777 case Instruction::SExt: 7778 case Instruction::FPToUI: 7779 case Instruction::FPToSI: 7780 case Instruction::FPExt: 7781 case Instruction::PtrToInt: 7782 case Instruction::IntToPtr: 7783 case Instruction::SIToFP: 7784 case Instruction::UIToFP: 7785 case Instruction::Trunc: 7786 case Instruction::FPTrunc: { 7787 // Computes the CastContextHint from a Load/Store instruction. 7788 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7789 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7790 "Expected a load or a store!"); 7791 7792 if (VF.isScalar() || !TheLoop->contains(I)) 7793 return TTI::CastContextHint::Normal; 7794 7795 switch (getWideningDecision(I, VF)) { 7796 case LoopVectorizationCostModel::CM_GatherScatter: 7797 return TTI::CastContextHint::GatherScatter; 7798 case LoopVectorizationCostModel::CM_Interleave: 7799 return TTI::CastContextHint::Interleave; 7800 case LoopVectorizationCostModel::CM_Scalarize: 7801 case LoopVectorizationCostModel::CM_Widen: 7802 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7803 : TTI::CastContextHint::Normal; 7804 case LoopVectorizationCostModel::CM_Widen_Reverse: 7805 return TTI::CastContextHint::Reversed; 7806 case LoopVectorizationCostModel::CM_Unknown: 7807 llvm_unreachable("Instr did not go through cost modelling?"); 7808 } 7809 7810 llvm_unreachable("Unhandled case!"); 7811 }; 7812 7813 unsigned Opcode = I->getOpcode(); 7814 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7815 // For Trunc, the context is the only user, which must be a StoreInst. 7816 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7817 if (I->hasOneUse()) 7818 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7819 CCH = ComputeCCH(Store); 7820 } 7821 // For Z/Sext, the context is the operand, which must be a LoadInst. 7822 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7823 Opcode == Instruction::FPExt) { 7824 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7825 CCH = ComputeCCH(Load); 7826 } 7827 7828 // We optimize the truncation of induction variables having constant 7829 // integer steps. The cost of these truncations is the same as the scalar 7830 // operation. 7831 if (isOptimizableIVTruncate(I, VF)) { 7832 auto *Trunc = cast<TruncInst>(I); 7833 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7834 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7835 } 7836 7837 // Detect reduction patterns 7838 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7839 return *RedCost; 7840 7841 Type *SrcScalarTy = I->getOperand(0)->getType(); 7842 Type *SrcVecTy = 7843 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7844 if (canTruncateToMinimalBitwidth(I, VF)) { 7845 // This cast is going to be shrunk. This may remove the cast or it might 7846 // turn it into slightly different cast. For example, if MinBW == 16, 7847 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7848 // 7849 // Calculate the modified src and dest types. 7850 Type *MinVecTy = VectorTy; 7851 if (Opcode == Instruction::Trunc) { 7852 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7853 VectorTy = 7854 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7855 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7856 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7857 VectorTy = 7858 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7859 } 7860 } 7861 7862 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7863 } 7864 case Instruction::Call: { 7865 bool NeedToScalarize; 7866 CallInst *CI = cast<CallInst>(I); 7867 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7868 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7869 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7870 return std::min(CallCost, IntrinsicCost); 7871 } 7872 return CallCost; 7873 } 7874 case Instruction::ExtractValue: 7875 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7876 case Instruction::Alloca: 7877 // We cannot easily widen alloca to a scalable alloca, as 7878 // the result would need to be a vector of pointers. 7879 if (VF.isScalable()) 7880 return InstructionCost::getInvalid(); 7881 LLVM_FALLTHROUGH; 7882 default: 7883 // This opcode is unknown. Assume that it is the same as 'mul'. 7884 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7885 } // end of switch. 7886 } 7887 7888 char LoopVectorize::ID = 0; 7889 7890 static const char lv_name[] = "Loop Vectorization"; 7891 7892 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7893 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7894 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7895 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7896 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7897 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7898 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7899 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7900 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7901 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7902 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7903 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7904 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7905 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7906 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7907 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7908 7909 namespace llvm { 7910 7911 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7912 7913 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7914 bool VectorizeOnlyWhenForced) { 7915 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7916 } 7917 7918 } // end namespace llvm 7919 7920 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7921 // Check if the pointer operand of a load or store instruction is 7922 // consecutive. 7923 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7924 return Legal->isConsecutivePtr(Ptr); 7925 return false; 7926 } 7927 7928 void LoopVectorizationCostModel::collectValuesToIgnore() { 7929 // Ignore ephemeral values. 7930 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7931 7932 // Ignore type-promoting instructions we identified during reduction 7933 // detection. 7934 for (auto &Reduction : Legal->getReductionVars()) { 7935 RecurrenceDescriptor &RedDes = Reduction.second; 7936 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7937 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7938 } 7939 // Ignore type-casting instructions we identified during induction 7940 // detection. 7941 for (auto &Induction : Legal->getInductionVars()) { 7942 InductionDescriptor &IndDes = Induction.second; 7943 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7944 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7945 } 7946 } 7947 7948 void LoopVectorizationCostModel::collectInLoopReductions() { 7949 for (auto &Reduction : Legal->getReductionVars()) { 7950 PHINode *Phi = Reduction.first; 7951 RecurrenceDescriptor &RdxDesc = Reduction.second; 7952 7953 // We don't collect reductions that are type promoted (yet). 7954 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7955 continue; 7956 7957 // If the target would prefer this reduction to happen "in-loop", then we 7958 // want to record it as such. 7959 unsigned Opcode = RdxDesc.getOpcode(); 7960 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7961 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7962 TargetTransformInfo::ReductionFlags())) 7963 continue; 7964 7965 // Check that we can correctly put the reductions into the loop, by 7966 // finding the chain of operations that leads from the phi to the loop 7967 // exit value. 7968 SmallVector<Instruction *, 4> ReductionOperations = 7969 RdxDesc.getReductionOpChain(Phi, TheLoop); 7970 bool InLoop = !ReductionOperations.empty(); 7971 if (InLoop) { 7972 InLoopReductionChains[Phi] = ReductionOperations; 7973 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7974 Instruction *LastChain = Phi; 7975 for (auto *I : ReductionOperations) { 7976 InLoopReductionImmediateChains[I] = LastChain; 7977 LastChain = I; 7978 } 7979 } 7980 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7981 << " reduction for phi: " << *Phi << "\n"); 7982 } 7983 } 7984 7985 // TODO: we could return a pair of values that specify the max VF and 7986 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7987 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7988 // doesn't have a cost model that can choose which plan to execute if 7989 // more than one is generated. 7990 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7991 LoopVectorizationCostModel &CM) { 7992 unsigned WidestType; 7993 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7994 return WidestVectorRegBits / WidestType; 7995 } 7996 7997 VectorizationFactor 7998 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7999 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8000 ElementCount VF = UserVF; 8001 // Outer loop handling: They may require CFG and instruction level 8002 // transformations before even evaluating whether vectorization is profitable. 8003 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8004 // the vectorization pipeline. 8005 if (!OrigLoop->isInnermost()) { 8006 // If the user doesn't provide a vectorization factor, determine a 8007 // reasonable one. 8008 if (UserVF.isZero()) { 8009 VF = ElementCount::getFixed(determineVPlanVF( 8010 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8011 .getFixedSize(), 8012 CM)); 8013 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8014 8015 // Make sure we have a VF > 1 for stress testing. 8016 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8017 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8018 << "overriding computed VF.\n"); 8019 VF = ElementCount::getFixed(4); 8020 } 8021 } 8022 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8023 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8024 "VF needs to be a power of two"); 8025 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8026 << "VF " << VF << " to build VPlans.\n"); 8027 buildVPlans(VF, VF); 8028 8029 // For VPlan build stress testing, we bail out after VPlan construction. 8030 if (VPlanBuildStressTest) 8031 return VectorizationFactor::Disabled(); 8032 8033 return {VF, 0 /*Cost*/}; 8034 } 8035 8036 LLVM_DEBUG( 8037 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8038 "VPlan-native path.\n"); 8039 return VectorizationFactor::Disabled(); 8040 } 8041 8042 Optional<VectorizationFactor> 8043 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8044 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8045 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8046 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8047 return None; 8048 8049 // Invalidate interleave groups if all blocks of loop will be predicated. 8050 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8051 !useMaskedInterleavedAccesses(*TTI)) { 8052 LLVM_DEBUG( 8053 dbgs() 8054 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8055 "which requires masked-interleaved support.\n"); 8056 if (CM.InterleaveInfo.invalidateGroups()) 8057 // Invalidating interleave groups also requires invalidating all decisions 8058 // based on them, which includes widening decisions and uniform and scalar 8059 // values. 8060 CM.invalidateCostModelingDecisions(); 8061 } 8062 8063 ElementCount MaxUserVF = 8064 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8065 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8066 if (!UserVF.isZero() && UserVFIsLegal) { 8067 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8068 "VF needs to be a power of two"); 8069 // Collect the instructions (and their associated costs) that will be more 8070 // profitable to scalarize. 8071 if (CM.selectUserVectorizationFactor(UserVF)) { 8072 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8073 CM.collectInLoopReductions(); 8074 buildVPlansWithVPRecipes(UserVF, UserVF); 8075 LLVM_DEBUG(printPlans(dbgs())); 8076 return {{UserVF, 0}}; 8077 } else 8078 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8079 "InvalidCost", ORE, OrigLoop); 8080 } 8081 8082 // Populate the set of Vectorization Factor Candidates. 8083 ElementCountSet VFCandidates; 8084 for (auto VF = ElementCount::getFixed(1); 8085 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8086 VFCandidates.insert(VF); 8087 for (auto VF = ElementCount::getScalable(1); 8088 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8089 VFCandidates.insert(VF); 8090 8091 for (const auto &VF : VFCandidates) { 8092 // Collect Uniform and Scalar instructions after vectorization with VF. 8093 CM.collectUniformsAndScalars(VF); 8094 8095 // Collect the instructions (and their associated costs) that will be more 8096 // profitable to scalarize. 8097 if (VF.isVector()) 8098 CM.collectInstsToScalarize(VF); 8099 } 8100 8101 CM.collectInLoopReductions(); 8102 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8103 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8104 8105 LLVM_DEBUG(printPlans(dbgs())); 8106 if (!MaxFactors.hasVector()) 8107 return VectorizationFactor::Disabled(); 8108 8109 // Select the optimal vectorization factor. 8110 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8111 8112 // Check if it is profitable to vectorize with runtime checks. 