1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
913                                 unsigned EUF)
914       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
915         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 void reportVectorizationFailure(const StringRef DebugMsg,
1123                                 const StringRef OREMsg, const StringRef ORETag,
1124                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1125                                 Instruction *I) {
1126   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1127   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1128   ORE->emit(
1129       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1130       << "loop not vectorized: " << OREMsg);
1131 }
1132 
1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1134                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1135                              Instruction *I) {
1136   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1137   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1138   ORE->emit(
1139       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1140       << Msg);
1141 }
1142 
1143 } // end namespace llvm
1144 
1145 #ifndef NDEBUG
1146 /// \return string containing a file name and a line # for the given loop.
1147 static std::string getDebugLocString(const Loop *L) {
1148   std::string Result;
1149   if (L) {
1150     raw_string_ostream OS(Result);
1151     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1152       LoopDbgLoc.print(OS);
1153     else
1154       // Just print the module name.
1155       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1156     OS.flush();
1157   }
1158   return Result;
1159 }
1160 #endif
1161 
1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1163                                          const Instruction *Orig) {
1164   // If the loop was versioned with memchecks, add the corresponding no-alias
1165   // metadata.
1166   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1167     LVer->annotateInstWithNoAlias(To, Orig);
1168 }
1169 
1170 void InnerLoopVectorizer::addMetadata(Instruction *To,
1171                                       Instruction *From) {
1172   propagateMetadata(To, From);
1173   addNewMetadata(To, From);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1177                                       Instruction *From) {
1178   for (Value *V : To) {
1179     if (Instruction *I = dyn_cast<Instruction>(V))
1180       addMetadata(I, From);
1181   }
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return !Hints->allowReordering() && RdxDesc.isOrdered();
1321   }
1322 
1323   /// \returns The smallest bitwidth each instruction can be represented with.
1324   /// The vector equivalents of these instructions should be truncated to this
1325   /// type.
1326   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1327     return MinBWs;
1328   }
1329 
1330   /// \returns True if it is more profitable to scalarize instruction \p I for
1331   /// vectorization factor \p VF.
1332   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1333     assert(VF.isVector() &&
1334            "Profitable to scalarize relevant only for VF > 1.");
1335 
1336     // Cost model is not run in the VPlan-native path - return conservative
1337     // result until this changes.
1338     if (EnableVPlanNativePath)
1339       return false;
1340 
1341     auto Scalars = InstsToScalarize.find(VF);
1342     assert(Scalars != InstsToScalarize.end() &&
1343            "VF not yet analyzed for scalarization profitability");
1344     return Scalars->second.find(I) != Scalars->second.end();
1345   }
1346 
1347   /// Returns true if \p I is known to be uniform after vectorization.
1348   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1349     if (VF.isScalar())
1350       return true;
1351 
1352     // Cost model is not run in the VPlan-native path - return conservative
1353     // result until this changes.
1354     if (EnableVPlanNativePath)
1355       return false;
1356 
1357     auto UniformsPerVF = Uniforms.find(VF);
1358     assert(UniformsPerVF != Uniforms.end() &&
1359            "VF not yet analyzed for uniformity");
1360     return UniformsPerVF->second.count(I);
1361   }
1362 
1363   /// Returns true if \p I is known to be scalar after vectorization.
1364   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1365     if (VF.isScalar())
1366       return true;
1367 
1368     // Cost model is not run in the VPlan-native path - return conservative
1369     // result until this changes.
1370     if (EnableVPlanNativePath)
1371       return false;
1372 
1373     auto ScalarsPerVF = Scalars.find(VF);
1374     assert(ScalarsPerVF != Scalars.end() &&
1375            "Scalar values are not calculated for VF");
1376     return ScalarsPerVF->second.count(I);
1377   }
1378 
1379   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1380   /// for vectorization factor \p VF.
1381   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1382     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1383            !isProfitableToScalarize(I, VF) &&
1384            !isScalarAfterVectorization(I, VF);
1385   }
1386 
1387   /// Decision that was taken during cost calculation for memory instruction.
1388   enum InstWidening {
1389     CM_Unknown,
1390     CM_Widen,         // For consecutive accesses with stride +1.
1391     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1392     CM_Interleave,
1393     CM_GatherScatter,
1394     CM_Scalarize
1395   };
1396 
1397   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1398   /// instruction \p I and vector width \p VF.
1399   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1400                            InstructionCost Cost) {
1401     assert(VF.isVector() && "Expected VF >=2");
1402     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1403   }
1404 
1405   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1406   /// interleaving group \p Grp and vector width \p VF.
1407   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1408                            ElementCount VF, InstWidening W,
1409                            InstructionCost Cost) {
1410     assert(VF.isVector() && "Expected VF >=2");
1411     /// Broadcast this decicion to all instructions inside the group.
1412     /// But the cost will be assigned to one instruction only.
1413     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1414       if (auto *I = Grp->getMember(i)) {
1415         if (Grp->getInsertPos() == I)
1416           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1417         else
1418           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1419       }
1420     }
1421   }
1422 
1423   /// Return the cost model decision for the given instruction \p I and vector
1424   /// width \p VF. Return CM_Unknown if this instruction did not pass
1425   /// through the cost modeling.
1426   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1427     assert(VF.isVector() && "Expected VF to be a vector VF");
1428     // Cost model is not run in the VPlan-native path - return conservative
1429     // result until this changes.
1430     if (EnableVPlanNativePath)
1431       return CM_GatherScatter;
1432 
1433     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1434     auto Itr = WideningDecisions.find(InstOnVF);
1435     if (Itr == WideningDecisions.end())
1436       return CM_Unknown;
1437     return Itr->second.first;
1438   }
1439 
1440   /// Return the vectorization cost for the given instruction \p I and vector
1441   /// width \p VF.
1442   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1443     assert(VF.isVector() && "Expected VF >=2");
1444     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1445     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1446            "The cost is not calculated");
1447     return WideningDecisions[InstOnVF].second;
1448   }
1449 
1450   /// Return True if instruction \p I is an optimizable truncate whose operand
1451   /// is an induction variable. Such a truncate will be removed by adding a new
1452   /// induction variable with the destination type.
1453   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1454     // If the instruction is not a truncate, return false.
1455     auto *Trunc = dyn_cast<TruncInst>(I);
1456     if (!Trunc)
1457       return false;
1458 
1459     // Get the source and destination types of the truncate.
1460     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1461     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1462 
1463     // If the truncate is free for the given types, return false. Replacing a
1464     // free truncate with an induction variable would add an induction variable
1465     // update instruction to each iteration of the loop. We exclude from this
1466     // check the primary induction variable since it will need an update
1467     // instruction regardless.
1468     Value *Op = Trunc->getOperand(0);
1469     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1470       return false;
1471 
1472     // If the truncated value is not an induction variable, return false.
1473     return Legal->isInductionPhi(Op);
1474   }
1475 
1476   /// Collects the instructions to scalarize for each predicated instruction in
1477   /// the loop.
1478   void collectInstsToScalarize(ElementCount VF);
1479 
1480   /// Collect Uniform and Scalar values for the given \p VF.
1481   /// The sets depend on CM decision for Load/Store instructions
1482   /// that may be vectorized as interleave, gather-scatter or scalarized.
1483   void collectUniformsAndScalars(ElementCount VF) {
1484     // Do the analysis once.
1485     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1486       return;
1487     setCostBasedWideningDecision(VF);
1488     collectLoopUniforms(VF);
1489     collectLoopScalars(VF);
1490   }
1491 
1492   /// Returns true if the target machine supports masked store operation
1493   /// for the given \p DataType and kind of access to \p Ptr.
1494   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1495     return Legal->isConsecutivePtr(Ptr) &&
1496            TTI.isLegalMaskedStore(DataType, Alignment);
1497   }
1498 
1499   /// Returns true if the target machine supports masked load operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(Ptr) &&
1503            TTI.isLegalMaskedLoad(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine can represent \p V as a masked gather
1507   /// or scatter operation.
1508   bool isLegalGatherOrScatter(Value *V) {
1509     bool LI = isa<LoadInst>(V);
1510     bool SI = isa<StoreInst>(V);
1511     if (!LI && !SI)
1512       return false;
1513     auto *Ty = getLoadStoreType(V);
1514     Align Align = getLoadStoreAlignment(V);
1515     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1516            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1517   }
1518 
1519   /// Returns true if the target machine supports all of the reduction
1520   /// variables found for the given VF.
1521   bool canVectorizeReductions(ElementCount VF) const {
1522     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1523       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1524       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1525     }));
1526   }
1527 
1528   /// Returns true if \p I is an instruction that will be scalarized with
1529   /// predication. Such instructions include conditional stores and
1530   /// instructions that may divide by zero.
1531   /// If a non-zero VF has been calculated, we check if I will be scalarized
1532   /// predication for that VF.
1533   bool isScalarWithPredication(Instruction *I) const;
1534 
1535   // Returns true if \p I is an instruction that will be predicated either
1536   // through scalar predication or masked load/store or masked gather/scatter.
1537   // Superset of instructions that return true for isScalarWithPredication.
1538   bool isPredicatedInst(Instruction *I) {
1539     if (!blockNeedsPredication(I->getParent()))
1540       return false;
1541     // Loads and stores that need some form of masked operation are predicated
1542     // instructions.
1543     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1544       return Legal->isMaskRequired(I);
1545     return isScalarWithPredication(I);
1546   }
1547 
1548   /// Returns true if \p I is a memory instruction with consecutive memory
1549   /// access that can be widened.
1550   bool
1551   memoryInstructionCanBeWidened(Instruction *I,
1552                                 ElementCount VF = ElementCount::getFixed(1));
1553 
1554   /// Returns true if \p I is a memory instruction in an interleaved-group
1555   /// of memory accesses that can be vectorized with wide vector loads/stores
1556   /// and shuffles.
1557   bool
1558   interleavedAccessCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Check if \p Instr belongs to any interleaved access group.
1562   bool isAccessInterleaved(Instruction *Instr) {
1563     return InterleaveInfo.isInterleaved(Instr);
1564   }
1565 
1566   /// Get the interleaved access group that \p Instr belongs to.
1567   const InterleaveGroup<Instruction> *
1568   getInterleavedAccessGroup(Instruction *Instr) {
1569     return InterleaveInfo.getInterleaveGroup(Instr);
1570   }
1571 
1572   /// Returns true if we're required to use a scalar epilogue for at least
1573   /// the final iteration of the original loop.
1574   bool requiresScalarEpilogue(ElementCount VF) const {
1575     if (!isScalarEpilogueAllowed())
1576       return false;
1577     // If we might exit from anywhere but the latch, must run the exiting
1578     // iteration in scalar form.
1579     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1580       return true;
1581     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1582   }
1583 
1584   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1585   /// loop hint annotation.
1586   bool isScalarEpilogueAllowed() const {
1587     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1588   }
1589 
1590   /// Returns true if all loop blocks should be masked to fold tail loop.
1591   bool foldTailByMasking() const { return FoldTailByMasking; }
1592 
1593   bool blockNeedsPredication(BasicBlock *BB) const {
1594     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1595   }
1596 
1597   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1598   /// nodes to the chain of instructions representing the reductions. Uses a
1599   /// MapVector to ensure deterministic iteration order.
1600   using ReductionChainMap =
1601       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1602 
1603   /// Return the chain of instructions representing an inloop reduction.
1604   const ReductionChainMap &getInLoopReductionChains() const {
1605     return InLoopReductionChains;
1606   }
1607 
1608   /// Returns true if the Phi is part of an inloop reduction.
1609   bool isInLoopReduction(PHINode *Phi) const {
1610     return InLoopReductionChains.count(Phi);
1611   }
1612 
1613   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1614   /// with factor VF.  Return the cost of the instruction, including
1615   /// scalarization overhead if it's needed.
1616   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1617 
1618   /// Estimate cost of a call instruction CI if it were vectorized with factor
1619   /// VF. Return the cost of the instruction, including scalarization overhead
1620   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1621   /// scalarized -
1622   /// i.e. either vector version isn't available, or is too expensive.
1623   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1624                                     bool &NeedToScalarize) const;
1625 
1626   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1627   /// that of B.
1628   bool isMoreProfitable(const VectorizationFactor &A,
1629                         const VectorizationFactor &B) const;
1630 
1631   /// Invalidates decisions already taken by the cost model.
1632   void invalidateCostModelingDecisions() {
1633     WideningDecisions.clear();
1634     Uniforms.clear();
1635     Scalars.clear();
1636   }
1637 
1638 private:
1639   unsigned NumPredStores = 0;
1640 
1641   /// \return An upper bound for the vectorization factors for both
1642   /// fixed and scalable vectorization, where the minimum-known number of
1643   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1644   /// disabled or unsupported, then the scalable part will be equal to
1645   /// ElementCount::getScalable(0).
1646   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1647                                            ElementCount UserVF);
1648 
1649   /// \return the maximized element count based on the targets vector
1650   /// registers and the loop trip-count, but limited to a maximum safe VF.
1651   /// This is a helper function of computeFeasibleMaxVF.
1652   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1653   /// issue that occurred on one of the buildbots which cannot be reproduced
1654   /// without having access to the properietary compiler (see comments on
1655   /// D98509). The issue is currently under investigation and this workaround
1656   /// will be removed as soon as possible.
1657   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1658                                        unsigned SmallestType,
1659                                        unsigned WidestType,
1660                                        const ElementCount &MaxSafeVF);
1661 
1662   /// \return the maximum legal scalable VF, based on the safe max number
1663   /// of elements.
1664   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1665 
1666   /// The vectorization cost is a combination of the cost itself and a boolean
1667   /// indicating whether any of the contributing operations will actually
1668   /// operate on vector values after type legalization in the backend. If this
1669   /// latter value is false, then all operations will be scalarized (i.e. no
1670   /// vectorization has actually taken place).
1671   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1672 
1673   /// Returns the expected execution cost. The unit of the cost does
1674   /// not matter because we use the 'cost' units to compare different
1675   /// vector widths. The cost that is returned is *not* normalized by
1676   /// the factor width. If \p Invalid is not nullptr, this function
1677   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1678   /// each instruction that has an Invalid cost for the given VF.
1679   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1680   VectorizationCostTy
1681   expectedCost(ElementCount VF,
1682                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1683 
1684   /// Returns the execution time cost of an instruction for a given vector
1685   /// width. Vector width of one means scalar.
1686   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1687 
1688   /// The cost-computation logic from getInstructionCost which provides
1689   /// the vector type as an output parameter.
1690   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1691                                      Type *&VectorTy);
1692 
1693   /// Return the cost of instructions in an inloop reduction pattern, if I is
1694   /// part of that pattern.
1695   Optional<InstructionCost>
1696   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1697                           TTI::TargetCostKind CostKind);
1698 
1699   /// Calculate vectorization cost of memory instruction \p I.
1700   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1701 
1702   /// The cost computation for scalarized memory instruction.
1703   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for interleaving group of memory instructions.
1706   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for Gather/Scatter instruction.
1709   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for widening instruction \p I with consecutive
1712   /// memory access.
1713   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1716   /// Load: scalar load + broadcast.
1717   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1718   /// element)
1719   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1720 
1721   /// Estimate the overhead of scalarizing an instruction. This is a
1722   /// convenience wrapper for the type-based getScalarizationOverhead API.
1723   InstructionCost getScalarizationOverhead(Instruction *I,
1724                                            ElementCount VF) const;
1725 
1726   /// Returns whether the instruction is a load or store and will be a emitted
1727   /// as a vector operation.
1728   bool isConsecutiveLoadOrStore(Instruction *I);
1729 
1730   /// Returns true if an artificially high cost for emulated masked memrefs
1731   /// should be used.
1732   bool useEmulatedMaskMemRefHack(Instruction *I);
1733 
1734   /// Map of scalar integer values to the smallest bitwidth they can be legally
1735   /// represented as. The vector equivalents of these values should be truncated
1736   /// to this type.
1737   MapVector<Instruction *, uint64_t> MinBWs;
1738 
1739   /// A type representing the costs for instructions if they were to be
1740   /// scalarized rather than vectorized. The entries are Instruction-Cost
1741   /// pairs.
1742   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1743 
1744   /// A set containing all BasicBlocks that are known to present after
1745   /// vectorization as a predicated block.
1746   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1747 
1748   /// Records whether it is allowed to have the original scalar loop execute at
1749   /// least once. This may be needed as a fallback loop in case runtime
1750   /// aliasing/dependence checks fail, or to handle the tail/remainder
1751   /// iterations when the trip count is unknown or doesn't divide by the VF,
1752   /// or as a peel-loop to handle gaps in interleave-groups.
1753   /// Under optsize and when the trip count is very small we don't allow any
1754   /// iterations to execute in the scalar loop.
1755   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1756 
1757   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1758   bool FoldTailByMasking = false;
1759 
1760   /// A map holding scalar costs for different vectorization factors. The
1761   /// presence of a cost for an instruction in the mapping indicates that the
1762   /// instruction will be scalarized when vectorizing with the associated
1763   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1764   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1765 
1766   /// Holds the instructions known to be uniform after vectorization.
1767   /// The data is collected per VF.
1768   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1769 
1770   /// Holds the instructions known to be scalar after vectorization.
1771   /// The data is collected per VF.
1772   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1773 
1774   /// Holds the instructions (address computations) that are forced to be
1775   /// scalarized.
1776   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1777 
1778   /// PHINodes of the reductions that should be expanded in-loop along with
1779   /// their associated chains of reduction operations, in program order from top
1780   /// (PHI) to bottom
1781   ReductionChainMap InLoopReductionChains;
1782 
1783   /// A Map of inloop reduction operations and their immediate chain operand.
1784   /// FIXME: This can be removed once reductions can be costed correctly in
1785   /// vplan. This was added to allow quick lookup to the inloop operations,
1786   /// without having to loop through InLoopReductionChains.
1787   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1788 
1789   /// Returns the expected difference in cost from scalarizing the expression
1790   /// feeding a predicated instruction \p PredInst. The instructions to
1791   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1792   /// non-negative return value implies the expression will be scalarized.
1793   /// Currently, only single-use chains are considered for scalarization.
1794   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1795                               ElementCount VF);
1796 
1797   /// Collect the instructions that are uniform after vectorization. An
1798   /// instruction is uniform if we represent it with a single scalar value in
1799   /// the vectorized loop corresponding to each vector iteration. Examples of
1800   /// uniform instructions include pointer operands of consecutive or
1801   /// interleaved memory accesses. Note that although uniformity implies an
1802   /// instruction will be scalar, the reverse is not true. In general, a
1803   /// scalarized instruction will be represented by VF scalar values in the
1804   /// vectorized loop, each corresponding to an iteration of the original
1805   /// scalar loop.
1806   void collectLoopUniforms(ElementCount VF);
1807 
1808   /// Collect the instructions that are scalar after vectorization. An
1809   /// instruction is scalar if it is known to be uniform or will be scalarized
1810   /// during vectorization. Non-uniform scalarized instructions will be
1811   /// represented by VF values in the vectorized loop, each corresponding to an
1812   /// iteration of the original scalar loop.
1813   void collectLoopScalars(ElementCount VF);
1814 
1815   /// Keeps cost model vectorization decision and cost for instructions.
1816   /// Right now it is used for memory instructions only.
1817   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1818                                 std::pair<InstWidening, InstructionCost>>;
1819 
1820   DecisionList WideningDecisions;
1821 
1822   /// Returns true if \p V is expected to be vectorized and it needs to be
1823   /// extracted.
1824   bool needsExtract(Value *V, ElementCount VF) const {
1825     Instruction *I = dyn_cast<Instruction>(V);
1826     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1827         TheLoop->isLoopInvariant(I))
1828       return false;
1829 
1830     // Assume we can vectorize V (and hence we need extraction) if the
1831     // scalars are not computed yet. This can happen, because it is called
1832     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1833     // the scalars are collected. That should be a safe assumption in most
1834     // cases, because we check if the operands have vectorizable types
1835     // beforehand in LoopVectorizationLegality.
1836     return Scalars.find(VF) == Scalars.end() ||
1837            !isScalarAfterVectorization(I, VF);
1838   };
1839 
1840   /// Returns a range containing only operands needing to be extracted.
1841   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1842                                                    ElementCount VF) const {
1843     return SmallVector<Value *, 4>(make_filter_range(
1844         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1845   }
1846 
1847   /// Determines if we have the infrastructure to vectorize loop \p L and its
1848   /// epilogue, assuming the main loop is vectorized by \p VF.
1849   bool isCandidateForEpilogueVectorization(const Loop &L,
1850                                            const ElementCount VF) const;
1851 
1852   /// Returns true if epilogue vectorization is considered profitable, and
1853   /// false otherwise.
1854   /// \p VF is the vectorization factor chosen for the original loop.
1855   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1856 
1857 public:
1858   /// The loop that we evaluate.
1859   Loop *TheLoop;
1860 
1861   /// Predicated scalar evolution analysis.
1862   PredicatedScalarEvolution &PSE;
1863 
1864   /// Loop Info analysis.
1865   LoopInfo *LI;
1866 
1867   /// Vectorization legality.
1868   LoopVectorizationLegality *Legal;
1869 
1870   /// Vector target information.
1871   const TargetTransformInfo &TTI;
1872 
1873   /// Target Library Info.
1874   const TargetLibraryInfo *TLI;
1875 
1876   /// Demanded bits analysis.
1877   DemandedBits *DB;
1878 
1879   /// Assumption cache.
1880   AssumptionCache *AC;
1881 
1882   /// Interface to emit optimization remarks.
1883   OptimizationRemarkEmitter *ORE;
1884 
1885   const Function *TheFunction;
1886 
1887   /// Loop Vectorize Hint.
1888   const LoopVectorizeHints *Hints;
1889 
1890   /// The interleave access information contains groups of interleaved accesses
1891   /// with the same stride and close to each other.
1892   InterleavedAccessInfo &InterleaveInfo;
1893 
1894   /// Values to ignore in the cost model.
1895   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1896 
1897   /// Values to ignore in the cost model when VF > 1.
1898   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1899 
1900   /// All element types found in the loop.
1901   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1902 
1903   /// Profitable vector factors.
1904   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1905 };
1906 } // end namespace llvm
1907 
1908 /// Helper struct to manage generating runtime checks for vectorization.
1909 ///
1910 /// The runtime checks are created up-front in temporary blocks to allow better
1911 /// estimating the cost and un-linked from the existing IR. After deciding to
1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1913 /// temporary blocks are completely removed.
1914 class GeneratedRTChecks {
1915   /// Basic block which contains the generated SCEV checks, if any.
1916   BasicBlock *SCEVCheckBlock = nullptr;
1917 
1918   /// The value representing the result of the generated SCEV checks. If it is
1919   /// nullptr, either no SCEV checks have been generated or they have been used.
1920   Value *SCEVCheckCond = nullptr;
1921 
1922   /// Basic block which contains the generated memory runtime checks, if any.
1923   BasicBlock *MemCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated memory runtime checks.
1926   /// If it is nullptr, either no memory runtime checks have been generated or
1927   /// they have been used.
1928   Instruction *MemRuntimeCheckCond = nullptr;
1929 
1930   DominatorTree *DT;
1931   LoopInfo *LI;
1932 
1933   SCEVExpander SCEVExp;
1934   SCEVExpander MemCheckExp;
1935 
1936 public:
1937   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1938                     const DataLayout &DL)
1939       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1940         MemCheckExp(SE, DL, "scev.check") {}
1941 
1942   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1943   /// accurately estimate the cost of the runtime checks. The blocks are
1944   /// un-linked from the IR and is added back during vector code generation. If
1945   /// there is no vector code generation, the check blocks are removed
1946   /// completely.
1947   void Create(Loop *L, const LoopAccessInfo &LAI,
1948               const SCEVUnionPredicate &UnionPred) {
1949 
1950     BasicBlock *LoopHeader = L->getHeader();
1951     BasicBlock *Preheader = L->getLoopPreheader();
1952 
1953     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1954     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1955     // may be used by SCEVExpander. The blocks will be un-linked from their
1956     // predecessors and removed from LI & DT at the end of the function.
1957     if (!UnionPred.isAlwaysTrue()) {
1958       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1959                                   nullptr, "vector.scevcheck");
1960 
1961       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1962           &UnionPred, SCEVCheckBlock->getTerminator());
1963     }
1964 
1965     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1966     if (RtPtrChecking.Need) {
1967       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1968       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1969                                  "vector.memcheck");
1970 
1971       std::tie(std::ignore, MemRuntimeCheckCond) =
1972           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1973                            RtPtrChecking.getChecks(), MemCheckExp);
1974       assert(MemRuntimeCheckCond &&
1975              "no RT checks generated although RtPtrChecking "
1976              "claimed checks are required");
1977     }
1978 
1979     if (!MemCheckBlock && !SCEVCheckBlock)
1980       return;
1981 
1982     // Unhook the temporary block with the checks, update various places
1983     // accordingly.
1984     if (SCEVCheckBlock)
1985       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1986     if (MemCheckBlock)
1987       MemCheckBlock->replaceAllUsesWith(Preheader);
1988 
1989     if (SCEVCheckBlock) {
1990       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1991       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1992       Preheader->getTerminator()->eraseFromParent();
1993     }
1994     if (MemCheckBlock) {
1995       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999 
2000     DT->changeImmediateDominator(LoopHeader, Preheader);
2001     if (MemCheckBlock) {
2002       DT->eraseNode(MemCheckBlock);
2003       LI->removeBlock(MemCheckBlock);
2004     }
2005     if (SCEVCheckBlock) {
2006       DT->eraseNode(SCEVCheckBlock);
2007       LI->removeBlock(SCEVCheckBlock);
2008     }
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         SE.eraseValueFromMap(&I);
2031         I.eraseFromParent();
2032       }
2033     }
2034     MemCheckCleaner.cleanup();
2035     SCEVCleaner.cleanup();
2036 
2037     if (SCEVCheckCond)
2038       SCEVCheckBlock->eraseFromParent();
2039     if (MemRuntimeCheckCond)
2040       MemCheckBlock->eraseFromParent();
2041   }
2042 
2043   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2044   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2045   /// depending on the generated condition.
2046   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2047                              BasicBlock *LoopVectorPreHeader,
2048                              BasicBlock *LoopExitBlock) {
2049     if (!SCEVCheckCond)
2050       return nullptr;
2051     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2052       if (C->isZero())
2053         return nullptr;
2054 
2055     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2056 
2057     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2058     // Create new preheader for vector loop.
2059     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2060       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2061 
2062     SCEVCheckBlock->getTerminator()->eraseFromParent();
2063     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2064     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2065                                                 SCEVCheckBlock);
2066 
2067     DT->addNewBlock(SCEVCheckBlock, Pred);
2068     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2069 
2070     ReplaceInstWithInst(
2071         SCEVCheckBlock->getTerminator(),
2072         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2073     // Mark the check as used, to prevent it from being removed during cleanup.
2074     SCEVCheckCond = nullptr;
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2273     const InductionDescriptor &II, Value *Step, Value *Start,
2274     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2275     VPTransformState &State) {
2276   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2277          "Expected either an induction phi-node or a truncate of it!");
2278 
2279   // Construct the initial value of the vector IV in the vector loop preheader
2280   auto CurrIP = Builder.saveIP();
2281   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2282   if (isa<TruncInst>(EntryVal)) {
2283     assert(Start->getType()->isIntegerTy() &&
2284            "Truncation requires an integer type");
2285     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2286     Step = Builder.CreateTrunc(Step, TruncType);
2287     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2288   }
2289   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2290   Value *SteppedStart =
2291       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2292 
2293   // We create vector phi nodes for both integer and floating-point induction
2294   // variables. Here, we determine the kind of arithmetic we will perform.
2295   Instruction::BinaryOps AddOp;
2296   Instruction::BinaryOps MulOp;
2297   if (Step->getType()->isIntegerTy()) {
2298     AddOp = Instruction::Add;
2299     MulOp = Instruction::Mul;
2300   } else {
2301     AddOp = II.getInductionOpcode();
2302     MulOp = Instruction::FMul;
2303   }
2304 
2305   // Multiply the vectorization factor by the step using integer or
2306   // floating-point arithmetic as appropriate.
2307   Type *StepType = Step->getType();
2308   if (Step->getType()->isFloatingPointTy())
2309     StepType = IntegerType::get(StepType->getContext(),
2310                                 StepType->getScalarSizeInBits());
2311   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2312   if (Step->getType()->isFloatingPointTy())
2313     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2314   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2315 
2316   // Create a vector splat to use in the induction update.
2317   //
2318   // FIXME: If the step is non-constant, we create the vector splat with
2319   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2320   //        handle a constant vector splat.
2321   Value *SplatVF = isa<Constant>(Mul)
2322                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2323                        : Builder.CreateVectorSplat(VF, Mul);
2324   Builder.restoreIP(CurrIP);
2325 
2326   // We may need to add the step a number of times, depending on the unroll
2327   // factor. The last of those goes into the PHI.
