1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/MathExtras.h"
134 #include "llvm/Support/raw_ostream.h"
135 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
136 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
137 #include "llvm/Transforms/Utils/LoopSimplify.h"
138 #include "llvm/Transforms/Utils/LoopUtils.h"
139 #include "llvm/Transforms/Utils/LoopVersioning.h"
140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = FixedVectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, VPUser &Operands,
419                               bool InvariantCond, VPTransformState &State);
420 
421   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
422   void fixVectorizedLoop();
423 
424   // Return true if any runtime check is added.
425   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
426 
427   /// A type for vectorized values in the new loop. Each value from the
428   /// original loop, when vectorized, is represented by UF vector values in the
429   /// new unrolled loop, where UF is the unroll factor.
430   using VectorParts = SmallVector<Value *, 2>;
431 
432   /// Vectorize a single GetElementPtrInst based on information gathered and
433   /// decisions taken during planning.
434   void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF,
435                 unsigned VF, bool IsPtrLoopInvariant,
436                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
437 
438   /// Vectorize a single PHINode in a block. This method handles the induction
439   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
440   /// arbitrary length vectors.
441   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
442 
443   /// A helper function to scalarize a single Instruction in the innermost loop.
444   /// Generates a sequence of scalar instances for each lane between \p MinLane
445   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
446   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
447   /// Instr's operands.
448   void scalarizeInstruction(Instruction *Instr, VPUser &Operands,
449                             const VPIteration &Instance, bool IfPredicateInstr,
450                             VPTransformState &State);
451 
452   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
453   /// is provided, the integer induction variable will first be truncated to
454   /// the corresponding type.
455   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
456 
457   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
458   /// vector or scalar value on-demand if one is not yet available. When
459   /// vectorizing a loop, we visit the definition of an instruction before its
460   /// uses. When visiting the definition, we either vectorize or scalarize the
461   /// instruction, creating an entry for it in the corresponding map. (In some
462   /// cases, such as induction variables, we will create both vector and scalar
463   /// entries.) Then, as we encounter uses of the definition, we derive values
464   /// for each scalar or vector use unless such a value is already available.
465   /// For example, if we scalarize a definition and one of its uses is vector,
466   /// we build the required vector on-demand with an insertelement sequence
467   /// when visiting the use. Otherwise, if the use is scalar, we can use the
468   /// existing scalar definition.
469   ///
470   /// Return a value in the new loop corresponding to \p V from the original
471   /// loop at unroll index \p Part. If the value has already been vectorized,
472   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
473   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
474   /// a new vector value on-demand by inserting the scalar values into a vector
475   /// with an insertelement sequence. If the value has been neither vectorized
476   /// nor scalarized, it must be loop invariant, so we simply broadcast the
477   /// value into a vector.
478   Value *getOrCreateVectorValue(Value *V, unsigned Part);
479 
480   /// Return a value in the new loop corresponding to \p V from the original
481   /// loop at unroll and vector indices \p Instance. If the value has been
482   /// vectorized but not scalarized, the necessary extractelement instruction
483   /// will be generated.
484   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
485 
486   /// Construct the vector value of a scalarized value \p V one lane at a time.
487   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
488 
489   /// Try to vectorize interleaved access group \p Group with the base address
490   /// given in \p Addr, optionally masking the vector operations if \p
491   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
492   /// values in the vectorized loop.
493   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
494                                 VPTransformState &State, VPValue *Addr,
495                                 VPValue *BlockInMask = nullptr);
496 
497   /// Vectorize Load and Store instructions with the base address given in \p
498   /// Addr, optionally masking the vector operations if \p BlockInMask is
499   /// non-null. Use \p State to translate given VPValues to IR values in the
500   /// vectorized loop.
501   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
502                                   VPValue *Addr, VPValue *StoredValue,
503                                   VPValue *BlockInMask);
504 
505   /// Set the debug location in the builder using the debug location in
506   /// the instruction.
507   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
508 
509   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
510   void fixNonInductionPHIs(void);
511 
512 protected:
513   friend class LoopVectorizationPlanner;
514 
515   /// A small list of PHINodes.
516   using PhiVector = SmallVector<PHINode *, 4>;
517 
518   /// A type for scalarized values in the new loop. Each value from the
519   /// original loop, when scalarized, is represented by UF x VF scalar values
520   /// in the new unrolled loop, where UF is the unroll factor and VF is the
521   /// vectorization factor.
522   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
523 
524   /// Set up the values of the IVs correctly when exiting the vector loop.
525   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
526                     Value *CountRoundDown, Value *EndValue,
527                     BasicBlock *MiddleBlock);
528 
529   /// Create a new induction variable inside L.
530   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
531                                    Value *Step, Instruction *DL);
532 
533   /// Handle all cross-iteration phis in the header.
534   void fixCrossIterationPHIs();
535 
536   /// Fix a first-order recurrence. This is the second phase of vectorizing
537   /// this phi node.
538   void fixFirstOrderRecurrence(PHINode *Phi);
539 
540   /// Fix a reduction cross-iteration phi. This is the second phase of
541   /// vectorizing this phi node.
542   void fixReduction(PHINode *Phi);
543 
544   /// Clear NSW/NUW flags from reduction instructions if necessary.
545   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
546 
547   /// The Loop exit block may have single value PHI nodes with some
548   /// incoming value. While vectorizing we only handled real values
549   /// that were defined inside the loop and we should have one value for
550   /// each predecessor of its parent basic block. See PR14725.
551   void fixLCSSAPHIs();
552 
553   /// Iteratively sink the scalarized operands of a predicated instruction into
554   /// the block that was created for it.
555   void sinkScalarOperands(Instruction *PredInst);
556 
557   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
558   /// represented as.
559   void truncateToMinimalBitwidths();
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
569   /// to each vector element of Val. The sequence starts at StartIndex.
570   /// \p Opcode is relevant for FP induction variable.
571   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
572                                Instruction::BinaryOps Opcode =
573                                Instruction::BinaryOpsEnd);
574 
575   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
576   /// variable on which to base the steps, \p Step is the size of the step, and
577   /// \p EntryVal is the value from the original loop that maps to the steps.
578   /// Note that \p EntryVal doesn't have to be an induction variable - it
579   /// can also be a truncate instruction.
580   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
581                         const InductionDescriptor &ID);
582 
583   /// Create a vector induction phi node based on an existing scalar one. \p
584   /// EntryVal is the value from the original loop that maps to the vector phi
585   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
586   /// truncate instruction, instead of widening the original IV, we widen a
587   /// version of the IV truncated to \p EntryVal's type.
588   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
589                                        Value *Step, Instruction *EntryVal);
590 
591   /// Returns true if an instruction \p I should be scalarized instead of
592   /// vectorized for the chosen vectorization factor.
593   bool shouldScalarizeInstruction(Instruction *I) const;
594 
595   /// Returns true if we should generate a scalar version of \p IV.
596   bool needsScalarInduction(Instruction *IV) const;
597 
598   /// If there is a cast involved in the induction variable \p ID, which should
599   /// be ignored in the vectorized loop body, this function records the
600   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
601   /// cast. We had already proved that the casted Phi is equal to the uncasted
602   /// Phi in the vectorized loop (under a runtime guard), and therefore
603   /// there is no need to vectorize the cast - the same value can be used in the
604   /// vector loop for both the Phi and the cast.
605   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
606   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
607   ///
608   /// \p EntryVal is the value from the original loop that maps to the vector
609   /// phi node and is used to distinguish what is the IV currently being
610   /// processed - original one (if \p EntryVal is a phi corresponding to the
611   /// original IV) or the "newly-created" one based on the proof mentioned above
612   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
613   /// latter case \p EntryVal is a TruncInst and we must not record anything for
614   /// that IV, but it's error-prone to expect callers of this routine to care
615   /// about that, hence this explicit parameter.
616   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
617                                              const Instruction *EntryVal,
618                                              Value *VectorLoopValue,
619                                              unsigned Part,
620                                              unsigned Lane = UINT_MAX);
621 
622   /// Generate a shuffle sequence that will reverse the vector Vec.
623   virtual Value *reverseVector(Value *Vec);
624 
625   /// Returns (and creates if needed) the original loop trip count.
626   Value *getOrCreateTripCount(Loop *NewLoop);
627 
628   /// Returns (and creates if needed) the trip count of the widened loop.
629   Value *getOrCreateVectorTripCount(Loop *NewLoop);
630 
631   /// Returns a bitcasted value to the requested vector type.
632   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
633   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
634                                 const DataLayout &DL);
635 
636   /// Emit a bypass check to see if the vector trip count is zero, including if
637   /// it overflows.
638   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
639 
640   /// Emit a bypass check to see if all of the SCEV assumptions we've
641   /// had to make are correct.
642   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
643 
644   /// Emit bypass checks to check any memory assumptions we may have made.
645   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
646 
647   /// Compute the transformed value of Index at offset StartValue using step
648   /// StepValue.
649   /// For integer induction, returns StartValue + Index * StepValue.
650   /// For pointer induction, returns StartValue[Index * StepValue].
651   /// FIXME: The newly created binary instructions should contain nsw/nuw
652   /// flags, which can be found from the original scalar operations.
653   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
654                               const DataLayout &DL,
655                               const InductionDescriptor &ID) const;
656 
657   /// Add additional metadata to \p To that was not present on \p Orig.
658   ///
659   /// Currently this is used to add the noalias annotations based on the
660   /// inserted memchecks.  Use this for instructions that are *cloned* into the
661   /// vector loop.
662   void addNewMetadata(Instruction *To, const Instruction *Orig);
663 
664   /// Add metadata from one instruction to another.
665   ///
666   /// This includes both the original MDs from \p From and additional ones (\see
667   /// addNewMetadata).  Use this for *newly created* instructions in the vector
668   /// loop.
669   void addMetadata(Instruction *To, Instruction *From);
670 
671   /// Similar to the previous function but it adds the metadata to a
672   /// vector of instructions.
673   void addMetadata(ArrayRef<Value *> To, Instruction *From);
674 
675   /// The original loop.
676   Loop *OrigLoop;
677 
678   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
679   /// dynamic knowledge to simplify SCEV expressions and converts them to a
680   /// more usable form.
681   PredicatedScalarEvolution &PSE;
682 
683   /// Loop Info.
684   LoopInfo *LI;
685 
686   /// Dominator Tree.
687   DominatorTree *DT;
688 
689   /// Alias Analysis.
690   AAResults *AA;
691 
692   /// Target Library Info.
693   const TargetLibraryInfo *TLI;
694 
695   /// Target Transform Info.
696   const TargetTransformInfo *TTI;
697 
698   /// Assumption Cache.
699   AssumptionCache *AC;
700 
701   /// Interface to emit optimization remarks.
702   OptimizationRemarkEmitter *ORE;
703 
704   /// LoopVersioning.  It's only set up (non-null) if memchecks were
705   /// used.
706   ///
707   /// This is currently only used to add no-alias metadata based on the
708   /// memchecks.  The actually versioning is performed manually.
709   std::unique_ptr<LoopVersioning> LVer;
710 
711   /// The vectorization SIMD factor to use. Each vector will have this many
712   /// vector elements.
713   unsigned VF;
714 
715   /// The vectorization unroll factor to use. Each scalar is vectorized to this
716   /// many different vector instructions.
717   unsigned UF;
718 
719   /// The builder that we use
720   IRBuilder<> Builder;
721 
722   // --- Vectorization state ---
723 
724   /// The vector-loop preheader.
725   BasicBlock *LoopVectorPreHeader;
726 
727   /// The scalar-loop preheader.
728   BasicBlock *LoopScalarPreHeader;
729 
730   /// Middle Block between the vector and the scalar.
731   BasicBlock *LoopMiddleBlock;
732 
733   /// The ExitBlock of the scalar loop.
734   BasicBlock *LoopExitBlock;
735 
736   /// The vector loop body.
737   BasicBlock *LoopVectorBody;
738 
739   /// The scalar loop body.
740   BasicBlock *LoopScalarBody;
741 
742   /// A list of all bypass blocks. The first block is the entry of the loop.
743   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
744 
745   /// The new Induction variable which was added to the new block.
746   PHINode *Induction = nullptr;
747 
748   /// The induction variable of the old basic block.
749   PHINode *OldInduction = nullptr;
750 
751   /// Maps values from the original loop to their corresponding values in the
752   /// vectorized loop. A key value can map to either vector values, scalar
753   /// values or both kinds of values, depending on whether the key was
754   /// vectorized and scalarized.
755   VectorizerValueMap VectorLoopValueMap;
756 
757   /// Store instructions that were predicated.
758   SmallVector<Instruction *, 4> PredicatedInstructions;
759 
760   /// Trip count of the original loop.
761   Value *TripCount = nullptr;
762 
763   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
764   Value *VectorTripCount = nullptr;
765 
766   /// The legality analysis.
767   LoopVectorizationLegality *Legal;
768 
769   /// The profitablity analysis.
770   LoopVectorizationCostModel *Cost;
771 
772   // Record whether runtime checks are added.
773   bool AddedSafetyChecks = false;
774 
775   // Holds the end values for each induction variable. We save the end values
776   // so we can later fix-up the external users of the induction variables.
777   DenseMap<PHINode *, Value *> IVEndValues;
778 
779   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
780   // fixed up at the end of vector code generation.
781   SmallVector<PHINode *, 8> OrigPHIsToFix;
782 };
783 
784 class InnerLoopUnroller : public InnerLoopVectorizer {
785 public:
786   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
787                     LoopInfo *LI, DominatorTree *DT,
788                     const TargetLibraryInfo *TLI,
789                     const TargetTransformInfo *TTI, AssumptionCache *AC,
790                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
791                     LoopVectorizationLegality *LVL,
792                     LoopVectorizationCostModel *CM)
793       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
794                             UnrollFactor, LVL, CM) {}
795 
796 private:
797   Value *getBroadcastInstrs(Value *V) override;
798   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
799                        Instruction::BinaryOps Opcode =
800                        Instruction::BinaryOpsEnd) override;
801   Value *reverseVector(Value *Vec) override;
802 };
803 
804 } // end namespace llvm
805 
806 /// Look for a meaningful debug location on the instruction or it's
807 /// operands.
808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
809   if (!I)
810     return I;
811 
812   DebugLoc Empty;
813   if (I->getDebugLoc() != Empty)
814     return I;
815 
816   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
817     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
818       if (OpInst->getDebugLoc() != Empty)
819         return OpInst;
820   }
821 
822   return I;
823 }
824 
825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
826   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
827     const DILocation *DIL = Inst->getDebugLoc();
828     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
829         !isa<DbgInfoIntrinsic>(Inst)) {
830       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
831       if (NewDIL)
832         B.SetCurrentDebugLocation(NewDIL.getValue());
833       else
834         LLVM_DEBUG(dbgs()
835                    << "Failed to create new discriminator: "
836                    << DIL->getFilename() << " Line: " << DIL->getLine());
837     }
838     else
839       B.SetCurrentDebugLocation(DIL);
840   } else
841     B.SetCurrentDebugLocation(DebugLoc());
842 }
843 
844 /// Write a record \p DebugMsg about vectorization failure to the debug
845 /// output stream. If \p I is passed, it is an instruction that prevents
846 /// vectorization.
847 #ifndef NDEBUG
848 static void debugVectorizationFailure(const StringRef DebugMsg,
849     Instruction *I) {
850   dbgs() << "LV: Not vectorizing: " << DebugMsg;
851   if (I != nullptr)
852     dbgs() << " " << *I;
853   else
854     dbgs() << '.';
855   dbgs() << '\n';
856 }
857 #endif
858 
859 /// Create an analysis remark that explains why vectorization failed
860 ///
861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
862 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
863 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
864 /// the location of the remark.  \return the remark object that can be
865 /// streamed to.
866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
867     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
868   Value *CodeRegion = TheLoop->getHeader();
869   DebugLoc DL = TheLoop->getStartLoc();
870 
871   if (I) {
872     CodeRegion = I->getParent();
873     // If there is no debug location attached to the instruction, revert back to
874     // using the loop's.
875     if (I->getDebugLoc())
876       DL = I->getDebugLoc();
877   }
878 
879   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
880   R << "loop not vectorized: ";
881   return R;
882 }
883 
884 namespace llvm {
885 
886 void reportVectorizationFailure(const StringRef DebugMsg,
887     const StringRef OREMsg, const StringRef ORETag,
888     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
889   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
890   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
891   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
892                 ORETag, TheLoop, I) << OREMsg);
893 }
894 
895 } // end namespace llvm
896 
897 #ifndef NDEBUG
898 /// \return string containing a file name and a line # for the given loop.
899 static std::string getDebugLocString(const Loop *L) {
900   std::string Result;
901   if (L) {
902     raw_string_ostream OS(Result);
903     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
904       LoopDbgLoc.print(OS);
905     else
906       // Just print the module name.
907       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
908     OS.flush();
909   }
910   return Result;
911 }
912 #endif
913 
914 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
915                                          const Instruction *Orig) {
916   // If the loop was versioned with memchecks, add the corresponding no-alias
917   // metadata.
918   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
919     LVer->annotateInstWithNoAlias(To, Orig);
920 }
921 
922 void InnerLoopVectorizer::addMetadata(Instruction *To,
923                                       Instruction *From) {
924   propagateMetadata(To, From);
925   addNewMetadata(To, From);
926 }
927 
928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
929                                       Instruction *From) {
930   for (Value *V : To) {
931     if (Instruction *I = dyn_cast<Instruction>(V))
932       addMetadata(I, From);
933   }
934 }
935 
936 namespace llvm {
937 
938 // Loop vectorization cost-model hints how the scalar epilogue loop should be
939 // lowered.
940 enum ScalarEpilogueLowering {
941 
942   // The default: allowing scalar epilogues.
943   CM_ScalarEpilogueAllowed,
944 
945   // Vectorization with OptForSize: don't allow epilogues.
946   CM_ScalarEpilogueNotAllowedOptSize,
947 
948   // A special case of vectorisation with OptForSize: loops with a very small
949   // trip count are considered for vectorization under OptForSize, thereby
950   // making sure the cost of their loop body is dominant, free of runtime
951   // guards and scalar iteration overheads.
952   CM_ScalarEpilogueNotAllowedLowTripLoop,
953 
954   // Loop hint predicate indicating an epilogue is undesired.
955   CM_ScalarEpilogueNotNeededUsePredicate
956 };
957 
958 /// LoopVectorizationCostModel - estimates the expected speedups due to
959 /// vectorization.
960 /// In many cases vectorization is not profitable. This can happen because of
961 /// a number of reasons. In this class we mainly attempt to predict the
962 /// expected speedup/slowdowns due to the supported instruction set. We use the
963 /// TargetTransformInfo to query the different backends for the cost of
964 /// different operations.
965 class LoopVectorizationCostModel {
966 public:
967   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
968                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
969                              LoopVectorizationLegality *Legal,
970                              const TargetTransformInfo &TTI,
971                              const TargetLibraryInfo *TLI, DemandedBits *DB,
972                              AssumptionCache *AC,
973                              OptimizationRemarkEmitter *ORE, const Function *F,
974                              const LoopVectorizeHints *Hints,
975                              InterleavedAccessInfo &IAI)
976       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
977         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
978         Hints(Hints), InterleaveInfo(IAI) {}
979 
980   /// \return An upper bound for the vectorization factor, or None if
981   /// vectorization and interleaving should be avoided up front.
982   Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC);
983 
984   /// \return True if runtime checks are required for vectorization, and false
985   /// otherwise.
986   bool runtimeChecksRequired();
987 
988   /// \return The most profitable vectorization factor and the cost of that VF.
989   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
990   /// then this vectorization factor will be selected if vectorization is
991   /// possible.
992   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
993 
994   /// Setup cost-based decisions for user vectorization factor.
995   void selectUserVectorizationFactor(unsigned UserVF) {
996     collectUniformsAndScalars(UserVF);
997     collectInstsToScalarize(UserVF);
998   }
999 
1000   /// \return The size (in bits) of the smallest and widest types in the code
1001   /// that needs to be vectorized. We ignore values that remain scalar such as
1002   /// 64 bit loop indices.
1003   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1004 
1005   /// \return The desired interleave count.
1006   /// If interleave count has been specified by metadata it will be returned.
1007   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1008   /// are the selected vectorization factor and the cost of the selected VF.
1009   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1010 
1011   /// Memory access instruction may be vectorized in more than one way.
1012   /// Form of instruction after vectorization depends on cost.
1013   /// This function takes cost-based decisions for Load/Store instructions
1014   /// and collects them in a map. This decisions map is used for building
1015   /// the lists of loop-uniform and loop-scalar instructions.
1016   /// The calculated cost is saved with widening decision in order to
1017   /// avoid redundant calculations.
1018   void setCostBasedWideningDecision(unsigned VF);
1019 
1020   /// A struct that represents some properties of the register usage
1021   /// of a loop.
1022   struct RegisterUsage {
1023     /// Holds the number of loop invariant values that are used in the loop.
1024     /// The key is ClassID of target-provided register class.
1025     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1026     /// Holds the maximum number of concurrent live intervals in the loop.
1027     /// The key is ClassID of target-provided register class.
1028     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1029   };
1030 
1031   /// \return Returns information about the register usages of the loop for the
1032   /// given vectorization factors.
1033   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1034 
1035   /// Collect values we want to ignore in the cost model.
1036   void collectValuesToIgnore();
1037 
1038   /// \returns The smallest bitwidth each instruction can be represented with.
1039   /// The vector equivalents of these instructions should be truncated to this
1040   /// type.
1041   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1042     return MinBWs;
1043   }
1044 
1045   /// \returns True if it is more profitable to scalarize instruction \p I for
1046   /// vectorization factor \p VF.
1047   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1048     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1049 
1050     // Cost model is not run in the VPlan-native path - return conservative
1051     // result until this changes.
1052     if (EnableVPlanNativePath)
1053       return false;
1054 
1055     auto Scalars = InstsToScalarize.find(VF);
1056     assert(Scalars != InstsToScalarize.end() &&
1057            "VF not yet analyzed for scalarization profitability");
1058     return Scalars->second.find(I) != Scalars->second.end();
1059   }
1060 
1061   /// Returns true if \p I is known to be uniform after vectorization.
1062   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1063     if (VF == 1)
1064       return true;
1065 
1066     // Cost model is not run in the VPlan-native path - return conservative
1067     // result until this changes.
1068     if (EnableVPlanNativePath)
1069       return false;
1070 
1071     auto UniformsPerVF = Uniforms.find(VF);
1072     assert(UniformsPerVF != Uniforms.end() &&
1073            "VF not yet analyzed for uniformity");
1074     return UniformsPerVF->second.count(I);
1075   }
1076 
1077   /// Returns true if \p I is known to be scalar after vectorization.
1078   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1079     if (VF == 1)
1080       return true;
1081 
1082     // Cost model is not run in the VPlan-native path - return conservative
1083     // result until this changes.
1084     if (EnableVPlanNativePath)
1085       return false;
1086 
1087     auto ScalarsPerVF = Scalars.find(VF);
1088     assert(ScalarsPerVF != Scalars.end() &&
1089            "Scalar values are not calculated for VF");
1090     return ScalarsPerVF->second.count(I);
1091   }
1092 
1093   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1094   /// for vectorization factor \p VF.
1095   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1096     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1097            !isProfitableToScalarize(I, VF) &&
1098            !isScalarAfterVectorization(I, VF);
1099   }
1100 
1101   /// Decision that was taken during cost calculation for memory instruction.
1102   enum InstWidening {
1103     CM_Unknown,
1104     CM_Widen,         // For consecutive accesses with stride +1.
1105     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1106     CM_Interleave,
1107     CM_GatherScatter,
1108     CM_Scalarize
1109   };
1110 
1111   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1112   /// instruction \p I and vector width \p VF.
1113   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1114                            unsigned Cost) {
1115     assert(VF >= 2 && "Expected VF >=2");
1116     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1117   }
1118 
1119   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1120   /// interleaving group \p Grp and vector width \p VF.
1121   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1122                            InstWidening W, unsigned Cost) {
1123     assert(VF >= 2 && "Expected VF >=2");
1124     /// Broadcast this decicion to all instructions inside the group.
1125     /// But the cost will be assigned to one instruction only.
1126     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1127       if (auto *I = Grp->getMember(i)) {
1128         if (Grp->getInsertPos() == I)
1129           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1130         else
1131           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1132       }
1133     }
1134   }
1135 
1136   /// Return the cost model decision for the given instruction \p I and vector
1137   /// width \p VF. Return CM_Unknown if this instruction did not pass
1138   /// through the cost modeling.
1139   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1140     assert(VF >= 2 && "Expected VF >=2");
1141 
1142     // Cost model is not run in the VPlan-native path - return conservative
1143     // result until this changes.
1144     if (EnableVPlanNativePath)
1145       return CM_GatherScatter;
1146 
1147     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1148     auto Itr = WideningDecisions.find(InstOnVF);
1149     if (Itr == WideningDecisions.end())
1150       return CM_Unknown;
1151     return Itr->second.first;
1152   }
1153 
1154   /// Return the vectorization cost for the given instruction \p I and vector
1155   /// width \p VF.
1156   unsigned getWideningCost(Instruction *I, unsigned VF) {
1157     assert(VF >= 2 && "Expected VF >=2");
1158     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1159     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1160            "The cost is not calculated");
1161     return WideningDecisions[InstOnVF].second;
1162   }
1163 
1164   /// Return True if instruction \p I is an optimizable truncate whose operand
1165   /// is an induction variable. Such a truncate will be removed by adding a new
1166   /// induction variable with the destination type.
1167   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1168     // If the instruction is not a truncate, return false.
1169     auto *Trunc = dyn_cast<TruncInst>(I);
1170     if (!Trunc)
1171       return false;
1172 
1173     // Get the source and destination types of the truncate.
1174     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1175     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1176 
1177     // If the truncate is free for the given types, return false. Replacing a
1178     // free truncate with an induction variable would add an induction variable
1179     // update instruction to each iteration of the loop. We exclude from this
1180     // check the primary induction variable since it will need an update
1181     // instruction regardless.
1182     Value *Op = Trunc->getOperand(0);
1183     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1184       return false;
1185 
1186     // If the truncated value is not an induction variable, return false.
1187     return Legal->isInductionPhi(Op);
1188   }
1189 
1190   /// Collects the instructions to scalarize for each predicated instruction in
1191   /// the loop.
1192   void collectInstsToScalarize(unsigned VF);
1193 
1194   /// Collect Uniform and Scalar values for the given \p VF.
1195   /// The sets depend on CM decision for Load/Store instructions
1196   /// that may be vectorized as interleave, gather-scatter or scalarized.
1197   void collectUniformsAndScalars(unsigned VF) {
1198     // Do the analysis once.
1199     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1200       return;
1201     setCostBasedWideningDecision(VF);
1202     collectLoopUniforms(VF);
1203     collectLoopScalars(VF);
1204   }
1205 
1206   /// Returns true if the target machine supports masked store operation
1207   /// for the given \p DataType and kind of access to \p Ptr.
1208   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) {
1209     return Legal->isConsecutivePtr(Ptr) &&
1210            TTI.isLegalMaskedStore(DataType, Alignment);
1211   }
1212 
1213   /// Returns true if the target machine supports masked load operation
1214   /// for the given \p DataType and kind of access to \p Ptr.
1215   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) {
1216     return Legal->isConsecutivePtr(Ptr) &&
1217            TTI.isLegalMaskedLoad(DataType, Alignment);
1218   }
1219 
1220   /// Returns true if the target machine supports masked scatter operation
1221   /// for the given \p DataType.
1222   bool isLegalMaskedScatter(Type *DataType, Align Alignment) {
1223     return TTI.isLegalMaskedScatter(DataType, Alignment);
1224   }
1225 
1226   /// Returns true if the target machine supports masked gather operation
1227   /// for the given \p DataType.
1228   bool isLegalMaskedGather(Type *DataType, Align Alignment) {
1229     return TTI.isLegalMaskedGather(DataType, Alignment);
1230   }
1231 
1232   /// Returns true if the target machine can represent \p V as a masked gather
1233   /// or scatter operation.
1234   bool isLegalGatherOrScatter(Value *V) {
1235     bool LI = isa<LoadInst>(V);
1236     bool SI = isa<StoreInst>(V);
1237     if (!LI && !SI)
1238       return false;
1239     auto *Ty = getMemInstValueType(V);
1240     Align Align = getLoadStoreAlignment(V);
1241     return (LI && isLegalMaskedGather(Ty, Align)) ||
1242            (SI && isLegalMaskedScatter(Ty, Align));
1243   }
1244 
1245   /// Returns true if \p I is an instruction that will be scalarized with
1246   /// predication. Such instructions include conditional stores and
1247   /// instructions that may divide by zero.
1248   /// If a non-zero VF has been calculated, we check if I will be scalarized
1249   /// predication for that VF.
1250   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1251 
1252   // Returns true if \p I is an instruction that will be predicated either
1253   // through scalar predication or masked load/store or masked gather/scatter.
1254   // Superset of instructions that return true for isScalarWithPredication.
1255   bool isPredicatedInst(Instruction *I) {
1256     if (!blockNeedsPredication(I->getParent()))
1257       return false;
1258     // Loads and stores that need some form of masked operation are predicated
1259     // instructions.
1260     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1261       return Legal->isMaskRequired(I);
1262     return isScalarWithPredication(I);
1263   }
1264 
1265   /// Returns true if \p I is a memory instruction with consecutive memory
1266   /// access that can be widened.
1267   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1268 
1269   /// Returns true if \p I is a memory instruction in an interleaved-group
1270   /// of memory accesses that can be vectorized with wide vector loads/stores
1271   /// and shuffles.
1272   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1273 
1274   /// Check if \p Instr belongs to any interleaved access group.
1275   bool isAccessInterleaved(Instruction *Instr) {
1276     return InterleaveInfo.isInterleaved(Instr);
1277   }
1278 
1279   /// Get the interleaved access group that \p Instr belongs to.
1280   const InterleaveGroup<Instruction> *
1281   getInterleavedAccessGroup(Instruction *Instr) {
1282     return InterleaveInfo.getInterleaveGroup(Instr);
1283   }
1284 
1285   /// Returns true if an interleaved group requires a scalar iteration
1286   /// to handle accesses with gaps, and there is nothing preventing us from
1287   /// creating a scalar epilogue.
1288   bool requiresScalarEpilogue() const {
1289     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1290   }
1291 
1292   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1293   /// loop hint annotation.
1294   bool isScalarEpilogueAllowed() const {
1295     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1296   }
1297 
1298   /// Returns true if all loop blocks should be masked to fold tail loop.
1299   bool foldTailByMasking() const { return FoldTailByMasking; }
1300 
1301   bool blockNeedsPredication(BasicBlock *BB) {
1302     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1303   }
1304 
1305   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1306   /// with factor VF.  Return the cost of the instruction, including
1307   /// scalarization overhead if it's needed.
1308   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1309 
1310   /// Estimate cost of a call instruction CI if it were vectorized with factor
1311   /// VF. Return the cost of the instruction, including scalarization overhead
1312   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1313   /// scalarized -
1314   /// i.e. either vector version isn't available, or is too expensive.
1315   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1316 
1317   /// Invalidates decisions already taken by the cost model.
1318   void invalidateCostModelingDecisions() {
1319     WideningDecisions.clear();
1320     Uniforms.clear();
1321     Scalars.clear();
1322   }
1323 
1324 private:
1325   unsigned NumPredStores = 0;
1326 
1327   /// \return An upper bound for the vectorization factor, a power-of-2 larger
1328   /// than zero. One is returned if vectorization should best be avoided due
1329   /// to cost.
1330   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1331 
1332   /// The vectorization cost is a combination of the cost itself and a boolean
1333   /// indicating whether any of the contributing operations will actually
1334   /// operate on
1335   /// vector values after type legalization in the backend. If this latter value
1336   /// is
1337   /// false, then all operations will be scalarized (i.e. no vectorization has
1338   /// actually taken place).
1339   using VectorizationCostTy = std::pair<unsigned, bool>;
1340 
1341   /// Returns the expected execution cost. The unit of the cost does
1342   /// not matter because we use the 'cost' units to compare different
1343   /// vector widths. The cost that is returned is *not* normalized by
1344   /// the factor width.
1345   VectorizationCostTy expectedCost(unsigned VF);
1346 
1347   /// Returns the execution time cost of an instruction for a given vector
1348   /// width. Vector width of one means scalar.