8113 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8114 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8115 bool PragmaThresholdReached = 8116 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8117 bool ThresholdReached = 8118 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8119 if ((ThresholdReached && !Hints.allowReordering()) || 8120 PragmaThresholdReached) { 8121 ORE->emit([&]() { 8122 return OptimizationRemarkAnalysisAliasing( 8123 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8124 OrigLoop->getHeader()) 8125 << "loop not vectorized: cannot prove it is safe to reorder " 8126 "memory operations"; 8127 }); 8128 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8129 Hints.emitRemarkWithHints(); 8130 return VectorizationFactor::Disabled(); 8131 } 8132 } 8133 return SelectedVF; 8134 } 8135 8136 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8137 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8138 << '\n'); 8139 BestVF = VF; 8140 BestUF = UF; 8141 8142 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8143 return !Plan->hasVF(VF); 8144 }); 8145 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8146 } 8147 8148 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8149 DominatorTree *DT) { 8150 // Perform the actual loop transformation. 8151 8152 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8153 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8154 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8155 8156 VPTransformState State{ 8157 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8158 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8159 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8160 State.CanonicalIV = ILV.Induction; 8161 8162 ILV.printDebugTracesAtStart(); 8163 8164 //===------------------------------------------------===// 8165 // 8166 // Notice: any optimization or new instruction that go 8167 // into the code below should also be implemented in 8168 // the cost-model. 8169 // 8170 //===------------------------------------------------===// 8171 8172 // 2. Copy and widen instructions from the old loop into the new loop. 8173 VPlans.front()->execute(&State); 8174 8175 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8176 // predication, updating analyses. 8177 ILV.fixVectorizedLoop(State); 8178 8179 ILV.printDebugTracesAtEnd(); 8180 } 8181 8182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8183 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8184 for (const auto &Plan : VPlans) 8185 if (PrintVPlansInDotFormat) 8186 Plan->printDOT(O); 8187 else 8188 Plan->print(O); 8189 } 8190 #endif 8191 8192 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8193 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8194 8195 // We create new control-flow for the vectorized loop, so the original exit 8196 // conditions will be dead after vectorization if it's only used by the 8197 // terminator 8198 SmallVector<BasicBlock*> ExitingBlocks; 8199 OrigLoop->getExitingBlocks(ExitingBlocks); 8200 for (auto *BB : ExitingBlocks) { 8201 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8202 if (!Cmp || !Cmp->hasOneUse()) 8203 continue; 8204 8205 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8206 if (!DeadInstructions.insert(Cmp).second) 8207 continue; 8208 8209 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8210 // TODO: can recurse through operands in general 8211 for (Value *Op : Cmp->operands()) { 8212 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8213 DeadInstructions.insert(cast<Instruction>(Op)); 8214 } 8215 } 8216 8217 // We create new "steps" for induction variable updates to which the original 8218 // induction variables map. An original update instruction will be dead if 8219 // all its users except the induction variable are dead. 8220 auto *Latch = OrigLoop->getLoopLatch(); 8221 for (auto &Induction : Legal->getInductionVars()) { 8222 PHINode *Ind = Induction.first; 8223 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8224 8225 // If the tail is to be folded by masking, the primary induction variable, 8226 // if exists, isn't dead: it will be used for masking. Don't kill it. 8227 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8228 continue; 8229 8230 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8231 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8232 })) 8233 DeadInstructions.insert(IndUpdate); 8234 8235 // We record as "Dead" also the type-casting instructions we had identified 8236 // during induction analysis. We don't need any handling for them in the 8237 // vectorized loop because we have proven that, under a proper runtime 8238 // test guarding the vectorized loop, the value of the phi, and the casted 8239 // value of the phi, are the same. The last instruction in this casting chain 8240 // will get its scalar/vector/widened def from the scalar/vector/widened def 8241 // of the respective phi node. Any other casts in the induction def-use chain 8242 // have no other uses outside the phi update chain, and will be ignored. 8243 InductionDescriptor &IndDes = Induction.second; 8244 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8245 DeadInstructions.insert(Casts.begin(), Casts.end()); 8246 } 8247 } 8248 8249 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8250 8251 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8252 8253 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8254 Instruction::BinaryOps BinOp) { 8255 // When unrolling and the VF is 1, we only need to add a simple scalar. 8256 Type *Ty = Val->getType(); 8257 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8258 8259 if (Ty->isFloatingPointTy()) { 8260 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8261 8262 // Floating-point operations inherit FMF via the builder's flags. 8263 Value *MulOp = Builder.CreateFMul(C, Step); 8264 return Builder.CreateBinOp(BinOp, Val, MulOp); 8265 } 8266 Constant *C = ConstantInt::get(Ty, StartIdx); 8267 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8268 } 8269 8270 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8271 SmallVector<Metadata *, 4> MDs; 8272 // Reserve first location for self reference to the LoopID metadata node. 8273 MDs.push_back(nullptr); 8274 bool IsUnrollMetadata = false; 8275 MDNode *LoopID = L->getLoopID(); 8276 if (LoopID) { 8277 // First find existing loop unrolling disable metadata. 8278 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8279 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8280 if (MD) { 8281 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8282 IsUnrollMetadata = 8283 S && S->getString().startswith("llvm.loop.unroll.disable"); 8284 } 8285 MDs.push_back(LoopID->getOperand(i)); 8286 } 8287 } 8288 8289 if (!IsUnrollMetadata) { 8290 // Add runtime unroll disable metadata. 8291 LLVMContext &Context = L->getHeader()->getContext(); 8292 SmallVector<Metadata *, 1> DisableOperands; 8293 DisableOperands.push_back( 8294 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8295 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8296 MDs.push_back(DisableNode); 8297 MDNode *NewLoopID = MDNode::get(Context, MDs); 8298 // Set operand 0 to refer to the loop id itself. 8299 NewLoopID->replaceOperandWith(0, NewLoopID); 8300 L->setLoopID(NewLoopID); 8301 } 8302 } 8303 8304 //===--------------------------------------------------------------------===// 8305 // EpilogueVectorizerMainLoop 8306 //===--------------------------------------------------------------------===// 8307 8308 /// This function is partially responsible for generating the control flow 8309 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8310 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8311 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8312 Loop *Lp = createVectorLoopSkeleton(""); 8313 8314 // Generate the code to check the minimum iteration count of the vector 8315 // epilogue (see below). 8316 EPI.EpilogueIterationCountCheck = 8317 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8318 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8319 8320 // Generate the code to check any assumptions that we've made for SCEV 8321 // expressions. 8322 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8323 8324 // Generate the code that checks at runtime if arrays overlap. We put the 8325 // checks into a separate block to make the more common case of few elements 8326 // faster. 8327 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8328 8329 // Generate the iteration count check for the main loop, *after* the check 8330 // for the epilogue loop, so that the path-length is shorter for the case 8331 // that goes directly through the vector epilogue. The longer-path length for 8332 // the main loop is compensated for, by the gain from vectorizing the larger 8333 // trip count. Note: the branch will get updated later on when we vectorize 8334 // the epilogue. 8335 EPI.MainLoopIterationCountCheck = 8336 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8337 8338 // Generate the induction variable. 8339 OldInduction = Legal->getPrimaryInduction(); 8340 Type *IdxTy = Legal->getWidestInductionType(); 8341 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8342 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8343 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8344 EPI.VectorTripCount = CountRoundDown; 8345 Induction = 8346 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8347 getDebugLocFromInstOrOperands(OldInduction)); 8348 8349 // Skip induction resume value creation here because they will be created in 8350 // the second pass. If we created them here, they wouldn't be used anyway, 8351 // because the vplan in the second pass still contains the inductions from the 8352 // original loop. 8353 8354 return completeLoopSkeleton(Lp, OrigLoopID); 8355 } 8356 8357 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8358 LLVM_DEBUG({ 8359 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8360 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8361 << ", Main Loop UF:" << EPI.MainLoopUF 8362 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8363 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8364 }); 8365 } 8366 8367 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8368 DEBUG_WITH_TYPE(VerboseDebug, { 8369 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8370 }); 8371 } 8372 8373 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8374 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8375 assert(L && "Expected valid Loop."); 8376 assert(Bypass && "Expected valid bypass basic block."); 8377 unsigned VFactor = 8378 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8379 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8380 Value *Count = getOrCreateTripCount(L); 8381 // Reuse existing vector loop preheader for TC checks. 8382 // Note that new preheader block is generated for vector loop. 8383 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8384 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8385 8386 // Generate code to check if the loop's trip count is less than VF * UF of the 8387 // main vector loop. 8388 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8389 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8390 8391 Value *CheckMinIters = Builder.CreateICmp( 8392 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8393 "min.iters.check"); 8394 8395 if (!ForEpilogue) 8396 TCCheckBlock->setName("vector.main.loop.iter.check"); 8397 8398 // Create new preheader for vector loop. 8399 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8400 DT, LI, nullptr, "vector.ph"); 8401 8402 if (ForEpilogue) { 8403 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8404 DT->getNode(Bypass)->getIDom()) && 8405 "TC check is expected to dominate Bypass"); 8406 8407 // Update dominator for Bypass & LoopExit. 8408 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8409 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8410 // For loops with multiple exits, there's no edge from the middle block 8411 // to exit blocks (as the epilogue must run) and thus no need to update 8412 // the immediate dominator of the exit blocks. 8413 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8414 8415 LoopBypassBlocks.push_back(TCCheckBlock); 8416 8417 // Save the trip count so we don't have to regenerate it in the 8418 // vec.epilog.iter.check. This is safe to do because the trip count 8419 // generated here dominates the vector epilog iter check. 8420 EPI.TripCount = Count; 8421 } 8422 8423 ReplaceInstWithInst( 8424 TCCheckBlock->getTerminator(), 8425 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8426 8427 return TCCheckBlock; 8428 } 8429 8430 //===--------------------------------------------------------------------===// 8431 // EpilogueVectorizerEpilogueLoop 8432 //===--------------------------------------------------------------------===// 8433 8434 /// This function is partially responsible for generating the control flow 8435 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8436 BasicBlock * 8437 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8438 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8439 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8440 8441 // Now, compare the remaining count and if there aren't enough iterations to 8442 // execute the vectorized epilogue skip to the scalar part. 8443 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8444 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8445 LoopVectorPreHeader = 8446 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8447 LI, nullptr, "vec.epilog.ph"); 8448 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8449 VecEpilogueIterationCountCheck); 8450 8451 // Adjust the control flow taking the state info from the main loop 8452 // vectorization into account. 