2328   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2329                                     &*LoopVectorBody->getFirstInsertionPt());
2330   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2331   Instruction *LastInduction = VecInd;
2332   for (unsigned Part = 0; Part < UF; ++Part) {
2333     State.set(Def, LastInduction, Part);
2334 
2335     if (isa<TruncInst>(EntryVal))
2336       addMetadata(LastInduction, EntryVal);
2337     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2338                                           State, Part);
2339 
2340     LastInduction = cast<Instruction>(
2341         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2342     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2343   }
2344 
2345   // Move the last step to the end of the latch block. This ensures consistent
2346   // placement of all induction updates.
2347   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2348   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2349   auto *ICmp = cast<Instruction>(Br->getCondition());
2350   LastInduction->moveBefore(ICmp);
2351   LastInduction->setName("vec.ind.next");
2352 
2353   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2354   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2355 }
2356 
2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2358   return Cost->isScalarAfterVectorization(I, VF) ||
2359          Cost->isProfitableToScalarize(I, VF);
2360 }
2361 
2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2363   if (shouldScalarizeInstruction(IV))
2364     return true;
2365   auto isScalarInst = [&](User *U) -> bool {
2366     auto *I = cast<Instruction>(U);
2367     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2368   };
2369   return llvm::any_of(IV->users(), isScalarInst);
2370 }
2371 
2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2373     const InductionDescriptor &ID, const Instruction *EntryVal,
2374     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2375     unsigned Part, unsigned Lane) {
2376   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2377          "Expected either an induction phi-node or a truncate of it!");
2378 
2379   // This induction variable is not the phi from the original loop but the
2380   // newly-created IV based on the proof that casted Phi is equal to the
2381   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2382   // re-uses the same InductionDescriptor that original IV uses but we don't
2383   // have to do any recording in this case - that is done when original IV is
2384   // processed.
2385   if (isa<TruncInst>(EntryVal))
2386     return;
2387 
2388   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2389   if (Casts.empty())
2390     return;
2391   // Only the first Cast instruction in the Casts vector is of interest.
2392   // The rest of the Casts (if exist) have no uses outside the
2393   // induction update chain itself.
2394   if (Lane < UINT_MAX)
2395     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2396   else
2397     State.set(CastDef, VectorLoopVal, Part);
2398 }
2399 
2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2401                                                 TruncInst *Trunc, VPValue *Def,
2402                                                 VPValue *CastDef,
2403                                                 VPTransformState &State) {
2404   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2405          "Primary induction variable must have an integer type");
2406 
2407   auto II = Legal->getInductionVars().find(IV);
2408   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2409 
2410   auto ID = II->second;
2411   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2412 
2413   // The value from the original loop to which we are mapping the new induction
2414   // variable.
2415   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2416 
2417   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2418 
2419   // Generate code for the induction step. Note that induction steps are
2420   // required to be loop-invariant
2421   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2422     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2423            "Induction step should be loop invariant");
2424     if (PSE.getSE()->isSCEVable(IV->getType())) {
2425       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2426       return Exp.expandCodeFor(Step, Step->getType(),
2427                                LoopVectorPreHeader->getTerminator());
2428     }
2429     return cast<SCEVUnknown>(Step)->getValue();
2430   };
2431 
2432   // The scalar value to broadcast. This is derived from the canonical
2433   // induction variable. If a truncation type is given, truncate the canonical
2434   // induction variable and step. Otherwise, derive these values from the
2435   // induction descriptor.
2436   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2437     Value *ScalarIV = Induction;
2438     if (IV != OldInduction) {
2439       ScalarIV = IV->getType()->isIntegerTy()
2440                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2441                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2442                                           IV->getType());
2443       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2444       ScalarIV->setName("offset.idx");
2445     }
2446     if (Trunc) {
2447       auto *TruncType = cast<IntegerType>(Trunc->getType());
2448       assert(Step->getType()->isIntegerTy() &&
2449              "Truncation requires an integer step");
2450       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2451       Step = Builder.CreateTrunc(Step, TruncType);
2452     }
2453     return ScalarIV;
2454   };
2455 
2456   // Create the vector values from the scalar IV, in the absence of creating a
2457   // vector IV.
2458   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2459     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2460     for (unsigned Part = 0; Part < UF; ++Part) {
2461       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2462       Value *EntryPart =
2463           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2464                         ID.getInductionOpcode());
2465       State.set(Def, EntryPart, Part);
2466       if (Trunc)
2467         addMetadata(EntryPart, Trunc);
2468       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2469                                             State, Part);
2470     }
2471   };
2472 
2473   // Fast-math-flags propagate from the original induction instruction.
2474   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2475   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2476     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2477 
2478   // Now do the actual transformations, and start with creating the step value.
2479   Value *Step = CreateStepValue(ID.getStep());
2480   if (VF.isZero() || VF.isScalar()) {
2481     Value *ScalarIV = CreateScalarIV(Step);
2482     CreateSplatIV(ScalarIV, Step);
2483     return;
2484   }
2485 
2486   // Determine if we want a scalar version of the induction variable. This is
2487   // true if the induction variable itself is not widened, or if it has at
2488   // least one user in the loop that is not widened.
2489   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2490   if (!NeedsScalarIV) {
2491     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2492                                     State);
2493     return;
2494   }
2495 
2496   // Try to create a new independent vector induction variable. If we can't
2497   // create the phi node, we will splat the scalar induction variable in each
2498   // loop iteration.
2499   if (!shouldScalarizeInstruction(EntryVal)) {
2500     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2501                                     State);
2502     Value *ScalarIV = CreateScalarIV(Step);
2503     // Create scalar steps that can be used by instructions we will later
2504     // scalarize. Note that the addition of the scalar steps will not increase
2505     // the number of instructions in the loop in the common case prior to
2506     // InstCombine. We will be trading one vector extract for each scalar step.
2507     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2508     return;
2509   }
2510 
2511   // All IV users are scalar instructions, so only emit a scalar IV, not a
2512   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2513   // predicate used by the masked loads/stores.
2514   Value *ScalarIV = CreateScalarIV(Step);
2515   if (!Cost->isScalarEpilogueAllowed())
2516     CreateSplatIV(ScalarIV, Step);
2517   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2518 }
2519 
2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2521                                           Instruction::BinaryOps BinOp) {
2522   // Create and check the types.
2523   auto *ValVTy = cast<VectorType>(Val->getType());
2524   ElementCount VLen = ValVTy->getElementCount();
2525 
2526   Type *STy = Val->getType()->getScalarType();
2527   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2528          "Induction Step must be an integer or FP");
2529   assert(Step->getType() == STy && "Step has wrong type");
2530 
2531   SmallVector<Constant *, 8> Indices;
2532 
2533   // Create a vector of consecutive numbers from zero to VF.
2534   VectorType *InitVecValVTy = ValVTy;
2535   Type *InitVecValSTy = STy;
2536   if (STy->isFloatingPointTy()) {
2537     InitVecValSTy =
2538         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2539     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2540   }
2541   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2542 
2543   // Add on StartIdx
2544   Value *StartIdxSplat = Builder.CreateVectorSplat(
2545       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2546   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2547 
2548   if (STy->isIntegerTy()) {
2549     Step = Builder.CreateVectorSplat(VLen, Step);
2550     assert(Step->getType() == Val->getType() && "Invalid step vec");
2551     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2552     // which can be found from the original scalar operations.
2553     Step = Builder.CreateMul(InitVec, Step);
2554     return Builder.CreateAdd(Val, Step, "induction");
2555   }
2556 
2557   // Floating point induction.
2558   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2559          "Binary Opcode should be specified for FP induction");
2560   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2561   Step = Builder.CreateVectorSplat(VLen, Step);
2562   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2563   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2564 }
2565 
2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2567                                            Instruction *EntryVal,
2568                                            const InductionDescriptor &ID,
2569                                            VPValue *Def, VPValue *CastDef,
2570                                            VPTransformState &State) {
2571   // We shouldn't have to build scalar steps if we aren't vectorizing.
2572   assert(VF.isVector() && "VF should be greater than one");
2573   // Get the value type and ensure it and the step have the same integer type.
2574   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2575   assert(ScalarIVTy == Step->getType() &&
2576          "Val and Step should have the same type");
2577 
2578   // We build scalar steps for both integer and floating-point induction
2579   // variables. Here, we determine the kind of arithmetic we will perform.
2580   Instruction::BinaryOps AddOp;
2581   Instruction::BinaryOps MulOp;
2582   if (ScalarIVTy->isIntegerTy()) {
2583     AddOp = Instruction::Add;
2584     MulOp = Instruction::Mul;
2585   } else {
2586     AddOp = ID.getInductionOpcode();
2587     MulOp = Instruction::FMul;
2588   }
2589 
2590   // Determine the number of scalars we need to generate for each unroll
2591   // iteration. If EntryVal is uniform, we only need to generate the first
2592   // lane. Otherwise, we generate all VF values.
2593   bool IsUniform =
2594       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2595   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2596   // Compute the scalar steps and save the results in State.
2597   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2598                                      ScalarIVTy->getScalarSizeInBits());
2599   Type *VecIVTy = nullptr;
2600   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2601   if (!IsUniform && VF.isScalable()) {
2602     VecIVTy = VectorType::get(ScalarIVTy, VF);
2603     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2604     SplatStep = Builder.CreateVectorSplat(VF, Step);
2605     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2606   }
2607 
2608   for (unsigned Part = 0; Part < UF; ++Part) {
2609     Value *StartIdx0 =
2610         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2611 
2612     if (!IsUniform && VF.isScalable()) {
2613       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2614       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2615       if (ScalarIVTy->isFloatingPointTy())
2616         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2617       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2618       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2619       State.set(Def, Add, Part);
2620       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2621                                             Part);
2622       // It's useful to record the lane values too for the known minimum number
2623       // of elements so we do those below. This improves the code quality when
2624       // trying to extract the first element, for example.
2625     }
2626 
2627     if (ScalarIVTy->isFloatingPointTy())
2628       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2629 
2630     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2631       Value *StartIdx = Builder.CreateBinOp(
2632           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2633       // The step returned by `createStepForVF` is a runtime-evaluated value
2634       // when VF is scalable. Otherwise, it should be folded into a Constant.
2635       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2636              "Expected StartIdx to be folded to a constant when VF is not "
2637              "scalable");
2638       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2639       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2640       State.set(Def, Add, VPIteration(Part, Lane));
2641       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2642                                             Part, Lane);
2643     }
2644   }
2645 }
2646 
2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2648                                                     const VPIteration &Instance,
2649                                                     VPTransformState &State) {
2650   Value *ScalarInst = State.get(Def, Instance);
2651   Value *VectorValue = State.get(Def, Instance.Part);
2652   VectorValue = Builder.CreateInsertElement(
2653       VectorValue, ScalarInst,
2654       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2655   State.set(Def, VectorValue, Instance.Part);
2656 }
2657 
2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2659   assert(Vec->getType()->isVectorTy() && "Invalid type");
2660   return Builder.CreateVectorReverse(Vec, "reverse");
2661 }
2662 
2663 // Return whether we allow using masked interleave-groups (for dealing with
2664 // strided loads/stores that reside in predicated blocks, or for dealing
2665 // with gaps).
2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2667   // If an override option has been passed in for interleaved accesses, use it.
2668   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2669     return EnableMaskedInterleavedMemAccesses;
2670 
2671   return TTI.enableMaskedInterleavedAccessVectorization();
2672 }
2673 
2674 // Try to vectorize the interleave group that \p Instr belongs to.
2675 //
2676 // E.g. Translate following interleaved load group (factor = 3):
2677 //   for (i = 0; i < N; i+=3) {
2678 //     R = Pic[i];             // Member of index 0
2679 //     G = Pic[i+1];           // Member of index 1
2680 //     B = Pic[i+2];           // Member of index 2
2681 //     ... // do something to R, G, B
2682 //   }
2683 // To:
2684 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2685 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2686 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2687 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2688 //
2689 // Or translate following interleaved store group (factor = 3):
2690 //   for (i = 0; i < N; i+=3) {
2691 //     ... do something to R, G, B
2692 //     Pic[i]   = R;           // Member of index 0
2693 //     Pic[i+1] = G;           // Member of index 1
2694 //     Pic[i+2] = B;           // Member of index 2
2695 //   }
2696 // To:
2697 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2698 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2699 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2700 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2701 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2702 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2703     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2704     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2705     VPValue *BlockInMask) {
2706   Instruction *Instr = Group->getInsertPos();
2707   const DataLayout &DL = Instr->getModule()->getDataLayout();
2708 
2709   // Prepare for the vector type of the interleaved load/store.
2710   Type *ScalarTy = getLoadStoreType(Instr);
2711   unsigned InterleaveFactor = Group->getFactor();
2712   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2713   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2714 
2715   // Prepare for the new pointers.
2716   SmallVector<Value *, 2> AddrParts;
2717   unsigned Index = Group->getIndex(Instr);
2718 
2719   // TODO: extend the masked interleaved-group support to reversed access.
2720   assert((!BlockInMask || !Group->isReverse()) &&
2721          "Reversed masked interleave-group not supported.");
2722 
2723   // If the group is reverse, adjust the index to refer to the last vector lane
2724   // instead of the first. We adjust the index from the first vector lane,
2725   // rather than directly getting the pointer for lane VF - 1, because the
2726   // pointer operand of the interleaved access is supposed to be uniform. For
2727   // uniform instructions, we're only required to generate a value for the
2728   // first vector lane in each unroll iteration.
2729   if (Group->isReverse())
2730     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2731 
2732   for (unsigned Part = 0; Part < UF; Part++) {
2733     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2734     setDebugLocFromInst(AddrPart);
2735 
2736     // Notice current instruction could be any index. Need to adjust the address
2737     // to the member of index 0.
2738     //
2739     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2740     //       b = A[i];       // Member of index 0
2741     // Current pointer is pointed to A[i+1], adjust it to A[i].
2742     //
2743     // E.g.  A[i+1] = a;     // Member of index 1
2744     //       A[i]   = b;     // Member of index 0
2745     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2746     // Current pointer is pointed to A[i+2], adjust it to A[i].
2747 
2748     bool InBounds = false;
2749     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2750       InBounds = gep->isInBounds();
2751     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2752     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2753 
2754     // Cast to the vector pointer type.
2755     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2756     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2757     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2758   }
2759 
2760   setDebugLocFromInst(Instr);
2761   Value *PoisonVec = PoisonValue::get(VecTy);
2762 
2763   Value *MaskForGaps = nullptr;
2764   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2765     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2766     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2767   }
2768 
2769   // Vectorize the interleaved load group.
2770   if (isa<LoadInst>(Instr)) {
2771     // For each unroll part, create a wide load for the group.
2772     SmallVector<Value *, 2> NewLoads;
2773     for (unsigned Part = 0; Part < UF; Part++) {
2774       Instruction *NewLoad;
2775       if (BlockInMask || MaskForGaps) {
2776         assert(useMaskedInterleavedAccesses(*TTI) &&
2777                "masked interleaved groups are not allowed.");
2778         Value *GroupMask = MaskForGaps;
2779         if (BlockInMask) {
2780           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2781           Value *ShuffledMask = Builder.CreateShuffleVector(
2782               BlockInMaskPart,
2783               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2784               "interleaved.mask");
2785           GroupMask = MaskForGaps
2786                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2787                                                 MaskForGaps)
2788                           : ShuffledMask;
2789         }
2790         NewLoad =
2791             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2792                                      GroupMask, PoisonVec, "wide.masked.vec");
2793       }
2794       else
2795         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2796                                             Group->getAlign(), "wide.vec");
2797       Group->addMetadata(NewLoad);
2798       NewLoads.push_back(NewLoad);
2799     }
2800 
2801     // For each member in the group, shuffle out the appropriate data from the
2802     // wide loads.
2803     unsigned J = 0;
2804     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2805       Instruction *Member = Group->getMember(I);
2806 
2807       // Skip the gaps in the group.
2808       if (!Member)
2809         continue;
2810 
2811       auto StrideMask =
2812           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2813       for (unsigned Part = 0; Part < UF; Part++) {
2814         Value *StridedVec = Builder.CreateShuffleVector(
2815             NewLoads[Part], StrideMask, "strided.vec");
2816 
2817         // If this member has different type, cast the result type.
2818         if (Member->getType() != ScalarTy) {
2819           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2820           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2821           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2822         }
2823 
2824         if (Group->isReverse())
2825           StridedVec = reverseVector(StridedVec);
2826 
2827         State.set(VPDefs[J], StridedVec, Part);
2828       }
2829       ++J;
2830     }
2831     return;
2832   }
2833 
2834   // The sub vector type for current instruction.
2835   auto *SubVT = VectorType::get(ScalarTy, VF);
2836 
2837   // Vectorize the interleaved store group.
2838   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2839   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2840          "masked interleaved groups are not allowed.");
2841   assert((!MaskForGaps || !VF.isScalable()) &&
2842          "masking gaps for scalable vectors is not yet supported.");
2843   for (unsigned Part = 0; Part < UF; Part++) {
2844     // Collect the stored vector from each member.
2845     SmallVector<Value *, 4> StoredVecs;
2846     for (unsigned i = 0; i < InterleaveFactor; i++) {
2847       assert((Group->getMember(i) || MaskForGaps) &&
2848              "Fail to get a member from an interleaved store group");
2849       Instruction *Member = Group->getMember(i);
2850 
2851       // Skip the gaps in the group.
2852       if (!Member) {
2853         Value *Undef = PoisonValue::get(SubVT);
2854         StoredVecs.push_back(Undef);
2855         continue;
2856       }
2857 
2858       Value *StoredVec = State.get(StoredValues[i], Part);
2859 
2860       if (Group->isReverse())
2861         StoredVec = reverseVector(StoredVec);
2862 
2863       // If this member has different type, cast it to a unified type.
2864 
2865       if (StoredVec->getType() != SubVT)
2866         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2867 
2868       StoredVecs.push_back(StoredVec);
2869     }
2870 
2871     // Concatenate all vectors into a wide vector.
2872     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2873 
2874     // Interleave the elements in the wide vector.
2875     Value *IVec = Builder.CreateShuffleVector(
2876         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2877         "interleaved.vec");
2878 
2879     Instruction *NewStoreInstr;
2880     if (BlockInMask || MaskForGaps) {
2881       Value *GroupMask = MaskForGaps;
2882       if (BlockInMask) {
2883         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2884         Value *ShuffledMask = Builder.CreateShuffleVector(
2885             BlockInMaskPart,
2886             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2887             "interleaved.mask");
2888         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2889                                                       ShuffledMask, MaskForGaps)
2890                                 : ShuffledMask;
2891       }
2892       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2893                                                 Group->getAlign(), GroupMask);
2894     } else
2895       NewStoreInstr =
2896           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2897 
2898     Group->addMetadata(NewStoreInstr);
2899   }
2900 }
2901 
2902 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2903     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2904     VPValue *StoredValue, VPValue *BlockInMask) {
2905   // Attempt to issue a wide load.
2906   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2907   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2908 
2909   assert((LI || SI) && "Invalid Load/Store instruction");
2910   assert((!SI || StoredValue) && "No stored value provided for widened store");
2911   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2912 
2913   LoopVectorizationCostModel::InstWidening Decision =
2914       Cost->getWideningDecision(Instr, VF);
2915   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2916           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2917           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2918          "CM decision is not to widen the memory instruction");
2919 
2920   Type *ScalarDataTy = getLoadStoreType(Instr);
2921 
2922   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2923   const Align Alignment = getLoadStoreAlignment(Instr);
2924 
2925   // Determine if the pointer operand of the access is either consecutive or
2926   // reverse consecutive.
2927   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2928   bool ConsecutiveStride =
2929       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2930   bool CreateGatherScatter =
2931       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2932 
2933   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2934   // gather/scatter. Otherwise Decision should have been to Scalarize.
2935   assert((ConsecutiveStride || CreateGatherScatter) &&
2936          "The instruction should be scalarized");
2937   (void)ConsecutiveStride;
2938 
2939   VectorParts BlockInMaskParts(UF);
2940   bool isMaskRequired = BlockInMask;
2941   if (isMaskRequired)
2942     for (unsigned Part = 0; Part < UF; ++Part)
2943       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2944 
2945   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2946     // Calculate the pointer for the specific unroll-part.
2947     GetElementPtrInst *PartPtr = nullptr;
2948 
2949     bool InBounds = false;
2950     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2951       InBounds = gep->isInBounds();
2952     if (Reverse) {
2953       // If the address is consecutive but reversed, then the
2954       // wide store needs to start at the last vector element.
2955       // RunTimeVF =  VScale * VF.getKnownMinValue()
2956       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2957       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2958       // NumElt = -Part * RunTimeVF
2959       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2960       // LastLane = 1 - RunTimeVF
2961       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2962       PartPtr =
2963           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2964       PartPtr->setIsInBounds(InBounds);
2965       PartPtr = cast<GetElementPtrInst>(
2966           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2967       PartPtr->setIsInBounds(InBounds);
2968       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2969         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2970     } else {
2971       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2972       PartPtr = cast<GetElementPtrInst>(
2973           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2974       PartPtr->setIsInBounds(InBounds);
2975     }
2976 
2977     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2978     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2979   };
2980 
2981   // Handle Stores:
2982   if (SI) {
2983     setDebugLocFromInst(SI);
2984 
2985     for (unsigned Part = 0; Part < UF; ++Part) {
2986       Instruction *NewSI = nullptr;
2987       Value *StoredVal = State.get(StoredValue, Part);
2988       if (CreateGatherScatter) {
2989         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2990         Value *VectorGep = State.get(Addr, Part);
2991         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2992                                             MaskPart);
2993       } else {
2994         if (Reverse) {
2995           // If we store to reverse consecutive memory locations, then we need
2996           // to reverse the order of elements in the stored value.
2997           StoredVal = reverseVector(StoredVal);
2998           // We don't want to update the value in the map as it might be used in
2999           // another expression. So don't call resetVectorValue(StoredVal).
3000         }
3001         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3002         if (isMaskRequired)
3003           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3004                                             BlockInMaskParts[Part]);
3005         else
3006           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3007       }
3008       addMetadata(NewSI, SI);
3009     }
3010     return;
3011   }
3012 
3013   // Handle loads.
3014   assert(LI && "Must have a load instruction");
3015   setDebugLocFromInst(LI);
3016   for (unsigned Part = 0; Part < UF; ++Part) {
3017     Value *NewLI;
3018     if (CreateGatherScatter) {
3019       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3020       Value *VectorGep = State.get(Addr, Part);
3021       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3022                                          nullptr, "wide.masked.gather");
3023       addMetadata(NewLI, LI);
3024     } else {
3025       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3026       if (isMaskRequired)
3027         NewLI = Builder.CreateMaskedLoad(
3028             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3029             PoisonValue::get(DataTy), "wide.masked.load");
3030       else
3031         NewLI =
3032             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3033 
3034       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3035       addMetadata(NewLI, LI);
3036       if (Reverse)
3037         NewLI = reverseVector(NewLI);
3038     }
3039 
3040     State.set(Def, NewLI, Part);
3041   }
3042 }
3043 
3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3045                                                VPUser &User,
3046                                                const VPIteration &Instance,
3047                                                bool IfPredicateInstr,
3048                                                VPTransformState &State) {
3049   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3050 
3051   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3052   // the first lane and part.
3053   if (isa<NoAliasScopeDeclInst>(Instr))
3054     if (!Instance.isFirstIteration())
3055       return;
3056 
3057   setDebugLocFromInst(Instr);
3058 
3059   // Does this instruction return a value ?
3060   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3061 
3062   Instruction *Cloned = Instr->clone();
3063   if (!IsVoidRetTy)
3064     Cloned->setName(Instr->getName() + ".cloned");
3065 
3066   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3067                                Builder.GetInsertPoint());
3068   // Replace the operands of the cloned instructions with their scalar
3069   // equivalents in the new loop.
3070   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3071     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3072     auto InputInstance = Instance;
3073     if (!Operand || !OrigLoop->contains(Operand) ||
3074         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3075       InputInstance.Lane = VPLane::getFirstLane();
3076     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3077     Cloned->setOperand(op, NewOp);
3078   }
3079   addNewMetadata(Cloned, Instr);
3080 
3081   // Place the cloned scalar in the new loop.
3082   Builder.Insert(Cloned);
3083 
3084   State.set(Def, Cloned, Instance);
3085 
3086   // If we just cloned a new assumption, add it the assumption cache.
3087   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3088     AC->registerAssumption(II);
3089 
3090   // End if-block.
3091   if (IfPredicateInstr)
3092     PredicatedInstructions.push_back(Cloned);
3093 }
3094 
3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3096                                                       Value *End, Value *Step,
3097                                                       Instruction *DL) {
3098   BasicBlock *Header = L->getHeader();
3099   BasicBlock *Latch = L->getLoopLatch();
3100   // As we're just creating this loop, it's possible no latch exists
3101   // yet. If so, use the header as this will be a single block loop.
3102   if (!Latch)
3103     Latch = Header;
3104 
3105   IRBuilder<> B(&*Header->getFirstInsertionPt());
3106   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3107   setDebugLocFromInst(OldInst, &B);
3108   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3109 
3110   B.SetInsertPoint(Latch->getTerminator());
3111   setDebugLocFromInst(OldInst, &B);
3112 
3113   // Create i+1 and fill the PHINode.
3114   //
3115   // If the tail is not folded, we know that End - Start >= Step (either
3116   // statically or through the minimum iteration checks). We also know that both
3117   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3118   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3119   // overflows and we can mark the induction increment as NUW.
3120   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3121                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3122   Induction->addIncoming(Start, L->getLoopPreheader());
3123   Induction->addIncoming(Next, Latch);
3124   // Create the compare.
3125   Value *ICmp = B.CreateICmpEQ(Next, End);
3126   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3127 
3128   // Now we have two terminators. Remove the old one from the block.
3129   Latch->getTerminator()->eraseFromParent();
3130 
3131   return Induction;
3132 }
3133 
3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3135   if (TripCount)
3136     return TripCount;
3137 
3138   assert(L && "Create Trip Count for null loop.");
3139   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3140   // Find the loop boundaries.
3141   ScalarEvolution *SE = PSE.getSE();
3142   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3143   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3144          "Invalid loop count");
3145 
3146   Type *IdxTy = Legal->getWidestInductionType();
3147   assert(IdxTy && "No type for induction");
3148 
3149   // The exit count might have the type of i64 while the phi is i32. This can
3150   // happen if we have an induction variable that is sign extended before the
3151   // compare. The only way that we get a backedge taken count is that the
3152   // induction variable was signed and as such will not overflow. In such a case
3153   // truncation is legal.
3154   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3155       IdxTy->getPrimitiveSizeInBits())
3156     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3157   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3158 
3159   // Get the total trip count from the count by adding 1.
3160   const SCEV *ExitCount = SE->getAddExpr(
3161       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3162 
3163   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3164 
3165   // Expand the trip count and place the new instructions in the preheader.
3166   // Notice that the pre-header does not change, only the loop body.
3167   SCEVExpander Exp(*SE, DL, "induction");
3168 
3169   // Count holds the overall loop count (N).
3170   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3171                                 L->getLoopPreheader()->getTerminator());
3172 
3173   if (TripCount->getType()->isPointerTy())
3174     TripCount =
3175         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3176                                     L->getLoopPreheader()->getTerminator());
3177 
3178   return TripCount;
3179 }
3180 
3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3182   if (VectorTripCount)
3183     return VectorTripCount;
3184 
3185   Value *TC = getOrCreateTripCount(L);
3186   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3187 
3188   Type *Ty = TC->getType();
3189   // This is where we can make the step a runtime constant.
3190   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3191 
3192   // If the tail is to be folded by masking, round the number of iterations N
3193   // up to a multiple of Step instead of rounding down. This is done by first
3194   // adding Step-1 and then rounding down. Note that it's ok if this addition
3195   // overflows: the vector induction variable will eventually wrap to zero given
3196   // that it starts at zero and its Step is a power of two; the loop will then
3197   // exit, with the last early-exit vector comparison also producing all-true.
3198   if (Cost->foldTailByMasking()) {
3199     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3200            "VF*UF must be a power of 2 when folding tail by masking");
3201     assert(!VF.isScalable() &&
3202            "Tail folding not yet supported for scalable vectors");
3203     TC = Builder.CreateAdd(
3204         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3205   }
3206 
3207   // Now we need to generate the expression for the part of the loop that the
3208   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3209   // iterations are not required for correctness, or N - Step, otherwise. Step
3210   // is equal to the vectorization factor (number of SIMD elements) times the
3211   // unroll factor (number of SIMD instructions).