1349   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1350 
1351   /// The cost-computation logic from getInstructionCost which provides
1352   /// the vector type as an output parameter.
1353   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1354 
1355   /// Calculate vectorization cost of memory instruction \p I.
1356   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1357 
1358   /// The cost computation for scalarized memory instruction.
1359   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1360 
1361   /// The cost computation for interleaving group of memory instructions.
1362   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1363 
1364   /// The cost computation for Gather/Scatter instruction.
1365   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1366 
1367   /// The cost computation for widening instruction \p I with consecutive
1368   /// memory access.
1369   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1370 
1371   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1372   /// Load: scalar load + broadcast.
1373   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1374   /// element)
1375   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1376 
1377   /// Estimate the overhead of scalarizing an instruction. This is a
1378   /// convenience wrapper for the type-based getScalarizationOverhead API.
1379   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1380 
1381   /// Returns whether the instruction is a load or store and will be a emitted
1382   /// as a vector operation.
1383   bool isConsecutiveLoadOrStore(Instruction *I);
1384 
1385   /// Returns true if an artificially high cost for emulated masked memrefs
1386   /// should be used.
1387   bool useEmulatedMaskMemRefHack(Instruction *I);
1388 
1389   /// Map of scalar integer values to the smallest bitwidth they can be legally
1390   /// represented as. The vector equivalents of these values should be truncated
1391   /// to this type.
1392   MapVector<Instruction *, uint64_t> MinBWs;
1393 
1394   /// A type representing the costs for instructions if they were to be
1395   /// scalarized rather than vectorized. The entries are Instruction-Cost
1396   /// pairs.
1397   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1398 
1399   /// A set containing all BasicBlocks that are known to present after
1400   /// vectorization as a predicated block.
1401   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1402 
1403   /// Records whether it is allowed to have the original scalar loop execute at
1404   /// least once. This may be needed as a fallback loop in case runtime
1405   /// aliasing/dependence checks fail, or to handle the tail/remainder
1406   /// iterations when the trip count is unknown or doesn't divide by the VF,
1407   /// or as a peel-loop to handle gaps in interleave-groups.
1408   /// Under optsize and when the trip count is very small we don't allow any
1409   /// iterations to execute in the scalar loop.
1410   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1411 
1412   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1413   bool FoldTailByMasking = false;
1414 
1415   /// A map holding scalar costs for different vectorization factors. The
1416   /// presence of a cost for an instruction in the mapping indicates that the
1417   /// instruction will be scalarized when vectorizing with the associated
1418   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1419   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1420 
1421   /// Holds the instructions known to be uniform after vectorization.
1422   /// The data is collected per VF.
1423   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1424 
1425   /// Holds the instructions known to be scalar after vectorization.
1426   /// The data is collected per VF.
1427   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1428 
1429   /// Holds the instructions (address computations) that are forced to be
1430   /// scalarized.
1431   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1432 
1433   /// Returns the expected difference in cost from scalarizing the expression
1434   /// feeding a predicated instruction \p PredInst. The instructions to
1435   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1436   /// non-negative return value implies the expression will be scalarized.
1437   /// Currently, only single-use chains are considered for scalarization.
1438   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1439                               unsigned VF);
1440 
1441   /// Collect the instructions that are uniform after vectorization. An
1442   /// instruction is uniform if we represent it with a single scalar value in
1443   /// the vectorized loop corresponding to each vector iteration. Examples of
1444   /// uniform instructions include pointer operands of consecutive or
1445   /// interleaved memory accesses. Note that although uniformity implies an
1446   /// instruction will be scalar, the reverse is not true. In general, a
1447   /// scalarized instruction will be represented by VF scalar values in the
1448   /// vectorized loop, each corresponding to an iteration of the original
1449   /// scalar loop.
1450   void collectLoopUniforms(unsigned VF);
1451 
1452   /// Collect the instructions that are scalar after vectorization. An
1453   /// instruction is scalar if it is known to be uniform or will be scalarized
1454   /// during vectorization. Non-uniform scalarized instructions will be
1455   /// represented by VF values in the vectorized loop, each corresponding to an
1456   /// iteration of the original scalar loop.
1457   void collectLoopScalars(unsigned VF);
1458 
1459   /// Keeps cost model vectorization decision and cost for instructions.
1460   /// Right now it is used for memory instructions only.
1461   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1462                                 std::pair<InstWidening, unsigned>>;
1463 
1464   DecisionList WideningDecisions;
1465 
1466   /// Returns true if \p V is expected to be vectorized and it needs to be
1467   /// extracted.
1468   bool needsExtract(Value *V, unsigned VF) const {
1469     Instruction *I = dyn_cast<Instruction>(V);
1470     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1471       return false;
1472 
1473     // Assume we can vectorize V (and hence we need extraction) if the
1474     // scalars are not computed yet. This can happen, because it is called
1475     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1476     // the scalars are collected. That should be a safe assumption in most
1477     // cases, because we check if the operands have vectorizable types
1478     // beforehand in LoopVectorizationLegality.
1479     return Scalars.find(VF) == Scalars.end() ||
1480            !isScalarAfterVectorization(I, VF);
1481   };
1482 
1483   /// Returns a range containing only operands needing to be extracted.
1484   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1485                                                    unsigned VF) {
1486     return SmallVector<Value *, 4>(make_filter_range(
1487         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1488   }
1489 
1490 public:
1491   /// The loop that we evaluate.
1492   Loop *TheLoop;
1493 
1494   /// Predicated scalar evolution analysis.
1495   PredicatedScalarEvolution &PSE;
1496 
1497   /// Loop Info analysis.
1498   LoopInfo *LI;
1499 
1500   /// Vectorization legality.
1501   LoopVectorizationLegality *Legal;
1502 
1503   /// Vector target information.
1504   const TargetTransformInfo &TTI;
1505 
1506   /// Target Library Info.
1507   const TargetLibraryInfo *TLI;
1508 
1509   /// Demanded bits analysis.
1510   DemandedBits *DB;
1511 
1512   /// Assumption cache.
1513   AssumptionCache *AC;
1514 
1515   /// Interface to emit optimization remarks.
1516   OptimizationRemarkEmitter *ORE;
1517 
1518   const Function *TheFunction;
1519 
1520   /// Loop Vectorize Hint.
1521   const LoopVectorizeHints *Hints;
1522 
1523   /// The interleave access information contains groups of interleaved accesses
1524   /// with the same stride and close to each other.
1525   InterleavedAccessInfo &InterleaveInfo;
1526 
1527   /// Values to ignore in the cost model.
1528   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1529 
1530   /// Values to ignore in the cost model when VF > 1.
1531   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1532 };
1533 
1534 } // end namespace llvm
1535 
1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1537 // vectorization. The loop needs to be annotated with #pragma omp simd
1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1539 // vector length information is not provided, vectorization is not considered
1540 // explicit. Interleave hints are not allowed either. These limitations will be
1541 // relaxed in the future.
1542 // Please, note that we are currently forced to abuse the pragma 'clang
1543 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1545 // provides *explicit vectorization hints* (LV can bypass legal checks and
1546 // assume that vectorization is legal). However, both hints are implemented
1547 // using the same metadata (llvm.loop.vectorize, processed by
1548 // LoopVectorizeHints). This will be fixed in the future when the native IR
1549 // representation for pragma 'omp simd' is introduced.
1550 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1551                                    OptimizationRemarkEmitter *ORE) {
1552   assert(!OuterLp->empty() && "This is not an outer loop");
1553   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1554 
1555   // Only outer loops with an explicit vectorization hint are supported.
1556   // Unannotated outer loops are ignored.
1557   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1558     return false;
1559 
1560   Function *Fn = OuterLp->getHeader()->getParent();
1561   if (!Hints.allowVectorization(Fn, OuterLp,
1562                                 true /*VectorizeOnlyWhenForced*/)) {
1563     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1564     return false;
1565   }
1566 
1567   if (Hints.getInterleave() > 1) {
1568     // TODO: Interleave support is future work.
1569     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1570                          "outer loops.\n");
1571     Hints.emitRemarkWithHints();
1572     return false;
1573   }
1574 
1575   return true;
1576 }
1577 
1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1579                                   OptimizationRemarkEmitter *ORE,
1580                                   SmallVectorImpl<Loop *> &V) {
1581   // Collect inner loops and outer loops without irreducible control flow. For
1582   // now, only collect outer loops that have explicit vectorization hints. If we
1583   // are stress testing the VPlan H-CFG construction, we collect the outermost
1584   // loop of every loop nest.
1585   if (L.empty() || VPlanBuildStressTest ||
1586       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1587     LoopBlocksRPO RPOT(&L);
1588     RPOT.perform(LI);
1589     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1590       V.push_back(&L);
1591       // TODO: Collect inner loops inside marked outer loops in case
1592       // vectorization fails for the outer loop. Do not invoke
1593       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1594       // already known to be reducible. We can use an inherited attribute for
1595       // that.
1596       return;
1597     }
1598   }
1599   for (Loop *InnerL : L)
1600     collectSupportedLoops(*InnerL, LI, ORE, V);
1601 }
1602 
1603 namespace {
1604 
1605 /// The LoopVectorize Pass.
1606 struct LoopVectorize : public FunctionPass {
1607   /// Pass identification, replacement for typeid
1608   static char ID;
1609 
1610   LoopVectorizePass Impl;
1611 
1612   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1613                          bool VectorizeOnlyWhenForced = false)
1614       : FunctionPass(ID),
1615         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1616     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1617   }
1618 
1619   bool runOnFunction(Function &F) override {
1620     if (skipFunction(F))
1621       return false;
1622 
1623     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1624     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1625     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1626     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1627     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1628     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1629     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1630     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1631     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1632     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1633     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1634     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1635     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1636 
1637     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1638         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1639 
1640     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1641                         GetLAA, *ORE, PSI).MadeAnyChange;
1642   }
1643 
1644   void getAnalysisUsage(AnalysisUsage &AU) const override {
1645     AU.addRequired<AssumptionCacheTracker>();
1646     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1647     AU.addRequired<DominatorTreeWrapperPass>();
1648     AU.addRequired<LoopInfoWrapperPass>();
1649     AU.addRequired<ScalarEvolutionWrapperPass>();
1650     AU.addRequired<TargetTransformInfoWrapperPass>();
1651     AU.addRequired<AAResultsWrapperPass>();
1652     AU.addRequired<LoopAccessLegacyAnalysis>();
1653     AU.addRequired<DemandedBitsWrapperPass>();
1654     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1655     AU.addRequired<InjectTLIMappingsLegacy>();
1656 
1657     // We currently do not preserve loopinfo/dominator analyses with outer loop
1658     // vectorization. Until this is addressed, mark these analyses as preserved
1659     // only for non-VPlan-native path.
1660     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1661     if (!EnableVPlanNativePath) {
1662       AU.addPreserved<LoopInfoWrapperPass>();
1663       AU.addPreserved<DominatorTreeWrapperPass>();
1664     }
1665 
1666     AU.addPreserved<BasicAAWrapperPass>();
1667     AU.addPreserved<GlobalsAAWrapperPass>();
1668     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1669   }
1670 };
1671 
1672 } // end anonymous namespace
1673 
1674 //===----------------------------------------------------------------------===//
1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1676 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1677 //===----------------------------------------------------------------------===//
1678 
1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1680   // We need to place the broadcast of invariant variables outside the loop,
1681   // but only if it's proven safe to do so. Else, broadcast will be inside
1682   // vector loop body.
1683   Instruction *Instr = dyn_cast<Instruction>(V);
1684   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1685                      (!Instr ||
1686                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1687   // Place the code for broadcasting invariant variables in the new preheader.
1688   IRBuilder<>::InsertPointGuard Guard(Builder);
1689   if (SafeToHoist)
1690     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1691 
1692   // Broadcast the scalar into all locations in the vector.
1693   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1694 
1695   return Shuf;
1696 }
1697 
1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1699     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1700   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1701          "Expected either an induction phi-node or a truncate of it!");
1702   Value *Start = II.getStartValue();
1703 
1704   // Construct the initial value of the vector IV in the vector loop preheader
1705   auto CurrIP = Builder.saveIP();
1706   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1707   if (isa<TruncInst>(EntryVal)) {
1708     assert(Start->getType()->isIntegerTy() &&
1709            "Truncation requires an integer type");
1710     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1711     Step = Builder.CreateTrunc(Step, TruncType);
1712     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1713   }
1714   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1715   Value *SteppedStart =
1716       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1717 
1718   // We create vector phi nodes for both integer and floating-point induction
1719   // variables. Here, we determine the kind of arithmetic we will perform.
1720   Instruction::BinaryOps AddOp;
1721   Instruction::BinaryOps MulOp;
1722   if (Step->getType()->isIntegerTy()) {
1723     AddOp = Instruction::Add;
1724     MulOp = Instruction::Mul;
1725   } else {
1726     AddOp = II.getInductionOpcode();
1727     MulOp = Instruction::FMul;
1728   }
1729 
1730   // Multiply the vectorization factor by the step using integer or
1731   // floating-point arithmetic as appropriate.
1732   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1733   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1734 
1735   // Create a vector splat to use in the induction update.
1736   //
1737   // FIXME: If the step is non-constant, we create the vector splat with
1738   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1739   //        handle a constant vector splat.
1740   Value *SplatVF =
1741       isa<Constant>(Mul)
1742           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1743           : Builder.CreateVectorSplat(VF, Mul);
1744   Builder.restoreIP(CurrIP);
1745 
1746   // We may need to add the step a number of times, depending on the unroll
1747   // factor. The last of those goes into the PHI.
1748   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1749                                     &*LoopVectorBody->getFirstInsertionPt());
1750   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1751   Instruction *LastInduction = VecInd;
1752   for (unsigned Part = 0; Part < UF; ++Part) {
1753     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1754 
1755     if (isa<TruncInst>(EntryVal))
1756       addMetadata(LastInduction, EntryVal);
1757     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1758 
1759     LastInduction = cast<Instruction>(addFastMathFlag(
1760         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1761     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1762   }
1763 
1764   // Move the last step to the end of the latch block. This ensures consistent
1765   // placement of all induction updates.
1766   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1767   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1768   auto *ICmp = cast<Instruction>(Br->getCondition());
1769   LastInduction->moveBefore(ICmp);
1770   LastInduction->setName("vec.ind.next");
1771 
1772   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1773   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1774 }
1775 
1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1777   return Cost->isScalarAfterVectorization(I, VF) ||
1778          Cost->isProfitableToScalarize(I, VF);
1779 }
1780 
1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1782   if (shouldScalarizeInstruction(IV))
1783     return true;
1784   auto isScalarInst = [&](User *U) -> bool {
1785     auto *I = cast<Instruction>(U);
1786     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1787   };
1788   return llvm::any_of(IV->users(), isScalarInst);
1789 }
1790 
1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1792     const InductionDescriptor &ID, const Instruction *EntryVal,
1793     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1794   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1795          "Expected either an induction phi-node or a truncate of it!");
1796 
1797   // This induction variable is not the phi from the original loop but the
1798   // newly-created IV based on the proof that casted Phi is equal to the
1799   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1800   // re-uses the same InductionDescriptor that original IV uses but we don't
1801   // have to do any recording in this case - that is done when original IV is
1802   // processed.
1803   if (isa<TruncInst>(EntryVal))
1804     return;
1805 
1806   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1807   if (Casts.empty())
1808     return;
1809   // Only the first Cast instruction in the Casts vector is of interest.
1810   // The rest of the Casts (if exist) have no uses outside the
1811   // induction update chain itself.
1812   Instruction *CastInst = *Casts.begin();
1813   if (Lane < UINT_MAX)
1814     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1815   else
1816     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1817 }
1818 
1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1820   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1821          "Primary induction variable must have an integer type");
1822 
1823   auto II = Legal->getInductionVars().find(IV);
1824   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1825 
1826   auto ID = II->second;
1827   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1828 
1829   // The value from the original loop to which we are mapping the new induction
1830   // variable.
1831   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1832 
1833   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1834 
1835   // Generate code for the induction step. Note that induction steps are
1836   // required to be loop-invariant
1837   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1838     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1839            "Induction step should be loop invariant");
1840     if (PSE.getSE()->isSCEVable(IV->getType())) {
1841       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1842       return Exp.expandCodeFor(Step, Step->getType(),
1843                                LoopVectorPreHeader->getTerminator());
1844     }
1845     return cast<SCEVUnknown>(Step)->getValue();
1846   };
1847 
1848   // The scalar value to broadcast. This is derived from the canonical
1849   // induction variable. If a truncation type is given, truncate the canonical
1850   // induction variable and step. Otherwise, derive these values from the
1851   // induction descriptor.
1852   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1853     Value *ScalarIV = Induction;
1854     if (IV != OldInduction) {
1855       ScalarIV = IV->getType()->isIntegerTy()
1856                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1857                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1858                                           IV->getType());
1859       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1860       ScalarIV->setName("offset.idx");
1861     }
1862     if (Trunc) {
1863       auto *TruncType = cast<IntegerType>(Trunc->getType());
1864       assert(Step->getType()->isIntegerTy() &&
1865              "Truncation requires an integer step");
1866       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1867       Step = Builder.CreateTrunc(Step, TruncType);
1868     }
1869     return ScalarIV;
1870   };
1871 
1872   // Create the vector values from the scalar IV, in the absence of creating a
1873   // vector IV.
1874   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1875     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1876     for (unsigned Part = 0; Part < UF; ++Part) {
1877       Value *EntryPart =
1878           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1879       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1880       if (Trunc)
1881         addMetadata(EntryPart, Trunc);
1882       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1883     }
1884   };
1885 
1886   // Now do the actual transformations, and start with creating the step value.
1887   Value *Step = CreateStepValue(ID.getStep());
1888   if (VF <= 1) {
1889     Value *ScalarIV = CreateScalarIV(Step);
1890     CreateSplatIV(ScalarIV, Step);
1891     return;
1892   }
1893 
1894   // Determine if we want a scalar version of the induction variable. This is
1895   // true if the induction variable itself is not widened, or if it has at
1896   // least one user in the loop that is not widened.
1897   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1898   if (!NeedsScalarIV) {
1899     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1900     return;
1901   }
1902 
1903   // Try to create a new independent vector induction variable. If we can't
1904   // create the phi node, we will splat the scalar induction variable in each
1905   // loop iteration.
1906   if (!shouldScalarizeInstruction(EntryVal)) {
1907     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1908     Value *ScalarIV = CreateScalarIV(Step);
1909     // Create scalar steps that can be used by instructions we will later
1910     // scalarize. Note that the addition of the scalar steps will not increase
1911     // the number of instructions in the loop in the common case prior to
1912     // InstCombine. We will be trading one vector extract for each scalar step.
1913     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1914     return;
1915   }
1916 
1917   // All IV users are scalar instructions, so only emit a scalar IV, not a
1918   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
1919   // predicate used by the masked loads/stores.
1920   Value *ScalarIV = CreateScalarIV(Step);
1921   if (!Cost->isScalarEpilogueAllowed())
1922     CreateSplatIV(ScalarIV, Step);
1923   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1924 }
1925 
1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1927                                           Instruction::BinaryOps BinOp) {
1928   // Create and check the types.
1929   auto *ValVTy = cast<VectorType>(Val->getType());
1930   int VLen = ValVTy->getNumElements();
1931 
1932   Type *STy = Val->getType()->getScalarType();
1933   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1934          "Induction Step must be an integer or FP");
1935   assert(Step->getType() == STy && "Step has wrong type");
1936 
1937   SmallVector<Constant *, 8> Indices;
1938 
1939   if (STy->isIntegerTy()) {
1940     // Create a vector of consecutive numbers from zero to VF.
1941     for (int i = 0; i < VLen; ++i)
1942       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1943 
1944     // Add the consecutive indices to the vector value.
1945     Constant *Cv = ConstantVector::get(Indices);
1946     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1947     Step = Builder.CreateVectorSplat(VLen, Step);
1948     assert(Step->getType() == Val->getType() && "Invalid step vec");
1949     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1950     // which can be found from the original scalar operations.
1951     Step = Builder.CreateMul(Cv, Step);
1952     return Builder.CreateAdd(Val, Step, "induction");
1953   }
1954 
1955   // Floating point induction.
1956   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1957          "Binary Opcode should be specified for FP induction");
1958   // Create a vector of consecutive numbers from zero to VF.
1959   for (int i = 0; i < VLen; ++i)
1960     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1961 
1962   // Add the consecutive indices to the vector value.
1963   Constant *Cv = ConstantVector::get(Indices);
1964 
1965   Step = Builder.CreateVectorSplat(VLen, Step);
1966 
1967   // Floating point operations had to be 'fast' to enable the induction.
1968   FastMathFlags Flags;
1969   Flags.setFast();
1970 
1971   Value *MulOp = Builder.CreateFMul(Cv, Step);
1972   if (isa<Instruction>(MulOp))
1973     // Have to check, MulOp may be a constant
1974     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1975 
1976   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1977   if (isa<Instruction>(BOp))
1978     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1979   return BOp;
1980 }
1981 
1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1983                                            Instruction *EntryVal,
1984                                            const InductionDescriptor &ID) {
1985   // We shouldn't have to build scalar steps if we aren't vectorizing.
1986   assert(VF > 1 && "VF should be greater than one");
1987 
1988   // Get the value type and ensure it and the step have the same integer type.
1989   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1990   assert(ScalarIVTy == Step->getType() &&
1991          "Val and Step should have the same type");
1992 
1993   // We build scalar steps for both integer and floating-point induction
1994   // variables. Here, we determine the kind of arithmetic we will perform.
1995   Instruction::BinaryOps AddOp;
1996   Instruction::BinaryOps MulOp;
1997   if (ScalarIVTy->isIntegerTy()) {
1998     AddOp = Instruction::Add;
1999     MulOp = Instruction::Mul;
2000   } else {
2001     AddOp = ID.getInductionOpcode();
2002     MulOp = Instruction::FMul;
2003   }
2004 
2005   // Determine the number of scalars we need to generate for each unroll
2006   // iteration. If EntryVal is uniform, we only need to generate the first
2007   // lane. Otherwise, we generate all VF values.
2008   unsigned Lanes =
2009       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2010                                                                          : VF;
2011   // Compute the scalar steps and save the results in VectorLoopValueMap.
2012   for (unsigned Part = 0; Part < UF; ++Part) {
2013     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2014       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2015       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2016       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2017       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2018       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2019     }
2020   }
2021 }
2022 
2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2024   assert(V != Induction && "The new induction variable should not be used.");
2025   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2026   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2027 
2028   // If we have a stride that is replaced by one, do it here. Defer this for
2029   // the VPlan-native path until we start running Legal checks in that path.
2030   if (!EnableVPlanNativePath && Legal->hasStride(V))
2031     V = ConstantInt::get(V->getType(), 1);
2032 
2033   // If we have a vector mapped to this value, return it.
2034   if (VectorLoopValueMap.hasVectorValue(V, Part))
2035     return VectorLoopValueMap.getVectorValue(V, Part);
2036 
2037   // If the value has not been vectorized, check if it has been scalarized
2038   // instead. If it has been scalarized, and we actually need the value in
2039   // vector form, we will construct the vector values on demand.
2040   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2041     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2042 
2043     // If we've scalarized a value, that value should be an instruction.
2044     auto *I = cast<Instruction>(V);
2045 
2046     // If we aren't vectorizing, we can just copy the scalar map values over to
2047     // the vector map.
2048     if (VF == 1) {
2049       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2050       return ScalarValue;
2051     }
2052 
2053     // Get the last scalar instruction we generated for V and Part. If the value
2054     // is known to be uniform after vectorization, this corresponds to lane zero
2055     // of the Part unroll iteration. Otherwise, the last instruction is the one
2056     // we created for the last vector lane of the Part unroll iteration.
2057     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2058     auto *LastInst = cast<Instruction>(
2059         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2060 
2061     // Set the insert point after the last scalarized instruction. This ensures
2062     // the insertelement sequence will directly follow the scalar definitions.
2063     auto OldIP = Builder.saveIP();
2064     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2065     Builder.SetInsertPoint(&*NewIP);
2066 
2067     // However, if we are vectorizing, we need to construct the vector values.
2068     // If the value is known to be uniform after vectorization, we can just
2069     // broadcast the scalar value corresponding to lane zero for each unroll
2070     // iteration. Otherwise, we construct the vector values using insertelement
2071     // instructions. Since the resulting vectors are stored in
2072     // VectorLoopValueMap, we will only generate the insertelements once.
2073     Value *VectorValue = nullptr;
2074     if (Cost->isUniformAfterVectorization(I, VF)) {
2075       VectorValue = getBroadcastInstrs(ScalarValue);
2076       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2077     } else {
2078       // Initialize packing with insertelements to start from undef.
2079       Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF));
2080       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2081       for (unsigned Lane = 0; Lane < VF; ++Lane)
2082         packScalarIntoVectorValue(V, {Part, Lane});
2083       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2084     }
2085     Builder.restoreIP(OldIP);
2086     return VectorValue;
2087   }
2088 
2089   // If this scalar is unknown, assume that it is a constant or that it is
2090   // loop invariant. Broadcast V and save the value for future uses.
2091   Value *B = getBroadcastInstrs(V);
2092   VectorLoopValueMap.setVectorValue(V, Part, B);
2093   return B;
2094 }
2095 
2096 Value *
2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2098                                             const VPIteration &Instance) {
2099   // If the value is not an instruction contained in the loop, it should
2100   // already be scalar.
2101   if (OrigLoop->isLoopInvariant(V))
2102     return V;
2103 
2104   assert(Instance.Lane > 0
2105              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2106              : true && "Uniform values only have lane zero");
2107 
2108   // If the value from the original loop has not been vectorized, it is
2109   // represented by UF x VF scalar values in the new loop. Return the requested
2110   // scalar value.
2111   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2112     return VectorLoopValueMap.getScalarValue(V, Instance);
2113 
2114   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2115   // for the given unroll part. If this entry is not a vector type (i.e., the
2116   // vectorization factor is one), there is no need to generate an
2117   // extractelement instruction.
2118   auto *U = getOrCreateVectorValue(V, Instance.Part);
2119   if (!U->getType()->isVectorTy()) {
2120     assert(VF == 1 && "Value not scalarized has non-vector type");
2121     return U;
2122   }
2123 
2124   // Otherwise, the value from the original loop has been vectorized and is
2125   // represented by UF vector values. Extract and return the requested scalar
2126   // value from the appropriate vector lane.
2127   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2128 }
2129 
2130 void InnerLoopVectorizer::packScalarIntoVectorValue(
2131     Value *V, const VPIteration &Instance) {
2132   assert(V != Induction && "The new induction variable should not be used.");
2133   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2134   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2135 
2136   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2137   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2138   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2139                                             Builder.getInt32(Instance.Lane));
2140   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2141 }
2142 
2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2144   assert(Vec->getType()->isVectorTy() && "Invalid type");
2145   SmallVector<int, 8> ShuffleMask;
2146   for (unsigned i = 0; i < VF; ++i)
2147     ShuffleMask.push_back(VF - i - 1);
2148 
2149   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2150                                      ShuffleMask, "reverse");
2151 }
2152 
2153 // Return whether we allow using masked interleave-groups (for dealing with
2154 // strided loads/stores that reside in predicated blocks, or for dealing
2155 // with gaps).
2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2157   // If an override option has been passed in for interleaved accesses, use it.
2158   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2159     return EnableMaskedInterleavedMemAccesses;
2160 
2161   return TTI.enableMaskedInterleavedAccessVectorization();
2162 }
2163 
2164 // Try to vectorize the interleave group that \p Instr belongs to.
2165 //
2166 // E.g. Translate following interleaved load group (factor = 3):
2167 //   for (i = 0; i < N; i+=3) {
2168 //     R = Pic[i];             // Member of index 0
2169 //     G = Pic[i+1];           // Member of index 1
2170 //     B = Pic[i+2];           // Member of index 2
2171 //     ... // do something to R, G, B
2172 //   }
2173 // To:
2174 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2175 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2176 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2177 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2178 //
2179 // Or translate following interleaved store group (factor = 3):
2180 //   for (i = 0; i < N; i+=3) {
2181 //     ... do something to R, G, B
2182 //     Pic[i]   = R;           // Member of index 0
2183 //     Pic[i+1] = G;           // Member of index 1
2184 //     Pic[i+2] = B;           // Member of index 2
2185 //   }
2186 // To:
2187 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2188 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2189 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2190 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2191 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2192 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2193     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2194     VPValue *Addr, VPValue *BlockInMask) {
2195   Instruction *Instr = Group->getInsertPos();
2196   const DataLayout &DL = Instr->getModule()->getDataLayout();
2197 
2198   // Prepare for the vector type of the interleaved load/store.
2199   Type *ScalarTy = getMemInstValueType(Instr);
2200   unsigned InterleaveFactor = Group->getFactor();
2201   auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF);
2202 
2203   // Prepare for the new pointers.
2204   SmallVector<Value *, 2> AddrParts;
2205   unsigned Index = Group->getIndex(Instr);
2206 
2207   // TODO: extend the masked interleaved-group support to reversed access.
2208   assert((!BlockInMask || !Group->isReverse()) &&
2209          "Reversed masked interleave-group not supported.");
2210 
2211   // If the group is reverse, adjust the index to refer to the last vector lane
2212   // instead of the first. We adjust the index from the first vector lane,
2213   // rather than directly getting the pointer for lane VF - 1, because the
2214   // pointer operand of the interleaved access is supposed to be uniform. For
2215   // uniform instructions, we're only required to generate a value for the
2216   // first vector lane in each unroll iteration.
2217   if (Group->isReverse())
2218     Index += (VF - 1) * Group->getFactor();
2219 
2220   for (unsigned Part = 0; Part < UF; Part++) {
2221     Value *AddrPart = State.get(Addr, {Part, 0});
2222     setDebugLocFromInst(Builder, AddrPart);
2223 
2224     // Notice current instruction could be any index. Need to adjust the address
2225     // to the member of index 0.
2226     //
2227     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2228     //       b = A[i];       // Member of index 0
2229     // Current pointer is pointed to A[i+1], adjust it to A[i].
2230     //
2231     // E.g.  A[i+1] = a;     // Member of index 1
2232     //       A[i]   = b;     // Member of index 0
2233     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2234     // Current pointer is pointed to A[i+2], adjust it to A[i].
2235 
2236     bool InBounds = false;
2237     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2238       InBounds = gep->isInBounds();
2239     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2240     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2241 
2242     // Cast to the vector pointer type.
2243     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2244     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2245     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2246   }
2247 
2248   setDebugLocFromInst(Builder, Instr);
2249   Value *UndefVec = UndefValue::get(VecTy);
2250 
2251   Value *MaskForGaps = nullptr;
2252   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2253     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2254     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2255   }
2256 
2257   // Vectorize the interleaved load group.
2258   if (isa<LoadInst>(Instr)) {
2259     // For each unroll part, create a wide load for the group.
2260     SmallVector<Value *, 2> NewLoads;
2261     for (unsigned Part = 0; Part < UF; Part++) {
2262       Instruction *NewLoad;
2263       if (BlockInMask || MaskForGaps) {
2264         assert(useMaskedInterleavedAccesses(*TTI) &&
2265                "masked interleaved groups are not allowed.");
2266         Value *GroupMask = MaskForGaps;
2267         if (BlockInMask) {
2268           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2269           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2270           Value *ShuffledMask = Builder.CreateShuffleVector(
2271               BlockInMaskPart, Undefs,
2272               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2273           GroupMask = MaskForGaps
2274                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2275                                                 MaskForGaps)
2276                           : ShuffledMask;
2277         }
2278         NewLoad =
2279             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2280                                      GroupMask, UndefVec, "wide.masked.vec");
2281       }
2282       else
2283         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2284                                             Group->getAlign(), "wide.vec");
2285       Group->addMetadata(NewLoad);
2286       NewLoads.push_back(NewLoad);
2287     }
2288 
2289     // For each member in the group, shuffle out the appropriate data from the
2290     // wide loads.
2291     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2292       Instruction *Member = Group->getMember(I);
2293 
2294       // Skip the gaps in the group.
2295       if (!Member)
2296         continue;
2297 
2298       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2299       for (unsigned Part = 0; Part < UF; Part++) {
2300         Value *StridedVec = Builder.CreateShuffleVector(
2301             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2302 
2303         // If this member has different type, cast the result type.