8453 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8454 "expected this to be saved from the previous pass."); 8455 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8456 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8457 8458 DT->changeImmediateDominator(LoopVectorPreHeader, 8459 EPI.MainLoopIterationCountCheck); 8460 8461 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8462 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8463 8464 if (EPI.SCEVSafetyCheck) 8465 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8466 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8467 if (EPI.MemSafetyCheck) 8468 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8469 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8470 8471 DT->changeImmediateDominator( 8472 VecEpilogueIterationCountCheck, 8473 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8474 8475 DT->changeImmediateDominator(LoopScalarPreHeader, 8476 EPI.EpilogueIterationCountCheck); 8477 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8478 // If there is an epilogue which must run, there's no edge from the 8479 // middle block to exit blocks and thus no need to update the immediate 8480 // dominator of the exit blocks. 8481 DT->changeImmediateDominator(LoopExitBlock, 8482 EPI.EpilogueIterationCountCheck); 8483 8484 // Keep track of bypass blocks, as they feed start values to the induction 8485 // phis in the scalar loop preheader. 8486 if (EPI.SCEVSafetyCheck) 8487 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8488 if (EPI.MemSafetyCheck) 8489 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8490 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8491 8492 // Generate a resume induction for the vector epilogue and put it in the 8493 // vector epilogue preheader 8494 Type *IdxTy = Legal->getWidestInductionType(); 8495 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8496 LoopVectorPreHeader->getFirstNonPHI()); 8497 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8498 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8499 EPI.MainLoopIterationCountCheck); 8500 8501 // Generate the induction variable. 8502 OldInduction = Legal->getPrimaryInduction(); 8503 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8504 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8505 Value *StartIdx = EPResumeVal; 8506 Induction = 8507 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8508 getDebugLocFromInstOrOperands(OldInduction)); 8509 8510 // Generate induction resume values. These variables save the new starting 8511 // indexes for the scalar loop. They are used to test if there are any tail 8512 // iterations left once the vector loop has completed. 8513 // Note that when the vectorized epilogue is skipped due to iteration count 8514 // check, then the resume value for the induction variable comes from 8515 // the trip count of the main vector loop, hence passing the AdditionalBypass 8516 // argument. 8517 createInductionResumeValues(Lp, CountRoundDown, 8518 {VecEpilogueIterationCountCheck, 8519 EPI.VectorTripCount} /* AdditionalBypass */); 8520 8521 AddRuntimeUnrollDisableMetaData(Lp); 8522 return completeLoopSkeleton(Lp, OrigLoopID); 8523 } 8524 8525 BasicBlock * 8526 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8527 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8528 8529 assert(EPI.TripCount && 8530 "Expected trip count to have been safed in the first pass."); 8531 assert( 8532 (!isa<Instruction>(EPI.TripCount) || 8533 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8534 "saved trip count does not dominate insertion point."); 8535 Value *TC = EPI.TripCount; 8536 IRBuilder<> Builder(Insert->getTerminator()); 8537 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8538 8539 // Generate code to check if the loop's trip count is less than VF * UF of the 8540 // vector epilogue loop. 8541 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8542 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8543 8544 Value *CheckMinIters = Builder.CreateICmp( 8545 P, Count, 8546 ConstantInt::get(Count->getType(), 8547 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8548 "min.epilog.iters.check"); 8549 8550 ReplaceInstWithInst( 8551 Insert->getTerminator(), 8552 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8553 8554 LoopBypassBlocks.push_back(Insert); 8555 return Insert; 8556 } 8557 8558 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8559 LLVM_DEBUG({ 8560 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8561 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8562 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8563 }); 8564 } 8565 8566 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8567 DEBUG_WITH_TYPE(VerboseDebug, { 8568 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8569 }); 8570 } 8571 8572 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8573 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8574 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8575 bool PredicateAtRangeStart = Predicate(Range.Start); 8576 8577 for (ElementCount TmpVF = Range.Start * 2; 8578 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8579 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8580 Range.End = TmpVF; 8581 break; 8582 } 8583 8584 return PredicateAtRangeStart; 8585 } 8586 8587 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8588 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8589 /// of VF's starting at a given VF and extending it as much as possible. Each 8590 /// vectorization decision can potentially shorten this sub-range during 8591 /// buildVPlan(). 8592 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8593 ElementCount MaxVF) { 8594 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8595 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8596 VFRange SubRange = {VF, MaxVFPlusOne}; 8597 VPlans.push_back(buildVPlan(SubRange)); 8598 VF = SubRange.End; 8599 } 8600 } 8601 8602 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8603 VPlanPtr &Plan) { 8604 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8605 8606 // Look for cached value. 8607 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8608 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8609 if (ECEntryIt != EdgeMaskCache.end()) 8610 return ECEntryIt->second; 8611 8612 VPValue *SrcMask = createBlockInMask(Src, Plan); 8613 8614 // The terminator has to be a branch inst! 8615 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8616 assert(BI && "Unexpected terminator found"); 8617 8618 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8619 return EdgeMaskCache[Edge] = SrcMask; 8620 8621 // If source is an exiting block, we know the exit edge is dynamically dead 8622 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8623 // adding uses of an otherwise potentially dead instruction. 8624 if (OrigLoop->isLoopExiting(Src)) 8625 return EdgeMaskCache[Edge] = SrcMask; 8626 8627 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8628 assert(EdgeMask && "No Edge Mask found for condition"); 8629 8630 if (BI->getSuccessor(0) != Dst) 8631 EdgeMask = Builder.createNot(EdgeMask); 8632 8633 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8634 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8635 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8636 // The select version does not introduce new UB if SrcMask is false and 8637 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8638 VPValue *False = Plan->getOrAddVPValue( 8639 ConstantInt::getFalse(BI->getCondition()->getType())); 8640 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8641 } 8642 8643 return EdgeMaskCache[Edge] = EdgeMask; 8644 } 8645 8646 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8647 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8648 8649 // Look for cached value. 8650 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8651 if (BCEntryIt != BlockMaskCache.end()) 8652 return BCEntryIt->second; 8653 8654 // All-one mask is modelled as no-mask following the convention for masked 8655 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8656 VPValue *BlockMask = nullptr; 8657 8658 if (OrigLoop->getHeader() == BB) { 8659 if (!CM.blockNeedsPredication(BB)) 8660 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8661 8662 // Create the block in mask as the first non-phi instruction in the block. 8663 VPBuilder::InsertPointGuard Guard(Builder); 8664 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8665 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8666 8667 // Introduce the early-exit compare IV <= BTC to form header block mask. 8668 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8669 // Start by constructing the desired canonical IV. 8670 VPValue *IV = nullptr; 8671 if (Legal->getPrimaryInduction()) 8672 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8673 else { 8674 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8675 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8676 IV = IVRecipe->getVPSingleValue(); 8677 } 8678 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8679 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8680 8681 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8682 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8683 // as a second argument, we only pass the IV here and extract the 8684 // tripcount from the transform state where codegen of the VP instructions 8685 // happen. 8686 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8687 } else { 8688 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8689 } 8690 return BlockMaskCache[BB] = BlockMask; 8691 } 8692 8693 // This is the block mask. We OR all incoming edges. 8694 for (auto *Predecessor : predecessors(BB)) { 8695 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8696 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8697 return BlockMaskCache[BB] = EdgeMask; 8698 8699 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8700 BlockMask = EdgeMask; 8701 continue; 8702 } 8703 8704 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8705 } 8706 8707 return BlockMaskCache[BB] = BlockMask; 8708 } 8709 8710 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8711 ArrayRef<VPValue *> Operands, 8712 VFRange &Range, 8713 VPlanPtr &Plan) { 8714 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8715 "Must be called with either a load or store"); 8716 8717 auto willWiden = [&](ElementCount VF) -> bool { 8718 if (VF.isScalar()) 8719 return false; 8720 LoopVectorizationCostModel::InstWidening Decision = 8721 CM.getWideningDecision(I, VF); 8722 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8723 "CM decision should be taken at this point."); 8724 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8725 return true; 8726 if (CM.isScalarAfterVectorization(I, VF) || 8727 CM.isProfitableToScalarize(I, VF)) 8728 return false; 8729 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8730 }; 8731 8732 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8733 return nullptr; 8734 8735 VPValue *Mask = nullptr; 8736 if (Legal->isMaskRequired(I)) 8737 Mask = createBlockInMask(I->getParent(), Plan); 8738 8739 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8740 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8741 8742 StoreInst *Store = cast<StoreInst>(I); 8743 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8744 Mask); 8745 } 8746 8747 VPWidenIntOrFpInductionRecipe * 8748 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8749 ArrayRef<VPValue *> Operands) const { 8750 // Check if this is an integer or fp induction. If so, build the recipe that 8751 // produces its scalar and vector values. 8752 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8753 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8754 II.getKind() == InductionDescriptor::IK_FpInduction) { 8755 assert(II.getStartValue() == 8756 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8757 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8758 return new VPWidenIntOrFpInductionRecipe( 8759 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8760 } 8761 8762 return nullptr; 8763 } 8764 8765 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8766 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8767 VPlan &Plan) const { 8768 // Optimize the special case where the source is a constant integer 8769 // induction variable. Notice that we can only optimize the 'trunc' case 8770 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8771 // (c) other casts depend on pointer size. 8772 8773 // Determine whether \p K is a truncation based on an induction variable that 8774 // can be optimized. 8775 auto isOptimizableIVTruncate = 8776 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8777 return [=](ElementCount VF) -> bool { 8778 return CM.isOptimizableIVTruncate(K, VF); 8779 }; 8780 }; 8781 8782 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8783 isOptimizableIVTruncate(I), Range)) { 8784 8785 InductionDescriptor II = 8786 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8787 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8788 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8789 Start, nullptr, I); 8790 } 8791 return nullptr; 8792 } 8793 8794 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8795 ArrayRef<VPValue *> Operands, 8796 VPlanPtr &Plan) { 8797 // If all incoming values are equal, the incoming VPValue can be used directly 8798 // instead of creating a new VPBlendRecipe. 