3212   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3213 
3214   // There are cases where we *must* run at least one iteration in the remainder
3215   // loop.  See the cost model for when this can happen.  If the step evenly
3216   // divides the trip count, we set the remainder to be equal to the step. If
3217   // the step does not evenly divide the trip count, no adjustment is necessary
3218   // since there will already be scalar iterations. Note that the minimum
3219   // iterations check ensures that N >= Step.
3220   if (Cost->requiresScalarEpilogue(VF)) {
3221     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3222     R = Builder.CreateSelect(IsZero, Step, R);
3223   }
3224 
3225   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3226 
3227   return VectorTripCount;
3228 }
3229 
3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3231                                                    const DataLayout &DL) {
3232   // Verify that V is a vector type with same number of elements as DstVTy.
3233   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3234   unsigned VF = DstFVTy->getNumElements();
3235   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3236   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3237   Type *SrcElemTy = SrcVecTy->getElementType();
3238   Type *DstElemTy = DstFVTy->getElementType();
3239   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3240          "Vector elements must have same size");
3241 
3242   // Do a direct cast if element types are castable.
3243   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3244     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3245   }
3246   // V cannot be directly casted to desired vector type.
3247   // May happen when V is a floating point vector but DstVTy is a vector of
3248   // pointers or vice-versa. Handle this using a two-step bitcast using an
3249   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3250   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3251          "Only one type should be a pointer type");
3252   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3253          "Only one type should be a floating point type");
3254   Type *IntTy =
3255       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3256   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3257   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3258   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3259 }
3260 
3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3262                                                          BasicBlock *Bypass) {
3263   Value *Count = getOrCreateTripCount(L);
3264   // Reuse existing vector loop preheader for TC checks.
3265   // Note that new preheader block is generated for vector loop.
3266   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3267   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3268 
3269   // Generate code to check if the loop's trip count is less than VF * UF, or
3270   // equal to it in case a scalar epilogue is required; this implies that the
3271   // vector trip count is zero. This check also covers the case where adding one
3272   // to the backedge-taken count overflowed leading to an incorrect trip count
3273   // of zero. In this case we will also jump to the scalar loop.
3274   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3275                                             : ICmpInst::ICMP_ULT;
3276 
3277   // If tail is to be folded, vector loop takes care of all iterations.
3278   Value *CheckMinIters = Builder.getFalse();
3279   if (!Cost->foldTailByMasking()) {
3280     Value *Step =
3281         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3282     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3283   }
3284   // Create new preheader for vector loop.
3285   LoopVectorPreHeader =
3286       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3287                  "vector.ph");
3288 
3289   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3290                                DT->getNode(Bypass)->getIDom()) &&
3291          "TC check is expected to dominate Bypass");
3292 
3293   // Update dominator for Bypass & LoopExit (if needed).
3294   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3295   if (!Cost->requiresScalarEpilogue(VF))
3296     // If there is an epilogue which must run, there's no edge from the
3297     // middle block to exit blocks  and thus no need to update the immediate
3298     // dominator of the exit blocks.
3299     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3300 
3301   ReplaceInstWithInst(
3302       TCCheckBlock->getTerminator(),
3303       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3304   LoopBypassBlocks.push_back(TCCheckBlock);
3305 }
3306 
3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3308 
3309   BasicBlock *const SCEVCheckBlock =
3310       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3311   if (!SCEVCheckBlock)
3312     return nullptr;
3313 
3314   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3315            (OptForSizeBasedOnProfile &&
3316             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3317          "Cannot SCEV check stride or overflow when optimizing for size");
3318 
3319 
3320   // Update dominator only if this is first RT check.
3321   if (LoopBypassBlocks.empty()) {
3322     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3323     if (!Cost->requiresScalarEpilogue(VF))
3324       // If there is an epilogue which must run, there's no edge from the
3325       // middle block to exit blocks  and thus no need to update the immediate
3326       // dominator of the exit blocks.
3327       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3328   }
3329 
3330   LoopBypassBlocks.push_back(SCEVCheckBlock);
3331   AddedSafetyChecks = true;
3332   return SCEVCheckBlock;
3333 }
3334 
3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3336                                                       BasicBlock *Bypass) {
3337   // VPlan-native path does not do any analysis for runtime checks currently.
3338   if (EnableVPlanNativePath)
3339     return nullptr;
3340 
3341   BasicBlock *const MemCheckBlock =
3342       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3343 
3344   // Check if we generated code that checks in runtime if arrays overlap. We put
3345   // the checks into a separate block to make the more common case of few
3346   // elements faster.
3347   if (!MemCheckBlock)
3348     return nullptr;
3349 
3350   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3351     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3352            "Cannot emit memory checks when optimizing for size, unless forced "
3353            "to vectorize.");
3354     ORE->emit([&]() {
3355       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3356                                         L->getStartLoc(), L->getHeader())
3357              << "Code-size may be reduced by not forcing "
3358                 "vectorization, or by source-code modifications "
3359                 "eliminating the need for runtime checks "
3360                 "(e.g., adding 'restrict').";
3361     });
3362   }
3363 
3364   LoopBypassBlocks.push_back(MemCheckBlock);
3365 
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = std::make_unique<LoopVersioning>(
3371       *Legal->getLAI(),
3372       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3373       DT, PSE.getSE());
3374   LVer->prepareNoAliasMetadata();
3375   return MemCheckBlock;
3376 }
3377 
3378 Value *InnerLoopVectorizer::emitTransformedIndex(
3379     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3380     const InductionDescriptor &ID) const {
3381 
3382   SCEVExpander Exp(*SE, DL, "induction");
3383   auto Step = ID.getStep();
3384   auto StartValue = ID.getStartValue();
3385   assert(Index->getType()->getScalarType() == Step->getType() &&
3386          "Index scalar type does not match StepValue type");
3387 
3388   // Note: the IR at this point is broken. We cannot use SE to create any new
3389   // SCEV and then expand it, hoping that SCEV's simplification will give us
3390   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3391   // lead to various SCEV crashes. So all we can do is to use builder and rely
3392   // on InstCombine for future simplifications. Here we handle some trivial
3393   // cases only.
3394   auto CreateAdd = [&B](Value *X, Value *Y) {
3395     assert(X->getType() == Y->getType() && "Types don't match!");
3396     if (auto *CX = dyn_cast<ConstantInt>(X))
3397       if (CX->isZero())
3398         return Y;
3399     if (auto *CY = dyn_cast<ConstantInt>(Y))
3400       if (CY->isZero())
3401         return X;
3402     return B.CreateAdd(X, Y);
3403   };
3404 
3405   // We allow X to be a vector type, in which case Y will potentially be
3406   // splatted into a vector with the same element count.
3407   auto CreateMul = [&B](Value *X, Value *Y) {
3408     assert(X->getType()->getScalarType() == Y->getType() &&
3409            "Types don't match!");
3410     if (auto *CX = dyn_cast<ConstantInt>(X))
3411       if (CX->isOne())
3412         return Y;
3413     if (auto *CY = dyn_cast<ConstantInt>(Y))
3414       if (CY->isOne())
3415         return X;
3416     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3417     if (XVTy && !isa<VectorType>(Y->getType()))
3418       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3419     return B.CreateMul(X, Y);
3420   };
3421 
3422   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3423   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3424   // the DomTree is not kept up-to-date for additional blocks generated in the
3425   // vector loop. By using the header as insertion point, we guarantee that the
3426   // expanded instructions dominate all their uses.
3427   auto GetInsertPoint = [this, &B]() {
3428     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3429     if (InsertBB != LoopVectorBody &&
3430         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3431       return LoopVectorBody->getTerminator();
3432     return &*B.GetInsertPoint();
3433   };
3434 
3435   switch (ID.getKind()) {
3436   case InductionDescriptor::IK_IntInduction: {
3437     assert(!isa<VectorType>(Index->getType()) &&
3438            "Vector indices not supported for integer inductions yet");
3439     assert(Index->getType() == StartValue->getType() &&
3440            "Index type does not match StartValue type");
3441     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3442       return B.CreateSub(StartValue, Index);
3443     auto *Offset = CreateMul(
3444         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3445     return CreateAdd(StartValue, Offset);
3446   }
3447   case InductionDescriptor::IK_PtrInduction: {
3448     assert(isa<SCEVConstant>(Step) &&
3449            "Expected constant step for pointer induction");
3450     return B.CreateGEP(
3451         ID.getElementType(), StartValue,
3452         CreateMul(Index,
3453                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3454                                     GetInsertPoint())));
3455   }
3456   case InductionDescriptor::IK_FpInduction: {
3457     assert(!isa<VectorType>(Index->getType()) &&
3458            "Vector indices not supported for FP inductions yet");
3459     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3460     auto InductionBinOp = ID.getInductionBinOp();
3461     assert(InductionBinOp &&
3462            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3463             InductionBinOp->getOpcode() == Instruction::FSub) &&
3464            "Original bin op should be defined for FP induction");
3465 
3466     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3467     Value *MulExp = B.CreateFMul(StepValue, Index);
3468     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3469                          "induction");
3470   }
3471   case InductionDescriptor::IK_NoInduction:
3472     return nullptr;
3473   }
3474   llvm_unreachable("invalid enum");
3475 }
3476 
3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3478   LoopScalarBody = OrigLoop->getHeader();
3479   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3480   assert(LoopVectorPreHeader && "Invalid loop structure");
3481   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3482   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3483          "multiple exit loop without required epilogue?");
3484 
3485   LoopMiddleBlock =
3486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3487                  LI, nullptr, Twine(Prefix) + "middle.block");
3488   LoopScalarPreHeader =
3489       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3490                  nullptr, Twine(Prefix) + "scalar.ph");
3491 
3492   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3493 
3494   // Set up the middle block terminator.  Two cases:
3495   // 1) If we know that we must execute the scalar epilogue, emit an
3496   //    unconditional branch.
3497   // 2) Otherwise, we must have a single unique exit block (due to how we
3498   //    implement the multiple exit case).  In this case, set up a conditonal
3499   //    branch from the middle block to the loop scalar preheader, and the
3500   //    exit block.  completeLoopSkeleton will update the condition to use an
3501   //    iteration check, if required to decide whether to execute the remainder.
3502   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3503     BranchInst::Create(LoopScalarPreHeader) :
3504     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3505                        Builder.getTrue());
3506   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3507   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3508 
3509   // We intentionally don't let SplitBlock to update LoopInfo since
3510   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3511   // LoopVectorBody is explicitly added to the correct place few lines later.
3512   LoopVectorBody =
3513       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3514                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3515 
3516   // Update dominator for loop exit.
3517   if (!Cost->requiresScalarEpilogue(VF))
3518     // If there is an epilogue which must run, there's no edge from the
3519     // middle block to exit blocks  and thus no need to update the immediate
3520     // dominator of the exit blocks.
3521     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3522 
3523   // Create and register the new vector loop.
3524   Loop *Lp = LI->AllocateLoop();
3525   Loop *ParentLoop = OrigLoop->getParentLoop();
3526 
3527   // Insert the new loop into the loop nest and register the new basic blocks
3528   // before calling any utilities such as SCEV that require valid LoopInfo.
3529   if (ParentLoop) {
3530     ParentLoop->addChildLoop(Lp);
3531   } else {
3532     LI->addTopLevelLoop(Lp);
3533   }
3534   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3535   return Lp;
3536 }
3537 
3538 void InnerLoopVectorizer::createInductionResumeValues(
3539     Loop *L, Value *VectorTripCount,
3540     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3541   assert(VectorTripCount && L && "Expected valid arguments");
3542   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3543           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3544          "Inconsistent information about additional bypass.");
3545   // We are going to resume the execution of the scalar loop.
3546   // Go over all of the induction variables that we found and fix the
3547   // PHIs that are left in the scalar version of the loop.
3548   // The starting values of PHI nodes depend on the counter of the last
3549   // iteration in the vectorized loop.
3550   // If we come from a bypass edge then we need to start from the original
3551   // start value.
3552   for (auto &InductionEntry : Legal->getInductionVars()) {
3553     PHINode *OrigPhi = InductionEntry.first;
3554     InductionDescriptor II = InductionEntry.second;
3555 
3556     // Create phi nodes to merge from the  backedge-taken check block.
3557     PHINode *BCResumeVal =
3558         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3559                         LoopScalarPreHeader->getTerminator());
3560     // Copy original phi DL over to the new one.
3561     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3562     Value *&EndValue = IVEndValues[OrigPhi];
3563     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3564     if (OrigPhi == OldInduction) {
3565       // We know what the end value is.
3566       EndValue = VectorTripCount;
3567     } else {
3568       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3569 
3570       // Fast-math-flags propagate from the original induction instruction.
3571       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3572         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3573 
3574       Type *StepType = II.getStep()->getType();
3575       Instruction::CastOps CastOp =
3576           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3577       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3578       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3579       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3580       EndValue->setName("ind.end");
3581 
3582       // Compute the end value for the additional bypass (if applicable).
3583       if (AdditionalBypass.first) {
3584         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3585         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3586                                          StepType, true);
3587         CRD =
3588             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3589         EndValueFromAdditionalBypass =
3590             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3591         EndValueFromAdditionalBypass->setName("ind.end");
3592       }
3593     }
3594     // The new PHI merges the original incoming value, in case of a bypass,
3595     // or the value at the end of the vectorized loop.
3596     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3597 
3598     // Fix the scalar body counter (PHI node).
3599     // The old induction's phi node in the scalar body needs the truncated
3600     // value.
3601     for (BasicBlock *BB : LoopBypassBlocks)
3602       BCResumeVal->addIncoming(II.getStartValue(), BB);
3603 
3604     if (AdditionalBypass.first)
3605       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3606                                             EndValueFromAdditionalBypass);
3607 
3608     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3609   }
3610 }
3611 
3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3613                                                       MDNode *OrigLoopID) {
3614   assert(L && "Expected valid loop.");
3615 
3616   // The trip counts should be cached by now.
3617   Value *Count = getOrCreateTripCount(L);
3618   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3619 
3620   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3621 
3622   // Add a check in the middle block to see if we have completed
3623   // all of the iterations in the first vector loop.  Three cases:
3624   // 1) If we require a scalar epilogue, there is no conditional branch as
3625   //    we unconditionally branch to the scalar preheader.  Do nothing.
3626   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3627   //    Thus if tail is to be folded, we know we don't need to run the
3628   //    remainder and we can use the previous value for the condition (true).
3629   // 3) Otherwise, construct a runtime check.
3630   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3631     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3632                                         Count, VectorTripCount, "cmp.n",
3633                                         LoopMiddleBlock->getTerminator());
3634 
3635     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3636     // of the corresponding compare because they may have ended up with
3637     // different line numbers and we want to avoid awkward line stepping while
3638     // debugging. Eg. if the compare has got a line number inside the loop.
3639     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3640     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3641   }
3642 
3643   // Get ready to start creating new instructions into the vectorized body.
3644   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3645          "Inconsistent vector loop preheader");
3646   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3647 
3648   Optional<MDNode *> VectorizedLoopID =
3649       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3650                                       LLVMLoopVectorizeFollowupVectorized});
3651   if (VectorizedLoopID.hasValue()) {
3652     L->setLoopID(VectorizedLoopID.getValue());
3653 
3654     // Do not setAlreadyVectorized if loop attributes have been defined
3655     // explicitly.
3656     return LoopVectorPreHeader;
3657   }
3658 
3659   // Keep all loop hints from the original loop on the vector loop (we'll
3660   // replace the vectorizer-specific hints below).
3661   if (MDNode *LID = OrigLoop->getLoopID())
3662     L->setLoopID(LID);
3663 
3664   LoopVectorizeHints Hints(L, true, *ORE);
3665   Hints.setAlreadyVectorized();
3666 
3667 #ifdef EXPENSIVE_CHECKS
3668   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3669   LI->verify(*DT);
3670 #endif
3671 
3672   return LoopVectorPreHeader;
3673 }
3674 
3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3676   /*
3677    In this function we generate a new loop. The new loop will contain
3678    the vectorized instructions while the old loop will continue to run the
3679    scalar remainder.
3680 
3681        [ ] <-- loop iteration number check.
3682     /   |
3683    /    v
3684   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3685   |  /  |
3686   | /   v
3687   ||   [ ]     <-- vector pre header.
3688   |/    |
3689   |     v
3690   |    [  ] \
3691   |    [  ]_|   <-- vector loop.
3692   |     |
3693   |     v
3694   \   -[ ]   <--- middle-block.
3695    \/   |
3696    /\   v
3697    | ->[ ]     <--- new preheader.
3698    |    |
3699  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3700    |   [ ] \
3701    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3702     \   |
3703      \  v
3704       >[ ]     <-- exit block(s).
3705    ...
3706    */
3707 
3708   // Get the metadata of the original loop before it gets modified.
3709   MDNode *OrigLoopID = OrigLoop->getLoopID();
3710 
3711   // Workaround!  Compute the trip count of the original loop and cache it
3712   // before we start modifying the CFG.  This code has a systemic problem
3713   // wherein it tries to run analysis over partially constructed IR; this is
3714   // wrong, and not simply for SCEV.  The trip count of the original loop
3715   // simply happens to be prone to hitting this in practice.  In theory, we
3716   // can hit the same issue for any SCEV, or ValueTracking query done during
3717   // mutation.  See PR49900.
3718   getOrCreateTripCount(OrigLoop);
3719 
3720   // Create an empty vector loop, and prepare basic blocks for the runtime
3721   // checks.
3722   Loop *Lp = createVectorLoopSkeleton("");
3723 
3724   // Now, compare the new count to zero. If it is zero skip the vector loop and
3725   // jump to the scalar loop. This check also covers the case where the
3726   // backedge-taken count is uint##_max: adding one to it will overflow leading
3727   // to an incorrect trip count of zero. In this (rare) case we will also jump
3728   // to the scalar loop.
3729   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code to check any assumptions that we've made for SCEV
3732   // expressions.
3733   emitSCEVChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Generate the code that checks in runtime if arrays overlap. We put the
3736   // checks into a separate block to make the more common case of few elements
3737   // faster.
3738   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3739 
3740   // Some loops have a single integer induction variable, while other loops
3741   // don't. One example is c++ iterators that often have multiple pointer
3742   // induction variables. In the code below we also support a case where we
3743   // don't have a single induction variable.
3744   //
3745   // We try to obtain an induction variable from the original loop as hard
3746   // as possible. However if we don't find one that:
3747   //   - is an integer
3748   //   - counts from zero, stepping by one
3749   //   - is the size of the widest induction variable type
3750   // then we create a new one.
3751   OldInduction = Legal->getPrimaryInduction();
3752   Type *IdxTy = Legal->getWidestInductionType();
3753   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3754   // The loop step is equal to the vectorization factor (num of SIMD elements)
3755   // times the unroll factor (num of SIMD instructions).
3756   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3757   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3758   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3759   Induction =
3760       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3761                               getDebugLocFromInstOrOperands(OldInduction));
3762 
3763   // Emit phis for the new starting index of the scalar loop.
3764   createInductionResumeValues(Lp, CountRoundDown);
3765 
3766   return completeLoopSkeleton(Lp, OrigLoopID);
3767 }
3768 
3769 // Fix up external users of the induction variable. At this point, we are
3770 // in LCSSA form, with all external PHIs that use the IV having one input value,
3771 // coming from the remainder loop. We need those PHIs to also have a correct
3772 // value for the IV when arriving directly from the middle block.
3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3774                                        const InductionDescriptor &II,
3775                                        Value *CountRoundDown, Value *EndValue,
3776                                        BasicBlock *MiddleBlock) {
3777   // There are two kinds of external IV usages - those that use the value
3778   // computed in the last iteration (the PHI) and those that use the penultimate
3779   // value (the value that feeds into the phi from the loop latch).
3780   // We allow both, but they, obviously, have different values.
3781 
3782   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3783 
3784   DenseMap<Value *, Value *> MissingVals;
3785 
3786   // An external user of the last iteration's value should see the value that
3787   // the remainder loop uses to initialize its own IV.
3788   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3789   for (User *U : PostInc->users()) {
3790     Instruction *UI = cast<Instruction>(U);
3791     if (!OrigLoop->contains(UI)) {
3792       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3793       MissingVals[UI] = EndValue;
3794     }
3795   }
3796 
3797   // An external user of the penultimate value need to see EndValue - Step.
3798   // The simplest way to get this is to recompute it from the constituent SCEVs,
3799   // that is Start + (Step * (CRD - 1)).
3800   for (User *U : OrigPhi->users()) {
3801     auto *UI = cast<Instruction>(U);
3802     if (!OrigLoop->contains(UI)) {
3803       const DataLayout &DL =
3804           OrigLoop->getHeader()->getModule()->getDataLayout();
3805       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3806 
3807       IRBuilder<> B(MiddleBlock->getTerminator());
3808 
3809       // Fast-math-flags propagate from the original induction instruction.
3810       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3811         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3812 
3813       Value *CountMinusOne = B.CreateSub(
3814           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3815       Value *CMO =
3816           !II.getStep()->getType()->isIntegerTy()
3817               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3818                              II.getStep()->getType())
3819               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3820       CMO->setName("cast.cmo");
3821       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3822       Escape->setName("ind.escape");
3823       MissingVals[UI] = Escape;
3824     }
3825   }
3826 
3827   for (auto &I : MissingVals) {
3828     PHINode *PHI = cast<PHINode>(I.first);
3829     // One corner case we have to handle is two IVs "chasing" each-other,
3830     // that is %IV2 = phi [...], [ %IV1, %latch ]
3831     // In this case, if IV1 has an external use, we need to avoid adding both
3832     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3833     // don't already have an incoming value for the middle block.
3834     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3835       PHI->addIncoming(I.second, MiddleBlock);
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 struct CSEDenseMapInfo {
3842   static bool canHandle(const Instruction *I) {
3843     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3844            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3845   }
3846 
3847   static inline Instruction *getEmptyKey() {
3848     return DenseMapInfo<Instruction *>::getEmptyKey();
3849   }
3850 
3851   static inline Instruction *getTombstoneKey() {
3852     return DenseMapInfo<Instruction *>::getTombstoneKey();
3853   }
3854 
3855   static unsigned getHashValue(const Instruction *I) {
3856     assert(canHandle(I) && "Unknown instruction!");
3857     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3858                                                            I->value_op_end()));
3859   }
3860 
3861   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3862     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3863         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3864       return LHS == RHS;
3865     return LHS->isIdenticalTo(RHS);
3866   }
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 ///Perform cse of induction variable instructions.
3872 static void cse(BasicBlock *BB) {
3873   // Perform simple cse.
3874   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3875   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3876     Instruction *In = &*I++;
3877 
3878     if (!CSEDenseMapInfo::canHandle(In))
3879       continue;
3880 
3881     // Check if we can replace this instruction with any of the
3882     // visited instructions.
3883     if (Instruction *V = CSEMap.lookup(In)) {
3884       In->replaceAllUsesWith(V);
3885       In->eraseFromParent();
3886       continue;
3887     }
3888 
3889     CSEMap[In] = In;
3890   }
3891 }
3892 
3893 InstructionCost
3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3895                                               bool &NeedToScalarize) const {
3896   Function *F = CI->getCalledFunction();
3897   Type *ScalarRetTy = CI->getType();
3898   SmallVector<Type *, 4> Tys, ScalarTys;
3899   for (auto &ArgOp : CI->arg_operands())
3900     ScalarTys.push_back(ArgOp->getType());
3901 
3902   // Estimate cost of scalarized vector call. The source operands are assumed
3903   // to be vectors, so we need to extract individual elements from there,
3904   // execute VF scalar calls, and then gather the result into the vector return
3905   // value.
3906   InstructionCost ScalarCallCost =
3907       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3908   if (VF.isScalar())
3909     return ScalarCallCost;
3910 
3911   // Compute corresponding vector type for return value and arguments.
3912   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3913   for (Type *ScalarTy : ScalarTys)
3914     Tys.push_back(ToVectorTy(ScalarTy, VF));
3915 
3916   // Compute costs of unpacking argument values for the scalar calls and
3917   // packing the return values to a vector.
3918   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3919 
3920   InstructionCost Cost =
3921       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3922 
3923   // If we can't emit a vector call for this function, then the currently found
3924   // cost is the cost we need to return.
3925   NeedToScalarize = true;
3926   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3927   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3928 
3929   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3930     return Cost;
3931 
3932   // If the corresponding vector cost is cheaper, return its cost.
3933   InstructionCost VectorCallCost =
3934       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3935   if (VectorCallCost < Cost) {
3936     NeedToScalarize = false;
3937     Cost = VectorCallCost;
3938   }
3939   return Cost;
3940 }
3941 
3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3943   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3944     return Elt;
3945   return VectorType::get(Elt, VF);
3946 }
3947 
3948 InstructionCost
3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3950                                                    ElementCount VF) const {
3951   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3952   assert(ID && "Expected intrinsic call!");
3953   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3954   FastMathFlags FMF;
3955   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3956     FMF = FPMO->getFastMathFlags();
3957 
3958   SmallVector<const Value *> Arguments(CI->args());
3959   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3960   SmallVector<Type *> ParamTys;
3961   std::transform(FTy->param_begin(), FTy->param_end(),
3962                  std::back_inserter(ParamTys),
3963                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3964 
3965   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3966                                     dyn_cast<IntrinsicInst>(CI));
3967   return TTI.getIntrinsicInstrCost(CostAttrs,
3968                                    TargetTransformInfo::TCK_RecipThroughput);
3969 }
3970 
3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3972   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3973   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3974   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3975 }
3976 
3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3978   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3979   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3980   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3981 }
3982 
3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3984   // For every instruction `I` in MinBWs, truncate the operands, create a
3985   // truncated version of `I` and reextend its result. InstCombine runs
3986   // later and will remove any ext/trunc pairs.
3987   SmallPtrSet<Value *, 4> Erased;
3988   for (const auto &KV : Cost->getMinimalBitwidths()) {
3989     // If the value wasn't vectorized, we must maintain the original scalar
3990     // type. The absence of the value from State indicates that it
3991     // wasn't vectorized.
3992     // FIXME: Should not rely on getVPValue at this point.
3993     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3999         continue;
4000       Type *OriginalTy = I->getType();
4001       Type *ScalarTruncatedTy =
4002           IntegerType::get(OriginalTy->getContext(), KV.second);
4003       auto *TruncatedTy = VectorType::get(
4004           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4005       if (TruncatedTy == OriginalTy)
4006         continue;
4007 
4008       IRBuilder<> B(cast<Instruction>(I));
4009       auto ShrinkOperand = [&](Value *V) -> Value * {
4010         if (auto *ZI = dyn_cast<ZExtInst>(V))
4011           if (ZI->getSrcTy() == TruncatedTy)
4012             return ZI->getOperand(0);
4013         return B.CreateZExtOrTrunc(V, TruncatedTy);
4014       };
4015 
4016       // The actual instruction modification depends on the instruction type,
4017       // unfortunately.
4018       Value *NewI = nullptr;
4019       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4020         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4021                              ShrinkOperand(BO->getOperand(1)));
4022 
4023         // Any wrapping introduced by shrinking this operation shouldn't be
4024         // considered undefined behavior. So, we can't unconditionally copy
4025         // arithmetic wrapping flags to NewI.
4026         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4027       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4028         NewI =
4029             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4030                          ShrinkOperand(CI->getOperand(1)));
4031       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4032         NewI = B.CreateSelect(SI->getCondition(),
4033                               ShrinkOperand(SI->getTrueValue()),
4034                               ShrinkOperand(SI->getFalseValue()));
4035       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4036         switch (CI->getOpcode()) {
4037         default:
4038           llvm_unreachable("Unhandled cast!");
4039         case Instruction::Trunc:
4040           NewI = ShrinkOperand(CI->getOperand(0));
4041           break;
4042         case Instruction::SExt:
4043           NewI = B.CreateSExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         case Instruction::ZExt:
4048           NewI = B.CreateZExtOrTrunc(
4049               CI->getOperand(0),
4050               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4051           break;
4052         }
4053       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4054         auto Elements0 =
4055             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4056         auto *O0 = B.CreateZExtOrTrunc(
4057             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4058         auto Elements1 =
4059             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4060         auto *O1 = B.CreateZExtOrTrunc(
4061             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4062 
4063         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4064       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4065         // Don't do anything with the operands, just extend the result.
4066         continue;
4067       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4073         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4074       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4075         auto Elements =
4076             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4077         auto *O0 = B.CreateZExtOrTrunc(
4078             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4079         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4080       } else {
4081         // If we don't know what to do, be conservative and don't do anything.
4082         continue;
4083       }
4084 
4085       // Lastly, extend the result.
4086       NewI->takeName(cast<Instruction>(I));
4087       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4088       I->replaceAllUsesWith(Res);
4089       cast<Instruction>(I)->eraseFromParent();
4090       Erased.insert(I);
4091       State.reset(Def, Res, Part);
4092     }
4093   }
4094 
4095   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4096   for (const auto &KV : Cost->getMinimalBitwidths()) {
4097     // If the value wasn't vectorized, we must maintain the original scalar
4098     // type. The absence of the value from State indicates that it
4099     // wasn't vectorized.
