1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 419 bool InvariantCond, VPTransformState &State); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 435 unsigned VF, bool IsPtrLoopInvariant, 436 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 437 438 /// Vectorize a single PHINode in a block. This method handles the induction 439 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 440 /// arbitrary length vectors. 441 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 442 443 /// A helper function to scalarize a single Instruction in the innermost loop. 444 /// Generates a sequence of scalar instances for each lane between \p MinLane 445 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 446 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 447 /// Instr's operands. 448 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 449 const VPIteration &Instance, bool IfPredicateInstr, 450 VPTransformState &State); 451 452 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 453 /// is provided, the integer induction variable will first be truncated to 454 /// the corresponding type. 455 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 456 457 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 458 /// vector or scalar value on-demand if one is not yet available. When 459 /// vectorizing a loop, we visit the definition of an instruction before its 460 /// uses. When visiting the definition, we either vectorize or scalarize the 461 /// instruction, creating an entry for it in the corresponding map. (In some 462 /// cases, such as induction variables, we will create both vector and scalar 463 /// entries.) Then, as we encounter uses of the definition, we derive values 464 /// for each scalar or vector use unless such a value is already available. 465 /// For example, if we scalarize a definition and one of its uses is vector, 466 /// we build the required vector on-demand with an insertelement sequence 467 /// when visiting the use. Otherwise, if the use is scalar, we can use the 468 /// existing scalar definition. 469 /// 470 /// Return a value in the new loop corresponding to \p V from the original 471 /// loop at unroll index \p Part. If the value has already been vectorized, 472 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 473 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 474 /// a new vector value on-demand by inserting the scalar values into a vector 475 /// with an insertelement sequence. If the value has been neither vectorized 476 /// nor scalarized, it must be loop invariant, so we simply broadcast the 477 /// value into a vector. 478 Value *getOrCreateVectorValue(Value *V, unsigned Part); 479 480 /// Return a value in the new loop corresponding to \p V from the original 481 /// loop at unroll and vector indices \p Instance. If the value has been 482 /// vectorized but not scalarized, the necessary extractelement instruction 483 /// will be generated. 484 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 485 486 /// Construct the vector value of a scalarized value \p V one lane at a time. 487 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 488 489 /// Try to vectorize interleaved access group \p Group with the base address 490 /// given in \p Addr, optionally masking the vector operations if \p 491 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 492 /// values in the vectorized loop. 493 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 494 VPTransformState &State, VPValue *Addr, 495 VPValue *BlockInMask = nullptr); 496 497 /// Vectorize Load and Store instructions with the base address given in \p 498 /// Addr, optionally masking the vector operations if \p BlockInMask is 499 /// non-null. Use \p State to translate given VPValues to IR values in the 500 /// vectorized loop. 501 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 502 VPValue *Addr, VPValue *StoredValue, 503 VPValue *BlockInMask); 504 505 /// Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 510 void fixNonInductionPHIs(void); 511 512 protected: 513 friend class LoopVectorizationPlanner; 514 515 /// A small list of PHINodes. 516 using PhiVector = SmallVector<PHINode *, 4>; 517 518 /// A type for scalarized values in the new loop. Each value from the 519 /// original loop, when scalarized, is represented by UF x VF scalar values 520 /// in the new unrolled loop, where UF is the unroll factor and VF is the 521 /// vectorization factor. 522 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 523 524 /// Set up the values of the IVs correctly when exiting the vector loop. 525 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 526 Value *CountRoundDown, Value *EndValue, 527 BasicBlock *MiddleBlock); 528 529 /// Create a new induction variable inside L. 530 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 531 Value *Step, Instruction *DL); 532 533 /// Handle all cross-iteration phis in the header. 534 void fixCrossIterationPHIs(); 535 536 /// Fix a first-order recurrence. This is the second phase of vectorizing 537 /// this phi node. 538 void fixFirstOrderRecurrence(PHINode *Phi); 539 540 /// Fix a reduction cross-iteration phi. This is the second phase of 541 /// vectorizing this phi node. 542 void fixReduction(PHINode *Phi); 543 544 /// Clear NSW/NUW flags from reduction instructions if necessary. 545 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 546 547 /// The Loop exit block may have single value PHI nodes with some 548 /// incoming value. While vectorizing we only handled real values 549 /// that were defined inside the loop and we should have one value for 550 /// each predecessor of its parent basic block. See PR14725. 551 void fixLCSSAPHIs(); 552 553 /// Iteratively sink the scalarized operands of a predicated instruction into 554 /// the block that was created for it. 555 void sinkScalarOperands(Instruction *PredInst); 556 557 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 558 /// represented as. 559 void truncateToMinimalBitwidths(); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 569 /// to each vector element of Val. The sequence starts at StartIndex. 570 /// \p Opcode is relevant for FP induction variable. 571 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 572 Instruction::BinaryOps Opcode = 573 Instruction::BinaryOpsEnd); 574 575 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 576 /// variable on which to base the steps, \p Step is the size of the step, and 577 /// \p EntryVal is the value from the original loop that maps to the steps. 578 /// Note that \p EntryVal doesn't have to be an induction variable - it 579 /// can also be a truncate instruction. 580 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 581 const InductionDescriptor &ID); 582 583 /// Create a vector induction phi node based on an existing scalar one. \p 584 /// EntryVal is the value from the original loop that maps to the vector phi 585 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 586 /// truncate instruction, instead of widening the original IV, we widen a 587 /// version of the IV truncated to \p EntryVal's type. 588 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 589 Value *Step, Instruction *EntryVal); 590 591 /// Returns true if an instruction \p I should be scalarized instead of 592 /// vectorized for the chosen vectorization factor. 593 bool shouldScalarizeInstruction(Instruction *I) const; 594 595 /// Returns true if we should generate a scalar version of \p IV. 596 bool needsScalarInduction(Instruction *IV) const; 597 598 /// If there is a cast involved in the induction variable \p ID, which should 599 /// be ignored in the vectorized loop body, this function records the 600 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 601 /// cast. We had already proved that the casted Phi is equal to the uncasted 602 /// Phi in the vectorized loop (under a runtime guard), and therefore 603 /// there is no need to vectorize the cast - the same value can be used in the 604 /// vector loop for both the Phi and the cast. 605 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 606 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 607 /// 608 /// \p EntryVal is the value from the original loop that maps to the vector 609 /// phi node and is used to distinguish what is the IV currently being 610 /// processed - original one (if \p EntryVal is a phi corresponding to the 611 /// original IV) or the "newly-created" one based on the proof mentioned above 612 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 613 /// latter case \p EntryVal is a TruncInst and we must not record anything for 614 /// that IV, but it's error-prone to expect callers of this routine to care 615 /// about that, hence this explicit parameter. 616 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 617 const Instruction *EntryVal, 618 Value *VectorLoopValue, 619 unsigned Part, 620 unsigned Lane = UINT_MAX); 621 622 /// Generate a shuffle sequence that will reverse the vector Vec. 623 virtual Value *reverseVector(Value *Vec); 624 625 /// Returns (and creates if needed) the original loop trip count. 626 Value *getOrCreateTripCount(Loop *NewLoop); 627 628 /// Returns (and creates if needed) the trip count of the widened loop. 629 Value *getOrCreateVectorTripCount(Loop *NewLoop); 630 631 /// Returns a bitcasted value to the requested vector type. 632 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 633 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 634 const DataLayout &DL); 635 636 /// Emit a bypass check to see if the vector trip count is zero, including if 637 /// it overflows. 638 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 639 640 /// Emit a bypass check to see if all of the SCEV assumptions we've 641 /// had to make are correct. 642 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 643 644 /// Emit bypass checks to check any memory assumptions we may have made. 645 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 646 647 /// Compute the transformed value of Index at offset StartValue using step 648 /// StepValue. 649 /// For integer induction, returns StartValue + Index * StepValue. 650 /// For pointer induction, returns StartValue[Index * StepValue]. 651 /// FIXME: The newly created binary instructions should contain nsw/nuw 652 /// flags, which can be found from the original scalar operations. 653 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 654 const DataLayout &DL, 655 const InductionDescriptor &ID) const; 656 657 /// Add additional metadata to \p To that was not present on \p Orig. 658 /// 659 /// Currently this is used to add the noalias annotations based on the 660 /// inserted memchecks. Use this for instructions that are *cloned* into the 661 /// vector loop. 662 void addNewMetadata(Instruction *To, const Instruction *Orig); 663 664 /// Add metadata from one instruction to another. 665 /// 666 /// This includes both the original MDs from \p From and additional ones (\see 667 /// addNewMetadata). Use this for *newly created* instructions in the vector 668 /// loop. 669 void addMetadata(Instruction *To, Instruction *From); 670 671 /// Similar to the previous function but it adds the metadata to a 672 /// vector of instructions. 673 void addMetadata(ArrayRef<Value *> To, Instruction *From); 674 675 /// The original loop. 676 Loop *OrigLoop; 677 678 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 679 /// dynamic knowledge to simplify SCEV expressions and converts them to a 680 /// more usable form. 681 PredicatedScalarEvolution &PSE; 682 683 /// Loop Info. 684 LoopInfo *LI; 685 686 /// Dominator Tree. 687 DominatorTree *DT; 688 689 /// Alias Analysis. 690 AAResults *AA; 691 692 /// Target Library Info. 693 const TargetLibraryInfo *TLI; 694 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 698 /// Assumption Cache. 699 AssumptionCache *AC; 700 701 /// Interface to emit optimization remarks. 702 OptimizationRemarkEmitter *ORE; 703 704 /// LoopVersioning. It's only set up (non-null) if memchecks were 705 /// used. 706 /// 707 /// This is currently only used to add no-alias metadata based on the 708 /// memchecks. The actually versioning is performed manually. 709 std::unique_ptr<LoopVersioning> LVer; 710 711 /// The vectorization SIMD factor to use. Each vector will have this many 712 /// vector elements. 713 unsigned VF; 714 715 /// The vectorization unroll factor to use. Each scalar is vectorized to this 716 /// many different vector instructions. 717 unsigned UF; 718 719 /// The builder that we use 720 IRBuilder<> Builder; 721 722 // --- Vectorization state --- 723 724 /// The vector-loop preheader. 725 BasicBlock *LoopVectorPreHeader; 726 727 /// The scalar-loop preheader. 728 BasicBlock *LoopScalarPreHeader; 729 730 /// Middle Block between the vector and the scalar. 731 BasicBlock *LoopMiddleBlock; 732 733 /// The ExitBlock of the scalar loop. 734 BasicBlock *LoopExitBlock; 735 736 /// The vector loop body. 737 BasicBlock *LoopVectorBody; 738 739 /// The scalar loop body. 740 BasicBlock *LoopScalarBody; 741 742 /// A list of all bypass blocks. The first block is the entry of the loop. 743 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 744 745 /// The new Induction variable which was added to the new block. 746 PHINode *Induction = nullptr; 747 748 /// The induction variable of the old basic block. 749 PHINode *OldInduction = nullptr; 750 751 /// Maps values from the original loop to their corresponding values in the 752 /// vectorized loop. A key value can map to either vector values, scalar 753 /// values or both kinds of values, depending on whether the key was 754 /// vectorized and scalarized. 755 VectorizerValueMap VectorLoopValueMap; 756 757 /// Store instructions that were predicated. 758 SmallVector<Instruction *, 4> PredicatedInstructions; 759 760 /// Trip count of the original loop. 761 Value *TripCount = nullptr; 762 763 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 764 Value *VectorTripCount = nullptr; 765 766 /// The legality analysis. 767 LoopVectorizationLegality *Legal; 768 769 /// The profitablity analysis. 770 LoopVectorizationCostModel *Cost; 771 772 // Record whether runtime checks are added. 773 bool AddedSafetyChecks = false; 774 775 // Holds the end values for each induction variable. We save the end values 776 // so we can later fix-up the external users of the induction variables. 777 DenseMap<PHINode *, Value *> IVEndValues; 778 779 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 780 // fixed up at the end of vector code generation. 781 SmallVector<PHINode *, 8> OrigPHIsToFix; 782 }; 783 784 class InnerLoopUnroller : public InnerLoopVectorizer { 785 public: 786 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 787 LoopInfo *LI, DominatorTree *DT, 788 const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 791 LoopVectorizationLegality *LVL, 792 LoopVectorizationCostModel *CM) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 794 UnrollFactor, LVL, CM) {} 795 796 private: 797 Value *getBroadcastInstrs(Value *V) override; 798 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 799 Instruction::BinaryOps Opcode = 800 Instruction::BinaryOpsEnd) override; 801 Value *reverseVector(Value *Vec) override; 802 }; 803 804 } // end namespace llvm 805 806 /// Look for a meaningful debug location on the instruction or it's 807 /// operands. 808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 809 if (!I) 810 return I; 811 812 DebugLoc Empty; 813 if (I->getDebugLoc() != Empty) 814 return I; 815 816 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 817 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 818 if (OpInst->getDebugLoc() != Empty) 819 return OpInst; 820 } 821 822 return I; 823 } 824 825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 826 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 827 const DILocation *DIL = Inst->getDebugLoc(); 828 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 829 !isa<DbgInfoIntrinsic>(Inst)) { 830 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 831 if (NewDIL) 832 B.SetCurrentDebugLocation(NewDIL.getValue()); 833 else 834 LLVM_DEBUG(dbgs() 835 << "Failed to create new discriminator: " 836 << DIL->getFilename() << " Line: " << DIL->getLine()); 837 } 838 else 839 B.SetCurrentDebugLocation(DIL); 840 } else 841 B.SetCurrentDebugLocation(DebugLoc()); 842 } 843 844 /// Write a record \p DebugMsg about vectorization failure to the debug 845 /// output stream. If \p I is passed, it is an instruction that prevents 846 /// vectorization. 847 #ifndef NDEBUG 848 static void debugVectorizationFailure(const StringRef DebugMsg, 849 Instruction *I) { 850 dbgs() << "LV: Not vectorizing: " << DebugMsg; 851 if (I != nullptr) 852 dbgs() << " " << *I; 853 else 854 dbgs() << '.'; 855 dbgs() << '\n'; 856 } 857 #endif 858 859 /// Create an analysis remark that explains why vectorization failed 860 /// 861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 862 /// RemarkName is the identifier for the remark. If \p I is passed it is an 863 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 864 /// the location of the remark. \return the remark object that can be 865 /// streamed to. 866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 867 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 868 Value *CodeRegion = TheLoop->getHeader(); 869 DebugLoc DL = TheLoop->getStartLoc(); 870 871 if (I) { 872 CodeRegion = I->getParent(); 873 // If there is no debug location attached to the instruction, revert back to 874 // using the loop's. 875 if (I->getDebugLoc()) 876 DL = I->getDebugLoc(); 877 } 878 879 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 880 R << "loop not vectorized: "; 881 return R; 882 } 883 884 namespace llvm { 885 886 void reportVectorizationFailure(const StringRef DebugMsg, 887 const StringRef OREMsg, const StringRef ORETag, 888 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 889 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 890 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 891 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 892 ORETag, TheLoop, I) << OREMsg); 893 } 894 895 } // end namespace llvm 896 897 #ifndef NDEBUG 898 /// \return string containing a file name and a line # for the given loop. 899 static std::string getDebugLocString(const Loop *L) { 900 std::string Result; 901 if (L) { 902 raw_string_ostream OS(Result); 903 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 904 LoopDbgLoc.print(OS); 905 else 906 // Just print the module name. 907 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 908 OS.flush(); 909 } 910 return Result; 911 } 912 #endif 913 914 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 915 const Instruction *Orig) { 916 // If the loop was versioned with memchecks, add the corresponding no-alias 917 // metadata. 918 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 919 LVer->annotateInstWithNoAlias(To, Orig); 920 } 921 922 void InnerLoopVectorizer::addMetadata(Instruction *To, 923 Instruction *From) { 924 propagateMetadata(To, From); 925 addNewMetadata(To, From); 926 } 927 928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 929 Instruction *From) { 930 for (Value *V : To) { 931 if (Instruction *I = dyn_cast<Instruction>(V)) 932 addMetadata(I, From); 933 } 934 } 935 936 namespace llvm { 937 938 // Loop vectorization cost-model hints how the scalar epilogue loop should be 939 // lowered. 940 enum ScalarEpilogueLowering { 941 942 // The default: allowing scalar epilogues. 943 CM_ScalarEpilogueAllowed, 944 945 // Vectorization with OptForSize: don't allow epilogues. 946 CM_ScalarEpilogueNotAllowedOptSize, 947 948 // A special case of vectorisation with OptForSize: loops with a very small 949 // trip count are considered for vectorization under OptForSize, thereby 950 // making sure the cost of their loop body is dominant, free of runtime 951 // guards and scalar iteration overheads. 952 CM_ScalarEpilogueNotAllowedLowTripLoop, 953 954 // Loop hint predicate indicating an epilogue is undesired. 955 CM_ScalarEpilogueNotNeededUsePredicate 956 }; 957 958 /// LoopVectorizationCostModel - estimates the expected speedups due to 959 /// vectorization. 960 /// In many cases vectorization is not profitable. This can happen because of 961 /// a number of reasons. In this class we mainly attempt to predict the 962 /// expected speedup/slowdowns due to the supported instruction set. We use the 963 /// TargetTransformInfo to query the different backends for the cost of 964 /// different operations. 965 class LoopVectorizationCostModel { 966 public: 967 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 968 PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 LoopVectorizationLegality *Legal, 970 const TargetTransformInfo &TTI, 971 const TargetLibraryInfo *TLI, DemandedBits *DB, 972 AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, const Function *F, 974 const LoopVectorizeHints *Hints, 975 InterleavedAccessInfo &IAI) 976 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 977 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 978 Hints(Hints), InterleaveInfo(IAI) {} 979 980 /// \return An upper bound for the vectorization factor, or None if 981 /// vectorization and interleaving should be avoided up front. 982 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 983 984 /// \return True if runtime checks are required for vectorization, and false 985 /// otherwise. 986 bool runtimeChecksRequired(); 987 988 /// \return The most profitable vectorization factor and the cost of that VF. 989 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 990 /// then this vectorization factor will be selected if vectorization is 991 /// possible. 992 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 993 994 /// Setup cost-based decisions for user vectorization factor. 995 void selectUserVectorizationFactor(unsigned UserVF) { 996 collectUniformsAndScalars(UserVF); 997 collectInstsToScalarize(UserVF); 998 } 999 1000 /// \return The size (in bits) of the smallest and widest types in the code 1001 /// that needs to be vectorized. We ignore values that remain scalar such as 1002 /// 64 bit loop indices. 1003 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1004 1005 /// \return The desired interleave count. 1006 /// If interleave count has been specified by metadata it will be returned. 1007 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1008 /// are the selected vectorization factor and the cost of the selected VF. 1009 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1010 1011 /// Memory access instruction may be vectorized in more than one way. 1012 /// Form of instruction after vectorization depends on cost. 1013 /// This function takes cost-based decisions for Load/Store instructions 1014 /// and collects them in a map. This decisions map is used for building 1015 /// the lists of loop-uniform and loop-scalar instructions. 1016 /// The calculated cost is saved with widening decision in order to 1017 /// avoid redundant calculations. 1018 void setCostBasedWideningDecision(unsigned VF); 1019 1020 /// A struct that represents some properties of the register usage 1021 /// of a loop. 1022 struct RegisterUsage { 1023 /// Holds the number of loop invariant values that are used in the loop. 1024 /// The key is ClassID of target-provided register class. 1025 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1026 /// Holds the maximum number of concurrent live intervals in the loop. 1027 /// The key is ClassID of target-provided register class. 1028 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1029 }; 1030 1031 /// \return Returns information about the register usages of the loop for the 1032 /// given vectorization factors. 1033 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1034 1035 /// Collect values we want to ignore in the cost model. 1036 void collectValuesToIgnore(); 1037 1038 /// \returns The smallest bitwidth each instruction can be represented with. 1039 /// The vector equivalents of these instructions should be truncated to this 1040 /// type. 1041 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1042 return MinBWs; 1043 } 1044 1045 /// \returns True if it is more profitable to scalarize instruction \p I for 1046 /// vectorization factor \p VF. 1047 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1048 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1049 1050 // Cost model is not run in the VPlan-native path - return conservative 1051 // result until this changes. 1052 if (EnableVPlanNativePath) 1053 return false; 1054 1055 auto Scalars = InstsToScalarize.find(VF); 1056 assert(Scalars != InstsToScalarize.end() && 1057 "VF not yet analyzed for scalarization profitability"); 1058 return Scalars->second.find(I) != Scalars->second.end(); 1059 } 1060 1061 /// Returns true if \p I is known to be uniform after vectorization. 1062 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1063 if (VF == 1) 1064 return true; 1065 1066 // Cost model is not run in the VPlan-native path - return conservative 1067 // result until this changes. 1068 if (EnableVPlanNativePath) 1069 return false; 1070 1071 auto UniformsPerVF = Uniforms.find(VF); 1072 assert(UniformsPerVF != Uniforms.end() && 1073 "VF not yet analyzed for uniformity"); 1074 return UniformsPerVF->second.count(I); 1075 } 1076 1077 /// Returns true if \p I is known to be scalar after vectorization. 1078 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1079 if (VF == 1) 1080 return true; 1081 1082 // Cost model is not run in the VPlan-native path - return conservative 1083 // result until this changes. 1084 if (EnableVPlanNativePath) 1085 return false; 1086 1087 auto ScalarsPerVF = Scalars.find(VF); 1088 assert(ScalarsPerVF != Scalars.end() && 1089 "Scalar values are not calculated for VF"); 1090 return ScalarsPerVF->second.count(I); 1091 } 1092 1093 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1094 /// for vectorization factor \p VF. 1095 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1096 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1097 !isProfitableToScalarize(I, VF) && 1098 !isScalarAfterVectorization(I, VF); 1099 } 1100 1101 /// Decision that was taken during cost calculation for memory instruction. 1102 enum InstWidening { 1103 CM_Unknown, 1104 CM_Widen, // For consecutive accesses with stride +1. 1105 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1106 CM_Interleave, 1107 CM_GatherScatter, 1108 CM_Scalarize 1109 }; 1110 1111 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1112 /// instruction \p I and vector width \p VF. 1113 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1114 unsigned Cost) { 1115 assert(VF >= 2 && "Expected VF >=2"); 1116 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1117 } 1118 1119 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1120 /// interleaving group \p Grp and vector width \p VF. 1121 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1122 InstWidening W, unsigned Cost) { 1123 assert(VF >= 2 && "Expected VF >=2"); 1124 /// Broadcast this decicion to all instructions inside the group. 1125 /// But the cost will be assigned to one instruction only. 1126 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1127 if (auto *I = Grp->getMember(i)) { 1128 if (Grp->getInsertPos() == I) 1129 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1130 else 1131 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1132 } 1133 } 1134 } 1135 1136 /// Return the cost model decision for the given instruction \p I and vector 1137 /// width \p VF. Return CM_Unknown if this instruction did not pass 1138 /// through the cost modeling. 1139 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1140 assert(VF >= 2 && "Expected VF >=2"); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return CM_GatherScatter; 1146 1147 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1148 auto Itr = WideningDecisions.find(InstOnVF); 1149 if (Itr == WideningDecisions.end()) 1150 return CM_Unknown; 1151 return Itr->second.first; 1152 } 1153 1154 /// Return the vectorization cost for the given instruction \p I and vector 1155 /// width \p VF. 1156 unsigned getWideningCost(Instruction *I, unsigned VF) { 1157 assert(VF >= 2 && "Expected VF >=2"); 1158 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1159 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1160 "The cost is not calculated"); 1161 return WideningDecisions[InstOnVF].second; 1162 } 1163 1164 /// Return True if instruction \p I is an optimizable truncate whose operand 1165 /// is an induction variable. Such a truncate will be removed by adding a new 1166 /// induction variable with the destination type. 1167 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1168 // If the instruction is not a truncate, return false. 1169 auto *Trunc = dyn_cast<TruncInst>(I); 1170 if (!Trunc) 1171 return false; 1172 1173 // Get the source and destination types of the truncate. 1174 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1175 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1176 1177 // If the truncate is free for the given types, return false. Replacing a 1178 // free truncate with an induction variable would add an induction variable 1179 // update instruction to each iteration of the loop. We exclude from this 1180 // check the primary induction variable since it will need an update 1181 // instruction regardless. 1182 Value *Op = Trunc->getOperand(0); 1183 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1184 return false; 1185 1186 // If the truncated value is not an induction variable, return false. 1187 return Legal->isInductionPhi(Op); 1188 } 1189 1190 /// Collects the instructions to scalarize for each predicated instruction in 1191 /// the loop. 1192 void collectInstsToScalarize(unsigned VF); 1193 1194 /// Collect Uniform and Scalar values for the given \p VF. 1195 /// The sets depend on CM decision for Load/Store instructions 1196 /// that may be vectorized as interleave, gather-scatter or scalarized. 1197 void collectUniformsAndScalars(unsigned VF) { 1198 // Do the analysis once. 1199 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1200 return; 1201 setCostBasedWideningDecision(VF); 1202 collectLoopUniforms(VF); 1203 collectLoopScalars(VF); 1204 } 1205 1206 /// Returns true if the target machine supports masked store operation 1207 /// for the given \p DataType and kind of access to \p Ptr. 1208 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1209 return Legal->isConsecutivePtr(Ptr) && 1210 TTI.isLegalMaskedStore(DataType, Alignment); 1211 } 1212 1213 /// Returns true if the target machine supports masked load operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedLoad(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked scatter operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1223 return TTI.isLegalMaskedScatter(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine supports masked gather operation 1227 /// for the given \p DataType. 1228 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1229 return TTI.isLegalMaskedGather(DataType, Alignment); 1230 } 1231 1232 /// Returns true if the target machine can represent \p V as a masked gather 1233 /// or scatter operation. 1234 bool isLegalGatherOrScatter(Value *V) { 1235 bool LI = isa<LoadInst>(V); 1236 bool SI = isa<StoreInst>(V); 1237 if (!LI && !SI) 1238 return false; 1239 auto *Ty = getMemInstValueType(V); 1240 Align Align = getLoadStoreAlignment(V); 1241 return (LI && isLegalMaskedGather(Ty, Align)) || 1242 (SI && isLegalMaskedScatter(Ty, Align)); 1243 } 1244 1245 /// Returns true if \p I is an instruction that will be scalarized with 1246 /// predication. Such instructions include conditional stores and 1247 /// instructions that may divide by zero. 1248 /// If a non-zero VF has been calculated, we check if I will be scalarized 1249 /// predication for that VF. 1250 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1251 1252 // Returns true if \p I is an instruction that will be predicated either 1253 // through scalar predication or masked load/store or masked gather/scatter. 1254 // Superset of instructions that return true for isScalarWithPredication. 1255 bool isPredicatedInst(Instruction *I) { 1256 if (!blockNeedsPredication(I->getParent())) 1257 return false; 1258 // Loads and stores that need some form of masked operation are predicated 1259 // instructions. 1260 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1261 return Legal->isMaskRequired(I); 1262 return isScalarWithPredication(I); 1263 } 1264 1265 /// Returns true if \p I is a memory instruction with consecutive memory 1266 /// access that can be widened. 1267 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1268 1269 /// Returns true if \p I is a memory instruction in an interleaved-group 1270 /// of memory accesses that can be vectorized with wide vector loads/stores 1271 /// and shuffles. 1272 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1273 1274 /// Check if \p Instr belongs to any interleaved access group. 1275 bool isAccessInterleaved(Instruction *Instr) { 1276 return InterleaveInfo.isInterleaved(Instr); 1277 } 1278 1279 /// Get the interleaved access group that \p Instr belongs to. 1280 const InterleaveGroup<Instruction> * 1281 getInterleavedAccessGroup(Instruction *Instr) { 1282 return InterleaveInfo.getInterleaveGroup(Instr); 1283 } 1284 1285 /// Returns true if an interleaved group requires a scalar iteration 1286 /// to handle accesses with gaps, and there is nothing preventing us from 1287 /// creating a scalar epilogue. 1288 bool requiresScalarEpilogue() const { 1289 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1290 } 1291 1292 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1293 /// loop hint annotation. 1294 bool isScalarEpilogueAllowed() const { 1295 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1296 } 1297 1298 /// Returns true if all loop blocks should be masked to fold tail loop. 1299 bool foldTailByMasking() const { return FoldTailByMasking; } 1300 1301 bool blockNeedsPredication(BasicBlock *BB) { 1302 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1303 } 1304 1305 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1306 /// with factor VF. Return the cost of the instruction, including 1307 /// scalarization overhead if it's needed. 1308 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1309 1310 /// Estimate cost of a call instruction CI if it were vectorized with factor 1311 /// VF. Return the cost of the instruction, including scalarization overhead 1312 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1313 /// scalarized - 1314 /// i.e. either vector version isn't available, or is too expensive. 1315 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1316 1317 /// Invalidates decisions already taken by the cost model. 1318 void invalidateCostModelingDecisions() { 1319 WideningDecisions.clear(); 1320 Uniforms.clear(); 1321 Scalars.clear(); 1322 } 1323 1324 private: 1325 unsigned NumPredStores = 0; 1326 1327 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1328 /// than zero. One is returned if vectorization should best be avoided due 1329 /// to cost. 1330 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1331 1332 /// The vectorization cost is a combination of the cost itself and a boolean 1333 /// indicating whether any of the contributing operations will actually 1334 /// operate on 1335 /// vector values after type legalization in the backend. If this latter value 1336 /// is 1337 /// false, then all operations will be scalarized (i.e. no vectorization has 1338 /// actually taken place). 1339 using VectorizationCostTy = std::pair<unsigned, bool>; 1340 1341 /// Returns the expected execution cost. The unit of the cost does 1342 /// not matter because we use the 'cost' units to compare different 1343 /// vector widths. The cost that is returned is *not* normalized by 1344 /// the factor width. 1345 VectorizationCostTy expectedCost(unsigned VF); 1346 1347 /// Returns the execution time cost of an instruction for a given vector 1348 /// width. Vector width of one means scalar. 1349 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1350 1351 /// The cost-computation logic from getInstructionCost which provides 1352 /// the vector type as an output parameter. 1353 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1354 1355 /// Calculate vectorization cost of memory instruction \p I. 1356 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost computation for scalarized memory instruction. 1359 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1360 1361 /// The cost computation for interleaving group of memory instructions. 1362 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1363 1364 /// The cost computation for Gather/Scatter instruction. 1365 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1366 1367 /// The cost computation for widening instruction \p I with consecutive 1368 /// memory access. 1369 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1370 1371 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1372 /// Load: scalar load + broadcast. 1373 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1374 /// element) 1375 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1376 1377 /// Estimate the overhead of scalarizing an instruction. This is a 1378 /// convenience wrapper for the type-based getScalarizationOverhead API. 1379 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1380 1381 /// Returns whether the instruction is a load or store and will be a emitted 1382 /// as a vector operation. 1383 bool isConsecutiveLoadOrStore(Instruction *I); 1384 1385 /// Returns true if an artificially high cost for emulated masked memrefs 1386 /// should be used. 1387 bool useEmulatedMaskMemRefHack(Instruction *I); 1388 1389 /// Map of scalar integer values to the smallest bitwidth they can be legally 1390 /// represented as. The vector equivalents of these values should be truncated 1391 /// to this type. 1392 MapVector<Instruction *, uint64_t> MinBWs; 1393 1394 /// A type representing the costs for instructions if they were to be 1395 /// scalarized rather than vectorized. The entries are Instruction-Cost 1396 /// pairs. 