8799 VPValue *FirstIncoming = Operands[0]; 8800 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8801 return FirstIncoming == Inc; 8802 })) { 8803 return Operands[0]; 8804 } 8805 8806 // We know that all PHIs in non-header blocks are converted into selects, so 8807 // we don't have to worry about the insertion order and we can just use the 8808 // builder. At this point we generate the predication tree. There may be 8809 // duplications since this is a simple recursive scan, but future 8810 // optimizations will clean it up. 8811 SmallVector<VPValue *, 2> OperandsWithMask; 8812 unsigned NumIncoming = Phi->getNumIncomingValues(); 8813 8814 for (unsigned In = 0; In < NumIncoming; In++) { 8815 VPValue *EdgeMask = 8816 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8817 assert((EdgeMask || NumIncoming == 1) && 8818 "Multiple predecessors with one having a full mask"); 8819 OperandsWithMask.push_back(Operands[In]); 8820 if (EdgeMask) 8821 OperandsWithMask.push_back(EdgeMask); 8822 } 8823 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8824 } 8825 8826 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8827 ArrayRef<VPValue *> Operands, 8828 VFRange &Range) const { 8829 8830 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8831 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8832 Range); 8833 8834 if (IsPredicated) 8835 return nullptr; 8836 8837 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8838 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8839 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8840 ID == Intrinsic::pseudoprobe || 8841 ID == Intrinsic::experimental_noalias_scope_decl)) 8842 return nullptr; 8843 8844 auto willWiden = [&](ElementCount VF) -> bool { 8845 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8846 // The following case may be scalarized depending on the VF. 8847 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8848 // version of the instruction. 8849 // Is it beneficial to perform intrinsic call compared to lib call? 8850 bool NeedToScalarize = false; 8851 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8852 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8853 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8854 return UseVectorIntrinsic || !NeedToScalarize; 8855 }; 8856 8857 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8858 return nullptr; 8859 8860 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8861 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8862 } 8863 8864 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8865 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8866 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8867 // Instruction should be widened, unless it is scalar after vectorization, 8868 // scalarization is profitable or it is predicated. 8869 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8870 return CM.isScalarAfterVectorization(I, VF) || 8871 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8872 }; 8873 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8874 Range); 8875 } 8876 8877 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8878 ArrayRef<VPValue *> Operands) const { 8879 auto IsVectorizableOpcode = [](unsigned Opcode) { 8880 switch (Opcode) { 8881 case Instruction::Add: 8882 case Instruction::And: 8883 case Instruction::AShr: 8884 case Instruction::BitCast: 8885 case Instruction::FAdd: 8886 case Instruction::FCmp: 8887 case Instruction::FDiv: 8888 case Instruction::FMul: 8889 case Instruction::FNeg: 8890 case Instruction::FPExt: 8891 case Instruction::FPToSI: 8892 case Instruction::FPToUI: 8893 case Instruction::FPTrunc: 8894 case Instruction::FRem: 8895 case Instruction::FSub: 8896 case Instruction::ICmp: 8897 case Instruction::IntToPtr: 8898 case Instruction::LShr: 8899 case Instruction::Mul: 8900 case Instruction::Or: 8901 case Instruction::PtrToInt: 8902 case Instruction::SDiv: 8903 case Instruction::Select: 8904 case Instruction::SExt: 8905 case Instruction::Shl: 8906 case Instruction::SIToFP: 8907 case Instruction::SRem: 8908 case Instruction::Sub: 8909 case Instruction::Trunc: 8910 case Instruction::UDiv: 8911 case Instruction::UIToFP: 8912 case Instruction::URem: 8913 case Instruction::Xor: 8914 case Instruction::ZExt: 8915 return true; 8916 } 8917 return false; 8918 }; 8919 8920 if (!IsVectorizableOpcode(I->getOpcode())) 8921 return nullptr; 8922 8923 // Success: widen this instruction. 8924 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8925 } 8926 8927 void VPRecipeBuilder::fixHeaderPhis() { 8928 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8929 for (VPWidenPHIRecipe *R : PhisToFix) { 8930 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8931 VPRecipeBase *IncR = 8932 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8933 R->addOperand(IncR->getVPSingleValue()); 8934 } 8935 } 8936 8937 VPBasicBlock *VPRecipeBuilder::handleReplication( 8938 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8939 VPlanPtr &Plan) { 8940 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8941 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8942 Range); 8943 8944 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8945 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8946 8947 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8948 IsUniform, IsPredicated); 8949 setRecipe(I, Recipe); 8950 Plan->addVPValue(I, Recipe); 8951 8952 // Find if I uses a predicated instruction. If so, it will use its scalar 8953 // value. Avoid hoisting the insert-element which packs the scalar value into 8954 // a vector value, as that happens iff all users use the vector value. 8955 for (VPValue *Op : Recipe->operands()) { 8956 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8957 if (!PredR) 8958 continue; 8959 auto *RepR = 8960 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8961 assert(RepR->isPredicated() && 8962 "expected Replicate recipe to be predicated"); 8963 RepR->setAlsoPack(false); 8964 } 8965 8966 // Finalize the recipe for Instr, first if it is not predicated. 8967 if (!IsPredicated) { 8968 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8969 VPBB->appendRecipe(Recipe); 8970 return VPBB; 8971 } 8972 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8973 assert(VPBB->getSuccessors().empty() && 8974 "VPBB has successors when handling predicated replication."); 8975 // Record predicated instructions for above packing optimizations. 8976 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8977 VPBlockUtils::insertBlockAfter(Region, VPBB); 8978 auto *RegSucc = new VPBasicBlock(); 8979 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8980 return RegSucc; 8981 } 8982 8983 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8984 VPRecipeBase *PredRecipe, 8985 VPlanPtr &Plan) { 8986 // Instructions marked for predication are replicated and placed under an 8987 // if-then construct to prevent side-effects. 8988 8989 // Generate recipes to compute the block mask for this region. 8990 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8991 8992 // Build the triangular if-then region. 8993 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8994 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8995 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8996 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8997 auto *PHIRecipe = Instr->getType()->isVoidTy() 8998 ? nullptr 8999 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9000 if (PHIRecipe) { 9001 Plan->removeVPValueFor(Instr); 9002 Plan->addVPValue(Instr, PHIRecipe); 9003 } 9004 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9005 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9006 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9007 9008 // Note: first set Entry as region entry and then connect successors starting 9009 // from it in order, to propagate the "parent" of each VPBasicBlock. 9010 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9011 VPBlockUtils::connectBlocks(Pred, Exit); 9012 9013 return Region; 9014 } 9015 9016 VPRecipeOrVPValueTy 9017 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9018 ArrayRef<VPValue *> Operands, 9019 VFRange &Range, VPlanPtr &Plan) { 9020 // First, check for specific widening recipes that deal with calls, memory 9021 // operations, inductions and Phi nodes. 9022 if (auto *CI = dyn_cast<CallInst>(Instr)) 9023 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9024 9025 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9026 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9027 9028 VPRecipeBase *Recipe; 9029 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9030 if (Phi->getParent() != OrigLoop->getHeader()) 9031 return tryToBlend(Phi, Operands, Plan); 9032 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9033 return toVPRecipeResult(Recipe); 9034 9035 VPWidenPHIRecipe *PhiRecipe = nullptr; 9036 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9037 VPValue *StartV = Operands[0]; 9038 if (Legal->isReductionVariable(Phi)) { 9039 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9040 assert(RdxDesc.getRecurrenceStartValue() == 9041 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9042 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9043 CM.isInLoopReduction(Phi), 9044 CM.useOrderedReductions(RdxDesc)); 9045 } else { 9046 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9047 } 9048 9049 // Record the incoming value from the backedge, so we can add the incoming 9050 // value from the backedge after all recipes have been created. 9051 recordRecipeOf(cast<Instruction>( 9052 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9053 PhisToFix.push_back(PhiRecipe); 9054 } else { 9055 // TODO: record start and backedge value for remaining pointer induction 9056 // phis. 9057 assert(Phi->getType()->isPointerTy() && 9058 "only pointer phis should be handled here"); 9059 PhiRecipe = new VPWidenPHIRecipe(Phi); 9060 } 9061 9062 return toVPRecipeResult(PhiRecipe); 9063 } 9064 9065 if (isa<TruncInst>(Instr) && 9066 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9067 Range, *Plan))) 9068 return toVPRecipeResult(Recipe); 9069 9070 if (!shouldWiden(Instr, Range)) 9071 return nullptr; 9072 9073 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9074 return toVPRecipeResult(new VPWidenGEPRecipe( 9075 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9076 9077 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9078 bool InvariantCond = 9079 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9080 return toVPRecipeResult(new VPWidenSelectRecipe( 9081 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9082 } 9083 9084 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9085 } 9086 9087 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9088 ElementCount MaxVF) { 9089 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9090 9091 // Collect instructions from the original loop that will become trivially dead 9092 // in the vectorized loop. We don't need to vectorize these instructions. For 9093 // example, original induction update instructions can become dead because we 9094 // separately emit induction "steps" when generating code for the new loop. 9095 // Similarly, we create a new latch condition when setting up the structure 9096 // of the new loop, so the old one can become dead. 9097 SmallPtrSet<Instruction *, 4> DeadInstructions; 9098 collectTriviallyDeadInstructions(DeadInstructions); 9099 9100 // Add assume instructions we need to drop to DeadInstructions, to prevent 9101 // them from being added to the VPlan. 9102 // TODO: We only need to drop assumes in blocks that get flattend. If the 9103 // control flow is preserved, we should keep them. 9104 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9105 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9106 9107 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9108 // Dead instructions do not need sinking. Remove them from SinkAfter. 9109 for (Instruction *I : DeadInstructions) 9110 SinkAfter.erase(I); 9111 9112 // Cannot sink instructions after dead instructions (there won't be any 9113 // recipes for them). Instead, find the first non-dead previous instruction. 9114 for (auto &P : Legal->getSinkAfter()) { 9115 Instruction *SinkTarget = P.second; 9116 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9117 (void)FirstInst; 9118 while (DeadInstructions.contains(SinkTarget)) { 9119 assert( 9120 SinkTarget != FirstInst && 9121 "Must find a live instruction (at least the one feeding the " 9122 "first-order recurrence PHI) before reaching beginning of the block"); 9123 SinkTarget = SinkTarget->getPrevNode(); 9124 assert(SinkTarget != P.first && 9125 "sink source equals target, no sinking required"); 9126 } 9127 P.second = SinkTarget; 9128 } 9129 9130 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9131 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9132 VFRange SubRange = {VF, MaxVFPlusOne}; 9133 VPlans.push_back( 9134 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9135 VF = SubRange.End; 9136 } 9137 } 9138 9139 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9140 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9141 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9142 9143 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9144 9145 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9146 9147 // --------------------------------------------------------------------------- 9148 // Pre-construction: record ingredients whose recipes we'll need to further 9149 // process after constructing the initial VPlan. 