4100     // FIXME: Should not rely on getVPValue at this point.
4101     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4102     if (!State.hasAnyVectorValue(Def))
4103       continue;
4104     for (unsigned Part = 0; Part < UF; ++Part) {
4105       Value *I = State.get(Def, Part);
4106       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4107       if (Inst && Inst->use_empty()) {
4108         Value *NewI = Inst->getOperand(0);
4109         Inst->eraseFromParent();
4110         State.reset(Def, NewI, Part);
4111       }
4112     }
4113   }
4114 }
4115 
4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4117   // Insert truncates and extends for any truncated instructions as hints to
4118   // InstCombine.
4119   if (VF.isVector())
4120     truncateToMinimalBitwidths(State);
4121 
4122   // Fix widened non-induction PHIs by setting up the PHI operands.
4123   if (OrigPHIsToFix.size()) {
4124     assert(EnableVPlanNativePath &&
4125            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4126     fixNonInductionPHIs(State);
4127   }
4128 
4129   // At this point every instruction in the original loop is widened to a
4130   // vector form. Now we need to fix the recurrences in the loop. These PHI
4131   // nodes are currently empty because we did not want to introduce cycles.
4132   // This is the second stage of vectorizing recurrences.
4133   fixCrossIterationPHIs(State);
4134 
4135   // Forget the original basic block.
4136   PSE.getSE()->forgetLoop(OrigLoop);
4137 
4138   // If we inserted an edge from the middle block to the unique exit block,
4139   // update uses outside the loop (phis) to account for the newly inserted
4140   // edge.
4141   if (!Cost->requiresScalarEpilogue(VF)) {
4142     // Fix-up external users of the induction variables.
4143     for (auto &Entry : Legal->getInductionVars())
4144       fixupIVUsers(Entry.first, Entry.second,
4145                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4146                    IVEndValues[Entry.first], LoopMiddleBlock);
4147 
4148     fixLCSSAPHIs(State);
4149   }
4150 
4151   for (Instruction *PI : PredicatedInstructions)
4152     sinkScalarOperands(&*PI);
4153 
4154   // Remove redundant induction instructions.
4155   cse(LoopVectorBody);
4156 
4157   // Set/update profile weights for the vector and remainder loops as original
4158   // loop iterations are now distributed among them. Note that original loop
4159   // represented by LoopScalarBody becomes remainder loop after vectorization.
4160   //
4161   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4162   // end up getting slightly roughened result but that should be OK since
4163   // profile is not inherently precise anyway. Note also possible bypass of
4164   // vector code caused by legality checks is ignored, assigning all the weight
4165   // to the vector loop, optimistically.
4166   //
4167   // For scalable vectorization we can't know at compile time how many iterations
4168   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4169   // vscale of '1'.
4170   setProfileInfoAfterUnrolling(
4171       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4172       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4173 }
4174 
4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4176   // In order to support recurrences we need to be able to vectorize Phi nodes.
4177   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4178   // stage #2: We now need to fix the recurrences by adding incoming edges to
4179   // the currently empty PHI nodes. At this point every instruction in the
4180   // original loop is widened to a vector form so we can use them to construct
4181   // the incoming edges.
4182   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4183   for (VPRecipeBase &R : Header->phis()) {
4184     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4185       fixReduction(ReductionPhi, State);
4186     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4187       fixFirstOrderRecurrence(FOR, State);
4188   }
4189 }
4190 
4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4192                                                   VPTransformState &State) {
4193   // This is the second phase of vectorizing first-order recurrences. An
4194   // overview of the transformation is described below. Suppose we have the
4195   // following loop.
4196   //
4197   //   for (int i = 0; i < n; ++i)
4198   //     b[i] = a[i] - a[i - 1];
4199   //
4200   // There is a first-order recurrence on "a". For this loop, the shorthand
4201   // scalar IR looks like:
4202   //
4203   //   scalar.ph:
4204   //     s_init = a[-1]
4205   //     br scalar.body
4206   //
4207   //   scalar.body:
4208   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4209   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4210   //     s2 = a[i]
4211   //     b[i] = s2 - s1
4212   //     br cond, scalar.body, ...
4213   //
4214   // In this example, s1 is a recurrence because it's value depends on the
4215   // previous iteration. In the first phase of vectorization, we created a
4216   // vector phi v1 for s1. We now complete the vectorization and produce the
4217   // shorthand vector IR shown below (for VF = 4, UF = 1).
4218   //
4219   //   vector.ph:
4220   //     v_init = vector(..., ..., ..., a[-1])
4221   //     br vector.body
4222   //
4223   //   vector.body
4224   //     i = phi [0, vector.ph], [i+4, vector.body]
4225   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4226   //     v2 = a[i, i+1, i+2, i+3];
4227   //     v3 = vector(v1(3), v2(0, 1, 2))
4228   //     b[i, i+1, i+2, i+3] = v2 - v3
4229   //     br cond, vector.body, middle.block
4230   //
4231   //   middle.block:
4232   //     x = v2(3)
4233   //     br scalar.ph
4234   //
4235   //   scalar.ph:
4236   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4237   //     br scalar.body
4238   //
4239   // After execution completes the vector loop, we extract the next value of
4240   // the recurrence (x) to use as the initial value in the scalar loop.
4241 
4242   // Extract the last vector element in the middle block. This will be the
4243   // initial value for the recurrence when jumping to the scalar loop.
4244   VPValue *PreviousDef = PhiR->getBackedgeValue();
4245   Value *Incoming = State.get(PreviousDef, UF - 1);
4246   auto *ExtractForScalar = Incoming;
4247   auto *IdxTy = Builder.getInt32Ty();
4248   if (VF.isVector()) {
4249     auto *One = ConstantInt::get(IdxTy, 1);
4250     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4253     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4254                                                     "vector.recur.extract");
4255   }
4256   // Extract the second last element in the middle block if the
4257   // Phi is used outside the loop. We need to extract the phi itself
4258   // and not the last element (the phi update in the current iteration). This
4259   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4260   // when the scalar loop is not run at all.
4261   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4262   if (VF.isVector()) {
4263     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4264     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4265     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4266         Incoming, Idx, "vector.recur.extract.for.phi");
4267   } else if (UF > 1)
4268     // When loop is unrolled without vectorizing, initialize
4269     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4270     // of `Incoming`. This is analogous to the vectorized case above: extracting
4271     // the second last element when VF > 1.
4272     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4273 
4274   // Fix the initial value of the original recurrence in the scalar loop.
4275   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4276   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4277   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4278   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4279   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4280     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4281     Start->addIncoming(Incoming, BB);
4282   }
4283 
4284   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4285   Phi->setName("scalar.recur");
4286 
4287   // Finally, fix users of the recurrence outside the loop. The users will need
4288   // either the last value of the scalar recurrence or the last value of the
4289   // vector recurrence we extracted in the middle block. Since the loop is in
4290   // LCSSA form, we just need to find all the phi nodes for the original scalar
4291   // recurrence in the exit block, and then add an edge for the middle block.
4292   // Note that LCSSA does not imply single entry when the original scalar loop
4293   // had multiple exiting edges (as we always run the last iteration in the
4294   // scalar epilogue); in that case, there is no edge from middle to exit and
4295   // and thus no phis which needed updated.
4296   if (!Cost->requiresScalarEpilogue(VF))
4297     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4298       if (any_of(LCSSAPhi.incoming_values(),
4299                  [Phi](Value *V) { return V == Phi; }))
4300         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4301 }
4302 
4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4304                                        VPTransformState &State) {
4305   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4306   // Get it's reduction variable descriptor.
4307   assert(Legal->isReductionVariable(OrigPhi) &&
4308          "Unable to find the reduction variable");
4309   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4310 
4311   RecurKind RK = RdxDesc.getRecurrenceKind();
4312   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4313   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4314   setDebugLocFromInst(ReductionStartValue);
4315 
4316   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4317   // This is the vector-clone of the value that leaves the loop.
4318   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4319 
4320   // Wrap flags are in general invalid after vectorization, clear them.
4321   clearReductionWrapFlags(RdxDesc, State);
4322 
4323   // Before each round, move the insertion point right between
4324   // the PHIs and the values we are going to write.
4325   // This allows us to write both PHINodes and the extractelement
4326   // instructions.
4327   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4328 
4329   setDebugLocFromInst(LoopExitInst);
4330 
4331   Type *PhiTy = OrigPhi->getType();
4332   // If tail is folded by masking, the vector value to leave the loop should be
4333   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4334   // instead of the former. For an inloop reduction the reduction will already
4335   // be predicated, and does not need to be handled here.
4336   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4337     for (unsigned Part = 0; Part < UF; ++Part) {
4338       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4339       Value *Sel = nullptr;
4340       for (User *U : VecLoopExitInst->users()) {
4341         if (isa<SelectInst>(U)) {
4342           assert(!Sel && "Reduction exit feeding two selects");
4343           Sel = U;
4344         } else
4345           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4346       }
4347       assert(Sel && "Reduction exit feeds no select");
4348       State.reset(LoopExitInstDef, Sel, Part);
4349 
4350       // If the target can create a predicated operator for the reduction at no
4351       // extra cost in the loop (for example a predicated vadd), it can be
4352       // cheaper for the select to remain in the loop than be sunk out of it,
4353       // and so use the select value for the phi instead of the old
4354       // LoopExitValue.
4355       if (PreferPredicatedReductionSelect ||
4356           TTI->preferPredicatedReductionSelect(
4357               RdxDesc.getOpcode(), PhiTy,
4358               TargetTransformInfo::ReductionFlags())) {
4359         auto *VecRdxPhi =
4360             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4361         VecRdxPhi->setIncomingValueForBlock(
4362             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4363       }
4364     }
4365   }
4366 
4367   // If the vector reduction can be performed in a smaller type, we truncate
4368   // then extend the loop exit value to enable InstCombine to evaluate the
4369   // entire expression in the smaller type.
4370   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4371     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4372     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4373     Builder.SetInsertPoint(
4374         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4375     VectorParts RdxParts(UF);
4376     for (unsigned Part = 0; Part < UF; ++Part) {
4377       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4378       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4379       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4380                                         : Builder.CreateZExt(Trunc, VecTy);
4381       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4382            UI != RdxParts[Part]->user_end();)
4383         if (*UI != Trunc) {
4384           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4385           RdxParts[Part] = Extnd;
4386         } else {
4387           ++UI;
4388         }
4389     }
4390     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4391     for (unsigned Part = 0; Part < UF; ++Part) {
4392       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4393       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4394     }
4395   }
4396 
4397   // Reduce all of the unrolled parts into a single vector.
4398   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4399   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4400 
4401   // The middle block terminator has already been assigned a DebugLoc here (the
4402   // OrigLoop's single latch terminator). We want the whole middle block to
4403   // appear to execute on this line because: (a) it is all compiler generated,
4404   // (b) these instructions are always executed after evaluating the latch
4405   // conditional branch, and (c) other passes may add new predecessors which
4406   // terminate on this line. This is the easiest way to ensure we don't
4407   // accidentally cause an extra step back into the loop while debugging.
4408   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4409   if (PhiR->isOrdered())
4410     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4411   else {
4412     // Floating-point operations should have some FMF to enable the reduction.
4413     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4414     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4415     for (unsigned Part = 1; Part < UF; ++Part) {
4416       Value *RdxPart = State.get(LoopExitInstDef, Part);
4417       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4418         ReducedPartRdx = Builder.CreateBinOp(
4419             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4420       } else {
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422       }
4423     }
4424   }
4425 
4426   // Create the reduction after the loop. Note that inloop reductions create the
4427   // target reduction in the loop using a Reduction recipe.
4428   if (VF.isVector() && !PhiR->isInLoop()) {
4429     ReducedPartRdx =
4430         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4431     // If the reduction can be performed in a smaller type, we need to extend
4432     // the reduction to the wider type before we branch to the original loop.
4433     if (PhiTy != RdxDesc.getRecurrenceType())
4434       ReducedPartRdx = RdxDesc.isSigned()
4435                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4436                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4437   }
4438 
4439   // Create a phi node that merges control-flow from the backedge-taken check
4440   // block and the middle block.
4441   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4442                                         LoopScalarPreHeader->getTerminator());
4443   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4444     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4445   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4446 
4447   // Now, we need to fix the users of the reduction variable
4448   // inside and outside of the scalar remainder loop.
4449 
4450   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4451   // in the exit blocks.  See comment on analogous loop in
4452   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4453   if (!Cost->requiresScalarEpilogue(VF))
4454     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4455       if (any_of(LCSSAPhi.incoming_values(),
4456                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4457         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4458 
4459   // Fix the scalar loop reduction variable with the incoming reduction sum
4460   // from the vector body and from the backedge value.
4461   int IncomingEdgeBlockIdx =
4462       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4463   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4464   // Pick the other block.
4465   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4466   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4467   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4468 }
4469 
4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4471                                                   VPTransformState &State) {
4472   RecurKind RK = RdxDesc.getRecurrenceKind();
4473   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4474     return;
4475 
4476   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4477   assert(LoopExitInstr && "null loop exit instruction");
4478   SmallVector<Instruction *, 8> Worklist;
4479   SmallPtrSet<Instruction *, 8> Visited;
4480   Worklist.push_back(LoopExitInstr);
4481   Visited.insert(LoopExitInstr);
4482 
4483   while (!Worklist.empty()) {
4484     Instruction *Cur = Worklist.pop_back_val();
4485     if (isa<OverflowingBinaryOperator>(Cur))
4486       for (unsigned Part = 0; Part < UF; ++Part) {
4487         // FIXME: Should not rely on getVPValue at this point.
4488         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4489         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4490       }
4491 
4492     for (User *U : Cur->users()) {
4493       Instruction *UI = cast<Instruction>(U);
4494       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4495           Visited.insert(UI).second)
4496         Worklist.push_back(UI);
4497     }
4498   }
4499 }
4500 
4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4502   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4503     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4504       // Some phis were already hand updated by the reduction and recurrence
4505       // code above, leave them alone.
4506       continue;
4507 
4508     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4509     // Non-instruction incoming values will have only one value.
4510 
4511     VPLane Lane = VPLane::getFirstLane();
4512     if (isa<Instruction>(IncomingValue) &&
4513         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4514                                            VF))
4515       Lane = VPLane::getLastLaneForVF(VF);
4516 
4517     // Can be a loop invariant incoming value or the last scalar value to be
4518     // extracted from the vectorized loop.
4519     // FIXME: Should not rely on getVPValue at this point.
4520     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4521     Value *lastIncomingValue =
4522         OrigLoop->isLoopInvariant(IncomingValue)
4523             ? IncomingValue
4524             : State.get(State.Plan->getVPValue(IncomingValue, true),
4525                         VPIteration(UF - 1, Lane));
4526     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4527   }
4528 }
4529 
4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4531   // The basic block and loop containing the predicated instruction.
4532   auto *PredBB = PredInst->getParent();
4533   auto *VectorLoop = LI->getLoopFor(PredBB);
4534 
4535   // Initialize a worklist with the operands of the predicated instruction.
4536   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4537 
4538   // Holds instructions that we need to analyze again. An instruction may be
4539   // reanalyzed if we don't yet know if we can sink it or not.
4540   SmallVector<Instruction *, 8> InstsToReanalyze;
4541 
4542   // Returns true if a given use occurs in the predicated block. Phi nodes use
4543   // their operands in their corresponding predecessor blocks.
4544   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4545     auto *I = cast<Instruction>(U.getUser());
4546     BasicBlock *BB = I->getParent();
4547     if (auto *Phi = dyn_cast<PHINode>(I))
4548       BB = Phi->getIncomingBlock(
4549           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4550     return BB == PredBB;
4551   };
4552 
4553   // Iteratively sink the scalarized operands of the predicated instruction
4554   // into the block we created for it. When an instruction is sunk, it's
4555   // operands are then added to the worklist. The algorithm ends after one pass
4556   // through the worklist doesn't sink a single instruction.
4557   bool Changed;
4558   do {
4559     // Add the instructions that need to be reanalyzed to the worklist, and
4560     // reset the changed indicator.
4561     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4562     InstsToReanalyze.clear();
4563     Changed = false;
4564 
4565     while (!Worklist.empty()) {
4566       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4567 
4568       // We can't sink an instruction if it is a phi node, is not in the loop,
4569       // or may have side effects.
4570       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4571           I->mayHaveSideEffects())
4572         continue;
4573 
4574       // If the instruction is already in PredBB, check if we can sink its
4575       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4576       // sinking the scalar instruction I, hence it appears in PredBB; but it
4577       // may have failed to sink I's operands (recursively), which we try
4578       // (again) here.
4579       if (I->getParent() == PredBB) {
4580         Worklist.insert(I->op_begin(), I->op_end());
4581         continue;
4582       }
4583 
4584       // It's legal to sink the instruction if all its uses occur in the
4585       // predicated block. Otherwise, there's nothing to do yet, and we may
4586       // need to reanalyze the instruction.
4587       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4588         InstsToReanalyze.push_back(I);
4589         continue;
4590       }
4591 
4592       // Move the instruction to the beginning of the predicated block, and add
4593       // it's operands to the worklist.
4594       I->moveBefore(&*PredBB->getFirstInsertionPt());
4595       Worklist.insert(I->op_begin(), I->op_end());
4596 
4597       // The sinking may have enabled other instructions to be sunk, so we will
4598       // need to iterate.
4599       Changed = true;
4600     }
4601   } while (Changed);
4602 }
4603 
4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4605   for (PHINode *OrigPhi : OrigPHIsToFix) {
4606     VPWidenPHIRecipe *VPPhi =
4607         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4608     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4609     // Make sure the builder has a valid insert point.
4610     Builder.SetInsertPoint(NewPhi);
4611     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4612       VPValue *Inc = VPPhi->getIncomingValue(i);
4613       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4614       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4615     }
4616   }
4617 }
4618 
4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4620   return Cost->useOrderedReductions(RdxDesc);
4621 }
4622 
4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4624                                    VPUser &Operands, unsigned UF,
4625                                    ElementCount VF, bool IsPtrLoopInvariant,
4626                                    SmallBitVector &IsIndexLoopInvariant,
4627                                    VPTransformState &State) {
4628   // Construct a vector GEP by widening the operands of the scalar GEP as
4629   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4630   // results in a vector of pointers when at least one operand of the GEP
4631   // is vector-typed. Thus, to keep the representation compact, we only use
4632   // vector-typed operands for loop-varying values.
4633 
4634   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4635     // If we are vectorizing, but the GEP has only loop-invariant operands,
4636     // the GEP we build (by only using vector-typed operands for
4637     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4638     // produce a vector of pointers, we need to either arbitrarily pick an
4639     // operand to broadcast, or broadcast a clone of the original GEP.
4640     // Here, we broadcast a clone of the original.
4641     //
4642     // TODO: If at some point we decide to scalarize instructions having
4643     //       loop-invariant operands, this special case will no longer be
4644     //       required. We would add the scalarization decision to
4645     //       collectLoopScalars() and teach getVectorValue() to broadcast
4646     //       the lane-zero scalar value.
4647     auto *Clone = Builder.Insert(GEP->clone());
4648     for (unsigned Part = 0; Part < UF; ++Part) {
4649       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4650       State.set(VPDef, EntryPart, Part);
4651       addMetadata(EntryPart, GEP);
4652     }
4653   } else {
4654     // If the GEP has at least one loop-varying operand, we are sure to
4655     // produce a vector of pointers. But if we are only unrolling, we want
4656     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4657     // produce with the code below will be scalar (if VF == 1) or vector
4658     // (otherwise). Note that for the unroll-only case, we still maintain
4659     // values in the vector mapping with initVector, as we do for other
4660     // instructions.
4661     for (unsigned Part = 0; Part < UF; ++Part) {
4662       // The pointer operand of the new GEP. If it's loop-invariant, we
4663       // won't broadcast it.
4664       auto *Ptr = IsPtrLoopInvariant
4665                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4666                       : State.get(Operands.getOperand(0), Part);
4667 
4668       // Collect all the indices for the new GEP. If any index is
4669       // loop-invariant, we won't broadcast it.
4670       SmallVector<Value *, 4> Indices;
4671       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4672         VPValue *Operand = Operands.getOperand(I);
4673         if (IsIndexLoopInvariant[I - 1])
4674           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4675         else
4676           Indices.push_back(State.get(Operand, Part));
4677       }
4678 
4679       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4680       // but it should be a vector, otherwise.
4681       auto *NewGEP =
4682           GEP->isInBounds()
4683               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4684                                           Indices)
4685               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4686       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4687              "NewGEP is not a pointer vector");
4688       State.set(VPDef, NewGEP, Part);
4689       addMetadata(NewGEP, GEP);
4690     }
4691   }
4692 }
4693 
4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4695                                               VPWidenPHIRecipe *PhiR,
4696                                               VPTransformState &State) {
4697   PHINode *P = cast<PHINode>(PN);
4698   if (EnableVPlanNativePath) {
4699     // Currently we enter here in the VPlan-native path for non-induction
4700     // PHIs where all control flow is uniform. We simply widen these PHIs.
4701     // Create a vector phi with no operands - the vector phi operands will be
4702     // set at the end of vector code generation.
4703     Type *VecTy = (State.VF.isScalar())
4704                       ? PN->getType()
4705                       : VectorType::get(PN->getType(), State.VF);
4706     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4707     State.set(PhiR, VecPhi, 0);
4708     OrigPHIsToFix.push_back(P);
4709 
4710     return;
4711   }
4712 
4713   assert(PN->getParent() == OrigLoop->getHeader() &&
4714          "Non-header phis should have been handled elsewhere");
4715 
4716   // In order to support recurrences we need to be able to vectorize Phi nodes.
4717   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4718   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4719   // this value when we vectorize all of the instructions that use the PHI.
4720 
4721   assert(!Legal->isReductionVariable(P) &&
4722          "reductions should be handled elsewhere");
4723 
4724   setDebugLocFromInst(P);
4725 
4726   // This PHINode must be an induction variable.
4727   // Make sure that we know about it.
4728   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4729 
4730   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4731   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4732 
4733   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4734   // which can be found from the original scalar operations.
4735   switch (II.getKind()) {
4736   case InductionDescriptor::IK_NoInduction:
4737     llvm_unreachable("Unknown induction");
4738   case InductionDescriptor::IK_IntInduction:
4739   case InductionDescriptor::IK_FpInduction:
4740     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4741   case InductionDescriptor::IK_PtrInduction: {
4742     // Handle the pointer induction variable case.
4743     assert(P->getType()->isPointerTy() && "Unexpected type.");
4744 
4745     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4746       // This is the normalized GEP that starts counting at zero.
4747       Value *PtrInd =
4748           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4749       // Determine the number of scalars we need to generate for each unroll
4750       // iteration. If the instruction is uniform, we only need to generate the
4751       // first lane. Otherwise, we generate all VF values.
4752       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4753       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4754 
4755       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4756       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4757       if (NeedsVectorIndex) {
4758         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4759         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4760         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4761       }
4762 
4763       for (unsigned Part = 0; Part < UF; ++Part) {
4764         Value *PartStart = createStepForVF(
4765             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4766 
4767         if (NeedsVectorIndex) {
4768           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4769           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4770           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4771           Value *SclrGep =
4772               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4773           SclrGep->setName("next.gep");
4774           State.set(PhiR, SclrGep, Part);
4775           // We've cached the whole vector, which means we can support the
4776           // extraction of any lane.
4777           continue;
4778         }
4779 
4780         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4781           Value *Idx = Builder.CreateAdd(
4782               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4783           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4784           Value *SclrGep =
4785               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4786           SclrGep->setName("next.gep");
4787           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4788         }
4789       }
4790       return;
4791     }
4792     assert(isa<SCEVConstant>(II.getStep()) &&
4793            "Induction step not a SCEV constant!");
4794     Type *PhiType = II.getStep()->getType();
4795 
4796     // Build a pointer phi
4797     Value *ScalarStartValue = II.getStartValue();
4798     Type *ScStValueType = ScalarStartValue->getType();
4799     PHINode *NewPointerPhi =
4800         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4801     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4802 
4803     // A pointer induction, performed by using a gep
4804     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4805     Instruction *InductionLoc = LoopLatch->getTerminator();
4806     const SCEV *ScalarStep = II.getStep();
4807     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4808     Value *ScalarStepValue =
4809         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4810     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4811     Value *NumUnrolledElems =
4812         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4813     Value *InductionGEP = GetElementPtrInst::Create(
4814         II.getElementType(), NewPointerPhi,
4815         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4816         InductionLoc);
4817     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4818 
4819     // Create UF many actual address geps that use the pointer
4820     // phi as base and a vectorized version of the step value
4821     // (<step*0, ..., step*N>) as offset.
4822     for (unsigned Part = 0; Part < State.UF; ++Part) {
4823       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4824       Value *StartOffsetScalar =
4825           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4826       Value *StartOffset =
4827           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4828       // Create a vector of consecutive numbers from zero to VF.
4829       StartOffset =
4830           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4831 
4832       Value *GEP = Builder.CreateGEP(
4833           II.getElementType(), NewPointerPhi,
4834           Builder.CreateMul(
4835               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4836               "vector.gep"));
4837       State.set(PhiR, GEP, Part);
4838     }
4839   }
4840   }
4841 }
4842 
4843 /// A helper function for checking whether an integer division-related
4844 /// instruction may divide by zero (in which case it must be predicated if
4845 /// executed conditionally in the scalar code).
4846 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4847 /// Non-zero divisors that are non compile-time constants will not be
4848 /// converted into multiplication, so we will still end up scalarizing
4849 /// the division, but can do so w/o predication.
4850 static bool mayDivideByZero(Instruction &I) {
4851   assert((I.getOpcode() == Instruction::UDiv ||
4852           I.getOpcode() == Instruction::SDiv ||
4853           I.getOpcode() == Instruction::URem ||
4854           I.getOpcode() == Instruction::SRem) &&
4855          "Unexpected instruction");
4856   Value *Divisor = I.getOperand(1);
4857   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4858   return !CInt || CInt->isZero();
4859 }
4860 
4861 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4862                                            VPUser &User,
4863                                            VPTransformState &State) {
4864   switch (I.getOpcode()) {
4865   case Instruction::Call:
4866   case Instruction::Br:
4867   case Instruction::PHI:
4868   case Instruction::GetElementPtr:
4869   case Instruction::Select:
4870     llvm_unreachable("This instruction is handled by a different recipe.");
4871   case Instruction::UDiv:
4872   case Instruction::SDiv:
4873   case Instruction::SRem:
4874   case Instruction::URem:
4875   case Instruction::Add:
4876   case Instruction::FAdd:
4877   case Instruction::Sub:
4878   case Instruction::FSub:
4879   case Instruction::FNeg:
4880   case Instruction::Mul:
4881   case Instruction::FMul:
4882   case Instruction::FDiv:
4883   case Instruction::FRem:
4884   case Instruction::Shl:
4885   case Instruction::LShr:
4886   case Instruction::AShr:
4887   case Instruction::And:
4888   case Instruction::Or:
4889   case Instruction::Xor: {
4890     // Just widen unops and binops.
4891     setDebugLocFromInst(&I);
4892 
4893     for (unsigned Part = 0; Part < UF; ++Part) {
4894       SmallVector<Value *, 2> Ops;
4895       for (VPValue *VPOp : User.operands())
4896         Ops.push_back(State.get(VPOp, Part));
4897 
4898       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4899 
4900       if (auto *VecOp = dyn_cast<Instruction>(V))
4901         VecOp->copyIRFlags(&I);
4902 
4903       // Use this vector value for all users of the original instruction.
4904       State.set(Def, V, Part);
4905       addMetadata(V, &I);
4906     }
4907 
4908     break;
4909   }
4910   case Instruction::ICmp:
4911   case Instruction::FCmp: {
4912     // Widen compares. Generate vector compares.
4913     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4914     auto *Cmp = cast<CmpInst>(&I);
4915     setDebugLocFromInst(Cmp);
4916     for (unsigned Part = 0; Part < UF; ++Part) {
4917       Value *A = State.get(User.getOperand(0), Part);
4918       Value *B = State.get(User.getOperand(1), Part);
4919       Value *C = nullptr;
4920       if (FCmp) {
4921         // Propagate fast math flags.