2304         if (Member->getType() != ScalarTy) {
2305           VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF);
2306           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2307         }
2308 
2309         if (Group->isReverse())
2310           StridedVec = reverseVector(StridedVec);
2311 
2312         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2313       }
2314     }
2315     return;
2316   }
2317 
2318   // The sub vector type for current instruction.
2319   auto *SubVT = FixedVectorType::get(ScalarTy, VF);
2320 
2321   // Vectorize the interleaved store group.
2322   for (unsigned Part = 0; Part < UF; Part++) {
2323     // Collect the stored vector from each member.
2324     SmallVector<Value *, 4> StoredVecs;
2325     for (unsigned i = 0; i < InterleaveFactor; i++) {
2326       // Interleaved store group doesn't allow a gap, so each index has a member
2327       Instruction *Member = Group->getMember(i);
2328       assert(Member && "Fail to get a member from an interleaved store group");
2329 
2330       Value *StoredVec = getOrCreateVectorValue(
2331           cast<StoreInst>(Member)->getValueOperand(), Part);
2332       if (Group->isReverse())
2333         StoredVec = reverseVector(StoredVec);
2334 
2335       // If this member has different type, cast it to a unified type.
2336 
2337       if (StoredVec->getType() != SubVT)
2338         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2339 
2340       StoredVecs.push_back(StoredVec);
2341     }
2342 
2343     // Concatenate all vectors into a wide vector.
2344     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2345 
2346     // Interleave the elements in the wide vector.
2347     Value *IVec = Builder.CreateShuffleVector(
2348         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2349         "interleaved.vec");
2350 
2351     Instruction *NewStoreInstr;
2352     if (BlockInMask) {
2353       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2354       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2355       Value *ShuffledMask = Builder.CreateShuffleVector(
2356           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2357           "interleaved.mask");
2358       NewStoreInstr = Builder.CreateMaskedStore(
2359           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2360     }
2361     else
2362       NewStoreInstr =
2363           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2364 
2365     Group->addMetadata(NewStoreInstr);
2366   }
2367 }
2368 
2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2370                                                      VPTransformState &State,
2371                                                      VPValue *Addr,
2372                                                      VPValue *StoredValue,
2373                                                      VPValue *BlockInMask) {
2374   // Attempt to issue a wide load.
2375   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2376   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2377 
2378   assert((LI || SI) && "Invalid Load/Store instruction");
2379   assert((!SI || StoredValue) && "No stored value provided for widened store");
2380   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2381 
2382   LoopVectorizationCostModel::InstWidening Decision =
2383       Cost->getWideningDecision(Instr, VF);
2384   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2385           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2386           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2387          "CM decision is not to widen the memory instruction");
2388 
2389   Type *ScalarDataTy = getMemInstValueType(Instr);
2390   auto *DataTy = FixedVectorType::get(ScalarDataTy, VF);
2391   const Align Alignment = getLoadStoreAlignment(Instr);
2392 
2393   // Determine if the pointer operand of the access is either consecutive or
2394   // reverse consecutive.
2395   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2396   bool ConsecutiveStride =
2397       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2398   bool CreateGatherScatter =
2399       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2400 
2401   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2402   // gather/scatter. Otherwise Decision should have been to Scalarize.
2403   assert((ConsecutiveStride || CreateGatherScatter) &&
2404          "The instruction should be scalarized");
2405   (void)ConsecutiveStride;
2406 
2407   VectorParts BlockInMaskParts(UF);
2408   bool isMaskRequired = BlockInMask;
2409   if (isMaskRequired)
2410     for (unsigned Part = 0; Part < UF; ++Part)
2411       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2412 
2413   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2414     // Calculate the pointer for the specific unroll-part.
2415     GetElementPtrInst *PartPtr = nullptr;
2416 
2417     bool InBounds = false;
2418     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2419       InBounds = gep->isInBounds();
2420 
2421     if (Reverse) {
2422       // If the address is consecutive but reversed, then the
2423       // wide store needs to start at the last vector element.
2424       PartPtr = cast<GetElementPtrInst>(
2425           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2426       PartPtr->setIsInBounds(InBounds);
2427       PartPtr = cast<GetElementPtrInst>(
2428           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2429       PartPtr->setIsInBounds(InBounds);
2430       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2431         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2432     } else {
2433       PartPtr = cast<GetElementPtrInst>(
2434           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2435       PartPtr->setIsInBounds(InBounds);
2436     }
2437 
2438     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2439     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2440   };
2441 
2442   // Handle Stores:
2443   if (SI) {
2444     setDebugLocFromInst(Builder, SI);
2445 
2446     for (unsigned Part = 0; Part < UF; ++Part) {
2447       Instruction *NewSI = nullptr;
2448       Value *StoredVal = State.get(StoredValue, Part);
2449       if (CreateGatherScatter) {
2450         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2451         Value *VectorGep = State.get(Addr, Part);
2452         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2453                                             MaskPart);
2454       } else {
2455         if (Reverse) {
2456           // If we store to reverse consecutive memory locations, then we need
2457           // to reverse the order of elements in the stored value.
2458           StoredVal = reverseVector(StoredVal);
2459           // We don't want to update the value in the map as it might be used in
2460           // another expression. So don't call resetVectorValue(StoredVal).
2461         }
2462         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2463         if (isMaskRequired)
2464           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2465                                             BlockInMaskParts[Part]);
2466         else
2467           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2468       }
2469       addMetadata(NewSI, SI);
2470     }
2471     return;
2472   }
2473 
2474   // Handle loads.
2475   assert(LI && "Must have a load instruction");
2476   setDebugLocFromInst(Builder, LI);
2477   for (unsigned Part = 0; Part < UF; ++Part) {
2478     Value *NewLI;
2479     if (CreateGatherScatter) {
2480       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2481       Value *VectorGep = State.get(Addr, Part);
2482       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2483                                          nullptr, "wide.masked.gather");
2484       addMetadata(NewLI, LI);
2485     } else {
2486       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2487       if (isMaskRequired)
2488         NewLI = Builder.CreateMaskedLoad(
2489             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2490             "wide.masked.load");
2491       else
2492         NewLI =
2493             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2494 
2495       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2496       addMetadata(NewLI, LI);
2497       if (Reverse)
2498         NewLI = reverseVector(NewLI);
2499     }
2500     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2501   }
2502 }
2503 
2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User,
2505                                                const VPIteration &Instance,
2506                                                bool IfPredicateInstr,
2507                                                VPTransformState &State) {
2508   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2509 
2510   setDebugLocFromInst(Builder, Instr);
2511 
2512   // Does this instruction return a value ?
2513   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2514 
2515   Instruction *Cloned = Instr->clone();
2516   if (!IsVoidRetTy)
2517     Cloned->setName(Instr->getName() + ".cloned");
2518 
2519   // Replace the operands of the cloned instructions with their scalar
2520   // equivalents in the new loop.
2521   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
2522     auto *NewOp = State.get(User.getOperand(op), Instance);
2523     Cloned->setOperand(op, NewOp);
2524   }
2525   addNewMetadata(Cloned, Instr);
2526 
2527   // Place the cloned scalar in the new loop.
2528   Builder.Insert(Cloned);
2529 
2530   // Add the cloned scalar to the scalar map entry.
2531   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2532 
2533   // If we just cloned a new assumption, add it the assumption cache.
2534   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2535     if (II->getIntrinsicID() == Intrinsic::assume)
2536       AC->registerAssumption(II);
2537 
2538   // End if-block.
2539   if (IfPredicateInstr)
2540     PredicatedInstructions.push_back(Cloned);
2541 }
2542 
2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2544                                                       Value *End, Value *Step,
2545                                                       Instruction *DL) {
2546   BasicBlock *Header = L->getHeader();
2547   BasicBlock *Latch = L->getLoopLatch();
2548   // As we're just creating this loop, it's possible no latch exists
2549   // yet. If so, use the header as this will be a single block loop.
2550   if (!Latch)
2551     Latch = Header;
2552 
2553   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2554   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2555   setDebugLocFromInst(Builder, OldInst);
2556   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2557 
2558   Builder.SetInsertPoint(Latch->getTerminator());
2559   setDebugLocFromInst(Builder, OldInst);
2560 
2561   // Create i+1 and fill the PHINode.
2562   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2563   Induction->addIncoming(Start, L->getLoopPreheader());
2564   Induction->addIncoming(Next, Latch);
2565   // Create the compare.
2566   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2567   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2568 
2569   // Now we have two terminators. Remove the old one from the block.
2570   Latch->getTerminator()->eraseFromParent();
2571 
2572   return Induction;
2573 }
2574 
2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2576   if (TripCount)
2577     return TripCount;
2578 
2579   assert(L && "Create Trip Count for null loop.");
2580   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2581   // Find the loop boundaries.
2582   ScalarEvolution *SE = PSE.getSE();
2583   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2584   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2585          "Invalid loop count");
2586 
2587   Type *IdxTy = Legal->getWidestInductionType();
2588   assert(IdxTy && "No type for induction");
2589 
2590   // The exit count might have the type of i64 while the phi is i32. This can
2591   // happen if we have an induction variable that is sign extended before the
2592   // compare. The only way that we get a backedge taken count is that the
2593   // induction variable was signed and as such will not overflow. In such a case
2594   // truncation is legal.
2595   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2596       IdxTy->getPrimitiveSizeInBits())
2597     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2598   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2599 
2600   // Get the total trip count from the count by adding 1.
2601   const SCEV *ExitCount = SE->getAddExpr(
2602       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2603 
2604   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2605 
2606   // Expand the trip count and place the new instructions in the preheader.
2607   // Notice that the pre-header does not change, only the loop body.
2608   SCEVExpander Exp(*SE, DL, "induction");
2609 
2610   // Count holds the overall loop count (N).
2611   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2612                                 L->getLoopPreheader()->getTerminator());
2613 
2614   if (TripCount->getType()->isPointerTy())
2615     TripCount =
2616         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2617                                     L->getLoopPreheader()->getTerminator());
2618 
2619   return TripCount;
2620 }
2621 
2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2623   if (VectorTripCount)
2624     return VectorTripCount;
2625 
2626   Value *TC = getOrCreateTripCount(L);
2627   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2628 
2629   Type *Ty = TC->getType();
2630   Constant *Step = ConstantInt::get(Ty, VF * UF);
2631 
2632   // If the tail is to be folded by masking, round the number of iterations N
2633   // up to a multiple of Step instead of rounding down. This is done by first
2634   // adding Step-1 and then rounding down. Note that it's ok if this addition
2635   // overflows: the vector induction variable will eventually wrap to zero given
2636   // that it starts at zero and its Step is a power of two; the loop will then
2637   // exit, with the last early-exit vector comparison also producing all-true.
2638   if (Cost->foldTailByMasking()) {
2639     assert(isPowerOf2_32(VF * UF) &&
2640            "VF*UF must be a power of 2 when folding tail by masking");
2641     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2642   }
2643 
2644   // Now we need to generate the expression for the part of the loop that the
2645   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2646   // iterations are not required for correctness, or N - Step, otherwise. Step
2647   // is equal to the vectorization factor (number of SIMD elements) times the
2648   // unroll factor (number of SIMD instructions).
2649   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2650 
2651   // If there is a non-reversed interleaved group that may speculatively access
2652   // memory out-of-bounds, we need to ensure that there will be at least one
2653   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2654   // the trip count, we set the remainder to be equal to the step. If the step
2655   // does not evenly divide the trip count, no adjustment is necessary since
2656   // there will already be scalar iterations. Note that the minimum iterations
2657   // check ensures that N >= Step.
2658   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2659     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2660     R = Builder.CreateSelect(IsZero, Step, R);
2661   }
2662 
2663   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2664 
2665   return VectorTripCount;
2666 }
2667 
2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2669                                                    const DataLayout &DL) {
2670   // Verify that V is a vector type with same number of elements as DstVTy.
2671   unsigned VF = DstVTy->getNumElements();
2672   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2673   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2674   Type *SrcElemTy = SrcVecTy->getElementType();
2675   Type *DstElemTy = DstVTy->getElementType();
2676   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2677          "Vector elements must have same size");
2678 
2679   // Do a direct cast if element types are castable.
2680   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2681     return Builder.CreateBitOrPointerCast(V, DstVTy);
2682   }
2683   // V cannot be directly casted to desired vector type.
2684   // May happen when V is a floating point vector but DstVTy is a vector of
2685   // pointers or vice-versa. Handle this using a two-step bitcast using an
2686   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2687   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2688          "Only one type should be a pointer type");
2689   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2690          "Only one type should be a floating point type");
2691   Type *IntTy =
2692       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2693   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2694   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2695   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2696 }
2697 
2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2699                                                          BasicBlock *Bypass) {
2700   Value *Count = getOrCreateTripCount(L);
2701   // Reuse existing vector loop preheader for TC checks.
2702   // Note that new preheader block is generated for vector loop.
2703   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2704   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2705 
2706   // Generate code to check if the loop's trip count is less than VF * UF, or
2707   // equal to it in case a scalar epilogue is required; this implies that the
2708   // vector trip count is zero. This check also covers the case where adding one
2709   // to the backedge-taken count overflowed leading to an incorrect trip count
2710   // of zero. In this case we will also jump to the scalar loop.
2711   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2712                                           : ICmpInst::ICMP_ULT;
2713 
2714   // If tail is to be folded, vector loop takes care of all iterations.
2715   Value *CheckMinIters = Builder.getFalse();
2716   if (!Cost->foldTailByMasking())
2717     CheckMinIters = Builder.CreateICmp(
2718         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2719         "min.iters.check");
2720 
2721   // Create new preheader for vector loop.
2722   LoopVectorPreHeader =
2723       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2724                  "vector.ph");
2725 
2726   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2727                                DT->getNode(Bypass)->getIDom()) &&
2728          "TC check is expected to dominate Bypass");
2729 
2730   // Update dominator for Bypass & LoopExit.
2731   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2732   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2733 
2734   ReplaceInstWithInst(
2735       TCCheckBlock->getTerminator(),
2736       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2737   LoopBypassBlocks.push_back(TCCheckBlock);
2738 }
2739 
2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2741   // Reuse existing vector loop preheader for SCEV checks.
2742   // Note that new preheader block is generated for vector loop.
2743   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2744 
2745   // Generate the code to check that the SCEV assumptions that we made.
2746   // We want the new basic block to start at the first instruction in a
2747   // sequence of instructions that form a check.
2748   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2749                    "scev.check");
2750   Value *SCEVCheck = Exp.expandCodeForPredicate(
2751       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2752 
2753   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2754     if (C->isZero())
2755       return;
2756 
2757   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2758          "Cannot SCEV check stride or overflow when optimizing for size");
2759 
2760   SCEVCheckBlock->setName("vector.scevcheck");
2761   // Create new preheader for vector loop.
2762   LoopVectorPreHeader =
2763       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2764                  nullptr, "vector.ph");
2765 
2766   // Update dominator only if this is first RT check.
2767   if (LoopBypassBlocks.empty()) {
2768     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2769     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2770   }
2771 
2772   ReplaceInstWithInst(
2773       SCEVCheckBlock->getTerminator(),
2774       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2775   LoopBypassBlocks.push_back(SCEVCheckBlock);
2776   AddedSafetyChecks = true;
2777 }
2778 
2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2780   // VPlan-native path does not do any analysis for runtime checks currently.
2781   if (EnableVPlanNativePath)
2782     return;
2783 
2784   // Reuse existing vector loop preheader for runtime memory checks.
2785   // Note that new preheader block is generated for vector loop.
2786   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2787 
2788   // Generate the code that checks in runtime if arrays overlap. We put the
2789   // checks into a separate block to make the more common case of few elements
2790   // faster.
2791   auto *LAI = Legal->getLAI();
2792   const auto &RtPtrChecking = *LAI->getRuntimePointerChecking();
2793   if (!RtPtrChecking.Need)
2794     return;
2795   Instruction *FirstCheckInst;
2796   Instruction *MemRuntimeCheck;
2797   std::tie(FirstCheckInst, MemRuntimeCheck) =
2798       addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop,
2799                        RtPtrChecking.getChecks(), RtPtrChecking.getSE());
2800   assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking "
2801                             "claimed checks are required");
2802 
2803   if (MemCheckBlock->getParent()->hasOptSize()) {
2804     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2805            "Cannot emit memory checks when optimizing for size, unless forced "
2806            "to vectorize.");
2807     ORE->emit([&]() {
2808       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2809                                         L->getStartLoc(), L->getHeader())
2810              << "Code-size may be reduced by not forcing "
2811                 "vectorization, or by source-code modifications "
2812                 "eliminating the need for runtime checks "
2813                 "(e.g., adding 'restrict').";
2814     });
2815   }
2816 
2817   MemCheckBlock->setName("vector.memcheck");
2818   // Create new preheader for vector loop.
2819   LoopVectorPreHeader =
2820       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2821                  "vector.ph");
2822 
2823   // Update dominator only if this is first RT check.
2824   if (LoopBypassBlocks.empty()) {
2825     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2826     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2827   }
2828 
2829   ReplaceInstWithInst(
2830       MemCheckBlock->getTerminator(),
2831       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2832   LoopBypassBlocks.push_back(MemCheckBlock);
2833   AddedSafetyChecks = true;
2834 
2835   // We currently don't use LoopVersioning for the actual loop cloning but we
2836   // still use it to add the noalias metadata.
2837   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2838                                           PSE.getSE());
2839   LVer->prepareNoAliasMetadata();
2840 }
2841 
2842 Value *InnerLoopVectorizer::emitTransformedIndex(
2843     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2844     const InductionDescriptor &ID) const {
2845 
2846   SCEVExpander Exp(*SE, DL, "induction");
2847   auto Step = ID.getStep();
2848   auto StartValue = ID.getStartValue();
2849   assert(Index->getType() == Step->getType() &&
2850          "Index type does not match StepValue type");
2851 
2852   // Note: the IR at this point is broken. We cannot use SE to create any new
2853   // SCEV and then expand it, hoping that SCEV's simplification will give us
2854   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2855   // lead to various SCEV crashes. So all we can do is to use builder and rely
2856   // on InstCombine for future simplifications. Here we handle some trivial
2857   // cases only.
2858   auto CreateAdd = [&B](Value *X, Value *Y) {
2859     assert(X->getType() == Y->getType() && "Types don't match!");
2860     if (auto *CX = dyn_cast<ConstantInt>(X))
2861       if (CX->isZero())
2862         return Y;
2863     if (auto *CY = dyn_cast<ConstantInt>(Y))
2864       if (CY->isZero())
2865         return X;
2866     return B.CreateAdd(X, Y);
2867   };
2868 
2869   auto CreateMul = [&B](Value *X, Value *Y) {
2870     assert(X->getType() == Y->getType() && "Types don't match!");
2871     if (auto *CX = dyn_cast<ConstantInt>(X))
2872       if (CX->isOne())
2873         return Y;
2874     if (auto *CY = dyn_cast<ConstantInt>(Y))
2875       if (CY->isOne())
2876         return X;
2877     return B.CreateMul(X, Y);
2878   };
2879 
2880   // Get a suitable insert point for SCEV expansion. For blocks in the vector
2881   // loop, choose the end of the vector loop header (=LoopVectorBody), because
2882   // the DomTree is not kept up-to-date for additional blocks generated in the
2883   // vector loop. By using the header as insertion point, we guarantee that the
2884   // expanded instructions dominate all their uses.
2885   auto GetInsertPoint = [this, &B]() {
2886     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
2887     if (InsertBB != LoopVectorBody &&
2888         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
2889       return LoopVectorBody->getTerminator();
2890     return &*B.GetInsertPoint();
2891   };
2892   switch (ID.getKind()) {
2893   case InductionDescriptor::IK_IntInduction: {
2894     assert(Index->getType() == StartValue->getType() &&
2895            "Index type does not match StartValue type");
2896     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2897       return B.CreateSub(StartValue, Index);
2898     auto *Offset = CreateMul(
2899         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
2900     return CreateAdd(StartValue, Offset);
2901   }
2902   case InductionDescriptor::IK_PtrInduction: {
2903     assert(isa<SCEVConstant>(Step) &&
2904            "Expected constant step for pointer induction");
2905     return B.CreateGEP(
2906         StartValue->getType()->getPointerElementType(), StartValue,
2907         CreateMul(Index,
2908                   Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())));
2909   }
2910   case InductionDescriptor::IK_FpInduction: {
2911     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2912     auto InductionBinOp = ID.getInductionBinOp();
2913     assert(InductionBinOp &&
2914            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2915             InductionBinOp->getOpcode() == Instruction::FSub) &&
2916            "Original bin op should be defined for FP induction");
2917 
2918     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2919 
2920     // Floating point operations had to be 'fast' to enable the induction.
2921     FastMathFlags Flags;
2922     Flags.setFast();
2923 
2924     Value *MulExp = B.CreateFMul(StepValue, Index);
2925     if (isa<Instruction>(MulExp))
2926       // We have to check, the MulExp may be a constant.
2927       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2928 
2929     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2930                                "induction");
2931     if (isa<Instruction>(BOp))
2932       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2933 
2934     return BOp;
2935   }
2936   case InductionDescriptor::IK_NoInduction:
2937     return nullptr;
2938   }
2939   llvm_unreachable("invalid enum");
2940 }
2941 
2942 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2943   /*
2944    In this function we generate a new loop. The new loop will contain
2945    the vectorized instructions while the old loop will continue to run the
2946    scalar remainder.
2947 
2948        [ ] <-- loop iteration number check.
2949     /   |
2950    /    v
2951   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2952   |  /  |
2953   | /   v
2954   ||   [ ]     <-- vector pre header.
2955   |/    |
2956   |     v
2957   |    [  ] \
2958   |    [  ]_|   <-- vector loop.
2959   |     |
2960   |     v
2961   |   -[ ]   <--- middle-block.
2962   |  /  |
2963   | /   v
2964   -|- >[ ]     <--- new preheader.
2965    |    |
2966    |    v
2967    |   [ ] \
2968    |   [ ]_|   <-- old scalar loop to handle remainder.
2969     \   |
2970      \  v
2971       >[ ]     <-- exit block.
2972    ...
2973    */
2974 
2975   MDNode *OrigLoopID = OrigLoop->getLoopID();
2976 
2977   // Some loops have a single integer induction variable, while other loops
2978   // don't. One example is c++ iterators that often have multiple pointer
2979   // induction variables. In the code below we also support a case where we
2980   // don't have a single induction variable.
2981   //
2982   // We try to obtain an induction variable from the original loop as hard
2983   // as possible. However if we don't find one that:
2984   //   - is an integer
2985   //   - counts from zero, stepping by one
2986   //   - is the size of the widest induction variable type
2987   // then we create a new one.
2988   OldInduction = Legal->getPrimaryInduction();
2989   Type *IdxTy = Legal->getWidestInductionType();
2990 
2991   // Split the single block loop into the two loop structure described above.
2992   LoopScalarBody = OrigLoop->getHeader();
2993   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2994   LoopExitBlock = OrigLoop->getExitBlock();
2995   assert(LoopExitBlock && "Must have an exit block");
2996   assert(LoopVectorPreHeader && "Invalid loop structure");
2997 
2998   LoopMiddleBlock =
2999       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3000                  LI, nullptr, "middle.block");
3001   LoopScalarPreHeader =
3002       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3003                  nullptr, "scalar.ph");
3004   // We intentionally don't let SplitBlock to update LoopInfo since
3005   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3006   // LoopVectorBody is explicitly added to the correct place few lines later.
3007   LoopVectorBody =
3008       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3009                  nullptr, nullptr, "vector.body");
3010 
3011   // Update dominator for loop exit.
3012   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3013 
3014   // Create and register the new vector loop.
3015   Loop *Lp = LI->AllocateLoop();
3016   Loop *ParentLoop = OrigLoop->getParentLoop();
3017 
3018   // Insert the new loop into the loop nest and register the new basic blocks
3019   // before calling any utilities such as SCEV that require valid LoopInfo.
3020   if (ParentLoop) {
3021     ParentLoop->addChildLoop(Lp);
3022   } else {
3023     LI->addTopLevelLoop(Lp);
3024   }
3025   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3026 
3027   // Find the loop boundaries.
3028   Value *Count = getOrCreateTripCount(Lp);
3029 
3030   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3031 
3032   // Now, compare the new count to zero. If it is zero skip the vector loop and
3033   // jump to the scalar loop. This check also covers the case where the
3034   // backedge-taken count is uint##_max: adding one to it will overflow leading
3035   // to an incorrect trip count of zero. In this (rare) case we will also jump
3036   // to the scalar loop.
3037   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3038 
3039   // Generate the code to check any assumptions that we've made for SCEV
3040   // expressions.
3041   emitSCEVChecks(Lp, LoopScalarPreHeader);
3042 
3043   // Generate the code that checks in runtime if arrays overlap. We put the
3044   // checks into a separate block to make the more common case of few elements
3045   // faster.
3046   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3047 
3048   // Generate the induction variable.
3049   // The loop step is equal to the vectorization factor (num of SIMD elements)
3050   // times the unroll factor (num of SIMD instructions).
3051   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3052   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3053   Induction =
3054       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3055                               getDebugLocFromInstOrOperands(OldInduction));
3056 
3057   // We are going to resume the execution of the scalar loop.
3058   // Go over all of the induction variables that we found and fix the
3059   // PHIs that are left in the scalar version of the loop.
3060   // The starting values of PHI nodes depend on the counter of the last
3061   // iteration in the vectorized loop.
3062   // If we come from a bypass edge then we need to start from the original
3063   // start value.
3064 
3065   // This variable saves the new starting index for the scalar loop. It is used
3066   // to test if there are any tail iterations left once the vector loop has
3067   // completed.
3068   for (auto &InductionEntry : Legal->getInductionVars()) {
3069     PHINode *OrigPhi = InductionEntry.first;
3070     InductionDescriptor II = InductionEntry.second;
3071 
3072     // Create phi nodes to merge from the  backedge-taken check block.
3073     PHINode *BCResumeVal =
3074         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3075                         LoopScalarPreHeader->getTerminator());
3076     // Copy original phi DL over to the new one.
3077     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3078     Value *&EndValue = IVEndValues[OrigPhi];
3079     if (OrigPhi == OldInduction) {
3080       // We know what the end value is.
3081       EndValue = CountRoundDown;
3082     } else {
3083       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3084       Type *StepType = II.getStep()->getType();
3085       Instruction::CastOps CastOp =
3086           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3087       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3088       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3089       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3090       EndValue->setName("ind.end");
3091     }
3092 
3093     // The new PHI merges the original incoming value, in case of a bypass,
3094     // or the value at the end of the vectorized loop.
3095     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3096 
3097     // Fix the scalar body counter (PHI node).
3098     // The old induction's phi node in the scalar body needs the truncated
3099     // value.
3100     for (BasicBlock *BB : LoopBypassBlocks)
3101       BCResumeVal->addIncoming(II.getStartValue(), BB);
3102     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3103   }
3104 
3105   // We need the OrigLoop (scalar loop part) latch terminator to help
3106   // produce correct debug info for the middle block BB instructions.
3107   // The legality check stage guarantees that the loop will have a single
3108   // latch.
3109   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3110          "Scalar loop latch terminator isn't a branch");
3111   BranchInst *ScalarLatchBr =
3112       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3113 
3114   // Add a check in the middle block to see if we have completed
3115   // all of the iterations in the first vector loop.
3116   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3117   // If tail is to be folded, we know we don't need to run the remainder.
3118   Value *CmpN = Builder.getTrue();
3119   if (!Cost->foldTailByMasking()) {
3120     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3121                            CountRoundDown, "cmp.n",
3122                            LoopMiddleBlock->getTerminator());
3123 
3124     // Here we use the same DebugLoc as the scalar loop latch branch instead
3125     // of the corresponding compare because they may have ended up with
3126     // different line numbers and we want to avoid awkward line stepping while
3127     // debugging. Eg. if the compare has got a line number inside the loop.
3128     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3129   }
3130 
3131   BranchInst *BrInst =
3132       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3133   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3134   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3135 
3136   // Get ready to start creating new instructions into the vectorized body.
3137   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3138          "Inconsistent vector loop preheader");
3139   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3140 
3141   Optional<MDNode *> VectorizedLoopID =
3142       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3143                                       LLVMLoopVectorizeFollowupVectorized});
3144   if (VectorizedLoopID.hasValue()) {
3145     Lp->setLoopID(VectorizedLoopID.getValue());
3146 
3147     // Do not setAlreadyVectorized if loop attributes have been defined
3148     // explicitly.
3149     return LoopVectorPreHeader;
3150   }
3151 
3152   // Keep all loop hints from the original loop on the vector loop (we'll
3153   // replace the vectorizer-specific hints below).
3154   if (MDNode *LID = OrigLoop->getLoopID())
3155     Lp->setLoopID(LID);
3156 
3157   LoopVectorizeHints Hints(Lp, true, *ORE);
3158   Hints.setAlreadyVectorized();
3159 
3160 #ifdef EXPENSIVE_CHECKS
3161   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3162   LI->verify(*DT);
3163 #endif
3164 
3165   return LoopVectorPreHeader;
3166 }
3167 
3168 // Fix up external users of the induction variable. At this point, we are
3169 // in LCSSA form, with all external PHIs that use the IV having one input value,
3170 // coming from the remainder loop. We need those PHIs to also have a correct
3171 // value for the IV when arriving directly from the middle block.
3172 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3173                                        const InductionDescriptor &II,
3174                                        Value *CountRoundDown, Value *EndValue,
3175                                        BasicBlock *MiddleBlock) {
3176   // There are two kinds of external IV usages - those that use the value
3177   // computed in the last iteration (the PHI) and those that use the penultimate
3178   // value (the value that feeds into the phi from the loop latch).
3179   // We allow both, but they, obviously, have different values.
3180 
3181   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3182 
3183   DenseMap<Value *, Value *> MissingVals;
3184 
3185   // An external user of the last iteration's value should see the value that
3186   // the remainder loop uses to initialize its own IV.
3187   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3188   for (User *U : PostInc->users()) {
3189     Instruction *UI = cast<Instruction>(U);
3190     if (!OrigLoop->contains(UI)) {
3191       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3192       MissingVals[UI] = EndValue;
3193     }
3194   }
3195 
3196   // An external user of the penultimate value need to see EndValue - Step.
3197   // The simplest way to get this is to recompute it from the constituent SCEVs,
3198   // that is Start + (Step * (CRD - 1)).
3199   for (User *U : OrigPhi->users()) {
3200     auto *UI = cast<Instruction>(U);
3201     if (!OrigLoop->contains(UI)) {
3202       const DataLayout &DL =
3203           OrigLoop->getHeader()->getModule()->getDataLayout();
3204       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3205 
3206       IRBuilder<> B(MiddleBlock->getTerminator());
3207       Value *CountMinusOne = B.CreateSub(
3208           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3209       Value *CMO =
3210           !II.getStep()->getType()->isIntegerTy()
3211               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3212                              II.getStep()->getType())
3213               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3214       CMO->setName("cast.cmo");
3215       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3216       Escape->setName("ind.escape");
3217       MissingVals[UI] = Escape;
3218     }
3219   }
3220 
3221   for (auto &I : MissingVals) {
3222     PHINode *PHI = cast<PHINode>(I.first);
3223     // One corner case we have to handle is two IVs "chasing" each-other,
3224     // that is %IV2 = phi [...], [ %IV1, %latch ]
3225     // In this case, if IV1 has an external use, we need to avoid adding both
3226     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3227     // don't already have an incoming value for the middle block.
3228     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3229       PHI->addIncoming(I.second, MiddleBlock);
3230   }
3231 }
3232 
3233 namespace {
3234 
3235 struct CSEDenseMapInfo {
3236   static bool canHandle(const Instruction *I) {
3237     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3238            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3239   }
3240 
3241   static inline Instruction *getEmptyKey() {
3242     return DenseMapInfo<Instruction *>::getEmptyKey();
3243   }
3244 
3245   static inline Instruction *getTombstoneKey() {
3246     return DenseMapInfo<Instruction *>::getTombstoneKey();
3247   }
3248 
3249   static unsigned getHashValue(const Instruction *I) {
3250     assert(canHandle(I) && "Unknown instruction!");
3251     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3252                                                            I->value_op_end()));
3253   }
3254 
3255   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3256     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3257         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3258       return LHS == RHS;
3259     return LHS->isIdenticalTo(RHS);
3260   }
3261 };
3262 
3263 } // end anonymous namespace
3264 
3265 ///Perform cse of induction variable instructions.
3266 static void cse(BasicBlock *BB) {
3267   // Perform simple cse.