9150 // --------------------------------------------------------------------------- 9151 9152 // Mark instructions we'll need to sink later and their targets as 9153 // ingredients whose recipe we'll need to record. 9154 for (auto &Entry : SinkAfter) { 9155 RecipeBuilder.recordRecipeOf(Entry.first); 9156 RecipeBuilder.recordRecipeOf(Entry.second); 9157 } 9158 for (auto &Reduction : CM.getInLoopReductionChains()) { 9159 PHINode *Phi = Reduction.first; 9160 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9161 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9162 9163 RecipeBuilder.recordRecipeOf(Phi); 9164 for (auto &R : ReductionOperations) { 9165 RecipeBuilder.recordRecipeOf(R); 9166 // For min/max reducitons, where we have a pair of icmp/select, we also 9167 // need to record the ICmp recipe, so it can be removed later. 9168 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9169 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9170 } 9171 } 9172 9173 // For each interleave group which is relevant for this (possibly trimmed) 9174 // Range, add it to the set of groups to be later applied to the VPlan and add 9175 // placeholders for its members' Recipes which we'll be replacing with a 9176 // single VPInterleaveRecipe. 9177 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9178 auto applyIG = [IG, this](ElementCount VF) -> bool { 9179 return (VF.isVector() && // Query is illegal for VF == 1 9180 CM.getWideningDecision(IG->getInsertPos(), VF) == 9181 LoopVectorizationCostModel::CM_Interleave); 9182 }; 9183 if (!getDecisionAndClampRange(applyIG, Range)) 9184 continue; 9185 InterleaveGroups.insert(IG); 9186 for (unsigned i = 0; i < IG->getFactor(); i++) 9187 if (Instruction *Member = IG->getMember(i)) 9188 RecipeBuilder.recordRecipeOf(Member); 9189 }; 9190 9191 // --------------------------------------------------------------------------- 9192 // Build initial VPlan: Scan the body of the loop in a topological order to 9193 // visit each basic block after having visited its predecessor basic blocks. 9194 // --------------------------------------------------------------------------- 9195 9196 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9197 auto Plan = std::make_unique<VPlan>(); 9198 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9199 Plan->setEntry(VPBB); 9200 9201 // Scan the body of the loop in a topological order to visit each basic block 9202 // after having visited its predecessor basic blocks. 9203 LoopBlocksDFS DFS(OrigLoop); 9204 DFS.perform(LI); 9205 9206 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9207 // Relevant instructions from basic block BB will be grouped into VPRecipe 9208 // ingredients and fill a new VPBasicBlock. 9209 unsigned VPBBsForBB = 0; 9210 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9211 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9212 VPBB = FirstVPBBForBB; 9213 Builder.setInsertPoint(VPBB); 9214 9215 // Introduce each ingredient into VPlan. 9216 // TODO: Model and preserve debug instrinsics in VPlan. 9217 for (Instruction &I : BB->instructionsWithoutDebug()) { 9218 Instruction *Instr = &I; 9219 9220 // First filter out irrelevant instructions, to ensure no recipes are 9221 // built for them. 9222 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9223 continue; 9224 9225 SmallVector<VPValue *, 4> Operands; 9226 auto *Phi = dyn_cast<PHINode>(Instr); 9227 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9228 Operands.push_back(Plan->getOrAddVPValue( 9229 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9230 } else { 9231 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9232 Operands = {OpRange.begin(), OpRange.end()}; 9233 } 9234 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9235 Instr, Operands, Range, Plan)) { 9236 // If Instr can be simplified to an existing VPValue, use it. 9237 if (RecipeOrValue.is<VPValue *>()) { 9238 auto *VPV = RecipeOrValue.get<VPValue *>(); 9239 Plan->addVPValue(Instr, VPV); 9240 // If the re-used value is a recipe, register the recipe for the 9241 // instruction, in case the recipe for Instr needs to be recorded. 9242 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9243 RecipeBuilder.setRecipe(Instr, R); 9244 continue; 9245 } 9246 // Otherwise, add the new recipe. 9247 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9248 for (auto *Def : Recipe->definedValues()) { 9249 auto *UV = Def->getUnderlyingValue(); 9250 Plan->addVPValue(UV, Def); 9251 } 9252 9253 RecipeBuilder.setRecipe(Instr, Recipe); 9254 VPBB->appendRecipe(Recipe); 9255 continue; 9256 } 9257 9258 // Otherwise, if all widening options failed, Instruction is to be 9259 // replicated. This may create a successor for VPBB. 9260 VPBasicBlock *NextVPBB = 9261 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9262 if (NextVPBB != VPBB) { 9263 VPBB = NextVPBB; 9264 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9265 : ""); 9266 } 9267 } 9268 } 9269 9270 RecipeBuilder.fixHeaderPhis(); 9271 9272 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9273 // may also be empty, such as the last one VPBB, reflecting original 9274 // basic-blocks with no recipes. 9275 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9276 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9277 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9278 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9279 delete PreEntry; 9280 9281 // --------------------------------------------------------------------------- 9282 // Transform initial VPlan: Apply previously taken decisions, in order, to 9283 // bring the VPlan to its final state. 9284 // --------------------------------------------------------------------------- 9285 9286 // Apply Sink-After legal constraints. 9287 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9288 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9289 if (Region && Region->isReplicator()) { 9290 assert(Region->getNumSuccessors() == 1 && 9291 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9292 assert(R->getParent()->size() == 1 && 9293 "A recipe in an original replicator region must be the only " 9294 "recipe in its block"); 9295 return Region; 9296 } 9297 return nullptr; 9298 }; 9299 for (auto &Entry : SinkAfter) { 9300 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9301 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9302 9303 auto *TargetRegion = GetReplicateRegion(Target); 9304 auto *SinkRegion = GetReplicateRegion(Sink); 9305 if (!SinkRegion) { 9306 // If the sink source is not a replicate region, sink the recipe directly. 9307 if (TargetRegion) { 9308 // The target is in a replication region, make sure to move Sink to 9309 // the block after it, not into the replication region itself. 9310 VPBasicBlock *NextBlock = 9311 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9312 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9313 } else 9314 Sink->moveAfter(Target); 9315 continue; 9316 } 9317 9318 // The sink source is in a replicate region. Unhook the region from the CFG. 9319 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9320 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9321 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9322 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9323 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9324 9325 if (TargetRegion) { 9326 // The target recipe is also in a replicate region, move the sink region 9327 // after the target region. 9328 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9329 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9330 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9331 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9332 } else { 9333 // The sink source is in a replicate region, we need to move the whole 9334 // replicate region, which should only contain a single recipe in the 9335 // main block. 9336 auto *SplitBlock = 9337 Target->getParent()->splitAt(std::next(Target->getIterator())); 9338 9339 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9340 9341 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9342 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9343 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9344 if (VPBB == SplitPred) 9345 VPBB = SplitBlock; 9346 } 9347 } 9348 9349 // Introduce a recipe to combine the incoming and previous values of a 9350 // first-order recurrence. 9351 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9352 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9353 if (!RecurPhi) 9354 continue; 9355 9356 auto *RecurSplice = cast<VPInstruction>( 9357 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9358 {RecurPhi, RecurPhi->getBackedgeValue()})); 9359 9360 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9361 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9362 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9363 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9364 } else 9365 RecurSplice->moveAfter(PrevRecipe); 9366 RecurPhi->replaceAllUsesWith(RecurSplice); 9367 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9368 // all users. 9369 RecurSplice->setOperand(0, RecurPhi); 9370 } 9371 9372 // Interleave memory: for each Interleave Group we marked earlier as relevant 9373 // for this VPlan, replace the Recipes widening its memory instructions with a 9374 // single VPInterleaveRecipe at its insertion point. 9375 for (auto IG : InterleaveGroups) { 9376 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9377 RecipeBuilder.getRecipe(IG->getInsertPos())); 9378 SmallVector<VPValue *, 4> StoredValues; 9379 for (unsigned i = 0; i < IG->getFactor(); ++i) 9380 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9381 auto *StoreR = 9382 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9383 StoredValues.push_back(StoreR->getStoredValue()); 9384 } 9385 9386 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9387 Recipe->getMask()); 9388 VPIG->insertBefore(Recipe); 9389 unsigned J = 0; 9390 for (unsigned i = 0; i < IG->getFactor(); ++i) 9391 if (Instruction *Member = IG->getMember(i)) { 9392 if (!Member->getType()->isVoidTy()) { 9393 VPValue *OriginalV = Plan->getVPValue(Member); 9394 Plan->removeVPValueFor(Member); 9395 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9396 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9397 J++; 9398 } 9399 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9400 } 9401 } 9402 9403 // Adjust the recipes for any inloop reductions. 9404 adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start); 9405 9406 // Finally, if tail is folded by masking, introduce selects between the phi 9407 // and the live-out instruction of each reduction, at the end of the latch. 9408 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9409 Builder.setInsertPoint(VPBB); 9410 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9411 for (auto &Reduction : Legal->getReductionVars()) { 9412 if (CM.isInLoopReduction(Reduction.first)) 9413 continue; 9414 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9415 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9416 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9417 } 9418 } 9419 9420 VPlanTransforms::sinkScalarOperands(*Plan); 9421 VPlanTransforms::mergeReplicateRegions(*Plan); 9422 9423 std::string PlanName; 9424 raw_string_ostream RSO(PlanName); 9425 ElementCount VF = Range.Start; 9426 Plan->addVF(VF); 9427 RSO << "Initial VPlan for VF={" << VF; 9428 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9429 Plan->addVF(VF); 9430 RSO << "," << VF; 9431 } 9432 RSO << "},UF>=1"; 9433 RSO.flush(); 9434 Plan->setName(PlanName); 9435 9436 return Plan; 9437 } 9438 9439 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9440 // Outer loop handling: They may require CFG and instruction level 9441 // transformations before even evaluating whether vectorization is profitable. 9442 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9443 // the vectorization pipeline. 9444 assert(!OrigLoop->isInnermost()); 9445 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9446 9447 // Create new empty VPlan 9448 auto Plan = std::make_unique<VPlan>(); 9449 9450 // Build hierarchical CFG 9451 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9452 HCFGBuilder.buildHierarchicalCFG(); 9453 9454 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9455 VF *= 2) 9456 Plan->addVF(VF); 9457 9458 if (EnableVPlanPredication) { 9459 VPlanPredicator VPP(*Plan); 9460 VPP.predicate(); 9461 9462 // Avoid running transformation to recipes until masked code generation in 9463 // VPlan-native path is in place. 9464 return Plan; 9465 } 9466 9467 SmallPtrSet<Instruction *, 1> DeadInstructions; 9468 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9469 Legal->getInductionVars(), 9470 DeadInstructions, *PSE.getSE()); 9471 return Plan; 9472 } 9473 9474 // Adjust the recipes for any inloop reductions. The chain of instructions 9475 // leading from the loop exit instr to the phi need to be converted to 9476 // reductions, with one operand being vector and the other being the scalar 9477 // reduction chain. 