1397 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1398 1399 /// A set containing all BasicBlocks that are known to present after 1400 /// vectorization as a predicated block. 1401 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1402 1403 /// Records whether it is allowed to have the original scalar loop execute at 1404 /// least once. This may be needed as a fallback loop in case runtime 1405 /// aliasing/dependence checks fail, or to handle the tail/remainder 1406 /// iterations when the trip count is unknown or doesn't divide by the VF, 1407 /// or as a peel-loop to handle gaps in interleave-groups. 1408 /// Under optsize and when the trip count is very small we don't allow any 1409 /// iterations to execute in the scalar loop. 1410 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1411 1412 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1413 bool FoldTailByMasking = false; 1414 1415 /// A map holding scalar costs for different vectorization factors. The 1416 /// presence of a cost for an instruction in the mapping indicates that the 1417 /// instruction will be scalarized when vectorizing with the associated 1418 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1419 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1420 1421 /// Holds the instructions known to be uniform after vectorization. 1422 /// The data is collected per VF. 1423 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1424 1425 /// Holds the instructions known to be scalar after vectorization. 1426 /// The data is collected per VF. 1427 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1428 1429 /// Holds the instructions (address computations) that are forced to be 1430 /// scalarized. 1431 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1432 1433 /// Returns the expected difference in cost from scalarizing the expression 1434 /// feeding a predicated instruction \p PredInst. The instructions to 1435 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1436 /// non-negative return value implies the expression will be scalarized. 1437 /// Currently, only single-use chains are considered for scalarization. 1438 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1439 unsigned VF); 1440 1441 /// Collect the instructions that are uniform after vectorization. An 1442 /// instruction is uniform if we represent it with a single scalar value in 1443 /// the vectorized loop corresponding to each vector iteration. Examples of 1444 /// uniform instructions include pointer operands of consecutive or 1445 /// interleaved memory accesses. Note that although uniformity implies an 1446 /// instruction will be scalar, the reverse is not true. In general, a 1447 /// scalarized instruction will be represented by VF scalar values in the 1448 /// vectorized loop, each corresponding to an iteration of the original 1449 /// scalar loop. 1450 void collectLoopUniforms(unsigned VF); 1451 1452 /// Collect the instructions that are scalar after vectorization. An 1453 /// instruction is scalar if it is known to be uniform or will be scalarized 1454 /// during vectorization. Non-uniform scalarized instructions will be 1455 /// represented by VF values in the vectorized loop, each corresponding to an 1456 /// iteration of the original scalar loop. 1457 void collectLoopScalars(unsigned VF); 1458 1459 /// Keeps cost model vectorization decision and cost for instructions. 1460 /// Right now it is used for memory instructions only. 1461 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1462 std::pair<InstWidening, unsigned>>; 1463 1464 DecisionList WideningDecisions; 1465 1466 /// Returns true if \p V is expected to be vectorized and it needs to be 1467 /// extracted. 1468 bool needsExtract(Value *V, unsigned VF) const { 1469 Instruction *I = dyn_cast<Instruction>(V); 1470 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1471 return false; 1472 1473 // Assume we can vectorize V (and hence we need extraction) if the 1474 // scalars are not computed yet. This can happen, because it is called 1475 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1476 // the scalars are collected. That should be a safe assumption in most 1477 // cases, because we check if the operands have vectorizable types 1478 // beforehand in LoopVectorizationLegality. 1479 return Scalars.find(VF) == Scalars.end() || 1480 !isScalarAfterVectorization(I, VF); 1481 }; 1482 1483 /// Returns a range containing only operands needing to be extracted. 1484 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1485 unsigned VF) { 1486 return SmallVector<Value *, 4>(make_filter_range( 1487 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1488 } 1489 1490 public: 1491 /// The loop that we evaluate. 1492 Loop *TheLoop; 1493 1494 /// Predicated scalar evolution analysis. 1495 PredicatedScalarEvolution &PSE; 1496 1497 /// Loop Info analysis. 1498 LoopInfo *LI; 1499 1500 /// Vectorization legality. 1501 LoopVectorizationLegality *Legal; 1502 1503 /// Vector target information. 1504 const TargetTransformInfo &TTI; 1505 1506 /// Target Library Info. 1507 const TargetLibraryInfo *TLI; 1508 1509 /// Demanded bits analysis. 1510 DemandedBits *DB; 1511 1512 /// Assumption cache. 1513 AssumptionCache *AC; 1514 1515 /// Interface to emit optimization remarks. 1516 OptimizationRemarkEmitter *ORE; 1517 1518 const Function *TheFunction; 1519 1520 /// Loop Vectorize Hint. 1521 const LoopVectorizeHints *Hints; 1522 1523 /// The interleave access information contains groups of interleaved accesses 1524 /// with the same stride and close to each other. 1525 InterleavedAccessInfo &InterleaveInfo; 1526 1527 /// Values to ignore in the cost model. 1528 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1529 1530 /// Values to ignore in the cost model when VF > 1. 1531 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1532 }; 1533 1534 } // end namespace llvm 1535 1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1537 // vectorization. The loop needs to be annotated with #pragma omp simd 1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1539 // vector length information is not provided, vectorization is not considered 1540 // explicit. Interleave hints are not allowed either. These limitations will be 1541 // relaxed in the future. 1542 // Please, note that we are currently forced to abuse the pragma 'clang 1543 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1545 // provides *explicit vectorization hints* (LV can bypass legal checks and 1546 // assume that vectorization is legal). However, both hints are implemented 1547 // using the same metadata (llvm.loop.vectorize, processed by 1548 // LoopVectorizeHints). This will be fixed in the future when the native IR 1549 // representation for pragma 'omp simd' is introduced. 1550 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1551 OptimizationRemarkEmitter *ORE) { 1552 assert(!OuterLp->empty() && "This is not an outer loop"); 1553 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1554 1555 // Only outer loops with an explicit vectorization hint are supported. 1556 // Unannotated outer loops are ignored. 1557 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1558 return false; 1559 1560 Function *Fn = OuterLp->getHeader()->getParent(); 1561 if (!Hints.allowVectorization(Fn, OuterLp, 1562 true /*VectorizeOnlyWhenForced*/)) { 1563 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1564 return false; 1565 } 1566 1567 if (Hints.getInterleave() > 1) { 1568 // TODO: Interleave support is future work. 1569 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1570 "outer loops.\n"); 1571 Hints.emitRemarkWithHints(); 1572 return false; 1573 } 1574 1575 return true; 1576 } 1577 1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1579 OptimizationRemarkEmitter *ORE, 1580 SmallVectorImpl<Loop *> &V) { 1581 // Collect inner loops and outer loops without irreducible control flow. For 1582 // now, only collect outer loops that have explicit vectorization hints. If we 1583 // are stress testing the VPlan H-CFG construction, we collect the outermost 1584 // loop of every loop nest. 1585 if (L.empty() || VPlanBuildStressTest || 1586 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1587 LoopBlocksRPO RPOT(&L); 1588 RPOT.perform(LI); 1589 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1590 V.push_back(&L); 1591 // TODO: Collect inner loops inside marked outer loops in case 1592 // vectorization fails for the outer loop. Do not invoke 1593 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1594 // already known to be reducible. We can use an inherited attribute for 1595 // that. 1596 return; 1597 } 1598 } 1599 for (Loop *InnerL : L) 1600 collectSupportedLoops(*InnerL, LI, ORE, V); 1601 } 1602 1603 namespace { 1604 1605 /// The LoopVectorize Pass. 1606 struct LoopVectorize : public FunctionPass { 1607 /// Pass identification, replacement for typeid 1608 static char ID; 1609 1610 LoopVectorizePass Impl; 1611 1612 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1613 bool VectorizeOnlyWhenForced = false) 1614 : FunctionPass(ID), 1615 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1616 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1617 } 1618 1619 bool runOnFunction(Function &F) override { 1620 if (skipFunction(F)) 1621 return false; 1622 1623 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1624 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1625 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1626 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1627 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1628 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1629 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1630 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1631 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1632 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1633 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1634 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1635 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1636 1637 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1638 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1639 1640 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1641 GetLAA, *ORE, PSI).MadeAnyChange; 1642 } 1643 1644 void getAnalysisUsage(AnalysisUsage &AU) const override { 1645 AU.addRequired<AssumptionCacheTracker>(); 1646 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1647 AU.addRequired<DominatorTreeWrapperPass>(); 1648 AU.addRequired<LoopInfoWrapperPass>(); 1649 AU.addRequired<ScalarEvolutionWrapperPass>(); 1650 AU.addRequired<TargetTransformInfoWrapperPass>(); 1651 AU.addRequired<AAResultsWrapperPass>(); 1652 AU.addRequired<LoopAccessLegacyAnalysis>(); 1653 AU.addRequired<DemandedBitsWrapperPass>(); 1654 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1655 AU.addRequired<InjectTLIMappingsLegacy>(); 1656 1657 // We currently do not preserve loopinfo/dominator analyses with outer loop 1658 // vectorization. Until this is addressed, mark these analyses as preserved 1659 // only for non-VPlan-native path. 1660 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1661 if (!EnableVPlanNativePath) { 1662 AU.addPreserved<LoopInfoWrapperPass>(); 1663 AU.addPreserved<DominatorTreeWrapperPass>(); 1664 } 1665 1666 AU.addPreserved<BasicAAWrapperPass>(); 1667 AU.addPreserved<GlobalsAAWrapperPass>(); 1668 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1669 } 1670 }; 1671 1672 } // end anonymous namespace 1673 1674 //===----------------------------------------------------------------------===// 1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1676 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1677 //===----------------------------------------------------------------------===// 1678 1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1680 // We need to place the broadcast of invariant variables outside the loop, 1681 // but only if it's proven safe to do so. Else, broadcast will be inside 1682 // vector loop body. 1683 Instruction *Instr = dyn_cast<Instruction>(V); 1684 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1685 (!Instr || 1686 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1687 // Place the code for broadcasting invariant variables in the new preheader. 1688 IRBuilder<>::InsertPointGuard Guard(Builder); 1689 if (SafeToHoist) 1690 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1691 1692 // Broadcast the scalar into all locations in the vector. 1693 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1694 1695 return Shuf; 1696 } 1697 1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1699 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1700 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1701 "Expected either an induction phi-node or a truncate of it!"); 1702 Value *Start = II.getStartValue(); 1703 1704 // Construct the initial value of the vector IV in the vector loop preheader 1705 auto CurrIP = Builder.saveIP(); 1706 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1707 if (isa<TruncInst>(EntryVal)) { 1708 assert(Start->getType()->isIntegerTy() && 1709 "Truncation requires an integer type"); 1710 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1711 Step = Builder.CreateTrunc(Step, TruncType); 1712 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1713 } 1714 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1715 Value *SteppedStart = 1716 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1717 1718 // We create vector phi nodes for both integer and floating-point induction 1719 // variables. Here, we determine the kind of arithmetic we will perform. 1720 Instruction::BinaryOps AddOp; 1721 Instruction::BinaryOps MulOp; 1722 if (Step->getType()->isIntegerTy()) { 1723 AddOp = Instruction::Add; 1724 MulOp = Instruction::Mul; 1725 } else { 1726 AddOp = II.getInductionOpcode(); 1727 MulOp = Instruction::FMul; 1728 } 1729 1730 // Multiply the vectorization factor by the step using integer or 1731 // floating-point arithmetic as appropriate. 1732 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1733 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1734 1735 // Create a vector splat to use in the induction update. 1736 // 1737 // FIXME: If the step is non-constant, we create the vector splat with 1738 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1739 // handle a constant vector splat. 1740 Value *SplatVF = 1741 isa<Constant>(Mul) 1742 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1743 : Builder.CreateVectorSplat(VF, Mul); 1744 Builder.restoreIP(CurrIP); 1745 1746 // We may need to add the step a number of times, depending on the unroll 1747 // factor. The last of those goes into the PHI. 1748 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1749 &*LoopVectorBody->getFirstInsertionPt()); 1750 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1751 Instruction *LastInduction = VecInd; 1752 for (unsigned Part = 0; Part < UF; ++Part) { 1753 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1754 1755 if (isa<TruncInst>(EntryVal)) 1756 addMetadata(LastInduction, EntryVal); 1757 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1758 1759 LastInduction = cast<Instruction>(addFastMathFlag( 1760 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1761 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1762 } 1763 1764 // Move the last step to the end of the latch block. This ensures consistent 1765 // placement of all induction updates. 1766 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1767 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1768 auto *ICmp = cast<Instruction>(Br->getCondition()); 1769 LastInduction->moveBefore(ICmp); 1770 LastInduction->setName("vec.ind.next"); 1771 1772 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1773 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1774 } 1775 1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1777 return Cost->isScalarAfterVectorization(I, VF) || 1778 Cost->isProfitableToScalarize(I, VF); 1779 } 1780 1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1782 if (shouldScalarizeInstruction(IV)) 1783 return true; 1784 auto isScalarInst = [&](User *U) -> bool { 1785 auto *I = cast<Instruction>(U); 1786 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1787 }; 1788 return llvm::any_of(IV->users(), isScalarInst); 1789 } 1790 1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1792 const InductionDescriptor &ID, const Instruction *EntryVal, 1793 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1794 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1795 "Expected either an induction phi-node or a truncate of it!"); 1796 1797 // This induction variable is not the phi from the original loop but the 1798 // newly-created IV based on the proof that casted Phi is equal to the 1799 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1800 // re-uses the same InductionDescriptor that original IV uses but we don't 1801 // have to do any recording in this case - that is done when original IV is 1802 // processed. 1803 if (isa<TruncInst>(EntryVal)) 1804 return; 1805 1806 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1807 if (Casts.empty()) 1808 return; 1809 // Only the first Cast instruction in the Casts vector is of interest. 1810 // The rest of the Casts (if exist) have no uses outside the 1811 // induction update chain itself. 1812 Instruction *CastInst = *Casts.begin(); 1813 if (Lane < UINT_MAX) 1814 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1815 else 1816 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1817 } 1818 1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1820 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1821 "Primary induction variable must have an integer type"); 1822 1823 auto II = Legal->getInductionVars().find(IV); 1824 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1825 1826 auto ID = II->second; 1827 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1828 1829 // The value from the original loop to which we are mapping the new induction 1830 // variable. 1831 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1832 1833 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1834 1835 // Generate code for the induction step. Note that induction steps are 1836 // required to be loop-invariant 1837 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1838 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1839 "Induction step should be loop invariant"); 1840 if (PSE.getSE()->isSCEVable(IV->getType())) { 1841 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1842 return Exp.expandCodeFor(Step, Step->getType(), 1843 LoopVectorPreHeader->getTerminator()); 1844 } 1845 return cast<SCEVUnknown>(Step)->getValue(); 1846 }; 1847 1848 // The scalar value to broadcast. This is derived from the canonical 1849 // induction variable. If a truncation type is given, truncate the canonical 1850 // induction variable and step. Otherwise, derive these values from the 1851 // induction descriptor. 1852 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1853 Value *ScalarIV = Induction; 1854 if (IV != OldInduction) { 1855 ScalarIV = IV->getType()->isIntegerTy() 1856 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1857 : Builder.CreateCast(Instruction::SIToFP, Induction, 1858 IV->getType()); 1859 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1860 ScalarIV->setName("offset.idx"); 1861 } 1862 if (Trunc) { 1863 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1864 assert(Step->getType()->isIntegerTy() && 1865 "Truncation requires an integer step"); 1866 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1867 Step = Builder.CreateTrunc(Step, TruncType); 1868 } 1869 return ScalarIV; 1870 }; 1871 1872 // Create the vector values from the scalar IV, in the absence of creating a 1873 // vector IV. 1874 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1875 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1876 for (unsigned Part = 0; Part < UF; ++Part) { 1877 Value *EntryPart = 1878 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1879 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1880 if (Trunc) 1881 addMetadata(EntryPart, Trunc); 1882 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1883 } 1884 }; 1885 1886 // Now do the actual transformations, and start with creating the step value. 1887 Value *Step = CreateStepValue(ID.getStep()); 1888 if (VF <= 1) { 1889 Value *ScalarIV = CreateScalarIV(Step); 1890 CreateSplatIV(ScalarIV, Step); 1891 return; 1892 } 1893 1894 // Determine if we want a scalar version of the induction variable. This is 1895 // true if the induction variable itself is not widened, or if it has at 1896 // least one user in the loop that is not widened. 1897 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1898 if (!NeedsScalarIV) { 1899 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1900 return; 1901 } 1902 1903 // Try to create a new independent vector induction variable. If we can't 1904 // create the phi node, we will splat the scalar induction variable in each 1905 // loop iteration. 1906 if (!shouldScalarizeInstruction(EntryVal)) { 1907 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1908 Value *ScalarIV = CreateScalarIV(Step); 1909 // Create scalar steps that can be used by instructions we will later 1910 // scalarize. Note that the addition of the scalar steps will not increase 1911 // the number of instructions in the loop in the common case prior to 1912 // InstCombine. We will be trading one vector extract for each scalar step. 1913 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1914 return; 1915 } 1916 1917 // All IV users are scalar instructions, so only emit a scalar IV, not a 1918 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1919 // predicate used by the masked loads/stores. 1920 Value *ScalarIV = CreateScalarIV(Step); 1921 if (!Cost->isScalarEpilogueAllowed()) 1922 CreateSplatIV(ScalarIV, Step); 1923 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1924 } 1925 1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1927 Instruction::BinaryOps BinOp) { 1928 // Create and check the types. 1929 auto *ValVTy = cast<VectorType>(Val->getType()); 1930 int VLen = ValVTy->getNumElements(); 1931 1932 Type *STy = Val->getType()->getScalarType(); 1933 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1934 "Induction Step must be an integer or FP"); 1935 assert(Step->getType() == STy && "Step has wrong type"); 1936 1937 SmallVector<Constant *, 8> Indices; 1938 1939 if (STy->isIntegerTy()) { 1940 // Create a vector of consecutive numbers from zero to VF. 1941 for (int i = 0; i < VLen; ++i) 1942 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1943 1944 // Add the consecutive indices to the vector value. 1945 Constant *Cv = ConstantVector::get(Indices); 1946 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1947 Step = Builder.CreateVectorSplat(VLen, Step); 1948 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1949 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1950 // which can be found from the original scalar operations. 1951 Step = Builder.CreateMul(Cv, Step); 1952 return Builder.CreateAdd(Val, Step, "induction"); 1953 } 1954 1955 // Floating point induction. 1956 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1957 "Binary Opcode should be specified for FP induction"); 1958 // Create a vector of consecutive numbers from zero to VF. 1959 for (int i = 0; i < VLen; ++i) 1960 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1961 1962 // Add the consecutive indices to the vector value. 1963 Constant *Cv = ConstantVector::get(Indices); 1964 1965 Step = Builder.CreateVectorSplat(VLen, Step); 1966 1967 // Floating point operations had to be 'fast' to enable the induction. 1968 FastMathFlags Flags; 1969 Flags.setFast(); 1970 1971 Value *MulOp = Builder.CreateFMul(Cv, Step); 1972 if (isa<Instruction>(MulOp)) 1973 // Have to check, MulOp may be a constant 1974 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1975 1976 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1977 if (isa<Instruction>(BOp)) 1978 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1979 return BOp; 1980 } 1981 1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1983 Instruction *EntryVal, 1984 const InductionDescriptor &ID) { 1985 // We shouldn't have to build scalar steps if we aren't vectorizing. 1986 assert(VF > 1 && "VF should be greater than one"); 1987 1988 // Get the value type and ensure it and the step have the same integer type. 1989 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1990 assert(ScalarIVTy == Step->getType() && 1991 "Val and Step should have the same type"); 1992 1993 // We build scalar steps for both integer and floating-point induction 1994 // variables. Here, we determine the kind of arithmetic we will perform. 1995 Instruction::BinaryOps AddOp; 1996 Instruction::BinaryOps MulOp; 1997 if (ScalarIVTy->isIntegerTy()) { 1998 AddOp = Instruction::Add; 1999 MulOp = Instruction::Mul; 2000 } else { 2001 AddOp = ID.getInductionOpcode(); 2002 MulOp = Instruction::FMul; 2003 } 2004 2005 // Determine the number of scalars we need to generate for each unroll 2006 // iteration. If EntryVal is uniform, we only need to generate the first 2007 // lane. Otherwise, we generate all VF values. 2008 unsigned Lanes = 2009 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2010 : VF; 2011 // Compute the scalar steps and save the results in VectorLoopValueMap. 2012 for (unsigned Part = 0; Part < UF; ++Part) { 2013 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2014 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2015 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2016 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2017 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2018 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2019 } 2020 } 2021 } 2022 2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2024 assert(V != Induction && "The new induction variable should not be used."); 2025 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2026 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2027 2028 // If we have a stride that is replaced by one, do it here. Defer this for 2029 // the VPlan-native path until we start running Legal checks in that path. 2030 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2031 V = ConstantInt::get(V->getType(), 1); 2032 2033 // If we have a vector mapped to this value, return it. 2034 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2035 return VectorLoopValueMap.getVectorValue(V, Part); 2036 2037 // If the value has not been vectorized, check if it has been scalarized 2038 // instead. If it has been scalarized, and we actually need the value in 2039 // vector form, we will construct the vector values on demand. 2040 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2041 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2042 2043 // If we've scalarized a value, that value should be an instruction. 2044 auto *I = cast<Instruction>(V); 2045 2046 // If we aren't vectorizing, we can just copy the scalar map values over to 2047 // the vector map. 2048 if (VF == 1) { 2049 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2050 return ScalarValue; 2051 } 2052 2053 // Get the last scalar instruction we generated for V and Part. If the value 2054 // is known to be uniform after vectorization, this corresponds to lane zero 2055 // of the Part unroll iteration. Otherwise, the last instruction is the one 2056 // we created for the last vector lane of the Part unroll iteration. 2057 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2058 auto *LastInst = cast<Instruction>( 2059 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2060 2061 // Set the insert point after the last scalarized instruction. This ensures 2062 // the insertelement sequence will directly follow the scalar definitions. 2063 auto OldIP = Builder.saveIP(); 2064 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2065 Builder.SetInsertPoint(&*NewIP); 2066 2067 // However, if we are vectorizing, we need to construct the vector values. 2068 // If the value is known to be uniform after vectorization, we can just 2069 // broadcast the scalar value corresponding to lane zero for each unroll 2070 // iteration. Otherwise, we construct the vector values using insertelement 2071 // instructions. Since the resulting vectors are stored in 2072 // VectorLoopValueMap, we will only generate the insertelements once. 2073 Value *VectorValue = nullptr; 2074 if (Cost->isUniformAfterVectorization(I, VF)) { 2075 VectorValue = getBroadcastInstrs(ScalarValue); 2076 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2077 } else { 2078 // Initialize packing with insertelements to start from undef. 2079 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2080 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2081 for (unsigned Lane = 0; Lane < VF; ++Lane) 2082 packScalarIntoVectorValue(V, {Part, Lane}); 2083 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2084 } 2085 Builder.restoreIP(OldIP); 2086 return VectorValue; 2087 } 2088 2089 // If this scalar is unknown, assume that it is a constant or that it is 2090 // loop invariant. Broadcast V and save the value for future uses. 2091 Value *B = getBroadcastInstrs(V); 2092 VectorLoopValueMap.setVectorValue(V, Part, B); 2093 return B; 2094 } 2095 2096 Value * 2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2098 const VPIteration &Instance) { 2099 // If the value is not an instruction contained in the loop, it should 2100 // already be scalar. 2101 if (OrigLoop->isLoopInvariant(V)) 2102 return V; 2103 2104 assert(Instance.Lane > 0 2105 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2106 : true && "Uniform values only have lane zero"); 2107 2108 // If the value from the original loop has not been vectorized, it is 2109 // represented by UF x VF scalar values in the new loop. Return the requested 2110 // scalar value. 2111 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2112 return VectorLoopValueMap.getScalarValue(V, Instance); 2113 2114 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2115 // for the given unroll part. If this entry is not a vector type (i.e., the 2116 // vectorization factor is one), there is no need to generate an 2117 // extractelement instruction. 2118 auto *U = getOrCreateVectorValue(V, Instance.Part); 2119 if (!U->getType()->isVectorTy()) { 2120 assert(VF == 1 && "Value not scalarized has non-vector type"); 2121 return U; 2122 } 2123 2124 // Otherwise, the value from the original loop has been vectorized and is 2125 // represented by UF vector values. Extract and return the requested scalar 2126 // value from the appropriate vector lane. 2127 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2128 } 2129 2130 void InnerLoopVectorizer::packScalarIntoVectorValue( 2131 Value *V, const VPIteration &Instance) { 2132 assert(V != Induction && "The new induction variable should not be used."); 2133 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2134 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2135 2136 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2137 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2138 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2139 Builder.getInt32(Instance.Lane)); 2140 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2141 } 2142 2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2144 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2145 SmallVector<int, 8> ShuffleMask; 2146 for (unsigned i = 0; i < VF; ++i) 2147 ShuffleMask.push_back(VF - i - 1); 2148 2149 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2150 ShuffleMask, "reverse"); 2151 } 2152 2153 // Return whether we allow using masked interleave-groups (for dealing with 2154 // strided loads/stores that reside in predicated blocks, or for dealing 2155 // with gaps). 2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2157 // If an override option has been passed in for interleaved accesses, use it. 2158 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2159 return EnableMaskedInterleavedMemAccesses; 2160 2161 return TTI.enableMaskedInterleavedAccessVectorization(); 2162 } 2163 2164 // Try to vectorize the interleave group that \p Instr belongs to. 2165 // 2166 // E.g. Translate following interleaved load group (factor = 3): 2167 // for (i = 0; i < N; i+=3) { 2168 // R = Pic[i]; // Member of index 0 2169 // G = Pic[i+1]; // Member of index 1 2170 // B = Pic[i+2]; // Member of index 2 2171 // ... // do something to R, G, B 2172 // } 2173 // To: 2174 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2175 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2176 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2177 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2178 // 2179 // Or translate following interleaved store group (factor = 3): 2180 // for (i = 0; i < N; i+=3) { 2181 // ... do something to R, G, B 2182 // Pic[i] = R; // Member of index 0 2183 // Pic[i+1] = G; // Member of index 1 2184 // Pic[i+2] = B; // Member of index 2 2185 // } 2186 // To: 2187 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2188 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2189 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2190 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2191 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2192 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2193 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2194 VPValue *Addr, VPValue *BlockInMask) { 2195 Instruction *Instr = Group->getInsertPos(); 2196 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2197 2198 // Prepare for the vector type of the interleaved load/store. 2199 Type *ScalarTy = getMemInstValueType(Instr); 2200 unsigned InterleaveFactor = Group->getFactor(); 2201 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2202 2203 // Prepare for the new pointers. 2204 SmallVector<Value *, 2> AddrParts; 2205 unsigned Index = Group->getIndex(Instr); 2206 2207 // TODO: extend the masked interleaved-group support to reversed access. 2208 assert((!BlockInMask || !Group->isReverse()) && 2209 "Reversed masked interleave-group not supported."); 2210 2211 // If the group is reverse, adjust the index to refer to the last vector lane 2212 // instead of the first. We adjust the index from the first vector lane, 2213 // rather than directly getting the pointer for lane VF - 1, because the 2214 // pointer operand of the interleaved access is supposed to be uniform. For 2215 // uniform instructions, we're only required to generate a value for the 2216 // first vector lane in each unroll iteration. 2217 if (Group->isReverse()) 2218 Index += (VF - 1) * Group->getFactor(); 2219 2220 for (unsigned Part = 0; Part < UF; Part++) { 2221 Value *AddrPart = State.get(Addr, {Part, 0}); 2222 setDebugLocFromInst(Builder, AddrPart); 2223 2224 // Notice current instruction could be any index. Need to adjust the address 2225 // to the member of index 0. 2226 // 2227 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2228 // b = A[i]; // Member of index 0 2229 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2230 // 2231 // E.g. A[i+1] = a; // Member of index 1 2232 // A[i] = b; // Member of index 0 2233 // A[i+2] = c; // Member of index 2 (Current instruction) 2234 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2235 2236 bool InBounds = false; 2237 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2238 InBounds = gep->isInBounds(); 2239 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2240 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2241 2242 // Cast to the vector pointer type. 2243 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2244 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2245 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2246 } 2247 2248 setDebugLocFromInst(Builder, Instr); 2249 Value *UndefVec = UndefValue::get(VecTy); 2250 2251 Value *MaskForGaps = nullptr; 2252 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2253 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2254 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2255 } 2256 2257 // Vectorize the interleaved load group. 2258 if (isa<LoadInst>(Instr)) { 2259 // For each unroll part, create a wide load for the group. 2260 SmallVector<Value *, 2> NewLoads; 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Instruction *NewLoad; 2263 if (BlockInMask || MaskForGaps) { 2264 assert(useMaskedInterleavedAccesses(*TTI) && 2265 "masked interleaved groups are not allowed."); 2266 Value *GroupMask = MaskForGaps; 2267 if (BlockInMask) { 2268 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2269 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2270 Value *ShuffledMask = Builder.CreateShuffleVector( 2271 BlockInMaskPart, Undefs, 2272 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2273 GroupMask = MaskForGaps 2274 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2275 MaskForGaps) 2276 : ShuffledMask; 2277 } 2278 NewLoad = 2279 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2280 GroupMask, UndefVec, "wide.masked.vec"); 2281 } 2282 else 2283 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2284 Group->getAlign(), "wide.vec"); 2285 Group->addMetadata(NewLoad); 2286 NewLoads.push_back(NewLoad); 2287 } 2288 2289 // For each member in the group, shuffle out the appropriate data from the 2290 // wide loads. 2291 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2292 Instruction *Member = Group->getMember(I); 2293 2294 // Skip the gaps in the group. 2295 if (!Member) 2296 continue; 2297 2298 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2299 for (unsigned Part = 0; Part < UF; Part++) { 2300 Value *StridedVec = Builder.CreateShuffleVector( 2301 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2302 2303 // If this member has different type, cast the result type. 2304 if (Member->getType() != ScalarTy) { 2305 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2306 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2307 } 2308 2309 if (Group->isReverse()) 2310 StridedVec = reverseVector(StridedVec); 2311 2312 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2313 } 2314 } 2315 return; 2316 } 2317 2318 // The sub vector type for current instruction. 