3268   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3269   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3270     Instruction *In = &*I++;
3271 
3272     if (!CSEDenseMapInfo::canHandle(In))
3273       continue;
3274 
3275     // Check if we can replace this instruction with any of the
3276     // visited instructions.
3277     if (Instruction *V = CSEMap.lookup(In)) {
3278       In->replaceAllUsesWith(V);
3279       In->eraseFromParent();
3280       continue;
3281     }
3282 
3283     CSEMap[In] = In;
3284   }
3285 }
3286 
3287 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3288                                                        unsigned VF,
3289                                                        bool &NeedToScalarize) {
3290   Function *F = CI->getCalledFunction();
3291   Type *ScalarRetTy = CI->getType();
3292   SmallVector<Type *, 4> Tys, ScalarTys;
3293   for (auto &ArgOp : CI->arg_operands())
3294     ScalarTys.push_back(ArgOp->getType());
3295 
3296   // Estimate cost of scalarized vector call. The source operands are assumed
3297   // to be vectors, so we need to extract individual elements from there,
3298   // execute VF scalar calls, and then gather the result into the vector return
3299   // value.
3300   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys,
3301                                                  TTI::TCK_RecipThroughput);
3302   if (VF == 1)
3303     return ScalarCallCost;
3304 
3305   // Compute corresponding vector type for return value and arguments.
3306   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3307   for (Type *ScalarTy : ScalarTys)
3308     Tys.push_back(ToVectorTy(ScalarTy, VF));
3309 
3310   // Compute costs of unpacking argument values for the scalar calls and
3311   // packing the return values to a vector.
3312   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3313 
3314   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3315 
3316   // If we can't emit a vector call for this function, then the currently found
3317   // cost is the cost we need to return.
3318   NeedToScalarize = true;
3319   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3320   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3321 
3322   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3323     return Cost;
3324 
3325   // If the corresponding vector cost is cheaper, return its cost.
3326   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys,
3327                                                  TTI::TCK_RecipThroughput);
3328   if (VectorCallCost < Cost) {
3329     NeedToScalarize = false;
3330     return VectorCallCost;
3331   }
3332   return Cost;
3333 }
3334 
3335 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3336                                                             unsigned VF) {
3337   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3338   assert(ID && "Expected intrinsic call!");
3339 
3340   IntrinsicCostAttributes CostAttrs(ID, *CI, VF);
3341   return TTI.getIntrinsicInstrCost(CostAttrs,
3342                                    TargetTransformInfo::TCK_RecipThroughput);
3343 }
3344 
3345 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3346   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3347   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3348   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3349 }
3350 
3351 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3352   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3353   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3354   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3355 }
3356 
3357 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3358   // For every instruction `I` in MinBWs, truncate the operands, create a
3359   // truncated version of `I` and reextend its result. InstCombine runs
3360   // later and will remove any ext/trunc pairs.
3361   SmallPtrSet<Value *, 4> Erased;
3362   for (const auto &KV : Cost->getMinimalBitwidths()) {
3363     // If the value wasn't vectorized, we must maintain the original scalar
3364     // type. The absence of the value from VectorLoopValueMap indicates that it
3365     // wasn't vectorized.
3366     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3367       continue;
3368     for (unsigned Part = 0; Part < UF; ++Part) {
3369       Value *I = getOrCreateVectorValue(KV.first, Part);
3370       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3371         continue;
3372       Type *OriginalTy = I->getType();
3373       Type *ScalarTruncatedTy =
3374           IntegerType::get(OriginalTy->getContext(), KV.second);
3375       auto *TruncatedTy = FixedVectorType::get(
3376           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3377       if (TruncatedTy == OriginalTy)
3378         continue;
3379 
3380       IRBuilder<> B(cast<Instruction>(I));
3381       auto ShrinkOperand = [&](Value *V) -> Value * {
3382         if (auto *ZI = dyn_cast<ZExtInst>(V))
3383           if (ZI->getSrcTy() == TruncatedTy)
3384             return ZI->getOperand(0);
3385         return B.CreateZExtOrTrunc(V, TruncatedTy);
3386       };
3387 
3388       // The actual instruction modification depends on the instruction type,
3389       // unfortunately.
3390       Value *NewI = nullptr;
3391       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3392         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3393                              ShrinkOperand(BO->getOperand(1)));
3394 
3395         // Any wrapping introduced by shrinking this operation shouldn't be
3396         // considered undefined behavior. So, we can't unconditionally copy
3397         // arithmetic wrapping flags to NewI.
3398         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3399       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3400         NewI =
3401             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3402                          ShrinkOperand(CI->getOperand(1)));
3403       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3404         NewI = B.CreateSelect(SI->getCondition(),
3405                               ShrinkOperand(SI->getTrueValue()),
3406                               ShrinkOperand(SI->getFalseValue()));
3407       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3408         switch (CI->getOpcode()) {
3409         default:
3410           llvm_unreachable("Unhandled cast!");
3411         case Instruction::Trunc:
3412           NewI = ShrinkOperand(CI->getOperand(0));
3413           break;
3414         case Instruction::SExt:
3415           NewI = B.CreateSExtOrTrunc(
3416               CI->getOperand(0),
3417               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3418           break;
3419         case Instruction::ZExt:
3420           NewI = B.CreateZExtOrTrunc(
3421               CI->getOperand(0),
3422               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3423           break;
3424         }
3425       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3426         auto Elements0 =
3427             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3428         auto *O0 = B.CreateZExtOrTrunc(
3429             SI->getOperand(0),
3430             FixedVectorType::get(ScalarTruncatedTy, Elements0));
3431         auto Elements1 =
3432             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3433         auto *O1 = B.CreateZExtOrTrunc(
3434             SI->getOperand(1),
3435             FixedVectorType::get(ScalarTruncatedTy, Elements1));
3436 
3437         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3438       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3439         // Don't do anything with the operands, just extend the result.
3440         continue;
3441       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3442         auto Elements =
3443             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3444         auto *O0 = B.CreateZExtOrTrunc(
3445             IE->getOperand(0),
3446             FixedVectorType::get(ScalarTruncatedTy, Elements));
3447         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3448         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3449       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3450         auto Elements =
3451             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3452         auto *O0 = B.CreateZExtOrTrunc(
3453             EE->getOperand(0),
3454             FixedVectorType::get(ScalarTruncatedTy, Elements));
3455         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3456       } else {
3457         // If we don't know what to do, be conservative and don't do anything.
3458         continue;
3459       }
3460 
3461       // Lastly, extend the result.
3462       NewI->takeName(cast<Instruction>(I));
3463       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3464       I->replaceAllUsesWith(Res);
3465       cast<Instruction>(I)->eraseFromParent();
3466       Erased.insert(I);
3467       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3468     }
3469   }
3470 
3471   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3472   for (const auto &KV : Cost->getMinimalBitwidths()) {
3473     // If the value wasn't vectorized, we must maintain the original scalar
3474     // type. The absence of the value from VectorLoopValueMap indicates that it
3475     // wasn't vectorized.
3476     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3477       continue;
3478     for (unsigned Part = 0; Part < UF; ++Part) {
3479       Value *I = getOrCreateVectorValue(KV.first, Part);
3480       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3481       if (Inst && Inst->use_empty()) {
3482         Value *NewI = Inst->getOperand(0);
3483         Inst->eraseFromParent();
3484         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3485       }
3486     }
3487   }
3488 }
3489 
3490 void InnerLoopVectorizer::fixVectorizedLoop() {
3491   // Insert truncates and extends for any truncated instructions as hints to
3492   // InstCombine.
3493   if (VF > 1)
3494     truncateToMinimalBitwidths();
3495 
3496   // Fix widened non-induction PHIs by setting up the PHI operands.
3497   if (OrigPHIsToFix.size()) {
3498     assert(EnableVPlanNativePath &&
3499            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3500     fixNonInductionPHIs();
3501   }
3502 
3503   // At this point every instruction in the original loop is widened to a
3504   // vector form. Now we need to fix the recurrences in the loop. These PHI
3505   // nodes are currently empty because we did not want to introduce cycles.
3506   // This is the second stage of vectorizing recurrences.
3507   fixCrossIterationPHIs();
3508 
3509   // Forget the original basic block.
3510   PSE.getSE()->forgetLoop(OrigLoop);
3511 
3512   // Fix-up external users of the induction variables.
3513   for (auto &Entry : Legal->getInductionVars())
3514     fixupIVUsers(Entry.first, Entry.second,
3515                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3516                  IVEndValues[Entry.first], LoopMiddleBlock);
3517 
3518   fixLCSSAPHIs();
3519   for (Instruction *PI : PredicatedInstructions)
3520     sinkScalarOperands(&*PI);
3521 
3522   // Remove redundant induction instructions.
3523   cse(LoopVectorBody);
3524 
3525   // Set/update profile weights for the vector and remainder loops as original
3526   // loop iterations are now distributed among them. Note that original loop
3527   // represented by LoopScalarBody becomes remainder loop after vectorization.
3528   //
3529   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3530   // end up getting slightly roughened result but that should be OK since
3531   // profile is not inherently precise anyway. Note also possible bypass of
3532   // vector code caused by legality checks is ignored, assigning all the weight
3533   // to the vector loop, optimistically.
3534   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3535                                LI->getLoopFor(LoopVectorBody),
3536                                LI->getLoopFor(LoopScalarBody), VF * UF);
3537 }
3538 
3539 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3540   // In order to support recurrences we need to be able to vectorize Phi nodes.
3541   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3542   // stage #2: We now need to fix the recurrences by adding incoming edges to
3543   // the currently empty PHI nodes. At this point every instruction in the
3544   // original loop is widened to a vector form so we can use them to construct
3545   // the incoming edges.
3546   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3547     // Handle first-order recurrences and reductions that need to be fixed.
3548     if (Legal->isFirstOrderRecurrence(&Phi))
3549       fixFirstOrderRecurrence(&Phi);
3550     else if (Legal->isReductionVariable(&Phi))
3551       fixReduction(&Phi);
3552   }
3553 }
3554 
3555 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3556   // This is the second phase of vectorizing first-order recurrences. An
3557   // overview of the transformation is described below. Suppose we have the
3558   // following loop.
3559   //
3560   //   for (int i = 0; i < n; ++i)
3561   //     b[i] = a[i] - a[i - 1];
3562   //
3563   // There is a first-order recurrence on "a". For this loop, the shorthand
3564   // scalar IR looks like:
3565   //
3566   //   scalar.ph:
3567   //     s_init = a[-1]
3568   //     br scalar.body
3569   //
3570   //   scalar.body:
3571   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3572   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3573   //     s2 = a[i]
3574   //     b[i] = s2 - s1
3575   //     br cond, scalar.body, ...
3576   //
3577   // In this example, s1 is a recurrence because it's value depends on the
3578   // previous iteration. In the first phase of vectorization, we created a
3579   // temporary value for s1. We now complete the vectorization and produce the
3580   // shorthand vector IR shown below (for VF = 4, UF = 1).
3581   //
3582   //   vector.ph:
3583   //     v_init = vector(..., ..., ..., a[-1])
3584   //     br vector.body
3585   //
3586   //   vector.body
3587   //     i = phi [0, vector.ph], [i+4, vector.body]
3588   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3589   //     v2 = a[i, i+1, i+2, i+3];
3590   //     v3 = vector(v1(3), v2(0, 1, 2))
3591   //     b[i, i+1, i+2, i+3] = v2 - v3
3592   //     br cond, vector.body, middle.block
3593   //
3594   //   middle.block:
3595   //     x = v2(3)
3596   //     br scalar.ph
3597   //
3598   //   scalar.ph:
3599   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3600   //     br scalar.body
3601   //
3602   // After execution completes the vector loop, we extract the next value of
3603   // the recurrence (x) to use as the initial value in the scalar loop.
3604 
3605   // Get the original loop preheader and single loop latch.
3606   auto *Preheader = OrigLoop->getLoopPreheader();
3607   auto *Latch = OrigLoop->getLoopLatch();
3608 
3609   // Get the initial and previous values of the scalar recurrence.
3610   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3611   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3612 
3613   // Create a vector from the initial value.
3614   auto *VectorInit = ScalarInit;
3615   if (VF > 1) {
3616     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3617     VectorInit = Builder.CreateInsertElement(
3618         UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)),
3619         VectorInit, Builder.getInt32(VF - 1), "vector.recur.init");
3620   }
3621 
3622   // We constructed a temporary phi node in the first phase of vectorization.
3623   // This phi node will eventually be deleted.
3624   Builder.SetInsertPoint(
3625       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3626 
3627   // Create a phi node for the new recurrence. The current value will either be
3628   // the initial value inserted into a vector or loop-varying vector value.
3629   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3630   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3631 
3632   // Get the vectorized previous value of the last part UF - 1. It appears last
3633   // among all unrolled iterations, due to the order of their construction.
3634   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3635 
3636   // Find and set the insertion point after the previous value if it is an
3637   // instruction.
3638   BasicBlock::iterator InsertPt;
3639   // Note that the previous value may have been constant-folded so it is not
3640   // guaranteed to be an instruction in the vector loop.
3641   // FIXME: Loop invariant values do not form recurrences. We should deal with
3642   //        them earlier.
3643   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3644     InsertPt = LoopVectorBody->getFirstInsertionPt();
3645   else {
3646     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3647     if (isa<PHINode>(PreviousLastPart))
3648       // If the previous value is a phi node, we should insert after all the phi
3649       // nodes in the block containing the PHI to avoid breaking basic block
3650       // verification. Note that the basic block may be different to
3651       // LoopVectorBody, in case we predicate the loop.
3652       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3653     else
3654       InsertPt = ++PreviousInst->getIterator();
3655   }
3656   Builder.SetInsertPoint(&*InsertPt);
3657 
3658   // We will construct a vector for the recurrence by combining the values for
3659   // the current and previous iterations. This is the required shuffle mask.
3660   SmallVector<int, 8> ShuffleMask(VF);
3661   ShuffleMask[0] = VF - 1;
3662   for (unsigned I = 1; I < VF; ++I)
3663     ShuffleMask[I] = I + VF - 1;
3664 
3665   // The vector from which to take the initial value for the current iteration
3666   // (actual or unrolled). Initially, this is the vector phi node.
3667   Value *Incoming = VecPhi;
3668 
3669   // Shuffle the current and previous vector and update the vector parts.
3670   for (unsigned Part = 0; Part < UF; ++Part) {
3671     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3672     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3673     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3674                                                          ShuffleMask)
3675                            : Incoming;
3676     PhiPart->replaceAllUsesWith(Shuffle);
3677     cast<Instruction>(PhiPart)->eraseFromParent();
3678     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3679     Incoming = PreviousPart;
3680   }
3681 
3682   // Fix the latch value of the new recurrence in the vector loop.
3683   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3684 
3685   // Extract the last vector element in the middle block. This will be the
3686   // initial value for the recurrence when jumping to the scalar loop.
3687   auto *ExtractForScalar = Incoming;
3688   if (VF > 1) {
3689     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3690     ExtractForScalar = Builder.CreateExtractElement(
3691         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3692   }
3693   // Extract the second last element in the middle block if the
3694   // Phi is used outside the loop. We need to extract the phi itself
3695   // and not the last element (the phi update in the current iteration). This
3696   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3697   // when the scalar loop is not run at all.
3698   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3699   if (VF > 1)
3700     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3701         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3702   // When loop is unrolled without vectorizing, initialize
3703   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3704   // `Incoming`. This is analogous to the vectorized case above: extracting the
3705   // second last element when VF > 1.
3706   else if (UF > 1)
3707     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3708 
3709   // Fix the initial value of the original recurrence in the scalar loop.
3710   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3711   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3712   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3713     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3714     Start->addIncoming(Incoming, BB);
3715   }
3716 
3717   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3718   Phi->setName("scalar.recur");
3719 
3720   // Finally, fix users of the recurrence outside the loop. The users will need
3721   // either the last value of the scalar recurrence or the last value of the
3722   // vector recurrence we extracted in the middle block. Since the loop is in
3723   // LCSSA form, we just need to find all the phi nodes for the original scalar
3724   // recurrence in the exit block, and then add an edge for the middle block.
3725   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3726     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3727       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3728     }
3729   }
3730 }
3731 
3732 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3733   Constant *Zero = Builder.getInt32(0);
3734 
3735   // Get it's reduction variable descriptor.
3736   assert(Legal->isReductionVariable(Phi) &&
3737          "Unable to find the reduction variable");
3738   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3739 
3740   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3741   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3742   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3743   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3744     RdxDesc.getMinMaxRecurrenceKind();
3745   setDebugLocFromInst(Builder, ReductionStartValue);
3746 
3747   // We need to generate a reduction vector from the incoming scalar.
3748   // To do so, we need to generate the 'identity' vector and override
3749   // one of the elements with the incoming scalar reduction. We need
3750   // to do it in the vector-loop preheader.
3751   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3752 
3753   // This is the vector-clone of the value that leaves the loop.
3754   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3755 
3756   // Find the reduction identity variable. Zero for addition, or, xor,
3757   // one for multiplication, -1 for And.
3758   Value *Identity;
3759   Value *VectorStart;
3760   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3761       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3762     // MinMax reduction have the start value as their identify.
3763     if (VF == 1) {
3764       VectorStart = Identity = ReductionStartValue;
3765     } else {
3766       VectorStart = Identity =
3767         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3768     }
3769   } else {
3770     // Handle other reduction kinds:
3771     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3772         RK, VecTy->getScalarType());
3773     if (VF == 1) {
3774       Identity = Iden;
3775       // This vector is the Identity vector where the first element is the
3776       // incoming scalar reduction.
3777       VectorStart = ReductionStartValue;
3778     } else {
3779       Identity = ConstantVector::getSplat({VF, false}, Iden);
3780 
3781       // This vector is the Identity vector where the first element is the
3782       // incoming scalar reduction.
3783       VectorStart =
3784         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3785     }
3786   }
3787 
3788   // Wrap flags are in general invalid after vectorization, clear them.
3789   clearReductionWrapFlags(RdxDesc);
3790 
3791   // Fix the vector-loop phi.
3792 
3793   // Reductions do not have to start at zero. They can start with
3794   // any loop invariant values.
3795   BasicBlock *Latch = OrigLoop->getLoopLatch();
3796   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3797 
3798   for (unsigned Part = 0; Part < UF; ++Part) {
3799     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3800     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3801     // Make sure to add the reduction start value only to the
3802     // first unroll part.
3803     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3804     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3805     cast<PHINode>(VecRdxPhi)
3806       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3807   }
3808 
3809   // Before each round, move the insertion point right between
3810   // the PHIs and the values we are going to write.
3811   // This allows us to write both PHINodes and the extractelement
3812   // instructions.
3813   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3814 
3815   setDebugLocFromInst(Builder, LoopExitInst);
3816 
3817   // If tail is folded by masking, the vector value to leave the loop should be
3818   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3819   // instead of the former.
3820   if (Cost->foldTailByMasking()) {
3821     for (unsigned Part = 0; Part < UF; ++Part) {
3822       Value *VecLoopExitInst =
3823           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3824       Value *Sel = nullptr;
3825       for (User *U : VecLoopExitInst->users()) {
3826         if (isa<SelectInst>(U)) {
3827           assert(!Sel && "Reduction exit feeding two selects");
3828           Sel = U;
3829         } else
3830           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3831       }
3832       assert(Sel && "Reduction exit feeds no select");
3833       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3834     }
3835   }
3836 
3837   // If the vector reduction can be performed in a smaller type, we truncate
3838   // then extend the loop exit value to enable InstCombine to evaluate the
3839   // entire expression in the smaller type.
3840   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3841     Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF);
3842     Builder.SetInsertPoint(
3843         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3844     VectorParts RdxParts(UF);
3845     for (unsigned Part = 0; Part < UF; ++Part) {
3846       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3847       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3848       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3849                                         : Builder.CreateZExt(Trunc, VecTy);
3850       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3851            UI != RdxParts[Part]->user_end();)
3852         if (*UI != Trunc) {
3853           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3854           RdxParts[Part] = Extnd;
3855         } else {
3856           ++UI;
3857         }
3858     }
3859     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3860     for (unsigned Part = 0; Part < UF; ++Part) {
3861       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3862       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3863     }
3864   }
3865 
3866   // Reduce all of the unrolled parts into a single vector.
3867   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3868   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3869 
3870   // The middle block terminator has already been assigned a DebugLoc here (the
3871   // OrigLoop's single latch terminator). We want the whole middle block to
3872   // appear to execute on this line because: (a) it is all compiler generated,
3873   // (b) these instructions are always executed after evaluating the latch
3874   // conditional branch, and (c) other passes may add new predecessors which
3875   // terminate on this line. This is the easiest way to ensure we don't
3876   // accidentally cause an extra step back into the loop while debugging.
3877   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3878   for (unsigned Part = 1; Part < UF; ++Part) {
3879     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3880     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3881       // Floating point operations had to be 'fast' to enable the reduction.
3882       ReducedPartRdx = addFastMathFlag(
3883           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3884                               ReducedPartRdx, "bin.rdx"),
3885           RdxDesc.getFastMathFlags());
3886     else
3887       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3888                                       RdxPart);
3889   }
3890 
3891   if (VF > 1) {
3892     bool NoNaN = Legal->hasFunNoNaNAttr();
3893     ReducedPartRdx =
3894         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3895     // If the reduction can be performed in a smaller type, we need to extend
3896     // the reduction to the wider type before we branch to the original loop.
3897     if (Phi->getType() != RdxDesc.getRecurrenceType())
3898       ReducedPartRdx =
3899         RdxDesc.isSigned()
3900         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3901         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3902   }
3903 
3904   // Create a phi node that merges control-flow from the backedge-taken check
3905   // block and the middle block.
3906   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3907                                         LoopScalarPreHeader->getTerminator());
3908   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3909     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3910   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3911 
3912   // Now, we need to fix the users of the reduction variable
3913   // inside and outside of the scalar remainder loop.
3914   // We know that the loop is in LCSSA form. We need to update the
3915   // PHI nodes in the exit blocks.
3916   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3917     // All PHINodes need to have a single entry edge, or two if
3918     // we already fixed them.
3919     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3920 
3921     // We found a reduction value exit-PHI. Update it with the
3922     // incoming bypass edge.
3923     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3924       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3925   } // end of the LCSSA phi scan.
3926 
3927     // Fix the scalar loop reduction variable with the incoming reduction sum
3928     // from the vector body and from the backedge value.
3929   int IncomingEdgeBlockIdx =
3930     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3931   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3932   // Pick the other block.
3933   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3934   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3935   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3936 }
3937 
3938 void InnerLoopVectorizer::clearReductionWrapFlags(
3939     RecurrenceDescriptor &RdxDesc) {
3940   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3941   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3942       RK != RecurrenceDescriptor::RK_IntegerMult)
3943     return;
3944 
3945   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3946   assert(LoopExitInstr && "null loop exit instruction");
3947   SmallVector<Instruction *, 8> Worklist;
3948   SmallPtrSet<Instruction *, 8> Visited;
3949   Worklist.push_back(LoopExitInstr);
3950   Visited.insert(LoopExitInstr);
3951 
3952   while (!Worklist.empty()) {
3953     Instruction *Cur = Worklist.pop_back_val();
3954     if (isa<OverflowingBinaryOperator>(Cur))
3955       for (unsigned Part = 0; Part < UF; ++Part) {
3956         Value *V = getOrCreateVectorValue(Cur, Part);
3957         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3958       }
3959 
3960     for (User *U : Cur->users()) {
3961       Instruction *UI = cast<Instruction>(U);
3962       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3963           Visited.insert(UI).second)
3964         Worklist.push_back(UI);
3965     }
3966   }
3967 }
3968 
3969 void InnerLoopVectorizer::fixLCSSAPHIs() {
3970   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3971     if (LCSSAPhi.getNumIncomingValues() == 1) {
3972       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3973       // Non-instruction incoming values will have only one value.
3974       unsigned LastLane = 0;
3975       if (isa<Instruction>(IncomingValue))
3976           LastLane = Cost->isUniformAfterVectorization(
3977                          cast<Instruction>(IncomingValue), VF)
3978                          ? 0
3979                          : VF - 1;
3980       // Can be a loop invariant incoming value or the last scalar value to be
3981       // extracted from the vectorized loop.
3982       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3983       Value *lastIncomingValue =
3984           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3985       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3986     }
3987   }
3988 }
3989 
3990 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3991   // The basic block and loop containing the predicated instruction.
3992   auto *PredBB = PredInst->getParent();
3993   auto *VectorLoop = LI->getLoopFor(PredBB);
3994 
3995   // Initialize a worklist with the operands of the predicated instruction.
3996   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3997 
3998   // Holds instructions that we need to analyze again. An instruction may be
3999   // reanalyzed if we don't yet know if we can sink it or not.
4000   SmallVector<Instruction *, 8> InstsToReanalyze;
4001 
4002   // Returns true if a given use occurs in the predicated block. Phi nodes use
4003   // their operands in their corresponding predecessor blocks.
4004   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4005     auto *I = cast<Instruction>(U.getUser());
4006     BasicBlock *BB = I->getParent();
4007     if (auto *Phi = dyn_cast<PHINode>(I))
4008       BB = Phi->getIncomingBlock(
4009           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4010     return BB == PredBB;
4011   };
4012 
4013   // Iteratively sink the scalarized operands of the predicated instruction
4014   // into the block we created for it. When an instruction is sunk, it's
4015   // operands are then added to the worklist. The algorithm ends after one pass
4016   // through the worklist doesn't sink a single instruction.
4017   bool Changed;
4018   do {
4019     // Add the instructions that need to be reanalyzed to the worklist, and
4020     // reset the changed indicator.
4021     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4022     InstsToReanalyze.clear();
4023     Changed = false;
4024 
4025     while (!Worklist.empty()) {
4026       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4027 
4028       // We can't sink an instruction if it is a phi node, is already in the
4029       // predicated block, is not in the loop, or may have side effects.
4030       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4031           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4032         continue;
4033 
4034       // It's legal to sink the instruction if all its uses occur in the
4035       // predicated block. Otherwise, there's nothing to do yet, and we may
4036       // need to reanalyze the instruction.
4037       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4038         InstsToReanalyze.push_back(I);
4039         continue;
4040       }
4041 
4042       // Move the instruction to the beginning of the predicated block, and add
4043       // it's operands to the worklist.
4044       I->moveBefore(&*PredBB->getFirstInsertionPt());
4045       Worklist.insert(I->op_begin(), I->op_end());
4046 
4047       // The sinking may have enabled other instructions to be sunk, so we will
4048       // need to iterate.
4049       Changed = true;
4050     }
4051   } while (Changed);
4052 }
4053 
4054 void InnerLoopVectorizer::fixNonInductionPHIs() {
4055   for (PHINode *OrigPhi : OrigPHIsToFix) {
4056     PHINode *NewPhi =
4057         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4058     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4059 
4060     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4061         predecessors(OrigPhi->getParent()));
4062     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4063         predecessors(NewPhi->getParent()));
4064     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4065            "Scalar and Vector BB should have the same number of predecessors");
4066 
4067     // The insertion point in Builder may be invalidated by the time we get
4068     // here. Force the Builder insertion point to something valid so that we do
4069     // not run into issues during insertion point restore in
4070     // getOrCreateVectorValue calls below.
4071     Builder.SetInsertPoint(NewPhi);
4072 
4073     // The predecessor order is preserved and we can rely on mapping between
4074     // scalar and vector block predecessors.
4075     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4076       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4077 
4078       // When looking up the new scalar/vector values to fix up, use incoming
4079       // values from original phi.
4080       Value *ScIncV =
4081           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4082 
4083       // Scalar incoming value may need a broadcast
4084       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4085       NewPhi->addIncoming(NewIncV, NewPredBB);
4086     }
4087   }
4088 }
4089 
4090 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands,
4091                                    unsigned UF, unsigned VF,
4092                                    bool IsPtrLoopInvariant,
4093                                    SmallBitVector &IsIndexLoopInvariant,
4094                                    VPTransformState &State) {
4095   // Construct a vector GEP by widening the operands of the scalar GEP as
4096   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4097   // results in a vector of pointers when at least one operand of the GEP
4098   // is vector-typed. Thus, to keep the representation compact, we only use
4099   // vector-typed operands for loop-varying values.
4100 
4101   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4102     // If we are vectorizing, but the GEP has only loop-invariant operands,
4103     // the GEP we build (by only using vector-typed operands for
4104     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4105     // produce a vector of pointers, we need to either arbitrarily pick an
4106     // operand to broadcast, or broadcast a clone of the original GEP.
4107     // Here, we broadcast a clone of the original.
4108     //
4109     // TODO: If at some point we decide to scalarize instructions having
4110     //       loop-invariant operands, this special case will no longer be
4111     //       required. We would add the scalarization decision to
4112     //       collectLoopScalars() and teach getVectorValue() to broadcast
4113     //       the lane-zero scalar value.
4114     auto *Clone = Builder.Insert(GEP->clone());
4115     for (unsigned Part = 0; Part < UF; ++Part) {
4116       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4117       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4118       addMetadata(EntryPart, GEP);
4119     }
4120   } else {
4121     // If the GEP has at least one loop-varying operand, we are sure to
4122     // produce a vector of pointers. But if we are only unrolling, we want
4123     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4124     // produce with the code below will be scalar (if VF == 1) or vector
4125     // (otherwise). Note that for the unroll-only case, we still maintain
4126     // values in the vector mapping with initVector, as we do for other
4127     // instructions.
4128     for (unsigned Part = 0; Part < UF; ++Part) {
4129       // The pointer operand of the new GEP. If it's loop-invariant, we
4130       // won't broadcast it.
4131       auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0})
4132                                      : State.get(Operands.getOperand(0), Part);
4133 
4134       // Collect all the indices for the new GEP. If any index is
4135       // loop-invariant, we won't broadcast it.
4136       SmallVector<Value *, 4> Indices;
4137       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4138         VPValue *Operand = Operands.getOperand(I);
4139         if (IsIndexLoopInvariant[I - 1])
4140           Indices.push_back(State.get(Operand, {0, 0}));
4141         else
4142           Indices.push_back(State.get(Operand, Part));
4143       }
4144 
4145       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4146       // but it should be a vector, otherwise.
4147       auto *NewGEP =
4148           GEP->isInBounds()
4149               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4150                                           Indices)
4151               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4152       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4153              "NewGEP is not a pointer vector");
4154       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4155       addMetadata(NewGEP, GEP);
4156     }
4157   }
4158 }
4159 
4160 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4161                                               unsigned VF) {
4162   PHINode *P = cast<PHINode>(PN);
4163   if (EnableVPlanNativePath) {
4164     // Currently we enter here in the VPlan-native path for non-induction
4165     // PHIs where all control flow is uniform. We simply widen these PHIs.
4166     // Create a vector phi with no operands - the vector phi operands will be
4167     // set at the end of vector code generation.
4168     Type *VecTy =
4169         (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4170     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4171     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4172     OrigPHIsToFix.push_back(P);
4173 
4174     return;
4175   }
4176 
4177   assert(PN->getParent() == OrigLoop->getHeader() &&
4178          "Non-header phis should have been handled elsewhere");
4179 
4180   // In order to support recurrences we need to be able to vectorize Phi nodes.
4181   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4182   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4183   // this value when we vectorize all of the instructions that use the PHI.
4184   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4185     for (unsigned Part = 0; Part < UF; ++Part) {
4186       // This is phase one of vectorizing PHIs.
4187       Type *VecTy =
4188           (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF);
4189       Value *EntryPart = PHINode::Create(
4190           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4191       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4192     }
4193     return;
4194   }
4195 
4196   setDebugLocFromInst(Builder, P);
4197 
4198   // This PHINode must be an induction variable.
4199   // Make sure that we know about it.
4200   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4201 
4202   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4203   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4204 
4205   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4206   // which can be found from the original scalar operations.
4207   switch (II.getKind()) {
4208   case InductionDescriptor::IK_NoInduction:
4209     llvm_unreachable("Unknown induction");
4210   case InductionDescriptor::IK_IntInduction:
4211   case InductionDescriptor::IK_FpInduction:
4212     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4213   case InductionDescriptor::IK_PtrInduction: {
4214     // Handle the pointer induction variable case.
4215     assert(P->getType()->isPointerTy() && "Unexpected type.");
4216     // This is the normalized GEP that starts counting at zero.
4217     Value *PtrInd = Induction;
4218     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4219     // Determine the number of scalars we need to generate for each unroll
4220     // iteration. If the instruction is uniform, we only need to generate the
4221     // first lane. Otherwise, we generate all VF values.