9478 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9479 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) { 9480 for (auto &Reduction : CM.getInLoopReductionChains()) { 9481 PHINode *Phi = Reduction.first; 9482 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9483 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9484 9485 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9486 continue; 9487 9488 // ReductionOperations are orders top-down from the phi's use to the 9489 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9490 // which of the two operands will remain scalar and which will be reduced. 9491 // For minmax the chain will be the select instructions. 9492 Instruction *Chain = Phi; 9493 for (Instruction *R : ReductionOperations) { 9494 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9495 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9496 9497 VPValue *ChainOp = Plan->getVPValue(Chain); 9498 unsigned FirstOpId; 9499 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9500 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9501 "Expected to replace a VPWidenSelectSC"); 9502 FirstOpId = 1; 9503 } else { 9504 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9505 "Expected to replace a VPWidenSC"); 9506 FirstOpId = 0; 9507 } 9508 unsigned VecOpId = 9509 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9510 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9511 9512 auto *CondOp = CM.foldTailByMasking() 9513 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9514 : nullptr; 9515 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9516 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9517 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9518 Plan->removeVPValueFor(R); 9519 Plan->addVPValue(R, RedRecipe); 9520 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9521 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9522 WidenRecipe->eraseFromParent(); 9523 9524 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9525 VPRecipeBase *CompareRecipe = 9526 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9527 assert(isa<VPWidenRecipe>(CompareRecipe) && 9528 "Expected to replace a VPWidenSC"); 9529 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9530 "Expected no remaining users"); 9531 CompareRecipe->eraseFromParent(); 9532 } 9533 Chain = R; 9534 } 9535 } 9536 } 9537 9538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9539 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9540 VPSlotTracker &SlotTracker) const { 9541 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9542 IG->getInsertPos()->printAsOperand(O, false); 9543 O << ", "; 9544 getAddr()->printAsOperand(O, SlotTracker); 9545 VPValue *Mask = getMask(); 9546 if (Mask) { 9547 O << ", "; 9548 Mask->printAsOperand(O, SlotTracker); 9549 } 9550 9551 unsigned OpIdx = 0; 9552 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9553 if (!IG->getMember(i)) 9554 continue; 9555 if (getNumStoreOperands() > 0) { 9556 O << "\n" << Indent << " store "; 9557 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9558 O << " to index " << i; 9559 } else { 9560 O << "\n" << Indent << " "; 9561 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9562 O << " = load from index " << i; 9563 } 9564 ++OpIdx; 9565 } 9566 } 9567 #endif 9568 9569 void VPWidenCallRecipe::execute(VPTransformState &State) { 9570 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9571 *this, State); 9572 } 9573 9574 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9575 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9576 this, *this, InvariantCond, State); 9577 } 9578 9579 void VPWidenRecipe::execute(VPTransformState &State) { 9580 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9581 } 9582 9583 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9584 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9585 *this, State.UF, State.VF, IsPtrLoopInvariant, 9586 IsIndexLoopInvariant, State); 9587 } 9588 9589 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9590 assert(!State.Instance && "Int or FP induction being replicated."); 9591 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9592 getTruncInst(), getVPValue(0), 9593 getCastValue(), State); 9594 } 9595 9596 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9597 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9598 State); 9599 } 9600 9601 void VPBlendRecipe::execute(VPTransformState &State) { 9602 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9603 // We know that all PHIs in non-header blocks are converted into 9604 // selects, so we don't have to worry about the insertion order and we 9605 // can just use the builder. 9606 // At this point we generate the predication tree. There may be 9607 // duplications since this is a simple recursive scan, but future 9608 // optimizations will clean it up. 9609 9610 unsigned NumIncoming = getNumIncomingValues(); 9611 9612 // Generate a sequence of selects of the form: 9613 // SELECT(Mask3, In3, 9614 // SELECT(Mask2, In2, 9615 // SELECT(Mask1, In1, 9616 // In0))) 9617 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9618 // are essentially undef are taken from In0. 9619 InnerLoopVectorizer::VectorParts Entry(State.UF); 9620 for (unsigned In = 0; In < NumIncoming; ++In) { 9621 for (unsigned Part = 0; Part < State.UF; ++Part) { 9622 // We might have single edge PHIs (blocks) - use an identity 9623 // 'select' for the first PHI operand. 9624 Value *In0 = State.get(getIncomingValue(In), Part); 9625 if (In == 0) 9626 Entry[Part] = In0; // Initialize with the first incoming value. 9627 else { 9628 // Select between the current value and the previous incoming edge 9629 // based on the incoming mask. 9630 Value *Cond = State.get(getMask(In), Part); 9631 Entry[Part] = 9632 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9633 } 9634 } 9635 } 9636 for (unsigned Part = 0; Part < State.UF; ++Part) 9637 State.set(this, Entry[Part], Part); 9638 } 9639 9640 void VPInterleaveRecipe::execute(VPTransformState &State) { 9641 assert(!State.Instance && "Interleave group being replicated."); 9642 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9643 getStoredValues(), getMask()); 9644 } 9645 9646 void VPReductionRecipe::execute(VPTransformState &State) { 9647 assert(!State.Instance && "Reduction being replicated."); 9648 Value *PrevInChain = State.get(getChainOp(), 0); 9649 for (unsigned Part = 0; Part < State.UF; ++Part) { 9650 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9651 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9652 Value *NewVecOp = State.get(getVecOp(), Part); 9653 if (VPValue *Cond = getCondOp()) { 9654 Value *NewCond = State.get(Cond, Part); 9655 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9656 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9657 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9658 Constant *IdenVec = 9659 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9660 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9661 NewVecOp = Select; 9662 } 9663 Value *NewRed; 9664 Value *NextInChain; 9665 if (IsOrdered) { 9666 if (State.VF.isVector()) 9667 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9668 PrevInChain); 9669 else 9670 NewRed = State.Builder.CreateBinOp( 9671 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9672 PrevInChain, NewVecOp); 9673 PrevInChain = NewRed; 9674 } else { 9675 PrevInChain = State.get(getChainOp(), Part); 9676 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9677 } 9678 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9679 NextInChain = 9680 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9681 NewRed, PrevInChain); 9682 } else if (IsOrdered) 9683 NextInChain = NewRed; 9684 else { 9685 NextInChain = State.Builder.CreateBinOp( 9686 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9687 PrevInChain); 9688 } 9689 State.set(this, NextInChain, Part); 9690 } 9691 } 9692 9693 void VPReplicateRecipe::execute(VPTransformState &State) { 9694 if (State.Instance) { // Generate a single instance. 9695 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9696 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9697 *State.Instance, IsPredicated, State); 9698 // Insert scalar instance packing it into a vector. 9699 if (AlsoPack && State.VF.isVector()) { 9700 // If we're constructing lane 0, initialize to start from poison. 9701 if (State.Instance->Lane.isFirstLane()) { 9702 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9703 Value *Poison = PoisonValue::get( 9704 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9705 State.set(this, Poison, State.Instance->Part); 9706 } 9707 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9708 } 9709 return; 9710 } 9711 9712 // Generate scalar instances for all VF lanes of all UF parts, unless the 9713 // instruction is uniform inwhich case generate only the first lane for each 9714 // of the UF parts. 9715 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9716 assert((!State.VF.isScalable() || IsUniform) && 9717 "Can't scalarize a scalable vector"); 9718 for (unsigned Part = 0; Part < State.UF; ++Part) 9719 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9720 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9721 VPIteration(Part, Lane), IsPredicated, 9722 State); 9723 } 9724 9725 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9726 assert(State.Instance && "Branch on Mask works only on single instance."); 9727 9728 unsigned Part = State.Instance->Part; 9729 unsigned Lane = State.Instance->Lane.getKnownLane(); 9730 9731 Value *ConditionBit = nullptr; 9732 VPValue *BlockInMask = getMask(); 9733 if (BlockInMask) { 9734 ConditionBit = State.get(BlockInMask, Part); 9735 if (ConditionBit->getType()->isVectorTy()) 9736 ConditionBit = State.Builder.CreateExtractElement( 9737 ConditionBit, State.Builder.getInt32(Lane)); 9738 } else // Block in mask is all-one. 9739 ConditionBit = State.Builder.getTrue(); 9740 9741 // Replace the temporary unreachable terminator with a new conditional branch, 9742 // whose two destinations will be set later when they are created. 9743 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9744 assert(isa<UnreachableInst>(CurrentTerminator) && 9745 "Expected to replace unreachable terminator with conditional branch."); 9746 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9747 CondBr->setSuccessor(0, nullptr); 9748 ReplaceInstWithInst(CurrentTerminator, CondBr); 9749 } 9750 9751 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9752 assert(State.Instance && "Predicated instruction PHI works per instance."); 9753 Instruction *ScalarPredInst = 9754 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9755 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9756 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9757 assert(PredicatingBB && "Predicated block has no single predecessor."); 9758 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9759 "operand must be VPReplicateRecipe"); 9760 9761 // By current pack/unpack logic we need to generate only a single phi node: if 9762 // a vector value for the predicated instruction exists at this point it means 9763 // the instruction has vector users only, and a phi for the vector value is 9764 // needed. In this case the recipe of the predicated instruction is marked to 9765 // also do that packing, thereby "hoisting" the insert-element sequence. 9766 // Otherwise, a phi node for the scalar value is needed. 9767 unsigned Part = State.Instance->Part; 9768 if (State.hasVectorValue(getOperand(0), Part)) { 9769 Value *VectorValue = State.get(getOperand(0), Part); 9770 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9771 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9772 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9773 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9774 if (State.hasVectorValue(this, Part)) 9775 State.reset(this, VPhi, Part); 9776 else 9777 State.set(this, VPhi, Part); 9778 // NOTE: Currently we need to update the value of the operand, so the next 9779 // predicated iteration inserts its generated value in the correct vector. 9780 State.reset(getOperand(0), VPhi, Part); 9781 } else { 9782 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9783 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9784 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9785 PredicatingBB); 9786 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9787 if (State.hasScalarValue(this, *State.Instance)) 9788 State.reset(this, Phi, *State.Instance); 9789 else 9790 State.set(this, Phi, *State.Instance); 9791 // NOTE: Currently we need to update the value of the operand, so the next 9792 // predicated iteration inserts its generated value in the correct vector. 9793 State.reset(getOperand(0), Phi, *State.Instance); 9794 } 9795 } 9796 9797 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9798 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9799 State.ILV->vectorizeMemoryInstruction( 9800 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9801 StoredValue, getMask()); 9802 } 9803 9804 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9805 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9806 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9807 // for predication. 9808 static ScalarEpilogueLowering getScalarEpilogueLowering( 9809 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9810 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9811 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9812 LoopVectorizationLegality &LVL) { 9813 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9814 // don't look at hints or options, and don't request a scalar epilogue. 