4922         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4923         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4924         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4925       } else {
4926         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4927       }
4928       State.set(Def, C, Part);
4929       addMetadata(C, &I);
4930     }
4931 
4932     break;
4933   }
4934 
4935   case Instruction::ZExt:
4936   case Instruction::SExt:
4937   case Instruction::FPToUI:
4938   case Instruction::FPToSI:
4939   case Instruction::FPExt:
4940   case Instruction::PtrToInt:
4941   case Instruction::IntToPtr:
4942   case Instruction::SIToFP:
4943   case Instruction::UIToFP:
4944   case Instruction::Trunc:
4945   case Instruction::FPTrunc:
4946   case Instruction::BitCast: {
4947     auto *CI = cast<CastInst>(&I);
4948     setDebugLocFromInst(CI);
4949 
4950     /// Vectorize casts.
4951     Type *DestTy =
4952         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4953 
4954     for (unsigned Part = 0; Part < UF; ++Part) {
4955       Value *A = State.get(User.getOperand(0), Part);
4956       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4957       State.set(Def, Cast, Part);
4958       addMetadata(Cast, &I);
4959     }
4960     break;
4961   }
4962   default:
4963     // This instruction is not vectorized by simple widening.
4964     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4965     llvm_unreachable("Unhandled instruction!");
4966   } // end of switch.
4967 }
4968 
4969 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4970                                                VPUser &ArgOperands,
4971                                                VPTransformState &State) {
4972   assert(!isa<DbgInfoIntrinsic>(I) &&
4973          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4974   setDebugLocFromInst(&I);
4975 
4976   Module *M = I.getParent()->getParent()->getParent();
4977   auto *CI = cast<CallInst>(&I);
4978 
4979   SmallVector<Type *, 4> Tys;
4980   for (Value *ArgOperand : CI->arg_operands())
4981     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4982 
4983   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4984 
4985   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4986   // version of the instruction.
4987   // Is it beneficial to perform intrinsic call compared to lib call?
4988   bool NeedToScalarize = false;
4989   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4990   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4991   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4992   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4993          "Instruction should be scalarized elsewhere.");
4994   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4995          "Either the intrinsic cost or vector call cost must be valid");
4996 
4997   for (unsigned Part = 0; Part < UF; ++Part) {
4998     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4999     SmallVector<Value *, 4> Args;
5000     for (auto &I : enumerate(ArgOperands.operands())) {
5001       // Some intrinsics have a scalar argument - don't replace it with a
5002       // vector.
5003       Value *Arg;
5004       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5005         Arg = State.get(I.value(), Part);
5006       else {
5007         Arg = State.get(I.value(), VPIteration(0, 0));
5008         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5009           TysForDecl.push_back(Arg->getType());
5010       }
5011       Args.push_back(Arg);
5012     }
5013 
5014     Function *VectorF;
5015     if (UseVectorIntrinsic) {
5016       // Use vector version of the intrinsic.
5017       if (VF.isVector())
5018         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5019       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5020       assert(VectorF && "Can't retrieve vector intrinsic.");
5021     } else {
5022       // Use vector version of the function call.
5023       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5024 #ifndef NDEBUG
5025       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5026              "Can't create vector function.");
5027 #endif
5028         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5029     }
5030       SmallVector<OperandBundleDef, 1> OpBundles;
5031       CI->getOperandBundlesAsDefs(OpBundles);
5032       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5033 
5034       if (isa<FPMathOperator>(V))
5035         V->copyFastMathFlags(CI);
5036 
5037       State.set(Def, V, Part);
5038       addMetadata(V, &I);
5039   }
5040 }
5041 
5042 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5043                                                  VPUser &Operands,
5044                                                  bool InvariantCond,
5045                                                  VPTransformState &State) {
5046   setDebugLocFromInst(&I);
5047 
5048   // The condition can be loop invariant  but still defined inside the
5049   // loop. This means that we can't just use the original 'cond' value.
5050   // We have to take the 'vectorized' value and pick the first lane.
5051   // Instcombine will make this a no-op.
5052   auto *InvarCond = InvariantCond
5053                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5054                         : nullptr;
5055 
5056   for (unsigned Part = 0; Part < UF; ++Part) {
5057     Value *Cond =
5058         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5059     Value *Op0 = State.get(Operands.getOperand(1), Part);
5060     Value *Op1 = State.get(Operands.getOperand(2), Part);
5061     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5062     State.set(VPDef, Sel, Part);
5063     addMetadata(Sel, &I);
5064   }
5065 }
5066 
5067 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5068   // We should not collect Scalars more than once per VF. Right now, this
5069   // function is called from collectUniformsAndScalars(), which already does
5070   // this check. Collecting Scalars for VF=1 does not make any sense.
5071   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5072          "This function should not be visited twice for the same VF");
5073 
5074   SmallSetVector<Instruction *, 8> Worklist;
5075 
5076   // These sets are used to seed the analysis with pointers used by memory
5077   // accesses that will remain scalar.
5078   SmallSetVector<Instruction *, 8> ScalarPtrs;
5079   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5080   auto *Latch = TheLoop->getLoopLatch();
5081 
5082   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5083   // The pointer operands of loads and stores will be scalar as long as the
5084   // memory access is not a gather or scatter operation. The value operand of a
5085   // store will remain scalar if the store is scalarized.
5086   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5087     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5088     assert(WideningDecision != CM_Unknown &&
5089            "Widening decision should be ready at this moment");
5090     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5091       if (Ptr == Store->getValueOperand())
5092         return WideningDecision == CM_Scalarize;
5093     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5094            "Ptr is neither a value or pointer operand");
5095     return WideningDecision != CM_GatherScatter;
5096   };
5097 
5098   // A helper that returns true if the given value is a bitcast or
5099   // getelementptr instruction contained in the loop.
5100   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5101     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5102             isa<GetElementPtrInst>(V)) &&
5103            !TheLoop->isLoopInvariant(V);
5104   };
5105 
5106   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5107     if (!isa<PHINode>(Ptr) ||
5108         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5109       return false;
5110     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5111     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5112       return false;
5113     return isScalarUse(MemAccess, Ptr);
5114   };
5115 
5116   // A helper that evaluates a memory access's use of a pointer. If the
5117   // pointer is actually the pointer induction of a loop, it is being
5118   // inserted into Worklist. If the use will be a scalar use, and the
5119   // pointer is only used by memory accesses, we place the pointer in
5120   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5121   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5122     if (isScalarPtrInduction(MemAccess, Ptr)) {
5123       Worklist.insert(cast<Instruction>(Ptr));
5124       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5125                         << "\n");
5126 
5127       Instruction *Update = cast<Instruction>(
5128           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5129       ScalarPtrs.insert(Update);
5130       return;
5131     }
5132     // We only care about bitcast and getelementptr instructions contained in
5133     // the loop.
5134     if (!isLoopVaryingBitCastOrGEP(Ptr))
5135       return;
5136 
5137     // If the pointer has already been identified as scalar (e.g., if it was
5138     // also identified as uniform), there's nothing to do.
5139     auto *I = cast<Instruction>(Ptr);
5140     if (Worklist.count(I))
5141       return;
5142 
5143     // If the use of the pointer will be a scalar use, and all users of the
5144     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5145     // place the pointer in PossibleNonScalarPtrs.
5146     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5147           return isa<LoadInst>(U) || isa<StoreInst>(U);
5148         }))
5149       ScalarPtrs.insert(I);
5150     else
5151       PossibleNonScalarPtrs.insert(I);
5152   };
5153 
5154   // We seed the scalars analysis with three classes of instructions: (1)
5155   // instructions marked uniform-after-vectorization and (2) bitcast,
5156   // getelementptr and (pointer) phi instructions used by memory accesses
5157   // requiring a scalar use.
5158   //
5159   // (1) Add to the worklist all instructions that have been identified as
5160   // uniform-after-vectorization.
5161   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5162 
5163   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5164   // memory accesses requiring a scalar use. The pointer operands of loads and
5165   // stores will be scalar as long as the memory accesses is not a gather or
5166   // scatter operation. The value operand of a store will remain scalar if the
5167   // store is scalarized.
5168   for (auto *BB : TheLoop->blocks())
5169     for (auto &I : *BB) {
5170       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5171         evaluatePtrUse(Load, Load->getPointerOperand());
5172       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5173         evaluatePtrUse(Store, Store->getPointerOperand());
5174         evaluatePtrUse(Store, Store->getValueOperand());
5175       }
5176     }
5177   for (auto *I : ScalarPtrs)
5178     if (!PossibleNonScalarPtrs.count(I)) {
5179       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5180       Worklist.insert(I);
5181     }
5182 
5183   // Insert the forced scalars.
5184   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5185   // induction variable when the PHI user is scalarized.
5186   auto ForcedScalar = ForcedScalars.find(VF);
5187   if (ForcedScalar != ForcedScalars.end())
5188     for (auto *I : ForcedScalar->second)
5189       Worklist.insert(I);
5190 
5191   // Expand the worklist by looking through any bitcasts and getelementptr
5192   // instructions we've already identified as scalar. This is similar to the
5193   // expansion step in collectLoopUniforms(); however, here we're only
5194   // expanding to include additional bitcasts and getelementptr instructions.
5195   unsigned Idx = 0;
5196   while (Idx != Worklist.size()) {
5197     Instruction *Dst = Worklist[Idx++];
5198     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5199       continue;
5200     auto *Src = cast<Instruction>(Dst->getOperand(0));
5201     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5202           auto *J = cast<Instruction>(U);
5203           return !TheLoop->contains(J) || Worklist.count(J) ||
5204                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5205                   isScalarUse(J, Src));
5206         })) {
5207       Worklist.insert(Src);
5208       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5209     }
5210   }
5211 
5212   // An induction variable will remain scalar if all users of the induction
5213   // variable and induction variable update remain scalar.
5214   for (auto &Induction : Legal->getInductionVars()) {
5215     auto *Ind = Induction.first;
5216     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5217 
5218     // If tail-folding is applied, the primary induction variable will be used
5219     // to feed a vector compare.
5220     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5221       continue;
5222 
5223     // Determine if all users of the induction variable are scalar after
5224     // vectorization.
5225     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5226       auto *I = cast<Instruction>(U);
5227       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5228     });
5229     if (!ScalarInd)
5230       continue;
5231 
5232     // Determine if all users of the induction variable update instruction are
5233     // scalar after vectorization.
5234     auto ScalarIndUpdate =
5235         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5236           auto *I = cast<Instruction>(U);
5237           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5238         });
5239     if (!ScalarIndUpdate)
5240       continue;
5241 
5242     // The induction variable and its update instruction will remain scalar.
5243     Worklist.insert(Ind);
5244     Worklist.insert(IndUpdate);
5245     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5246     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5247                       << "\n");
5248   }
5249 
5250   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5251 }
5252 
5253 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5254   if (!blockNeedsPredication(I->getParent()))
5255     return false;
5256   switch(I->getOpcode()) {
5257   default:
5258     break;
5259   case Instruction::Load:
5260   case Instruction::Store: {
5261     if (!Legal->isMaskRequired(I))
5262       return false;
5263     auto *Ptr = getLoadStorePointerOperand(I);
5264     auto *Ty = getLoadStoreType(I);
5265     const Align Alignment = getLoadStoreAlignment(I);
5266     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5267                                 TTI.isLegalMaskedGather(Ty, Alignment))
5268                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5269                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5270   }
5271   case Instruction::UDiv:
5272   case Instruction::SDiv:
5273   case Instruction::SRem:
5274   case Instruction::URem:
5275     return mayDivideByZero(*I);
5276   }
5277   return false;
5278 }
5279 
5280 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5281     Instruction *I, ElementCount VF) {
5282   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5283   assert(getWideningDecision(I, VF) == CM_Unknown &&
5284          "Decision should not be set yet.");
5285   auto *Group = getInterleavedAccessGroup(I);
5286   assert(Group && "Must have a group.");
5287 
5288   // If the instruction's allocated size doesn't equal it's type size, it
5289   // requires padding and will be scalarized.
5290   auto &DL = I->getModule()->getDataLayout();
5291   auto *ScalarTy = getLoadStoreType(I);
5292   if (hasIrregularType(ScalarTy, DL))
5293     return false;
5294 
5295   // Check if masking is required.
5296   // A Group may need masking for one of two reasons: it resides in a block that
5297   // needs predication, or it was decided to use masking to deal with gaps
5298   // (either a gap at the end of a load-access that may result in a speculative
5299   // load, or any gaps in a store-access).
5300   bool PredicatedAccessRequiresMasking =
5301       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5302   bool LoadAccessWithGapsRequiresEpilogMasking =
5303       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5304       !isScalarEpilogueAllowed();
5305   bool StoreAccessWithGapsRequiresMasking =
5306       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5307   if (!PredicatedAccessRequiresMasking &&
5308       !LoadAccessWithGapsRequiresEpilogMasking &&
5309       !StoreAccessWithGapsRequiresMasking)
5310     return true;
5311 
5312   // If masked interleaving is required, we expect that the user/target had
5313   // enabled it, because otherwise it either wouldn't have been created or
5314   // it should have been invalidated by the CostModel.
5315   assert(useMaskedInterleavedAccesses(TTI) &&
5316          "Masked interleave-groups for predicated accesses are not enabled.");
5317 
5318   auto *Ty = getLoadStoreType(I);
5319   const Align Alignment = getLoadStoreAlignment(I);
5320   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5321                           : TTI.isLegalMaskedStore(Ty, Alignment);
5322 }
5323 
5324 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5325     Instruction *I, ElementCount VF) {
5326   // Get and ensure we have a valid memory instruction.
5327   LoadInst *LI = dyn_cast<LoadInst>(I);
5328   StoreInst *SI = dyn_cast<StoreInst>(I);
5329   assert((LI || SI) && "Invalid memory instruction");
5330 
5331   auto *Ptr = getLoadStorePointerOperand(I);
5332 
5333   // In order to be widened, the pointer should be consecutive, first of all.
5334   if (!Legal->isConsecutivePtr(Ptr))
5335     return false;
5336 
5337   // If the instruction is a store located in a predicated block, it will be
5338   // scalarized.
5339   if (isScalarWithPredication(I))
5340     return false;
5341 
5342   // If the instruction's allocated size doesn't equal it's type size, it
5343   // requires padding and will be scalarized.
5344   auto &DL = I->getModule()->getDataLayout();
5345   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5346   if (hasIrregularType(ScalarTy, DL))
5347     return false;
5348 
5349   return true;
5350 }
5351 
5352 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5353   // We should not collect Uniforms more than once per VF. Right now,
5354   // this function is called from collectUniformsAndScalars(), which
5355   // already does this check. Collecting Uniforms for VF=1 does not make any
5356   // sense.
5357 
5358   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5359          "This function should not be visited twice for the same VF");
5360 
5361   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5362   // not analyze again.  Uniforms.count(VF) will return 1.
5363   Uniforms[VF].clear();
5364 
5365   // We now know that the loop is vectorizable!
5366   // Collect instructions inside the loop that will remain uniform after
5367   // vectorization.
5368 
5369   // Global values, params and instructions outside of current loop are out of
5370   // scope.
5371   auto isOutOfScope = [&](Value *V) -> bool {
5372     Instruction *I = dyn_cast<Instruction>(V);
5373     return (!I || !TheLoop->contains(I));
5374   };
5375 
5376   SetVector<Instruction *> Worklist;
5377   BasicBlock *Latch = TheLoop->getLoopLatch();
5378 
5379   // Instructions that are scalar with predication must not be considered
5380   // uniform after vectorization, because that would create an erroneous
5381   // replicating region where only a single instance out of VF should be formed.
5382   // TODO: optimize such seldom cases if found important, see PR40816.
5383   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5384     if (isOutOfScope(I)) {
5385       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5386                         << *I << "\n");
5387       return;
5388     }
5389     if (isScalarWithPredication(I)) {
5390       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5391                         << *I << "\n");
5392       return;
5393     }
5394     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5395     Worklist.insert(I);
5396   };
5397 
5398   // Start with the conditional branch. If the branch condition is an
5399   // instruction contained in the loop that is only used by the branch, it is
5400   // uniform.
5401   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5402   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5403     addToWorklistIfAllowed(Cmp);
5404 
5405   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5406     InstWidening WideningDecision = getWideningDecision(I, VF);
5407     assert(WideningDecision != CM_Unknown &&
5408            "Widening decision should be ready at this moment");
5409 
5410     // A uniform memory op is itself uniform.  We exclude uniform stores
5411     // here as they demand the last lane, not the first one.
5412     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5413       assert(WideningDecision == CM_Scalarize);
5414       return true;
5415     }
5416 
5417     return (WideningDecision == CM_Widen ||
5418             WideningDecision == CM_Widen_Reverse ||
5419             WideningDecision == CM_Interleave);
5420   };
5421 
5422 
5423   // Returns true if Ptr is the pointer operand of a memory access instruction
5424   // I, and I is known to not require scalarization.
5425   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5426     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5427   };
5428 
5429   // Holds a list of values which are known to have at least one uniform use.
5430   // Note that there may be other uses which aren't uniform.  A "uniform use"
5431   // here is something which only demands lane 0 of the unrolled iterations;
5432   // it does not imply that all lanes produce the same value (e.g. this is not
5433   // the usual meaning of uniform)
5434   SetVector<Value *> HasUniformUse;
5435 
5436   // Scan the loop for instructions which are either a) known to have only
5437   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5438   for (auto *BB : TheLoop->blocks())
5439     for (auto &I : *BB) {
5440       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5441         switch (II->getIntrinsicID()) {
5442         case Intrinsic::sideeffect:
5443         case Intrinsic::experimental_noalias_scope_decl:
5444         case Intrinsic::assume:
5445         case Intrinsic::lifetime_start:
5446         case Intrinsic::lifetime_end:
5447           if (TheLoop->hasLoopInvariantOperands(&I))
5448             addToWorklistIfAllowed(&I);
5449           break;
5450         default:
5451           break;
5452         }
5453       }
5454 
5455       // ExtractValue instructions must be uniform, because the operands are
5456       // known to be loop-invariant.
5457       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5458         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5459                "Expected aggregate value to be loop invariant");
5460         addToWorklistIfAllowed(EVI);
5461         continue;
5462       }
5463 
5464       // If there's no pointer operand, there's nothing to do.
5465       auto *Ptr = getLoadStorePointerOperand(&I);
5466       if (!Ptr)
5467         continue;
5468 
5469       // A uniform memory op is itself uniform.  We exclude uniform stores
5470       // here as they demand the last lane, not the first one.
5471       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5472         addToWorklistIfAllowed(&I);
5473 
5474       if (isUniformDecision(&I, VF)) {
5475         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5476         HasUniformUse.insert(Ptr);
5477       }
5478     }
5479 
5480   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5481   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5482   // disallows uses outside the loop as well.
5483   for (auto *V : HasUniformUse) {
5484     if (isOutOfScope(V))
5485       continue;
5486     auto *I = cast<Instruction>(V);
5487     auto UsersAreMemAccesses =
5488       llvm::all_of(I->users(), [&](User *U) -> bool {
5489         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5490       });
5491     if (UsersAreMemAccesses)
5492       addToWorklistIfAllowed(I);
5493   }
5494 
5495   // Expand Worklist in topological order: whenever a new instruction
5496   // is added , its users should be already inside Worklist.  It ensures
5497   // a uniform instruction will only be used by uniform instructions.
5498   unsigned idx = 0;
5499   while (idx != Worklist.size()) {
5500     Instruction *I = Worklist[idx++];
5501 
5502     for (auto OV : I->operand_values()) {
5503       // isOutOfScope operands cannot be uniform instructions.
5504       if (isOutOfScope(OV))
5505         continue;
5506       // First order recurrence Phi's should typically be considered
5507       // non-uniform.
5508       auto *OP = dyn_cast<PHINode>(OV);
5509       if (OP && Legal->isFirstOrderRecurrence(OP))
5510         continue;
5511       // If all the users of the operand are uniform, then add the
5512       // operand into the uniform worklist.
5513       auto *OI = cast<Instruction>(OV);
5514       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5515             auto *J = cast<Instruction>(U);
5516             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5517           }))
5518         addToWorklistIfAllowed(OI);
5519     }
5520   }
5521 
5522   // For an instruction to be added into Worklist above, all its users inside
5523   // the loop should also be in Worklist. However, this condition cannot be
5524   // true for phi nodes that form a cyclic dependence. We must process phi
5525   // nodes separately. An induction variable will remain uniform if all users
5526   // of the induction variable and induction variable update remain uniform.
5527   // The code below handles both pointer and non-pointer induction variables.
5528   for (auto &Induction : Legal->getInductionVars()) {
5529     auto *Ind = Induction.first;
5530     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5531 
5532     // Determine if all users of the induction variable are uniform after
5533     // vectorization.
5534     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5535       auto *I = cast<Instruction>(U);
5536       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5537              isVectorizedMemAccessUse(I, Ind);
5538     });
5539     if (!UniformInd)
5540       continue;
5541 
5542     // Determine if all users of the induction variable update instruction are
5543     // uniform after vectorization.
5544     auto UniformIndUpdate =
5545         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5546           auto *I = cast<Instruction>(U);
5547           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5548                  isVectorizedMemAccessUse(I, IndUpdate);
5549         });
5550     if (!UniformIndUpdate)
5551       continue;
5552 
5553     // The induction variable and its update instruction will remain uniform.
5554     addToWorklistIfAllowed(Ind);
5555     addToWorklistIfAllowed(IndUpdate);
5556   }
5557 
5558   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5559 }
5560 
5561 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5562   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5563 
5564   if (Legal->getRuntimePointerChecking()->Need) {
5565     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5566         "runtime pointer checks needed. Enable vectorization of this "
5567         "loop with '#pragma clang loop vectorize(enable)' when "
5568         "compiling with -Os/-Oz",
5569         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5570     return true;
5571   }
5572 
5573   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5574     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5575         "runtime SCEV checks needed. Enable vectorization of this "
5576         "loop with '#pragma clang loop vectorize(enable)' when "
5577         "compiling with -Os/-Oz",
5578         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5579     return true;
5580   }
5581 
5582   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5583   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5584     reportVectorizationFailure("Runtime stride check for small trip count",
5585         "runtime stride == 1 checks needed. Enable vectorization of "
5586         "this loop without such check by compiling with -Os/-Oz",
5587         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5588     return true;
5589   }
5590 
5591   return false;
5592 }
5593 
5594 ElementCount
5595 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5596   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5597     return ElementCount::getScalable(0);
5598 
5599   if (Hints->isScalableVectorizationDisabled()) {
5600     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5601                             "ScalableVectorizationDisabled", ORE, TheLoop);
5602     return ElementCount::getScalable(0);
5603   }
5604 
5605   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5606 
5607   auto MaxScalableVF = ElementCount::getScalable(
5608       std::numeric_limits<ElementCount::ScalarTy>::max());
5609 
5610   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5611   // FIXME: While for scalable vectors this is currently sufficient, this should
5612   // be replaced by a more detailed mechanism that filters out specific VFs,
5613   // instead of invalidating vectorization for a whole set of VFs based on the
5614   // MaxVF.
5615 
5616   // Disable scalable vectorization if the loop contains unsupported reductions.
5617   if (!canVectorizeReductions(MaxScalableVF)) {
5618     reportVectorizationInfo(
5619         "Scalable vectorization not supported for the reduction "
5620         "operations found in this loop.",
5621         "ScalableVFUnfeasible", ORE, TheLoop);
5622     return ElementCount::getScalable(0);
5623   }
5624 
5625   // Disable scalable vectorization if the loop contains any instructions
5626   // with element types not supported for scalable vectors.
5627   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5628         return !Ty->isVoidTy() &&
5629                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5630       })) {
5631     reportVectorizationInfo("Scalable vectorization is not supported "
5632                             "for all element types found in this loop.",
5633                             "ScalableVFUnfeasible", ORE, TheLoop);
5634     return ElementCount::getScalable(0);
5635   }
5636 
5637   if (Legal->isSafeForAnyVectorWidth())
5638     return MaxScalableVF;
5639 
5640   // Limit MaxScalableVF by the maximum safe dependence distance.
5641   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5642   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5643     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5644                              .getVScaleRangeArgs()
5645                              .second;
5646     if (VScaleMax > 0)
5647       MaxVScale = VScaleMax;
5648   }
5649   MaxScalableVF = ElementCount::getScalable(
5650       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5651   if (!MaxScalableVF)
5652     reportVectorizationInfo(
5653         "Max legal vector width too small, scalable vectorization "
5654         "unfeasible.",
5655         "ScalableVFUnfeasible", ORE, TheLoop);
5656 
5657   return MaxScalableVF;
5658 }
5659 
5660 FixedScalableVFPair
5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5662                                                  ElementCount UserVF) {
5663   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5664   unsigned SmallestType, WidestType;
5665   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5666 
5667   // Get the maximum safe dependence distance in bits computed by LAA.
5668   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5669   // the memory accesses that is most restrictive (involved in the smallest
5670   // dependence distance).
5671   unsigned MaxSafeElements =
5672       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5673 
5674   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5675   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5676 
5677   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5678                     << ".\n");
5679   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5680                     << ".\n");
5681 
5682   // First analyze the UserVF, fall back if the UserVF should be ignored.
5683   if (UserVF) {
5684     auto MaxSafeUserVF =
5685         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5686 
5687     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5688       // If `VF=vscale x N` is safe, then so is `VF=N`
5689       if (UserVF.isScalable())
5690         return FixedScalableVFPair(
5691             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5692       else
5693         return UserVF;
5694     }
5695 
5696     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5697 
5698     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5699     // is better to ignore the hint and let the compiler choose a suitable VF.
5700     if (!UserVF.isScalable()) {
5701       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5702                         << " is unsafe, clamping to max safe VF="
5703                         << MaxSafeFixedVF << ".\n");
5704       ORE->emit([&]() {
5705         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5706                                           TheLoop->getStartLoc(),
5707                                           TheLoop->getHeader())
5708                << "User-specified vectorization factor "
5709                << ore::NV("UserVectorizationFactor", UserVF)
5710                << " is unsafe, clamping to maximum safe vectorization factor "
5711                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5712       });
5713       return MaxSafeFixedVF;
5714     }
5715 
5716     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5717       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5718                         << " is ignored because scalable vectors are not "
5719                            "available.\n");
5720       ORE->emit([&]() {
5721         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5722                                           TheLoop->getStartLoc(),
5723                                           TheLoop->getHeader())
5724                << "User-specified vectorization factor "
5725                << ore::NV("UserVectorizationFactor", UserVF)
5726                << " is ignored because the target does not support scalable "
5727                   "vectors. The compiler will pick a more suitable value.";
5728       });
5729     } else {
5730       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5731                         << " is unsafe. Ignoring scalable UserVF.\n");
5732       ORE->emit([&]() {
5733         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5734                                           TheLoop->getStartLoc(),
5735                                           TheLoop->getHeader())
5736                << "User-specified vectorization factor "
5737                << ore::NV("UserVectorizationFactor", UserVF)
5738                << " is unsafe. Ignoring the hint to let the compiler pick a "
5739                   "more suitable value.";
5740       });
5741     }
5742   }
5743 
5744   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5745                     << " / " << WidestType << " bits.\n");
5746 
5747   FixedScalableVFPair Result(ElementCount::getFixed(1),
5748                              ElementCount::getScalable(0));
5749   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5750                                            WidestType, MaxSafeFixedVF))
5751     Result.FixedVF = MaxVF;
5752 
5753   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5754                                            WidestType, MaxSafeScalableVF))
5755     if (MaxVF.isScalable()) {
5756       Result.ScalableVF = MaxVF;
5757       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5758                         << "\n");
5759     }
5760 
5761   return Result;
5762 }
5763 
5764 FixedScalableVFPair
5765 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5766   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5767     // TODO: It may by useful to do since it's still likely to be dynamically
5768     // uniform if the target can skip.
5769     reportVectorizationFailure(
5770         "Not inserting runtime ptr check for divergent target",
5771         "runtime pointer checks needed. Not enabled for divergent target",
5772         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5773     return FixedScalableVFPair::getNone();
5774   }
5775 
5776   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5777   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5778   if (TC == 1) {
5779     reportVectorizationFailure("Single iteration (non) loop",
5780         "loop trip count is one, irrelevant for vectorization",
5781         "SingleIterationLoop", ORE, TheLoop);
5782     return FixedScalableVFPair::getNone();
5783   }
5784 
5785   switch (ScalarEpilogueStatus) {
5786   case CM_ScalarEpilogueAllowed:
5787     return computeFeasibleMaxVF(TC, UserVF);
5788   case CM_ScalarEpilogueNotAllowedUsePredicate:
5789     LLVM_FALLTHROUGH;
5790   case CM_ScalarEpilogueNotNeededUsePredicate:
5791     LLVM_DEBUG(
5792         dbgs() << "LV: vector predicate hint/switch found.\n"
5793                << "LV: Not allowing scalar epilogue, creating predicated "
5794                << "vector loop.\n");
5795     break;
5796   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5797     // fallthrough as a special case of OptForSize
5798   case CM_ScalarEpilogueNotAllowedOptSize:
5799     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5800       LLVM_DEBUG(
5801           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5802     else
5803       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5804                         << "count.\n");
5805 
5806     // Bail if runtime checks are required, which are not good when optimising
5807     // for size.