4222     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4223     // These are the scalar results. Notice that we don't generate vector GEPs
4224     // because scalar GEPs result in better code.
4225     for (unsigned Part = 0; Part < UF; ++Part) {
4226       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4227         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4228         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4229         Value *SclrGep =
4230             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4231         SclrGep->setName("next.gep");
4232         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4233       }
4234     }
4235     return;
4236   }
4237   }
4238 }
4239 
4240 /// A helper function for checking whether an integer division-related
4241 /// instruction may divide by zero (in which case it must be predicated if
4242 /// executed conditionally in the scalar code).
4243 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4244 /// Non-zero divisors that are non compile-time constants will not be
4245 /// converted into multiplication, so we will still end up scalarizing
4246 /// the division, but can do so w/o predication.
4247 static bool mayDivideByZero(Instruction &I) {
4248   assert((I.getOpcode() == Instruction::UDiv ||
4249           I.getOpcode() == Instruction::SDiv ||
4250           I.getOpcode() == Instruction::URem ||
4251           I.getOpcode() == Instruction::SRem) &&
4252          "Unexpected instruction");
4253   Value *Divisor = I.getOperand(1);
4254   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4255   return !CInt || CInt->isZero();
4256 }
4257 
4258 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4259                                            VPTransformState &State) {
4260   switch (I.getOpcode()) {
4261   case Instruction::Call:
4262   case Instruction::Br:
4263   case Instruction::PHI:
4264   case Instruction::GetElementPtr:
4265   case Instruction::Select:
4266     llvm_unreachable("This instruction is handled by a different recipe.");
4267   case Instruction::UDiv:
4268   case Instruction::SDiv:
4269   case Instruction::SRem:
4270   case Instruction::URem:
4271   case Instruction::Add:
4272   case Instruction::FAdd:
4273   case Instruction::Sub:
4274   case Instruction::FSub:
4275   case Instruction::FNeg:
4276   case Instruction::Mul:
4277   case Instruction::FMul:
4278   case Instruction::FDiv:
4279   case Instruction::FRem:
4280   case Instruction::Shl:
4281   case Instruction::LShr:
4282   case Instruction::AShr:
4283   case Instruction::And:
4284   case Instruction::Or:
4285   case Instruction::Xor: {
4286     // Just widen unops and binops.
4287     setDebugLocFromInst(Builder, &I);
4288 
4289     for (unsigned Part = 0; Part < UF; ++Part) {
4290       SmallVector<Value *, 2> Ops;
4291       for (VPValue *VPOp : User.operands())
4292         Ops.push_back(State.get(VPOp, Part));
4293 
4294       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4295 
4296       if (auto *VecOp = dyn_cast<Instruction>(V))
4297         VecOp->copyIRFlags(&I);
4298 
4299       // Use this vector value for all users of the original instruction.
4300       VectorLoopValueMap.setVectorValue(&I, Part, V);
4301       addMetadata(V, &I);
4302     }
4303 
4304     break;
4305   }
4306   case Instruction::ICmp:
4307   case Instruction::FCmp: {
4308     // Widen compares. Generate vector compares.
4309     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4310     auto *Cmp = cast<CmpInst>(&I);
4311     setDebugLocFromInst(Builder, Cmp);
4312     for (unsigned Part = 0; Part < UF; ++Part) {
4313       Value *A = State.get(User.getOperand(0), Part);
4314       Value *B = State.get(User.getOperand(1), Part);
4315       Value *C = nullptr;
4316       if (FCmp) {
4317         // Propagate fast math flags.
4318         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4319         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4320         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4321       } else {
4322         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4323       }
4324       VectorLoopValueMap.setVectorValue(&I, Part, C);
4325       addMetadata(C, &I);
4326     }
4327 
4328     break;
4329   }
4330 
4331   case Instruction::ZExt:
4332   case Instruction::SExt:
4333   case Instruction::FPToUI:
4334   case Instruction::FPToSI:
4335   case Instruction::FPExt:
4336   case Instruction::PtrToInt:
4337   case Instruction::IntToPtr:
4338   case Instruction::SIToFP:
4339   case Instruction::UIToFP:
4340   case Instruction::Trunc:
4341   case Instruction::FPTrunc:
4342   case Instruction::BitCast: {
4343     auto *CI = cast<CastInst>(&I);
4344     setDebugLocFromInst(Builder, CI);
4345 
4346     /// Vectorize casts.
4347     Type *DestTy =
4348         (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF);
4349 
4350     for (unsigned Part = 0; Part < UF; ++Part) {
4351       Value *A = State.get(User.getOperand(0), Part);
4352       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4353       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4354       addMetadata(Cast, &I);
4355     }
4356     break;
4357   }
4358   default:
4359     // This instruction is not vectorized by simple widening.
4360     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4361     llvm_unreachable("Unhandled instruction!");
4362   } // end of switch.
4363 }
4364 
4365 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4366                                                VPTransformState &State) {
4367   assert(!isa<DbgInfoIntrinsic>(I) &&
4368          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4369   setDebugLocFromInst(Builder, &I);
4370 
4371   Module *M = I.getParent()->getParent()->getParent();
4372   auto *CI = cast<CallInst>(&I);
4373 
4374   SmallVector<Type *, 4> Tys;
4375   for (Value *ArgOperand : CI->arg_operands())
4376     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4377 
4378   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4379 
4380   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4381   // version of the instruction.
4382   // Is it beneficial to perform intrinsic call compared to lib call?
4383   bool NeedToScalarize = false;
4384   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4385   bool UseVectorIntrinsic =
4386       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4387   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4388          "Instruction should be scalarized elsewhere.");
4389 
4390   for (unsigned Part = 0; Part < UF; ++Part) {
4391     SmallVector<Value *, 4> Args;
4392     for (auto &I : enumerate(ArgOperands.operands())) {
4393       // Some intrinsics have a scalar argument - don't replace it with a
4394       // vector.
4395       Value *Arg;
4396       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4397         Arg = State.get(I.value(), Part);
4398       else
4399         Arg = State.get(I.value(), {0, 0});
4400       Args.push_back(Arg);
4401     }
4402 
4403     Function *VectorF;
4404     if (UseVectorIntrinsic) {
4405       // Use vector version of the intrinsic.
4406       Type *TysForDecl[] = {CI->getType()};
4407       if (VF > 1)
4408         TysForDecl[0] =
4409             FixedVectorType::get(CI->getType()->getScalarType(), VF);
4410       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4411       assert(VectorF && "Can't retrieve vector intrinsic.");
4412     } else {
4413       // Use vector version of the function call.
4414       const VFShape Shape =
4415           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4416 #ifndef NDEBUG
4417       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4418              "Can't create vector function.");
4419 #endif
4420         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4421     }
4422       SmallVector<OperandBundleDef, 1> OpBundles;
4423       CI->getOperandBundlesAsDefs(OpBundles);
4424       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4425 
4426       if (isa<FPMathOperator>(V))
4427         V->copyFastMathFlags(CI);
4428 
4429       VectorLoopValueMap.setVectorValue(&I, Part, V);
4430       addMetadata(V, &I);
4431   }
4432 }
4433 
4434 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4435                                                  VPUser &Operands,
4436                                                  bool InvariantCond,
4437                                                  VPTransformState &State) {
4438   setDebugLocFromInst(Builder, &I);
4439 
4440   // The condition can be loop invariant  but still defined inside the
4441   // loop. This means that we can't just use the original 'cond' value.
4442   // We have to take the 'vectorized' value and pick the first lane.
4443   // Instcombine will make this a no-op.
4444   auto *InvarCond =
4445       InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr;
4446 
4447   for (unsigned Part = 0; Part < UF; ++Part) {
4448     Value *Cond =
4449         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
4450     Value *Op0 = State.get(Operands.getOperand(1), Part);
4451     Value *Op1 = State.get(Operands.getOperand(2), Part);
4452     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
4453     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4454     addMetadata(Sel, &I);
4455   }
4456 }
4457 
4458 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4459   // We should not collect Scalars more than once per VF. Right now, this
4460   // function is called from collectUniformsAndScalars(), which already does
4461   // this check. Collecting Scalars for VF=1 does not make any sense.
4462   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4463          "This function should not be visited twice for the same VF");
4464 
4465   SmallSetVector<Instruction *, 8> Worklist;
4466 
4467   // These sets are used to seed the analysis with pointers used by memory
4468   // accesses that will remain scalar.
4469   SmallSetVector<Instruction *, 8> ScalarPtrs;
4470   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4471 
4472   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4473   // The pointer operands of loads and stores will be scalar as long as the
4474   // memory access is not a gather or scatter operation. The value operand of a
4475   // store will remain scalar if the store is scalarized.
4476   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4477     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4478     assert(WideningDecision != CM_Unknown &&
4479            "Widening decision should be ready at this moment");
4480     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4481       if (Ptr == Store->getValueOperand())
4482         return WideningDecision == CM_Scalarize;
4483     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4484            "Ptr is neither a value or pointer operand");
4485     return WideningDecision != CM_GatherScatter;
4486   };
4487 
4488   // A helper that returns true if the given value is a bitcast or
4489   // getelementptr instruction contained in the loop.
4490   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4491     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4492             isa<GetElementPtrInst>(V)) &&
4493            !TheLoop->isLoopInvariant(V);
4494   };
4495 
4496   // A helper that evaluates a memory access's use of a pointer. If the use
4497   // will be a scalar use, and the pointer is only used by memory accesses, we
4498   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4499   // PossibleNonScalarPtrs.
4500   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4501     // We only care about bitcast and getelementptr instructions contained in
4502     // the loop.
4503     if (!isLoopVaryingBitCastOrGEP(Ptr))
4504       return;
4505 
4506     // If the pointer has already been identified as scalar (e.g., if it was
4507     // also identified as uniform), there's nothing to do.
4508     auto *I = cast<Instruction>(Ptr);
4509     if (Worklist.count(I))
4510       return;
4511 
4512     // If the use of the pointer will be a scalar use, and all users of the
4513     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4514     // place the pointer in PossibleNonScalarPtrs.
4515     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4516           return isa<LoadInst>(U) || isa<StoreInst>(U);
4517         }))
4518       ScalarPtrs.insert(I);
4519     else
4520       PossibleNonScalarPtrs.insert(I);
4521   };
4522 
4523   // We seed the scalars analysis with three classes of instructions: (1)
4524   // instructions marked uniform-after-vectorization, (2) bitcast and
4525   // getelementptr instructions used by memory accesses requiring a scalar use,
4526   // and (3) pointer induction variables and their update instructions (we
4527   // currently only scalarize these).
4528   //
4529   // (1) Add to the worklist all instructions that have been identified as
4530   // uniform-after-vectorization.
4531   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4532 
4533   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4534   // memory accesses requiring a scalar use. The pointer operands of loads and
4535   // stores will be scalar as long as the memory accesses is not a gather or
4536   // scatter operation. The value operand of a store will remain scalar if the
4537   // store is scalarized.
4538   for (auto *BB : TheLoop->blocks())
4539     for (auto &I : *BB) {
4540       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4541         evaluatePtrUse(Load, Load->getPointerOperand());
4542       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4543         evaluatePtrUse(Store, Store->getPointerOperand());
4544         evaluatePtrUse(Store, Store->getValueOperand());
4545       }
4546     }
4547   for (auto *I : ScalarPtrs)
4548     if (!PossibleNonScalarPtrs.count(I)) {
4549       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4550       Worklist.insert(I);
4551     }
4552 
4553   // (3) Add to the worklist all pointer induction variables and their update
4554   // instructions.
4555   //
4556   // TODO: Once we are able to vectorize pointer induction variables we should
4557   //       no longer insert them into the worklist here.
4558   auto *Latch = TheLoop->getLoopLatch();
4559   for (auto &Induction : Legal->getInductionVars()) {
4560     auto *Ind = Induction.first;
4561     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4562     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4563       continue;
4564     Worklist.insert(Ind);
4565     Worklist.insert(IndUpdate);
4566     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4567     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4568                       << "\n");
4569   }
4570 
4571   // Insert the forced scalars.
4572   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4573   // induction variable when the PHI user is scalarized.
4574   auto ForcedScalar = ForcedScalars.find(VF);
4575   if (ForcedScalar != ForcedScalars.end())
4576     for (auto *I : ForcedScalar->second)
4577       Worklist.insert(I);
4578 
4579   // Expand the worklist by looking through any bitcasts and getelementptr
4580   // instructions we've already identified as scalar. This is similar to the
4581   // expansion step in collectLoopUniforms(); however, here we're only
4582   // expanding to include additional bitcasts and getelementptr instructions.
4583   unsigned Idx = 0;
4584   while (Idx != Worklist.size()) {
4585     Instruction *Dst = Worklist[Idx++];
4586     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4587       continue;
4588     auto *Src = cast<Instruction>(Dst->getOperand(0));
4589     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4590           auto *J = cast<Instruction>(U);
4591           return !TheLoop->contains(J) || Worklist.count(J) ||
4592                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4593                   isScalarUse(J, Src));
4594         })) {
4595       Worklist.insert(Src);
4596       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4597     }
4598   }
4599 
4600   // An induction variable will remain scalar if all users of the induction
4601   // variable and induction variable update remain scalar.
4602   for (auto &Induction : Legal->getInductionVars()) {
4603     auto *Ind = Induction.first;
4604     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4605 
4606     // We already considered pointer induction variables, so there's no reason
4607     // to look at their users again.
4608     //
4609     // TODO: Once we are able to vectorize pointer induction variables we
4610     //       should no longer skip over them here.
4611     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4612       continue;
4613 
4614     // If tail-folding is applied, the primary induction variable will be used
4615     // to feed a vector compare.
4616     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4617       continue;
4618 
4619     // Determine if all users of the induction variable are scalar after
4620     // vectorization.
4621     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4622       auto *I = cast<Instruction>(U);
4623       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4624     });
4625     if (!ScalarInd)
4626       continue;
4627 
4628     // Determine if all users of the induction variable update instruction are
4629     // scalar after vectorization.
4630     auto ScalarIndUpdate =
4631         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4632           auto *I = cast<Instruction>(U);
4633           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4634         });
4635     if (!ScalarIndUpdate)
4636       continue;
4637 
4638     // The induction variable and its update instruction will remain scalar.
4639     Worklist.insert(Ind);
4640     Worklist.insert(IndUpdate);
4641     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4642     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4643                       << "\n");
4644   }
4645 
4646   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4647 }
4648 
4649 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4650   if (!blockNeedsPredication(I->getParent()))
4651     return false;
4652   switch(I->getOpcode()) {
4653   default:
4654     break;
4655   case Instruction::Load:
4656   case Instruction::Store: {
4657     if (!Legal->isMaskRequired(I))
4658       return false;
4659     auto *Ptr = getLoadStorePointerOperand(I);
4660     auto *Ty = getMemInstValueType(I);
4661     // We have already decided how to vectorize this instruction, get that
4662     // result.
4663     if (VF > 1) {
4664       InstWidening WideningDecision = getWideningDecision(I, VF);
4665       assert(WideningDecision != CM_Unknown &&
4666              "Widening decision should be ready at this moment");
4667       return WideningDecision == CM_Scalarize;
4668     }
4669     const Align Alignment = getLoadStoreAlignment(I);
4670     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4671                                 isLegalMaskedGather(Ty, Alignment))
4672                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4673                                 isLegalMaskedScatter(Ty, Alignment));
4674   }
4675   case Instruction::UDiv:
4676   case Instruction::SDiv:
4677   case Instruction::SRem:
4678   case Instruction::URem:
4679     return mayDivideByZero(*I);
4680   }
4681   return false;
4682 }
4683 
4684 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4685                                                                unsigned VF) {
4686   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4687   assert(getWideningDecision(I, VF) == CM_Unknown &&
4688          "Decision should not be set yet.");
4689   auto *Group = getInterleavedAccessGroup(I);
4690   assert(Group && "Must have a group.");
4691 
4692   // If the instruction's allocated size doesn't equal it's type size, it
4693   // requires padding and will be scalarized.
4694   auto &DL = I->getModule()->getDataLayout();
4695   auto *ScalarTy = getMemInstValueType(I);
4696   if (hasIrregularType(ScalarTy, DL, VF))
4697     return false;
4698 
4699   // Check if masking is required.
4700   // A Group may need masking for one of two reasons: it resides in a block that
4701   // needs predication, or it was decided to use masking to deal with gaps.
4702   bool PredicatedAccessRequiresMasking =
4703       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4704   bool AccessWithGapsRequiresMasking =
4705       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4706   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4707     return true;
4708 
4709   // If masked interleaving is required, we expect that the user/target had
4710   // enabled it, because otherwise it either wouldn't have been created or
4711   // it should have been invalidated by the CostModel.
4712   assert(useMaskedInterleavedAccesses(TTI) &&
4713          "Masked interleave-groups for predicated accesses are not enabled.");
4714 
4715   auto *Ty = getMemInstValueType(I);
4716   const Align Alignment = getLoadStoreAlignment(I);
4717   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4718                           : TTI.isLegalMaskedStore(Ty, Alignment);
4719 }
4720 
4721 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4722                                                                unsigned VF) {
4723   // Get and ensure we have a valid memory instruction.
4724   LoadInst *LI = dyn_cast<LoadInst>(I);
4725   StoreInst *SI = dyn_cast<StoreInst>(I);
4726   assert((LI || SI) && "Invalid memory instruction");
4727 
4728   auto *Ptr = getLoadStorePointerOperand(I);
4729 
4730   // In order to be widened, the pointer should be consecutive, first of all.
4731   if (!Legal->isConsecutivePtr(Ptr))
4732     return false;
4733 
4734   // If the instruction is a store located in a predicated block, it will be
4735   // scalarized.
4736   if (isScalarWithPredication(I))
4737     return false;
4738 
4739   // If the instruction's allocated size doesn't equal it's type size, it
4740   // requires padding and will be scalarized.
4741   auto &DL = I->getModule()->getDataLayout();
4742   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4743   if (hasIrregularType(ScalarTy, DL, VF))
4744     return false;
4745 
4746   return true;
4747 }
4748 
4749 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4750   // We should not collect Uniforms more than once per VF. Right now,
4751   // this function is called from collectUniformsAndScalars(), which
4752   // already does this check. Collecting Uniforms for VF=1 does not make any
4753   // sense.
4754 
4755   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4756          "This function should not be visited twice for the same VF");
4757 
4758   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4759   // not analyze again.  Uniforms.count(VF) will return 1.
4760   Uniforms[VF].clear();
4761 
4762   // We now know that the loop is vectorizable!
4763   // Collect instructions inside the loop that will remain uniform after
4764   // vectorization.
4765 
4766   // Global values, params and instructions outside of current loop are out of
4767   // scope.
4768   auto isOutOfScope = [&](Value *V) -> bool {
4769     Instruction *I = dyn_cast<Instruction>(V);
4770     return (!I || !TheLoop->contains(I));
4771   };
4772 
4773   SetVector<Instruction *> Worklist;
4774   BasicBlock *Latch = TheLoop->getLoopLatch();
4775 
4776   // Instructions that are scalar with predication must not be considered
4777   // uniform after vectorization, because that would create an erroneous
4778   // replicating region where only a single instance out of VF should be formed.
4779   // TODO: optimize such seldom cases if found important, see PR40816.
4780   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4781     if (isScalarWithPredication(I, VF)) {
4782       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4783                         << *I << "\n");
4784       return;
4785     }
4786     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4787     Worklist.insert(I);
4788   };
4789 
4790   // Start with the conditional branch. If the branch condition is an
4791   // instruction contained in the loop that is only used by the branch, it is
4792   // uniform.
4793   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4794   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4795     addToWorklistIfAllowed(Cmp);
4796 
4797   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4798   // are pointers that are treated like consecutive pointers during
4799   // vectorization. The pointer operands of interleaved accesses are an
4800   // example.
4801   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4802 
4803   // Holds pointer operands of instructions that are possibly non-uniform.
4804   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4805 
4806   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4807     InstWidening WideningDecision = getWideningDecision(I, VF);
4808     assert(WideningDecision != CM_Unknown &&
4809            "Widening decision should be ready at this moment");
4810 
4811     return (WideningDecision == CM_Widen ||
4812             WideningDecision == CM_Widen_Reverse ||
4813             WideningDecision == CM_Interleave);
4814   };
4815   // Iterate over the instructions in the loop, and collect all
4816   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4817   // that a consecutive-like pointer operand will be scalarized, we collect it
4818   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4819   // getelementptr instruction can be used by both vectorized and scalarized
4820   // memory instructions. For example, if a loop loads and stores from the same
4821   // location, but the store is conditional, the store will be scalarized, and
4822   // the getelementptr won't remain uniform.
4823   for (auto *BB : TheLoop->blocks())
4824     for (auto &I : *BB) {
4825       // If there's no pointer operand, there's nothing to do.
4826       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4827       if (!Ptr)
4828         continue;
4829 
4830       // True if all users of Ptr are memory accesses that have Ptr as their
4831       // pointer operand.
4832       auto UsersAreMemAccesses =
4833           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4834             return getLoadStorePointerOperand(U) == Ptr;
4835           });
4836 
4837       // Ensure the memory instruction will not be scalarized or used by
4838       // gather/scatter, making its pointer operand non-uniform. If the pointer
4839       // operand is used by any instruction other than a memory access, we
4840       // conservatively assume the pointer operand may be non-uniform.
4841       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4842         PossibleNonUniformPtrs.insert(Ptr);
4843 
4844       // If the memory instruction will be vectorized and its pointer operand
4845       // is consecutive-like, or interleaving - the pointer operand should
4846       // remain uniform.
4847       else
4848         ConsecutiveLikePtrs.insert(Ptr);
4849     }
4850 
4851   // Add to the Worklist all consecutive and consecutive-like pointers that
4852   // aren't also identified as possibly non-uniform.
4853   for (auto *V : ConsecutiveLikePtrs)
4854     if (!PossibleNonUniformPtrs.count(V))
4855       addToWorklistIfAllowed(V);
4856 
4857   // Expand Worklist in topological order: whenever a new instruction
4858   // is added , its users should be already inside Worklist.  It ensures
4859   // a uniform instruction will only be used by uniform instructions.
4860   unsigned idx = 0;
4861   while (idx != Worklist.size()) {
4862     Instruction *I = Worklist[idx++];
4863 
4864     for (auto OV : I->operand_values()) {
4865       // isOutOfScope operands cannot be uniform instructions.
4866       if (isOutOfScope(OV))
4867         continue;
4868       // First order recurrence Phi's should typically be considered
4869       // non-uniform.
4870       auto *OP = dyn_cast<PHINode>(OV);
4871       if (OP && Legal->isFirstOrderRecurrence(OP))
4872         continue;
4873       // If all the users of the operand are uniform, then add the
4874       // operand into the uniform worklist.
4875       auto *OI = cast<Instruction>(OV);
4876       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4877             auto *J = cast<Instruction>(U);
4878             return Worklist.count(J) ||
4879                    (OI == getLoadStorePointerOperand(J) &&
4880                     isUniformDecision(J, VF));
4881           }))
4882         addToWorklistIfAllowed(OI);
4883     }
4884   }
4885 
4886   // Returns true if Ptr is the pointer operand of a memory access instruction
4887   // I, and I is known to not require scalarization.
4888   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4889     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4890   };
4891 
4892   // For an instruction to be added into Worklist above, all its users inside
4893   // the loop should also be in Worklist. However, this condition cannot be
4894   // true for phi nodes that form a cyclic dependence. We must process phi
4895   // nodes separately. An induction variable will remain uniform if all users
4896   // of the induction variable and induction variable update remain uniform.
4897   // The code below handles both pointer and non-pointer induction variables.
4898   for (auto &Induction : Legal->getInductionVars()) {
4899     auto *Ind = Induction.first;
4900     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4901 
4902     // Determine if all users of the induction variable are uniform after
4903     // vectorization.
4904     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4905       auto *I = cast<Instruction>(U);
4906       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4907              isVectorizedMemAccessUse(I, Ind);
4908     });
4909     if (!UniformInd)
4910       continue;
4911 
4912     // Determine if all users of the induction variable update instruction are
4913     // uniform after vectorization.
4914     auto UniformIndUpdate =
4915         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4916           auto *I = cast<Instruction>(U);
4917           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4918                  isVectorizedMemAccessUse(I, IndUpdate);
4919         });
4920     if (!UniformIndUpdate)
4921       continue;
4922 
4923     // The induction variable and its update instruction will remain uniform.
4924     addToWorklistIfAllowed(Ind);
4925     addToWorklistIfAllowed(IndUpdate);
4926   }
4927 
4928   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4929 }
4930 
4931 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4932   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4933 
4934   if (Legal->getRuntimePointerChecking()->Need) {
4935     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4936         "runtime pointer checks needed. Enable vectorization of this "
4937         "loop with '#pragma clang loop vectorize(enable)' when "
4938         "compiling with -Os/-Oz",
4939         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4940     return true;
4941   }
4942 
4943   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4944     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4945         "runtime SCEV checks needed. Enable vectorization of this "
4946         "loop with '#pragma clang loop vectorize(enable)' when "
4947         "compiling with -Os/-Oz",
4948         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4949     return true;
4950   }
4951 
4952   assert(Legal->getLAI()->getSymbolicStrides().empty() &&
4953          "Specializing for stride == 1 under -Os/-Oz");
4954 
4955   return false;
4956 }
4957 
4958 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF,
4959                                                             unsigned UserIC) {
4960   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4961     // TODO: It may by useful to do since it's still likely to be dynamically
4962     // uniform if the target can skip.
4963     reportVectorizationFailure(
4964         "Not inserting runtime ptr check for divergent target",
4965         "runtime pointer checks needed. Not enabled for divergent target",
4966         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4967     return None;
4968   }
4969 
4970   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4971   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4972   if (TC == 1) {
4973     reportVectorizationFailure("Single iteration (non) loop",
4974         "loop trip count is one, irrelevant for vectorization",
4975         "SingleIterationLoop", ORE, TheLoop);
4976     return None;
4977   }
4978 
4979   switch (ScalarEpilogueStatus) {
4980   case CM_ScalarEpilogueAllowed:
4981     return UserVF ? UserVF : computeFeasibleMaxVF(TC);
4982   case CM_ScalarEpilogueNotNeededUsePredicate:
4983     LLVM_DEBUG(
4984         dbgs() << "LV: vector predicate hint/switch found.\n"
4985                << "LV: Not allowing scalar epilogue, creating predicated "
4986                << "vector loop.\n");
4987     break;
4988   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4989     // fallthrough as a special case of OptForSize
4990   case CM_ScalarEpilogueNotAllowedOptSize:
4991     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4992       LLVM_DEBUG(
4993           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4994     else
4995       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4996                         << "count.\n");
4997 
4998     // Bail if runtime checks are required, which are not good when optimising
4999     // for size.
5000     if (runtimeChecksRequired())
5001       return None;
5002     break;
5003   }
5004 
5005   // Now try the tail folding
5006 
5007   // Invalidate interleave groups that require an epilogue if we can't mask
5008   // the interleave-group.
5009   if (!useMaskedInterleavedAccesses(TTI)) {
5010     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5011            "No decisions should have been taken at this point");
5012     // Note: There is no need to invalidate any cost modeling decisions here, as
5013     // non where taken so far.
5014     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5015   }
5016 
5017   unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC);
5018   assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2");
5019   unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF;
5020   if (TC > 0 && TC % MaxVFtimesIC == 0) {
5021     // Accept MaxVF if we do not have a tail.
5022     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5023     return MaxVF;
5024   }
5025 
5026   // If we don't know the precise trip count, or if the trip count that we
5027   // found modulo the vectorization factor is not zero, try to fold the tail
5028   // by masking.
5029   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5030   if (Legal->prepareToFoldTailByMasking()) {
5031     FoldTailByMasking = true;
5032     return MaxVF;
5033   }
5034 
5035   if (TC == 0) {
5036     reportVectorizationFailure(
5037         "Unable to calculate the loop count due to complex control flow",
5038         "unable to calculate the loop count due to complex control flow",
5039         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5040     return None;
5041   }
5042 
5043   reportVectorizationFailure(
5044       "Cannot optimize for size and vectorize at the same time.",
5045       "cannot optimize for size and vectorize at the same time. "
5046       "Enable vectorization of this loop with '#pragma clang loop "
5047       "vectorize(enable)' when compiling with -Os/-Oz",
5048       "NoTailLoopWithOptForSize", ORE, TheLoop);
5049   return None;
5050 }
5051 
5052 unsigned
5053 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5054   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5055   unsigned SmallestType, WidestType;
5056   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5057   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5058 
5059   // Get the maximum safe dependence distance in bits computed by LAA.
5060   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5061   // the memory accesses that is most restrictive (involved in the smallest
5062   // dependence distance).
5063   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5064 
5065   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5066 
5067   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5068   // Note that both WidestRegister and WidestType may not be a powers of 2.
5069   unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType);
5070 
5071   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5072                     << " / " << WidestType << " bits.\n");
5073   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5074                     << WidestRegister << " bits.\n");
5075 
5076   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5077                                  " into one vector!");
5078   if (MaxVectorSize == 0) {
5079     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5080     MaxVectorSize = 1;
5081     return MaxVectorSize;
5082   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5083              isPowerOf2_32(ConstTripCount)) {
5084     // We need to clamp the VF to be the ConstTripCount. There is no point in
5085     // choosing a higher viable VF as done in the loop below.
5086     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5087                       << ConstTripCount << "\n");
5088     MaxVectorSize = ConstTripCount;
5089     return MaxVectorSize;
5090   }
5091 
5092   unsigned MaxVF = MaxVectorSize;
5093   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5094       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5095     // Collect all viable vectorization factors larger than the default MaxVF
5096     // (i.e. MaxVectorSize).
5097     SmallVector<unsigned, 8> VFs;
5098     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5099     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5100       VFs.push_back(VS);
5101 
5102     // For each VF calculate its register usage.
5103     auto RUs = calculateRegisterUsage(VFs);
5104 
5105     // Select the largest VF which doesn't require more registers than existing
5106     // ones.
5107     for (int i = RUs.size() - 1; i >= 0; --i) {
5108       bool Selected = true;
5109       for (auto& pair : RUs[i].MaxLocalUsers) {
5110         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5111         if (pair.second > TargetNumRegisters)
5112           Selected = false;
5113       }
5114       if (Selected) {
5115         MaxVF = VFs[i];
5116         break;
5117       }
5118     }
5119     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5120       if (MaxVF < MinVF) {
5121         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5122                           << ") with target's minimum: " << MinVF << '\n');
5123         MaxVF = MinVF;
5124       }
5125     }
5126   }
5127   return MaxVF;
5128 }
5129 
5130 VectorizationFactor
5131 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5132   float Cost = expectedCost(1).first;
5133   const float ScalarCost = Cost;
5134   unsigned Width = 1;
5135   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5136 
5137   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5138   if (ForceVectorization && MaxVF > 1) {
5139     // Ignore scalar width, because the user explicitly wants vectorization.
5140     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5141     // evaluation.
5142     Cost = std::numeric_limits<float>::max();
5143   }
5144 
5145   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5146     // Notice that the vector loop needs to be executed less times, so
5147     // we need to divide the cost of the vector loops by the width of
5148     // the vector elements.
5149     VectorizationCostTy C = expectedCost(i);
5150     float VectorCost = C.first / (float)i;
5151     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5152                       << " costs: " << (int)VectorCost << ".\n");
5153     if (!C.second && !ForceVectorization) {
5154       LLVM_DEBUG(
5155           dbgs() << "LV: Not considering vector loop of width " << i
5156                  << " because it will not generate any vector instructions.\n");
5157       continue;
5158     }
5159     if (VectorCost < Cost) {
5160       Cost = VectorCost;
5161       Width = i;
5162     }
5163   }
5164 
5165   if (!EnableCondStoresVectorization && NumPredStores) {
5166     reportVectorizationFailure("There are conditional stores.",
5167         "store that is conditionally executed prevents vectorization",
5168         "ConditionalStore", ORE, TheLoop);
5169     Width = 1;
5170     Cost = ScalarCost;
5171   }
5172 
5173   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5174              << "LV: Vectorization seems to be not beneficial, "
5175              << "but was forced by a user.\n");
5176   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5177   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5178   return Factor;
5179 }
5180 
5181 std::pair<unsigned, unsigned>
5182 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5183   unsigned MinWidth = -1U;
5184   unsigned MaxWidth = 8;
5185   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5186 
5187   // For each block.