9815 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9816 // LoopAccessInfo (due to code dependency and not being able to reliably get 9817 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9818 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9819 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9820 // back to the old way and vectorize with versioning when forced. See D81345.) 9821 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9822 PGSOQueryType::IRPass) && 9823 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9824 return CM_ScalarEpilogueNotAllowedOptSize; 9825 9826 // 2) If set, obey the directives 9827 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9828 switch (PreferPredicateOverEpilogue) { 9829 case PreferPredicateTy::ScalarEpilogue: 9830 return CM_ScalarEpilogueAllowed; 9831 case PreferPredicateTy::PredicateElseScalarEpilogue: 9832 return CM_ScalarEpilogueNotNeededUsePredicate; 9833 case PreferPredicateTy::PredicateOrDontVectorize: 9834 return CM_ScalarEpilogueNotAllowedUsePredicate; 9835 }; 9836 } 9837 9838 // 3) If set, obey the hints 9839 switch (Hints.getPredicate()) { 9840 case LoopVectorizeHints::FK_Enabled: 9841 return CM_ScalarEpilogueNotNeededUsePredicate; 9842 case LoopVectorizeHints::FK_Disabled: 9843 return CM_ScalarEpilogueAllowed; 9844 }; 9845 9846 // 4) if the TTI hook indicates this is profitable, request predication. 9847 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9848 LVL.getLAI())) 9849 return CM_ScalarEpilogueNotNeededUsePredicate; 9850 9851 return CM_ScalarEpilogueAllowed; 9852 } 9853 9854 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9855 // If Values have been set for this Def return the one relevant for \p Part. 9856 if (hasVectorValue(Def, Part)) 9857 return Data.PerPartOutput[Def][Part]; 9858 9859 if (!hasScalarValue(Def, {Part, 0})) { 9860 Value *IRV = Def->getLiveInIRValue(); 9861 Value *B = ILV->getBroadcastInstrs(IRV); 9862 set(Def, B, Part); 9863 return B; 9864 } 9865 9866 Value *ScalarValue = get(Def, {Part, 0}); 9867 // If we aren't vectorizing, we can just copy the scalar map values over 9868 // to the vector map. 9869 if (VF.isScalar()) { 9870 set(Def, ScalarValue, Part); 9871 return ScalarValue; 9872 } 9873 9874 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9875 bool IsUniform = RepR && RepR->isUniform(); 9876 9877 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9878 // Check if there is a scalar value for the selected lane. 9879 if (!hasScalarValue(Def, {Part, LastLane})) { 9880 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9881 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9882 "unexpected recipe found to be invariant"); 9883 IsUniform = true; 9884 LastLane = 0; 9885 } 9886 9887 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9888 // Set the insert point after the last scalarized instruction or after the 9889 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9890 // will directly follow the scalar definitions. 9891 auto OldIP = Builder.saveIP(); 9892 auto NewIP = 9893 isa<PHINode>(LastInst) 9894 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9895 : std::next(BasicBlock::iterator(LastInst)); 9896 Builder.SetInsertPoint(&*NewIP); 9897 9898 // However, if we are vectorizing, we need to construct the vector values. 9899 // If the value is known to be uniform after vectorization, we can just 9900 // broadcast the scalar value corresponding to lane zero for each unroll 9901 // iteration. Otherwise, we construct the vector values using 9902 // insertelement instructions. Since the resulting vectors are stored in 9903 // State, we will only generate the insertelements once. 9904 Value *VectorValue = nullptr; 9905 if (IsUniform) { 9906 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9907 set(Def, VectorValue, Part); 9908 } else { 9909 // Initialize packing with insertelements to start from undef. 9910 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9911 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9912 set(Def, Undef, Part); 9913 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9914 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9915 VectorValue = get(Def, Part); 9916 } 9917 Builder.restoreIP(OldIP); 9918 return VectorValue; 9919 } 9920 9921 // Process the loop in the VPlan-native vectorization path. This path builds 9922 // VPlan upfront in the vectorization pipeline, which allows to apply 9923 // VPlan-to-VPlan transformations from the very beginning without modifying the 9924 // input LLVM IR. 9925 static bool processLoopInVPlanNativePath( 9926 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9927 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9928 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9929 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9930 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9931 LoopVectorizationRequirements &Requirements) { 9932 9933 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9934 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9935 return false; 9936 } 9937 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9938 Function *F = L->getHeader()->getParent(); 9939 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9940 9941 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9942 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9943 9944 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9945 &Hints, IAI); 9946 // Use the planner for outer loop vectorization. 9947 // TODO: CM is not used at this point inside the planner. Turn CM into an 9948 // optional argument if we don't need it in the future. 9949 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9950 Requirements, ORE); 9951 9952 // Get user vectorization factor. 9953 ElementCount UserVF = Hints.getWidth(); 9954 9955 CM.collectElementTypesForWidening(); 9956 9957 // Plan how to best vectorize, return the best VF and its cost. 9958 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9959 9960 // If we are stress testing VPlan builds, do not attempt to generate vector 9961 // code. Masked vector code generation support will follow soon. 9962 // Also, do not attempt to vectorize if no vector code will be produced. 9963 if (VPlanBuildStressTest || EnableVPlanPredication || 9964 VectorizationFactor::Disabled() == VF) 9965 return false; 9966 9967 LVP.setBestPlan(VF.Width, 1); 9968 9969 { 9970 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9971 F->getParent()->getDataLayout()); 9972 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9973 &CM, BFI, PSI, Checks); 9974 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9975 << L->getHeader()->getParent()->getName() << "\"\n"); 9976 LVP.executePlan(LB, DT); 9977 } 9978 9979 // Mark the loop as already vectorized to avoid vectorizing again. 9980 Hints.setAlreadyVectorized(); 9981 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9982 return true; 9983 } 9984 9985 // Emit a remark if there are stores to floats that required a floating point 9986 // extension. If the vectorized loop was generated with floating point there 9987 // will be a performance penalty from the conversion overhead and the change in 9988 // the vector width. 9989 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9990 SmallVector<Instruction *, 4> Worklist; 9991 for (BasicBlock *BB : L->getBlocks()) { 9992 for (Instruction &Inst : *BB) { 9993 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9994 if (S->getValueOperand()->getType()->isFloatTy()) 9995 Worklist.push_back(S); 9996 } 9997 } 9998 } 9999 10000 // Traverse the floating point stores upwards searching, for floating point 10001 // conversions. 10002 SmallPtrSet<const Instruction *, 4> Visited; 10003 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10004 while (!Worklist.empty()) { 10005 auto *I = Worklist.pop_back_val(); 10006 if (!L->contains(I)) 10007 continue; 10008 if (!Visited.insert(I).second) 10009 continue; 10010 10011 // Emit a remark if the floating point store required a floating 10012 // point conversion. 10013 // TODO: More work could be done to identify the root cause such as a 10014 // constant or a function return type and point the user to it. 10015 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10016 ORE->emit([&]() { 10017 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10018 I->getDebugLoc(), L->getHeader()) 10019 << "floating point conversion changes vector width. " 10020 << "Mixed floating point precision requires an up/down " 10021 << "cast that will negatively impact performance."; 10022 }); 10023 10024 for (Use &Op : I->operands()) 10025 if (auto *OpI = dyn_cast<Instruction>(Op)) 10026 Worklist.push_back(OpI); 10027 } 10028 } 10029 10030 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10031 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10032 !EnableLoopInterleaving), 10033 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10034 !EnableLoopVectorization) {} 10035 10036 bool LoopVectorizePass::processLoop(Loop *L) { 10037 assert((EnableVPlanNativePath || L->isInnermost()) && 10038 "VPlan-native path is not enabled. Only process inner loops."); 10039 10040 #ifndef NDEBUG 10041 const std::string DebugLocStr = getDebugLocString(L); 10042 #endif /* NDEBUG */ 10043 10044 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10045 << L->getHeader()->getParent()->getName() << "\" from " 10046 << DebugLocStr << "\n"); 10047 10048 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10049 10050 LLVM_DEBUG( 10051 dbgs() << "LV: Loop hints:" 10052 << " force=" 10053 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10054 ? "disabled" 10055 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10056 ? "enabled" 10057 : "?")) 10058 << " width=" << Hints.getWidth() 10059 << " interleave=" << Hints.getInterleave() << "\n"); 10060 10061 // Function containing loop 10062 Function *F = L->getHeader()->getParent(); 10063 10064 // Looking at the diagnostic output is the only way to determine if a loop 10065 // was vectorized (other than looking at the IR or machine code), so it 10066 // is important to generate an optimization remark for each loop. Most of 10067 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10068 // generated as OptimizationRemark and OptimizationRemarkMissed are 10069 // less verbose reporting vectorized loops and unvectorized loops that may 10070 // benefit from vectorization, respectively. 10071 10072 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10073 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10074 return false; 10075 } 10076 10077 PredicatedScalarEvolution PSE(*SE, *L); 10078 10079 // Check if it is legal to vectorize the loop. 10080 LoopVectorizationRequirements Requirements; 10081 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10082 &Requirements, &Hints, DB, AC, BFI, PSI); 10083 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10084 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10085 Hints.emitRemarkWithHints(); 10086 return false; 10087 } 10088 10089 // Check the function attributes and profiles to find out if this function 10090 // should be optimized for size. 10091 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10092 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10093 10094 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10095 // here. They may require CFG and instruction level transformations before 10096 // even evaluating whether vectorization is profitable. Since we cannot modify 10097 // the incoming IR, we need to build VPlan upfront in the vectorization 10098 // pipeline. 10099 if (!L->isInnermost()) 10100 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10101 ORE, BFI, PSI, Hints, Requirements); 10102 10103 assert(L->isInnermost() && "Inner loop expected."); 10104 10105 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10106 // count by optimizing for size, to minimize overheads. 10107 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10108 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10109 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10110 << "This loop is worth vectorizing only if no scalar " 10111 << "iteration overheads are incurred."); 10112 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10113 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10114 else { 10115 LLVM_DEBUG(dbgs() << "\n"); 10116 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10117 } 10118 } 10119 10120 // Check the function attributes to see if implicit floats are allowed. 10121 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10122 // an integer loop and the vector instructions selected are purely integer 10123 // vector instructions? 10124 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10125 reportVectorizationFailure( 10126 "Can't vectorize when the NoImplicitFloat attribute is used", 10127 "loop not vectorized due to NoImplicitFloat attribute", 10128 "NoImplicitFloat", ORE, L); 10129 Hints.emitRemarkWithHints(); 10130 return false; 10131 } 10132 10133 // Check if the target supports potentially unsafe FP vectorization. 