2319 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2320 2321 // Vectorize the interleaved store group. 2322 for (unsigned Part = 0; Part < UF; Part++) { 2323 // Collect the stored vector from each member. 2324 SmallVector<Value *, 4> StoredVecs; 2325 for (unsigned i = 0; i < InterleaveFactor; i++) { 2326 // Interleaved store group doesn't allow a gap, so each index has a member 2327 Instruction *Member = Group->getMember(i); 2328 assert(Member && "Fail to get a member from an interleaved store group"); 2329 2330 Value *StoredVec = getOrCreateVectorValue( 2331 cast<StoreInst>(Member)->getValueOperand(), Part); 2332 if (Group->isReverse()) 2333 StoredVec = reverseVector(StoredVec); 2334 2335 // If this member has different type, cast it to a unified type. 2336 2337 if (StoredVec->getType() != SubVT) 2338 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2339 2340 StoredVecs.push_back(StoredVec); 2341 } 2342 2343 // Concatenate all vectors into a wide vector. 2344 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2345 2346 // Interleave the elements in the wide vector. 2347 Value *IVec = Builder.CreateShuffleVector( 2348 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2349 "interleaved.vec"); 2350 2351 Instruction *NewStoreInstr; 2352 if (BlockInMask) { 2353 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2354 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2355 Value *ShuffledMask = Builder.CreateShuffleVector( 2356 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2357 "interleaved.mask"); 2358 NewStoreInstr = Builder.CreateMaskedStore( 2359 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2360 } 2361 else 2362 NewStoreInstr = 2363 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2364 2365 Group->addMetadata(NewStoreInstr); 2366 } 2367 } 2368 2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2370 VPTransformState &State, 2371 VPValue *Addr, 2372 VPValue *StoredValue, 2373 VPValue *BlockInMask) { 2374 // Attempt to issue a wide load. 2375 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2376 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2377 2378 assert((LI || SI) && "Invalid Load/Store instruction"); 2379 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2380 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2381 2382 LoopVectorizationCostModel::InstWidening Decision = 2383 Cost->getWideningDecision(Instr, VF); 2384 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2385 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2386 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2387 "CM decision is not to widen the memory instruction"); 2388 2389 Type *ScalarDataTy = getMemInstValueType(Instr); 2390 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2391 const Align Alignment = getLoadStoreAlignment(Instr); 2392 2393 // Determine if the pointer operand of the access is either consecutive or 2394 // reverse consecutive. 2395 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2396 bool ConsecutiveStride = 2397 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2398 bool CreateGatherScatter = 2399 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2400 2401 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2402 // gather/scatter. Otherwise Decision should have been to Scalarize. 2403 assert((ConsecutiveStride || CreateGatherScatter) && 2404 "The instruction should be scalarized"); 2405 (void)ConsecutiveStride; 2406 2407 VectorParts BlockInMaskParts(UF); 2408 bool isMaskRequired = BlockInMask; 2409 if (isMaskRequired) 2410 for (unsigned Part = 0; Part < UF; ++Part) 2411 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2412 2413 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2414 // Calculate the pointer for the specific unroll-part. 2415 GetElementPtrInst *PartPtr = nullptr; 2416 2417 bool InBounds = false; 2418 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2419 InBounds = gep->isInBounds(); 2420 2421 if (Reverse) { 2422 // If the address is consecutive but reversed, then the 2423 // wide store needs to start at the last vector element. 2424 PartPtr = cast<GetElementPtrInst>( 2425 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2426 PartPtr->setIsInBounds(InBounds); 2427 PartPtr = cast<GetElementPtrInst>( 2428 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2429 PartPtr->setIsInBounds(InBounds); 2430 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2431 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2432 } else { 2433 PartPtr = cast<GetElementPtrInst>( 2434 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2435 PartPtr->setIsInBounds(InBounds); 2436 } 2437 2438 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2439 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2440 }; 2441 2442 // Handle Stores: 2443 if (SI) { 2444 setDebugLocFromInst(Builder, SI); 2445 2446 for (unsigned Part = 0; Part < UF; ++Part) { 2447 Instruction *NewSI = nullptr; 2448 Value *StoredVal = State.get(StoredValue, Part); 2449 if (CreateGatherScatter) { 2450 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2451 Value *VectorGep = State.get(Addr, Part); 2452 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2453 MaskPart); 2454 } else { 2455 if (Reverse) { 2456 // If we store to reverse consecutive memory locations, then we need 2457 // to reverse the order of elements in the stored value. 2458 StoredVal = reverseVector(StoredVal); 2459 // We don't want to update the value in the map as it might be used in 2460 // another expression. So don't call resetVectorValue(StoredVal). 2461 } 2462 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2463 if (isMaskRequired) 2464 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2465 BlockInMaskParts[Part]); 2466 else 2467 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2468 } 2469 addMetadata(NewSI, SI); 2470 } 2471 return; 2472 } 2473 2474 // Handle loads. 2475 assert(LI && "Must have a load instruction"); 2476 setDebugLocFromInst(Builder, LI); 2477 for (unsigned Part = 0; Part < UF; ++Part) { 2478 Value *NewLI; 2479 if (CreateGatherScatter) { 2480 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2481 Value *VectorGep = State.get(Addr, Part); 2482 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2483 nullptr, "wide.masked.gather"); 2484 addMetadata(NewLI, LI); 2485 } else { 2486 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2487 if (isMaskRequired) 2488 NewLI = Builder.CreateMaskedLoad( 2489 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2490 "wide.masked.load"); 2491 else 2492 NewLI = 2493 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2494 2495 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2496 addMetadata(NewLI, LI); 2497 if (Reverse) 2498 NewLI = reverseVector(NewLI); 2499 } 2500 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2501 } 2502 } 2503 2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2505 const VPIteration &Instance, 2506 bool IfPredicateInstr, 2507 VPTransformState &State) { 2508 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2509 2510 setDebugLocFromInst(Builder, Instr); 2511 2512 // Does this instruction return a value ? 2513 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2514 2515 Instruction *Cloned = Instr->clone(); 2516 if (!IsVoidRetTy) 2517 Cloned->setName(Instr->getName() + ".cloned"); 2518 2519 // Replace the operands of the cloned instructions with their scalar 2520 // equivalents in the new loop. 2521 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2522 auto *NewOp = State.get(User.getOperand(op), Instance); 2523 Cloned->setOperand(op, NewOp); 2524 } 2525 addNewMetadata(Cloned, Instr); 2526 2527 // Place the cloned scalar in the new loop. 2528 Builder.Insert(Cloned); 2529 2530 // Add the cloned scalar to the scalar map entry. 2531 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2532 2533 // If we just cloned a new assumption, add it the assumption cache. 2534 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2535 if (II->getIntrinsicID() == Intrinsic::assume) 2536 AC->registerAssumption(II); 2537 2538 // End if-block. 2539 if (IfPredicateInstr) 2540 PredicatedInstructions.push_back(Cloned); 2541 } 2542 2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2544 Value *End, Value *Step, 2545 Instruction *DL) { 2546 BasicBlock *Header = L->getHeader(); 2547 BasicBlock *Latch = L->getLoopLatch(); 2548 // As we're just creating this loop, it's possible no latch exists 2549 // yet. If so, use the header as this will be a single block loop. 2550 if (!Latch) 2551 Latch = Header; 2552 2553 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2554 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2555 setDebugLocFromInst(Builder, OldInst); 2556 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2557 2558 Builder.SetInsertPoint(Latch->getTerminator()); 2559 setDebugLocFromInst(Builder, OldInst); 2560 2561 // Create i+1 and fill the PHINode. 2562 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2563 Induction->addIncoming(Start, L->getLoopPreheader()); 2564 Induction->addIncoming(Next, Latch); 2565 // Create the compare. 2566 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2567 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2568 2569 // Now we have two terminators. Remove the old one from the block. 2570 Latch->getTerminator()->eraseFromParent(); 2571 2572 return Induction; 2573 } 2574 2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2576 if (TripCount) 2577 return TripCount; 2578 2579 assert(L && "Create Trip Count for null loop."); 2580 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2581 // Find the loop boundaries. 2582 ScalarEvolution *SE = PSE.getSE(); 2583 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2584 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2585 "Invalid loop count"); 2586 2587 Type *IdxTy = Legal->getWidestInductionType(); 2588 assert(IdxTy && "No type for induction"); 2589 2590 // The exit count might have the type of i64 while the phi is i32. This can 2591 // happen if we have an induction variable that is sign extended before the 2592 // compare. The only way that we get a backedge taken count is that the 2593 // induction variable was signed and as such will not overflow. In such a case 2594 // truncation is legal. 2595 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2596 IdxTy->getPrimitiveSizeInBits()) 2597 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2598 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2599 2600 // Get the total trip count from the count by adding 1. 2601 const SCEV *ExitCount = SE->getAddExpr( 2602 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2603 2604 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2605 2606 // Expand the trip count and place the new instructions in the preheader. 2607 // Notice that the pre-header does not change, only the loop body. 2608 SCEVExpander Exp(*SE, DL, "induction"); 2609 2610 // Count holds the overall loop count (N). 2611 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2612 L->getLoopPreheader()->getTerminator()); 2613 2614 if (TripCount->getType()->isPointerTy()) 2615 TripCount = 2616 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2617 L->getLoopPreheader()->getTerminator()); 2618 2619 return TripCount; 2620 } 2621 2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2623 if (VectorTripCount) 2624 return VectorTripCount; 2625 2626 Value *TC = getOrCreateTripCount(L); 2627 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2628 2629 Type *Ty = TC->getType(); 2630 Constant *Step = ConstantInt::get(Ty, VF * UF); 2631 2632 // If the tail is to be folded by masking, round the number of iterations N 2633 // up to a multiple of Step instead of rounding down. This is done by first 2634 // adding Step-1 and then rounding down. Note that it's ok if this addition 2635 // overflows: the vector induction variable will eventually wrap to zero given 2636 // that it starts at zero and its Step is a power of two; the loop will then 2637 // exit, with the last early-exit vector comparison also producing all-true. 2638 if (Cost->foldTailByMasking()) { 2639 assert(isPowerOf2_32(VF * UF) && 2640 "VF*UF must be a power of 2 when folding tail by masking"); 2641 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2642 } 2643 2644 // Now we need to generate the expression for the part of the loop that the 2645 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2646 // iterations are not required for correctness, or N - Step, otherwise. Step 2647 // is equal to the vectorization factor (number of SIMD elements) times the 2648 // unroll factor (number of SIMD instructions). 2649 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2650 2651 // If there is a non-reversed interleaved group that may speculatively access 2652 // memory out-of-bounds, we need to ensure that there will be at least one 2653 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2654 // the trip count, we set the remainder to be equal to the step. If the step 2655 // does not evenly divide the trip count, no adjustment is necessary since 2656 // there will already be scalar iterations. Note that the minimum iterations 2657 // check ensures that N >= Step. 2658 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2659 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2660 R = Builder.CreateSelect(IsZero, Step, R); 2661 } 2662 2663 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2664 2665 return VectorTripCount; 2666 } 2667 2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2669 const DataLayout &DL) { 2670 // Verify that V is a vector type with same number of elements as DstVTy. 2671 unsigned VF = DstVTy->getNumElements(); 2672 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2673 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2674 Type *SrcElemTy = SrcVecTy->getElementType(); 2675 Type *DstElemTy = DstVTy->getElementType(); 2676 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2677 "Vector elements must have same size"); 2678 2679 // Do a direct cast if element types are castable. 2680 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2681 return Builder.CreateBitOrPointerCast(V, DstVTy); 2682 } 2683 // V cannot be directly casted to desired vector type. 2684 // May happen when V is a floating point vector but DstVTy is a vector of 2685 // pointers or vice-versa. Handle this using a two-step bitcast using an 2686 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2687 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2688 "Only one type should be a pointer type"); 2689 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2690 "Only one type should be a floating point type"); 2691 Type *IntTy = 2692 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2693 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2694 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2695 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2696 } 2697 2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2699 BasicBlock *Bypass) { 2700 Value *Count = getOrCreateTripCount(L); 2701 // Reuse existing vector loop preheader for TC checks. 2702 // Note that new preheader block is generated for vector loop. 2703 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2704 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 2714 // If tail is to be folded, vector loop takes care of all iterations. 2715 Value *CheckMinIters = Builder.getFalse(); 2716 if (!Cost->foldTailByMasking()) 2717 CheckMinIters = Builder.CreateICmp( 2718 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2719 "min.iters.check"); 2720 2721 // Create new preheader for vector loop. 2722 LoopVectorPreHeader = 2723 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2724 "vector.ph"); 2725 2726 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2727 DT->getNode(Bypass)->getIDom()) && 2728 "TC check is expected to dominate Bypass"); 2729 2730 // Update dominator for Bypass & LoopExit. 2731 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2732 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2733 2734 ReplaceInstWithInst( 2735 TCCheckBlock->getTerminator(), 2736 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2737 LoopBypassBlocks.push_back(TCCheckBlock); 2738 } 2739 2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2741 // Reuse existing vector loop preheader for SCEV checks. 2742 // Note that new preheader block is generated for vector loop. 2743 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2744 2745 // Generate the code to check that the SCEV assumptions that we made. 2746 // We want the new basic block to start at the first instruction in a 2747 // sequence of instructions that form a check. 2748 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2749 "scev.check"); 2750 Value *SCEVCheck = Exp.expandCodeForPredicate( 2751 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2752 2753 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2754 if (C->isZero()) 2755 return; 2756 2757 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2758 "Cannot SCEV check stride or overflow when optimizing for size"); 2759 2760 SCEVCheckBlock->setName("vector.scevcheck"); 2761 // Create new preheader for vector loop. 2762 LoopVectorPreHeader = 2763 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2764 nullptr, "vector.ph"); 2765 2766 // Update dominator only if this is first RT check. 2767 if (LoopBypassBlocks.empty()) { 2768 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2769 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2770 } 2771 2772 ReplaceInstWithInst( 2773 SCEVCheckBlock->getTerminator(), 2774 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2775 LoopBypassBlocks.push_back(SCEVCheckBlock); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2780 // VPlan-native path does not do any analysis for runtime checks currently. 2781 if (EnableVPlanNativePath) 2782 return; 2783 2784 // Reuse existing vector loop preheader for runtime memory checks. 2785 // Note that new preheader block is generated for vector loop. 2786 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2787 2788 // Generate the code that checks in runtime if arrays overlap. We put the 2789 // checks into a separate block to make the more common case of few elements 2790 // faster. 2791 auto *LAI = Legal->getLAI(); 2792 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2793 if (!RtPtrChecking.Need) 2794 return; 2795 Instruction *FirstCheckInst; 2796 Instruction *MemRuntimeCheck; 2797 std::tie(FirstCheckInst, MemRuntimeCheck) = 2798 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2799 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2800 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2801 "claimed checks are required"); 2802 2803 if (MemCheckBlock->getParent()->hasOptSize()) { 2804 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2805 "Cannot emit memory checks when optimizing for size, unless forced " 2806 "to vectorize."); 2807 ORE->emit([&]() { 2808 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2809 L->getStartLoc(), L->getHeader()) 2810 << "Code-size may be reduced by not forcing " 2811 "vectorization, or by source-code modifications " 2812 "eliminating the need for runtime checks " 2813 "(e.g., adding 'restrict')."; 2814 }); 2815 } 2816 2817 MemCheckBlock->setName("vector.memcheck"); 2818 // Create new preheader for vector loop. 2819 LoopVectorPreHeader = 2820 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2821 "vector.ph"); 2822 2823 // Update dominator only if this is first RT check. 2824 if (LoopBypassBlocks.empty()) { 2825 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2826 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2827 } 2828 2829 ReplaceInstWithInst( 2830 MemCheckBlock->getTerminator(), 2831 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2832 LoopBypassBlocks.push_back(MemCheckBlock); 2833 AddedSafetyChecks = true; 2834 2835 // We currently don't use LoopVersioning for the actual loop cloning but we 2836 // still use it to add the noalias metadata. 2837 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2838 PSE.getSE()); 2839 LVer->prepareNoAliasMetadata(); 2840 } 2841 2842 Value *InnerLoopVectorizer::emitTransformedIndex( 2843 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2844 const InductionDescriptor &ID) const { 2845 2846 SCEVExpander Exp(*SE, DL, "induction"); 2847 auto Step = ID.getStep(); 2848 auto StartValue = ID.getStartValue(); 2849 assert(Index->getType() == Step->getType() && 2850 "Index type does not match StepValue type"); 2851 2852 // Note: the IR at this point is broken. We cannot use SE to create any new 2853 // SCEV and then expand it, hoping that SCEV's simplification will give us 2854 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2855 // lead to various SCEV crashes. So all we can do is to use builder and rely 2856 // on InstCombine for future simplifications. Here we handle some trivial 2857 // cases only. 2858 auto CreateAdd = [&B](Value *X, Value *Y) { 2859 assert(X->getType() == Y->getType() && "Types don't match!"); 2860 if (auto *CX = dyn_cast<ConstantInt>(X)) 2861 if (CX->isZero()) 2862 return Y; 2863 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2864 if (CY->isZero()) 2865 return X; 2866 return B.CreateAdd(X, Y); 2867 }; 2868 2869 auto CreateMul = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isOne()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isOne()) 2876 return X; 2877 return B.CreateMul(X, Y); 2878 }; 2879 2880 // Get a suitable insert point for SCEV expansion. For blocks in the vector 2881 // loop, choose the end of the vector loop header (=LoopVectorBody), because 2882 // the DomTree is not kept up-to-date for additional blocks generated in the 2883 // vector loop. By using the header as insertion point, we guarantee that the 2884 // expanded instructions dominate all their uses. 2885 auto GetInsertPoint = [this, &B]() { 2886 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 2887 if (InsertBB != LoopVectorBody && 2888 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 2889 return LoopVectorBody->getTerminator(); 2890 return &*B.GetInsertPoint(); 2891 }; 2892 switch (ID.getKind()) { 2893 case InductionDescriptor::IK_IntInduction: { 2894 assert(Index->getType() == StartValue->getType() && 2895 "Index type does not match StartValue type"); 2896 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2897 return B.CreateSub(StartValue, Index); 2898 auto *Offset = CreateMul( 2899 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 2900 return CreateAdd(StartValue, Offset); 2901 } 2902 case InductionDescriptor::IK_PtrInduction: { 2903 assert(isa<SCEVConstant>(Step) && 2904 "Expected constant step for pointer induction"); 2905 return B.CreateGEP( 2906 StartValue->getType()->getPointerElementType(), StartValue, 2907 CreateMul(Index, 2908 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 2909 } 2910 case InductionDescriptor::IK_FpInduction: { 2911 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2912 auto InductionBinOp = ID.getInductionBinOp(); 2913 assert(InductionBinOp && 2914 (InductionBinOp->getOpcode() == Instruction::FAdd || 2915 InductionBinOp->getOpcode() == Instruction::FSub) && 2916 "Original bin op should be defined for FP induction"); 2917 2918 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2919 2920 // Floating point operations had to be 'fast' to enable the induction. 2921 FastMathFlags Flags; 2922 Flags.setFast(); 2923 2924 Value *MulExp = B.CreateFMul(StepValue, Index); 2925 if (isa<Instruction>(MulExp)) 2926 // We have to check, the MulExp may be a constant. 2927 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2928 2929 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2930 "induction"); 2931 if (isa<Instruction>(BOp)) 2932 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2933 2934 return BOp; 2935 } 2936 case InductionDescriptor::IK_NoInduction: 2937 return nullptr; 2938 } 2939 llvm_unreachable("invalid enum"); 2940 } 2941 2942 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2943 /* 2944 In this function we generate a new loop. The new loop will contain 2945 the vectorized instructions while the old loop will continue to run the 2946 scalar remainder. 2947 2948 [ ] <-- loop iteration number check. 2949 / | 2950 / v 2951 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2952 | / | 2953 | / v 2954 || [ ] <-- vector pre header. 2955 |/ | 2956 | v 2957 | [ ] \ 2958 | [ ]_| <-- vector loop. 2959 | | 2960 | v 2961 | -[ ] <--- middle-block. 2962 | / | 2963 | / v 2964 -|- >[ ] <--- new preheader. 2965 | | 2966 | v 2967 | [ ] \ 2968 | [ ]_| <-- old scalar loop to handle remainder. 2969 \ | 2970 \ v 2971 >[ ] <-- exit block. 2972 ... 2973 */ 2974 2975 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2976 2977 // Some loops have a single integer induction variable, while other loops 2978 // don't. One example is c++ iterators that often have multiple pointer 2979 // induction variables. In the code below we also support a case where we 2980 // don't have a single induction variable. 2981 // 2982 // We try to obtain an induction variable from the original loop as hard 2983 // as possible. However if we don't find one that: 2984 // - is an integer 2985 // - counts from zero, stepping by one 2986 // - is the size of the widest induction variable type 2987 // then we create a new one. 2988 OldInduction = Legal->getPrimaryInduction(); 2989 Type *IdxTy = Legal->getWidestInductionType(); 2990 2991 // Split the single block loop into the two loop structure described above. 2992 LoopScalarBody = OrigLoop->getHeader(); 2993 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2994 LoopExitBlock = OrigLoop->getExitBlock(); 2995 assert(LoopExitBlock && "Must have an exit block"); 2996 assert(LoopVectorPreHeader && "Invalid loop structure"); 2997 2998 LoopMiddleBlock = 2999 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3000 LI, nullptr, "middle.block"); 3001 LoopScalarPreHeader = 3002 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3003 nullptr, "scalar.ph"); 3004 // We intentionally don't let SplitBlock to update LoopInfo since 3005 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3006 // LoopVectorBody is explicitly added to the correct place few lines later. 3007 LoopVectorBody = 3008 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3009 nullptr, nullptr, "vector.body"); 3010 3011 // Update dominator for loop exit. 3012 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3013 3014 // Create and register the new vector loop. 3015 Loop *Lp = LI->AllocateLoop(); 3016 Loop *ParentLoop = OrigLoop->getParentLoop(); 3017 3018 // Insert the new loop into the loop nest and register the new basic blocks 3019 // before calling any utilities such as SCEV that require valid LoopInfo. 3020 if (ParentLoop) { 3021 ParentLoop->addChildLoop(Lp); 3022 } else { 3023 LI->addTopLevelLoop(Lp); 3024 } 3025 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3026 3027 // Find the loop boundaries. 3028 Value *Count = getOrCreateTripCount(Lp); 3029 3030 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3031 3032 // Now, compare the new count to zero. If it is zero skip the vector loop and 3033 // jump to the scalar loop. This check also covers the case where the 3034 // backedge-taken count is uint##_max: adding one to it will overflow leading 3035 // to an incorrect trip count of zero. In this (rare) case we will also jump 3036 // to the scalar loop. 3037 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3038 3039 // Generate the code to check any assumptions that we've made for SCEV 3040 // expressions. 3041 emitSCEVChecks(Lp, LoopScalarPreHeader); 3042 3043 // Generate the code that checks in runtime if arrays overlap. We put the 3044 // checks into a separate block to make the more common case of few elements 3045 // faster. 3046 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3047 3048 // Generate the induction variable. 3049 // The loop step is equal to the vectorization factor (num of SIMD elements) 3050 // times the unroll factor (num of SIMD instructions). 3051 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3052 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3053 Induction = 3054 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3055 getDebugLocFromInstOrOperands(OldInduction)); 3056 3057 // We are going to resume the execution of the scalar loop. 3058 // Go over all of the induction variables that we found and fix the 3059 // PHIs that are left in the scalar version of the loop. 3060 // The starting values of PHI nodes depend on the counter of the last 3061 // iteration in the vectorized loop. 3062 // If we come from a bypass edge then we need to start from the original 3063 // start value. 3064 3065 // This variable saves the new starting index for the scalar loop. It is used 3066 // to test if there are any tail iterations left once the vector loop has 3067 // completed. 3068 for (auto &InductionEntry : Legal->getInductionVars()) { 3069 PHINode *OrigPhi = InductionEntry.first; 3070 InductionDescriptor II = InductionEntry.second; 3071 3072 // Create phi nodes to merge from the backedge-taken check block. 3073 PHINode *BCResumeVal = 3074 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3075 LoopScalarPreHeader->getTerminator()); 3076 // Copy original phi DL over to the new one. 3077 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3078 Value *&EndValue = IVEndValues[OrigPhi]; 3079 if (OrigPhi == OldInduction) { 3080 // We know what the end value is. 3081 EndValue = CountRoundDown; 3082 } else { 3083 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3084 Type *StepType = II.getStep()->getType(); 3085 Instruction::CastOps CastOp = 3086 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3087 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3088 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3089 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3090 EndValue->setName("ind.end"); 3091 } 3092 3093 // The new PHI merges the original incoming value, in case of a bypass, 3094 // or the value at the end of the vectorized loop. 3095 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3096 3097 // Fix the scalar body counter (PHI node). 3098 // The old induction's phi node in the scalar body needs the truncated 3099 // value. 3100 for (BasicBlock *BB : LoopBypassBlocks) 3101 BCResumeVal->addIncoming(II.getStartValue(), BB); 3102 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3103 } 3104 3105 // We need the OrigLoop (scalar loop part) latch terminator to help 3106 // produce correct debug info for the middle block BB instructions. 3107 // The legality check stage guarantees that the loop will have a single 3108 // latch. 3109 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3110 "Scalar loop latch terminator isn't a branch"); 3111 BranchInst *ScalarLatchBr = 3112 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3113 3114 // Add a check in the middle block to see if we have completed 3115 // all of the iterations in the first vector loop. 3116 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3117 // If tail is to be folded, we know we don't need to run the remainder. 3118 Value *CmpN = Builder.getTrue(); 3119 if (!Cost->foldTailByMasking()) { 3120 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3121 CountRoundDown, "cmp.n", 3122 LoopMiddleBlock->getTerminator()); 3123 3124 // Here we use the same DebugLoc as the scalar loop latch branch instead 3125 // of the corresponding compare because they may have ended up with 3126 // different line numbers and we want to avoid awkward line stepping while 3127 // debugging. Eg. if the compare has got a line number inside the loop. 3128 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3129 } 3130 3131 BranchInst *BrInst = 3132 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3133 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3134 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3135 3136 // Get ready to start creating new instructions into the vectorized body. 3137 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3138 "Inconsistent vector loop preheader"); 3139 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3140 3141 Optional<MDNode *> VectorizedLoopID = 3142 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3143 LLVMLoopVectorizeFollowupVectorized}); 3144 if (VectorizedLoopID.hasValue()) { 3145 Lp->setLoopID(VectorizedLoopID.getValue()); 3146 3147 // Do not setAlreadyVectorized if loop attributes have been defined 3148 // explicitly. 3149 return LoopVectorPreHeader; 3150 } 3151 3152 // Keep all loop hints from the original loop on the vector loop (we'll 3153 // replace the vectorizer-specific hints below). 3154 if (MDNode *LID = OrigLoop->getLoopID()) 3155 Lp->setLoopID(LID); 3156 3157 LoopVectorizeHints Hints(Lp, true, *ORE); 3158 Hints.setAlreadyVectorized(); 3159 3160 #ifdef EXPENSIVE_CHECKS 3161 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3162 LI->verify(*DT); 3163 #endif 3164 3165 return LoopVectorPreHeader; 3166 } 3167 3168 // Fix up external users of the induction variable. At this point, we are 3169 // in LCSSA form, with all external PHIs that use the IV having one input value, 3170 // coming from the remainder loop. We need those PHIs to also have a correct 3171 // value for the IV when arriving directly from the middle block. 3172 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3173 const InductionDescriptor &II, 3174 Value *CountRoundDown, Value *EndValue, 3175 BasicBlock *MiddleBlock) { 3176 // There are two kinds of external IV usages - those that use the value 3177 // computed in the last iteration (the PHI) and those that use the penultimate 3178 // value (the value that feeds into the phi from the loop latch). 3179 // We allow both, but they, obviously, have different values. 3180 3181 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3182 3183 DenseMap<Value *, Value *> MissingVals; 3184 3185 // An external user of the last iteration's value should see the value that 3186 // the remainder loop uses to initialize its own IV. 3187 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3188 for (User *U : PostInc->users()) { 3189 Instruction *UI = cast<Instruction>(U); 3190 if (!OrigLoop->contains(UI)) { 3191 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3192 MissingVals[UI] = EndValue; 3193 } 3194 } 3195 3196 // An external user of the penultimate value need to see EndValue - Step. 3197 // The simplest way to get this is to recompute it from the constituent SCEVs, 3198 // that is Start + (Step * (CRD - 1)). 3199 for (User *U : OrigPhi->users()) { 3200 auto *UI = cast<Instruction>(U); 3201 if (!OrigLoop->contains(UI)) { 3202 const DataLayout &DL = 3203 OrigLoop->getHeader()->getModule()->getDataLayout(); 3204 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3205 3206 IRBuilder<> B(MiddleBlock->getTerminator()); 3207 Value *CountMinusOne = B.CreateSub( 3208 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3209 Value *CMO = 3210 !II.getStep()->getType()->isIntegerTy() 3211 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3212 II.getStep()->getType()) 3213 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3214 CMO->setName("cast.cmo"); 3215 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3216 Escape->setName("ind.escape"); 3217 MissingVals[UI] = Escape; 3218 } 3219 } 3220 3221 for (auto &I : MissingVals) { 3222 PHINode *PHI = cast<PHINode>(I.first); 3223 // One corner case we have to handle is two IVs "chasing" each-other, 3224 // that is %IV2 = phi [...], [ %IV1, %latch ] 3225 // In this case, if IV1 has an external use, we need to avoid adding both 3226 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3227 // don't already have an incoming value for the middle block. 3228 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3229 PHI->addIncoming(I.second, MiddleBlock); 3230 } 3231 } 3232 3233 namespace { 3234 3235 struct CSEDenseMapInfo { 3236 static bool canHandle(const Instruction *I) { 3237 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3238 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3239 } 3240 3241 static inline Instruction *getEmptyKey() { 3242 return DenseMapInfo<Instruction *>::getEmptyKey(); 3243 } 3244 3245 static inline Instruction *getTombstoneKey() { 3246 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3247 } 3248 3249 static unsigned getHashValue(const Instruction *I) { 3250 assert(canHandle(I) && "Unknown instruction!"); 3251 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3252 I->value_op_end())); 3253 } 3254 3255 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3256 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3257 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3258 return LHS == RHS; 3259 return LHS->isIdenticalTo(RHS); 3260 } 3261 }; 3262 3263 } // end anonymous namespace 3264 3265 ///Perform cse of induction variable instructions. 3266 static void cse(BasicBlock *BB) { 3267 // Perform simple cse. 3268 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3269 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3270 Instruction *In = &*I++; 3271 3272 if (!CSEDenseMapInfo::canHandle(In)) 3273 continue; 3274 3275 // Check if we can replace this instruction with any of the 3276 // visited instructions. 3277 if (Instruction *V = CSEMap.lookup(In)) { 3278 In->replaceAllUsesWith(V); 3279 In->eraseFromParent(); 3280 continue; 3281 } 3282 3283 CSEMap[In] = In; 3284 } 3285 } 3286 3287 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3288 unsigned VF, 3289 bool &NeedToScalarize) { 3290 Function *F = CI->getCalledFunction(); 3291 Type *ScalarRetTy = CI->getType(); 3292 SmallVector<Type *, 4> Tys, ScalarTys; 3293 for (auto &ArgOp : CI->arg_operands()) 3294 ScalarTys.push_back(ArgOp->getType()); 3295 3296 // Estimate cost of scalarized vector call. The source operands are assumed 3297 // to be vectors, so we need to extract individual elements from there, 3298 // execute VF scalar calls, and then gather the result into the vector return 3299 // value. 