5808     if (runtimeChecksRequired())
5809       return FixedScalableVFPair::getNone();
5810 
5811     break;
5812   }
5813 
5814   // The only loops we can vectorize without a scalar epilogue, are loops with
5815   // a bottom-test and a single exiting block. We'd have to handle the fact
5816   // that not every instruction executes on the last iteration.  This will
5817   // require a lane mask which varies through the vector loop body.  (TODO)
5818   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5819     // If there was a tail-folding hint/switch, but we can't fold the tail by
5820     // masking, fallback to a vectorization with a scalar epilogue.
5821     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5822       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5823                            "scalar epilogue instead.\n");
5824       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5825       return computeFeasibleMaxVF(TC, UserVF);
5826     }
5827     return FixedScalableVFPair::getNone();
5828   }
5829 
5830   // Now try the tail folding
5831 
5832   // Invalidate interleave groups that require an epilogue if we can't mask
5833   // the interleave-group.
5834   if (!useMaskedInterleavedAccesses(TTI)) {
5835     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5836            "No decisions should have been taken at this point");
5837     // Note: There is no need to invalidate any cost modeling decisions here, as
5838     // non where taken so far.
5839     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5840   }
5841 
5842   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5843   // Avoid tail folding if the trip count is known to be a multiple of any VF
5844   // we chose.
5845   // FIXME: The condition below pessimises the case for fixed-width vectors,
5846   // when scalable VFs are also candidates for vectorization.
5847   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5848     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5849     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5850            "MaxFixedVF must be a power of 2");
5851     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5852                                    : MaxFixedVF.getFixedValue();
5853     ScalarEvolution *SE = PSE.getSE();
5854     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5855     const SCEV *ExitCount = SE->getAddExpr(
5856         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5857     const SCEV *Rem = SE->getURemExpr(
5858         SE->applyLoopGuards(ExitCount, TheLoop),
5859         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5860     if (Rem->isZero()) {
5861       // Accept MaxFixedVF if we do not have a tail.
5862       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5863       return MaxFactors;
5864     }
5865   }
5866 
5867   // For scalable vectors, don't use tail folding as this is currently not yet
5868   // supported. The code is likely to have ended up here if the tripcount is
5869   // low, in which case it makes sense not to use scalable vectors.
5870   if (MaxFactors.ScalableVF.isVector())
5871     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5872 
5873   // If we don't know the precise trip count, or if the trip count that we
5874   // found modulo the vectorization factor is not zero, try to fold the tail
5875   // by masking.
5876   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5877   if (Legal->prepareToFoldTailByMasking()) {
5878     FoldTailByMasking = true;
5879     return MaxFactors;
5880   }
5881 
5882   // If there was a tail-folding hint/switch, but we can't fold the tail by
5883   // masking, fallback to a vectorization with a scalar epilogue.
5884   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5885     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5886                          "scalar epilogue instead.\n");
5887     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5888     return MaxFactors;
5889   }
5890 
5891   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5892     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5893     return FixedScalableVFPair::getNone();
5894   }
5895 
5896   if (TC == 0) {
5897     reportVectorizationFailure(
5898         "Unable to calculate the loop count due to complex control flow",
5899         "unable to calculate the loop count due to complex control flow",
5900         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5901     return FixedScalableVFPair::getNone();
5902   }
5903 
5904   reportVectorizationFailure(
5905       "Cannot optimize for size and vectorize at the same time.",
5906       "cannot optimize for size and vectorize at the same time. "
5907       "Enable vectorization of this loop with '#pragma clang loop "
5908       "vectorize(enable)' when compiling with -Os/-Oz",
5909       "NoTailLoopWithOptForSize", ORE, TheLoop);
5910   return FixedScalableVFPair::getNone();
5911 }
5912 
5913 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5914     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5915     const ElementCount &MaxSafeVF) {
5916   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5917   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5918       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5919                            : TargetTransformInfo::RGK_FixedWidthVector);
5920 
5921   // Convenience function to return the minimum of two ElementCounts.
5922   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5923     assert((LHS.isScalable() == RHS.isScalable()) &&
5924            "Scalable flags must match");
5925     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5926   };
5927 
5928   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5929   // Note that both WidestRegister and WidestType may not be a powers of 2.
5930   auto MaxVectorElementCount = ElementCount::get(
5931       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5932       ComputeScalableMaxVF);
5933   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5934   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5935                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5936 
5937   if (!MaxVectorElementCount) {
5938     LLVM_DEBUG(dbgs() << "LV: The target has no "
5939                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5940                       << " vector registers.\n");
5941     return ElementCount::getFixed(1);
5942   }
5943 
5944   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5945   if (ConstTripCount &&
5946       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5947       isPowerOf2_32(ConstTripCount)) {
5948     // We need to clamp the VF to be the ConstTripCount. There is no point in
5949     // choosing a higher viable VF as done in the loop below. If
5950     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5951     // the TC is less than or equal to the known number of lanes.
5952     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5953                       << ConstTripCount << "\n");
5954     return TripCountEC;
5955   }
5956 
5957   ElementCount MaxVF = MaxVectorElementCount;
5958   if (TTI.shouldMaximizeVectorBandwidth() ||
5959       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5960     auto MaxVectorElementCountMaxBW = ElementCount::get(
5961         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5962         ComputeScalableMaxVF);
5963     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5964 
5965     // Collect all viable vectorization factors larger than the default MaxVF
5966     // (i.e. MaxVectorElementCount).
5967     SmallVector<ElementCount, 8> VFs;
5968     for (ElementCount VS = MaxVectorElementCount * 2;
5969          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5970       VFs.push_back(VS);
5971 
5972     // For each VF calculate its register usage.
5973     auto RUs = calculateRegisterUsage(VFs);
5974 
5975     // Select the largest VF which doesn't require more registers than existing
5976     // ones.
5977     for (int i = RUs.size() - 1; i >= 0; --i) {
5978       bool Selected = true;
5979       for (auto &pair : RUs[i].MaxLocalUsers) {
5980         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5981         if (pair.second > TargetNumRegisters)
5982           Selected = false;
5983       }
5984       if (Selected) {
5985         MaxVF = VFs[i];
5986         break;
5987       }
5988     }
5989     if (ElementCount MinVF =
5990             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5991       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5992         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5993                           << ") with target's minimum: " << MinVF << '\n');
5994         MaxVF = MinVF;
5995       }
5996     }
5997   }
5998   return MaxVF;
5999 }
6000 
6001 bool LoopVectorizationCostModel::isMoreProfitable(
6002     const VectorizationFactor &A, const VectorizationFactor &B) const {
6003   InstructionCost CostA = A.Cost;
6004   InstructionCost CostB = B.Cost;
6005 
6006   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6007 
6008   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6009       MaxTripCount) {
6010     // If we are folding the tail and the trip count is a known (possibly small)
6011     // constant, the trip count will be rounded up to an integer number of
6012     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6013     // which we compare directly. When not folding the tail, the total cost will
6014     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6015     // approximated with the per-lane cost below instead of using the tripcount
6016     // as here.
6017     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6018     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6019     return RTCostA < RTCostB;
6020   }
6021 
6022   // When set to preferred, for now assume vscale may be larger than 1, so
6023   // that scalable vectorization is slightly favorable over fixed-width
6024   // vectorization.
6025   if (Hints->isScalableVectorizationPreferred())
6026     if (A.Width.isScalable() && !B.Width.isScalable())
6027       return (CostA * B.Width.getKnownMinValue()) <=
6028              (CostB * A.Width.getKnownMinValue());
6029 
6030   // To avoid the need for FP division:
6031   //      (CostA / A.Width) < (CostB / B.Width)
6032   // <=>  (CostA * B.Width) < (CostB * A.Width)
6033   return (CostA * B.Width.getKnownMinValue()) <
6034          (CostB * A.Width.getKnownMinValue());
6035 }
6036 
6037 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6038     const ElementCountSet &VFCandidates) {
6039   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6040   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6041   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6042   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6043          "Expected Scalar VF to be a candidate");
6044 
6045   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6046   VectorizationFactor ChosenFactor = ScalarCost;
6047 
6048   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6049   if (ForceVectorization && VFCandidates.size() > 1) {
6050     // Ignore scalar width, because the user explicitly wants vectorization.
6051     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6052     // evaluation.
6053     ChosenFactor.Cost = InstructionCost::getMax();
6054   }
6055 
6056   SmallVector<InstructionVFPair> InvalidCosts;
6057   for (const auto &i : VFCandidates) {
6058     // The cost for scalar VF=1 is already calculated, so ignore it.
6059     if (i.isScalar())
6060       continue;
6061 
6062     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6063     VectorizationFactor Candidate(i, C.first);
6064     LLVM_DEBUG(
6065         dbgs() << "LV: Vector loop of width " << i << " costs: "
6066                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6067                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6068                << ".\n");
6069 
6070     if (!C.second && !ForceVectorization) {
6071       LLVM_DEBUG(
6072           dbgs() << "LV: Not considering vector loop of width " << i
6073                  << " because it will not generate any vector instructions.\n");
6074       continue;
6075     }
6076 
6077     // If profitable add it to ProfitableVF list.
6078     if (isMoreProfitable(Candidate, ScalarCost))
6079       ProfitableVFs.push_back(Candidate);
6080 
6081     if (isMoreProfitable(Candidate, ChosenFactor))
6082       ChosenFactor = Candidate;
6083   }
6084 
6085   // Emit a report of VFs with invalid costs in the loop.
6086   if (!InvalidCosts.empty()) {
6087     // Group the remarks per instruction, keeping the instruction order from
6088     // InvalidCosts.
6089     std::map<Instruction *, unsigned> Numbering;
6090     unsigned I = 0;
6091     for (auto &Pair : InvalidCosts)
6092       if (!Numbering.count(Pair.first))
6093         Numbering[Pair.first] = I++;
6094 
6095     // Sort the list, first on instruction(number) then on VF.
6096     llvm::sort(InvalidCosts,
6097                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6098                  if (Numbering[A.first] != Numbering[B.first])
6099                    return Numbering[A.first] < Numbering[B.first];
6100                  ElementCountComparator ECC;
6101                  return ECC(A.second, B.second);
6102                });
6103 
6104     // For a list of ordered instruction-vf pairs:
6105     //   [(load, vf1), (load, vf2), (store, vf1)]
6106     // Group the instructions together to emit separate remarks for:
6107     //   load  (vf1, vf2)
6108     //   store (vf1)
6109     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6110     auto Subset = ArrayRef<InstructionVFPair>();
6111     do {
6112       if (Subset.empty())
6113         Subset = Tail.take_front(1);
6114 
6115       Instruction *I = Subset.front().first;
6116 
6117       // If the next instruction is different, or if there are no other pairs,
6118       // emit a remark for the collated subset. e.g.
6119       //   [(load, vf1), (load, vf2))]
6120       // to emit:
6121       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6122       if (Subset == Tail || Tail[Subset.size()].first != I) {
6123         std::string OutString;
6124         raw_string_ostream OS(OutString);
6125         assert(!Subset.empty() && "Unexpected empty range");
6126         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6127         for (auto &Pair : Subset)
6128           OS << (Pair.second == Subset.front().second ? "" : ", ")
6129              << Pair.second;
6130         OS << "):";
6131         if (auto *CI = dyn_cast<CallInst>(I))
6132           OS << " call to " << CI->getCalledFunction()->getName();
6133         else
6134           OS << " " << I->getOpcodeName();
6135         OS.flush();
6136         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6137         Tail = Tail.drop_front(Subset.size());
6138         Subset = {};
6139       } else
6140         // Grow the subset by one element
6141         Subset = Tail.take_front(Subset.size() + 1);
6142     } while (!Tail.empty());
6143   }
6144 
6145   if (!EnableCondStoresVectorization && NumPredStores) {
6146     reportVectorizationFailure("There are conditional stores.",
6147         "store that is conditionally executed prevents vectorization",
6148         "ConditionalStore", ORE, TheLoop);
6149     ChosenFactor = ScalarCost;
6150   }
6151 
6152   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6153                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6154              << "LV: Vectorization seems to be not beneficial, "
6155              << "but was forced by a user.\n");
6156   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6157   return ChosenFactor;
6158 }
6159 
6160 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6161     const Loop &L, ElementCount VF) const {
6162   // Cross iteration phis such as reductions need special handling and are
6163   // currently unsupported.
6164   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6165         return Legal->isFirstOrderRecurrence(&Phi) ||
6166                Legal->isReductionVariable(&Phi);
6167       }))
6168     return false;
6169 
6170   // Phis with uses outside of the loop require special handling and are
6171   // currently unsupported.
6172   for (auto &Entry : Legal->getInductionVars()) {
6173     // Look for uses of the value of the induction at the last iteration.
6174     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6175     for (User *U : PostInc->users())
6176       if (!L.contains(cast<Instruction>(U)))
6177         return false;
6178     // Look for uses of penultimate value of the induction.
6179     for (User *U : Entry.first->users())
6180       if (!L.contains(cast<Instruction>(U)))
6181         return false;
6182   }
6183 
6184   // Induction variables that are widened require special handling that is
6185   // currently not supported.
6186   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6187         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6188                  this->isProfitableToScalarize(Entry.first, VF));
6189       }))
6190     return false;
6191 
6192   // Epilogue vectorization code has not been auditted to ensure it handles
6193   // non-latch exits properly.  It may be fine, but it needs auditted and
6194   // tested.
6195   if (L.getExitingBlock() != L.getLoopLatch())
6196     return false;
6197 
6198   return true;
6199 }
6200 
6201 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6202     const ElementCount VF) const {
6203   // FIXME: We need a much better cost-model to take different parameters such
6204   // as register pressure, code size increase and cost of extra branches into
6205   // account. For now we apply a very crude heuristic and only consider loops
6206   // with vectorization factors larger than a certain value.
6207   // We also consider epilogue vectorization unprofitable for targets that don't
6208   // consider interleaving beneficial (eg. MVE).
6209   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6210     return false;
6211   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6212     return true;
6213   return false;
6214 }
6215 
6216 VectorizationFactor
6217 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6218     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6219   VectorizationFactor Result = VectorizationFactor::Disabled();
6220   if (!EnableEpilogueVectorization) {
6221     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6222     return Result;
6223   }
6224 
6225   if (!isScalarEpilogueAllowed()) {
6226     LLVM_DEBUG(
6227         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6228                   "allowed.\n";);
6229     return Result;
6230   }
6231 
6232   // FIXME: This can be fixed for scalable vectors later, because at this stage
6233   // the LoopVectorizer will only consider vectorizing a loop with scalable
6234   // vectors when the loop has a hint to enable vectorization for a given VF.
6235   if (MainLoopVF.isScalable()) {
6236     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6237                          "yet supported.\n");
6238     return Result;
6239   }
6240 
6241   // Not really a cost consideration, but check for unsupported cases here to
6242   // simplify the logic.
6243   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6244     LLVM_DEBUG(
6245         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6246                   "not a supported candidate.\n";);
6247     return Result;
6248   }
6249 
6250   if (EpilogueVectorizationForceVF > 1) {
6251     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6252     if (LVP.hasPlanWithVFs(
6253             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6254       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6255     else {
6256       LLVM_DEBUG(
6257           dbgs()
6258               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6259       return Result;
6260     }
6261   }
6262 
6263   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6264       TheLoop->getHeader()->getParent()->hasMinSize()) {
6265     LLVM_DEBUG(
6266         dbgs()
6267             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6268     return Result;
6269   }
6270 
6271   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6272     return Result;
6273 
6274   for (auto &NextVF : ProfitableVFs)
6275     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6276         (Result.Width.getFixedValue() == 1 ||
6277          isMoreProfitable(NextVF, Result)) &&
6278         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6279       Result = NextVF;
6280 
6281   if (Result != VectorizationFactor::Disabled())
6282     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6283                       << Result.Width.getFixedValue() << "\n";);
6284   return Result;
6285 }
6286 
6287 std::pair<unsigned, unsigned>
6288 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6289   unsigned MinWidth = -1U;
6290   unsigned MaxWidth = 8;
6291   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6292   for (Type *T : ElementTypesInLoop) {
6293     MinWidth = std::min<unsigned>(
6294         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6295     MaxWidth = std::max<unsigned>(
6296         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6297   }
6298   return {MinWidth, MaxWidth};
6299 }
6300 
6301 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6302   ElementTypesInLoop.clear();
6303   // For each block.
6304   for (BasicBlock *BB : TheLoop->blocks()) {
6305     // For each instruction in the loop.
6306     for (Instruction &I : BB->instructionsWithoutDebug()) {
6307       Type *T = I.getType();
6308 
6309       // Skip ignored values.
6310       if (ValuesToIgnore.count(&I))
6311         continue;
6312 
6313       // Only examine Loads, Stores and PHINodes.
6314       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6315         continue;
6316 
6317       // Examine PHI nodes that are reduction variables. Update the type to
6318       // account for the recurrence type.
6319       if (auto *PN = dyn_cast<PHINode>(&I)) {
6320         if (!Legal->isReductionVariable(PN))
6321           continue;
6322         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6323         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6324             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6325                                       RdxDesc.getRecurrenceType(),
6326                                       TargetTransformInfo::ReductionFlags()))
6327           continue;
6328         T = RdxDesc.getRecurrenceType();
6329       }
6330 
6331       // Examine the stored values.
6332       if (auto *ST = dyn_cast<StoreInst>(&I))
6333         T = ST->getValueOperand()->getType();
6334 
6335       // Ignore loaded pointer types and stored pointer types that are not
6336       // vectorizable.
6337       //
6338       // FIXME: The check here attempts to predict whether a load or store will
6339       //        be vectorized. We only know this for certain after a VF has
6340       //        been selected. Here, we assume that if an access can be
6341       //        vectorized, it will be. We should also look at extending this
6342       //        optimization to non-pointer types.
6343       //
6344       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6345           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6346         continue;
6347 
6348       ElementTypesInLoop.insert(T);
6349     }
6350   }
6351 }
6352 
6353 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6354                                                            unsigned LoopCost) {
6355   // -- The interleave heuristics --
6356   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6357   // There are many micro-architectural considerations that we can't predict
6358   // at this level. For example, frontend pressure (on decode or fetch) due to
6359   // code size, or the number and capabilities of the execution ports.
6360   //
6361   // We use the following heuristics to select the interleave count:
6362   // 1. If the code has reductions, then we interleave to break the cross
6363   // iteration dependency.
6364   // 2. If the loop is really small, then we interleave to reduce the loop
6365   // overhead.
6366   // 3. We don't interleave if we think that we will spill registers to memory
6367   // due to the increased register pressure.
6368 
6369   if (!isScalarEpilogueAllowed())
6370     return 1;
6371 
6372   // We used the distance for the interleave count.
6373   if (Legal->getMaxSafeDepDistBytes() != -1U)
6374     return 1;
6375 
6376   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6377   const bool HasReductions = !Legal->getReductionVars().empty();
6378   // Do not interleave loops with a relatively small known or estimated trip
6379   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6380   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6381   // because with the above conditions interleaving can expose ILP and break
6382   // cross iteration dependences for reductions.
6383   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6384       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6385     return 1;
6386 
6387   RegisterUsage R = calculateRegisterUsage({VF})[0];
6388   // We divide by these constants so assume that we have at least one
6389   // instruction that uses at least one register.
6390   for (auto& pair : R.MaxLocalUsers) {
6391     pair.second = std::max(pair.second, 1U);
6392   }
6393 
6394   // We calculate the interleave count using the following formula.
6395   // Subtract the number of loop invariants from the number of available
6396   // registers. These registers are used by all of the interleaved instances.
6397   // Next, divide the remaining registers by the number of registers that is
6398   // required by the loop, in order to estimate how many parallel instances
6399   // fit without causing spills. All of this is rounded down if necessary to be
6400   // a power of two. We want power of two interleave count to simplify any
6401   // addressing operations or alignment considerations.
6402   // We also want power of two interleave counts to ensure that the induction
6403   // variable of the vector loop wraps to zero, when tail is folded by masking;
6404   // this currently happens when OptForSize, in which case IC is set to 1 above.
6405   unsigned IC = UINT_MAX;
6406 
6407   for (auto& pair : R.MaxLocalUsers) {
6408     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6409     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6410                       << " registers of "
6411                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6412     if (VF.isScalar()) {
6413       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6414         TargetNumRegisters = ForceTargetNumScalarRegs;
6415     } else {
6416       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6417         TargetNumRegisters = ForceTargetNumVectorRegs;
6418     }
6419     unsigned MaxLocalUsers = pair.second;
6420     unsigned LoopInvariantRegs = 0;
6421     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6422       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6423 
6424     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6425     // Don't count the induction variable as interleaved.
6426     if (EnableIndVarRegisterHeur) {
6427       TmpIC =
6428           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6429                         std::max(1U, (MaxLocalUsers - 1)));
6430     }
6431 
6432     IC = std::min(IC, TmpIC);
6433   }
6434 
6435   // Clamp the interleave ranges to reasonable counts.
6436   unsigned MaxInterleaveCount =
6437       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6438 
6439   // Check if the user has overridden the max.
6440   if (VF.isScalar()) {
6441     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6442       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6443   } else {
6444     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6445       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6446   }
6447 
6448   // If trip count is known or estimated compile time constant, limit the
6449   // interleave count to be less than the trip count divided by VF, provided it
6450   // is at least 1.
6451   //
6452   // For scalable vectors we can't know if interleaving is beneficial. It may
6453   // not be beneficial for small loops if none of the lanes in the second vector
6454   // iterations is enabled. However, for larger loops, there is likely to be a
6455   // similar benefit as for fixed-width vectors. For now, we choose to leave
6456   // the InterleaveCount as if vscale is '1', although if some information about
6457   // the vector is known (e.g. min vector size), we can make a better decision.
6458   if (BestKnownTC) {
6459     MaxInterleaveCount =
6460         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6461     // Make sure MaxInterleaveCount is greater than 0.
6462     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6463   }
6464 
6465   assert(MaxInterleaveCount > 0 &&
6466          "Maximum interleave count must be greater than 0");
6467 
6468   // Clamp the calculated IC to be between the 1 and the max interleave count
6469   // that the target and trip count allows.
6470   if (IC > MaxInterleaveCount)
6471     IC = MaxInterleaveCount;
6472   else
6473     // Make sure IC is greater than 0.
6474     IC = std::max(1u, IC);
6475 
6476   assert(IC > 0 && "Interleave count must be greater than 0.");
6477 
6478   // If we did not calculate the cost for VF (because the user selected the VF)
6479   // then we calculate the cost of VF here.
6480   if (LoopCost == 0) {
6481     InstructionCost C = expectedCost(VF).first;
6482     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6483     LoopCost = *C.getValue();
6484   }
6485 
6486   assert(LoopCost && "Non-zero loop cost expected");
6487 
6488   // Interleave if we vectorized this loop and there is a reduction that could
6489   // benefit from interleaving.
6490   if (VF.isVector() && HasReductions) {
6491     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6492     return IC;
6493   }
6494 
6495   // Note that if we've already vectorized the loop we will have done the
6496   // runtime check and so interleaving won't require further checks.
6497   bool InterleavingRequiresRuntimePointerCheck =
6498       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6499 
6500   // We want to interleave small loops in order to reduce the loop overhead and
6501   // potentially expose ILP opportunities.
6502   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6503                     << "LV: IC is " << IC << '\n'
6504                     << "LV: VF is " << VF << '\n');
6505   const bool AggressivelyInterleaveReductions =
6506       TTI.enableAggressiveInterleaving(HasReductions);
6507   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6508     // We assume that the cost overhead is 1 and we use the cost model
6509     // to estimate the cost of the loop and interleave until the cost of the
6510     // loop overhead is about 5% of the cost of the loop.
6511     unsigned SmallIC =
6512         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6513 
6514     // Interleave until store/load ports (estimated by max interleave count) are
6515     // saturated.
6516     unsigned NumStores = Legal->getNumStores();
6517     unsigned NumLoads = Legal->getNumLoads();
6518     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6519     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6520 
6521     // If we have a scalar reduction (vector reductions are already dealt with
6522     // by this point), we can increase the critical path length if the loop
6523     // we're interleaving is inside another loop. For tree-wise reductions
6524     // set the limit to 2, and for ordered reductions it's best to disable
6525     // interleaving entirely.
6526     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6527       bool HasOrderedReductions =
6528           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6529             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6530             return RdxDesc.isOrdered();
6531           });
6532       if (HasOrderedReductions) {
6533         LLVM_DEBUG(
6534             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6535         return 1;
6536       }
6537 
6538       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6539       SmallIC = std::min(SmallIC, F);
6540       StoresIC = std::min(StoresIC, F);
6541       LoadsIC = std::min(LoadsIC, F);
6542     }
6543 
6544     if (EnableLoadStoreRuntimeInterleave &&
6545         std::max(StoresIC, LoadsIC) > SmallIC) {
6546       LLVM_DEBUG(
6547           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6548       return std::max(StoresIC, LoadsIC);
6549     }
6550 
6551     // If there are scalar reductions and TTI has enabled aggressive
6552     // interleaving for reductions, we will interleave to expose ILP.
6553     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6554         AggressivelyInterleaveReductions) {
6555       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6556       // Interleave no less than SmallIC but not as aggressive as the normal IC
6557       // to satisfy the rare situation when resources are too limited.
6558       return std::max(IC / 2, SmallIC);
6559     } else {
6560       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6561       return SmallIC;
6562     }
6563   }
6564 
6565   // Interleave if this is a large loop (small loops are already dealt with by
6566   // this point) that could benefit from interleaving.
6567   if (AggressivelyInterleaveReductions) {
6568     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6569     return IC;
6570   }
6571 
6572   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6573   return 1;
6574 }
6575 
6576 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6577 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6578   // This function calculates the register usage by measuring the highest number
6579   // of values that are alive at a single location. Obviously, this is a very
6580   // rough estimation. We scan the loop in a topological order in order and
6581   // assign a number to each instruction. We use RPO to ensure that defs are
6582   // met before their users. We assume that each instruction that has in-loop
6583   // users starts an interval. We record every time that an in-loop value is
6584   // used, so we have a list of the first and last occurrences of each
6585   // instruction. Next, we transpose this data structure into a multi map that
6586   // holds the list of intervals that *end* at a specific location. This multi
6587   // map allows us to perform a linear search. We scan the instructions linearly
6588   // and record each time that a new interval starts, by placing it in a set.
6589   // If we find this value in the multi-map then we remove it from the set.
6590   // The max register usage is the maximum size of the set.
6591   // We also search for instructions that are defined outside the loop, but are
6592   // used inside the loop. We need this number separately from the max-interval
6593   // usage number because when we unroll, loop-invariant values do not take
6594   // more register.
6595   LoopBlocksDFS DFS(TheLoop);
6596   DFS.perform(LI);
6597 
6598   RegisterUsage RU;
6599 
6600   // Each 'key' in the map opens a new interval. The values
6601   // of the map are the index of the 'last seen' usage of the
6602   // instruction that is the key.
6603   using IntervalMap = DenseMap<Instruction *, unsigned>;
6604 
6605   // Maps instruction to its index.
6606   SmallVector<Instruction *, 64> IdxToInstr;
6607   // Marks the end of each interval.
6608   IntervalMap EndPoint;
6609   // Saves the list of instruction indices that are used in the loop.
6610   SmallPtrSet<Instruction *, 8> Ends;
6611   // Saves the list of values that are used in the loop but are
6612   // defined outside the loop, such as arguments and constants.
6613   SmallPtrSet<Value *, 8> LoopInvariants;
6614 
6615   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6616     for (Instruction &I : BB->instructionsWithoutDebug()) {
6617       IdxToInstr.push_back(&I);
6618 
6619       // Save the end location of each USE.
6620       for (Value *U : I.operands()) {
6621         auto *Instr = dyn_cast<Instruction>(U);
6622 
6623         // Ignore non-instruction values such as arguments, constants, etc.
6624         if (!Instr)
6625           continue;
6626 
6627         // If this instruction is outside the loop then record it and continue.
6628         if (!TheLoop->contains(Instr)) {
6629           LoopInvariants.insert(Instr);
6630           continue;
6631         }
6632 
6633         // Overwrite previous end points.
6634         EndPoint[Instr] = IdxToInstr.size();
6635         Ends.insert(Instr);
6636       }
6637     }
6638   }
6639 
6640   // Saves the list of intervals that end with the index in 'key'.
6641   using InstrList = SmallVector<Instruction *, 2>;
6642   DenseMap<unsigned, InstrList> TransposeEnds;
6643 
6644   // Transpose the EndPoints to a list of values that end at each index.