5188   for (BasicBlock *BB : TheLoop->blocks()) {
5189     // For each instruction in the loop.
5190     for (Instruction &I : BB->instructionsWithoutDebug()) {
5191       Type *T = I.getType();
5192 
5193       // Skip ignored values.
5194       if (ValuesToIgnore.count(&I))
5195         continue;
5196 
5197       // Only examine Loads, Stores and PHINodes.
5198       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5199         continue;
5200 
5201       // Examine PHI nodes that are reduction variables. Update the type to
5202       // account for the recurrence type.
5203       if (auto *PN = dyn_cast<PHINode>(&I)) {
5204         if (!Legal->isReductionVariable(PN))
5205           continue;
5206         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5207         T = RdxDesc.getRecurrenceType();
5208       }
5209 
5210       // Examine the stored values.
5211       if (auto *ST = dyn_cast<StoreInst>(&I))
5212         T = ST->getValueOperand()->getType();
5213 
5214       // Ignore loaded pointer types and stored pointer types that are not
5215       // vectorizable.
5216       //
5217       // FIXME: The check here attempts to predict whether a load or store will
5218       //        be vectorized. We only know this for certain after a VF has
5219       //        been selected. Here, we assume that if an access can be
5220       //        vectorized, it will be. We should also look at extending this
5221       //        optimization to non-pointer types.
5222       //
5223       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5224           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5225         continue;
5226 
5227       MinWidth = std::min(MinWidth,
5228                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5229       MaxWidth = std::max(MaxWidth,
5230                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5231     }
5232   }
5233 
5234   return {MinWidth, MaxWidth};
5235 }
5236 
5237 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5238                                                            unsigned LoopCost) {
5239   // -- The interleave heuristics --
5240   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5241   // There are many micro-architectural considerations that we can't predict
5242   // at this level. For example, frontend pressure (on decode or fetch) due to
5243   // code size, or the number and capabilities of the execution ports.
5244   //
5245   // We use the following heuristics to select the interleave count:
5246   // 1. If the code has reductions, then we interleave to break the cross
5247   // iteration dependency.
5248   // 2. If the loop is really small, then we interleave to reduce the loop
5249   // overhead.
5250   // 3. We don't interleave if we think that we will spill registers to memory
5251   // due to the increased register pressure.
5252 
5253   if (!isScalarEpilogueAllowed())
5254     return 1;
5255 
5256   // We used the distance for the interleave count.
5257   if (Legal->getMaxSafeDepDistBytes() != -1U)
5258     return 1;
5259 
5260   // Do not interleave loops with a relatively small known or estimated trip
5261   // count.
5262   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5263   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5264     return 1;
5265 
5266   RegisterUsage R = calculateRegisterUsage({VF})[0];
5267   // We divide by these constants so assume that we have at least one
5268   // instruction that uses at least one register.
5269   for (auto& pair : R.MaxLocalUsers) {
5270     pair.second = std::max(pair.second, 1U);
5271   }
5272 
5273   // We calculate the interleave count using the following formula.
5274   // Subtract the number of loop invariants from the number of available
5275   // registers. These registers are used by all of the interleaved instances.
5276   // Next, divide the remaining registers by the number of registers that is
5277   // required by the loop, in order to estimate how many parallel instances
5278   // fit without causing spills. All of this is rounded down if necessary to be
5279   // a power of two. We want power of two interleave count to simplify any
5280   // addressing operations or alignment considerations.
5281   // We also want power of two interleave counts to ensure that the induction
5282   // variable of the vector loop wraps to zero, when tail is folded by masking;
5283   // this currently happens when OptForSize, in which case IC is set to 1 above.
5284   unsigned IC = UINT_MAX;
5285 
5286   for (auto& pair : R.MaxLocalUsers) {
5287     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5288     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5289                       << " registers of "
5290                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5291     if (VF == 1) {
5292       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5293         TargetNumRegisters = ForceTargetNumScalarRegs;
5294     } else {
5295       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5296         TargetNumRegisters = ForceTargetNumVectorRegs;
5297     }
5298     unsigned MaxLocalUsers = pair.second;
5299     unsigned LoopInvariantRegs = 0;
5300     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5301       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5302 
5303     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5304     // Don't count the induction variable as interleaved.
5305     if (EnableIndVarRegisterHeur) {
5306       TmpIC =
5307           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5308                         std::max(1U, (MaxLocalUsers - 1)));
5309     }
5310 
5311     IC = std::min(IC, TmpIC);
5312   }
5313 
5314   // Clamp the interleave ranges to reasonable counts.
5315   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5316 
5317   // Check if the user has overridden the max.
5318   if (VF == 1) {
5319     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5320       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5321   } else {
5322     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5323       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5324   }
5325 
5326   // If trip count is known or estimated compile time constant, limit the
5327   // interleave count to be less than the trip count divided by VF.
5328   if (BestKnownTC) {
5329     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5330   }
5331 
5332   // If we did not calculate the cost for VF (because the user selected the VF)
5333   // then we calculate the cost of VF here.
5334   if (LoopCost == 0)
5335     LoopCost = expectedCost(VF).first;
5336 
5337   assert(LoopCost && "Non-zero loop cost expected");
5338 
5339   // Clamp the calculated IC to be between the 1 and the max interleave count
5340   // that the target and trip count allows.
5341   if (IC > MaxInterleaveCount)
5342     IC = MaxInterleaveCount;
5343   else if (IC < 1)
5344     IC = 1;
5345 
5346   // Interleave if we vectorized this loop and there is a reduction that could
5347   // benefit from interleaving.
5348   if (VF > 1 && !Legal->getReductionVars().empty()) {
5349     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5350     return IC;
5351   }
5352 
5353   // Note that if we've already vectorized the loop we will have done the
5354   // runtime check and so interleaving won't require further checks.
5355   bool InterleavingRequiresRuntimePointerCheck =
5356       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5357 
5358   // We want to interleave small loops in order to reduce the loop overhead and
5359   // potentially expose ILP opportunities.
5360   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5361   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5362     // We assume that the cost overhead is 1 and we use the cost model
5363     // to estimate the cost of the loop and interleave until the cost of the
5364     // loop overhead is about 5% of the cost of the loop.
5365     unsigned SmallIC =
5366         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5367 
5368     // Interleave until store/load ports (estimated by max interleave count) are
5369     // saturated.
5370     unsigned NumStores = Legal->getNumStores();
5371     unsigned NumLoads = Legal->getNumLoads();
5372     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5373     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5374 
5375     // If we have a scalar reduction (vector reductions are already dealt with
5376     // by this point), we can increase the critical path length if the loop
5377     // we're interleaving is inside another loop. Limit, by default to 2, so the
5378     // critical path only gets increased by one reduction operation.
5379     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5380       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5381       SmallIC = std::min(SmallIC, F);
5382       StoresIC = std::min(StoresIC, F);
5383       LoadsIC = std::min(LoadsIC, F);
5384     }
5385 
5386     if (EnableLoadStoreRuntimeInterleave &&
5387         std::max(StoresIC, LoadsIC) > SmallIC) {
5388       LLVM_DEBUG(
5389           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5390       return std::max(StoresIC, LoadsIC);
5391     }
5392 
5393     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5394     return SmallIC;
5395   }
5396 
5397   // Interleave if this is a large loop (small loops are already dealt with by
5398   // this point) that could benefit from interleaving.
5399   bool HasReductions = !Legal->getReductionVars().empty();
5400   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5401     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5402     return IC;
5403   }
5404 
5405   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5406   return 1;
5407 }
5408 
5409 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5410 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5411   // This function calculates the register usage by measuring the highest number
5412   // of values that are alive at a single location. Obviously, this is a very
5413   // rough estimation. We scan the loop in a topological order in order and
5414   // assign a number to each instruction. We use RPO to ensure that defs are
5415   // met before their users. We assume that each instruction that has in-loop
5416   // users starts an interval. We record every time that an in-loop value is
5417   // used, so we have a list of the first and last occurrences of each
5418   // instruction. Next, we transpose this data structure into a multi map that
5419   // holds the list of intervals that *end* at a specific location. This multi
5420   // map allows us to perform a linear search. We scan the instructions linearly
5421   // and record each time that a new interval starts, by placing it in a set.
5422   // If we find this value in the multi-map then we remove it from the set.
5423   // The max register usage is the maximum size of the set.
5424   // We also search for instructions that are defined outside the loop, but are
5425   // used inside the loop. We need this number separately from the max-interval
5426   // usage number because when we unroll, loop-invariant values do not take
5427   // more register.
5428   LoopBlocksDFS DFS(TheLoop);
5429   DFS.perform(LI);
5430 
5431   RegisterUsage RU;
5432 
5433   // Each 'key' in the map opens a new interval. The values
5434   // of the map are the index of the 'last seen' usage of the
5435   // instruction that is the key.
5436   using IntervalMap = DenseMap<Instruction *, unsigned>;
5437 
5438   // Maps instruction to its index.
5439   SmallVector<Instruction *, 64> IdxToInstr;
5440   // Marks the end of each interval.
5441   IntervalMap EndPoint;
5442   // Saves the list of instruction indices that are used in the loop.
5443   SmallPtrSet<Instruction *, 8> Ends;
5444   // Saves the list of values that are used in the loop but are
5445   // defined outside the loop, such as arguments and constants.
5446   SmallPtrSet<Value *, 8> LoopInvariants;
5447 
5448   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5449     for (Instruction &I : BB->instructionsWithoutDebug()) {
5450       IdxToInstr.push_back(&I);
5451 
5452       // Save the end location of each USE.
5453       for (Value *U : I.operands()) {
5454         auto *Instr = dyn_cast<Instruction>(U);
5455 
5456         // Ignore non-instruction values such as arguments, constants, etc.
5457         if (!Instr)
5458           continue;
5459 
5460         // If this instruction is outside the loop then record it and continue.
5461         if (!TheLoop->contains(Instr)) {
5462           LoopInvariants.insert(Instr);
5463           continue;
5464         }
5465 
5466         // Overwrite previous end points.
5467         EndPoint[Instr] = IdxToInstr.size();
5468         Ends.insert(Instr);
5469       }
5470     }
5471   }
5472 
5473   // Saves the list of intervals that end with the index in 'key'.
5474   using InstrList = SmallVector<Instruction *, 2>;
5475   DenseMap<unsigned, InstrList> TransposeEnds;
5476 
5477   // Transpose the EndPoints to a list of values that end at each index.
5478   for (auto &Interval : EndPoint)
5479     TransposeEnds[Interval.second].push_back(Interval.first);
5480 
5481   SmallPtrSet<Instruction *, 8> OpenIntervals;
5482 
5483   // Get the size of the widest register.
5484   unsigned MaxSafeDepDist = -1U;
5485   if (Legal->getMaxSafeDepDistBytes() != -1U)
5486     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5487   unsigned WidestRegister =
5488       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5489   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5490 
5491   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5492   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5493 
5494   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5495 
5496   // A lambda that gets the register usage for the given type and VF.
5497   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5498     if (Ty->isTokenTy())
5499       return 0U;
5500     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5501     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5502   };
5503 
5504   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5505     Instruction *I = IdxToInstr[i];
5506 
5507     // Remove all of the instructions that end at this location.
5508     InstrList &List = TransposeEnds[i];
5509     for (Instruction *ToRemove : List)
5510       OpenIntervals.erase(ToRemove);
5511 
5512     // Ignore instructions that are never used within the loop.
5513     if (!Ends.count(I))
5514       continue;
5515 
5516     // Skip ignored values.
5517     if (ValuesToIgnore.count(I))
5518       continue;
5519 
5520     // For each VF find the maximum usage of registers.
5521     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5522       // Count the number of live intervals.
5523       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5524 
5525       if (VFs[j] == 1) {
5526         for (auto Inst : OpenIntervals) {
5527           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5528           if (RegUsage.find(ClassID) == RegUsage.end())
5529             RegUsage[ClassID] = 1;
5530           else
5531             RegUsage[ClassID] += 1;
5532         }
5533       } else {
5534         collectUniformsAndScalars(VFs[j]);
5535         for (auto Inst : OpenIntervals) {
5536           // Skip ignored values for VF > 1.
5537           if (VecValuesToIgnore.count(Inst))
5538             continue;
5539           if (isScalarAfterVectorization(Inst, VFs[j])) {
5540             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5541             if (RegUsage.find(ClassID) == RegUsage.end())
5542               RegUsage[ClassID] = 1;
5543             else
5544               RegUsage[ClassID] += 1;
5545           } else {
5546             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5547             if (RegUsage.find(ClassID) == RegUsage.end())
5548               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5549             else
5550               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5551           }
5552         }
5553       }
5554 
5555       for (auto& pair : RegUsage) {
5556         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5557           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5558         else
5559           MaxUsages[j][pair.first] = pair.second;
5560       }
5561     }
5562 
5563     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5564                       << OpenIntervals.size() << '\n');
5565 
5566     // Add the current instruction to the list of open intervals.
5567     OpenIntervals.insert(I);
5568   }
5569 
5570   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5571     SmallMapVector<unsigned, unsigned, 4> Invariant;
5572 
5573     for (auto Inst : LoopInvariants) {
5574       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5575       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5576       if (Invariant.find(ClassID) == Invariant.end())
5577         Invariant[ClassID] = Usage;
5578       else
5579         Invariant[ClassID] += Usage;
5580     }
5581 
5582     LLVM_DEBUG({
5583       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5584       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5585              << " item\n";
5586       for (const auto &pair : MaxUsages[i]) {
5587         dbgs() << "LV(REG): RegisterClass: "
5588                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5589                << " registers\n";
5590       }
5591       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5592              << " item\n";
5593       for (const auto &pair : Invariant) {
5594         dbgs() << "LV(REG): RegisterClass: "
5595                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5596                << " registers\n";
5597       }
5598     });
5599 
5600     RU.LoopInvariantRegs = Invariant;
5601     RU.MaxLocalUsers = MaxUsages[i];
5602     RUs[i] = RU;
5603   }
5604 
5605   return RUs;
5606 }
5607 
5608 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5609   // TODO: Cost model for emulated masked load/store is completely
5610   // broken. This hack guides the cost model to use an artificially
5611   // high enough value to practically disable vectorization with such
5612   // operations, except where previously deployed legality hack allowed
5613   // using very low cost values. This is to avoid regressions coming simply
5614   // from moving "masked load/store" check from legality to cost model.
5615   // Masked Load/Gather emulation was previously never allowed.
5616   // Limited number of Masked Store/Scatter emulation was allowed.
5617   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5618   return isa<LoadInst>(I) ||
5619          (isa<StoreInst>(I) &&
5620           NumPredStores > NumberOfStoresToPredicate);
5621 }
5622 
5623 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5624   // If we aren't vectorizing the loop, or if we've already collected the
5625   // instructions to scalarize, there's nothing to do. Collection may already
5626   // have occurred if we have a user-selected VF and are now computing the
5627   // expected cost for interleaving.
5628   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5629     return;
5630 
5631   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5632   // not profitable to scalarize any instructions, the presence of VF in the
5633   // map will indicate that we've analyzed it already.
5634   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5635 
5636   // Find all the instructions that are scalar with predication in the loop and
5637   // determine if it would be better to not if-convert the blocks they are in.
5638   // If so, we also record the instructions to scalarize.
5639   for (BasicBlock *BB : TheLoop->blocks()) {
5640     if (!blockNeedsPredication(BB))
5641       continue;
5642     for (Instruction &I : *BB)
5643       if (isScalarWithPredication(&I)) {
5644         ScalarCostsTy ScalarCosts;
5645         // Do not apply discount logic if hacked cost is needed
5646         // for emulated masked memrefs.
5647         if (!useEmulatedMaskMemRefHack(&I) &&
5648             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5649           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5650         // Remember that BB will remain after vectorization.
5651         PredicatedBBsAfterVectorization.insert(BB);
5652       }
5653   }
5654 }
5655 
5656 int LoopVectorizationCostModel::computePredInstDiscount(
5657     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5658     unsigned VF) {
5659   assert(!isUniformAfterVectorization(PredInst, VF) &&
5660          "Instruction marked uniform-after-vectorization will be predicated");
5661 
5662   // Initialize the discount to zero, meaning that the scalar version and the
5663   // vector version cost the same.
5664   int Discount = 0;
5665 
5666   // Holds instructions to analyze. The instructions we visit are mapped in
5667   // ScalarCosts. Those instructions are the ones that would be scalarized if
5668   // we find that the scalar version costs less.
5669   SmallVector<Instruction *, 8> Worklist;
5670 
5671   // Returns true if the given instruction can be scalarized.
5672   auto canBeScalarized = [&](Instruction *I) -> bool {
5673     // We only attempt to scalarize instructions forming a single-use chain
5674     // from the original predicated block that would otherwise be vectorized.
5675     // Although not strictly necessary, we give up on instructions we know will
5676     // already be scalar to avoid traversing chains that are unlikely to be
5677     // beneficial.
5678     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5679         isScalarAfterVectorization(I, VF))
5680       return false;
5681 
5682     // If the instruction is scalar with predication, it will be analyzed
5683     // separately. We ignore it within the context of PredInst.
5684     if (isScalarWithPredication(I))
5685       return false;
5686 
5687     // If any of the instruction's operands are uniform after vectorization,
5688     // the instruction cannot be scalarized. This prevents, for example, a
5689     // masked load from being scalarized.
5690     //
5691     // We assume we will only emit a value for lane zero of an instruction
5692     // marked uniform after vectorization, rather than VF identical values.
5693     // Thus, if we scalarize an instruction that uses a uniform, we would
5694     // create uses of values corresponding to the lanes we aren't emitting code
5695     // for. This behavior can be changed by allowing getScalarValue to clone
5696     // the lane zero values for uniforms rather than asserting.
5697     for (Use &U : I->operands())
5698       if (auto *J = dyn_cast<Instruction>(U.get()))
5699         if (isUniformAfterVectorization(J, VF))
5700           return false;
5701 
5702     // Otherwise, we can scalarize the instruction.
5703     return true;
5704   };
5705 
5706   // Compute the expected cost discount from scalarizing the entire expression
5707   // feeding the predicated instruction. We currently only consider expressions
5708   // that are single-use instruction chains.
5709   Worklist.push_back(PredInst);
5710   while (!Worklist.empty()) {
5711     Instruction *I = Worklist.pop_back_val();
5712 
5713     // If we've already analyzed the instruction, there's nothing to do.
5714     if (ScalarCosts.find(I) != ScalarCosts.end())
5715       continue;
5716 
5717     // Compute the cost of the vector instruction. Note that this cost already
5718     // includes the scalarization overhead of the predicated instruction.
5719     unsigned VectorCost = getInstructionCost(I, VF).first;
5720 
5721     // Compute the cost of the scalarized instruction. This cost is the cost of
5722     // the instruction as if it wasn't if-converted and instead remained in the
5723     // predicated block. We will scale this cost by block probability after
5724     // computing the scalarization overhead.
5725     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5726 
5727     // Compute the scalarization overhead of needed insertelement instructions
5728     // and phi nodes.
5729     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5730       ScalarCost += TTI.getScalarizationOverhead(
5731           cast<VectorType>(ToVectorTy(I->getType(), VF)),
5732           APInt::getAllOnesValue(VF), true, false);
5733       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI,
5734                                             TTI::TCK_RecipThroughput);
5735     }
5736 
5737     // Compute the scalarization overhead of needed extractelement
5738     // instructions. For each of the instruction's operands, if the operand can
5739     // be scalarized, add it to the worklist; otherwise, account for the
5740     // overhead.
5741     for (Use &U : I->operands())
5742       if (auto *J = dyn_cast<Instruction>(U.get())) {
5743         assert(VectorType::isValidElementType(J->getType()) &&
5744                "Instruction has non-scalar type");
5745         if (canBeScalarized(J))
5746           Worklist.push_back(J);
5747         else if (needsExtract(J, VF))
5748           ScalarCost += TTI.getScalarizationOverhead(
5749               cast<VectorType>(ToVectorTy(J->getType(), VF)),
5750               APInt::getAllOnesValue(VF), false, true);
5751       }
5752 
5753     // Scale the total scalar cost by block probability.
5754     ScalarCost /= getReciprocalPredBlockProb();
5755 
5756     // Compute the discount. A non-negative discount means the vector version
5757     // of the instruction costs more, and scalarizing would be beneficial.
5758     Discount += VectorCost - ScalarCost;
5759     ScalarCosts[I] = ScalarCost;
5760   }
5761 
5762   return Discount;
5763 }
5764 
5765 LoopVectorizationCostModel::VectorizationCostTy
5766 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5767   VectorizationCostTy Cost;
5768 
5769   // For each block.
5770   for (BasicBlock *BB : TheLoop->blocks()) {
5771     VectorizationCostTy BlockCost;
5772 
5773     // For each instruction in the old loop.
5774     for (Instruction &I : BB->instructionsWithoutDebug()) {
5775       // Skip ignored values.
5776       if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I)))
5777         continue;
5778 
5779       VectorizationCostTy C = getInstructionCost(&I, VF);
5780 
5781       // Check if we should override the cost.
5782       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5783         C.first = ForceTargetInstructionCost;
5784 
5785       BlockCost.first += C.first;
5786       BlockCost.second |= C.second;
5787       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5788                         << " for VF " << VF << " For instruction: " << I
5789                         << '\n');
5790     }
5791 
5792     // If we are vectorizing a predicated block, it will have been
5793     // if-converted. This means that the block's instructions (aside from
5794     // stores and instructions that may divide by zero) will now be
5795     // unconditionally executed. For the scalar case, we may not always execute
5796     // the predicated block. Thus, scale the block's cost by the probability of
5797     // executing it.
5798     if (VF == 1 && blockNeedsPredication(BB))
5799       BlockCost.first /= getReciprocalPredBlockProb();
5800 
5801     Cost.first += BlockCost.first;
5802     Cost.second |= BlockCost.second;
5803   }
5804 
5805   return Cost;
5806 }
5807 
5808 /// Gets Address Access SCEV after verifying that the access pattern
5809 /// is loop invariant except the induction variable dependence.
5810 ///
5811 /// This SCEV can be sent to the Target in order to estimate the address
5812 /// calculation cost.
5813 static const SCEV *getAddressAccessSCEV(
5814               Value *Ptr,
5815               LoopVectorizationLegality *Legal,
5816               PredicatedScalarEvolution &PSE,
5817               const Loop *TheLoop) {
5818 
5819   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5820   if (!Gep)
5821     return nullptr;
5822 
5823   // We are looking for a gep with all loop invariant indices except for one
5824   // which should be an induction variable.
5825   auto SE = PSE.getSE();
5826   unsigned NumOperands = Gep->getNumOperands();
5827   for (unsigned i = 1; i < NumOperands; ++i) {
5828     Value *Opd = Gep->getOperand(i);
5829     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5830         !Legal->isInductionVariable(Opd))
5831       return nullptr;
5832   }
5833 
5834   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5835   return PSE.getSCEV(Ptr);
5836 }
5837 
5838 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5839   return Legal->hasStride(I->getOperand(0)) ||
5840          Legal->hasStride(I->getOperand(1));
5841 }
5842 
5843 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5844                                                                  unsigned VF) {
5845   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5846   Type *ValTy = getMemInstValueType(I);
5847   auto SE = PSE.getSE();
5848 
5849   unsigned AS = getLoadStoreAddressSpace(I);
5850   Value *Ptr = getLoadStorePointerOperand(I);
5851   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5852 
5853   // Figure out whether the access is strided and get the stride value
5854   // if it's known in compile time
5855   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5856 
5857   // Get the cost of the scalar memory instruction and address computation.
5858   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5859 
5860   // Don't pass *I here, since it is scalar but will actually be part of a
5861   // vectorized loop where the user of it is a vectorized instruction.
5862   const Align Alignment = getLoadStoreAlignment(I);
5863   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5864                                    Alignment, AS,
5865                                    TTI::TCK_RecipThroughput);
5866 
5867   // Get the overhead of the extractelement and insertelement instructions
5868   // we might create due to scalarization.
5869   Cost += getScalarizationOverhead(I, VF);
5870 
5871   // If we have a predicated store, it may not be executed for each vector
5872   // lane. Scale the cost by the probability of executing the predicated
5873   // block.
5874   if (isPredicatedInst(I)) {
5875     Cost /= getReciprocalPredBlockProb();
5876 
5877     if (useEmulatedMaskMemRefHack(I))
5878       // Artificially setting to a high enough value to practically disable
5879       // vectorization with such operations.
5880       Cost = 3000000;
5881   }
5882 
5883   return Cost;
5884 }
5885 
5886 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5887                                                              unsigned VF) {
5888   Type *ValTy = getMemInstValueType(I);
5889   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5890   Value *Ptr = getLoadStorePointerOperand(I);
5891   unsigned AS = getLoadStoreAddressSpace(I);
5892   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5893   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5894 
5895   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5896          "Stride should be 1 or -1 for consecutive memory access");
5897   const Align Alignment = getLoadStoreAlignment(I);
5898   unsigned Cost = 0;
5899   if (Legal->isMaskRequired(I))
5900     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5901                                       CostKind);
5902   else
5903     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
5904                                 CostKind, I);
5905 
5906   bool Reverse = ConsecutiveStride < 0;
5907   if (Reverse)
5908     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5909   return Cost;
5910 }
5911 
5912 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5913                                                          unsigned VF) {
5914   Type *ValTy = getMemInstValueType(I);
5915   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5916   const Align Alignment = getLoadStoreAlignment(I);
5917   unsigned AS = getLoadStoreAddressSpace(I);
5918   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
5919   if (isa<LoadInst>(I)) {
5920     return TTI.getAddressComputationCost(ValTy) +
5921            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
5922                                CostKind) +
5923            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5924   }
5925   StoreInst *SI = cast<StoreInst>(I);
5926 
5927   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5928   return TTI.getAddressComputationCost(ValTy) +
5929          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
5930                              CostKind) +
5931          (isLoopInvariantStoreValue
5932               ? 0
5933               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5934                                        VF - 1));
5935 }
5936 
5937 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5938                                                           unsigned VF) {
5939   Type *ValTy = getMemInstValueType(I);
5940   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5941   const Align Alignment = getLoadStoreAlignment(I);
5942   const Value *Ptr = getLoadStorePointerOperand(I);
5943 
5944   return TTI.getAddressComputationCost(VectorTy) +
5945          TTI.getGatherScatterOpCost(
5946              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
5947              TargetTransformInfo::TCK_RecipThroughput, I);
5948 }
5949 
5950 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5951                                                             unsigned VF) {
5952   Type *ValTy = getMemInstValueType(I);
5953   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5954   unsigned AS = getLoadStoreAddressSpace(I);
5955 
5956   auto Group = getInterleavedAccessGroup(I);
5957   assert(Group && "Fail to get an interleaved access group.");
5958 
5959   unsigned InterleaveFactor = Group->getFactor();
5960   auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor);
5961 
5962   // Holds the indices of existing members in an interleaved load group.
5963   // An interleaved store group doesn't need this as it doesn't allow gaps.
5964   SmallVector<unsigned, 4> Indices;
5965   if (isa<LoadInst>(I)) {
5966     for (unsigned i = 0; i < InterleaveFactor; i++)
5967       if (Group->getMember(i))
5968         Indices.push_back(i);
5969   }
5970 
5971   // Calculate the cost of the whole interleaved group.
5972   bool UseMaskForGaps =
5973       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5974   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5975       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
5976       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
5977 
5978   if (Group->isReverse()) {
5979     // TODO: Add support for reversed masked interleaved access.
5980     assert(!Legal->isMaskRequired(I) &&
5981            "Reverse masked interleaved access not supported.");
5982     Cost += Group->getNumMembers() *
5983             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5984   }
5985   return Cost;
5986 }
5987 
5988 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5989                                                               unsigned VF) {
5990   // Calculate scalar cost only. Vectorization cost should be ready at this
5991   // moment.
5992   if (VF == 1) {
5993     Type *ValTy = getMemInstValueType(I);
5994     const Align Alignment = getLoadStoreAlignment(I);
5995     unsigned AS = getLoadStoreAddressSpace(I);
5996 
5997     return TTI.getAddressComputationCost(ValTy) +
5998            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
5999                                TTI::TCK_RecipThroughput, I);
6000   }
6001   return getWideningCost(I, VF);
6002 }
6003 
6004 LoopVectorizationCostModel::VectorizationCostTy
6005 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6006   // If we know that this instruction will remain uniform, check the cost of
6007   // the scalar version.
6008   if (isUniformAfterVectorization(I, VF))
6009     VF = 1;
6010 
6011   if (VF > 1 && isProfitableToScalarize(I, VF))
6012     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6013 
6014   // Forced scalars do not have any scalarization overhead.
6015   auto ForcedScalar = ForcedScalars.find(VF);
6016   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
6017     auto InstSet = ForcedScalar->second;
6018     if (InstSet.count(I))
6019       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6020   }
6021 
6022   Type *VectorTy;
6023   unsigned C = getInstructionCost(I, VF, VectorTy);
6024 
6025   bool TypeNotScalarized =
6026       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6027   return VectorizationCostTy(C, TypeNotScalarized);
6028 }
6029 
6030 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6031                                                               unsigned VF) {
6032 
6033   if (VF == 1)
6034     return 0;
6035 
6036   unsigned Cost = 0;
6037   Type *RetTy = ToVectorTy(I->getType(), VF);
6038   if (!RetTy->isVoidTy() &&
6039       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6040     Cost += TTI.getScalarizationOverhead(
6041         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false);
6042 
6043   // Some targets keep addresses scalar.
6044   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6045     return Cost;
6046 
6047   // Some targets support efficient element stores.
6048   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6049     return Cost;
6050 
6051   // Collect operands to consider.
6052   CallInst *CI = dyn_cast<CallInst>(I);
6053   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6054 
6055   // Skip operands that do not require extraction/scalarization and do not incur
6056   // any overhead.
6057   return Cost + TTI.getOperandsScalarizationOverhead(
6058                     filterExtractingOperands(Ops, VF), VF);
6059 }
6060 
6061 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6062   if (VF == 1)
6063     return;
6064   NumPredStores = 0;
6065   for (BasicBlock *BB : TheLoop->blocks()) {
6066     // For each instruction in the old loop.
6067     for (Instruction &I : *BB) {
6068       Value *Ptr =  getLoadStorePointerOperand(&I);
6069       if (!Ptr)
6070         continue;
6071 
6072       // TODO: We should generate better code and update the cost model for
6073       // predicated uniform stores. Today they are treated as any other
6074       // predicated store (see added test cases in
6075       // invariant-store-vectorization.ll).
6076       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6077         NumPredStores++;
6078 
6079       if (Legal->isUniform(Ptr) &&
6080           // Conditional loads and stores should be scalarized and predicated.
6081           // isScalarWithPredication cannot be used here since masked
6082           // gather/scatters are not considered scalar with predication.
6083           !Legal->blockNeedsPredication(I.getParent())) {
6084         // TODO: Avoid replicating loads and stores instead of
6085         // relying on instcombine to remove them.
6086         // Load: Scalar load + broadcast
6087         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6088         unsigned Cost = getUniformMemOpCost(&I, VF);
6089         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6090         continue;
6091       }
6092 
6093       // We assume that widening is the best solution when possible.
6094       if (memoryInstructionCanBeWidened(&I, VF)) {
6095         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6096         int ConsecutiveStride =
6097                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6098         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6099                "Expected consecutive stride.");
6100         InstWidening Decision =
6101             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6102         setWideningDecision(&I, VF, Decision, Cost);
6103         continue;
6104       }
6105 
6106       // Choose between Interleaving, Gather/Scatter or Scalarization.
6107       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6108       unsigned NumAccesses = 1;
6109       if (isAccessInterleaved(&I)) {
6110         auto Group = getInterleavedAccessGroup(&I);
6111         assert(Group && "Fail to get an interleaved access group.");
6112 
6113         // Make one decision for the whole group.
6114         if (getWideningDecision(&I, VF) != CM_Unknown)
6115           continue;
6116 
6117         NumAccesses = Group->getNumMembers();
6118         if (interleavedAccessCanBeWidened(&I, VF))
6119           InterleaveCost = getInterleaveGroupCost(&I, VF);
6120       }
6121 
6122       unsigned GatherScatterCost =
6123           isLegalGatherOrScatter(&I)
6124               ? getGatherScatterCost(&I, VF) * NumAccesses
6125               : std::numeric_limits<unsigned>::max();
6126 
6127       unsigned ScalarizationCost =
6128           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6129 
6130       // Choose better solution for the current VF,
6131       // write down this decision and use it during vectorization.