3300 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3301 TTI::TCK_RecipThroughput); 3302 if (VF == 1) 3303 return ScalarCallCost; 3304 3305 // Compute corresponding vector type for return value and arguments. 3306 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3307 for (Type *ScalarTy : ScalarTys) 3308 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3309 3310 // Compute costs of unpacking argument values for the scalar calls and 3311 // packing the return values to a vector. 3312 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3313 3314 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3315 3316 // If we can't emit a vector call for this function, then the currently found 3317 // cost is the cost we need to return. 3318 NeedToScalarize = true; 3319 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3320 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3321 3322 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3323 return Cost; 3324 3325 // If the corresponding vector cost is cheaper, return its cost. 3326 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3327 TTI::TCK_RecipThroughput); 3328 if (VectorCallCost < Cost) { 3329 NeedToScalarize = false; 3330 return VectorCallCost; 3331 } 3332 return Cost; 3333 } 3334 3335 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3336 unsigned VF) { 3337 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3338 assert(ID && "Expected intrinsic call!"); 3339 3340 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3341 return TTI.getIntrinsicInstrCost(CostAttrs, 3342 TargetTransformInfo::TCK_RecipThroughput); 3343 } 3344 3345 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3346 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3347 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3348 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3349 } 3350 3351 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3352 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3353 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3354 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3355 } 3356 3357 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3358 // For every instruction `I` in MinBWs, truncate the operands, create a 3359 // truncated version of `I` and reextend its result. InstCombine runs 3360 // later and will remove any ext/trunc pairs. 3361 SmallPtrSet<Value *, 4> Erased; 3362 for (const auto &KV : Cost->getMinimalBitwidths()) { 3363 // If the value wasn't vectorized, we must maintain the original scalar 3364 // type. The absence of the value from VectorLoopValueMap indicates that it 3365 // wasn't vectorized. 3366 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3367 continue; 3368 for (unsigned Part = 0; Part < UF; ++Part) { 3369 Value *I = getOrCreateVectorValue(KV.first, Part); 3370 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3371 continue; 3372 Type *OriginalTy = I->getType(); 3373 Type *ScalarTruncatedTy = 3374 IntegerType::get(OriginalTy->getContext(), KV.second); 3375 auto *TruncatedTy = FixedVectorType::get( 3376 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3377 if (TruncatedTy == OriginalTy) 3378 continue; 3379 3380 IRBuilder<> B(cast<Instruction>(I)); 3381 auto ShrinkOperand = [&](Value *V) -> Value * { 3382 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3383 if (ZI->getSrcTy() == TruncatedTy) 3384 return ZI->getOperand(0); 3385 return B.CreateZExtOrTrunc(V, TruncatedTy); 3386 }; 3387 3388 // The actual instruction modification depends on the instruction type, 3389 // unfortunately. 3390 Value *NewI = nullptr; 3391 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3392 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3393 ShrinkOperand(BO->getOperand(1))); 3394 3395 // Any wrapping introduced by shrinking this operation shouldn't be 3396 // considered undefined behavior. So, we can't unconditionally copy 3397 // arithmetic wrapping flags to NewI. 3398 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3399 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3400 NewI = 3401 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3402 ShrinkOperand(CI->getOperand(1))); 3403 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3404 NewI = B.CreateSelect(SI->getCondition(), 3405 ShrinkOperand(SI->getTrueValue()), 3406 ShrinkOperand(SI->getFalseValue())); 3407 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3408 switch (CI->getOpcode()) { 3409 default: 3410 llvm_unreachable("Unhandled cast!"); 3411 case Instruction::Trunc: 3412 NewI = ShrinkOperand(CI->getOperand(0)); 3413 break; 3414 case Instruction::SExt: 3415 NewI = B.CreateSExtOrTrunc( 3416 CI->getOperand(0), 3417 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3418 break; 3419 case Instruction::ZExt: 3420 NewI = B.CreateZExtOrTrunc( 3421 CI->getOperand(0), 3422 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3423 break; 3424 } 3425 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3426 auto Elements0 = 3427 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3428 auto *O0 = B.CreateZExtOrTrunc( 3429 SI->getOperand(0), 3430 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3431 auto Elements1 = 3432 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3433 auto *O1 = B.CreateZExtOrTrunc( 3434 SI->getOperand(1), 3435 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3436 3437 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3438 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3439 // Don't do anything with the operands, just extend the result. 3440 continue; 3441 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3442 auto Elements = 3443 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3444 auto *O0 = B.CreateZExtOrTrunc( 3445 IE->getOperand(0), 3446 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3447 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3448 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3449 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3450 auto Elements = 3451 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3452 auto *O0 = B.CreateZExtOrTrunc( 3453 EE->getOperand(0), 3454 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3455 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3456 } else { 3457 // If we don't know what to do, be conservative and don't do anything. 3458 continue; 3459 } 3460 3461 // Lastly, extend the result. 3462 NewI->takeName(cast<Instruction>(I)); 3463 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3464 I->replaceAllUsesWith(Res); 3465 cast<Instruction>(I)->eraseFromParent(); 3466 Erased.insert(I); 3467 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3468 } 3469 } 3470 3471 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3472 for (const auto &KV : Cost->getMinimalBitwidths()) { 3473 // If the value wasn't vectorized, we must maintain the original scalar 3474 // type. The absence of the value from VectorLoopValueMap indicates that it 3475 // wasn't vectorized. 3476 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3477 continue; 3478 for (unsigned Part = 0; Part < UF; ++Part) { 3479 Value *I = getOrCreateVectorValue(KV.first, Part); 3480 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3481 if (Inst && Inst->use_empty()) { 3482 Value *NewI = Inst->getOperand(0); 3483 Inst->eraseFromParent(); 3484 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3485 } 3486 } 3487 } 3488 } 3489 3490 void InnerLoopVectorizer::fixVectorizedLoop() { 3491 // Insert truncates and extends for any truncated instructions as hints to 3492 // InstCombine. 3493 if (VF > 1) 3494 truncateToMinimalBitwidths(); 3495 3496 // Fix widened non-induction PHIs by setting up the PHI operands. 3497 if (OrigPHIsToFix.size()) { 3498 assert(EnableVPlanNativePath && 3499 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3500 fixNonInductionPHIs(); 3501 } 3502 3503 // At this point every instruction in the original loop is widened to a 3504 // vector form. Now we need to fix the recurrences in the loop. These PHI 3505 // nodes are currently empty because we did not want to introduce cycles. 3506 // This is the second stage of vectorizing recurrences. 3507 fixCrossIterationPHIs(); 3508 3509 // Forget the original basic block. 3510 PSE.getSE()->forgetLoop(OrigLoop); 3511 3512 // Fix-up external users of the induction variables. 3513 for (auto &Entry : Legal->getInductionVars()) 3514 fixupIVUsers(Entry.first, Entry.second, 3515 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3516 IVEndValues[Entry.first], LoopMiddleBlock); 3517 3518 fixLCSSAPHIs(); 3519 for (Instruction *PI : PredicatedInstructions) 3520 sinkScalarOperands(&*PI); 3521 3522 // Remove redundant induction instructions. 3523 cse(LoopVectorBody); 3524 3525 // Set/update profile weights for the vector and remainder loops as original 3526 // loop iterations are now distributed among them. Note that original loop 3527 // represented by LoopScalarBody becomes remainder loop after vectorization. 3528 // 3529 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3530 // end up getting slightly roughened result but that should be OK since 3531 // profile is not inherently precise anyway. Note also possible bypass of 3532 // vector code caused by legality checks is ignored, assigning all the weight 3533 // to the vector loop, optimistically. 3534 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3535 LI->getLoopFor(LoopVectorBody), 3536 LI->getLoopFor(LoopScalarBody), VF * UF); 3537 } 3538 3539 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3540 // In order to support recurrences we need to be able to vectorize Phi nodes. 3541 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3542 // stage #2: We now need to fix the recurrences by adding incoming edges to 3543 // the currently empty PHI nodes. At this point every instruction in the 3544 // original loop is widened to a vector form so we can use them to construct 3545 // the incoming edges. 3546 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3547 // Handle first-order recurrences and reductions that need to be fixed. 3548 if (Legal->isFirstOrderRecurrence(&Phi)) 3549 fixFirstOrderRecurrence(&Phi); 3550 else if (Legal->isReductionVariable(&Phi)) 3551 fixReduction(&Phi); 3552 } 3553 } 3554 3555 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3556 // This is the second phase of vectorizing first-order recurrences. An 3557 // overview of the transformation is described below. Suppose we have the 3558 // following loop. 3559 // 3560 // for (int i = 0; i < n; ++i) 3561 // b[i] = a[i] - a[i - 1]; 3562 // 3563 // There is a first-order recurrence on "a". For this loop, the shorthand 3564 // scalar IR looks like: 3565 // 3566 // scalar.ph: 3567 // s_init = a[-1] 3568 // br scalar.body 3569 // 3570 // scalar.body: 3571 // i = phi [0, scalar.ph], [i+1, scalar.body] 3572 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3573 // s2 = a[i] 3574 // b[i] = s2 - s1 3575 // br cond, scalar.body, ... 3576 // 3577 // In this example, s1 is a recurrence because it's value depends on the 3578 // previous iteration. In the first phase of vectorization, we created a 3579 // temporary value for s1. We now complete the vectorization and produce the 3580 // shorthand vector IR shown below (for VF = 4, UF = 1). 3581 // 3582 // vector.ph: 3583 // v_init = vector(..., ..., ..., a[-1]) 3584 // br vector.body 3585 // 3586 // vector.body 3587 // i = phi [0, vector.ph], [i+4, vector.body] 3588 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3589 // v2 = a[i, i+1, i+2, i+3]; 3590 // v3 = vector(v1(3), v2(0, 1, 2)) 3591 // b[i, i+1, i+2, i+3] = v2 - v3 3592 // br cond, vector.body, middle.block 3593 // 3594 // middle.block: 3595 // x = v2(3) 3596 // br scalar.ph 3597 // 3598 // scalar.ph: 3599 // s_init = phi [x, middle.block], [a[-1], otherwise] 3600 // br scalar.body 3601 // 3602 // After execution completes the vector loop, we extract the next value of 3603 // the recurrence (x) to use as the initial value in the scalar loop. 3604 3605 // Get the original loop preheader and single loop latch. 3606 auto *Preheader = OrigLoop->getLoopPreheader(); 3607 auto *Latch = OrigLoop->getLoopLatch(); 3608 3609 // Get the initial and previous values of the scalar recurrence. 3610 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3611 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3612 3613 // Create a vector from the initial value. 3614 auto *VectorInit = ScalarInit; 3615 if (VF > 1) { 3616 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3617 VectorInit = Builder.CreateInsertElement( 3618 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3619 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3620 } 3621 3622 // We constructed a temporary phi node in the first phase of vectorization. 3623 // This phi node will eventually be deleted. 3624 Builder.SetInsertPoint( 3625 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3626 3627 // Create a phi node for the new recurrence. The current value will either be 3628 // the initial value inserted into a vector or loop-varying vector value. 3629 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3630 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3631 3632 // Get the vectorized previous value of the last part UF - 1. It appears last 3633 // among all unrolled iterations, due to the order of their construction. 3634 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3635 3636 // Find and set the insertion point after the previous value if it is an 3637 // instruction. 3638 BasicBlock::iterator InsertPt; 3639 // Note that the previous value may have been constant-folded so it is not 3640 // guaranteed to be an instruction in the vector loop. 3641 // FIXME: Loop invariant values do not form recurrences. We should deal with 3642 // them earlier. 3643 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3644 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3645 else { 3646 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3647 if (isa<PHINode>(PreviousLastPart)) 3648 // If the previous value is a phi node, we should insert after all the phi 3649 // nodes in the block containing the PHI to avoid breaking basic block 3650 // verification. Note that the basic block may be different to 3651 // LoopVectorBody, in case we predicate the loop. 3652 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3653 else 3654 InsertPt = ++PreviousInst->getIterator(); 3655 } 3656 Builder.SetInsertPoint(&*InsertPt); 3657 3658 // We will construct a vector for the recurrence by combining the values for 3659 // the current and previous iterations. This is the required shuffle mask. 3660 SmallVector<int, 8> ShuffleMask(VF); 3661 ShuffleMask[0] = VF - 1; 3662 for (unsigned I = 1; I < VF; ++I) 3663 ShuffleMask[I] = I + VF - 1; 3664 3665 // The vector from which to take the initial value for the current iteration 3666 // (actual or unrolled). Initially, this is the vector phi node. 3667 Value *Incoming = VecPhi; 3668 3669 // Shuffle the current and previous vector and update the vector parts. 3670 for (unsigned Part = 0; Part < UF; ++Part) { 3671 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3672 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3673 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3674 ShuffleMask) 3675 : Incoming; 3676 PhiPart->replaceAllUsesWith(Shuffle); 3677 cast<Instruction>(PhiPart)->eraseFromParent(); 3678 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3679 Incoming = PreviousPart; 3680 } 3681 3682 // Fix the latch value of the new recurrence in the vector loop. 3683 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3684 3685 // Extract the last vector element in the middle block. This will be the 3686 // initial value for the recurrence when jumping to the scalar loop. 3687 auto *ExtractForScalar = Incoming; 3688 if (VF > 1) { 3689 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3690 ExtractForScalar = Builder.CreateExtractElement( 3691 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3692 } 3693 // Extract the second last element in the middle block if the 3694 // Phi is used outside the loop. We need to extract the phi itself 3695 // and not the last element (the phi update in the current iteration). This 3696 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3697 // when the scalar loop is not run at all. 3698 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3699 if (VF > 1) 3700 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3701 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3702 // When loop is unrolled without vectorizing, initialize 3703 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3704 // `Incoming`. This is analogous to the vectorized case above: extracting the 3705 // second last element when VF > 1. 3706 else if (UF > 1) 3707 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3708 3709 // Fix the initial value of the original recurrence in the scalar loop. 3710 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3711 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3712 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3713 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3714 Start->addIncoming(Incoming, BB); 3715 } 3716 3717 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3718 Phi->setName("scalar.recur"); 3719 3720 // Finally, fix users of the recurrence outside the loop. The users will need 3721 // either the last value of the scalar recurrence or the last value of the 3722 // vector recurrence we extracted in the middle block. Since the loop is in 3723 // LCSSA form, we just need to find all the phi nodes for the original scalar 3724 // recurrence in the exit block, and then add an edge for the middle block. 3725 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3726 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3727 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3728 } 3729 } 3730 } 3731 3732 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3733 Constant *Zero = Builder.getInt32(0); 3734 3735 // Get it's reduction variable descriptor. 3736 assert(Legal->isReductionVariable(Phi) && 3737 "Unable to find the reduction variable"); 3738 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3739 3740 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3741 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3742 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3743 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3744 RdxDesc.getMinMaxRecurrenceKind(); 3745 setDebugLocFromInst(Builder, ReductionStartValue); 3746 3747 // We need to generate a reduction vector from the incoming scalar. 3748 // To do so, we need to generate the 'identity' vector and override 3749 // one of the elements with the incoming scalar reduction. We need 3750 // to do it in the vector-loop preheader. 3751 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3752 3753 // This is the vector-clone of the value that leaves the loop. 3754 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3755 3756 // Find the reduction identity variable. Zero for addition, or, xor, 3757 // one for multiplication, -1 for And. 3758 Value *Identity; 3759 Value *VectorStart; 3760 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3761 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3762 // MinMax reduction have the start value as their identify. 3763 if (VF == 1) { 3764 VectorStart = Identity = ReductionStartValue; 3765 } else { 3766 VectorStart = Identity = 3767 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3768 } 3769 } else { 3770 // Handle other reduction kinds: 3771 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3772 RK, VecTy->getScalarType()); 3773 if (VF == 1) { 3774 Identity = Iden; 3775 // This vector is the Identity vector where the first element is the 3776 // incoming scalar reduction. 3777 VectorStart = ReductionStartValue; 3778 } else { 3779 Identity = ConstantVector::getSplat({VF, false}, Iden); 3780 3781 // This vector is the Identity vector where the first element is the 3782 // incoming scalar reduction. 3783 VectorStart = 3784 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3785 } 3786 } 3787 3788 // Wrap flags are in general invalid after vectorization, clear them. 3789 clearReductionWrapFlags(RdxDesc); 3790 3791 // Fix the vector-loop phi. 3792 3793 // Reductions do not have to start at zero. They can start with 3794 // any loop invariant values. 3795 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3796 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3797 3798 for (unsigned Part = 0; Part < UF; ++Part) { 3799 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3800 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3801 // Make sure to add the reduction start value only to the 3802 // first unroll part. 3803 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3804 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3805 cast<PHINode>(VecRdxPhi) 3806 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3807 } 3808 3809 // Before each round, move the insertion point right between 3810 // the PHIs and the values we are going to write. 3811 // This allows us to write both PHINodes and the extractelement 3812 // instructions. 3813 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3814 3815 setDebugLocFromInst(Builder, LoopExitInst); 3816 3817 // If tail is folded by masking, the vector value to leave the loop should be 3818 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3819 // instead of the former. 3820 if (Cost->foldTailByMasking()) { 3821 for (unsigned Part = 0; Part < UF; ++Part) { 3822 Value *VecLoopExitInst = 3823 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3824 Value *Sel = nullptr; 3825 for (User *U : VecLoopExitInst->users()) { 3826 if (isa<SelectInst>(U)) { 3827 assert(!Sel && "Reduction exit feeding two selects"); 3828 Sel = U; 3829 } else 3830 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3831 } 3832 assert(Sel && "Reduction exit feeds no select"); 3833 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3834 } 3835 } 3836 3837 // If the vector reduction can be performed in a smaller type, we truncate 3838 // then extend the loop exit value to enable InstCombine to evaluate the 3839 // entire expression in the smaller type. 3840 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3841 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3842 Builder.SetInsertPoint( 3843 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3844 VectorParts RdxParts(UF); 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3847 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3848 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3849 : Builder.CreateZExt(Trunc, VecTy); 3850 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3851 UI != RdxParts[Part]->user_end();) 3852 if (*UI != Trunc) { 3853 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3854 RdxParts[Part] = Extnd; 3855 } else { 3856 ++UI; 3857 } 3858 } 3859 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3860 for (unsigned Part = 0; Part < UF; ++Part) { 3861 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3862 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3863 } 3864 } 3865 3866 // Reduce all of the unrolled parts into a single vector. 3867 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3868 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3869 3870 // The middle block terminator has already been assigned a DebugLoc here (the 3871 // OrigLoop's single latch terminator). We want the whole middle block to 3872 // appear to execute on this line because: (a) it is all compiler generated, 3873 // (b) these instructions are always executed after evaluating the latch 3874 // conditional branch, and (c) other passes may add new predecessors which 3875 // terminate on this line. This is the easiest way to ensure we don't 3876 // accidentally cause an extra step back into the loop while debugging. 3877 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3878 for (unsigned Part = 1; Part < UF; ++Part) { 3879 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3880 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3881 // Floating point operations had to be 'fast' to enable the reduction. 3882 ReducedPartRdx = addFastMathFlag( 3883 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3884 ReducedPartRdx, "bin.rdx"), 3885 RdxDesc.getFastMathFlags()); 3886 else 3887 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3888 RdxPart); 3889 } 3890 3891 if (VF > 1) { 3892 bool NoNaN = Legal->hasFunNoNaNAttr(); 3893 ReducedPartRdx = 3894 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3895 // If the reduction can be performed in a smaller type, we need to extend 3896 // the reduction to the wider type before we branch to the original loop. 3897 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3898 ReducedPartRdx = 3899 RdxDesc.isSigned() 3900 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3901 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3902 } 3903 3904 // Create a phi node that merges control-flow from the backedge-taken check 3905 // block and the middle block. 3906 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3907 LoopScalarPreHeader->getTerminator()); 3908 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3909 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3910 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3911 3912 // Now, we need to fix the users of the reduction variable 3913 // inside and outside of the scalar remainder loop. 3914 // We know that the loop is in LCSSA form. We need to update the 3915 // PHI nodes in the exit blocks. 3916 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3917 // All PHINodes need to have a single entry edge, or two if 3918 // we already fixed them. 3919 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3920 3921 // We found a reduction value exit-PHI. Update it with the 3922 // incoming bypass edge. 3923 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3924 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3925 } // end of the LCSSA phi scan. 3926 3927 // Fix the scalar loop reduction variable with the incoming reduction sum 3928 // from the vector body and from the backedge value. 3929 int IncomingEdgeBlockIdx = 3930 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3931 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3932 // Pick the other block. 3933 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3934 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3935 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3936 } 3937 3938 void InnerLoopVectorizer::clearReductionWrapFlags( 3939 RecurrenceDescriptor &RdxDesc) { 3940 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3941 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3942 RK != RecurrenceDescriptor::RK_IntegerMult) 3943 return; 3944 3945 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3946 assert(LoopExitInstr && "null loop exit instruction"); 3947 SmallVector<Instruction *, 8> Worklist; 3948 SmallPtrSet<Instruction *, 8> Visited; 3949 Worklist.push_back(LoopExitInstr); 3950 Visited.insert(LoopExitInstr); 3951 3952 while (!Worklist.empty()) { 3953 Instruction *Cur = Worklist.pop_back_val(); 3954 if (isa<OverflowingBinaryOperator>(Cur)) 3955 for (unsigned Part = 0; Part < UF; ++Part) { 3956 Value *V = getOrCreateVectorValue(Cur, Part); 3957 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3958 } 3959 3960 for (User *U : Cur->users()) { 3961 Instruction *UI = cast<Instruction>(U); 3962 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3963 Visited.insert(UI).second) 3964 Worklist.push_back(UI); 3965 } 3966 } 3967 } 3968 3969 void InnerLoopVectorizer::fixLCSSAPHIs() { 3970 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3971 if (LCSSAPhi.getNumIncomingValues() == 1) { 3972 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3973 // Non-instruction incoming values will have only one value. 3974 unsigned LastLane = 0; 3975 if (isa<Instruction>(IncomingValue)) 3976 LastLane = Cost->isUniformAfterVectorization( 3977 cast<Instruction>(IncomingValue), VF) 3978 ? 0 3979 : VF - 1; 3980 // Can be a loop invariant incoming value or the last scalar value to be 3981 // extracted from the vectorized loop. 3982 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3983 Value *lastIncomingValue = 3984 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3985 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3986 } 3987 } 3988 } 3989 3990 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3991 // The basic block and loop containing the predicated instruction. 3992 auto *PredBB = PredInst->getParent(); 3993 auto *VectorLoop = LI->getLoopFor(PredBB); 3994 3995 // Initialize a worklist with the operands of the predicated instruction. 3996 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3997 3998 // Holds instructions that we need to analyze again. An instruction may be 3999 // reanalyzed if we don't yet know if we can sink it or not. 4000 SmallVector<Instruction *, 8> InstsToReanalyze; 4001 4002 // Returns true if a given use occurs in the predicated block. Phi nodes use 4003 // their operands in their corresponding predecessor blocks. 4004 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4005 auto *I = cast<Instruction>(U.getUser()); 4006 BasicBlock *BB = I->getParent(); 4007 if (auto *Phi = dyn_cast<PHINode>(I)) 4008 BB = Phi->getIncomingBlock( 4009 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4010 return BB == PredBB; 4011 }; 4012 4013 // Iteratively sink the scalarized operands of the predicated instruction 4014 // into the block we created for it. When an instruction is sunk, it's 4015 // operands are then added to the worklist. The algorithm ends after one pass 4016 // through the worklist doesn't sink a single instruction. 4017 bool Changed; 4018 do { 4019 // Add the instructions that need to be reanalyzed to the worklist, and 4020 // reset the changed indicator. 4021 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4022 InstsToReanalyze.clear(); 4023 Changed = false; 4024 4025 while (!Worklist.empty()) { 4026 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4027 4028 // We can't sink an instruction if it is a phi node, is already in the 4029 // predicated block, is not in the loop, or may have side effects. 4030 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4031 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4032 continue; 4033 4034 // It's legal to sink the instruction if all its uses occur in the 4035 // predicated block. Otherwise, there's nothing to do yet, and we may 4036 // need to reanalyze the instruction. 4037 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4038 InstsToReanalyze.push_back(I); 4039 continue; 4040 } 4041 4042 // Move the instruction to the beginning of the predicated block, and add 4043 // it's operands to the worklist. 4044 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4045 Worklist.insert(I->op_begin(), I->op_end()); 4046 4047 // The sinking may have enabled other instructions to be sunk, so we will 4048 // need to iterate. 4049 Changed = true; 4050 } 4051 } while (Changed); 4052 } 4053 4054 void InnerLoopVectorizer::fixNonInductionPHIs() { 4055 for (PHINode *OrigPhi : OrigPHIsToFix) { 4056 PHINode *NewPhi = 4057 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4058 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4059 4060 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4061 predecessors(OrigPhi->getParent())); 4062 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4063 predecessors(NewPhi->getParent())); 4064 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4065 "Scalar and Vector BB should have the same number of predecessors"); 4066 4067 // The insertion point in Builder may be invalidated by the time we get 4068 // here. Force the Builder insertion point to something valid so that we do 4069 // not run into issues during insertion point restore in 4070 // getOrCreateVectorValue calls below. 4071 Builder.SetInsertPoint(NewPhi); 4072 4073 // The predecessor order is preserved and we can rely on mapping between 4074 // scalar and vector block predecessors. 4075 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4076 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4077 4078 // When looking up the new scalar/vector values to fix up, use incoming 4079 // values from original phi. 4080 Value *ScIncV = 4081 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4082 4083 // Scalar incoming value may need a broadcast 4084 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4085 NewPhi->addIncoming(NewIncV, NewPredBB); 4086 } 4087 } 4088 } 4089 4090 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4091 unsigned UF, unsigned VF, 4092 bool IsPtrLoopInvariant, 4093 SmallBitVector &IsIndexLoopInvariant, 4094 VPTransformState &State) { 4095 // Construct a vector GEP by widening the operands of the scalar GEP as 4096 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4097 // results in a vector of pointers when at least one operand of the GEP 4098 // is vector-typed. Thus, to keep the representation compact, we only use 4099 // vector-typed operands for loop-varying values. 4100 4101 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4102 // If we are vectorizing, but the GEP has only loop-invariant operands, 4103 // the GEP we build (by only using vector-typed operands for 4104 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4105 // produce a vector of pointers, we need to either arbitrarily pick an 4106 // operand to broadcast, or broadcast a clone of the original GEP. 4107 // Here, we broadcast a clone of the original. 4108 // 4109 // TODO: If at some point we decide to scalarize instructions having 4110 // loop-invariant operands, this special case will no longer be 4111 // required. We would add the scalarization decision to 4112 // collectLoopScalars() and teach getVectorValue() to broadcast 4113 // the lane-zero scalar value. 4114 auto *Clone = Builder.Insert(GEP->clone()); 4115 for (unsigned Part = 0; Part < UF; ++Part) { 4116 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4117 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4118 addMetadata(EntryPart, GEP); 4119 } 4120 } else { 4121 // If the GEP has at least one loop-varying operand, we are sure to 4122 // produce a vector of pointers. But if we are only unrolling, we want 4123 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4124 // produce with the code below will be scalar (if VF == 1) or vector 4125 // (otherwise). Note that for the unroll-only case, we still maintain 4126 // values in the vector mapping with initVector, as we do for other 4127 // instructions. 4128 for (unsigned Part = 0; Part < UF; ++Part) { 4129 // The pointer operand of the new GEP. If it's loop-invariant, we 4130 // won't broadcast it. 4131 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4132 : State.get(Operands.getOperand(0), Part); 4133 4134 // Collect all the indices for the new GEP. If any index is 4135 // loop-invariant, we won't broadcast it. 4136 SmallVector<Value *, 4> Indices; 4137 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4138 VPValue *Operand = Operands.getOperand(I); 4139 if (IsIndexLoopInvariant[I - 1]) 4140 Indices.push_back(State.get(Operand, {0, 0})); 4141 else 4142 Indices.push_back(State.get(Operand, Part)); 4143 } 4144 4145 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4146 // but it should be a vector, otherwise. 4147 auto *NewGEP = 4148 GEP->isInBounds() 4149 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4150 Indices) 4151 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4152 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4153 "NewGEP is not a pointer vector"); 4154 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4155 addMetadata(NewGEP, GEP); 4156 } 4157 } 4158 } 4159 4160 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4161 unsigned VF) { 4162 PHINode *P = cast<PHINode>(PN); 4163 if (EnableVPlanNativePath) { 4164 // Currently we enter here in the VPlan-native path for non-induction 4165 // PHIs where all control flow is uniform. We simply widen these PHIs. 4166 // Create a vector phi with no operands - the vector phi operands will be 4167 // set at the end of vector code generation. 4168 Type *VecTy = 4169 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4170 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4171 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4172 OrigPHIsToFix.push_back(P); 4173 4174 return; 4175 } 4176 4177 assert(PN->getParent() == OrigLoop->getHeader() && 4178 "Non-header phis should have been handled elsewhere"); 4179 4180 // In order to support recurrences we need to be able to vectorize Phi nodes. 4181 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4182 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4183 // this value when we vectorize all of the instructions that use the PHI. 4184 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4185 for (unsigned Part = 0; Part < UF; ++Part) { 4186 // This is phase one of vectorizing PHIs. 4187 Type *VecTy = 4188 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4189 Value *EntryPart = PHINode::Create( 4190 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4191 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4192 } 4193 return; 4194 } 4195 4196 setDebugLocFromInst(Builder, P); 4197 4198 // This PHINode must be an induction variable. 4199 // Make sure that we know about it. 4200 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4201 4202 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4203 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4204 4205 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4206 // which can be found from the original scalar operations. 