6645   for (auto &Interval : EndPoint)
6646     TransposeEnds[Interval.second].push_back(Interval.first);
6647 
6648   SmallPtrSet<Instruction *, 8> OpenIntervals;
6649   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6650   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6651 
6652   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6653 
6654   // A lambda that gets the register usage for the given type and VF.
6655   const auto &TTICapture = TTI;
6656   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6657     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6658       return 0;
6659     InstructionCost::CostType RegUsage =
6660         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6661     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6662            "Nonsensical values for register usage.");
6663     return RegUsage;
6664   };
6665 
6666   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6667     Instruction *I = IdxToInstr[i];
6668 
6669     // Remove all of the instructions that end at this location.
6670     InstrList &List = TransposeEnds[i];
6671     for (Instruction *ToRemove : List)
6672       OpenIntervals.erase(ToRemove);
6673 
6674     // Ignore instructions that are never used within the loop.
6675     if (!Ends.count(I))
6676       continue;
6677 
6678     // Skip ignored values.
6679     if (ValuesToIgnore.count(I))
6680       continue;
6681 
6682     // For each VF find the maximum usage of registers.
6683     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6684       // Count the number of live intervals.
6685       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6686 
6687       if (VFs[j].isScalar()) {
6688         for (auto Inst : OpenIntervals) {
6689           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6690           if (RegUsage.find(ClassID) == RegUsage.end())
6691             RegUsage[ClassID] = 1;
6692           else
6693             RegUsage[ClassID] += 1;
6694         }
6695       } else {
6696         collectUniformsAndScalars(VFs[j]);
6697         for (auto Inst : OpenIntervals) {
6698           // Skip ignored values for VF > 1.
6699           if (VecValuesToIgnore.count(Inst))
6700             continue;
6701           if (isScalarAfterVectorization(Inst, VFs[j])) {
6702             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6703             if (RegUsage.find(ClassID) == RegUsage.end())
6704               RegUsage[ClassID] = 1;
6705             else
6706               RegUsage[ClassID] += 1;
6707           } else {
6708             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6709             if (RegUsage.find(ClassID) == RegUsage.end())
6710               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6711             else
6712               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6713           }
6714         }
6715       }
6716 
6717       for (auto& pair : RegUsage) {
6718         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6719           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6720         else
6721           MaxUsages[j][pair.first] = pair.second;
6722       }
6723     }
6724 
6725     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6726                       << OpenIntervals.size() << '\n');
6727 
6728     // Add the current instruction to the list of open intervals.
6729     OpenIntervals.insert(I);
6730   }
6731 
6732   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6733     SmallMapVector<unsigned, unsigned, 4> Invariant;
6734 
6735     for (auto Inst : LoopInvariants) {
6736       unsigned Usage =
6737           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6738       unsigned ClassID =
6739           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6740       if (Invariant.find(ClassID) == Invariant.end())
6741         Invariant[ClassID] = Usage;
6742       else
6743         Invariant[ClassID] += Usage;
6744     }
6745 
6746     LLVM_DEBUG({
6747       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6748       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6749              << " item\n";
6750       for (const auto &pair : MaxUsages[i]) {
6751         dbgs() << "LV(REG): RegisterClass: "
6752                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6753                << " registers\n";
6754       }
6755       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6756              << " item\n";
6757       for (const auto &pair : Invariant) {
6758         dbgs() << "LV(REG): RegisterClass: "
6759                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6760                << " registers\n";
6761       }
6762     });
6763 
6764     RU.LoopInvariantRegs = Invariant;
6765     RU.MaxLocalUsers = MaxUsages[i];
6766     RUs[i] = RU;
6767   }
6768 
6769   return RUs;
6770 }
6771 
6772 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6773   // TODO: Cost model for emulated masked load/store is completely
6774   // broken. This hack guides the cost model to use an artificially
6775   // high enough value to practically disable vectorization with such
6776   // operations, except where previously deployed legality hack allowed
6777   // using very low cost values. This is to avoid regressions coming simply
6778   // from moving "masked load/store" check from legality to cost model.
6779   // Masked Load/Gather emulation was previously never allowed.
6780   // Limited number of Masked Store/Scatter emulation was allowed.
6781   assert(isPredicatedInst(I) &&
6782          "Expecting a scalar emulated instruction");
6783   return isa<LoadInst>(I) ||
6784          (isa<StoreInst>(I) &&
6785           NumPredStores > NumberOfStoresToPredicate);
6786 }
6787 
6788 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6789   // If we aren't vectorizing the loop, or if we've already collected the
6790   // instructions to scalarize, there's nothing to do. Collection may already
6791   // have occurred if we have a user-selected VF and are now computing the
6792   // expected cost for interleaving.
6793   if (VF.isScalar() || VF.isZero() ||
6794       InstsToScalarize.find(VF) != InstsToScalarize.end())
6795     return;
6796 
6797   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6798   // not profitable to scalarize any instructions, the presence of VF in the
6799   // map will indicate that we've analyzed it already.
6800   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6801 
6802   // Find all the instructions that are scalar with predication in the loop and
6803   // determine if it would be better to not if-convert the blocks they are in.
6804   // If so, we also record the instructions to scalarize.
6805   for (BasicBlock *BB : TheLoop->blocks()) {
6806     if (!blockNeedsPredication(BB))
6807       continue;
6808     for (Instruction &I : *BB)
6809       if (isScalarWithPredication(&I)) {
6810         ScalarCostsTy ScalarCosts;
6811         // Do not apply discount if scalable, because that would lead to
6812         // invalid scalarization costs.
6813         // Do not apply discount logic if hacked cost is needed
6814         // for emulated masked memrefs.
6815         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6816             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6817           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6818         // Remember that BB will remain after vectorization.
6819         PredicatedBBsAfterVectorization.insert(BB);
6820       }
6821   }
6822 }
6823 
6824 int LoopVectorizationCostModel::computePredInstDiscount(
6825     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6826   assert(!isUniformAfterVectorization(PredInst, VF) &&
6827          "Instruction marked uniform-after-vectorization will be predicated");
6828 
6829   // Initialize the discount to zero, meaning that the scalar version and the
6830   // vector version cost the same.
6831   InstructionCost Discount = 0;
6832 
6833   // Holds instructions to analyze. The instructions we visit are mapped in
6834   // ScalarCosts. Those instructions are the ones that would be scalarized if
6835   // we find that the scalar version costs less.
6836   SmallVector<Instruction *, 8> Worklist;
6837 
6838   // Returns true if the given instruction can be scalarized.
6839   auto canBeScalarized = [&](Instruction *I) -> bool {
6840     // We only attempt to scalarize instructions forming a single-use chain
6841     // from the original predicated block that would otherwise be vectorized.
6842     // Although not strictly necessary, we give up on instructions we know will
6843     // already be scalar to avoid traversing chains that are unlikely to be
6844     // beneficial.
6845     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6846         isScalarAfterVectorization(I, VF))
6847       return false;
6848 
6849     // If the instruction is scalar with predication, it will be analyzed
6850     // separately. We ignore it within the context of PredInst.
6851     if (isScalarWithPredication(I))
6852       return false;
6853 
6854     // If any of the instruction's operands are uniform after vectorization,
6855     // the instruction cannot be scalarized. This prevents, for example, a
6856     // masked load from being scalarized.
6857     //
6858     // We assume we will only emit a value for lane zero of an instruction
6859     // marked uniform after vectorization, rather than VF identical values.
6860     // Thus, if we scalarize an instruction that uses a uniform, we would
6861     // create uses of values corresponding to the lanes we aren't emitting code
6862     // for. This behavior can be changed by allowing getScalarValue to clone
6863     // the lane zero values for uniforms rather than asserting.
6864     for (Use &U : I->operands())
6865       if (auto *J = dyn_cast<Instruction>(U.get()))
6866         if (isUniformAfterVectorization(J, VF))
6867           return false;
6868 
6869     // Otherwise, we can scalarize the instruction.
6870     return true;
6871   };
6872 
6873   // Compute the expected cost discount from scalarizing the entire expression
6874   // feeding the predicated instruction. We currently only consider expressions
6875   // that are single-use instruction chains.
6876   Worklist.push_back(PredInst);
6877   while (!Worklist.empty()) {
6878     Instruction *I = Worklist.pop_back_val();
6879 
6880     // If we've already analyzed the instruction, there's nothing to do.
6881     if (ScalarCosts.find(I) != ScalarCosts.end())
6882       continue;
6883 
6884     // Compute the cost of the vector instruction. Note that this cost already
6885     // includes the scalarization overhead of the predicated instruction.
6886     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6887 
6888     // Compute the cost of the scalarized instruction. This cost is the cost of
6889     // the instruction as if it wasn't if-converted and instead remained in the
6890     // predicated block. We will scale this cost by block probability after
6891     // computing the scalarization overhead.
6892     InstructionCost ScalarCost =
6893         VF.getFixedValue() *
6894         getInstructionCost(I, ElementCount::getFixed(1)).first;
6895 
6896     // Compute the scalarization overhead of needed insertelement instructions
6897     // and phi nodes.
6898     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6899       ScalarCost += TTI.getScalarizationOverhead(
6900           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6901           APInt::getAllOnes(VF.getFixedValue()), true, false);
6902       ScalarCost +=
6903           VF.getFixedValue() *
6904           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6905     }
6906 
6907     // Compute the scalarization overhead of needed extractelement
6908     // instructions. For each of the instruction's operands, if the operand can
6909     // be scalarized, add it to the worklist; otherwise, account for the
6910     // overhead.
6911     for (Use &U : I->operands())
6912       if (auto *J = dyn_cast<Instruction>(U.get())) {
6913         assert(VectorType::isValidElementType(J->getType()) &&
6914                "Instruction has non-scalar type");
6915         if (canBeScalarized(J))
6916           Worklist.push_back(J);
6917         else if (needsExtract(J, VF)) {
6918           ScalarCost += TTI.getScalarizationOverhead(
6919               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6920               APInt::getAllOnes(VF.getFixedValue()), false, true);
6921         }
6922       }
6923 
6924     // Scale the total scalar cost by block probability.
6925     ScalarCost /= getReciprocalPredBlockProb();
6926 
6927     // Compute the discount. A non-negative discount means the vector version
6928     // of the instruction costs more, and scalarizing would be beneficial.
6929     Discount += VectorCost - ScalarCost;
6930     ScalarCosts[I] = ScalarCost;
6931   }
6932 
6933   return *Discount.getValue();
6934 }
6935 
6936 LoopVectorizationCostModel::VectorizationCostTy
6937 LoopVectorizationCostModel::expectedCost(
6938     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6939   VectorizationCostTy Cost;
6940 
6941   // For each block.
6942   for (BasicBlock *BB : TheLoop->blocks()) {
6943     VectorizationCostTy BlockCost;
6944 
6945     // For each instruction in the old loop.
6946     for (Instruction &I : BB->instructionsWithoutDebug()) {
6947       // Skip ignored values.
6948       if (ValuesToIgnore.count(&I) ||
6949           (VF.isVector() && VecValuesToIgnore.count(&I)))
6950         continue;
6951 
6952       VectorizationCostTy C = getInstructionCost(&I, VF);
6953 
6954       // Check if we should override the cost.
6955       if (C.first.isValid() &&
6956           ForceTargetInstructionCost.getNumOccurrences() > 0)
6957         C.first = InstructionCost(ForceTargetInstructionCost);
6958 
6959       // Keep a list of instructions with invalid costs.
6960       if (Invalid && !C.first.isValid())
6961         Invalid->emplace_back(&I, VF);
6962 
6963       BlockCost.first += C.first;
6964       BlockCost.second |= C.second;
6965       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6966                         << " for VF " << VF << " For instruction: " << I
6967                         << '\n');
6968     }
6969 
6970     // If we are vectorizing a predicated block, it will have been
6971     // if-converted. This means that the block's instructions (aside from
6972     // stores and instructions that may divide by zero) will now be
6973     // unconditionally executed. For the scalar case, we may not always execute
6974     // the predicated block, if it is an if-else block. Thus, scale the block's
6975     // cost by the probability of executing it. blockNeedsPredication from
6976     // Legal is used so as to not include all blocks in tail folded loops.
6977     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6978       BlockCost.first /= getReciprocalPredBlockProb();
6979 
6980     Cost.first += BlockCost.first;
6981     Cost.second |= BlockCost.second;
6982   }
6983 
6984   return Cost;
6985 }
6986 
6987 /// Gets Address Access SCEV after verifying that the access pattern
6988 /// is loop invariant except the induction variable dependence.
6989 ///
6990 /// This SCEV can be sent to the Target in order to estimate the address
6991 /// calculation cost.
6992 static const SCEV *getAddressAccessSCEV(
6993               Value *Ptr,
6994               LoopVectorizationLegality *Legal,
6995               PredicatedScalarEvolution &PSE,
6996               const Loop *TheLoop) {
6997 
6998   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6999   if (!Gep)
7000     return nullptr;
7001 
7002   // We are looking for a gep with all loop invariant indices except for one
7003   // which should be an induction variable.
7004   auto SE = PSE.getSE();
7005   unsigned NumOperands = Gep->getNumOperands();
7006   for (unsigned i = 1; i < NumOperands; ++i) {
7007     Value *Opd = Gep->getOperand(i);
7008     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7009         !Legal->isInductionVariable(Opd))
7010       return nullptr;
7011   }
7012 
7013   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7014   return PSE.getSCEV(Ptr);
7015 }
7016 
7017 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7018   return Legal->hasStride(I->getOperand(0)) ||
7019          Legal->hasStride(I->getOperand(1));
7020 }
7021 
7022 InstructionCost
7023 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7024                                                         ElementCount VF) {
7025   assert(VF.isVector() &&
7026          "Scalarization cost of instruction implies vectorization.");
7027   if (VF.isScalable())
7028     return InstructionCost::getInvalid();
7029 
7030   Type *ValTy = getLoadStoreType(I);
7031   auto SE = PSE.getSE();
7032 
7033   unsigned AS = getLoadStoreAddressSpace(I);
7034   Value *Ptr = getLoadStorePointerOperand(I);
7035   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7036 
7037   // Figure out whether the access is strided and get the stride value
7038   // if it's known in compile time
7039   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7040 
7041   // Get the cost of the scalar memory instruction and address computation.
7042   InstructionCost Cost =
7043       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7044 
7045   // Don't pass *I here, since it is scalar but will actually be part of a
7046   // vectorized loop where the user of it is a vectorized instruction.
7047   const Align Alignment = getLoadStoreAlignment(I);
7048   Cost += VF.getKnownMinValue() *
7049           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7050                               AS, TTI::TCK_RecipThroughput);
7051 
7052   // Get the overhead of the extractelement and insertelement instructions
7053   // we might create due to scalarization.
7054   Cost += getScalarizationOverhead(I, VF);
7055 
7056   // If we have a predicated load/store, it will need extra i1 extracts and
7057   // conditional branches, but may not be executed for each vector lane. Scale
7058   // the cost by the probability of executing the predicated block.
7059   if (isPredicatedInst(I)) {
7060     Cost /= getReciprocalPredBlockProb();
7061 
7062     // Add the cost of an i1 extract and a branch
7063     auto *Vec_i1Ty =
7064         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7065     Cost += TTI.getScalarizationOverhead(
7066         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7067         /*Insert=*/false, /*Extract=*/true);
7068     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7069 
7070     if (useEmulatedMaskMemRefHack(I))
7071       // Artificially setting to a high enough value to practically disable
7072       // vectorization with such operations.
7073       Cost = 3000000;
7074   }
7075 
7076   return Cost;
7077 }
7078 
7079 InstructionCost
7080 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7081                                                     ElementCount VF) {
7082   Type *ValTy = getLoadStoreType(I);
7083   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7084   Value *Ptr = getLoadStorePointerOperand(I);
7085   unsigned AS = getLoadStoreAddressSpace(I);
7086   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7087   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7088 
7089   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7090          "Stride should be 1 or -1 for consecutive memory access");
7091   const Align Alignment = getLoadStoreAlignment(I);
7092   InstructionCost Cost = 0;
7093   if (Legal->isMaskRequired(I))
7094     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7095                                       CostKind);
7096   else
7097     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7098                                 CostKind, I);
7099 
7100   bool Reverse = ConsecutiveStride < 0;
7101   if (Reverse)
7102     Cost +=
7103         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7104   return Cost;
7105 }
7106 
7107 InstructionCost
7108 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7109                                                 ElementCount VF) {
7110   assert(Legal->isUniformMemOp(*I));
7111 
7112   Type *ValTy = getLoadStoreType(I);
7113   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7114   const Align Alignment = getLoadStoreAlignment(I);
7115   unsigned AS = getLoadStoreAddressSpace(I);
7116   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7117   if (isa<LoadInst>(I)) {
7118     return TTI.getAddressComputationCost(ValTy) +
7119            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7120                                CostKind) +
7121            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7122   }
7123   StoreInst *SI = cast<StoreInst>(I);
7124 
7125   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7126   return TTI.getAddressComputationCost(ValTy) +
7127          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7128                              CostKind) +
7129          (isLoopInvariantStoreValue
7130               ? 0
7131               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7132                                        VF.getKnownMinValue() - 1));
7133 }
7134 
7135 InstructionCost
7136 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7137                                                  ElementCount VF) {
7138   Type *ValTy = getLoadStoreType(I);
7139   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7140   const Align Alignment = getLoadStoreAlignment(I);
7141   const Value *Ptr = getLoadStorePointerOperand(I);
7142 
7143   return TTI.getAddressComputationCost(VectorTy) +
7144          TTI.getGatherScatterOpCost(
7145              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7146              TargetTransformInfo::TCK_RecipThroughput, I);
7147 }
7148 
7149 InstructionCost
7150 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7151                                                    ElementCount VF) {
7152   // TODO: Once we have support for interleaving with scalable vectors
7153   // we can calculate the cost properly here.
7154   if (VF.isScalable())
7155     return InstructionCost::getInvalid();
7156 
7157   Type *ValTy = getLoadStoreType(I);
7158   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7159   unsigned AS = getLoadStoreAddressSpace(I);
7160 
7161   auto Group = getInterleavedAccessGroup(I);
7162   assert(Group && "Fail to get an interleaved access group.");
7163 
7164   unsigned InterleaveFactor = Group->getFactor();
7165   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7166 
7167   // Holds the indices of existing members in the interleaved group.
7168   SmallVector<unsigned, 4> Indices;
7169   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7170     if (Group->getMember(IF))
7171       Indices.push_back(IF);
7172 
7173   // Calculate the cost of the whole interleaved group.
7174   bool UseMaskForGaps =
7175       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7176       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7177   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7178       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7179       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7180 
7181   if (Group->isReverse()) {
7182     // TODO: Add support for reversed masked interleaved access.
7183     assert(!Legal->isMaskRequired(I) &&
7184            "Reverse masked interleaved access not supported.");
7185     Cost +=
7186         Group->getNumMembers() *
7187         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7188   }
7189   return Cost;
7190 }
7191 
7192 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7193     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7194   using namespace llvm::PatternMatch;
7195   // Early exit for no inloop reductions
7196   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7197     return None;
7198   auto *VectorTy = cast<VectorType>(Ty);
7199 
7200   // We are looking for a pattern of, and finding the minimal acceptable cost:
7201   //  reduce(mul(ext(A), ext(B))) or
7202   //  reduce(mul(A, B)) or
7203   //  reduce(ext(A)) or
7204   //  reduce(A).
7205   // The basic idea is that we walk down the tree to do that, finding the root
7206   // reduction instruction in InLoopReductionImmediateChains. From there we find
7207   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7208   // of the components. If the reduction cost is lower then we return it for the
7209   // reduction instruction and 0 for the other instructions in the pattern. If
7210   // it is not we return an invalid cost specifying the orignal cost method
7211   // should be used.
7212   Instruction *RetI = I;
7213   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7214     if (!RetI->hasOneUser())
7215       return None;
7216     RetI = RetI->user_back();
7217   }
7218   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7219       RetI->user_back()->getOpcode() == Instruction::Add) {
7220     if (!RetI->hasOneUser())
7221       return None;
7222     RetI = RetI->user_back();
7223   }
7224 
7225   // Test if the found instruction is a reduction, and if not return an invalid
7226   // cost specifying the parent to use the original cost modelling.
7227   if (!InLoopReductionImmediateChains.count(RetI))
7228     return None;
7229 
7230   // Find the reduction this chain is a part of and calculate the basic cost of
7231   // the reduction on its own.
7232   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7233   Instruction *ReductionPhi = LastChain;
7234   while (!isa<PHINode>(ReductionPhi))
7235     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7236 
7237   const RecurrenceDescriptor &RdxDesc =
7238       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7239 
7240   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7241       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7242 
7243   // If we're using ordered reductions then we can just return the base cost
7244   // here, since getArithmeticReductionCost calculates the full ordered
7245   // reduction cost when FP reassociation is not allowed.
7246   if (useOrderedReductions(RdxDesc))
7247     return BaseCost;
7248 
7249   // Get the operand that was not the reduction chain and match it to one of the
7250   // patterns, returning the better cost if it is found.
7251   Instruction *RedOp = RetI->getOperand(1) == LastChain
7252                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7253                            : dyn_cast<Instruction>(RetI->getOperand(1));
7254 
7255   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7256 
7257   Instruction *Op0, *Op1;
7258   if (RedOp &&
7259       match(RedOp,
7260             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7261       match(Op0, m_ZExtOrSExt(m_Value())) &&
7262       Op0->getOpcode() == Op1->getOpcode() &&
7263       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7264       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7265       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7266 
7267     // Matched reduce(ext(mul(ext(A), ext(B)))
7268     // Note that the extend opcodes need to all match, or if A==B they will have
7269     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7270     // which is equally fine.
7271     bool IsUnsigned = isa<ZExtInst>(Op0);
7272     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7273     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7274 
7275     InstructionCost ExtCost =
7276         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7277                              TTI::CastContextHint::None, CostKind, Op0);
7278     InstructionCost MulCost =
7279         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7280     InstructionCost Ext2Cost =
7281         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7282                              TTI::CastContextHint::None, CostKind, RedOp);
7283 
7284     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7285         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7286         CostKind);
7287 
7288     if (RedCost.isValid() &&
7289         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7290       return I == RetI ? RedCost : 0;
7291   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7292              !TheLoop->isLoopInvariant(RedOp)) {
7293     // Matched reduce(ext(A))
7294     bool IsUnsigned = isa<ZExtInst>(RedOp);
7295     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7296     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7297         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7298         CostKind);
7299 
7300     InstructionCost ExtCost =
7301         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7302                              TTI::CastContextHint::None, CostKind, RedOp);
7303     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7304       return I == RetI ? RedCost : 0;
7305   } else if (RedOp &&
7306              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7307     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7308         Op0->getOpcode() == Op1->getOpcode() &&
7309         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7310         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7311       bool IsUnsigned = isa<ZExtInst>(Op0);
7312       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7313       // Matched reduce(mul(ext, ext))
7314       InstructionCost ExtCost =
7315           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7316                                TTI::CastContextHint::None, CostKind, Op0);
7317       InstructionCost MulCost =
7318           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7319 
7320       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7321           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7322           CostKind);
7323 
7324       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7325         return I == RetI ? RedCost : 0;
7326     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7327       // Matched reduce(mul())
7328       InstructionCost MulCost =
7329           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7330 
7331       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7332           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7333           CostKind);
7334 
7335       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7336         return I == RetI ? RedCost : 0;
7337     }
7338   }
7339 
7340   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7341 }
7342 
7343 InstructionCost
7344 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7345                                                      ElementCount VF) {
7346   // Calculate scalar cost only. Vectorization cost should be ready at this
7347   // moment.
7348   if (VF.isScalar()) {
7349     Type *ValTy = getLoadStoreType(I);
7350     const Align Alignment = getLoadStoreAlignment(I);
7351     unsigned AS = getLoadStoreAddressSpace(I);
7352 
7353     return TTI.getAddressComputationCost(ValTy) +
7354            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7355                                TTI::TCK_RecipThroughput, I);
7356   }
7357   return getWideningCost(I, VF);
7358 }
7359 
7360 LoopVectorizationCostModel::VectorizationCostTy
7361 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7362                                                ElementCount VF) {
7363   // If we know that this instruction will remain uniform, check the cost of
7364   // the scalar version.
7365   if (isUniformAfterVectorization(I, VF))
7366     VF = ElementCount::getFixed(1);
7367 
7368   if (VF.isVector() && isProfitableToScalarize(I, VF))
7369     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7370 
7371   // Forced scalars do not have any scalarization overhead.
7372   auto ForcedScalar = ForcedScalars.find(VF);
7373   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7374     auto InstSet = ForcedScalar->second;
7375     if (InstSet.count(I))
7376       return VectorizationCostTy(
7377           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7378            VF.getKnownMinValue()),
7379           false);
7380   }
7381 
7382   Type *VectorTy;
7383   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7384 
7385   bool TypeNotScalarized =
7386       VF.isVector() && VectorTy->isVectorTy() &&
7387       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7388   return VectorizationCostTy(C, TypeNotScalarized);
7389 }
7390 
7391 InstructionCost
7392 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7393                                                      ElementCount VF) const {
7394 
7395   // There is no mechanism yet to create a scalable scalarization loop,
7396   // so this is currently Invalid.
7397   if (VF.isScalable())
7398     return InstructionCost::getInvalid();
7399 
7400   if (VF.isScalar())
7401     return 0;
7402 
7403   InstructionCost Cost = 0;
7404   Type *RetTy = ToVectorTy(I->getType(), VF);
7405   if (!RetTy->isVoidTy() &&
7406       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7407     Cost += TTI.getScalarizationOverhead(
7408         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7409         false);
7410 
7411   // Some targets keep addresses scalar.
7412   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7413     return Cost;
7414 
7415   // Some targets support efficient element stores.
7416   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7417     return Cost;
7418 
7419   // Collect operands to consider.
7420   CallInst *CI = dyn_cast<CallInst>(I);
7421   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7422 
7423   // Skip operands that do not require extraction/scalarization and do not incur
7424   // any overhead.
7425   SmallVector<Type *> Tys;
7426   for (auto *V : filterExtractingOperands(Ops, VF))
7427     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7428   return Cost + TTI.getOperandsScalarizationOverhead(
7429                     filterExtractingOperands(Ops, VF), Tys);
7430 }
7431 
7432 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7433   if (VF.isScalar())
7434     return;
7435   NumPredStores = 0;
7436   for (BasicBlock *BB : TheLoop->blocks()) {
7437     // For each instruction in the old loop.
7438     for (Instruction &I : *BB) {
7439       Value *Ptr =  getLoadStorePointerOperand(&I);
7440       if (!Ptr)
7441         continue;
7442 
7443       // TODO: We should generate better code and update the cost model for
7444       // predicated uniform stores. Today they are treated as any other
7445       // predicated store (see added test cases in
7446       // invariant-store-vectorization.ll).
7447       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7448         NumPredStores++;
7449 
7450       if (Legal->isUniformMemOp(I)) {
7451         // TODO: Avoid replicating loads and stores instead of
7452         // relying on instcombine to remove them.
7453         // Load: Scalar load + broadcast
7454         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7455         InstructionCost Cost;
7456         if (isa<StoreInst>(&I) && VF.isScalable() &&
7457             isLegalGatherOrScatter(&I)) {
7458           Cost = getGatherScatterCost(&I, VF);
7459           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7460         } else {
7461           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7462                  "Cannot yet scalarize uniform stores");
7463           Cost = getUniformMemOpCost(&I, VF);
7464           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7465         }
7466         continue;
7467       }
7468 
7469       // We assume that widening is the best solution when possible.
7470       if (memoryInstructionCanBeWidened(&I, VF)) {
7471         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7472         int ConsecutiveStride =
7473                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7474         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7475                "Expected consecutive stride.");
7476         InstWidening Decision =
7477             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7478         setWideningDecision(&I, VF, Decision, Cost);
7479         continue;
7480       }
7481 
7482       // Choose between Interleaving, Gather/Scatter or Scalarization.
7483       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7484       unsigned NumAccesses = 1;
7485       if (isAccessInterleaved(&I)) {
7486         auto Group = getInterleavedAccessGroup(&I);
7487         assert(Group && "Fail to get an interleaved access group.");
7488 
7489         // Make one decision for the whole group.
7490         if (getWideningDecision(&I, VF) != CM_Unknown)
7491           continue;
7492 
7493         NumAccesses = Group->getNumMembers();
7494         if (interleavedAccessCanBeWidened(&I, VF))
7495           InterleaveCost = getInterleaveGroupCost(&I, VF);
7496       }
7497 
7498       InstructionCost GatherScatterCost =
7499           isLegalGatherOrScatter(&I)
7500               ? getGatherScatterCost(&I, VF) * NumAccesses
7501               : InstructionCost::getInvalid();
7502 
7503       InstructionCost ScalarizationCost =
7504           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7505 
7506       // Choose better solution for the current VF,
7507       // write down this decision and use it during vectorization.