10134 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10135 // for the target we're vectorizing for, to make sure none of the 10136 // additional fp-math flags can help. 10137 if (Hints.isPotentiallyUnsafe() && 10138 TTI->isFPVectorizationPotentiallyUnsafe()) { 10139 reportVectorizationFailure( 10140 "Potentially unsafe FP op prevents vectorization", 10141 "loop not vectorized due to unsafe FP support.", 10142 "UnsafeFP", ORE, L); 10143 Hints.emitRemarkWithHints(); 10144 return false; 10145 } 10146 10147 if (!LVL.canVectorizeFPMath(ForceOrderedReductions)) { 10148 ORE->emit([&]() { 10149 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10150 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10151 ExactFPMathInst->getDebugLoc(), 10152 ExactFPMathInst->getParent()) 10153 << "loop not vectorized: cannot prove it is safe to reorder " 10154 "floating-point operations"; 10155 }); 10156 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10157 "reorder floating-point operations\n"); 10158 Hints.emitRemarkWithHints(); 10159 return false; 10160 } 10161 10162 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10163 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10164 10165 // If an override option has been passed in for interleaved accesses, use it. 10166 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10167 UseInterleaved = EnableInterleavedMemAccesses; 10168 10169 // Analyze interleaved memory accesses. 10170 if (UseInterleaved) { 10171 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10172 } 10173 10174 // Use the cost model. 10175 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10176 F, &Hints, IAI); 10177 CM.collectValuesToIgnore(); 10178 CM.collectElementTypesForWidening(); 10179 10180 // Use the planner for vectorization. 10181 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10182 Requirements, ORE); 10183 10184 // Get user vectorization factor and interleave count. 10185 ElementCount UserVF = Hints.getWidth(); 10186 unsigned UserIC = Hints.getInterleave(); 10187 10188 // Plan how to best vectorize, return the best VF and its cost. 10189 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10190 10191 VectorizationFactor VF = VectorizationFactor::Disabled(); 10192 unsigned IC = 1; 10193 10194 if (MaybeVF) { 10195 VF = *MaybeVF; 10196 // Select the interleave count. 10197 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10198 } 10199 10200 // Identify the diagnostic messages that should be produced. 10201 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10202 bool VectorizeLoop = true, InterleaveLoop = true; 10203 if (VF.Width.isScalar()) { 10204 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10205 VecDiagMsg = std::make_pair( 10206 "VectorizationNotBeneficial", 10207 "the cost-model indicates that vectorization is not beneficial"); 10208 VectorizeLoop = false; 10209 } 10210 10211 if (!MaybeVF && UserIC > 1) { 10212 // Tell the user interleaving was avoided up-front, despite being explicitly 10213 // requested. 10214 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10215 "interleaving should be avoided up front\n"); 10216 IntDiagMsg = std::make_pair( 10217 "InterleavingAvoided", 10218 "Ignoring UserIC, because interleaving was avoided up front"); 10219 InterleaveLoop = false; 10220 } else if (IC == 1 && UserIC <= 1) { 10221 // Tell the user interleaving is not beneficial. 10222 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10223 IntDiagMsg = std::make_pair( 10224 "InterleavingNotBeneficial", 10225 "the cost-model indicates that interleaving is not beneficial"); 10226 InterleaveLoop = false; 10227 if (UserIC == 1) { 10228 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10229 IntDiagMsg.second += 10230 " and is explicitly disabled or interleave count is set to 1"; 10231 } 10232 } else if (IC > 1 && UserIC == 1) { 10233 // Tell the user interleaving is beneficial, but it explicitly disabled. 10234 LLVM_DEBUG( 10235 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10236 IntDiagMsg = std::make_pair( 10237 "InterleavingBeneficialButDisabled", 10238 "the cost-model indicates that interleaving is beneficial " 10239 "but is explicitly disabled or interleave count is set to 1"); 10240 InterleaveLoop = false; 10241 } 10242 10243 // Override IC if user provided an interleave count. 10244 IC = UserIC > 0 ? UserIC : IC; 10245 10246 // Emit diagnostic messages, if any. 10247 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10248 if (!VectorizeLoop && !InterleaveLoop) { 10249 // Do not vectorize or interleaving the loop. 10250 ORE->emit([&]() { 10251 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10252 L->getStartLoc(), L->getHeader()) 10253 << VecDiagMsg.second; 10254 }); 10255 ORE->emit([&]() { 10256 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10257 L->getStartLoc(), L->getHeader()) 10258 << IntDiagMsg.second; 10259 }); 10260 return false; 10261 } else if (!VectorizeLoop && InterleaveLoop) { 10262 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10263 ORE->emit([&]() { 10264 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10265 L->getStartLoc(), L->getHeader()) 10266 << VecDiagMsg.second; 10267 }); 10268 } else if (VectorizeLoop && !InterleaveLoop) { 10269 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10270 << ") in " << DebugLocStr << '\n'); 10271 ORE->emit([&]() { 10272 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10273 L->getStartLoc(), L->getHeader()) 10274 << IntDiagMsg.second; 10275 }); 10276 } else if (VectorizeLoop && InterleaveLoop) { 10277 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10278 << ") in " << DebugLocStr << '\n'); 10279 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10280 } 10281 10282 bool DisableRuntimeUnroll = false; 10283 MDNode *OrigLoopID = L->getLoopID(); 10284 { 10285 // Optimistically generate runtime checks. Drop them if they turn out to not 10286 // be profitable. Limit the scope of Checks, so the cleanup happens 10287 // immediately after vector codegeneration is done. 10288 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10289 F->getParent()->getDataLayout()); 10290 if (!VF.Width.isScalar() || IC > 1) 10291 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10292 LVP.setBestPlan(VF.Width, IC); 10293 10294 using namespace ore; 10295 if (!VectorizeLoop) { 10296 assert(IC > 1 && "interleave count should not be 1 or 0"); 10297 // If we decided that it is not legal to vectorize the loop, then 10298 // interleave it. 10299 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10300 &CM, BFI, PSI, Checks); 10301 LVP.executePlan(Unroller, DT); 10302 10303 ORE->emit([&]() { 10304 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10305 L->getHeader()) 10306 << "interleaved loop (interleaved count: " 10307 << NV("InterleaveCount", IC) << ")"; 10308 }); 10309 } else { 10310 // If we decided that it is *legal* to vectorize the loop, then do it. 10311 10312 // Consider vectorizing the epilogue too if it's profitable. 10313 VectorizationFactor EpilogueVF = 10314 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10315 if (EpilogueVF.Width.isVector()) { 10316 10317 // The first pass vectorizes the main loop and creates a scalar epilogue 10318 // to be vectorized by executing the plan (potentially with a different 10319 // factor) again shortly afterwards. 10320 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10321 EpilogueVF.Width.getKnownMinValue(), 10322 1); 10323 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10324 EPI, &LVL, &CM, BFI, PSI, Checks); 10325 10326 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10327 LVP.executePlan(MainILV, DT); 10328 ++LoopsVectorized; 10329 10330 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10331 formLCSSARecursively(*L, *DT, LI, SE); 10332 10333 // Second pass vectorizes the epilogue and adjusts the control flow 10334 // edges from the first pass. 10335 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10336 EPI.MainLoopVF = EPI.EpilogueVF; 10337 EPI.MainLoopUF = EPI.EpilogueUF; 10338 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10339 ORE, EPI, &LVL, &CM, BFI, PSI, 10340 Checks); 10341 LVP.executePlan(EpilogILV, DT); 10342 ++LoopsEpilogueVectorized; 10343 10344 if (!MainILV.areSafetyChecksAdded()) 10345 DisableRuntimeUnroll = true; 10346 } else { 10347 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10348 &LVL, &CM, BFI, PSI, Checks); 10349 LVP.executePlan(LB, DT); 10350 ++LoopsVectorized; 10351 10352 // Add metadata to disable runtime unrolling a scalar loop when there 10353 // are no runtime checks about strides and memory. A scalar loop that is 10354 // rarely used is not worth unrolling. 10355 if (!LB.areSafetyChecksAdded()) 10356 DisableRuntimeUnroll = true; 10357 } 10358 // Report the vectorization decision. 10359 ORE->emit([&]() { 10360 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10361 L->getHeader()) 10362 << "vectorized loop (vectorization width: " 10363 << NV("VectorizationFactor", VF.Width) 10364 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10365 }); 10366 } 10367 10368 if (ORE->allowExtraAnalysis(LV_NAME)) 10369 checkMixedPrecision(L, ORE); 10370 } 10371 10372 Optional<MDNode *> RemainderLoopID = 10373 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10374 LLVMLoopVectorizeFollowupEpilogue}); 10375 if (RemainderLoopID.hasValue()) { 10376 L->setLoopID(RemainderLoopID.getValue()); 10377 } else { 10378 if (DisableRuntimeUnroll) 10379 AddRuntimeUnrollDisableMetaData(L); 10380 10381 // Mark the loop as already vectorized to avoid vectorizing again. 10382 Hints.setAlreadyVectorized(); 10383 } 10384 10385 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10386 return true; 10387 } 10388 10389 LoopVectorizeResult LoopVectorizePass::runImpl( 10390 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10391 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10392 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10393 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10394 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10395 SE = &SE_; 10396 LI = &LI_; 10397 TTI = &TTI_; 10398 DT = &DT_; 10399 BFI = &BFI_; 10400 TLI = TLI_; 10401 AA = &AA_; 10402 AC = &AC_; 10403 GetLAA = &GetLAA_; 10404 DB = &DB_; 10405 ORE = &ORE_; 10406 PSI = PSI_; 10407 10408 // Don't attempt if 10409 // 1. the target claims to have no vector registers, and 10410 // 2. interleaving won't help ILP. 10411 // 10412 // The second condition is necessary because, even if the target has no 10413 // vector registers, loop vectorization may still enable scalar 10414 // interleaving. 10415 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10416 TTI->getMaxInterleaveFactor(1) < 2) 10417 return LoopVectorizeResult(false, false); 10418 10419 bool Changed = false, CFGChanged = false; 10420 10421 // The vectorizer requires loops to be in simplified form. 10422 // Since simplification may add new inner loops, it has to run before the 10423 // legality and profitability checks. This means running the loop vectorizer 10424 // will simplify all loops, regardless of whether anything end up being 10425 // vectorized. 10426 for (auto &L : *LI) 10427 Changed |= CFGChanged |= 10428 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10429 10430 // Build up a worklist of inner-loops to vectorize. This is necessary as 10431 // the act of vectorizing or partially unrolling a loop creates new loops 10432 // and can invalidate iterators across the loops. 10433 SmallVector<Loop *, 8> Worklist; 10434 10435 for (Loop *L : *LI) 10436 collectSupportedLoops(*L, LI, ORE, Worklist); 10437 10438 LoopsAnalyzed += Worklist.size(); 10439 10440 // Now walk the identified inner loops. 10441 while (!Worklist.empty()) { 10442 Loop *L = Worklist.pop_back_val(); 10443 10444 // For the inner loops we actually process, form LCSSA to simplify the 10445 // transform. 10446 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10447 10448 Changed |= CFGChanged |= processLoop(L); 10449 } 10450 10451 // Process each loop nest in the function. 10452 return LoopVectorizeResult(Changed, CFGChanged); 10453 } 10454 10455 PreservedAnalyses LoopVectorizePass::run(Function &F, 10456 FunctionAnalysisManager &AM) { 10457 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10458 auto &LI = AM.getResult<LoopAnalysis>(F); 10459 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10460 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10461 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10462 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10463 auto &AA = AM.getResult<AAManager>(F); 10464 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10465 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10466 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10467 MemorySSA *MSSA = EnableMSSALoopDependency 10468 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10469 : nullptr; 10470 10471 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10472 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10473 [&](Loop &L) -> const LoopAccessInfo & { 10474 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10475 TLI, TTI, nullptr, MSSA}; 10476 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10477 }; 10478 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10479 ProfileSummaryInfo *PSI = 10480 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10481 LoopVectorizeResult Result = 10482 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10483 if (!Result.MadeAnyChange) 10484 return PreservedAnalyses::all(); 10485 PreservedAnalyses PA; 10486 10487 // We currently do not preserve loopinfo/dominator analyses with outer loop 10488 // vectorization. Until this is addressed, mark these analyses as preserved 10489 // only for non-VPlan-native path. 10490 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10491 if (!EnableVPlanNativePath) { 10492 PA.preserve<LoopAnalysis>(); 10493 PA.preserve<DominatorTreeAnalysis>(); 10494 } 10495 if (!Result.MadeCFGChange) 10496 PA.preserveSet<CFGAnalyses>(); 10497 return PA; 10498 } 10499