4207 switch (II.getKind()) { 4208 case InductionDescriptor::IK_NoInduction: 4209 llvm_unreachable("Unknown induction"); 4210 case InductionDescriptor::IK_IntInduction: 4211 case InductionDescriptor::IK_FpInduction: 4212 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4213 case InductionDescriptor::IK_PtrInduction: { 4214 // Handle the pointer induction variable case. 4215 assert(P->getType()->isPointerTy() && "Unexpected type."); 4216 // This is the normalized GEP that starts counting at zero. 4217 Value *PtrInd = Induction; 4218 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4219 // Determine the number of scalars we need to generate for each unroll 4220 // iteration. If the instruction is uniform, we only need to generate the 4221 // first lane. Otherwise, we generate all VF values. 4222 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4223 // These are the scalar results. Notice that we don't generate vector GEPs 4224 // because scalar GEPs result in better code. 4225 for (unsigned Part = 0; Part < UF; ++Part) { 4226 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4227 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4228 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4229 Value *SclrGep = 4230 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4231 SclrGep->setName("next.gep"); 4232 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4233 } 4234 } 4235 return; 4236 } 4237 } 4238 } 4239 4240 /// A helper function for checking whether an integer division-related 4241 /// instruction may divide by zero (in which case it must be predicated if 4242 /// executed conditionally in the scalar code). 4243 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4244 /// Non-zero divisors that are non compile-time constants will not be 4245 /// converted into multiplication, so we will still end up scalarizing 4246 /// the division, but can do so w/o predication. 4247 static bool mayDivideByZero(Instruction &I) { 4248 assert((I.getOpcode() == Instruction::UDiv || 4249 I.getOpcode() == Instruction::SDiv || 4250 I.getOpcode() == Instruction::URem || 4251 I.getOpcode() == Instruction::SRem) && 4252 "Unexpected instruction"); 4253 Value *Divisor = I.getOperand(1); 4254 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4255 return !CInt || CInt->isZero(); 4256 } 4257 4258 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4259 VPTransformState &State) { 4260 switch (I.getOpcode()) { 4261 case Instruction::Call: 4262 case Instruction::Br: 4263 case Instruction::PHI: 4264 case Instruction::GetElementPtr: 4265 case Instruction::Select: 4266 llvm_unreachable("This instruction is handled by a different recipe."); 4267 case Instruction::UDiv: 4268 case Instruction::SDiv: 4269 case Instruction::SRem: 4270 case Instruction::URem: 4271 case Instruction::Add: 4272 case Instruction::FAdd: 4273 case Instruction::Sub: 4274 case Instruction::FSub: 4275 case Instruction::FNeg: 4276 case Instruction::Mul: 4277 case Instruction::FMul: 4278 case Instruction::FDiv: 4279 case Instruction::FRem: 4280 case Instruction::Shl: 4281 case Instruction::LShr: 4282 case Instruction::AShr: 4283 case Instruction::And: 4284 case Instruction::Or: 4285 case Instruction::Xor: { 4286 // Just widen unops and binops. 4287 setDebugLocFromInst(Builder, &I); 4288 4289 for (unsigned Part = 0; Part < UF; ++Part) { 4290 SmallVector<Value *, 2> Ops; 4291 for (VPValue *VPOp : User.operands()) 4292 Ops.push_back(State.get(VPOp, Part)); 4293 4294 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4295 4296 if (auto *VecOp = dyn_cast<Instruction>(V)) 4297 VecOp->copyIRFlags(&I); 4298 4299 // Use this vector value for all users of the original instruction. 4300 VectorLoopValueMap.setVectorValue(&I, Part, V); 4301 addMetadata(V, &I); 4302 } 4303 4304 break; 4305 } 4306 case Instruction::ICmp: 4307 case Instruction::FCmp: { 4308 // Widen compares. Generate vector compares. 4309 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4310 auto *Cmp = cast<CmpInst>(&I); 4311 setDebugLocFromInst(Builder, Cmp); 4312 for (unsigned Part = 0; Part < UF; ++Part) { 4313 Value *A = State.get(User.getOperand(0), Part); 4314 Value *B = State.get(User.getOperand(1), Part); 4315 Value *C = nullptr; 4316 if (FCmp) { 4317 // Propagate fast math flags. 4318 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4319 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4320 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4321 } else { 4322 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4323 } 4324 VectorLoopValueMap.setVectorValue(&I, Part, C); 4325 addMetadata(C, &I); 4326 } 4327 4328 break; 4329 } 4330 4331 case Instruction::ZExt: 4332 case Instruction::SExt: 4333 case Instruction::FPToUI: 4334 case Instruction::FPToSI: 4335 case Instruction::FPExt: 4336 case Instruction::PtrToInt: 4337 case Instruction::IntToPtr: 4338 case Instruction::SIToFP: 4339 case Instruction::UIToFP: 4340 case Instruction::Trunc: 4341 case Instruction::FPTrunc: 4342 case Instruction::BitCast: { 4343 auto *CI = cast<CastInst>(&I); 4344 setDebugLocFromInst(Builder, CI); 4345 4346 /// Vectorize casts. 4347 Type *DestTy = 4348 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4349 4350 for (unsigned Part = 0; Part < UF; ++Part) { 4351 Value *A = State.get(User.getOperand(0), Part); 4352 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4353 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4354 addMetadata(Cast, &I); 4355 } 4356 break; 4357 } 4358 default: 4359 // This instruction is not vectorized by simple widening. 4360 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4361 llvm_unreachable("Unhandled instruction!"); 4362 } // end of switch. 4363 } 4364 4365 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4366 VPTransformState &State) { 4367 assert(!isa<DbgInfoIntrinsic>(I) && 4368 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4369 setDebugLocFromInst(Builder, &I); 4370 4371 Module *M = I.getParent()->getParent()->getParent(); 4372 auto *CI = cast<CallInst>(&I); 4373 4374 SmallVector<Type *, 4> Tys; 4375 for (Value *ArgOperand : CI->arg_operands()) 4376 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4377 4378 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4379 4380 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4381 // version of the instruction. 4382 // Is it beneficial to perform intrinsic call compared to lib call? 4383 bool NeedToScalarize = false; 4384 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4385 bool UseVectorIntrinsic = 4386 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4387 assert((UseVectorIntrinsic || !NeedToScalarize) && 4388 "Instruction should be scalarized elsewhere."); 4389 4390 for (unsigned Part = 0; Part < UF; ++Part) { 4391 SmallVector<Value *, 4> Args; 4392 for (auto &I : enumerate(ArgOperands.operands())) { 4393 // Some intrinsics have a scalar argument - don't replace it with a 4394 // vector. 4395 Value *Arg; 4396 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4397 Arg = State.get(I.value(), Part); 4398 else 4399 Arg = State.get(I.value(), {0, 0}); 4400 Args.push_back(Arg); 4401 } 4402 4403 Function *VectorF; 4404 if (UseVectorIntrinsic) { 4405 // Use vector version of the intrinsic. 4406 Type *TysForDecl[] = {CI->getType()}; 4407 if (VF > 1) 4408 TysForDecl[0] = 4409 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4410 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4411 assert(VectorF && "Can't retrieve vector intrinsic."); 4412 } else { 4413 // Use vector version of the function call. 4414 const VFShape Shape = 4415 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4416 #ifndef NDEBUG 4417 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4418 "Can't create vector function."); 4419 #endif 4420 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4421 } 4422 SmallVector<OperandBundleDef, 1> OpBundles; 4423 CI->getOperandBundlesAsDefs(OpBundles); 4424 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4425 4426 if (isa<FPMathOperator>(V)) 4427 V->copyFastMathFlags(CI); 4428 4429 VectorLoopValueMap.setVectorValue(&I, Part, V); 4430 addMetadata(V, &I); 4431 } 4432 } 4433 4434 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4435 VPUser &Operands, 4436 bool InvariantCond, 4437 VPTransformState &State) { 4438 setDebugLocFromInst(Builder, &I); 4439 4440 // The condition can be loop invariant but still defined inside the 4441 // loop. This means that we can't just use the original 'cond' value. 4442 // We have to take the 'vectorized' value and pick the first lane. 4443 // Instcombine will make this a no-op. 4444 auto *InvarCond = 4445 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4446 4447 for (unsigned Part = 0; Part < UF; ++Part) { 4448 Value *Cond = 4449 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4450 Value *Op0 = State.get(Operands.getOperand(1), Part); 4451 Value *Op1 = State.get(Operands.getOperand(2), Part); 4452 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4453 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4454 addMetadata(Sel, &I); 4455 } 4456 } 4457 4458 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4459 // We should not collect Scalars more than once per VF. Right now, this 4460 // function is called from collectUniformsAndScalars(), which already does 4461 // this check. Collecting Scalars for VF=1 does not make any sense. 4462 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4463 "This function should not be visited twice for the same VF"); 4464 4465 SmallSetVector<Instruction *, 8> Worklist; 4466 4467 // These sets are used to seed the analysis with pointers used by memory 4468 // accesses that will remain scalar. 4469 SmallSetVector<Instruction *, 8> ScalarPtrs; 4470 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4471 4472 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4473 // The pointer operands of loads and stores will be scalar as long as the 4474 // memory access is not a gather or scatter operation. The value operand of a 4475 // store will remain scalar if the store is scalarized. 4476 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4477 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4478 assert(WideningDecision != CM_Unknown && 4479 "Widening decision should be ready at this moment"); 4480 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4481 if (Ptr == Store->getValueOperand()) 4482 return WideningDecision == CM_Scalarize; 4483 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4484 "Ptr is neither a value or pointer operand"); 4485 return WideningDecision != CM_GatherScatter; 4486 }; 4487 4488 // A helper that returns true if the given value is a bitcast or 4489 // getelementptr instruction contained in the loop. 4490 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4491 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4492 isa<GetElementPtrInst>(V)) && 4493 !TheLoop->isLoopInvariant(V); 4494 }; 4495 4496 // A helper that evaluates a memory access's use of a pointer. If the use 4497 // will be a scalar use, and the pointer is only used by memory accesses, we 4498 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4499 // PossibleNonScalarPtrs. 4500 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4501 // We only care about bitcast and getelementptr instructions contained in 4502 // the loop. 4503 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4504 return; 4505 4506 // If the pointer has already been identified as scalar (e.g., if it was 4507 // also identified as uniform), there's nothing to do. 4508 auto *I = cast<Instruction>(Ptr); 4509 if (Worklist.count(I)) 4510 return; 4511 4512 // If the use of the pointer will be a scalar use, and all users of the 4513 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4514 // place the pointer in PossibleNonScalarPtrs. 4515 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4516 return isa<LoadInst>(U) || isa<StoreInst>(U); 4517 })) 4518 ScalarPtrs.insert(I); 4519 else 4520 PossibleNonScalarPtrs.insert(I); 4521 }; 4522 4523 // We seed the scalars analysis with three classes of instructions: (1) 4524 // instructions marked uniform-after-vectorization, (2) bitcast and 4525 // getelementptr instructions used by memory accesses requiring a scalar use, 4526 // and (3) pointer induction variables and their update instructions (we 4527 // currently only scalarize these). 4528 // 4529 // (1) Add to the worklist all instructions that have been identified as 4530 // uniform-after-vectorization. 4531 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4532 4533 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4534 // memory accesses requiring a scalar use. The pointer operands of loads and 4535 // stores will be scalar as long as the memory accesses is not a gather or 4536 // scatter operation. The value operand of a store will remain scalar if the 4537 // store is scalarized. 4538 for (auto *BB : TheLoop->blocks()) 4539 for (auto &I : *BB) { 4540 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4541 evaluatePtrUse(Load, Load->getPointerOperand()); 4542 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4543 evaluatePtrUse(Store, Store->getPointerOperand()); 4544 evaluatePtrUse(Store, Store->getValueOperand()); 4545 } 4546 } 4547 for (auto *I : ScalarPtrs) 4548 if (!PossibleNonScalarPtrs.count(I)) { 4549 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4550 Worklist.insert(I); 4551 } 4552 4553 // (3) Add to the worklist all pointer induction variables and their update 4554 // instructions. 4555 // 4556 // TODO: Once we are able to vectorize pointer induction variables we should 4557 // no longer insert them into the worklist here. 4558 auto *Latch = TheLoop->getLoopLatch(); 4559 for (auto &Induction : Legal->getInductionVars()) { 4560 auto *Ind = Induction.first; 4561 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4562 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4563 continue; 4564 Worklist.insert(Ind); 4565 Worklist.insert(IndUpdate); 4566 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4567 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4568 << "\n"); 4569 } 4570 4571 // Insert the forced scalars. 4572 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4573 // induction variable when the PHI user is scalarized. 4574 auto ForcedScalar = ForcedScalars.find(VF); 4575 if (ForcedScalar != ForcedScalars.end()) 4576 for (auto *I : ForcedScalar->second) 4577 Worklist.insert(I); 4578 4579 // Expand the worklist by looking through any bitcasts and getelementptr 4580 // instructions we've already identified as scalar. This is similar to the 4581 // expansion step in collectLoopUniforms(); however, here we're only 4582 // expanding to include additional bitcasts and getelementptr instructions. 4583 unsigned Idx = 0; 4584 while (Idx != Worklist.size()) { 4585 Instruction *Dst = Worklist[Idx++]; 4586 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4587 continue; 4588 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4589 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4590 auto *J = cast<Instruction>(U); 4591 return !TheLoop->contains(J) || Worklist.count(J) || 4592 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4593 isScalarUse(J, Src)); 4594 })) { 4595 Worklist.insert(Src); 4596 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4597 } 4598 } 4599 4600 // An induction variable will remain scalar if all users of the induction 4601 // variable and induction variable update remain scalar. 4602 for (auto &Induction : Legal->getInductionVars()) { 4603 auto *Ind = Induction.first; 4604 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4605 4606 // We already considered pointer induction variables, so there's no reason 4607 // to look at their users again. 4608 // 4609 // TODO: Once we are able to vectorize pointer induction variables we 4610 // should no longer skip over them here. 4611 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4612 continue; 4613 4614 // If tail-folding is applied, the primary induction variable will be used 4615 // to feed a vector compare. 4616 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4617 continue; 4618 4619 // Determine if all users of the induction variable are scalar after 4620 // vectorization. 4621 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4622 auto *I = cast<Instruction>(U); 4623 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4624 }); 4625 if (!ScalarInd) 4626 continue; 4627 4628 // Determine if all users of the induction variable update instruction are 4629 // scalar after vectorization. 4630 auto ScalarIndUpdate = 4631 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4632 auto *I = cast<Instruction>(U); 4633 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4634 }); 4635 if (!ScalarIndUpdate) 4636 continue; 4637 4638 // The induction variable and its update instruction will remain scalar. 4639 Worklist.insert(Ind); 4640 Worklist.insert(IndUpdate); 4641 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4642 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4643 << "\n"); 4644 } 4645 4646 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4647 } 4648 4649 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4650 if (!blockNeedsPredication(I->getParent())) 4651 return false; 4652 switch(I->getOpcode()) { 4653 default: 4654 break; 4655 case Instruction::Load: 4656 case Instruction::Store: { 4657 if (!Legal->isMaskRequired(I)) 4658 return false; 4659 auto *Ptr = getLoadStorePointerOperand(I); 4660 auto *Ty = getMemInstValueType(I); 4661 // We have already decided how to vectorize this instruction, get that 4662 // result. 4663 if (VF > 1) { 4664 InstWidening WideningDecision = getWideningDecision(I, VF); 4665 assert(WideningDecision != CM_Unknown && 4666 "Widening decision should be ready at this moment"); 4667 return WideningDecision == CM_Scalarize; 4668 } 4669 const Align Alignment = getLoadStoreAlignment(I); 4670 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4671 isLegalMaskedGather(Ty, Alignment)) 4672 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4673 isLegalMaskedScatter(Ty, Alignment)); 4674 } 4675 case Instruction::UDiv: 4676 case Instruction::SDiv: 4677 case Instruction::SRem: 4678 case Instruction::URem: 4679 return mayDivideByZero(*I); 4680 } 4681 return false; 4682 } 4683 4684 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4685 unsigned VF) { 4686 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4687 assert(getWideningDecision(I, VF) == CM_Unknown && 4688 "Decision should not be set yet."); 4689 auto *Group = getInterleavedAccessGroup(I); 4690 assert(Group && "Must have a group."); 4691 4692 // If the instruction's allocated size doesn't equal it's type size, it 4693 // requires padding and will be scalarized. 4694 auto &DL = I->getModule()->getDataLayout(); 4695 auto *ScalarTy = getMemInstValueType(I); 4696 if (hasIrregularType(ScalarTy, DL, VF)) 4697 return false; 4698 4699 // Check if masking is required. 4700 // A Group may need masking for one of two reasons: it resides in a block that 4701 // needs predication, or it was decided to use masking to deal with gaps. 4702 bool PredicatedAccessRequiresMasking = 4703 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4704 bool AccessWithGapsRequiresMasking = 4705 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4706 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4707 return true; 4708 4709 // If masked interleaving is required, we expect that the user/target had 4710 // enabled it, because otherwise it either wouldn't have been created or 4711 // it should have been invalidated by the CostModel. 4712 assert(useMaskedInterleavedAccesses(TTI) && 4713 "Masked interleave-groups for predicated accesses are not enabled."); 4714 4715 auto *Ty = getMemInstValueType(I); 4716 const Align Alignment = getLoadStoreAlignment(I); 4717 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4718 : TTI.isLegalMaskedStore(Ty, Alignment); 4719 } 4720 4721 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4722 unsigned VF) { 4723 // Get and ensure we have a valid memory instruction. 4724 LoadInst *LI = dyn_cast<LoadInst>(I); 4725 StoreInst *SI = dyn_cast<StoreInst>(I); 4726 assert((LI || SI) && "Invalid memory instruction"); 4727 4728 auto *Ptr = getLoadStorePointerOperand(I); 4729 4730 // In order to be widened, the pointer should be consecutive, first of all. 4731 if (!Legal->isConsecutivePtr(Ptr)) 4732 return false; 4733 4734 // If the instruction is a store located in a predicated block, it will be 4735 // scalarized. 4736 if (isScalarWithPredication(I)) 4737 return false; 4738 4739 // If the instruction's allocated size doesn't equal it's type size, it 4740 // requires padding and will be scalarized. 4741 auto &DL = I->getModule()->getDataLayout(); 4742 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4743 if (hasIrregularType(ScalarTy, DL, VF)) 4744 return false; 4745 4746 return true; 4747 } 4748 4749 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4750 // We should not collect Uniforms more than once per VF. Right now, 4751 // this function is called from collectUniformsAndScalars(), which 4752 // already does this check. Collecting Uniforms for VF=1 does not make any 4753 // sense. 4754 4755 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4756 "This function should not be visited twice for the same VF"); 4757 4758 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4759 // not analyze again. Uniforms.count(VF) will return 1. 4760 Uniforms[VF].clear(); 4761 4762 // We now know that the loop is vectorizable! 4763 // Collect instructions inside the loop that will remain uniform after 4764 // vectorization. 4765 4766 // Global values, params and instructions outside of current loop are out of 4767 // scope. 4768 auto isOutOfScope = [&](Value *V) -> bool { 4769 Instruction *I = dyn_cast<Instruction>(V); 4770 return (!I || !TheLoop->contains(I)); 4771 }; 4772 4773 SetVector<Instruction *> Worklist; 4774 BasicBlock *Latch = TheLoop->getLoopLatch(); 4775 4776 // Instructions that are scalar with predication must not be considered 4777 // uniform after vectorization, because that would create an erroneous 4778 // replicating region where only a single instance out of VF should be formed. 4779 // TODO: optimize such seldom cases if found important, see PR40816. 4780 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4781 if (isScalarWithPredication(I, VF)) { 4782 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4783 << *I << "\n"); 4784 return; 4785 } 4786 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4787 Worklist.insert(I); 4788 }; 4789 4790 // Start with the conditional branch. If the branch condition is an 4791 // instruction contained in the loop that is only used by the branch, it is 4792 // uniform. 4793 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4794 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4795 addToWorklistIfAllowed(Cmp); 4796 4797 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4798 // are pointers that are treated like consecutive pointers during 4799 // vectorization. The pointer operands of interleaved accesses are an 4800 // example. 4801 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4802 4803 // Holds pointer operands of instructions that are possibly non-uniform. 4804 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4805 4806 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4807 InstWidening WideningDecision = getWideningDecision(I, VF); 4808 assert(WideningDecision != CM_Unknown && 4809 "Widening decision should be ready at this moment"); 4810 4811 return (WideningDecision == CM_Widen || 4812 WideningDecision == CM_Widen_Reverse || 4813 WideningDecision == CM_Interleave); 4814 }; 4815 // Iterate over the instructions in the loop, and collect all 4816 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4817 // that a consecutive-like pointer operand will be scalarized, we collect it 4818 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4819 // getelementptr instruction can be used by both vectorized and scalarized 4820 // memory instructions. For example, if a loop loads and stores from the same 4821 // location, but the store is conditional, the store will be scalarized, and 4822 // the getelementptr won't remain uniform. 4823 for (auto *BB : TheLoop->blocks()) 4824 for (auto &I : *BB) { 4825 // If there's no pointer operand, there's nothing to do. 4826 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4827 if (!Ptr) 4828 continue; 4829 4830 // True if all users of Ptr are memory accesses that have Ptr as their 4831 // pointer operand. 4832 auto UsersAreMemAccesses = 4833 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4834 return getLoadStorePointerOperand(U) == Ptr; 4835 }); 4836 4837 // Ensure the memory instruction will not be scalarized or used by 4838 // gather/scatter, making its pointer operand non-uniform. If the pointer 4839 // operand is used by any instruction other than a memory access, we 4840 // conservatively assume the pointer operand may be non-uniform. 4841 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4842 PossibleNonUniformPtrs.insert(Ptr); 4843 4844 // If the memory instruction will be vectorized and its pointer operand 4845 // is consecutive-like, or interleaving - the pointer operand should 4846 // remain uniform. 4847 else 4848 ConsecutiveLikePtrs.insert(Ptr); 4849 } 4850 4851 // Add to the Worklist all consecutive and consecutive-like pointers that 4852 // aren't also identified as possibly non-uniform. 4853 for (auto *V : ConsecutiveLikePtrs) 4854 if (!PossibleNonUniformPtrs.count(V)) 4855 addToWorklistIfAllowed(V); 4856 4857 // Expand Worklist in topological order: whenever a new instruction 4858 // is added , its users should be already inside Worklist. It ensures 4859 // a uniform instruction will only be used by uniform instructions. 4860 unsigned idx = 0; 4861 while (idx != Worklist.size()) { 4862 Instruction *I = Worklist[idx++]; 4863 4864 for (auto OV : I->operand_values()) { 4865 // isOutOfScope operands cannot be uniform instructions. 4866 if (isOutOfScope(OV)) 4867 continue; 4868 // First order recurrence Phi's should typically be considered 4869 // non-uniform. 4870 auto *OP = dyn_cast<PHINode>(OV); 4871 if (OP && Legal->isFirstOrderRecurrence(OP)) 4872 continue; 4873 // If all the users of the operand are uniform, then add the 4874 // operand into the uniform worklist. 4875 auto *OI = cast<Instruction>(OV); 4876 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4877 auto *J = cast<Instruction>(U); 4878 return Worklist.count(J) || 4879 (OI == getLoadStorePointerOperand(J) && 4880 isUniformDecision(J, VF)); 4881 })) 4882 addToWorklistIfAllowed(OI); 4883 } 4884 } 4885 4886 // Returns true if Ptr is the pointer operand of a memory access instruction 4887 // I, and I is known to not require scalarization. 4888 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4889 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4890 }; 4891 4892 // For an instruction to be added into Worklist above, all its users inside 4893 // the loop should also be in Worklist. However, this condition cannot be 4894 // true for phi nodes that form a cyclic dependence. We must process phi 4895 // nodes separately. An induction variable will remain uniform if all users 4896 // of the induction variable and induction variable update remain uniform. 4897 // The code below handles both pointer and non-pointer induction variables. 4898 for (auto &Induction : Legal->getInductionVars()) { 4899 auto *Ind = Induction.first; 4900 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4901 4902 // Determine if all users of the induction variable are uniform after 4903 // vectorization. 4904 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4905 auto *I = cast<Instruction>(U); 4906 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4907 isVectorizedMemAccessUse(I, Ind); 4908 }); 4909 if (!UniformInd) 4910 continue; 4911 4912 // Determine if all users of the induction variable update instruction are 4913 // uniform after vectorization. 4914 auto UniformIndUpdate = 4915 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4916 auto *I = cast<Instruction>(U); 4917 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4918 isVectorizedMemAccessUse(I, IndUpdate); 4919 }); 4920 if (!UniformIndUpdate) 4921 continue; 4922 4923 // The induction variable and its update instruction will remain uniform. 4924 addToWorklistIfAllowed(Ind); 4925 addToWorklistIfAllowed(IndUpdate); 4926 } 4927 4928 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4929 } 4930 4931 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4932 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4933 4934 if (Legal->getRuntimePointerChecking()->Need) { 4935 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4936 "runtime pointer checks needed. Enable vectorization of this " 4937 "loop with '#pragma clang loop vectorize(enable)' when " 4938 "compiling with -Os/-Oz", 4939 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4940 return true; 4941 } 4942 4943 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4944 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4945 "runtime SCEV checks needed. Enable vectorization of this " 4946 "loop with '#pragma clang loop vectorize(enable)' when " 4947 "compiling with -Os/-Oz", 4948 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4949 return true; 4950 } 4951 4952 assert(Legal->getLAI()->getSymbolicStrides().empty() && 4953 "Specializing for stride == 1 under -Os/-Oz"); 4954 4955 return false; 4956 } 4957 4958 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 4959 unsigned UserIC) { 4960 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4961 // TODO: It may by useful to do since it's still likely to be dynamically 4962 // uniform if the target can skip. 4963 reportVectorizationFailure( 4964 "Not inserting runtime ptr check for divergent target", 4965 "runtime pointer checks needed. Not enabled for divergent target", 4966 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4967 return None; 4968 } 4969 4970 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4971 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4972 if (TC == 1) { 4973 reportVectorizationFailure("Single iteration (non) loop", 4974 "loop trip count is one, irrelevant for vectorization", 4975 "SingleIterationLoop", ORE, TheLoop); 4976 return None; 4977 } 4978 4979 switch (ScalarEpilogueStatus) { 4980 case CM_ScalarEpilogueAllowed: 4981 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 4982 case CM_ScalarEpilogueNotNeededUsePredicate: 4983 LLVM_DEBUG( 4984 dbgs() << "LV: vector predicate hint/switch found.\n" 4985 << "LV: Not allowing scalar epilogue, creating predicated " 4986 << "vector loop.\n"); 4987 break; 4988 case CM_ScalarEpilogueNotAllowedLowTripLoop: 4989 // fallthrough as a special case of OptForSize 4990 case CM_ScalarEpilogueNotAllowedOptSize: 4991 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 4992 LLVM_DEBUG( 4993 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 4994 else 4995 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 4996 << "count.\n"); 4997 4998 // Bail if runtime checks are required, which are not good when optimising 4999 // for size. 5000 if (runtimeChecksRequired()) 5001 return None; 5002 break; 5003 } 5004 5005 // Now try the tail folding 5006 5007 // Invalidate interleave groups that require an epilogue if we can't mask 5008 // the interleave-group. 5009 if (!useMaskedInterleavedAccesses(TTI)) { 5010 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5011 "No decisions should have been taken at this point"); 5012 // Note: There is no need to invalidate any cost modeling decisions here, as 5013 // non where taken so far. 5014 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5015 } 5016 5017 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5018 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5019 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5020 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5021 // Accept MaxVF if we do not have a tail. 5022 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5023 return MaxVF; 5024 } 5025 5026 // If we don't know the precise trip count, or if the trip count that we 5027 // found modulo the vectorization factor is not zero, try to fold the tail 5028 // by masking. 5029 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5030 if (Legal->prepareToFoldTailByMasking()) { 5031 FoldTailByMasking = true; 5032 return MaxVF; 5033 } 5034 5035 if (TC == 0) { 5036 reportVectorizationFailure( 5037 "Unable to calculate the loop count due to complex control flow", 5038 "unable to calculate the loop count due to complex control flow", 5039 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5040 return None; 5041 } 5042 5043 reportVectorizationFailure( 5044 "Cannot optimize for size and vectorize at the same time.", 5045 "cannot optimize for size and vectorize at the same time. " 5046 "Enable vectorization of this loop with '#pragma clang loop " 5047 "vectorize(enable)' when compiling with -Os/-Oz", 5048 "NoTailLoopWithOptForSize", ORE, TheLoop); 5049 return None; 5050 } 5051 5052 unsigned 5053 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5054 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5055 unsigned SmallestType, WidestType; 5056 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5057 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5058 5059 // Get the maximum safe dependence distance in bits computed by LAA. 5060 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5061 // the memory accesses that is most restrictive (involved in the smallest 5062 // dependence distance). 5063 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5064 5065 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5066 5067 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5068 // Note that both WidestRegister and WidestType may not be a powers of 2. 5069 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5070 5071 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5072 << " / " << WidestType << " bits.\n"); 5073 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5074 << WidestRegister << " bits.\n"); 5075 5076 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5077 " into one vector!"); 5078 if (MaxVectorSize == 0) { 5079 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5080 MaxVectorSize = 1; 5081 return MaxVectorSize; 5082 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5083 isPowerOf2_32(ConstTripCount)) { 5084 // We need to clamp the VF to be the ConstTripCount. There is no point in 5085 // choosing a higher viable VF as done in the loop below. 5086 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5087 << ConstTripCount << "\n"); 5088 MaxVectorSize = ConstTripCount; 5089 return MaxVectorSize; 5090 } 5091 5092 unsigned MaxVF = MaxVectorSize; 5093 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5094 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5095 // Collect all viable vectorization factors larger than the default MaxVF 5096 // (i.e. MaxVectorSize). 5097 SmallVector<unsigned, 8> VFs; 5098 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5099 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5100 VFs.push_back(VS); 5101 5102 // For each VF calculate its register usage. 5103 auto RUs = calculateRegisterUsage(VFs); 5104 5105 // Select the largest VF which doesn't require more registers than existing 5106 // ones. 5107 for (int i = RUs.size() - 1; i >= 0; --i) { 5108 bool Selected = true; 5109 for (auto& pair : RUs[i].MaxLocalUsers) { 5110 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5111 if (pair.second > TargetNumRegisters) 5112 Selected = false; 5113 } 5114 if (Selected) { 5115 MaxVF = VFs[i]; 5116 break; 5117 } 5118 } 5119 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5120 if (MaxVF < MinVF) { 5121 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5122 << ") with target's minimum: " << MinVF << '\n'); 5123 MaxVF = MinVF; 5124 } 5125 } 5126 } 5127 return MaxVF; 5128 } 5129 5130 VectorizationFactor 5131 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5132 float Cost = expectedCost(1).first; 5133 const float ScalarCost = Cost; 5134 unsigned Width = 1; 5135 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5136 5137 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5138 if (ForceVectorization && MaxVF > 1) { 5139 // Ignore scalar width, because the user explicitly wants vectorization. 5140 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5141 // evaluation. 5142 Cost = std::numeric_limits<float>::max(); 5143 } 5144 5145 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5146 // Notice that the vector loop needs to be executed less times, so 5147 // we need to divide the cost of the vector loops by the width of 5148 // the vector elements. 5149 VectorizationCostTy C = expectedCost(i); 5150 float VectorCost = C.first / (float)i; 5151 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5152 << " costs: " << (int)VectorCost << ".\n"); 5153 if (!C.second && !ForceVectorization) { 5154 LLVM_DEBUG( 5155 dbgs() << "LV: Not considering vector loop of width " << i 5156 << " because it will not generate any vector instructions.\n"); 5157 continue; 5158 } 5159 if (VectorCost < Cost) { 5160 Cost = VectorCost; 5161 Width = i; 5162 } 5163 } 5164 5165 if (!EnableCondStoresVectorization && NumPredStores) { 5166 reportVectorizationFailure("There are conditional stores.", 5167 "store that is conditionally executed prevents vectorization", 5168 "ConditionalStore", ORE, TheLoop); 5169 Width = 1; 5170 Cost = ScalarCost; 5171 } 5172 5173 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5174 << "LV: Vectorization seems to be not beneficial, " 5175 << "but was forced by a user.\n"); 5176 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5177 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5178 return Factor; 5179 } 5180 5181 std::pair<unsigned, unsigned> 5182 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5183 unsigned MinWidth = -1U; 5184 unsigned MaxWidth = 8; 5185 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5186 5187 // For each block. 