6132       unsigned Cost;
6133       InstWidening Decision;
6134       if (InterleaveCost <= GatherScatterCost &&
6135           InterleaveCost < ScalarizationCost) {
6136         Decision = CM_Interleave;
6137         Cost = InterleaveCost;
6138       } else if (GatherScatterCost < ScalarizationCost) {
6139         Decision = CM_GatherScatter;
6140         Cost = GatherScatterCost;
6141       } else {
6142         Decision = CM_Scalarize;
6143         Cost = ScalarizationCost;
6144       }
6145       // If the instructions belongs to an interleave group, the whole group
6146       // receives the same decision. The whole group receives the cost, but
6147       // the cost will actually be assigned to one instruction.
6148       if (auto Group = getInterleavedAccessGroup(&I))
6149         setWideningDecision(Group, VF, Decision, Cost);
6150       else
6151         setWideningDecision(&I, VF, Decision, Cost);
6152     }
6153   }
6154 
6155   // Make sure that any load of address and any other address computation
6156   // remains scalar unless there is gather/scatter support. This avoids
6157   // inevitable extracts into address registers, and also has the benefit of
6158   // activating LSR more, since that pass can't optimize vectorized
6159   // addresses.
6160   if (TTI.prefersVectorizedAddressing())
6161     return;
6162 
6163   // Start with all scalar pointer uses.
6164   SmallPtrSet<Instruction *, 8> AddrDefs;
6165   for (BasicBlock *BB : TheLoop->blocks())
6166     for (Instruction &I : *BB) {
6167       Instruction *PtrDef =
6168         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6169       if (PtrDef && TheLoop->contains(PtrDef) &&
6170           getWideningDecision(&I, VF) != CM_GatherScatter)
6171         AddrDefs.insert(PtrDef);
6172     }
6173 
6174   // Add all instructions used to generate the addresses.
6175   SmallVector<Instruction *, 4> Worklist;
6176   for (auto *I : AddrDefs)
6177     Worklist.push_back(I);
6178   while (!Worklist.empty()) {
6179     Instruction *I = Worklist.pop_back_val();
6180     for (auto &Op : I->operands())
6181       if (auto *InstOp = dyn_cast<Instruction>(Op))
6182         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6183             AddrDefs.insert(InstOp).second)
6184           Worklist.push_back(InstOp);
6185   }
6186 
6187   for (auto *I : AddrDefs) {
6188     if (isa<LoadInst>(I)) {
6189       // Setting the desired widening decision should ideally be handled in
6190       // by cost functions, but since this involves the task of finding out
6191       // if the loaded register is involved in an address computation, it is
6192       // instead changed here when we know this is the case.
6193       InstWidening Decision = getWideningDecision(I, VF);
6194       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6195         // Scalarize a widened load of address.
6196         setWideningDecision(I, VF, CM_Scalarize,
6197                             (VF * getMemoryInstructionCost(I, 1)));
6198       else if (auto Group = getInterleavedAccessGroup(I)) {
6199         // Scalarize an interleave group of address loads.
6200         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6201           if (Instruction *Member = Group->getMember(I))
6202             setWideningDecision(Member, VF, CM_Scalarize,
6203                                 (VF * getMemoryInstructionCost(Member, 1)));
6204         }
6205       }
6206     } else
6207       // Make sure I gets scalarized and a cost estimate without
6208       // scalarization overhead.
6209       ForcedScalars[VF].insert(I);
6210   }
6211 }
6212 
6213 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6214                                                         unsigned VF,
6215                                                         Type *&VectorTy) {
6216   Type *RetTy = I->getType();
6217   if (canTruncateToMinimalBitwidth(I, VF))
6218     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6219   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6220   auto SE = PSE.getSE();
6221   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6222 
6223   // TODO: We need to estimate the cost of intrinsic calls.
6224   switch (I->getOpcode()) {
6225   case Instruction::GetElementPtr:
6226     // We mark this instruction as zero-cost because the cost of GEPs in
6227     // vectorized code depends on whether the corresponding memory instruction
6228     // is scalarized or not. Therefore, we handle GEPs with the memory
6229     // instruction cost.
6230     return 0;
6231   case Instruction::Br: {
6232     // In cases of scalarized and predicated instructions, there will be VF
6233     // predicated blocks in the vectorized loop. Each branch around these
6234     // blocks requires also an extract of its vector compare i1 element.
6235     bool ScalarPredicatedBB = false;
6236     BranchInst *BI = cast<BranchInst>(I);
6237     if (VF > 1 && BI->isConditional() &&
6238         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6239          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6240       ScalarPredicatedBB = true;
6241 
6242     if (ScalarPredicatedBB) {
6243       // Return cost for branches around scalarized and predicated blocks.
6244       auto *Vec_i1Ty =
6245           FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6246       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6247                                            false, true) +
6248               (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF));
6249     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6250       // The back-edge branch will remain, as will all scalar branches.
6251       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6252     else
6253       // This branch will be eliminated by if-conversion.
6254       return 0;
6255     // Note: We currently assume zero cost for an unconditional branch inside
6256     // a predicated block since it will become a fall-through, although we
6257     // may decide in the future to call TTI for all branches.
6258   }
6259   case Instruction::PHI: {
6260     auto *Phi = cast<PHINode>(I);
6261 
6262     // First-order recurrences are replaced by vector shuffles inside the loop.
6263     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6264     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6265       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6266                                 cast<VectorType>(VectorTy), VF - 1,
6267                                 FixedVectorType::get(RetTy, 1));
6268 
6269     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6270     // converted into select instructions. We require N - 1 selects per phi
6271     // node, where N is the number of incoming values.
6272     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6273       return (Phi->getNumIncomingValues() - 1) *
6274              TTI.getCmpSelInstrCost(
6275                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6276                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
6277                  CostKind);
6278 
6279     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
6280   }
6281   case Instruction::UDiv:
6282   case Instruction::SDiv:
6283   case Instruction::URem:
6284   case Instruction::SRem:
6285     // If we have a predicated instruction, it may not be executed for each
6286     // vector lane. Get the scalarization cost and scale this amount by the
6287     // probability of executing the predicated block. If the instruction is not
6288     // predicated, we fall through to the next case.
6289     if (VF > 1 && isScalarWithPredication(I)) {
6290       unsigned Cost = 0;
6291 
6292       // These instructions have a non-void type, so account for the phi nodes
6293       // that we will create. This cost is likely to be zero. The phi node
6294       // cost, if any, should be scaled by the block probability because it
6295       // models a copy at the end of each predicated block.
6296       Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind);
6297 
6298       // The cost of the non-predicated instruction.
6299       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
6300 
6301       // The cost of insertelement and extractelement instructions needed for
6302       // scalarization.
6303       Cost += getScalarizationOverhead(I, VF);
6304 
6305       // Scale the cost by the probability of executing the predicated blocks.
6306       // This assumes the predicated block for each vector lane is equally
6307       // likely.
6308       return Cost / getReciprocalPredBlockProb();
6309     }
6310     LLVM_FALLTHROUGH;
6311   case Instruction::Add:
6312   case Instruction::FAdd:
6313   case Instruction::Sub:
6314   case Instruction::FSub:
6315   case Instruction::Mul:
6316   case Instruction::FMul:
6317   case Instruction::FDiv:
6318   case Instruction::FRem:
6319   case Instruction::Shl:
6320   case Instruction::LShr:
6321   case Instruction::AShr:
6322   case Instruction::And:
6323   case Instruction::Or:
6324   case Instruction::Xor: {
6325     // Since we will replace the stride by 1 the multiplication should go away.
6326     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6327       return 0;
6328     // Certain instructions can be cheaper to vectorize if they have a constant
6329     // second vector operand. One example of this are shifts on x86.
6330     Value *Op2 = I->getOperand(1);
6331     TargetTransformInfo::OperandValueProperties Op2VP;
6332     TargetTransformInfo::OperandValueKind Op2VK =
6333         TTI.getOperandInfo(Op2, Op2VP);
6334     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6335       Op2VK = TargetTransformInfo::OK_UniformValue;
6336 
6337     SmallVector<const Value *, 4> Operands(I->operand_values());
6338     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6339     return N * TTI.getArithmeticInstrCost(
6340                    I->getOpcode(), VectorTy, CostKind,
6341                    TargetTransformInfo::OK_AnyValue,
6342                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6343   }
6344   case Instruction::FNeg: {
6345     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6346     return N * TTI.getArithmeticInstrCost(
6347                    I->getOpcode(), VectorTy, CostKind,
6348                    TargetTransformInfo::OK_AnyValue,
6349                    TargetTransformInfo::OK_AnyValue,
6350                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6351                    I->getOperand(0), I);
6352   }
6353   case Instruction::Select: {
6354     SelectInst *SI = cast<SelectInst>(I);
6355     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6356     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6357     Type *CondTy = SI->getCondition()->getType();
6358     if (!ScalarCond)
6359       CondTy = FixedVectorType::get(CondTy, VF);
6360 
6361     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
6362                                   CostKind, I);
6363   }
6364   case Instruction::ICmp:
6365   case Instruction::FCmp: {
6366     Type *ValTy = I->getOperand(0)->getType();
6367     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6368     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6369       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6370     VectorTy = ToVectorTy(ValTy, VF);
6371     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind,
6372                                   I);
6373   }
6374   case Instruction::Store:
6375   case Instruction::Load: {
6376     unsigned Width = VF;
6377     if (Width > 1) {
6378       InstWidening Decision = getWideningDecision(I, Width);
6379       assert(Decision != CM_Unknown &&
6380              "CM decision should be taken at this point");
6381       if (Decision == CM_Scalarize)
6382         Width = 1;
6383     }
6384     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6385     return getMemoryInstructionCost(I, VF);
6386   }
6387   case Instruction::ZExt:
6388   case Instruction::SExt:
6389   case Instruction::FPToUI:
6390   case Instruction::FPToSI:
6391   case Instruction::FPExt:
6392   case Instruction::PtrToInt:
6393   case Instruction::IntToPtr:
6394   case Instruction::SIToFP:
6395   case Instruction::UIToFP:
6396   case Instruction::Trunc:
6397   case Instruction::FPTrunc:
6398   case Instruction::BitCast: {
6399     // We optimize the truncation of induction variables having constant
6400     // integer steps. The cost of these truncations is the same as the scalar
6401     // operation.
6402     if (isOptimizableIVTruncate(I, VF)) {
6403       auto *Trunc = cast<TruncInst>(I);
6404       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6405                                   Trunc->getSrcTy(), CostKind, Trunc);
6406     }
6407 
6408     Type *SrcScalarTy = I->getOperand(0)->getType();
6409     Type *SrcVecTy =
6410         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6411     if (canTruncateToMinimalBitwidth(I, VF)) {
6412       // This cast is going to be shrunk. This may remove the cast or it might
6413       // turn it into slightly different cast. For example, if MinBW == 16,
6414       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6415       //
6416       // Calculate the modified src and dest types.
6417       Type *MinVecTy = VectorTy;
6418       if (I->getOpcode() == Instruction::Trunc) {
6419         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6420         VectorTy =
6421             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6422       } else if (I->getOpcode() == Instruction::ZExt ||
6423                  I->getOpcode() == Instruction::SExt) {
6424         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6425         VectorTy =
6426             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6427       }
6428     }
6429 
6430     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6431     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy,
6432                                     CostKind, I);
6433   }
6434   case Instruction::Call: {
6435     bool NeedToScalarize;
6436     CallInst *CI = cast<CallInst>(I);
6437     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6438     if (getVectorIntrinsicIDForCall(CI, TLI))
6439       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6440     return CallCost;
6441   }
6442   default:
6443     // The cost of executing VF copies of the scalar instruction. This opcode
6444     // is unknown. Assume that it is the same as 'mul'.
6445     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy,
6446                                            CostKind) +
6447            getScalarizationOverhead(I, VF);
6448   } // end of switch.
6449 }
6450 
6451 char LoopVectorize::ID = 0;
6452 
6453 static const char lv_name[] = "Loop Vectorization";
6454 
6455 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6456 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6457 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6458 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6459 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6460 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6461 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6462 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6463 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6464 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6465 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6466 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6467 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6468 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6469 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6470 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6471 
6472 namespace llvm {
6473 
6474 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6475 
6476 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6477                               bool VectorizeOnlyWhenForced) {
6478   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6479 }
6480 
6481 } // end namespace llvm
6482 
6483 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6484   // Check if the pointer operand of a load or store instruction is
6485   // consecutive.
6486   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6487     return Legal->isConsecutivePtr(Ptr);
6488   return false;
6489 }
6490 
6491 void LoopVectorizationCostModel::collectValuesToIgnore() {
6492   // Ignore ephemeral values.
6493   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6494 
6495   // Ignore type-promoting instructions we identified during reduction
6496   // detection.
6497   for (auto &Reduction : Legal->getReductionVars()) {
6498     RecurrenceDescriptor &RedDes = Reduction.second;
6499     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6500     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6501   }
6502   // Ignore type-casting instructions we identified during induction
6503   // detection.
6504   for (auto &Induction : Legal->getInductionVars()) {
6505     InductionDescriptor &IndDes = Induction.second;
6506     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6507     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6508   }
6509 }
6510 
6511 // TODO: we could return a pair of values that specify the max VF and
6512 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6513 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6514 // doesn't have a cost model that can choose which plan to execute if
6515 // more than one is generated.
6516 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6517                                  LoopVectorizationCostModel &CM) {
6518   unsigned WidestType;
6519   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6520   return WidestVectorRegBits / WidestType;
6521 }
6522 
6523 VectorizationFactor
6524 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6525   unsigned VF = UserVF;
6526   // Outer loop handling: They may require CFG and instruction level
6527   // transformations before even evaluating whether vectorization is profitable.
6528   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6529   // the vectorization pipeline.
6530   if (!OrigLoop->empty()) {
6531     // If the user doesn't provide a vectorization factor, determine a
6532     // reasonable one.
6533     if (!UserVF) {
6534       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6535       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6536 
6537       // Make sure we have a VF > 1 for stress testing.
6538       if (VPlanBuildStressTest && VF < 2) {
6539         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6540                           << "overriding computed VF.\n");
6541         VF = 4;
6542       }
6543     }
6544     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6545     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6546     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6547                       << " to build VPlans.\n");
6548     buildVPlans(VF, VF);
6549 
6550     // For VPlan build stress testing, we bail out after VPlan construction.
6551     if (VPlanBuildStressTest)
6552       return VectorizationFactor::Disabled();
6553 
6554     return {VF, 0};
6555   }
6556 
6557   LLVM_DEBUG(
6558       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6559                 "VPlan-native path.\n");
6560   return VectorizationFactor::Disabled();
6561 }
6562 
6563 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF,
6564                                                              unsigned UserIC) {
6565   assert(OrigLoop->empty() && "Inner loop expected.");
6566   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC);
6567   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6568     return None;
6569 
6570   // Invalidate interleave groups if all blocks of loop will be predicated.
6571   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6572       !useMaskedInterleavedAccesses(*TTI)) {
6573     LLVM_DEBUG(
6574         dbgs()
6575         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6576            "which requires masked-interleaved support.\n");
6577     if (CM.InterleaveInfo.invalidateGroups())
6578       // Invalidating interleave groups also requires invalidating all decisions
6579       // based on them, which includes widening decisions and uniform and scalar
6580       // values.
6581       CM.invalidateCostModelingDecisions();
6582   }
6583 
6584   if (UserVF) {
6585     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6586     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6587     // Collect the instructions (and their associated costs) that will be more
6588     // profitable to scalarize.
6589     CM.selectUserVectorizationFactor(UserVF);
6590     buildVPlansWithVPRecipes(UserVF, UserVF);
6591     LLVM_DEBUG(printPlans(dbgs()));
6592     return {{UserVF, 0}};
6593   }
6594 
6595   unsigned MaxVF = MaybeMaxVF.getValue();
6596   assert(MaxVF != 0 && "MaxVF is zero.");
6597 
6598   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6599     // Collect Uniform and Scalar instructions after vectorization with VF.
6600     CM.collectUniformsAndScalars(VF);
6601 
6602     // Collect the instructions (and their associated costs) that will be more
6603     // profitable to scalarize.
6604     if (VF > 1)
6605       CM.collectInstsToScalarize(VF);
6606   }
6607 
6608   buildVPlansWithVPRecipes(1, MaxVF);
6609   LLVM_DEBUG(printPlans(dbgs()));
6610   if (MaxVF == 1)
6611     return VectorizationFactor::Disabled();
6612 
6613   // Select the optimal vectorization factor.
6614   return CM.selectVectorizationFactor(MaxVF);
6615 }
6616 
6617 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6618   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6619                     << '\n');
6620   BestVF = VF;
6621   BestUF = UF;
6622 
6623   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6624     return !Plan->hasVF(VF);
6625   });
6626   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6627 }
6628 
6629 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6630                                            DominatorTree *DT) {
6631   // Perform the actual loop transformation.
6632 
6633   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6634   VPCallbackILV CallbackILV(ILV);
6635 
6636   VPTransformState State{BestVF, BestUF,      LI,
6637                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6638                          &ILV,   CallbackILV};
6639   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6640   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6641   State.CanonicalIV = ILV.Induction;
6642 
6643   //===------------------------------------------------===//
6644   //
6645   // Notice: any optimization or new instruction that go
6646   // into the code below should also be implemented in
6647   // the cost-model.
6648   //
6649   //===------------------------------------------------===//
6650 
6651   // 2. Copy and widen instructions from the old loop into the new loop.
6652   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6653   VPlans.front()->execute(&State);
6654 
6655   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6656   //    predication, updating analyses.
6657   ILV.fixVectorizedLoop();
6658 }
6659 
6660 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6661     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6662   BasicBlock *Latch = OrigLoop->getLoopLatch();
6663 
6664   // We create new control-flow for the vectorized loop, so the original
6665   // condition will be dead after vectorization if it's only used by the
6666   // branch.
6667   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6668   if (Cmp && Cmp->hasOneUse())
6669     DeadInstructions.insert(Cmp);
6670 
6671   // We create new "steps" for induction variable updates to which the original
6672   // induction variables map. An original update instruction will be dead if
6673   // all its users except the induction variable are dead.
6674   for (auto &Induction : Legal->getInductionVars()) {
6675     PHINode *Ind = Induction.first;
6676     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6677     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6678           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
6679         }))
6680       DeadInstructions.insert(IndUpdate);
6681 
6682     // We record as "Dead" also the type-casting instructions we had identified
6683     // during induction analysis. We don't need any handling for them in the
6684     // vectorized loop because we have proven that, under a proper runtime
6685     // test guarding the vectorized loop, the value of the phi, and the casted
6686     // value of the phi, are the same. The last instruction in this casting chain
6687     // will get its scalar/vector/widened def from the scalar/vector/widened def
6688     // of the respective phi node. Any other casts in the induction def-use chain
6689     // have no other uses outside the phi update chain, and will be ignored.
6690     InductionDescriptor &IndDes = Induction.second;
6691     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6692     DeadInstructions.insert(Casts.begin(), Casts.end());
6693   }
6694 }
6695 
6696 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6697 
6698 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6699 
6700 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6701                                         Instruction::BinaryOps BinOp) {
6702   // When unrolling and the VF is 1, we only need to add a simple scalar.
6703   Type *Ty = Val->getType();
6704   assert(!Ty->isVectorTy() && "Val must be a scalar");
6705 
6706   if (Ty->isFloatingPointTy()) {
6707     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6708 
6709     // Floating point operations had to be 'fast' to enable the unrolling.
6710     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6711     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6712   }
6713   Constant *C = ConstantInt::get(Ty, StartIdx);
6714   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6715 }
6716 
6717 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6718   SmallVector<Metadata *, 4> MDs;
6719   // Reserve first location for self reference to the LoopID metadata node.
6720   MDs.push_back(nullptr);
6721   bool IsUnrollMetadata = false;
6722   MDNode *LoopID = L->getLoopID();
6723   if (LoopID) {
6724     // First find existing loop unrolling disable metadata.
6725     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6726       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6727       if (MD) {
6728         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6729         IsUnrollMetadata =
6730             S && S->getString().startswith("llvm.loop.unroll.disable");
6731       }
6732       MDs.push_back(LoopID->getOperand(i));
6733     }
6734   }
6735 
6736   if (!IsUnrollMetadata) {
6737     // Add runtime unroll disable metadata.
6738     LLVMContext &Context = L->getHeader()->getContext();
6739     SmallVector<Metadata *, 1> DisableOperands;
6740     DisableOperands.push_back(
6741         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6742     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6743     MDs.push_back(DisableNode);
6744     MDNode *NewLoopID = MDNode::get(Context, MDs);
6745     // Set operand 0 to refer to the loop id itself.
6746     NewLoopID->replaceOperandWith(0, NewLoopID);
6747     L->setLoopID(NewLoopID);
6748   }
6749 }
6750 
6751 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6752     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6753   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6754   bool PredicateAtRangeStart = Predicate(Range.Start);
6755 
6756   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6757     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6758       Range.End = TmpVF;
6759       break;
6760     }
6761 
6762   return PredicateAtRangeStart;
6763 }
6764 
6765 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6766 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6767 /// of VF's starting at a given VF and extending it as much as possible. Each
6768 /// vectorization decision can potentially shorten this sub-range during
6769 /// buildVPlan().
6770 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6771   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6772     VFRange SubRange = {VF, MaxVF + 1};
6773     VPlans.push_back(buildVPlan(SubRange));
6774     VF = SubRange.End;
6775   }
6776 }
6777 
6778 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6779                                          VPlanPtr &Plan) {
6780   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6781 
6782   // Look for cached value.
6783   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6784   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6785   if (ECEntryIt != EdgeMaskCache.end())
6786     return ECEntryIt->second;
6787 
6788   VPValue *SrcMask = createBlockInMask(Src, Plan);
6789 
6790   // The terminator has to be a branch inst!
6791   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6792   assert(BI && "Unexpected terminator found");
6793 
6794   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6795     return EdgeMaskCache[Edge] = SrcMask;
6796 
6797   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6798   assert(EdgeMask && "No Edge Mask found for condition");
6799 
6800   if (BI->getSuccessor(0) != Dst)
6801     EdgeMask = Builder.createNot(EdgeMask);
6802 
6803   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6804     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6805 
6806   return EdgeMaskCache[Edge] = EdgeMask;
6807 }
6808 
6809 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6810   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6811 
6812   // Look for cached value.
6813   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6814   if (BCEntryIt != BlockMaskCache.end())
6815     return BCEntryIt->second;
6816 
6817   // All-one mask is modelled as no-mask following the convention for masked
6818   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6819   VPValue *BlockMask = nullptr;
6820 
6821   if (OrigLoop->getHeader() == BB) {
6822     if (!CM.blockNeedsPredication(BB))
6823       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6824 
6825     // Introduce the early-exit compare IV <= BTC to form header block mask.
6826     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6827     // Start by constructing the desired canonical IV.
6828     VPValue *IV = nullptr;
6829     if (Legal->getPrimaryInduction())
6830       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6831     else {
6832       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6833       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6834       IV = IVRecipe->getVPValue();
6835     }
6836     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6837     bool TailFolded = !CM.isScalarEpilogueAllowed();
6838     if (TailFolded && CM.TTI.emitGetActiveLaneMask())
6839       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC});
6840     else
6841       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6842     return BlockMaskCache[BB] = BlockMask;
6843   }
6844 
6845   // This is the block mask. We OR all incoming edges.
6846   for (auto *Predecessor : predecessors(BB)) {
6847     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6848     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6849       return BlockMaskCache[BB] = EdgeMask;
6850 
6851     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6852       BlockMask = EdgeMask;
6853       continue;
6854     }
6855 
6856     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6857   }
6858 
6859   return BlockMaskCache[BB] = BlockMask;
6860 }
6861 
6862 VPWidenMemoryInstructionRecipe *
6863 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6864                                   VPlanPtr &Plan) {
6865   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6866          "Must be called with either a load or store");
6867 
6868   auto willWiden = [&](unsigned VF) -> bool {
6869     if (VF == 1)
6870       return false;
6871     LoopVectorizationCostModel::InstWidening Decision =
6872         CM.getWideningDecision(I, VF);
6873     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6874            "CM decision should be taken at this point.");
6875     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6876       return true;
6877     if (CM.isScalarAfterVectorization(I, VF) ||
6878         CM.isProfitableToScalarize(I, VF))
6879       return false;
6880     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6881   };
6882 
6883   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6884     return nullptr;
6885 
6886   VPValue *Mask = nullptr;
6887   if (Legal->isMaskRequired(I))
6888     Mask = createBlockInMask(I->getParent(), Plan);
6889 
6890   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6891   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6892     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6893 
6894   StoreInst *Store = cast<StoreInst>(I);
6895   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6896   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6897 }
6898 
6899 VPWidenIntOrFpInductionRecipe *
6900 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6901   // Check if this is an integer or fp induction. If so, build the recipe that
6902   // produces its scalar and vector values.
6903   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6904   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6905       II.getKind() == InductionDescriptor::IK_FpInduction)
6906     return new VPWidenIntOrFpInductionRecipe(Phi);
6907 
6908   return nullptr;
6909 }
6910 
6911 VPWidenIntOrFpInductionRecipe *
6912 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6913                                                 VFRange &Range) const {
6914   // Optimize the special case where the source is a constant integer
6915   // induction variable. Notice that we can only optimize the 'trunc' case
6916   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6917   // (c) other casts depend on pointer size.
6918 
6919   // Determine whether \p K is a truncation based on an induction variable that
6920   // can be optimized.
6921   auto isOptimizableIVTruncate =
6922       [&](Instruction *K) -> std::function<bool(unsigned)> {
6923     return
6924         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6925   };
6926 
6927   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6928           isOptimizableIVTruncate(I), Range))
6929     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6930                                              I);
6931   return nullptr;
6932 }
6933 
6934 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6935   // We know that all PHIs in non-header blocks are converted into selects, so
6936   // we don't have to worry about the insertion order and we can just use the
6937   // builder. At this point we generate the predication tree. There may be
6938   // duplications since this is a simple recursive scan, but future
6939   // optimizations will clean it up.
6940 
6941   SmallVector<VPValue *, 2> Operands;
6942   unsigned NumIncoming = Phi->getNumIncomingValues();
6943   for (unsigned In = 0; In < NumIncoming; In++) {
6944     VPValue *EdgeMask =
6945       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6946     assert((EdgeMask || NumIncoming == 1) &&
6947            "Multiple predecessors with one having a full mask");
6948     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6949     if (EdgeMask)
6950       Operands.push_back(EdgeMask);
6951   }
6952   return new VPBlendRecipe(Phi, Operands);
6953 }
6954 
6955 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6956                                                    VPlan &Plan) const {
6957 
6958   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6959       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6960       Range);
6961 
6962   if (IsPredicated)
6963     return nullptr;
6964 
6965   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6966   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6967              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6968     return nullptr;
6969 
6970   auto willWiden = [&](unsigned VF) -> bool {
6971     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6972     // The following case may be scalarized depending on the VF.
6973     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6974     // version of the instruction.
6975     // Is it beneficial to perform intrinsic call compared to lib call?
6976     bool NeedToScalarize = false;
6977     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6978     bool UseVectorIntrinsic =
6979         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6980     return UseVectorIntrinsic || !NeedToScalarize;
6981   };
6982 
6983   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6984     return nullptr;
6985 
6986   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6987 }
6988 
6989 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6990   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6991          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6992   // Instruction should be widened, unless it is scalar after vectorization,
6993   // scalarization is profitable or it is predicated.
6994   auto WillScalarize = [this, I](unsigned VF) -> bool {
6995     return CM.isScalarAfterVectorization(I, VF) ||
6996            CM.isProfitableToScalarize(I, VF) ||
6997            CM.isScalarWithPredication(I, VF);
6998   };
6999   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
7000                                                              Range);
7001 }
7002 
7003 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
7004   auto IsVectorizableOpcode = [](unsigned Opcode) {
7005     switch (Opcode) {
7006     case Instruction::Add:
7007     case Instruction::And:
7008     case Instruction::AShr:
7009     case Instruction::BitCast:
7010     case Instruction::FAdd:
7011     case Instruction::FCmp:
7012     case Instruction::FDiv:
7013     case Instruction::FMul:
7014     case Instruction::FNeg:
7015     case Instruction::FPExt:
7016     case Instruction::FPToSI:
7017     case Instruction::FPToUI:
7018     case Instruction::FPTrunc:
7019     case Instruction::FRem:
7020     case Instruction::FSub:
7021     case Instruction::ICmp:
7022     case Instruction::IntToPtr:
7023     case Instruction::LShr:
7024     case Instruction::Mul:
7025     case Instruction::Or:
7026     case Instruction::PtrToInt:
7027     case Instruction::SDiv:
7028     case Instruction::Select:
7029     case Instruction::SExt:
7030     case Instruction::Shl:
7031     case Instruction::SIToFP:
7032     case Instruction::SRem:
7033     case Instruction::Sub:
7034     case Instruction::Trunc:
7035     case Instruction::UDiv:
7036     case Instruction::UIToFP:
7037     case Instruction::URem:
7038     case Instruction::Xor:
7039     case Instruction::ZExt:
7040       return true;
7041     }
7042     return false;
7043   };
7044 
7045   if (!IsVectorizableOpcode(I->getOpcode()))
7046     return nullptr;
7047 
7048   // Success: widen this instruction.
7049   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7050 }
7051 
7052 VPBasicBlock *VPRecipeBuilder::handleReplication(
7053     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7054     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7055     VPlanPtr &Plan) {
7056   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7057       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7058       Range);
7059 
7060   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7061       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7062 
7063   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
7064                                        IsUniform, IsPredicated);
7065   setRecipe(I, Recipe);
7066 
7067   // Find if I uses a predicated instruction. If so, it will use its scalar
7068   // value. Avoid hoisting the insert-element which packs the scalar value into
7069   // a vector value, as that happens iff all users use the vector value.
7070   for (auto &Op : I->operands())
7071     if (auto *PredInst = dyn_cast<Instruction>(Op))
7072       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7073         PredInst2Recipe[PredInst]->setAlsoPack(false);
7074 
7075   // Finalize the recipe for Instr, first if it is not predicated.
7076   if (!IsPredicated) {
7077     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7078     VPBB->appendRecipe(Recipe);
7079     return VPBB;
7080   }
7081   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7082   assert(VPBB->getSuccessors().empty() &&
7083          "VPBB has successors when handling predicated replication.");
7084   // Record predicated instructions for above packing optimizations.
7085   PredInst2Recipe[I] = Recipe;
7086   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7087   VPBlockUtils::insertBlockAfter(Region, VPBB);
7088   auto *RegSucc = new VPBasicBlock();
7089   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7090   return RegSucc;
7091 }
7092 
7093 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7094                                                       VPRecipeBase *PredRecipe,
7095                                                       VPlanPtr &Plan) {
7096   // Instructions marked for predication are replicated and placed under an
7097   // if-then construct to prevent side-effects.
7098 
7099   // Generate recipes to compute the block mask for this region.
7100   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7101 
7102   // Build the triangular if-then region.
7103   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7104   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7105   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7106   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7107   auto *PHIRecipe =
7108       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7109   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7110   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7111   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7112 
7113   // Note: first set Entry as region entry and then connect successors starting
7114   // from it in order, to propagate the "parent" of each VPBasicBlock.
7115   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7116   VPBlockUtils::connectBlocks(Pred, Exit);
7117 
7118   return Region;
7119 }
7120 
7121 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7122                                                       VFRange &Range,
7123                                                       VPlanPtr &Plan) {
7124   // First, check for specific widening recipes that deal with calls, memory
7125   // operations, inductions and Phi nodes.