5188 for (BasicBlock *BB : TheLoop->blocks()) { 5189 // For each instruction in the loop. 5190 for (Instruction &I : BB->instructionsWithoutDebug()) { 5191 Type *T = I.getType(); 5192 5193 // Skip ignored values. 5194 if (ValuesToIgnore.count(&I)) 5195 continue; 5196 5197 // Only examine Loads, Stores and PHINodes. 5198 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5199 continue; 5200 5201 // Examine PHI nodes that are reduction variables. Update the type to 5202 // account for the recurrence type. 5203 if (auto *PN = dyn_cast<PHINode>(&I)) { 5204 if (!Legal->isReductionVariable(PN)) 5205 continue; 5206 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5207 T = RdxDesc.getRecurrenceType(); 5208 } 5209 5210 // Examine the stored values. 5211 if (auto *ST = dyn_cast<StoreInst>(&I)) 5212 T = ST->getValueOperand()->getType(); 5213 5214 // Ignore loaded pointer types and stored pointer types that are not 5215 // vectorizable. 5216 // 5217 // FIXME: The check here attempts to predict whether a load or store will 5218 // be vectorized. We only know this for certain after a VF has 5219 // been selected. Here, we assume that if an access can be 5220 // vectorized, it will be. We should also look at extending this 5221 // optimization to non-pointer types. 5222 // 5223 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5224 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5225 continue; 5226 5227 MinWidth = std::min(MinWidth, 5228 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5229 MaxWidth = std::max(MaxWidth, 5230 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5231 } 5232 } 5233 5234 return {MinWidth, MaxWidth}; 5235 } 5236 5237 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5238 unsigned LoopCost) { 5239 // -- The interleave heuristics -- 5240 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5241 // There are many micro-architectural considerations that we can't predict 5242 // at this level. For example, frontend pressure (on decode or fetch) due to 5243 // code size, or the number and capabilities of the execution ports. 5244 // 5245 // We use the following heuristics to select the interleave count: 5246 // 1. If the code has reductions, then we interleave to break the cross 5247 // iteration dependency. 5248 // 2. If the loop is really small, then we interleave to reduce the loop 5249 // overhead. 5250 // 3. We don't interleave if we think that we will spill registers to memory 5251 // due to the increased register pressure. 5252 5253 if (!isScalarEpilogueAllowed()) 5254 return 1; 5255 5256 // We used the distance for the interleave count. 5257 if (Legal->getMaxSafeDepDistBytes() != -1U) 5258 return 1; 5259 5260 // Do not interleave loops with a relatively small known or estimated trip 5261 // count. 5262 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5263 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5264 return 1; 5265 5266 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5267 // We divide by these constants so assume that we have at least one 5268 // instruction that uses at least one register. 5269 for (auto& pair : R.MaxLocalUsers) { 5270 pair.second = std::max(pair.second, 1U); 5271 } 5272 5273 // We calculate the interleave count using the following formula. 5274 // Subtract the number of loop invariants from the number of available 5275 // registers. These registers are used by all of the interleaved instances. 5276 // Next, divide the remaining registers by the number of registers that is 5277 // required by the loop, in order to estimate how many parallel instances 5278 // fit without causing spills. All of this is rounded down if necessary to be 5279 // a power of two. We want power of two interleave count to simplify any 5280 // addressing operations or alignment considerations. 5281 // We also want power of two interleave counts to ensure that the induction 5282 // variable of the vector loop wraps to zero, when tail is folded by masking; 5283 // this currently happens when OptForSize, in which case IC is set to 1 above. 5284 unsigned IC = UINT_MAX; 5285 5286 for (auto& pair : R.MaxLocalUsers) { 5287 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5288 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5289 << " registers of " 5290 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5291 if (VF == 1) { 5292 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5293 TargetNumRegisters = ForceTargetNumScalarRegs; 5294 } else { 5295 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5296 TargetNumRegisters = ForceTargetNumVectorRegs; 5297 } 5298 unsigned MaxLocalUsers = pair.second; 5299 unsigned LoopInvariantRegs = 0; 5300 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5301 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5302 5303 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5304 // Don't count the induction variable as interleaved. 5305 if (EnableIndVarRegisterHeur) { 5306 TmpIC = 5307 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5308 std::max(1U, (MaxLocalUsers - 1))); 5309 } 5310 5311 IC = std::min(IC, TmpIC); 5312 } 5313 5314 // Clamp the interleave ranges to reasonable counts. 5315 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5316 5317 // Check if the user has overridden the max. 5318 if (VF == 1) { 5319 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5320 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5321 } else { 5322 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5323 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5324 } 5325 5326 // If trip count is known or estimated compile time constant, limit the 5327 // interleave count to be less than the trip count divided by VF. 5328 if (BestKnownTC) { 5329 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5330 } 5331 5332 // If we did not calculate the cost for VF (because the user selected the VF) 5333 // then we calculate the cost of VF here. 5334 if (LoopCost == 0) 5335 LoopCost = expectedCost(VF).first; 5336 5337 assert(LoopCost && "Non-zero loop cost expected"); 5338 5339 // Clamp the calculated IC to be between the 1 and the max interleave count 5340 // that the target and trip count allows. 5341 if (IC > MaxInterleaveCount) 5342 IC = MaxInterleaveCount; 5343 else if (IC < 1) 5344 IC = 1; 5345 5346 // Interleave if we vectorized this loop and there is a reduction that could 5347 // benefit from interleaving. 5348 if (VF > 1 && !Legal->getReductionVars().empty()) { 5349 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5350 return IC; 5351 } 5352 5353 // Note that if we've already vectorized the loop we will have done the 5354 // runtime check and so interleaving won't require further checks. 5355 bool InterleavingRequiresRuntimePointerCheck = 5356 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5357 5358 // We want to interleave small loops in order to reduce the loop overhead and 5359 // potentially expose ILP opportunities. 5360 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5361 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5362 // We assume that the cost overhead is 1 and we use the cost model 5363 // to estimate the cost of the loop and interleave until the cost of the 5364 // loop overhead is about 5% of the cost of the loop. 5365 unsigned SmallIC = 5366 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5367 5368 // Interleave until store/load ports (estimated by max interleave count) are 5369 // saturated. 5370 unsigned NumStores = Legal->getNumStores(); 5371 unsigned NumLoads = Legal->getNumLoads(); 5372 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5373 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5374 5375 // If we have a scalar reduction (vector reductions are already dealt with 5376 // by this point), we can increase the critical path length if the loop 5377 // we're interleaving is inside another loop. Limit, by default to 2, so the 5378 // critical path only gets increased by one reduction operation. 5379 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5380 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5381 SmallIC = std::min(SmallIC, F); 5382 StoresIC = std::min(StoresIC, F); 5383 LoadsIC = std::min(LoadsIC, F); 5384 } 5385 5386 if (EnableLoadStoreRuntimeInterleave && 5387 std::max(StoresIC, LoadsIC) > SmallIC) { 5388 LLVM_DEBUG( 5389 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5390 return std::max(StoresIC, LoadsIC); 5391 } 5392 5393 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5394 return SmallIC; 5395 } 5396 5397 // Interleave if this is a large loop (small loops are already dealt with by 5398 // this point) that could benefit from interleaving. 5399 bool HasReductions = !Legal->getReductionVars().empty(); 5400 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5401 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5402 return IC; 5403 } 5404 5405 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5406 return 1; 5407 } 5408 5409 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5410 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5411 // This function calculates the register usage by measuring the highest number 5412 // of values that are alive at a single location. Obviously, this is a very 5413 // rough estimation. We scan the loop in a topological order in order and 5414 // assign a number to each instruction. We use RPO to ensure that defs are 5415 // met before their users. We assume that each instruction that has in-loop 5416 // users starts an interval. We record every time that an in-loop value is 5417 // used, so we have a list of the first and last occurrences of each 5418 // instruction. Next, we transpose this data structure into a multi map that 5419 // holds the list of intervals that *end* at a specific location. This multi 5420 // map allows us to perform a linear search. We scan the instructions linearly 5421 // and record each time that a new interval starts, by placing it in a set. 5422 // If we find this value in the multi-map then we remove it from the set. 5423 // The max register usage is the maximum size of the set. 5424 // We also search for instructions that are defined outside the loop, but are 5425 // used inside the loop. We need this number separately from the max-interval 5426 // usage number because when we unroll, loop-invariant values do not take 5427 // more register. 5428 LoopBlocksDFS DFS(TheLoop); 5429 DFS.perform(LI); 5430 5431 RegisterUsage RU; 5432 5433 // Each 'key' in the map opens a new interval. The values 5434 // of the map are the index of the 'last seen' usage of the 5435 // instruction that is the key. 5436 using IntervalMap = DenseMap<Instruction *, unsigned>; 5437 5438 // Maps instruction to its index. 5439 SmallVector<Instruction *, 64> IdxToInstr; 5440 // Marks the end of each interval. 5441 IntervalMap EndPoint; 5442 // Saves the list of instruction indices that are used in the loop. 5443 SmallPtrSet<Instruction *, 8> Ends; 5444 // Saves the list of values that are used in the loop but are 5445 // defined outside the loop, such as arguments and constants. 5446 SmallPtrSet<Value *, 8> LoopInvariants; 5447 5448 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5449 for (Instruction &I : BB->instructionsWithoutDebug()) { 5450 IdxToInstr.push_back(&I); 5451 5452 // Save the end location of each USE. 5453 for (Value *U : I.operands()) { 5454 auto *Instr = dyn_cast<Instruction>(U); 5455 5456 // Ignore non-instruction values such as arguments, constants, etc. 5457 if (!Instr) 5458 continue; 5459 5460 // If this instruction is outside the loop then record it and continue. 5461 if (!TheLoop->contains(Instr)) { 5462 LoopInvariants.insert(Instr); 5463 continue; 5464 } 5465 5466 // Overwrite previous end points. 5467 EndPoint[Instr] = IdxToInstr.size(); 5468 Ends.insert(Instr); 5469 } 5470 } 5471 } 5472 5473 // Saves the list of intervals that end with the index in 'key'. 5474 using InstrList = SmallVector<Instruction *, 2>; 5475 DenseMap<unsigned, InstrList> TransposeEnds; 5476 5477 // Transpose the EndPoints to a list of values that end at each index. 5478 for (auto &Interval : EndPoint) 5479 TransposeEnds[Interval.second].push_back(Interval.first); 5480 5481 SmallPtrSet<Instruction *, 8> OpenIntervals; 5482 5483 // Get the size of the widest register. 5484 unsigned MaxSafeDepDist = -1U; 5485 if (Legal->getMaxSafeDepDistBytes() != -1U) 5486 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5487 unsigned WidestRegister = 5488 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5489 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5490 5491 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5492 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5493 5494 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5495 5496 // A lambda that gets the register usage for the given type and VF. 5497 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5498 if (Ty->isTokenTy()) 5499 return 0U; 5500 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5501 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5502 }; 5503 5504 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5505 Instruction *I = IdxToInstr[i]; 5506 5507 // Remove all of the instructions that end at this location. 5508 InstrList &List = TransposeEnds[i]; 5509 for (Instruction *ToRemove : List) 5510 OpenIntervals.erase(ToRemove); 5511 5512 // Ignore instructions that are never used within the loop. 5513 if (!Ends.count(I)) 5514 continue; 5515 5516 // Skip ignored values. 5517 if (ValuesToIgnore.count(I)) 5518 continue; 5519 5520 // For each VF find the maximum usage of registers. 5521 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5522 // Count the number of live intervals. 5523 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5524 5525 if (VFs[j] == 1) { 5526 for (auto Inst : OpenIntervals) { 5527 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5528 if (RegUsage.find(ClassID) == RegUsage.end()) 5529 RegUsage[ClassID] = 1; 5530 else 5531 RegUsage[ClassID] += 1; 5532 } 5533 } else { 5534 collectUniformsAndScalars(VFs[j]); 5535 for (auto Inst : OpenIntervals) { 5536 // Skip ignored values for VF > 1. 5537 if (VecValuesToIgnore.count(Inst)) 5538 continue; 5539 if (isScalarAfterVectorization(Inst, VFs[j])) { 5540 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5541 if (RegUsage.find(ClassID) == RegUsage.end()) 5542 RegUsage[ClassID] = 1; 5543 else 5544 RegUsage[ClassID] += 1; 5545 } else { 5546 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5547 if (RegUsage.find(ClassID) == RegUsage.end()) 5548 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5549 else 5550 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5551 } 5552 } 5553 } 5554 5555 for (auto& pair : RegUsage) { 5556 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5557 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5558 else 5559 MaxUsages[j][pair.first] = pair.second; 5560 } 5561 } 5562 5563 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5564 << OpenIntervals.size() << '\n'); 5565 5566 // Add the current instruction to the list of open intervals. 5567 OpenIntervals.insert(I); 5568 } 5569 5570 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5571 SmallMapVector<unsigned, unsigned, 4> Invariant; 5572 5573 for (auto Inst : LoopInvariants) { 5574 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5575 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5576 if (Invariant.find(ClassID) == Invariant.end()) 5577 Invariant[ClassID] = Usage; 5578 else 5579 Invariant[ClassID] += Usage; 5580 } 5581 5582 LLVM_DEBUG({ 5583 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5584 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5585 << " item\n"; 5586 for (const auto &pair : MaxUsages[i]) { 5587 dbgs() << "LV(REG): RegisterClass: " 5588 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5589 << " registers\n"; 5590 } 5591 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5592 << " item\n"; 5593 for (const auto &pair : Invariant) { 5594 dbgs() << "LV(REG): RegisterClass: " 5595 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5596 << " registers\n"; 5597 } 5598 }); 5599 5600 RU.LoopInvariantRegs = Invariant; 5601 RU.MaxLocalUsers = MaxUsages[i]; 5602 RUs[i] = RU; 5603 } 5604 5605 return RUs; 5606 } 5607 5608 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5609 // TODO: Cost model for emulated masked load/store is completely 5610 // broken. This hack guides the cost model to use an artificially 5611 // high enough value to practically disable vectorization with such 5612 // operations, except where previously deployed legality hack allowed 5613 // using very low cost values. This is to avoid regressions coming simply 5614 // from moving "masked load/store" check from legality to cost model. 5615 // Masked Load/Gather emulation was previously never allowed. 5616 // Limited number of Masked Store/Scatter emulation was allowed. 5617 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5618 return isa<LoadInst>(I) || 5619 (isa<StoreInst>(I) && 5620 NumPredStores > NumberOfStoresToPredicate); 5621 } 5622 5623 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5624 // If we aren't vectorizing the loop, or if we've already collected the 5625 // instructions to scalarize, there's nothing to do. Collection may already 5626 // have occurred if we have a user-selected VF and are now computing the 5627 // expected cost for interleaving. 5628 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5629 return; 5630 5631 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5632 // not profitable to scalarize any instructions, the presence of VF in the 5633 // map will indicate that we've analyzed it already. 5634 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5635 5636 // Find all the instructions that are scalar with predication in the loop and 5637 // determine if it would be better to not if-convert the blocks they are in. 5638 // If so, we also record the instructions to scalarize. 5639 for (BasicBlock *BB : TheLoop->blocks()) { 5640 if (!blockNeedsPredication(BB)) 5641 continue; 5642 for (Instruction &I : *BB) 5643 if (isScalarWithPredication(&I)) { 5644 ScalarCostsTy ScalarCosts; 5645 // Do not apply discount logic if hacked cost is needed 5646 // for emulated masked memrefs. 5647 if (!useEmulatedMaskMemRefHack(&I) && 5648 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5649 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5650 // Remember that BB will remain after vectorization. 5651 PredicatedBBsAfterVectorization.insert(BB); 5652 } 5653 } 5654 } 5655 5656 int LoopVectorizationCostModel::computePredInstDiscount( 5657 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5658 unsigned VF) { 5659 assert(!isUniformAfterVectorization(PredInst, VF) && 5660 "Instruction marked uniform-after-vectorization will be predicated"); 5661 5662 // Initialize the discount to zero, meaning that the scalar version and the 5663 // vector version cost the same. 5664 int Discount = 0; 5665 5666 // Holds instructions to analyze. The instructions we visit are mapped in 5667 // ScalarCosts. Those instructions are the ones that would be scalarized if 5668 // we find that the scalar version costs less. 5669 SmallVector<Instruction *, 8> Worklist; 5670 5671 // Returns true if the given instruction can be scalarized. 5672 auto canBeScalarized = [&](Instruction *I) -> bool { 5673 // We only attempt to scalarize instructions forming a single-use chain 5674 // from the original predicated block that would otherwise be vectorized. 5675 // Although not strictly necessary, we give up on instructions we know will 5676 // already be scalar to avoid traversing chains that are unlikely to be 5677 // beneficial. 5678 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5679 isScalarAfterVectorization(I, VF)) 5680 return false; 5681 5682 // If the instruction is scalar with predication, it will be analyzed 5683 // separately. We ignore it within the context of PredInst. 5684 if (isScalarWithPredication(I)) 5685 return false; 5686 5687 // If any of the instruction's operands are uniform after vectorization, 5688 // the instruction cannot be scalarized. This prevents, for example, a 5689 // masked load from being scalarized. 5690 // 5691 // We assume we will only emit a value for lane zero of an instruction 5692 // marked uniform after vectorization, rather than VF identical values. 5693 // Thus, if we scalarize an instruction that uses a uniform, we would 5694 // create uses of values corresponding to the lanes we aren't emitting code 5695 // for. This behavior can be changed by allowing getScalarValue to clone 5696 // the lane zero values for uniforms rather than asserting. 5697 for (Use &U : I->operands()) 5698 if (auto *J = dyn_cast<Instruction>(U.get())) 5699 if (isUniformAfterVectorization(J, VF)) 5700 return false; 5701 5702 // Otherwise, we can scalarize the instruction. 5703 return true; 5704 }; 5705 5706 // Compute the expected cost discount from scalarizing the entire expression 5707 // feeding the predicated instruction. We currently only consider expressions 5708 // that are single-use instruction chains. 5709 Worklist.push_back(PredInst); 5710 while (!Worklist.empty()) { 5711 Instruction *I = Worklist.pop_back_val(); 5712 5713 // If we've already analyzed the instruction, there's nothing to do. 5714 if (ScalarCosts.find(I) != ScalarCosts.end()) 5715 continue; 5716 5717 // Compute the cost of the vector instruction. Note that this cost already 5718 // includes the scalarization overhead of the predicated instruction. 5719 unsigned VectorCost = getInstructionCost(I, VF).first; 5720 5721 // Compute the cost of the scalarized instruction. This cost is the cost of 5722 // the instruction as if it wasn't if-converted and instead remained in the 5723 // predicated block. We will scale this cost by block probability after 5724 // computing the scalarization overhead. 5725 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5726 5727 // Compute the scalarization overhead of needed insertelement instructions 5728 // and phi nodes. 5729 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5730 ScalarCost += TTI.getScalarizationOverhead( 5731 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5732 APInt::getAllOnesValue(VF), true, false); 5733 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5734 TTI::TCK_RecipThroughput); 5735 } 5736 5737 // Compute the scalarization overhead of needed extractelement 5738 // instructions. For each of the instruction's operands, if the operand can 5739 // be scalarized, add it to the worklist; otherwise, account for the 5740 // overhead. 5741 for (Use &U : I->operands()) 5742 if (auto *J = dyn_cast<Instruction>(U.get())) { 5743 assert(VectorType::isValidElementType(J->getType()) && 5744 "Instruction has non-scalar type"); 5745 if (canBeScalarized(J)) 5746 Worklist.push_back(J); 5747 else if (needsExtract(J, VF)) 5748 ScalarCost += TTI.getScalarizationOverhead( 5749 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5750 APInt::getAllOnesValue(VF), false, true); 5751 } 5752 5753 // Scale the total scalar cost by block probability. 5754 ScalarCost /= getReciprocalPredBlockProb(); 5755 5756 // Compute the discount. A non-negative discount means the vector version 5757 // of the instruction costs more, and scalarizing would be beneficial. 5758 Discount += VectorCost - ScalarCost; 5759 ScalarCosts[I] = ScalarCost; 5760 } 5761 5762 return Discount; 5763 } 5764 5765 LoopVectorizationCostModel::VectorizationCostTy 5766 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5767 VectorizationCostTy Cost; 5768 5769 // For each block. 5770 for (BasicBlock *BB : TheLoop->blocks()) { 5771 VectorizationCostTy BlockCost; 5772 5773 // For each instruction in the old loop. 5774 for (Instruction &I : BB->instructionsWithoutDebug()) { 5775 // Skip ignored values. 5776 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5777 continue; 5778 5779 VectorizationCostTy C = getInstructionCost(&I, VF); 5780 5781 // Check if we should override the cost. 5782 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5783 C.first = ForceTargetInstructionCost; 5784 5785 BlockCost.first += C.first; 5786 BlockCost.second |= C.second; 5787 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5788 << " for VF " << VF << " For instruction: " << I 5789 << '\n'); 5790 } 5791 5792 // If we are vectorizing a predicated block, it will have been 5793 // if-converted. This means that the block's instructions (aside from 5794 // stores and instructions that may divide by zero) will now be 5795 // unconditionally executed. For the scalar case, we may not always execute 5796 // the predicated block. Thus, scale the block's cost by the probability of 5797 // executing it. 5798 if (VF == 1 && blockNeedsPredication(BB)) 5799 BlockCost.first /= getReciprocalPredBlockProb(); 5800 5801 Cost.first += BlockCost.first; 5802 Cost.second |= BlockCost.second; 5803 } 5804 5805 return Cost; 5806 } 5807 5808 /// Gets Address Access SCEV after verifying that the access pattern 5809 /// is loop invariant except the induction variable dependence. 5810 /// 5811 /// This SCEV can be sent to the Target in order to estimate the address 5812 /// calculation cost. 5813 static const SCEV *getAddressAccessSCEV( 5814 Value *Ptr, 5815 LoopVectorizationLegality *Legal, 5816 PredicatedScalarEvolution &PSE, 5817 const Loop *TheLoop) { 5818 5819 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5820 if (!Gep) 5821 return nullptr; 5822 5823 // We are looking for a gep with all loop invariant indices except for one 5824 // which should be an induction variable. 5825 auto SE = PSE.getSE(); 5826 unsigned NumOperands = Gep->getNumOperands(); 5827 for (unsigned i = 1; i < NumOperands; ++i) { 5828 Value *Opd = Gep->getOperand(i); 5829 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5830 !Legal->isInductionVariable(Opd)) 5831 return nullptr; 5832 } 5833 5834 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5835 return PSE.getSCEV(Ptr); 5836 } 5837 5838 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5839 return Legal->hasStride(I->getOperand(0)) || 5840 Legal->hasStride(I->getOperand(1)); 5841 } 5842 5843 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5844 unsigned VF) { 5845 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5846 Type *ValTy = getMemInstValueType(I); 5847 auto SE = PSE.getSE(); 5848 5849 unsigned AS = getLoadStoreAddressSpace(I); 5850 Value *Ptr = getLoadStorePointerOperand(I); 5851 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5852 5853 // Figure out whether the access is strided and get the stride value 5854 // if it's known in compile time 5855 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5856 5857 // Get the cost of the scalar memory instruction and address computation. 5858 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5859 5860 // Don't pass *I here, since it is scalar but will actually be part of a 5861 // vectorized loop where the user of it is a vectorized instruction. 5862 const Align Alignment = getLoadStoreAlignment(I); 5863 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5864 Alignment, AS, 5865 TTI::TCK_RecipThroughput); 5866 5867 // Get the overhead of the extractelement and insertelement instructions 5868 // we might create due to scalarization. 5869 Cost += getScalarizationOverhead(I, VF); 5870 5871 // If we have a predicated store, it may not be executed for each vector 5872 // lane. Scale the cost by the probability of executing the predicated 5873 // block. 5874 if (isPredicatedInst(I)) { 5875 Cost /= getReciprocalPredBlockProb(); 5876 5877 if (useEmulatedMaskMemRefHack(I)) 5878 // Artificially setting to a high enough value to practically disable 5879 // vectorization with such operations. 5880 Cost = 3000000; 5881 } 5882 5883 return Cost; 5884 } 5885 5886 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5887 unsigned VF) { 5888 Type *ValTy = getMemInstValueType(I); 5889 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5890 Value *Ptr = getLoadStorePointerOperand(I); 5891 unsigned AS = getLoadStoreAddressSpace(I); 5892 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5893 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5894 5895 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5896 "Stride should be 1 or -1 for consecutive memory access"); 5897 const Align Alignment = getLoadStoreAlignment(I); 5898 unsigned Cost = 0; 5899 if (Legal->isMaskRequired(I)) 5900 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5901 CostKind); 5902 else 5903 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5904 CostKind, I); 5905 5906 bool Reverse = ConsecutiveStride < 0; 5907 if (Reverse) 5908 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5909 return Cost; 5910 } 5911 5912 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5913 unsigned VF) { 5914 Type *ValTy = getMemInstValueType(I); 5915 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5916 const Align Alignment = getLoadStoreAlignment(I); 5917 unsigned AS = getLoadStoreAddressSpace(I); 5918 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5919 if (isa<LoadInst>(I)) { 5920 return TTI.getAddressComputationCost(ValTy) + 5921 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5922 CostKind) + 5923 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5924 } 5925 StoreInst *SI = cast<StoreInst>(I); 5926 5927 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5928 return TTI.getAddressComputationCost(ValTy) + 5929 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5930 CostKind) + 5931 (isLoopInvariantStoreValue 5932 ? 0 5933 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5934 VF - 1)); 5935 } 5936 5937 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5938 unsigned VF) { 5939 Type *ValTy = getMemInstValueType(I); 5940 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5941 const Align Alignment = getLoadStoreAlignment(I); 5942 const Value *Ptr = getLoadStorePointerOperand(I); 5943 5944 return TTI.getAddressComputationCost(VectorTy) + 5945 TTI.getGatherScatterOpCost( 5946 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5947 TargetTransformInfo::TCK_RecipThroughput, I); 5948 } 5949 5950 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5951 unsigned VF) { 5952 Type *ValTy = getMemInstValueType(I); 5953 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5954 unsigned AS = getLoadStoreAddressSpace(I); 5955 5956 auto Group = getInterleavedAccessGroup(I); 5957 assert(Group && "Fail to get an interleaved access group."); 5958 5959 unsigned InterleaveFactor = Group->getFactor(); 5960 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 5961 5962 // Holds the indices of existing members in an interleaved load group. 5963 // An interleaved store group doesn't need this as it doesn't allow gaps. 5964 SmallVector<unsigned, 4> Indices; 5965 if (isa<LoadInst>(I)) { 5966 for (unsigned i = 0; i < InterleaveFactor; i++) 5967 if (Group->getMember(i)) 5968 Indices.push_back(i); 5969 } 5970 5971 // Calculate the cost of the whole interleaved group. 5972 bool UseMaskForGaps = 5973 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5974 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5975 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 5976 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 5977 5978 if (Group->isReverse()) { 5979 // TODO: Add support for reversed masked interleaved access. 5980 assert(!Legal->isMaskRequired(I) && 5981 "Reverse masked interleaved access not supported."); 5982 Cost += Group->getNumMembers() * 5983 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5984 } 5985 return Cost; 5986 } 5987 5988 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5989 unsigned VF) { 5990 // Calculate scalar cost only. Vectorization cost should be ready at this 5991 // moment. 5992 if (VF == 1) { 5993 Type *ValTy = getMemInstValueType(I); 5994 const Align Alignment = getLoadStoreAlignment(I); 5995 unsigned AS = getLoadStoreAddressSpace(I); 5996 5997 return TTI.getAddressComputationCost(ValTy) + 5998 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 5999 TTI::TCK_RecipThroughput, I); 6000 } 6001 return getWideningCost(I, VF); 6002 } 6003 6004 LoopVectorizationCostModel::VectorizationCostTy 6005 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6006 // If we know that this instruction will remain uniform, check the cost of 6007 // the scalar version. 6008 if (isUniformAfterVectorization(I, VF)) 6009 VF = 1; 6010 6011 if (VF > 1 && isProfitableToScalarize(I, VF)) 6012 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6013 6014 // Forced scalars do not have any scalarization overhead. 6015 auto ForcedScalar = ForcedScalars.find(VF); 6016 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6017 auto InstSet = ForcedScalar->second; 6018 if (InstSet.count(I)) 6019 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6020 } 6021 6022 Type *VectorTy; 6023 unsigned C = getInstructionCost(I, VF, VectorTy); 6024 6025 bool TypeNotScalarized = 6026 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6027 return VectorizationCostTy(C, TypeNotScalarized); 6028 } 6029 6030 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6031 unsigned VF) { 6032 6033 if (VF == 1) 6034 return 0; 6035 6036 unsigned Cost = 0; 6037 Type *RetTy = ToVectorTy(I->getType(), VF); 6038 if (!RetTy->isVoidTy() && 6039 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6040 Cost += TTI.getScalarizationOverhead( 6041 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6042 6043 // Some targets keep addresses scalar. 6044 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6045 return Cost; 6046 6047 // Some targets support efficient element stores. 6048 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6049 return Cost; 6050 6051 // Collect operands to consider. 6052 CallInst *CI = dyn_cast<CallInst>(I); 6053 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6054 6055 // Skip operands that do not require extraction/scalarization and do not incur 6056 // any overhead. 6057 return Cost + TTI.getOperandsScalarizationOverhead( 6058 filterExtractingOperands(Ops, VF), VF); 6059 } 6060 6061 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6062 if (VF == 1) 6063 return; 6064 NumPredStores = 0; 6065 for (BasicBlock *BB : TheLoop->blocks()) { 6066 // For each instruction in the old loop. 6067 for (Instruction &I : *BB) { 6068 Value *Ptr = getLoadStorePointerOperand(&I); 6069 if (!Ptr) 6070 continue; 6071 6072 // TODO: We should generate better code and update the cost model for 6073 // predicated uniform stores. Today they are treated as any other 6074 // predicated store (see added test cases in 6075 // invariant-store-vectorization.ll). 6076 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6077 NumPredStores++; 6078 6079 if (Legal->isUniform(Ptr) && 6080 // Conditional loads and stores should be scalarized and predicated. 6081 // isScalarWithPredication cannot be used here since masked 6082 // gather/scatters are not considered scalar with predication. 6083 !Legal->blockNeedsPredication(I.getParent())) { 6084 // TODO: Avoid replicating loads and stores instead of 6085 // relying on instcombine to remove them. 6086 // Load: Scalar load + broadcast 6087 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6088 unsigned Cost = getUniformMemOpCost(&I, VF); 6089 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6090 continue; 6091 } 6092 6093 // We assume that widening is the best solution when possible. 6094 if (memoryInstructionCanBeWidened(&I, VF)) { 6095 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6096 int ConsecutiveStride = 6097 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6098 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6099 "Expected consecutive stride."); 6100 InstWidening Decision = 6101 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6102 setWideningDecision(&I, VF, Decision, Cost); 6103 continue; 6104 } 6105 6106 // Choose between Interleaving, Gather/Scatter or Scalarization. 6107 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6108 unsigned NumAccesses = 1; 6109 if (isAccessInterleaved(&I)) { 6110 auto Group = getInterleavedAccessGroup(&I); 6111 assert(Group && "Fail to get an interleaved access group."); 6112 6113 // Make one decision for the whole group. 6114 if (getWideningDecision(&I, VF) != CM_Unknown) 6115 continue; 6116 6117 NumAccesses = Group->getNumMembers(); 6118 if (interleavedAccessCanBeWidened(&I, VF)) 6119 InterleaveCost = getInterleaveGroupCost(&I, VF); 6120 } 6121 6122 unsigned GatherScatterCost = 6123 isLegalGatherOrScatter(&I) 6124 ? getGatherScatterCost(&I, VF) * NumAccesses 6125 : std::numeric_limits<unsigned>::max(); 6126 6127 unsigned ScalarizationCost = 6128 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6129 6130 // Choose better solution for the current VF, 6131 // write down this decision and use it during vectorization. 6132 unsigned Cost; 6133 InstWidening Decision; 6134 if (InterleaveCost <= GatherScatterCost && 6135 InterleaveCost < ScalarizationCost) { 6136 Decision = CM_Interleave; 6137 Cost = InterleaveCost; 6138 } else if (GatherScatterCost < ScalarizationCost) { 6139 Decision = CM_GatherScatter; 6140 Cost = GatherScatterCost; 6141 } else { 6142 Decision = CM_Scalarize; 6143 Cost = ScalarizationCost; 6144 } 6145 // If the instructions belongs to an interleave group, the whole group 6146 // receives the same decision. The whole group receives the cost, but 6147 // the cost will actually be assigned to one instruction. 6148 if (auto Group = getInterleavedAccessGroup(&I)) 6149 setWideningDecision(Group, VF, Decision, Cost); 6150 else 6151 setWideningDecision(&I, VF, Decision, Cost); 6152 } 6153 } 6154 6155 // Make sure that any load of address and any other address computation 6156 // remains scalar unless there is gather/scatter support. This avoids 6157 // inevitable extracts into address registers, and also has the benefit of 6158 // activating LSR more, since that pass can't optimize vectorized 6159 // addresses. 6160 if (TTI.prefersVectorizedAddressing()) 6161 return; 6162 6163 // Start with all scalar pointer uses. 6164 SmallPtrSet<Instruction *, 8> AddrDefs; 6165 for (BasicBlock *BB : TheLoop->blocks()) 6166 for (Instruction &I : *BB) { 6167 Instruction *PtrDef = 6168 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6169 if (PtrDef && TheLoop->contains(PtrDef) && 6170 getWideningDecision(&I, VF) != CM_GatherScatter) 6171 AddrDefs.insert(PtrDef); 6172 } 6173 6174 // Add all instructions used to generate the addresses. 6175 SmallVector<Instruction *, 4> Worklist; 6176 for (auto *I : AddrDefs) 6177 Worklist.push_back(I); 6178 while (!Worklist.empty()) { 6179 Instruction *I = Worklist.pop_back_val(); 6180 for (auto &Op : I->operands()) 6181 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6182 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6183 AddrDefs.insert(InstOp).second) 6184 Worklist.push_back(InstOp); 6185 } 6186 6187 for (auto *I : AddrDefs) { 6188 if (isa<LoadInst>(I)) { 6189 // Setting the desired widening decision should ideally be handled in 6190 // by cost functions, but since this involves the task of finding out 6191 // if the loaded register is involved in an address computation, it is 6192 // instead changed here when we know this is the case. 6193 InstWidening Decision = getWideningDecision(I, VF); 6194 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6195 // Scalarize a widened load of address. 6196 setWideningDecision(I, VF, CM_Scalarize, 6197 (VF * getMemoryInstructionCost(I, 1))); 6198 else if (auto Group = getInterleavedAccessGroup(I)) { 6199 // Scalarize an interleave group of address loads. 6200 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6201 if (Instruction *Member = Group->getMember(I)) 6202 setWideningDecision(Member, VF, CM_Scalarize, 6203 (VF * getMemoryInstructionCost(Member, 1))); 6204 } 6205 } 6206 } else 6207 // Make sure I gets scalarized and a cost estimate without 6208 // scalarization overhead. 6209 ForcedScalars[VF].insert(I); 6210 } 6211 } 6212 6213 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6214 unsigned VF, 6215 Type *&VectorTy) { 6216 Type *RetTy = I->getType(); 6217 if (canTruncateToMinimalBitwidth(I, VF)) 6218 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6219 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6220 auto SE = PSE.getSE(); 6221 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6222 6223 // TODO: We need to estimate the cost of intrinsic calls. 6224 switch (I->getOpcode()) { 6225 case Instruction::GetElementPtr: 6226 // We mark this instruction as zero-cost because the cost of GEPs in 6227 // vectorized code depends on whether the corresponding memory instruction 6228 // is scalarized or not. Therefore, we handle GEPs with the memory 6229 // instruction cost. 6230 return 0; 6231 case Instruction::Br: { 6232 // In cases of scalarized and predicated instructions, there will be VF 6233 // predicated blocks in the vectorized loop. Each branch around these 6234 // blocks requires also an extract of its vector compare i1 element. 6235 bool ScalarPredicatedBB = false; 6236 BranchInst *BI = cast<BranchInst>(I); 6237 if (VF > 1 && BI->isConditional() && 6238 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6239 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6240 ScalarPredicatedBB = true; 6241 6242 if (ScalarPredicatedBB) { 6243 // Return cost for branches around scalarized and predicated blocks. 6244 auto *Vec_i1Ty = 6245 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6246 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6247 false, true) + 6248 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6249 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6250 // The back-edge branch will remain, as will all scalar branches. 6251 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6252 else 6253 // This branch will be eliminated by if-conversion. 6254 return 0; 6255 // Note: We currently assume zero cost for an unconditional branch inside 6256 // a predicated block since it will become a fall-through, although we 6257 // may decide in the future to call TTI for all branches. 6258 } 6259 case Instruction::PHI: { 6260 auto *Phi = cast<PHINode>(I); 6261 6262 // First-order recurrences are replaced by vector shuffles inside the loop. 6263 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6264 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6265 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6266 cast<VectorType>(VectorTy), VF - 1, 6267 FixedVectorType::get(RetTy, 1)); 6268 6269 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6270 // converted into select instructions. We require N - 1 selects per phi 6271 // node, where N is the number of incoming values. 6272 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6273 return (Phi->getNumIncomingValues() - 1) * 6274 TTI.getCmpSelInstrCost( 6275 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6276 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6277 CostKind); 6278 6279 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6280 } 6281 case Instruction::UDiv: 6282 case Instruction::SDiv: 6283 case Instruction::URem: 6284 case Instruction::SRem: 6285 // If we have a predicated instruction, it may not be executed for each 6286 // vector lane. Get the scalarization cost and scale this amount by the 6287 // probability of executing the predicated block. If the instruction is not 6288 // predicated, we fall through to the next case. 6289 if (VF > 1 && isScalarWithPredication(I)) { 6290 unsigned Cost = 0; 6291 6292 // These instructions have a non-void type, so account for the phi nodes 6293 // that we will create. This cost is likely to be zero. The phi node 6294 // cost, if any, should be scaled by the block probability because it 6295 // models a copy at the end of each predicated block. 6296 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6297 6298 // The cost of the non-predicated instruction. 6299 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6300 6301 // The cost of insertelement and extractelement instructions needed for 6302 // scalarization. 6303 Cost += getScalarizationOverhead(I, VF); 6304 6305 // Scale the cost by the probability of executing the predicated blocks. 6306 // This assumes the predicated block for each vector lane is equally 6307 // likely. 6308 return Cost / getReciprocalPredBlockProb(); 6309 } 6310 LLVM_FALLTHROUGH; 6311 case Instruction::Add: 6312 case Instruction::FAdd: 6313 case Instruction::Sub: 6314 case Instruction::FSub: 6315 case Instruction::Mul: 6316 case Instruction::FMul: 6317 case Instruction::FDiv: 6318 case Instruction::FRem: 6319 case Instruction::Shl: 6320 case Instruction::LShr: 6321 case Instruction::AShr: 6322 case Instruction::And: 6323 case Instruction::Or: 6324 case Instruction::Xor: { 6325 // Since we will replace the stride by 1 the multiplication should go away. 6326 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6327 return 0; 6328 // Certain instructions can be cheaper to vectorize if they have a constant 6329 // second vector operand. One example of this are shifts on x86. 6330 Value *Op2 = I->getOperand(1); 6331 TargetTransformInfo::OperandValueProperties Op2VP; 6332 TargetTransformInfo::OperandValueKind Op2VK = 6333 TTI.getOperandInfo(Op2, Op2VP); 6334 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6335 Op2VK = TargetTransformInfo::OK_UniformValue; 6336 6337 SmallVector<const Value *, 4> Operands(I->operand_values()); 6338 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6339 return N * TTI.getArithmeticInstrCost( 6340 I->getOpcode(), VectorTy, CostKind, 6341 TargetTransformInfo::OK_AnyValue, 6342 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6343 } 6344 case Instruction::FNeg: { 6345 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6346 return N * TTI.getArithmeticInstrCost( 6347 I->getOpcode(), VectorTy, CostKind, 6348 TargetTransformInfo::OK_AnyValue, 6349 TargetTransformInfo::OK_AnyValue, 6350 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6351 I->getOperand(0), I); 6352 } 6353 case Instruction::Select: { 6354 SelectInst *SI = cast<SelectInst>(I); 6355 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6356 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6357 Type *CondTy = SI->getCondition()->getType(); 6358 if (!ScalarCond) 6359 CondTy = FixedVectorType::get(CondTy, VF); 6360 6361 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6362 CostKind, I); 6363 } 6364 case Instruction::ICmp: 6365 case Instruction::FCmp: { 6366 Type *ValTy = I->getOperand(0)->getType(); 6367 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6368 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6369 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6370 VectorTy = ToVectorTy(ValTy, VF); 6371 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6372 I); 6373 } 6374 case Instruction::Store: 6375 case Instruction::Load: { 6376 unsigned Width = VF; 6377 if (Width > 1) { 6378 InstWidening Decision = getWideningDecision(I, Width); 6379 assert(Decision != CM_Unknown && 6380 "CM decision should be taken at this point"); 6381 if (Decision == CM_Scalarize) 6382 Width = 1; 6383 } 6384 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6385 return getMemoryInstructionCost(I, VF); 6386 } 6387 case Instruction::ZExt: 6388 case Instruction::SExt: 6389 case Instruction::FPToUI: 6390 case Instruction::FPToSI: 6391 case Instruction::FPExt: 6392 case Instruction::PtrToInt: 6393 case Instruction::IntToPtr: 6394 case Instruction::SIToFP: 6395 case Instruction::UIToFP: 6396 case Instruction::Trunc: 6397 case Instruction::FPTrunc: 6398 case Instruction::BitCast: { 6399 // We optimize the truncation of induction variables having constant 6400 // integer steps. The cost of these truncations is the same as the scalar 6401 // operation. 6402 if (isOptimizableIVTruncate(I, VF)) { 6403 auto *Trunc = cast<TruncInst>(I); 6404 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6405 Trunc->getSrcTy(), CostKind, Trunc); 6406 } 6407 6408 Type *SrcScalarTy = I->getOperand(0)->getType(); 6409 Type *SrcVecTy = 6410 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6411 if (canTruncateToMinimalBitwidth(I, VF)) { 6412 // This cast is going to be shrunk. This may remove the cast or it might 6413 // turn it into slightly different cast. For example, if MinBW == 16, 6414 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6415 // 6416 // Calculate the modified src and dest types. 6417 Type *MinVecTy = VectorTy; 6418 if (I->getOpcode() == Instruction::Trunc) { 6419 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6420 VectorTy = 6421 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6422 } else if (I->getOpcode() == Instruction::ZExt || 6423 I->getOpcode() == Instruction::SExt) { 6424 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6425 VectorTy = 6426 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6427 } 6428 } 6429 6430 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6431 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6432 CostKind, I); 6433 } 6434 case Instruction::Call: { 6435 bool NeedToScalarize; 6436 CallInst *CI = cast<CallInst>(I); 6437 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6438 if (getVectorIntrinsicIDForCall(CI, TLI)) 6439 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6440 return CallCost; 6441 } 6442 default: 6443 // The cost of executing VF copies of the scalar instruction. This opcode 6444 // is unknown. Assume that it is the same as 'mul'. 6445 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6446 CostKind) + 6447 getScalarizationOverhead(I, VF); 6448 } // end of switch. 6449 } 6450 6451 char LoopVectorize::ID = 0; 6452 6453 static const char lv_name[] = "Loop Vectorization"; 6454 6455 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6456 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6457 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6458 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6459 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6460 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6461 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6462 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6463 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6464 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6465 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6466 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6467 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6468 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6469 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6470 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6471 6472 namespace llvm { 6473 6474 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6475 6476 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6477 bool VectorizeOnlyWhenForced) { 6478 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6479 } 6480 6481 } // end namespace llvm 6482 6483 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6484 // Check if the pointer operand of a load or store instruction is 6485 // consecutive. 6486 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6487 return Legal->isConsecutivePtr(Ptr); 6488 return false; 6489 } 6490 6491 void LoopVectorizationCostModel::collectValuesToIgnore() { 6492 // Ignore ephemeral values. 6493 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6494 6495 // Ignore type-promoting instructions we identified during reduction 6496 // detection. 6497 for (auto &Reduction : Legal->getReductionVars()) { 6498 RecurrenceDescriptor &RedDes = Reduction.second; 6499 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6500 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6501 } 6502 // Ignore type-casting instructions we identified during induction 6503 // detection. 6504 for (auto &Induction : Legal->getInductionVars()) { 6505 InductionDescriptor &IndDes = Induction.second; 6506 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6507 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6508 } 6509 } 6510 6511 // TODO: we could return a pair of values that specify the max VF and 6512 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6513 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6514 // doesn't have a cost model that can choose which plan to execute if 6515 // more than one is generated. 6516 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6517 LoopVectorizationCostModel &CM) { 6518 unsigned WidestType; 6519 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6520 return WidestVectorRegBits / WidestType; 6521 } 6522 6523 VectorizationFactor 6524 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6525 unsigned VF = UserVF; 6526 // Outer loop handling: They may require CFG and instruction level 6527 // transformations before even evaluating whether vectorization is profitable. 6528 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6529 // the vectorization pipeline. 6530 if (!OrigLoop->empty()) { 6531 // If the user doesn't provide a vectorization factor, determine a 6532 // reasonable one. 6533 if (!UserVF) { 6534 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6535 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6536 6537 // Make sure we have a VF > 1 for stress testing. 6538 if (VPlanBuildStressTest && VF < 2) { 6539 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6540 << "overriding computed VF.\n"); 6541 VF = 4; 6542 } 6543 } 6544 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6545 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6546 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6547 << " to build VPlans.\n"); 6548 buildVPlans(VF, VF); 6549 6550 // For VPlan build stress testing, we bail out after VPlan construction. 6551 if (VPlanBuildStressTest) 6552 return VectorizationFactor::Disabled(); 6553 6554 return {VF, 0}; 6555 } 6556 6557 LLVM_DEBUG( 6558 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6559 "VPlan-native path.\n"); 6560 return VectorizationFactor::Disabled(); 6561 } 6562 6563 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6564 unsigned UserIC) { 6565 assert(OrigLoop->empty() && "Inner loop expected."); 6566 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6567 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6568 return None; 6569 6570 // Invalidate interleave groups if all blocks of loop will be predicated. 6571 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6572 !useMaskedInterleavedAccesses(*TTI)) { 6573 LLVM_DEBUG( 6574 dbgs() 6575 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6576 "which requires masked-interleaved support.\n"); 6577 if (CM.InterleaveInfo.invalidateGroups()) 6578 // Invalidating interleave groups also requires invalidating all decisions 6579 // based on them, which includes widening decisions and uniform and scalar 6580 // values. 6581 CM.invalidateCostModelingDecisions(); 6582 } 6583 6584 if (UserVF) { 6585 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6586 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6587 // Collect the instructions (and their associated costs) that will be more 6588 // profitable to scalarize. 6589 CM.selectUserVectorizationFactor(UserVF); 6590 buildVPlansWithVPRecipes(UserVF, UserVF); 6591 LLVM_DEBUG(printPlans(dbgs())); 6592 return {{UserVF, 0}}; 6593 } 6594 6595 unsigned MaxVF = MaybeMaxVF.getValue(); 6596 assert(MaxVF != 0 && "MaxVF is zero."); 6597 6598 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6599 // Collect Uniform and Scalar instructions after vectorization with VF. 6600 CM.collectUniformsAndScalars(VF); 6601 6602 // Collect the instructions (and their associated costs) that will be more 6603 // profitable to scalarize. 6604 if (VF > 1) 6605 CM.collectInstsToScalarize(VF); 6606 } 6607 6608 buildVPlansWithVPRecipes(1, MaxVF); 6609 LLVM_DEBUG(printPlans(dbgs())); 6610 if (MaxVF == 1) 6611 return VectorizationFactor::Disabled(); 6612 6613 // Select the optimal vectorization factor. 6614 return CM.selectVectorizationFactor(MaxVF); 6615 } 6616 6617 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6618 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6619 << '\n'); 6620 BestVF = VF; 6621 BestUF = UF; 6622 6623 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6624 return !Plan->hasVF(VF); 6625 }); 6626 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6627 } 6628 6629 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6630 DominatorTree *DT) { 6631 // Perform the actual loop transformation. 6632 6633 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6634 VPCallbackILV CallbackILV(ILV); 6635 6636 VPTransformState State{BestVF, BestUF, LI, 6637 DT, ILV.Builder, ILV.VectorLoopValueMap, 6638 &ILV, CallbackILV}; 6639 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6640 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6641 State.CanonicalIV = ILV.Induction; 6642 6643 //===------------------------------------------------===// 6644 // 6645 // Notice: any optimization or new instruction that go 6646 // into the code below should also be implemented in 6647 // the cost-model. 6648 // 6649 //===------------------------------------------------===// 6650 6651 // 2. Copy and widen instructions from the old loop into the new loop. 6652 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6653 VPlans.front()->execute(&State); 6654 6655 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6656 // predication, updating analyses. 6657 ILV.fixVectorizedLoop(); 6658 } 6659 6660 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6661 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6662 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6663 6664 // We create new control-flow for the vectorized loop, so the original 6665 // condition will be dead after vectorization if it's only used by the 6666 // branch. 6667 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6668 if (Cmp && Cmp->hasOneUse()) 6669 DeadInstructions.insert(Cmp); 6670 6671 // We create new "steps" for induction variable updates to which the original 6672 // induction variables map. An original update instruction will be dead if 6673 // all its users except the induction variable are dead. 6674 for (auto &Induction : Legal->getInductionVars()) { 6675 PHINode *Ind = Induction.first; 6676 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6677 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6678 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6679 })) 6680 DeadInstructions.insert(IndUpdate); 6681 6682 // We record as "Dead" also the type-casting instructions we had identified 6683 // during induction analysis. We don't need any handling for them in the 6684 // vectorized loop because we have proven that, under a proper runtime 6685 // test guarding the vectorized loop, the value of the phi, and the casted 6686 // value of the phi, are the same. The last instruction in this casting chain 6687 // will get its scalar/vector/widened def from the scalar/vector/widened def 6688 // of the respective phi node. Any other casts in the induction def-use chain 6689 // have no other uses outside the phi update chain, and will be ignored. 6690 InductionDescriptor &IndDes = Induction.second; 6691 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6692 DeadInstructions.insert(Casts.begin(), Casts.end()); 6693 } 6694 } 6695 6696 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6697 6698 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6699 6700 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6701 Instruction::BinaryOps BinOp) { 6702 // When unrolling and the VF is 1, we only need to add a simple scalar. 6703 Type *Ty = Val->getType(); 6704 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6705 6706 if (Ty->isFloatingPointTy()) { 6707 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6708 6709 // Floating point operations had to be 'fast' to enable the unrolling. 6710 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6711 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6712 } 6713 Constant *C = ConstantInt::get(Ty, StartIdx); 6714 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6715 } 6716 6717 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6718 SmallVector<Metadata *, 4> MDs; 6719 // Reserve first location for self reference to the LoopID metadata node. 6720 MDs.push_back(nullptr); 6721 bool IsUnrollMetadata = false; 6722 MDNode *LoopID = L->getLoopID(); 6723 if (LoopID) { 6724 // First find existing loop unrolling disable metadata. 6725 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6726 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6727 if (MD) { 6728 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6729 IsUnrollMetadata = 6730 S && S->getString().startswith("llvm.loop.unroll.disable"); 6731 } 6732 MDs.push_back(LoopID->getOperand(i)); 6733 } 6734 } 6735 6736 if (!IsUnrollMetadata) { 6737 // Add runtime unroll disable metadata. 6738 LLVMContext &Context = L->getHeader()->getContext(); 6739 SmallVector<Metadata *, 1> DisableOperands; 6740 DisableOperands.push_back( 6741 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6742 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6743 MDs.push_back(DisableNode); 6744 MDNode *NewLoopID = MDNode::get(Context, MDs); 6745 // Set operand 0 to refer to the loop id itself. 6746 NewLoopID->replaceOperandWith(0, NewLoopID); 6747 L->setLoopID(NewLoopID); 6748 } 6749 } 6750 6751 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6752 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6753 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6754 bool PredicateAtRangeStart = Predicate(Range.Start); 6755 6756 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6757 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6758 Range.End = TmpVF; 6759 break; 6760 } 6761 6762 return PredicateAtRangeStart; 6763 } 6764 6765 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6766 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6767 /// of VF's starting at a given VF and extending it as much as possible. Each 6768 /// vectorization decision can potentially shorten this sub-range during 6769 /// buildVPlan(). 6770 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6771 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6772 VFRange SubRange = {VF, MaxVF + 1}; 6773 VPlans.push_back(buildVPlan(SubRange)); 6774 VF = SubRange.End; 6775 } 6776 } 6777 6778 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6779 VPlanPtr &Plan) { 6780 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6781 6782 // Look for cached value. 6783 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6784 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6785 if (ECEntryIt != EdgeMaskCache.end()) 6786 return ECEntryIt->second; 6787 6788 VPValue *SrcMask = createBlockInMask(Src, Plan); 6789 6790 // The terminator has to be a branch inst! 6791 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6792 assert(BI && "Unexpected terminator found"); 6793 6794 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6795 return EdgeMaskCache[Edge] = SrcMask; 6796 6797 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6798 assert(EdgeMask && "No Edge Mask found for condition"); 6799 6800 if (BI->getSuccessor(0) != Dst) 6801 EdgeMask = Builder.createNot(EdgeMask); 6802 6803 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6804 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6805 6806 return EdgeMaskCache[Edge] = EdgeMask; 6807 } 6808 6809 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6810 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6811 6812 // Look for cached value. 6813 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6814 if (BCEntryIt != BlockMaskCache.end()) 6815 return BCEntryIt->second; 6816 6817 // All-one mask is modelled as no-mask following the convention for masked 6818 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6819 VPValue *BlockMask = nullptr; 6820 6821 if (OrigLoop->getHeader() == BB) { 6822 if (!CM.blockNeedsPredication(BB)) 6823 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6824 6825 // Introduce the early-exit compare IV <= BTC to form header block mask. 6826 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6827 // Start by constructing the desired canonical IV. 6828 VPValue *IV = nullptr; 6829 if (Legal->getPrimaryInduction()) 6830 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6831 else { 6832 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6833 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6834 IV = IVRecipe->getVPValue(); 6835 } 6836 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6837 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6838 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6839 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6840 else 6841 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6842 return BlockMaskCache[BB] = BlockMask; 6843 } 6844 6845 // This is the block mask. We OR all incoming edges. 6846 for (auto *Predecessor : predecessors(BB)) { 6847 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6848 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6849 return BlockMaskCache[BB] = EdgeMask; 6850 6851 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6852 BlockMask = EdgeMask; 6853 continue; 6854 } 6855 6856 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6857 } 6858 6859 return BlockMaskCache[BB] = BlockMask; 6860 } 6861 6862 VPWidenMemoryInstructionRecipe * 6863 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6864 VPlanPtr &Plan) { 6865 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6866 "Must be called with either a load or store"); 6867 6868 auto willWiden = [&](unsigned VF) -> bool { 6869 if (VF == 1) 6870 return false; 6871 LoopVectorizationCostModel::InstWidening Decision = 6872 CM.getWideningDecision(I, VF); 6873 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6874 "CM decision should be taken at this point."); 6875 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6876 return true; 6877 if (CM.isScalarAfterVectorization(I, VF) || 6878 CM.isProfitableToScalarize(I, VF)) 6879 return false; 6880 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6881 }; 6882 6883 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6884 return nullptr; 6885 6886 VPValue *Mask = nullptr; 6887 if (Legal->isMaskRequired(I)) 6888 Mask = createBlockInMask(I->getParent(), Plan); 6889 6890 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6891 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6892 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6893 6894 StoreInst *Store = cast<StoreInst>(I); 6895 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6896 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6897 } 6898 6899 VPWidenIntOrFpInductionRecipe * 6900 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6901 // Check if this is an integer or fp induction. If so, build the recipe that 6902 // produces its scalar and vector values. 6903 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6904 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6905 II.getKind() == InductionDescriptor::IK_FpInduction) 6906 return new VPWidenIntOrFpInductionRecipe(Phi); 6907 6908 return nullptr; 6909 } 6910 6911 VPWidenIntOrFpInductionRecipe * 6912 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6913 VFRange &Range) const { 6914 // Optimize the special case where the source is a constant integer 6915 // induction variable. Notice that we can only optimize the 'trunc' case 6916 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6917 // (c) other casts depend on pointer size. 6918 6919 // Determine whether \p K is a truncation based on an induction variable that 6920 // can be optimized. 6921 auto isOptimizableIVTruncate = 6922 [&](Instruction *K) -> std::function<bool(unsigned)> { 6923 return 6924 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6925 }; 6926 6927 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6928 isOptimizableIVTruncate(I), Range)) 6929 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6930 I); 6931 return nullptr; 6932 } 6933 6934 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6935 // We know that all PHIs in non-header blocks are converted into selects, so 6936 // we don't have to worry about the insertion order and we can just use the 6937 // builder. At this point we generate the predication tree. There may be 6938 // duplications since this is a simple recursive scan, but future 6939 // optimizations will clean it up. 6940 6941 SmallVector<VPValue *, 2> Operands; 6942 unsigned NumIncoming = Phi->getNumIncomingValues(); 6943 for (unsigned In = 0; In < NumIncoming; In++) { 6944 VPValue *EdgeMask = 6945 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6946 assert((EdgeMask || NumIncoming == 1) && 6947 "Multiple predecessors with one having a full mask"); 6948 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6949 if (EdgeMask) 6950 Operands.push_back(EdgeMask); 6951 } 6952 return new VPBlendRecipe(Phi, Operands); 6953 } 6954 6955 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6956 VPlan &Plan) const { 6957 6958 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6959 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6960 Range); 6961 6962 if (IsPredicated) 6963 return nullptr; 6964 6965 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6966 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6967 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6968 return nullptr; 6969 6970 auto willWiden = [&](unsigned VF) -> bool { 6971 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6972 // The following case may be scalarized depending on the VF. 6973 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6974 // version of the instruction. 6975 // Is it beneficial to perform intrinsic call compared to lib call? 6976 bool NeedToScalarize = false; 6977 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 6978 bool UseVectorIntrinsic = 6979 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 6980 return UseVectorIntrinsic || !NeedToScalarize; 6981 }; 6982 6983 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6984 return nullptr; 6985 6986 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 6987 } 6988 6989 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 6990 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 6991 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 6992 // Instruction should be widened, unless it is scalar after vectorization, 6993 // scalarization is profitable or it is predicated. 6994 auto WillScalarize = [this, I](unsigned VF) -> bool { 6995 return CM.isScalarAfterVectorization(I, VF) || 6996 CM.isProfitableToScalarize(I, VF) || 6997 CM.isScalarWithPredication(I, VF); 6998 }; 6999 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7000 Range); 7001 } 7002 7003 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7004 auto IsVectorizableOpcode = [](unsigned Opcode) { 7005 switch (Opcode) { 7006 case Instruction::Add: 7007 case Instruction::And: 7008 case Instruction::AShr: 7009 case Instruction::BitCast: 7010 case Instruction::FAdd: 7011 case Instruction::FCmp: 7012 case Instruction::FDiv: 7013 case Instruction::FMul: 7014 case Instruction::FNeg: 7015 case Instruction::FPExt: 7016 case Instruction::FPToSI: 7017 case Instruction::FPToUI: 7018 case Instruction::FPTrunc: 7019 case Instruction::FRem: 7020 case Instruction::FSub: 7021 case Instruction::ICmp: 7022 case Instruction::IntToPtr: 7023 case Instruction::LShr: 7024 case Instruction::Mul: 7025 case Instruction::Or: 7026 case Instruction::PtrToInt: 7027 case Instruction::SDiv: 7028 case Instruction::Select: 7029 case Instruction::SExt: 7030 case Instruction::Shl: 7031 case Instruction::SIToFP: 7032 case Instruction::SRem: 7033 case Instruction::Sub: 7034 case Instruction::Trunc: 7035 case Instruction::UDiv: 7036 case Instruction::UIToFP: 7037 case Instruction::URem: 7038 case Instruction::Xor: 7039 case Instruction::ZExt: 7040 return true; 7041 } 7042 return false; 7043 }; 7044 7045 if (!IsVectorizableOpcode(I->getOpcode())) 7046 return nullptr; 7047 7048 // Success: widen this instruction. 7049 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7050 } 7051 7052 VPBasicBlock *VPRecipeBuilder::handleReplication( 7053 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7054 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7055 VPlanPtr &Plan) { 7056 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7057 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7058 Range); 7059 7060 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7061 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7062 7063 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7064 IsUniform, IsPredicated); 7065 setRecipe(I, Recipe); 7066 7067 // Find if I uses a predicated instruction. If so, it will use its scalar 7068 // value. Avoid hoisting the insert-element which packs the scalar value into 7069 // a vector value, as that happens iff all users use the vector value. 7070 for (auto &Op : I->operands()) 7071 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7072 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7073 PredInst2Recipe[PredInst]->setAlsoPack(false); 7074 7075 // Finalize the recipe for Instr, first if it is not predicated. 7076 if (!IsPredicated) { 7077 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7078 VPBB->appendRecipe(Recipe); 7079 return VPBB; 7080 } 7081 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7082 assert(VPBB->getSuccessors().empty() && 7083 "VPBB has successors when handling predicated replication."); 7084 // Record predicated instructions for above packing optimizations. 7085 PredInst2Recipe[I] = Recipe; 7086 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7087 VPBlockUtils::insertBlockAfter(Region, VPBB); 7088 auto *RegSucc = new VPBasicBlock(); 7089 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7090 return RegSucc; 7091 } 7092 7093 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7094 VPRecipeBase *PredRecipe, 7095 VPlanPtr &Plan) { 7096 // Instructions marked for predication are replicated and placed under an 7097 // if-then construct to prevent side-effects. 7098 7099 // Generate recipes to compute the block mask for this region. 7100 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7101 7102 // Build the triangular if-then region. 7103 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7104 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7105 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7106 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7107 auto *PHIRecipe = 7108 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7109 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7110 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7111 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7112 7113 // Note: first set Entry as region entry and then connect successors starting 7114 // from it in order, to propagate the "parent" of each VPBasicBlock. 7115 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7116 VPBlockUtils::connectBlocks(Pred, Exit); 7117 7118 return Region; 7119 } 7120 7121 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7122 VFRange &Range, 7123 VPlanPtr &Plan) { 7124 // First, check for specific widening recipes that deal with calls, memory 7125 // operations, inductions and Phi nodes. 7126 if (auto *CI = dyn_cast<CallInst>(Instr)) 7127 return tryToWidenCall(CI, Range, *Plan); 7128 7129 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7130 return tryToWidenMemory(Instr, Range, Plan); 7131 7132 VPRecipeBase *Recipe; 7133 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7134 if (Phi->getParent() != OrigLoop->getHeader()) 7135 return tryToBlend(Phi, Plan); 7136 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7137 return Recipe; 7138 return new VPWidenPHIRecipe(Phi); 7139 } 7140 7141 if (isa<TruncInst>(Instr) && 7142 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7143 return Recipe; 7144 7145 if (!shouldWiden(Instr, Range)) 7146 return nullptr; 7147 7148 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7149 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7150 OrigLoop); 7151 7152 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7153 bool InvariantCond = 7154 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7155 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7156 InvariantCond); 7157 } 7158 7159 return tryToWiden(Instr, *Plan); 7160 } 7161 7162 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7163 unsigned MaxVF) { 7164 assert(OrigLoop->empty() && "Inner loop expected."); 7165 7166 // Collect conditions feeding internal conditional branches; they need to be 7167 // represented in VPlan for it to model masking. 