7126   if (auto *CI = dyn_cast<CallInst>(Instr))
7127     return tryToWidenCall(CI, Range, *Plan);
7128 
7129   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7130     return tryToWidenMemory(Instr, Range, Plan);
7131 
7132   VPRecipeBase *Recipe;
7133   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7134     if (Phi->getParent() != OrigLoop->getHeader())
7135       return tryToBlend(Phi, Plan);
7136     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7137       return Recipe;
7138     return new VPWidenPHIRecipe(Phi);
7139   }
7140 
7141   if (isa<TruncInst>(Instr) &&
7142       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7143     return Recipe;
7144 
7145   if (!shouldWiden(Instr, Range))
7146     return nullptr;
7147 
7148   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7149     return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()),
7150                                 OrigLoop);
7151 
7152   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7153     bool InvariantCond =
7154         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7155     return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()),
7156                                    InvariantCond);
7157   }
7158 
7159   return tryToWiden(Instr, *Plan);
7160 }
7161 
7162 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7163                                                         unsigned MaxVF) {
7164   assert(OrigLoop->empty() && "Inner loop expected.");
7165 
7166   // Collect conditions feeding internal conditional branches; they need to be
7167   // represented in VPlan for it to model masking.
7168   SmallPtrSet<Value *, 1> NeedDef;
7169 
7170   auto *Latch = OrigLoop->getLoopLatch();
7171   for (BasicBlock *BB : OrigLoop->blocks()) {
7172     if (BB == Latch)
7173       continue;
7174     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7175     if (Branch && Branch->isConditional())
7176       NeedDef.insert(Branch->getCondition());
7177   }
7178 
7179   // If the tail is to be folded by masking, the primary induction variable, if
7180   // exists needs to be represented in VPlan for it to model early-exit masking.
7181   // Also, both the Phi and the live-out instruction of each reduction are
7182   // required in order to introduce a select between them in VPlan.
7183   if (CM.foldTailByMasking()) {
7184     if (Legal->getPrimaryInduction())
7185       NeedDef.insert(Legal->getPrimaryInduction());
7186     for (auto &Reduction : Legal->getReductionVars()) {
7187       NeedDef.insert(Reduction.first);
7188       NeedDef.insert(Reduction.second.getLoopExitInstr());
7189     }
7190   }
7191 
7192   // Collect instructions from the original loop that will become trivially dead
7193   // in the vectorized loop. We don't need to vectorize these instructions. For
7194   // example, original induction update instructions can become dead because we
7195   // separately emit induction "steps" when generating code for the new loop.
7196   // Similarly, we create a new latch condition when setting up the structure
7197   // of the new loop, so the old one can become dead.
7198   SmallPtrSet<Instruction *, 4> DeadInstructions;
7199   collectTriviallyDeadInstructions(DeadInstructions);
7200 
7201   // Add assume instructions we need to drop to DeadInstructions, to prevent
7202   // them from being added to the VPlan.
7203   // TODO: We only need to drop assumes in blocks that get flattend. If the
7204   // control flow is preserved, we should keep them.
7205   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7206   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7207 
7208   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7209   // Dead instructions do not need sinking. Remove them from SinkAfter.
7210   for (Instruction *I : DeadInstructions)
7211     SinkAfter.erase(I);
7212 
7213   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7214     VFRange SubRange = {VF, MaxVF + 1};
7215     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7216                                              DeadInstructions, SinkAfter));
7217     VF = SubRange.End;
7218   }
7219 }
7220 
7221 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7222     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7223     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7224     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7225 
7226   // Hold a mapping from predicated instructions to their recipes, in order to
7227   // fix their AlsoPack behavior if a user is determined to replicate and use a
7228   // scalar instead of vector value.
7229   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7230 
7231   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7232 
7233   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7234 
7235   // ---------------------------------------------------------------------------
7236   // Pre-construction: record ingredients whose recipes we'll need to further
7237   // process after constructing the initial VPlan.
7238   // ---------------------------------------------------------------------------
7239 
7240   // Mark instructions we'll need to sink later and their targets as
7241   // ingredients whose recipe we'll need to record.
7242   for (auto &Entry : SinkAfter) {
7243     RecipeBuilder.recordRecipeOf(Entry.first);
7244     RecipeBuilder.recordRecipeOf(Entry.second);
7245   }
7246 
7247   // For each interleave group which is relevant for this (possibly trimmed)
7248   // Range, add it to the set of groups to be later applied to the VPlan and add
7249   // placeholders for its members' Recipes which we'll be replacing with a
7250   // single VPInterleaveRecipe.
7251   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7252     auto applyIG = [IG, this](unsigned VF) -> bool {
7253       return (VF >= 2 && // Query is illegal for VF == 1
7254               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7255                   LoopVectorizationCostModel::CM_Interleave);
7256     };
7257     if (!getDecisionAndClampRange(applyIG, Range))
7258       continue;
7259     InterleaveGroups.insert(IG);
7260     for (unsigned i = 0; i < IG->getFactor(); i++)
7261       if (Instruction *Member = IG->getMember(i))
7262         RecipeBuilder.recordRecipeOf(Member);
7263   };
7264 
7265   // ---------------------------------------------------------------------------
7266   // Build initial VPlan: Scan the body of the loop in a topological order to
7267   // visit each basic block after having visited its predecessor basic blocks.
7268   // ---------------------------------------------------------------------------
7269 
7270   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7271   auto Plan = std::make_unique<VPlan>();
7272   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7273   Plan->setEntry(VPBB);
7274 
7275   // Represent values that will have defs inside VPlan.
7276   for (Value *V : NeedDef)
7277     Plan->addVPValue(V);
7278 
7279   // Scan the body of the loop in a topological order to visit each basic block
7280   // after having visited its predecessor basic blocks.
7281   LoopBlocksDFS DFS(OrigLoop);
7282   DFS.perform(LI);
7283 
7284   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7285     // Relevant instructions from basic block BB will be grouped into VPRecipe
7286     // ingredients and fill a new VPBasicBlock.
7287     unsigned VPBBsForBB = 0;
7288     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7289     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7290     VPBB = FirstVPBBForBB;
7291     Builder.setInsertPoint(VPBB);
7292 
7293     // Introduce each ingredient into VPlan.
7294     // TODO: Model and preserve debug instrinsics in VPlan.
7295     for (Instruction &I : BB->instructionsWithoutDebug()) {
7296       Instruction *Instr = &I;
7297 
7298       // First filter out irrelevant instructions, to ensure no recipes are
7299       // built for them.
7300       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
7301         continue;
7302 
7303       if (auto Recipe =
7304               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7305         RecipeBuilder.setRecipe(Instr, Recipe);
7306         VPBB->appendRecipe(Recipe);
7307         continue;
7308       }
7309 
7310       // Otherwise, if all widening options failed, Instruction is to be
7311       // replicated. This may create a successor for VPBB.
7312       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7313           Instr, Range, VPBB, PredInst2Recipe, Plan);
7314       if (NextVPBB != VPBB) {
7315         VPBB = NextVPBB;
7316         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7317                                     : "");
7318       }
7319     }
7320   }
7321 
7322   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7323   // may also be empty, such as the last one VPBB, reflecting original
7324   // basic-blocks with no recipes.
7325   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7326   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7327   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7328   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7329   delete PreEntry;
7330 
7331   // ---------------------------------------------------------------------------
7332   // Transform initial VPlan: Apply previously taken decisions, in order, to
7333   // bring the VPlan to its final state.
7334   // ---------------------------------------------------------------------------
7335 
7336   // Apply Sink-After legal constraints.
7337   for (auto &Entry : SinkAfter) {
7338     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7339     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7340     Sink->moveAfter(Target);
7341   }
7342 
7343   // Interleave memory: for each Interleave Group we marked earlier as relevant
7344   // for this VPlan, replace the Recipes widening its memory instructions with a
7345   // single VPInterleaveRecipe at its insertion point.
7346   for (auto IG : InterleaveGroups) {
7347     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7348         RecipeBuilder.getRecipe(IG->getInsertPos()));
7349     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7350         ->insertBefore(Recipe);
7351 
7352     for (unsigned i = 0; i < IG->getFactor(); ++i)
7353       if (Instruction *Member = IG->getMember(i)) {
7354         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7355       }
7356   }
7357 
7358   // Finally, if tail is folded by masking, introduce selects between the phi
7359   // and the live-out instruction of each reduction, at the end of the latch.
7360   if (CM.foldTailByMasking()) {
7361     Builder.setInsertPoint(VPBB);
7362     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7363     for (auto &Reduction : Legal->getReductionVars()) {
7364       VPValue *Phi = Plan->getVPValue(Reduction.first);
7365       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7366       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7367     }
7368   }
7369 
7370   std::string PlanName;
7371   raw_string_ostream RSO(PlanName);
7372   unsigned VF = Range.Start;
7373   Plan->addVF(VF);
7374   RSO << "Initial VPlan for VF={" << VF;
7375   for (VF *= 2; VF < Range.End; VF *= 2) {
7376     Plan->addVF(VF);
7377     RSO << "," << VF;
7378   }
7379   RSO << "},UF>=1";
7380   RSO.flush();
7381   Plan->setName(PlanName);
7382 
7383   return Plan;
7384 }
7385 
7386 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7387   // Outer loop handling: They may require CFG and instruction level
7388   // transformations before even evaluating whether vectorization is profitable.
7389   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7390   // the vectorization pipeline.
7391   assert(!OrigLoop->empty());
7392   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7393 
7394   // Create new empty VPlan
7395   auto Plan = std::make_unique<VPlan>();
7396 
7397   // Build hierarchical CFG
7398   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7399   HCFGBuilder.buildHierarchicalCFG();
7400 
7401   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7402     Plan->addVF(VF);
7403 
7404   if (EnableVPlanPredication) {
7405     VPlanPredicator VPP(*Plan);
7406     VPP.predicate();
7407 
7408     // Avoid running transformation to recipes until masked code generation in
7409     // VPlan-native path is in place.
7410     return Plan;
7411   }
7412 
7413   SmallPtrSet<Instruction *, 1> DeadInstructions;
7414   VPlanTransforms::VPInstructionsToVPRecipes(
7415       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7416   return Plan;
7417 }
7418 
7419 Value* LoopVectorizationPlanner::VPCallbackILV::
7420 getOrCreateVectorValues(Value *V, unsigned Part) {
7421       return ILV.getOrCreateVectorValue(V, Part);
7422 }
7423 
7424 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7425     Value *V, const VPIteration &Instance) {
7426   return ILV.getOrCreateScalarValue(V, Instance);
7427 }
7428 
7429 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7430                                VPSlotTracker &SlotTracker) const {
7431   O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7432   IG->getInsertPos()->printAsOperand(O, false);
7433   O << ", ";
7434   getAddr()->printAsOperand(O, SlotTracker);
7435   VPValue *Mask = getMask();
7436   if (Mask) {
7437     O << ", ";
7438     Mask->printAsOperand(O, SlotTracker);
7439   }
7440   for (unsigned i = 0; i < IG->getFactor(); ++i)
7441     if (Instruction *I = IG->getMember(i))
7442       O << "\\l\" +\n" << Indent << "\"  " << VPlanIngredient(I) << " " << i;
7443 }
7444 
7445 void VPWidenCallRecipe::execute(VPTransformState &State) {
7446   State.ILV->widenCallInstruction(Ingredient, User, State);
7447 }
7448 
7449 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7450   State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State);
7451 }
7452 
7453 void VPWidenRecipe::execute(VPTransformState &State) {
7454   State.ILV->widenInstruction(Ingredient, User, State);
7455 }
7456 
7457 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7458   State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant,
7459                       IsIndexLoopInvariant, State);
7460 }
7461 
7462 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7463   assert(!State.Instance && "Int or FP induction being replicated.");
7464   State.ILV->widenIntOrFpInduction(IV, Trunc);
7465 }
7466 
7467 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7468   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7469 }
7470 
7471 void VPBlendRecipe::execute(VPTransformState &State) {
7472   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7473   // We know that all PHIs in non-header blocks are converted into
7474   // selects, so we don't have to worry about the insertion order and we
7475   // can just use the builder.
7476   // At this point we generate the predication tree. There may be
7477   // duplications since this is a simple recursive scan, but future
7478   // optimizations will clean it up.
7479 
7480   unsigned NumIncoming = getNumIncomingValues();
7481 
7482   // Generate a sequence of selects of the form:
7483   // SELECT(Mask3, In3,
7484   //        SELECT(Mask2, In2,
7485   //               SELECT(Mask1, In1,
7486   //                      In0)))
7487   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7488   // are essentially undef are taken from In0.
7489   InnerLoopVectorizer::VectorParts Entry(State.UF);
7490   for (unsigned In = 0; In < NumIncoming; ++In) {
7491     for (unsigned Part = 0; Part < State.UF; ++Part) {
7492       // We might have single edge PHIs (blocks) - use an identity
7493       // 'select' for the first PHI operand.
7494       Value *In0 = State.get(getIncomingValue(In), Part);
7495       if (In == 0)
7496         Entry[Part] = In0; // Initialize with the first incoming value.
7497       else {
7498         // Select between the current value and the previous incoming edge
7499         // based on the incoming mask.
7500         Value *Cond = State.get(getMask(In), Part);
7501         Entry[Part] =
7502             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7503       }
7504     }
7505   }
7506   for (unsigned Part = 0; Part < State.UF; ++Part)
7507     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7508 }
7509 
7510 void VPInterleaveRecipe::execute(VPTransformState &State) {
7511   assert(!State.Instance && "Interleave group being replicated.");
7512   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7513 }
7514 
7515 void VPReplicateRecipe::execute(VPTransformState &State) {
7516   if (State.Instance) { // Generate a single instance.
7517     State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance,
7518                                     IsPredicated, State);
7519     // Insert scalar instance packing it into a vector.
7520     if (AlsoPack && State.VF > 1) {
7521       // If we're constructing lane 0, initialize to start from undef.
7522       if (State.Instance->Lane == 0) {
7523         Value *Undef = UndefValue::get(
7524             FixedVectorType::get(Ingredient->getType(), State.VF));
7525         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7526       }
7527       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7528     }
7529     return;
7530   }
7531 
7532   // Generate scalar instances for all VF lanes of all UF parts, unless the
7533   // instruction is uniform inwhich case generate only the first lane for each
7534   // of the UF parts.
7535   unsigned EndLane = IsUniform ? 1 : State.VF;
7536   for (unsigned Part = 0; Part < State.UF; ++Part)
7537     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7538       State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane},
7539                                       IsPredicated, State);
7540 }
7541 
7542 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7543   assert(State.Instance && "Branch on Mask works only on single instance.");
7544 
7545   unsigned Part = State.Instance->Part;
7546   unsigned Lane = State.Instance->Lane;
7547 
7548   Value *ConditionBit = nullptr;
7549   VPValue *BlockInMask = getMask();
7550   if (BlockInMask) {
7551     ConditionBit = State.get(BlockInMask, Part);
7552     if (ConditionBit->getType()->isVectorTy())
7553       ConditionBit = State.Builder.CreateExtractElement(
7554           ConditionBit, State.Builder.getInt32(Lane));
7555   } else // Block in mask is all-one.
7556     ConditionBit = State.Builder.getTrue();
7557 
7558   // Replace the temporary unreachable terminator with a new conditional branch,
7559   // whose two destinations will be set later when they are created.
7560   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7561   assert(isa<UnreachableInst>(CurrentTerminator) &&
7562          "Expected to replace unreachable terminator with conditional branch.");
7563   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7564   CondBr->setSuccessor(0, nullptr);
7565   ReplaceInstWithInst(CurrentTerminator, CondBr);
7566 }
7567 
7568 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7569   assert(State.Instance && "Predicated instruction PHI works per instance.");
7570   Instruction *ScalarPredInst = cast<Instruction>(
7571       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7572   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7573   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7574   assert(PredicatingBB && "Predicated block has no single predecessor.");
7575 
7576   // By current pack/unpack logic we need to generate only a single phi node: if
7577   // a vector value for the predicated instruction exists at this point it means
7578   // the instruction has vector users only, and a phi for the vector value is
7579   // needed. In this case the recipe of the predicated instruction is marked to
7580   // also do that packing, thereby "hoisting" the insert-element sequence.
7581   // Otherwise, a phi node for the scalar value is needed.
7582   unsigned Part = State.Instance->Part;
7583   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7584     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7585     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7586     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7587     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7588     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7589     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7590   } else {
7591     Type *PredInstType = PredInst->getType();
7592     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7593     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7594     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7595     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7596   }
7597 }
7598 
7599 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7600   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7601   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7602                                         getMask());
7603 }
7604 
7605 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7606 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7607 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7608 // for predication.
7609 static ScalarEpilogueLowering getScalarEpilogueLowering(
7610     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7611     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7612     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7613     LoopVectorizationLegality &LVL) {
7614   bool OptSize =
7615       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7616                                                      PGSOQueryType::IRPass);
7617   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7618   // don't look at hints or options, and don't request a scalar epilogue.
7619   if (OptSize)
7620     return CM_ScalarEpilogueNotAllowedOptSize;
7621 
7622   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7623                               !PreferPredicateOverEpilog;
7624 
7625   // 2) Next, if disabling predication is requested on the command line, honour
7626   // this and request a scalar epilogue.
7627   if (PredicateOptDisabled)
7628     return CM_ScalarEpilogueAllowed;
7629 
7630   // 3) and 4) look if enabling predication is requested on the command line,
7631   // with a loop hint, or if the TTI hook indicates this is profitable, request
7632   // predication .
7633   if (PreferPredicateOverEpilog ||
7634       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7635       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7636                                         LVL.getLAI()) &&
7637        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7638     return CM_ScalarEpilogueNotNeededUsePredicate;
7639 
7640   return CM_ScalarEpilogueAllowed;
7641 }
7642 
7643 // Process the loop in the VPlan-native vectorization path. This path builds
7644 // VPlan upfront in the vectorization pipeline, which allows to apply
7645 // VPlan-to-VPlan transformations from the very beginning without modifying the
7646 // input LLVM IR.
7647 static bool processLoopInVPlanNativePath(
7648     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7649     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7650     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7651     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7652     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7653 
7654   if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) {
7655     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
7656     return false;
7657   }
7658   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7659   Function *F = L->getHeader()->getParent();
7660   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7661 
7662   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7663       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7664 
7665   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7666                                 &Hints, IAI);
7667   // Use the planner for outer loop vectorization.
7668   // TODO: CM is not used at this point inside the planner. Turn CM into an
7669   // optional argument if we don't need it in the future.
7670   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7671 
7672   // Get user vectorization factor.
7673   const unsigned UserVF = Hints.getWidth();
7674 
7675   // Plan how to best vectorize, return the best VF and its cost.
7676   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7677 
7678   // If we are stress testing VPlan builds, do not attempt to generate vector
7679   // code. Masked vector code generation support will follow soon.
7680   // Also, do not attempt to vectorize if no vector code will be produced.
7681   if (VPlanBuildStressTest || EnableVPlanPredication ||
7682       VectorizationFactor::Disabled() == VF)
7683     return false;
7684 
7685   LVP.setBestPlan(VF.Width, 1);
7686 
7687   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7688                          &CM);
7689   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7690                     << L->getHeader()->getParent()->getName() << "\"\n");
7691   LVP.executePlan(LB, DT);
7692 
7693   // Mark the loop as already vectorized to avoid vectorizing again.
7694   Hints.setAlreadyVectorized();
7695 
7696   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7697   return true;
7698 }
7699 
7700 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7701     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7702                                !EnableLoopInterleaving),
7703       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7704                               !EnableLoopVectorization) {}
7705 
7706 bool LoopVectorizePass::processLoop(Loop *L) {
7707   assert((EnableVPlanNativePath || L->empty()) &&
7708          "VPlan-native path is not enabled. Only process inner loops.");
7709 
7710 #ifndef NDEBUG
7711   const std::string DebugLocStr = getDebugLocString(L);
7712 #endif /* NDEBUG */
7713 
7714   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7715                     << L->getHeader()->getParent()->getName() << "\" from "
7716                     << DebugLocStr << "\n");
7717 
7718   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7719 
7720   LLVM_DEBUG(
7721       dbgs() << "LV: Loop hints:"
7722              << " force="
7723              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7724                      ? "disabled"
7725                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7726                             ? "enabled"
7727                             : "?"))
7728              << " width=" << Hints.getWidth()
7729              << " unroll=" << Hints.getInterleave() << "\n");
7730 
7731   // Function containing loop
7732   Function *F = L->getHeader()->getParent();
7733 
7734   // Looking at the diagnostic output is the only way to determine if a loop
7735   // was vectorized (other than looking at the IR or machine code), so it
7736   // is important to generate an optimization remark for each loop. Most of
7737   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7738   // generated as OptimizationRemark and OptimizationRemarkMissed are
7739   // less verbose reporting vectorized loops and unvectorized loops that may
7740   // benefit from vectorization, respectively.
7741 
7742   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7743     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7744     return false;
7745   }
7746 
7747   PredicatedScalarEvolution PSE(*SE, *L);
7748 
7749   // Check if it is legal to vectorize the loop.
7750   LoopVectorizationRequirements Requirements(*ORE);
7751   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7752                                 &Requirements, &Hints, DB, AC);
7753   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7754     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7755     Hints.emitRemarkWithHints();
7756     return false;
7757   }
7758 
7759   // Check the function attributes and profiles to find out if this function
7760   // should be optimized for size.
7761   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7762       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7763 
7764   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7765   // here. They may require CFG and instruction level transformations before
7766   // even evaluating whether vectorization is profitable. Since we cannot modify
7767   // the incoming IR, we need to build VPlan upfront in the vectorization
7768   // pipeline.
7769   if (!L->empty())
7770     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7771                                         ORE, BFI, PSI, Hints);
7772 
7773   assert(L->empty() && "Inner loop expected.");
7774 
7775   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7776   // count by optimizing for size, to minimize overheads.
7777   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7778   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7779     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7780                       << "This loop is worth vectorizing only if no scalar "
7781                       << "iteration overheads are incurred.");
7782     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7783       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7784     else {
7785       LLVM_DEBUG(dbgs() << "\n");
7786       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7787     }
7788   }
7789 
7790   // Check the function attributes to see if implicit floats are allowed.
7791   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7792   // an integer loop and the vector instructions selected are purely integer
7793   // vector instructions?
7794   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7795     reportVectorizationFailure(
7796         "Can't vectorize when the NoImplicitFloat attribute is used",
7797         "loop not vectorized due to NoImplicitFloat attribute",
7798         "NoImplicitFloat", ORE, L);
7799     Hints.emitRemarkWithHints();
7800     return false;
7801   }
7802 
7803   // Check if the target supports potentially unsafe FP vectorization.
7804   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7805   // for the target we're vectorizing for, to make sure none of the
7806   // additional fp-math flags can help.
7807   if (Hints.isPotentiallyUnsafe() &&
7808       TTI->isFPVectorizationPotentiallyUnsafe()) {
7809     reportVectorizationFailure(
7810         "Potentially unsafe FP op prevents vectorization",
7811         "loop not vectorized due to unsafe FP support.",
7812         "UnsafeFP", ORE, L);
7813     Hints.emitRemarkWithHints();
7814     return false;
7815   }
7816 
7817   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7818   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7819 
7820   // If an override option has been passed in for interleaved accesses, use it.
7821   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7822     UseInterleaved = EnableInterleavedMemAccesses;
7823 
7824   // Analyze interleaved memory accesses.
7825   if (UseInterleaved) {
7826     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7827   }
7828 
7829   // Use the cost model.
7830   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7831                                 F, &Hints, IAI);
7832   CM.collectValuesToIgnore();
7833 
7834   // Use the planner for vectorization.
7835   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7836 
7837   // Get user vectorization factor and interleave count.
7838   unsigned UserVF = Hints.getWidth();
7839   unsigned UserIC = Hints.getInterleave();
7840 
7841   // Plan how to best vectorize, return the best VF and its cost.
7842   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
7843 
7844   VectorizationFactor VF = VectorizationFactor::Disabled();
7845   unsigned IC = 1;
7846 
7847   if (MaybeVF) {
7848     VF = *MaybeVF;
7849     // Select the interleave count.
7850     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7851   }
7852 
7853   // Identify the diagnostic messages that should be produced.
7854   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7855   bool VectorizeLoop = true, InterleaveLoop = true;
7856   if (Requirements.doesNotMeet(F, L, Hints)) {
7857     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7858                          "requirements.\n");
7859     Hints.emitRemarkWithHints();
7860     return false;
7861   }
7862 
7863   if (VF.Width == 1) {
7864     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7865     VecDiagMsg = std::make_pair(
7866         "VectorizationNotBeneficial",
7867         "the cost-model indicates that vectorization is not beneficial");
7868     VectorizeLoop = false;
7869   }
7870 
7871   if (!MaybeVF && UserIC > 1) {
7872     // Tell the user interleaving was avoided up-front, despite being explicitly
7873     // requested.
7874     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7875                          "interleaving should be avoided up front\n");
7876     IntDiagMsg = std::make_pair(
7877         "InterleavingAvoided",
7878         "Ignoring UserIC, because interleaving was avoided up front");
7879     InterleaveLoop = false;
7880   } else if (IC == 1 && UserIC <= 1) {
7881     // Tell the user interleaving is not beneficial.
7882     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7883     IntDiagMsg = std::make_pair(
7884         "InterleavingNotBeneficial",
7885         "the cost-model indicates that interleaving is not beneficial");
7886     InterleaveLoop = false;
7887     if (UserIC == 1) {
7888       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7889       IntDiagMsg.second +=
7890           " and is explicitly disabled or interleave count is set to 1";
7891     }
7892   } else if (IC > 1 && UserIC == 1) {
7893     // Tell the user interleaving is beneficial, but it explicitly disabled.
7894     LLVM_DEBUG(
7895         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7896     IntDiagMsg = std::make_pair(
7897         "InterleavingBeneficialButDisabled",
7898         "the cost-model indicates that interleaving is beneficial "
7899         "but is explicitly disabled or interleave count is set to 1");
7900     InterleaveLoop = false;
7901   }
7902 
7903   // Override IC if user provided an interleave count.
7904   IC = UserIC > 0 ? UserIC : IC;
7905 
7906   // Emit diagnostic messages, if any.
7907   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7908   if (!VectorizeLoop && !InterleaveLoop) {
7909     // Do not vectorize or interleaving the loop.
7910     ORE->emit([&]() {
7911       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7912                                       L->getStartLoc(), L->getHeader())
7913              << VecDiagMsg.second;
7914     });
7915     ORE->emit([&]() {
7916       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7917                                       L->getStartLoc(), L->getHeader())
7918              << IntDiagMsg.second;
7919     });
7920     return false;
7921   } else if (!VectorizeLoop && InterleaveLoop) {
7922     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7923     ORE->emit([&]() {
7924       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7925                                         L->getStartLoc(), L->getHeader())
7926              << VecDiagMsg.second;
7927     });
7928   } else if (VectorizeLoop && !InterleaveLoop) {
7929     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7930                       << ") in " << DebugLocStr << '\n');
7931     ORE->emit([&]() {
7932       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7933                                         L->getStartLoc(), L->getHeader())
7934              << IntDiagMsg.second;
7935     });
7936   } else if (VectorizeLoop && InterleaveLoop) {
7937     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7938                       << ") in " << DebugLocStr << '\n');
7939     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7940   }
7941 
7942   LVP.setBestPlan(VF.Width, IC);
7943 
7944   using namespace ore;
7945   bool DisableRuntimeUnroll = false;
7946   MDNode *OrigLoopID = L->getLoopID();
7947 
7948   if (!VectorizeLoop) {
7949     assert(IC > 1 && "interleave count should not be 1 or 0");
7950     // If we decided that it is not legal to vectorize the loop, then
7951     // interleave it.
7952     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7953                                &CM);
7954     LVP.executePlan(Unroller, DT);
7955 
7956     ORE->emit([&]() {
7957       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7958                                 L->getHeader())
7959              << "interleaved loop (interleaved count: "
7960              << NV("InterleaveCount", IC) << ")";
7961     });
7962   } else {
7963     // If we decided that it is *legal* to vectorize the loop, then do it.
7964     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7965                            &LVL, &CM);
7966     LVP.executePlan(LB, DT);
7967     ++LoopsVectorized;
7968 
7969     // Add metadata to disable runtime unrolling a scalar loop when there are
7970     // no runtime checks about strides and memory. A scalar loop that is
7971     // rarely used is not worth unrolling.
7972     if (!LB.areSafetyChecksAdded())
7973       DisableRuntimeUnroll = true;
7974 
7975     // Report the vectorization decision.
7976     ORE->emit([&]() {
7977       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7978                                 L->getHeader())
7979              << "vectorized loop (vectorization width: "
7980              << NV("VectorizationFactor", VF.Width)
7981              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7982     });
7983   }
7984 
7985   Optional<MDNode *> RemainderLoopID =
7986       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7987                                       LLVMLoopVectorizeFollowupEpilogue});
7988   if (RemainderLoopID.hasValue()) {
7989     L->setLoopID(RemainderLoopID.getValue());
7990   } else {
7991     if (DisableRuntimeUnroll)
7992       AddRuntimeUnrollDisableMetaData(L);
7993 
7994     // Mark the loop as already vectorized to avoid vectorizing again.
7995     Hints.setAlreadyVectorized();
7996   }
7997 
7998   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
7999   return true;
8000 }
8001 
8002 LoopVectorizeResult LoopVectorizePass::runImpl(
8003     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8004     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8005     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
8006     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8007     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
8008   SE = &SE_;
8009   LI = &LI_;
8010   TTI = &TTI_;
8011   DT = &DT_;
8012   BFI = &BFI_;
8013   TLI = TLI_;
8014   AA = &AA_;
8015   AC = &AC_;
8016   GetLAA = &GetLAA_;
8017   DB = &DB_;
8018   ORE = &ORE_;
8019   PSI = PSI_;
8020 
8021   // Don't attempt if
8022   // 1. the target claims to have no vector registers, and
8023   // 2. interleaving won't help ILP.
8024   //
8025   // The second condition is necessary because, even if the target has no
8026   // vector registers, loop vectorization may still enable scalar
8027   // interleaving.
8028   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
8029       TTI->getMaxInterleaveFactor(1) < 2)
8030     return LoopVectorizeResult(false, false);
8031 
8032   bool Changed = false, CFGChanged = false;
8033 
8034   // The vectorizer requires loops to be in simplified form.
8035   // Since simplification may add new inner loops, it has to run before the
8036   // legality and profitability checks. This means running the loop vectorizer
8037   // will simplify all loops, regardless of whether anything end up being
8038   // vectorized.
8039   for (auto &L : *LI)
8040     Changed |= CFGChanged |=
8041         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
8042 
8043   // Build up a worklist of inner-loops to vectorize. This is necessary as
8044   // the act of vectorizing or partially unrolling a loop creates new loops
8045   // and can invalidate iterators across the loops.
8046   SmallVector<Loop *, 8> Worklist;
8047 
8048   for (Loop *L : *LI)
8049     collectSupportedLoops(*L, LI, ORE, Worklist);
8050 
8051   LoopsAnalyzed += Worklist.size();
8052 
8053   // Now walk the identified inner loops.
8054   while (!Worklist.empty()) {
8055     Loop *L = Worklist.pop_back_val();
8056 
8057     // For the inner loops we actually process, form LCSSA to simplify the
8058     // transform.
8059     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8060 
8061     Changed |= CFGChanged |= processLoop(L);
8062   }
8063 
8064   // Process each loop nest in the function.
8065   return LoopVectorizeResult(Changed, CFGChanged);
8066 }
8067 
8068 PreservedAnalyses LoopVectorizePass::run(Function &F,
8069                                          FunctionAnalysisManager &AM) {
8070     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8071     auto &LI = AM.getResult<LoopAnalysis>(F);
8072     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8073     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8074     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8075     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8076     auto &AA = AM.getResult<AAManager>(F);
8077     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8078     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8079     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8080     MemorySSA *MSSA = EnableMSSALoopDependency
8081                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8082                           : nullptr;
8083 
8084     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8085     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8086         [&](Loop &L) -> const LoopAccessInfo & {
8087       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8088       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8089     };
8090     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
8091     ProfileSummaryInfo *PSI =
8092         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8093     LoopVectorizeResult Result =
8094         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8095     if (!Result.MadeAnyChange)
8096       return PreservedAnalyses::all();
8097     PreservedAnalyses PA;
8098 
8099     // We currently do not preserve loopinfo/dominator analyses with outer loop
8100     // vectorization. Until this is addressed, mark these analyses as preserved
8101     // only for non-VPlan-native path.
8102     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8103     if (!EnableVPlanNativePath) {
8104       PA.preserve<LoopAnalysis>();
8105       PA.preserve<DominatorTreeAnalysis>();
8106     }
8107     PA.preserve<BasicAA>();
8108     PA.preserve<GlobalsAA>();
8109     if (!Result.MadeCFGChange)
8110       PA.preserveSet<CFGAnalyses>();
8111     return PA;
8112 }
8113