7168 SmallPtrSet<Value *, 1> NeedDef; 7169 7170 auto *Latch = OrigLoop->getLoopLatch(); 7171 for (BasicBlock *BB : OrigLoop->blocks()) { 7172 if (BB == Latch) 7173 continue; 7174 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7175 if (Branch && Branch->isConditional()) 7176 NeedDef.insert(Branch->getCondition()); 7177 } 7178 7179 // If the tail is to be folded by masking, the primary induction variable, if 7180 // exists needs to be represented in VPlan for it to model early-exit masking. 7181 // Also, both the Phi and the live-out instruction of each reduction are 7182 // required in order to introduce a select between them in VPlan. 7183 if (CM.foldTailByMasking()) { 7184 if (Legal->getPrimaryInduction()) 7185 NeedDef.insert(Legal->getPrimaryInduction()); 7186 for (auto &Reduction : Legal->getReductionVars()) { 7187 NeedDef.insert(Reduction.first); 7188 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7189 } 7190 } 7191 7192 // Collect instructions from the original loop that will become trivially dead 7193 // in the vectorized loop. We don't need to vectorize these instructions. For 7194 // example, original induction update instructions can become dead because we 7195 // separately emit induction "steps" when generating code for the new loop. 7196 // Similarly, we create a new latch condition when setting up the structure 7197 // of the new loop, so the old one can become dead. 7198 SmallPtrSet<Instruction *, 4> DeadInstructions; 7199 collectTriviallyDeadInstructions(DeadInstructions); 7200 7201 // Add assume instructions we need to drop to DeadInstructions, to prevent 7202 // them from being added to the VPlan. 7203 // TODO: We only need to drop assumes in blocks that get flattend. If the 7204 // control flow is preserved, we should keep them. 7205 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7206 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7207 7208 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7209 // Dead instructions do not need sinking. Remove them from SinkAfter. 7210 for (Instruction *I : DeadInstructions) 7211 SinkAfter.erase(I); 7212 7213 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7214 VFRange SubRange = {VF, MaxVF + 1}; 7215 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7216 DeadInstructions, SinkAfter)); 7217 VF = SubRange.End; 7218 } 7219 } 7220 7221 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7222 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7223 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7224 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7225 7226 // Hold a mapping from predicated instructions to their recipes, in order to 7227 // fix their AlsoPack behavior if a user is determined to replicate and use a 7228 // scalar instead of vector value. 7229 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7230 7231 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7232 7233 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7234 7235 // --------------------------------------------------------------------------- 7236 // Pre-construction: record ingredients whose recipes we'll need to further 7237 // process after constructing the initial VPlan. 7238 // --------------------------------------------------------------------------- 7239 7240 // Mark instructions we'll need to sink later and their targets as 7241 // ingredients whose recipe we'll need to record. 7242 for (auto &Entry : SinkAfter) { 7243 RecipeBuilder.recordRecipeOf(Entry.first); 7244 RecipeBuilder.recordRecipeOf(Entry.second); 7245 } 7246 7247 // For each interleave group which is relevant for this (possibly trimmed) 7248 // Range, add it to the set of groups to be later applied to the VPlan and add 7249 // placeholders for its members' Recipes which we'll be replacing with a 7250 // single VPInterleaveRecipe. 7251 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7252 auto applyIG = [IG, this](unsigned VF) -> bool { 7253 return (VF >= 2 && // Query is illegal for VF == 1 7254 CM.getWideningDecision(IG->getInsertPos(), VF) == 7255 LoopVectorizationCostModel::CM_Interleave); 7256 }; 7257 if (!getDecisionAndClampRange(applyIG, Range)) 7258 continue; 7259 InterleaveGroups.insert(IG); 7260 for (unsigned i = 0; i < IG->getFactor(); i++) 7261 if (Instruction *Member = IG->getMember(i)) 7262 RecipeBuilder.recordRecipeOf(Member); 7263 }; 7264 7265 // --------------------------------------------------------------------------- 7266 // Build initial VPlan: Scan the body of the loop in a topological order to 7267 // visit each basic block after having visited its predecessor basic blocks. 7268 // --------------------------------------------------------------------------- 7269 7270 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7271 auto Plan = std::make_unique<VPlan>(); 7272 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7273 Plan->setEntry(VPBB); 7274 7275 // Represent values that will have defs inside VPlan. 7276 for (Value *V : NeedDef) 7277 Plan->addVPValue(V); 7278 7279 // Scan the body of the loop in a topological order to visit each basic block 7280 // after having visited its predecessor basic blocks. 7281 LoopBlocksDFS DFS(OrigLoop); 7282 DFS.perform(LI); 7283 7284 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7285 // Relevant instructions from basic block BB will be grouped into VPRecipe 7286 // ingredients and fill a new VPBasicBlock. 7287 unsigned VPBBsForBB = 0; 7288 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7289 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7290 VPBB = FirstVPBBForBB; 7291 Builder.setInsertPoint(VPBB); 7292 7293 // Introduce each ingredient into VPlan. 7294 // TODO: Model and preserve debug instrinsics in VPlan. 7295 for (Instruction &I : BB->instructionsWithoutDebug()) { 7296 Instruction *Instr = &I; 7297 7298 // First filter out irrelevant instructions, to ensure no recipes are 7299 // built for them. 7300 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7301 continue; 7302 7303 if (auto Recipe = 7304 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7305 RecipeBuilder.setRecipe(Instr, Recipe); 7306 VPBB->appendRecipe(Recipe); 7307 continue; 7308 } 7309 7310 // Otherwise, if all widening options failed, Instruction is to be 7311 // replicated. This may create a successor for VPBB. 7312 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7313 Instr, Range, VPBB, PredInst2Recipe, Plan); 7314 if (NextVPBB != VPBB) { 7315 VPBB = NextVPBB; 7316 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7317 : ""); 7318 } 7319 } 7320 } 7321 7322 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7323 // may also be empty, such as the last one VPBB, reflecting original 7324 // basic-blocks with no recipes. 7325 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7326 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7327 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7328 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7329 delete PreEntry; 7330 7331 // --------------------------------------------------------------------------- 7332 // Transform initial VPlan: Apply previously taken decisions, in order, to 7333 // bring the VPlan to its final state. 7334 // --------------------------------------------------------------------------- 7335 7336 // Apply Sink-After legal constraints. 7337 for (auto &Entry : SinkAfter) { 7338 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7339 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7340 Sink->moveAfter(Target); 7341 } 7342 7343 // Interleave memory: for each Interleave Group we marked earlier as relevant 7344 // for this VPlan, replace the Recipes widening its memory instructions with a 7345 // single VPInterleaveRecipe at its insertion point. 7346 for (auto IG : InterleaveGroups) { 7347 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7348 RecipeBuilder.getRecipe(IG->getInsertPos())); 7349 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7350 ->insertBefore(Recipe); 7351 7352 for (unsigned i = 0; i < IG->getFactor(); ++i) 7353 if (Instruction *Member = IG->getMember(i)) { 7354 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7355 } 7356 } 7357 7358 // Finally, if tail is folded by masking, introduce selects between the phi 7359 // and the live-out instruction of each reduction, at the end of the latch. 7360 if (CM.foldTailByMasking()) { 7361 Builder.setInsertPoint(VPBB); 7362 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7363 for (auto &Reduction : Legal->getReductionVars()) { 7364 VPValue *Phi = Plan->getVPValue(Reduction.first); 7365 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7366 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7367 } 7368 } 7369 7370 std::string PlanName; 7371 raw_string_ostream RSO(PlanName); 7372 unsigned VF = Range.Start; 7373 Plan->addVF(VF); 7374 RSO << "Initial VPlan for VF={" << VF; 7375 for (VF *= 2; VF < Range.End; VF *= 2) { 7376 Plan->addVF(VF); 7377 RSO << "," << VF; 7378 } 7379 RSO << "},UF>=1"; 7380 RSO.flush(); 7381 Plan->setName(PlanName); 7382 7383 return Plan; 7384 } 7385 7386 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7387 // Outer loop handling: They may require CFG and instruction level 7388 // transformations before even evaluating whether vectorization is profitable. 7389 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7390 // the vectorization pipeline. 7391 assert(!OrigLoop->empty()); 7392 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7393 7394 // Create new empty VPlan 7395 auto Plan = std::make_unique<VPlan>(); 7396 7397 // Build hierarchical CFG 7398 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7399 HCFGBuilder.buildHierarchicalCFG(); 7400 7401 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7402 Plan->addVF(VF); 7403 7404 if (EnableVPlanPredication) { 7405 VPlanPredicator VPP(*Plan); 7406 VPP.predicate(); 7407 7408 // Avoid running transformation to recipes until masked code generation in 7409 // VPlan-native path is in place. 7410 return Plan; 7411 } 7412 7413 SmallPtrSet<Instruction *, 1> DeadInstructions; 7414 VPlanTransforms::VPInstructionsToVPRecipes( 7415 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7416 return Plan; 7417 } 7418 7419 Value* LoopVectorizationPlanner::VPCallbackILV:: 7420 getOrCreateVectorValues(Value *V, unsigned Part) { 7421 return ILV.getOrCreateVectorValue(V, Part); 7422 } 7423 7424 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7425 Value *V, const VPIteration &Instance) { 7426 return ILV.getOrCreateScalarValue(V, Instance); 7427 } 7428 7429 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7430 VPSlotTracker &SlotTracker) const { 7431 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7432 IG->getInsertPos()->printAsOperand(O, false); 7433 O << ", "; 7434 getAddr()->printAsOperand(O, SlotTracker); 7435 VPValue *Mask = getMask(); 7436 if (Mask) { 7437 O << ", "; 7438 Mask->printAsOperand(O, SlotTracker); 7439 } 7440 for (unsigned i = 0; i < IG->getFactor(); ++i) 7441 if (Instruction *I = IG->getMember(i)) 7442 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7443 } 7444 7445 void VPWidenCallRecipe::execute(VPTransformState &State) { 7446 State.ILV->widenCallInstruction(Ingredient, User, State); 7447 } 7448 7449 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7450 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7451 } 7452 7453 void VPWidenRecipe::execute(VPTransformState &State) { 7454 State.ILV->widenInstruction(Ingredient, User, State); 7455 } 7456 7457 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7458 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7459 IsIndexLoopInvariant, State); 7460 } 7461 7462 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7463 assert(!State.Instance && "Int or FP induction being replicated."); 7464 State.ILV->widenIntOrFpInduction(IV, Trunc); 7465 } 7466 7467 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7468 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7469 } 7470 7471 void VPBlendRecipe::execute(VPTransformState &State) { 7472 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7473 // We know that all PHIs in non-header blocks are converted into 7474 // selects, so we don't have to worry about the insertion order and we 7475 // can just use the builder. 7476 // At this point we generate the predication tree. There may be 7477 // duplications since this is a simple recursive scan, but future 7478 // optimizations will clean it up. 7479 7480 unsigned NumIncoming = getNumIncomingValues(); 7481 7482 // Generate a sequence of selects of the form: 7483 // SELECT(Mask3, In3, 7484 // SELECT(Mask2, In2, 7485 // SELECT(Mask1, In1, 7486 // In0))) 7487 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7488 // are essentially undef are taken from In0. 7489 InnerLoopVectorizer::VectorParts Entry(State.UF); 7490 for (unsigned In = 0; In < NumIncoming; ++In) { 7491 for (unsigned Part = 0; Part < State.UF; ++Part) { 7492 // We might have single edge PHIs (blocks) - use an identity 7493 // 'select' for the first PHI operand. 7494 Value *In0 = State.get(getIncomingValue(In), Part); 7495 if (In == 0) 7496 Entry[Part] = In0; // Initialize with the first incoming value. 7497 else { 7498 // Select between the current value and the previous incoming edge 7499 // based on the incoming mask. 7500 Value *Cond = State.get(getMask(In), Part); 7501 Entry[Part] = 7502 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7503 } 7504 } 7505 } 7506 for (unsigned Part = 0; Part < State.UF; ++Part) 7507 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7508 } 7509 7510 void VPInterleaveRecipe::execute(VPTransformState &State) { 7511 assert(!State.Instance && "Interleave group being replicated."); 7512 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7513 } 7514 7515 void VPReplicateRecipe::execute(VPTransformState &State) { 7516 if (State.Instance) { // Generate a single instance. 7517 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7518 IsPredicated, State); 7519 // Insert scalar instance packing it into a vector. 7520 if (AlsoPack && State.VF > 1) { 7521 // If we're constructing lane 0, initialize to start from undef. 7522 if (State.Instance->Lane == 0) { 7523 Value *Undef = UndefValue::get( 7524 FixedVectorType::get(Ingredient->getType(), State.VF)); 7525 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7526 } 7527 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7528 } 7529 return; 7530 } 7531 7532 // Generate scalar instances for all VF lanes of all UF parts, unless the 7533 // instruction is uniform inwhich case generate only the first lane for each 7534 // of the UF parts. 7535 unsigned EndLane = IsUniform ? 1 : State.VF; 7536 for (unsigned Part = 0; Part < State.UF; ++Part) 7537 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7538 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7539 IsPredicated, State); 7540 } 7541 7542 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7543 assert(State.Instance && "Branch on Mask works only on single instance."); 7544 7545 unsigned Part = State.Instance->Part; 7546 unsigned Lane = State.Instance->Lane; 7547 7548 Value *ConditionBit = nullptr; 7549 VPValue *BlockInMask = getMask(); 7550 if (BlockInMask) { 7551 ConditionBit = State.get(BlockInMask, Part); 7552 if (ConditionBit->getType()->isVectorTy()) 7553 ConditionBit = State.Builder.CreateExtractElement( 7554 ConditionBit, State.Builder.getInt32(Lane)); 7555 } else // Block in mask is all-one. 7556 ConditionBit = State.Builder.getTrue(); 7557 7558 // Replace the temporary unreachable terminator with a new conditional branch, 7559 // whose two destinations will be set later when they are created. 7560 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7561 assert(isa<UnreachableInst>(CurrentTerminator) && 7562 "Expected to replace unreachable terminator with conditional branch."); 7563 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7564 CondBr->setSuccessor(0, nullptr); 7565 ReplaceInstWithInst(CurrentTerminator, CondBr); 7566 } 7567 7568 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7569 assert(State.Instance && "Predicated instruction PHI works per instance."); 7570 Instruction *ScalarPredInst = cast<Instruction>( 7571 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7572 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7573 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7574 assert(PredicatingBB && "Predicated block has no single predecessor."); 7575 7576 // By current pack/unpack logic we need to generate only a single phi node: if 7577 // a vector value for the predicated instruction exists at this point it means 7578 // the instruction has vector users only, and a phi for the vector value is 7579 // needed. In this case the recipe of the predicated instruction is marked to 7580 // also do that packing, thereby "hoisting" the insert-element sequence. 7581 // Otherwise, a phi node for the scalar value is needed. 7582 unsigned Part = State.Instance->Part; 7583 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7584 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7585 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7586 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7587 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7588 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7589 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7590 } else { 7591 Type *PredInstType = PredInst->getType(); 7592 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7593 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7594 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7595 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7596 } 7597 } 7598 7599 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7600 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7601 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7602 getMask()); 7603 } 7604 7605 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7606 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7607 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7608 // for predication. 7609 static ScalarEpilogueLowering getScalarEpilogueLowering( 7610 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7611 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7612 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7613 LoopVectorizationLegality &LVL) { 7614 bool OptSize = 7615 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7616 PGSOQueryType::IRPass); 7617 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7618 // don't look at hints or options, and don't request a scalar epilogue. 7619 if (OptSize) 7620 return CM_ScalarEpilogueNotAllowedOptSize; 7621 7622 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7623 !PreferPredicateOverEpilog; 7624 7625 // 2) Next, if disabling predication is requested on the command line, honour 7626 // this and request a scalar epilogue. 7627 if (PredicateOptDisabled) 7628 return CM_ScalarEpilogueAllowed; 7629 7630 // 3) and 4) look if enabling predication is requested on the command line, 7631 // with a loop hint, or if the TTI hook indicates this is profitable, request 7632 // predication . 7633 if (PreferPredicateOverEpilog || 7634 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7635 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7636 LVL.getLAI()) && 7637 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7638 return CM_ScalarEpilogueNotNeededUsePredicate; 7639 7640 return CM_ScalarEpilogueAllowed; 7641 } 7642 7643 // Process the loop in the VPlan-native vectorization path. This path builds 7644 // VPlan upfront in the vectorization pipeline, which allows to apply 7645 // VPlan-to-VPlan transformations from the very beginning without modifying the 7646 // input LLVM IR. 7647 static bool processLoopInVPlanNativePath( 7648 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7649 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7650 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7651 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7652 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7653 7654 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7655 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7656 return false; 7657 } 7658 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7659 Function *F = L->getHeader()->getParent(); 7660 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7661 7662 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7663 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7664 7665 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7666 &Hints, IAI); 7667 // Use the planner for outer loop vectorization. 7668 // TODO: CM is not used at this point inside the planner. Turn CM into an 7669 // optional argument if we don't need it in the future. 7670 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7671 7672 // Get user vectorization factor. 7673 const unsigned UserVF = Hints.getWidth(); 7674 7675 // Plan how to best vectorize, return the best VF and its cost. 7676 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7677 7678 // If we are stress testing VPlan builds, do not attempt to generate vector 7679 // code. Masked vector code generation support will follow soon. 7680 // Also, do not attempt to vectorize if no vector code will be produced. 7681 if (VPlanBuildStressTest || EnableVPlanPredication || 7682 VectorizationFactor::Disabled() == VF) 7683 return false; 7684 7685 LVP.setBestPlan(VF.Width, 1); 7686 7687 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7688 &CM); 7689 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7690 << L->getHeader()->getParent()->getName() << "\"\n"); 7691 LVP.executePlan(LB, DT); 7692 7693 // Mark the loop as already vectorized to avoid vectorizing again. 7694 Hints.setAlreadyVectorized(); 7695 7696 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7697 return true; 7698 } 7699 7700 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7701 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7702 !EnableLoopInterleaving), 7703 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7704 !EnableLoopVectorization) {} 7705 7706 bool LoopVectorizePass::processLoop(Loop *L) { 7707 assert((EnableVPlanNativePath || L->empty()) && 7708 "VPlan-native path is not enabled. Only process inner loops."); 7709 7710 #ifndef NDEBUG 7711 const std::string DebugLocStr = getDebugLocString(L); 7712 #endif /* NDEBUG */ 7713 7714 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7715 << L->getHeader()->getParent()->getName() << "\" from " 7716 << DebugLocStr << "\n"); 7717 7718 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7719 7720 LLVM_DEBUG( 7721 dbgs() << "LV: Loop hints:" 7722 << " force=" 7723 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7724 ? "disabled" 7725 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7726 ? "enabled" 7727 : "?")) 7728 << " width=" << Hints.getWidth() 7729 << " unroll=" << Hints.getInterleave() << "\n"); 7730 7731 // Function containing loop 7732 Function *F = L->getHeader()->getParent(); 7733 7734 // Looking at the diagnostic output is the only way to determine if a loop 7735 // was vectorized (other than looking at the IR or machine code), so it 7736 // is important to generate an optimization remark for each loop. Most of 7737 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7738 // generated as OptimizationRemark and OptimizationRemarkMissed are 7739 // less verbose reporting vectorized loops and unvectorized loops that may 7740 // benefit from vectorization, respectively. 7741 7742 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7743 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7744 return false; 7745 } 7746 7747 PredicatedScalarEvolution PSE(*SE, *L); 7748 7749 // Check if it is legal to vectorize the loop. 7750 LoopVectorizationRequirements Requirements(*ORE); 7751 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7752 &Requirements, &Hints, DB, AC); 7753 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7754 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7755 Hints.emitRemarkWithHints(); 7756 return false; 7757 } 7758 7759 // Check the function attributes and profiles to find out if this function 7760 // should be optimized for size. 7761 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7762 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7763 7764 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7765 // here. They may require CFG and instruction level transformations before 7766 // even evaluating whether vectorization is profitable. Since we cannot modify 7767 // the incoming IR, we need to build VPlan upfront in the vectorization 7768 // pipeline. 7769 if (!L->empty()) 7770 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7771 ORE, BFI, PSI, Hints); 7772 7773 assert(L->empty() && "Inner loop expected."); 7774 7775 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7776 // count by optimizing for size, to minimize overheads. 7777 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7778 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7779 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7780 << "This loop is worth vectorizing only if no scalar " 7781 << "iteration overheads are incurred."); 7782 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7783 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7784 else { 7785 LLVM_DEBUG(dbgs() << "\n"); 7786 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7787 } 7788 } 7789 7790 // Check the function attributes to see if implicit floats are allowed. 7791 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7792 // an integer loop and the vector instructions selected are purely integer 7793 // vector instructions? 7794 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7795 reportVectorizationFailure( 7796 "Can't vectorize when the NoImplicitFloat attribute is used", 7797 "loop not vectorized due to NoImplicitFloat attribute", 7798 "NoImplicitFloat", ORE, L); 7799 Hints.emitRemarkWithHints(); 7800 return false; 7801 } 7802 7803 // Check if the target supports potentially unsafe FP vectorization. 7804 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7805 // for the target we're vectorizing for, to make sure none of the 7806 // additional fp-math flags can help. 7807 if (Hints.isPotentiallyUnsafe() && 7808 TTI->isFPVectorizationPotentiallyUnsafe()) { 7809 reportVectorizationFailure( 7810 "Potentially unsafe FP op prevents vectorization", 7811 "loop not vectorized due to unsafe FP support.", 7812 "UnsafeFP", ORE, L); 7813 Hints.emitRemarkWithHints(); 7814 return false; 7815 } 7816 7817 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7818 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7819 7820 // If an override option has been passed in for interleaved accesses, use it. 7821 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7822 UseInterleaved = EnableInterleavedMemAccesses; 7823 7824 // Analyze interleaved memory accesses. 7825 if (UseInterleaved) { 7826 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7827 } 7828 7829 // Use the cost model. 7830 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7831 F, &Hints, IAI); 7832 CM.collectValuesToIgnore(); 7833 7834 // Use the planner for vectorization. 7835 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7836 7837 // Get user vectorization factor and interleave count. 7838 unsigned UserVF = Hints.getWidth(); 7839 unsigned UserIC = Hints.getInterleave(); 7840 7841 // Plan how to best vectorize, return the best VF and its cost. 7842 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7843 7844 VectorizationFactor VF = VectorizationFactor::Disabled(); 7845 unsigned IC = 1; 7846 7847 if (MaybeVF) { 7848 VF = *MaybeVF; 7849 // Select the interleave count. 7850 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7851 } 7852 7853 // Identify the diagnostic messages that should be produced. 7854 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7855 bool VectorizeLoop = true, InterleaveLoop = true; 7856 if (Requirements.doesNotMeet(F, L, Hints)) { 7857 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7858 "requirements.\n"); 7859 Hints.emitRemarkWithHints(); 7860 return false; 7861 } 7862 7863 if (VF.Width == 1) { 7864 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7865 VecDiagMsg = std::make_pair( 7866 "VectorizationNotBeneficial", 7867 "the cost-model indicates that vectorization is not beneficial"); 7868 VectorizeLoop = false; 7869 } 7870 7871 if (!MaybeVF && UserIC > 1) { 7872 // Tell the user interleaving was avoided up-front, despite being explicitly 7873 // requested. 7874 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7875 "interleaving should be avoided up front\n"); 7876 IntDiagMsg = std::make_pair( 7877 "InterleavingAvoided", 7878 "Ignoring UserIC, because interleaving was avoided up front"); 7879 InterleaveLoop = false; 7880 } else if (IC == 1 && UserIC <= 1) { 7881 // Tell the user interleaving is not beneficial. 7882 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7883 IntDiagMsg = std::make_pair( 7884 "InterleavingNotBeneficial", 7885 "the cost-model indicates that interleaving is not beneficial"); 7886 InterleaveLoop = false; 7887 if (UserIC == 1) { 7888 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7889 IntDiagMsg.second += 7890 " and is explicitly disabled or interleave count is set to 1"; 7891 } 7892 } else if (IC > 1 && UserIC == 1) { 7893 // Tell the user interleaving is beneficial, but it explicitly disabled. 7894 LLVM_DEBUG( 7895 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7896 IntDiagMsg = std::make_pair( 7897 "InterleavingBeneficialButDisabled", 7898 "the cost-model indicates that interleaving is beneficial " 7899 "but is explicitly disabled or interleave count is set to 1"); 7900 InterleaveLoop = false; 7901 } 7902 7903 // Override IC if user provided an interleave count. 7904 IC = UserIC > 0 ? UserIC : IC; 7905 7906 // Emit diagnostic messages, if any. 7907 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7908 if (!VectorizeLoop && !InterleaveLoop) { 7909 // Do not vectorize or interleaving the loop. 7910 ORE->emit([&]() { 7911 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7912 L->getStartLoc(), L->getHeader()) 7913 << VecDiagMsg.second; 7914 }); 7915 ORE->emit([&]() { 7916 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7917 L->getStartLoc(), L->getHeader()) 7918 << IntDiagMsg.second; 7919 }); 7920 return false; 7921 } else if (!VectorizeLoop && InterleaveLoop) { 7922 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7923 ORE->emit([&]() { 7924 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7925 L->getStartLoc(), L->getHeader()) 7926 << VecDiagMsg.second; 7927 }); 7928 } else if (VectorizeLoop && !InterleaveLoop) { 7929 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7930 << ") in " << DebugLocStr << '\n'); 7931 ORE->emit([&]() { 7932 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7933 L->getStartLoc(), L->getHeader()) 7934 << IntDiagMsg.second; 7935 }); 7936 } else if (VectorizeLoop && InterleaveLoop) { 7937 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7938 << ") in " << DebugLocStr << '\n'); 7939 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7940 } 7941 7942 LVP.setBestPlan(VF.Width, IC); 7943 7944 using namespace ore; 7945 bool DisableRuntimeUnroll = false; 7946 MDNode *OrigLoopID = L->getLoopID(); 7947 7948 if (!VectorizeLoop) { 7949 assert(IC > 1 && "interleave count should not be 1 or 0"); 7950 // If we decided that it is not legal to vectorize the loop, then 7951 // interleave it. 7952 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7953 &CM); 7954 LVP.executePlan(Unroller, DT); 7955 7956 ORE->emit([&]() { 7957 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7958 L->getHeader()) 7959 << "interleaved loop (interleaved count: " 7960 << NV("InterleaveCount", IC) << ")"; 7961 }); 7962 } else { 7963 // If we decided that it is *legal* to vectorize the loop, then do it. 7964 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7965 &LVL, &CM); 7966 LVP.executePlan(LB, DT); 7967 ++LoopsVectorized; 7968 7969 // Add metadata to disable runtime unrolling a scalar loop when there are 7970 // no runtime checks about strides and memory. A scalar loop that is 7971 // rarely used is not worth unrolling. 7972 if (!LB.areSafetyChecksAdded()) 7973 DisableRuntimeUnroll = true; 7974 7975 // Report the vectorization decision. 7976 ORE->emit([&]() { 7977 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7978 L->getHeader()) 7979 << "vectorized loop (vectorization width: " 7980 << NV("VectorizationFactor", VF.Width) 7981 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7982 }); 7983 } 7984 7985 Optional<MDNode *> RemainderLoopID = 7986 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7987 LLVMLoopVectorizeFollowupEpilogue}); 7988 if (RemainderLoopID.hasValue()) { 7989 L->setLoopID(RemainderLoopID.getValue()); 7990 } else { 7991 if (DisableRuntimeUnroll) 7992 AddRuntimeUnrollDisableMetaData(L); 7993 7994 // Mark the loop as already vectorized to avoid vectorizing again. 7995 Hints.setAlreadyVectorized(); 7996 } 7997 7998 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7999 return true; 8000 } 8001 8002 LoopVectorizeResult LoopVectorizePass::runImpl( 8003 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8004 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8005 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8006 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8007 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8008 SE = &SE_; 8009 LI = &LI_; 8010 TTI = &TTI_; 8011 DT = &DT_; 8012 BFI = &BFI_; 8013 TLI = TLI_; 8014 AA = &AA_; 8015 AC = &AC_; 8016 GetLAA = &GetLAA_; 8017 DB = &DB_; 8018 ORE = &ORE_; 8019 PSI = PSI_; 8020 8021 // Don't attempt if 8022 // 1. the target claims to have no vector registers, and 8023 // 2. interleaving won't help ILP. 8024 // 8025 // The second condition is necessary because, even if the target has no 8026 // vector registers, loop vectorization may still enable scalar 8027 // interleaving. 8028 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8029 TTI->getMaxInterleaveFactor(1) < 2) 8030 return LoopVectorizeResult(false, false); 8031 8032 bool Changed = false, CFGChanged = false; 8033 8034 // The vectorizer requires loops to be in simplified form. 8035 // Since simplification may add new inner loops, it has to run before the 8036 // legality and profitability checks. This means running the loop vectorizer 8037 // will simplify all loops, regardless of whether anything end up being 8038 // vectorized. 8039 for (auto &L : *LI) 8040 Changed |= CFGChanged |= 8041 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8042 8043 // Build up a worklist of inner-loops to vectorize. This is necessary as 8044 // the act of vectorizing or partially unrolling a loop creates new loops 8045 // and can invalidate iterators across the loops. 8046 SmallVector<Loop *, 8> Worklist; 8047 8048 for (Loop *L : *LI) 8049 collectSupportedLoops(*L, LI, ORE, Worklist); 8050 8051 LoopsAnalyzed += Worklist.size(); 8052 8053 // Now walk the identified inner loops. 8054 while (!Worklist.empty()) { 8055 Loop *L = Worklist.pop_back_val(); 8056 8057 // For the inner loops we actually process, form LCSSA to simplify the 8058 // transform. 8059 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8060 8061 Changed |= CFGChanged |= processLoop(L); 8062 } 8063 8064 // Process each loop nest in the function. 8065 return LoopVectorizeResult(Changed, CFGChanged); 8066 } 8067 8068 PreservedAnalyses LoopVectorizePass::run(Function &F, 8069 FunctionAnalysisManager &AM) { 8070 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8071 auto &LI = AM.getResult<LoopAnalysis>(F); 8072 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8073 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8074 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8075 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8076 auto &AA = AM.getResult<AAManager>(F); 8077 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8078 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8079 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8080 MemorySSA *MSSA = EnableMSSALoopDependency 8081 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8082 : nullptr; 8083 8084 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8085 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8086 [&](Loop &L) -> const LoopAccessInfo & { 8087 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8088 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8089 }; 8090 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8091 ProfileSummaryInfo *PSI = 8092 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8093 LoopVectorizeResult Result = 8094 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8095 if (!Result.MadeAnyChange) 8096 return PreservedAnalyses::all(); 8097 PreservedAnalyses PA; 8098 8099 // We currently do not preserve loopinfo/dominator analyses with outer loop 8100 // vectorization. Until this is addressed, mark these analyses as preserved 8101 // only for non-VPlan-native path. 8102 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8103 if (!EnableVPlanNativePath) { 8104 PA.preserve<LoopAnalysis>(); 8105 PA.preserve<DominatorTreeAnalysis>(); 8106 } 8107 PA.preserve<BasicAA>(); 8108 PA.preserve<GlobalsAA>(); 8109 if (!Result.MadeCFGChange) 8110 PA.preserveSet<CFGAnalyses>(); 8111 return PA; 8112 } 8113