7508       InstructionCost Cost;
7509       InstWidening Decision;
7510       if (InterleaveCost <= GatherScatterCost &&
7511           InterleaveCost < ScalarizationCost) {
7512         Decision = CM_Interleave;
7513         Cost = InterleaveCost;
7514       } else if (GatherScatterCost < ScalarizationCost) {
7515         Decision = CM_GatherScatter;
7516         Cost = GatherScatterCost;
7517       } else {
7518         Decision = CM_Scalarize;
7519         Cost = ScalarizationCost;
7520       }
7521       // If the instructions belongs to an interleave group, the whole group
7522       // receives the same decision. The whole group receives the cost, but
7523       // the cost will actually be assigned to one instruction.
7524       if (auto Group = getInterleavedAccessGroup(&I))
7525         setWideningDecision(Group, VF, Decision, Cost);
7526       else
7527         setWideningDecision(&I, VF, Decision, Cost);
7528     }
7529   }
7530 
7531   // Make sure that any load of address and any other address computation
7532   // remains scalar unless there is gather/scatter support. This avoids
7533   // inevitable extracts into address registers, and also has the benefit of
7534   // activating LSR more, since that pass can't optimize vectorized
7535   // addresses.
7536   if (TTI.prefersVectorizedAddressing())
7537     return;
7538 
7539   // Start with all scalar pointer uses.
7540   SmallPtrSet<Instruction *, 8> AddrDefs;
7541   for (BasicBlock *BB : TheLoop->blocks())
7542     for (Instruction &I : *BB) {
7543       Instruction *PtrDef =
7544         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7545       if (PtrDef && TheLoop->contains(PtrDef) &&
7546           getWideningDecision(&I, VF) != CM_GatherScatter)
7547         AddrDefs.insert(PtrDef);
7548     }
7549 
7550   // Add all instructions used to generate the addresses.
7551   SmallVector<Instruction *, 4> Worklist;
7552   append_range(Worklist, AddrDefs);
7553   while (!Worklist.empty()) {
7554     Instruction *I = Worklist.pop_back_val();
7555     for (auto &Op : I->operands())
7556       if (auto *InstOp = dyn_cast<Instruction>(Op))
7557         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7558             AddrDefs.insert(InstOp).second)
7559           Worklist.push_back(InstOp);
7560   }
7561 
7562   for (auto *I : AddrDefs) {
7563     if (isa<LoadInst>(I)) {
7564       // Setting the desired widening decision should ideally be handled in
7565       // by cost functions, but since this involves the task of finding out
7566       // if the loaded register is involved in an address computation, it is
7567       // instead changed here when we know this is the case.
7568       InstWidening Decision = getWideningDecision(I, VF);
7569       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7570         // Scalarize a widened load of address.
7571         setWideningDecision(
7572             I, VF, CM_Scalarize,
7573             (VF.getKnownMinValue() *
7574              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7575       else if (auto Group = getInterleavedAccessGroup(I)) {
7576         // Scalarize an interleave group of address loads.
7577         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7578           if (Instruction *Member = Group->getMember(I))
7579             setWideningDecision(
7580                 Member, VF, CM_Scalarize,
7581                 (VF.getKnownMinValue() *
7582                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7583         }
7584       }
7585     } else
7586       // Make sure I gets scalarized and a cost estimate without
7587       // scalarization overhead.
7588       ForcedScalars[VF].insert(I);
7589   }
7590 }
7591 
7592 InstructionCost
7593 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7594                                                Type *&VectorTy) {
7595   Type *RetTy = I->getType();
7596   if (canTruncateToMinimalBitwidth(I, VF))
7597     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7598   auto SE = PSE.getSE();
7599   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7600 
7601   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7602                                                 ElementCount VF) -> bool {
7603     if (VF.isScalar())
7604       return true;
7605 
7606     auto Scalarized = InstsToScalarize.find(VF);
7607     assert(Scalarized != InstsToScalarize.end() &&
7608            "VF not yet analyzed for scalarization profitability");
7609     return !Scalarized->second.count(I) &&
7610            llvm::all_of(I->users(), [&](User *U) {
7611              auto *UI = cast<Instruction>(U);
7612              return !Scalarized->second.count(UI);
7613            });
7614   };
7615   (void) hasSingleCopyAfterVectorization;
7616 
7617   if (isScalarAfterVectorization(I, VF)) {
7618     // With the exception of GEPs and PHIs, after scalarization there should
7619     // only be one copy of the instruction generated in the loop. This is
7620     // because the VF is either 1, or any instructions that need scalarizing
7621     // have already been dealt with by the the time we get here. As a result,
7622     // it means we don't have to multiply the instruction cost by VF.
7623     assert(I->getOpcode() == Instruction::GetElementPtr ||
7624            I->getOpcode() == Instruction::PHI ||
7625            (I->getOpcode() == Instruction::BitCast &&
7626             I->getType()->isPointerTy()) ||
7627            hasSingleCopyAfterVectorization(I, VF));
7628     VectorTy = RetTy;
7629   } else
7630     VectorTy = ToVectorTy(RetTy, VF);
7631 
7632   // TODO: We need to estimate the cost of intrinsic calls.
7633   switch (I->getOpcode()) {
7634   case Instruction::GetElementPtr:
7635     // We mark this instruction as zero-cost because the cost of GEPs in
7636     // vectorized code depends on whether the corresponding memory instruction
7637     // is scalarized or not. Therefore, we handle GEPs with the memory
7638     // instruction cost.
7639     return 0;
7640   case Instruction::Br: {
7641     // In cases of scalarized and predicated instructions, there will be VF
7642     // predicated blocks in the vectorized loop. Each branch around these
7643     // blocks requires also an extract of its vector compare i1 element.
7644     bool ScalarPredicatedBB = false;
7645     BranchInst *BI = cast<BranchInst>(I);
7646     if (VF.isVector() && BI->isConditional() &&
7647         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7648          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7649       ScalarPredicatedBB = true;
7650 
7651     if (ScalarPredicatedBB) {
7652       // Not possible to scalarize scalable vector with predicated instructions.
7653       if (VF.isScalable())
7654         return InstructionCost::getInvalid();
7655       // Return cost for branches around scalarized and predicated blocks.
7656       auto *Vec_i1Ty =
7657           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7658       return (
7659           TTI.getScalarizationOverhead(
7660               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7661           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7662     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7663       // The back-edge branch will remain, as will all scalar branches.
7664       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7665     else
7666       // This branch will be eliminated by if-conversion.
7667       return 0;
7668     // Note: We currently assume zero cost for an unconditional branch inside
7669     // a predicated block since it will become a fall-through, although we
7670     // may decide in the future to call TTI for all branches.
7671   }
7672   case Instruction::PHI: {
7673     auto *Phi = cast<PHINode>(I);
7674 
7675     // First-order recurrences are replaced by vector shuffles inside the loop.
7676     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7677     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7678       return TTI.getShuffleCost(
7679           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7680           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7681 
7682     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7683     // converted into select instructions. We require N - 1 selects per phi
7684     // node, where N is the number of incoming values.
7685     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7686       return (Phi->getNumIncomingValues() - 1) *
7687              TTI.getCmpSelInstrCost(
7688                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7689                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7690                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7691 
7692     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7693   }
7694   case Instruction::UDiv:
7695   case Instruction::SDiv:
7696   case Instruction::URem:
7697   case Instruction::SRem:
7698     // If we have a predicated instruction, it may not be executed for each
7699     // vector lane. Get the scalarization cost and scale this amount by the
7700     // probability of executing the predicated block. If the instruction is not
7701     // predicated, we fall through to the next case.
7702     if (VF.isVector() && isScalarWithPredication(I)) {
7703       InstructionCost Cost = 0;
7704 
7705       // These instructions have a non-void type, so account for the phi nodes
7706       // that we will create. This cost is likely to be zero. The phi node
7707       // cost, if any, should be scaled by the block probability because it
7708       // models a copy at the end of each predicated block.
7709       Cost += VF.getKnownMinValue() *
7710               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7711 
7712       // The cost of the non-predicated instruction.
7713       Cost += VF.getKnownMinValue() *
7714               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7715 
7716       // The cost of insertelement and extractelement instructions needed for
7717       // scalarization.
7718       Cost += getScalarizationOverhead(I, VF);
7719 
7720       // Scale the cost by the probability of executing the predicated blocks.
7721       // This assumes the predicated block for each vector lane is equally
7722       // likely.
7723       return Cost / getReciprocalPredBlockProb();
7724     }
7725     LLVM_FALLTHROUGH;
7726   case Instruction::Add:
7727   case Instruction::FAdd:
7728   case Instruction::Sub:
7729   case Instruction::FSub:
7730   case Instruction::Mul:
7731   case Instruction::FMul:
7732   case Instruction::FDiv:
7733   case Instruction::FRem:
7734   case Instruction::Shl:
7735   case Instruction::LShr:
7736   case Instruction::AShr:
7737   case Instruction::And:
7738   case Instruction::Or:
7739   case Instruction::Xor: {
7740     // Since we will replace the stride by 1 the multiplication should go away.
7741     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7742       return 0;
7743 
7744     // Detect reduction patterns
7745     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7746       return *RedCost;
7747 
7748     // Certain instructions can be cheaper to vectorize if they have a constant
7749     // second vector operand. One example of this are shifts on x86.
7750     Value *Op2 = I->getOperand(1);
7751     TargetTransformInfo::OperandValueProperties Op2VP;
7752     TargetTransformInfo::OperandValueKind Op2VK =
7753         TTI.getOperandInfo(Op2, Op2VP);
7754     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7755       Op2VK = TargetTransformInfo::OK_UniformValue;
7756 
7757     SmallVector<const Value *, 4> Operands(I->operand_values());
7758     return TTI.getArithmeticInstrCost(
7759         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7760         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7761   }
7762   case Instruction::FNeg: {
7763     return TTI.getArithmeticInstrCost(
7764         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7765         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7766         TargetTransformInfo::OP_None, I->getOperand(0), I);
7767   }
7768   case Instruction::Select: {
7769     SelectInst *SI = cast<SelectInst>(I);
7770     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7771     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7772 
7773     const Value *Op0, *Op1;
7774     using namespace llvm::PatternMatch;
7775     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7776                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7777       // select x, y, false --> x & y
7778       // select x, true, y --> x | y
7779       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7780       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7781       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7782       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7783       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7784               Op1->getType()->getScalarSizeInBits() == 1);
7785 
7786       SmallVector<const Value *, 2> Operands{Op0, Op1};
7787       return TTI.getArithmeticInstrCost(
7788           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7789           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7790     }
7791 
7792     Type *CondTy = SI->getCondition()->getType();
7793     if (!ScalarCond)
7794       CondTy = VectorType::get(CondTy, VF);
7795     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7796                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7797   }
7798   case Instruction::ICmp:
7799   case Instruction::FCmp: {
7800     Type *ValTy = I->getOperand(0)->getType();
7801     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7802     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7803       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7804     VectorTy = ToVectorTy(ValTy, VF);
7805     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7806                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7807   }
7808   case Instruction::Store:
7809   case Instruction::Load: {
7810     ElementCount Width = VF;
7811     if (Width.isVector()) {
7812       InstWidening Decision = getWideningDecision(I, Width);
7813       assert(Decision != CM_Unknown &&
7814              "CM decision should be taken at this point");
7815       if (Decision == CM_Scalarize)
7816         Width = ElementCount::getFixed(1);
7817     }
7818     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7819     return getMemoryInstructionCost(I, VF);
7820   }
7821   case Instruction::BitCast:
7822     if (I->getType()->isPointerTy())
7823       return 0;
7824     LLVM_FALLTHROUGH;
7825   case Instruction::ZExt:
7826   case Instruction::SExt:
7827   case Instruction::FPToUI:
7828   case Instruction::FPToSI:
7829   case Instruction::FPExt:
7830   case Instruction::PtrToInt:
7831   case Instruction::IntToPtr:
7832   case Instruction::SIToFP:
7833   case Instruction::UIToFP:
7834   case Instruction::Trunc:
7835   case Instruction::FPTrunc: {
7836     // Computes the CastContextHint from a Load/Store instruction.
7837     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7838       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7839              "Expected a load or a store!");
7840 
7841       if (VF.isScalar() || !TheLoop->contains(I))
7842         return TTI::CastContextHint::Normal;
7843 
7844       switch (getWideningDecision(I, VF)) {
7845       case LoopVectorizationCostModel::CM_GatherScatter:
7846         return TTI::CastContextHint::GatherScatter;
7847       case LoopVectorizationCostModel::CM_Interleave:
7848         return TTI::CastContextHint::Interleave;
7849       case LoopVectorizationCostModel::CM_Scalarize:
7850       case LoopVectorizationCostModel::CM_Widen:
7851         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7852                                         : TTI::CastContextHint::Normal;
7853       case LoopVectorizationCostModel::CM_Widen_Reverse:
7854         return TTI::CastContextHint::Reversed;
7855       case LoopVectorizationCostModel::CM_Unknown:
7856         llvm_unreachable("Instr did not go through cost modelling?");
7857       }
7858 
7859       llvm_unreachable("Unhandled case!");
7860     };
7861 
7862     unsigned Opcode = I->getOpcode();
7863     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7864     // For Trunc, the context is the only user, which must be a StoreInst.
7865     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7866       if (I->hasOneUse())
7867         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7868           CCH = ComputeCCH(Store);
7869     }
7870     // For Z/Sext, the context is the operand, which must be a LoadInst.
7871     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7872              Opcode == Instruction::FPExt) {
7873       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7874         CCH = ComputeCCH(Load);
7875     }
7876 
7877     // We optimize the truncation of induction variables having constant
7878     // integer steps. The cost of these truncations is the same as the scalar
7879     // operation.
7880     if (isOptimizableIVTruncate(I, VF)) {
7881       auto *Trunc = cast<TruncInst>(I);
7882       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7883                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7884     }
7885 
7886     // Detect reduction patterns
7887     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7888       return *RedCost;
7889 
7890     Type *SrcScalarTy = I->getOperand(0)->getType();
7891     Type *SrcVecTy =
7892         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7893     if (canTruncateToMinimalBitwidth(I, VF)) {
7894       // This cast is going to be shrunk. This may remove the cast or it might
7895       // turn it into slightly different cast. For example, if MinBW == 16,
7896       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7897       //
7898       // Calculate the modified src and dest types.
7899       Type *MinVecTy = VectorTy;
7900       if (Opcode == Instruction::Trunc) {
7901         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7902         VectorTy =
7903             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7904       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7905         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7906         VectorTy =
7907             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7908       }
7909     }
7910 
7911     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7912   }
7913   case Instruction::Call: {
7914     bool NeedToScalarize;
7915     CallInst *CI = cast<CallInst>(I);
7916     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7917     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7918       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7919       return std::min(CallCost, IntrinsicCost);
7920     }
7921     return CallCost;
7922   }
7923   case Instruction::ExtractValue:
7924     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7925   case Instruction::Alloca:
7926     // We cannot easily widen alloca to a scalable alloca, as
7927     // the result would need to be a vector of pointers.
7928     if (VF.isScalable())
7929       return InstructionCost::getInvalid();
7930     LLVM_FALLTHROUGH;
7931   default:
7932     // This opcode is unknown. Assume that it is the same as 'mul'.
7933     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7934   } // end of switch.
7935 }
7936 
7937 char LoopVectorize::ID = 0;
7938 
7939 static const char lv_name[] = "Loop Vectorization";
7940 
7941 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7942 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7943 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7944 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7945 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7947 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7948 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7949 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7950 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7952 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7953 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7954 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7955 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7956 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7957 
7958 namespace llvm {
7959 
7960 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7961 
7962 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7963                               bool VectorizeOnlyWhenForced) {
7964   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7965 }
7966 
7967 } // end namespace llvm
7968 
7969 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7970   // Check if the pointer operand of a load or store instruction is
7971   // consecutive.
7972   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7973     return Legal->isConsecutivePtr(Ptr);
7974   return false;
7975 }
7976 
7977 void LoopVectorizationCostModel::collectValuesToIgnore() {
7978   // Ignore ephemeral values.
7979   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7980 
7981   // Ignore type-promoting instructions we identified during reduction
7982   // detection.
7983   for (auto &Reduction : Legal->getReductionVars()) {
7984     RecurrenceDescriptor &RedDes = Reduction.second;
7985     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7986     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7987   }
7988   // Ignore type-casting instructions we identified during induction
7989   // detection.
7990   for (auto &Induction : Legal->getInductionVars()) {
7991     InductionDescriptor &IndDes = Induction.second;
7992     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7993     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7994   }
7995 }
7996 
7997 void LoopVectorizationCostModel::collectInLoopReductions() {
7998   for (auto &Reduction : Legal->getReductionVars()) {
7999     PHINode *Phi = Reduction.first;
8000     RecurrenceDescriptor &RdxDesc = Reduction.second;
8001 
8002     // We don't collect reductions that are type promoted (yet).
8003     if (RdxDesc.getRecurrenceType() != Phi->getType())
8004       continue;
8005 
8006     // If the target would prefer this reduction to happen "in-loop", then we
8007     // want to record it as such.
8008     unsigned Opcode = RdxDesc.getOpcode();
8009     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8010         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8011                                    TargetTransformInfo::ReductionFlags()))
8012       continue;
8013 
8014     // Check that we can correctly put the reductions into the loop, by
8015     // finding the chain of operations that leads from the phi to the loop
8016     // exit value.
8017     SmallVector<Instruction *, 4> ReductionOperations =
8018         RdxDesc.getReductionOpChain(Phi, TheLoop);
8019     bool InLoop = !ReductionOperations.empty();
8020     if (InLoop) {
8021       InLoopReductionChains[Phi] = ReductionOperations;
8022       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8023       Instruction *LastChain = Phi;
8024       for (auto *I : ReductionOperations) {
8025         InLoopReductionImmediateChains[I] = LastChain;
8026         LastChain = I;
8027       }
8028     }
8029     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8030                       << " reduction for phi: " << *Phi << "\n");
8031   }
8032 }
8033 
8034 // TODO: we could return a pair of values that specify the max VF and
8035 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8036 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8037 // doesn't have a cost model that can choose which plan to execute if
8038 // more than one is generated.
8039 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8040                                  LoopVectorizationCostModel &CM) {
8041   unsigned WidestType;
8042   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8043   return WidestVectorRegBits / WidestType;
8044 }
8045 
8046 VectorizationFactor
8047 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8048   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8049   ElementCount VF = UserVF;
8050   // Outer loop handling: They may require CFG and instruction level
8051   // transformations before even evaluating whether vectorization is profitable.
8052   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8053   // the vectorization pipeline.
8054   if (!OrigLoop->isInnermost()) {
8055     // If the user doesn't provide a vectorization factor, determine a
8056     // reasonable one.
8057     if (UserVF.isZero()) {
8058       VF = ElementCount::getFixed(determineVPlanVF(
8059           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8060               .getFixedSize(),
8061           CM));
8062       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8063 
8064       // Make sure we have a VF > 1 for stress testing.
8065       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8066         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8067                           << "overriding computed VF.\n");
8068         VF = ElementCount::getFixed(4);
8069       }
8070     }
8071     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8072     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8073            "VF needs to be a power of two");
8074     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8075                       << "VF " << VF << " to build VPlans.\n");
8076     buildVPlans(VF, VF);
8077 
8078     // For VPlan build stress testing, we bail out after VPlan construction.
8079     if (VPlanBuildStressTest)
8080       return VectorizationFactor::Disabled();
8081 
8082     return {VF, 0 /*Cost*/};
8083   }
8084 
8085   LLVM_DEBUG(
8086       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8087                 "VPlan-native path.\n");
8088   return VectorizationFactor::Disabled();
8089 }
8090 
8091 Optional<VectorizationFactor>
8092 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8093   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8094   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8095   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8096     return None;
8097 
8098   // Invalidate interleave groups if all blocks of loop will be predicated.
8099   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8100       !useMaskedInterleavedAccesses(*TTI)) {
8101     LLVM_DEBUG(
8102         dbgs()
8103         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8104            "which requires masked-interleaved support.\n");
8105     if (CM.InterleaveInfo.invalidateGroups())
8106       // Invalidating interleave groups also requires invalidating all decisions
8107       // based on them, which includes widening decisions and uniform and scalar
8108       // values.
8109       CM.invalidateCostModelingDecisions();
8110   }
8111 
8112   ElementCount MaxUserVF =
8113       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8114   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8115   if (!UserVF.isZero() && UserVFIsLegal) {
8116     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8117            "VF needs to be a power of two");
8118     // Collect the instructions (and their associated costs) that will be more
8119     // profitable to scalarize.
8120     if (CM.selectUserVectorizationFactor(UserVF)) {
8121       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8122       CM.collectInLoopReductions();
8123       buildVPlansWithVPRecipes(UserVF, UserVF);
8124       LLVM_DEBUG(printPlans(dbgs()));
8125       return {{UserVF, 0}};
8126     } else
8127       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8128                               "InvalidCost", ORE, OrigLoop);
8129   }
8130 
8131   // Populate the set of Vectorization Factor Candidates.
8132   ElementCountSet VFCandidates;
8133   for (auto VF = ElementCount::getFixed(1);
8134        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8135     VFCandidates.insert(VF);
8136   for (auto VF = ElementCount::getScalable(1);
8137        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8138     VFCandidates.insert(VF);
8139 
8140   for (const auto &VF : VFCandidates) {
8141     // Collect Uniform and Scalar instructions after vectorization with VF.
8142     CM.collectUniformsAndScalars(VF);
8143 
8144     // Collect the instructions (and their associated costs) that will be more
8145     // profitable to scalarize.
8146     if (VF.isVector())
8147       CM.collectInstsToScalarize(VF);
8148   }
8149 
8150   CM.collectInLoopReductions();
8151   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8152   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8153 
8154   LLVM_DEBUG(printPlans(dbgs()));
8155   if (!MaxFactors.hasVector())
8156     return VectorizationFactor::Disabled();
8157 
8158   // Select the optimal vectorization factor.
8159   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8160 
8161   // Check if it is profitable to vectorize with runtime checks.
8162   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8163   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8164     bool PragmaThresholdReached =
8165         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8166     bool ThresholdReached =
8167         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8168     if ((ThresholdReached && !Hints.allowReordering()) ||
8169         PragmaThresholdReached) {
8170       ORE->emit([&]() {
8171         return OptimizationRemarkAnalysisAliasing(
8172                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8173                    OrigLoop->getHeader())
8174                << "loop not vectorized: cannot prove it is safe to reorder "
8175                   "memory operations";
8176       });
8177       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8178       Hints.emitRemarkWithHints();
8179       return VectorizationFactor::Disabled();
8180     }
8181   }
8182   return SelectedVF;
8183 }
8184 
8185 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8186   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8187                     << '\n');
8188   BestVF = VF;
8189   BestUF = UF;
8190 
8191   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8192     return !Plan->hasVF(VF);
8193   });
8194   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8195 }
8196 
8197 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8198                                            DominatorTree *DT) {
8199   // Perform the actual loop transformation.
8200 
8201   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8202   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8203   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8204 
8205   VPTransformState State{
8206       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8207   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8208   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8209   State.CanonicalIV = ILV.Induction;
8210 
8211   ILV.printDebugTracesAtStart();
8212 
8213   //===------------------------------------------------===//
8214   //
8215   // Notice: any optimization or new instruction that go
8216   // into the code below should also be implemented in
8217   // the cost-model.
8218   //
8219   //===------------------------------------------------===//
8220 
8221   // 2. Copy and widen instructions from the old loop into the new loop.
8222   VPlans.front()->execute(&State);
8223 
8224   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8225   //    predication, updating analyses.
8226   ILV.fixVectorizedLoop(State);
8227 
8228   ILV.printDebugTracesAtEnd();
8229 }
8230 
8231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8232 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8233   for (const auto &Plan : VPlans)
8234     if (PrintVPlansInDotFormat)
8235       Plan->printDOT(O);
8236     else
8237       Plan->print(O);
8238 }
8239 #endif
8240 
8241 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8242     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8243 
8244   // We create new control-flow for the vectorized loop, so the original exit
8245   // conditions will be dead after vectorization if it's only used by the
8246   // terminator
8247   SmallVector<BasicBlock*> ExitingBlocks;
8248   OrigLoop->getExitingBlocks(ExitingBlocks);
8249   for (auto *BB : ExitingBlocks) {
8250     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8251     if (!Cmp || !Cmp->hasOneUse())
8252       continue;
8253 
8254     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8255     if (!DeadInstructions.insert(Cmp).second)
8256       continue;
8257 
8258     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8259     // TODO: can recurse through operands in general
8260     for (Value *Op : Cmp->operands()) {
8261       if (isa<TruncInst>(Op) && Op->hasOneUse())
8262           DeadInstructions.insert(cast<Instruction>(Op));
8263     }
8264   }
8265 
8266   // We create new "steps" for induction variable updates to which the original
8267   // induction variables map. An original update instruction will be dead if
8268   // all its users except the induction variable are dead.
8269   auto *Latch = OrigLoop->getLoopLatch();
8270   for (auto &Induction : Legal->getInductionVars()) {
8271     PHINode *Ind = Induction.first;
8272     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8273 
8274     // If the tail is to be folded by masking, the primary induction variable,
8275     // if exists, isn't dead: it will be used for masking. Don't kill it.
8276     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8277       continue;
8278 
8279     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8280           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8281         }))
8282       DeadInstructions.insert(IndUpdate);
8283 
8284     // We record as "Dead" also the type-casting instructions we had identified
8285     // during induction analysis. We don't need any handling for them in the
8286     // vectorized loop because we have proven that, under a proper runtime
8287     // test guarding the vectorized loop, the value of the phi, and the casted
8288     // value of the phi, are the same. The last instruction in this casting chain
8289     // will get its scalar/vector/widened def from the scalar/vector/widened def
8290     // of the respective phi node. Any other casts in the induction def-use chain
8291     // have no other uses outside the phi update chain, and will be ignored.
8292     InductionDescriptor &IndDes = Induction.second;
8293     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8294     DeadInstructions.insert(Casts.begin(), Casts.end());
8295   }
8296 }
8297 
8298 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8299 
8300 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8301 
8302 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8303                                         Instruction::BinaryOps BinOp) {
8304   // When unrolling and the VF is 1, we only need to add a simple scalar.
8305   Type *Ty = Val->getType();
8306   assert(!Ty->isVectorTy() && "Val must be a scalar");
8307 
8308   if (Ty->isFloatingPointTy()) {
8309     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8310 
8311     // Floating-point operations inherit FMF via the builder's flags.
8312     Value *MulOp = Builder.CreateFMul(C, Step);
8313     return Builder.CreateBinOp(BinOp, Val, MulOp);
8314   }
8315   Constant *C = ConstantInt::get(Ty, StartIdx);
8316   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8317 }
8318 
8319 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8320   SmallVector<Metadata *, 4> MDs;
8321   // Reserve first location for self reference to the LoopID metadata node.
8322   MDs.push_back(nullptr);
8323   bool IsUnrollMetadata = false;
8324   MDNode *LoopID = L->getLoopID();
8325   if (LoopID) {
8326     // First find existing loop unrolling disable metadata.
8327     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8328       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8329       if (MD) {
8330         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8331         IsUnrollMetadata =
8332             S && S->getString().startswith("llvm.loop.unroll.disable");
8333       }
8334       MDs.push_back(LoopID->getOperand(i));
8335     }
8336   }
8337 
8338   if (!IsUnrollMetadata) {
8339     // Add runtime unroll disable metadata.
8340     LLVMContext &Context = L->getHeader()->getContext();
8341     SmallVector<Metadata *, 1> DisableOperands;
8342     DisableOperands.push_back(
8343         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8344     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8345     MDs.push_back(DisableNode);
8346     MDNode *NewLoopID = MDNode::get(Context, MDs);
8347     // Set operand 0 to refer to the loop id itself.
8348     NewLoopID->replaceOperandWith(0, NewLoopID);
8349     L->setLoopID(NewLoopID);
8350   }
8351 }
8352 
8353 //===--------------------------------------------------------------------===//
8354 // EpilogueVectorizerMainLoop
8355 //===--------------------------------------------------------------------===//
8356 
8357 /// This function is partially responsible for generating the control flow
8358 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8359 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8360   MDNode *OrigLoopID = OrigLoop->getLoopID();
8361   Loop *Lp = createVectorLoopSkeleton("");
8362 
8363   // Generate the code to check the minimum iteration count of the vector
8364   // epilogue (see below).
8365   EPI.EpilogueIterationCountCheck =
8366       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8367   EPI.EpilogueIterationCountCheck->setName("iter.check");
8368 
8369   // Generate the code to check any assumptions that we've made for SCEV
8370   // expressions.
8371   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8372 
8373   // Generate the code that checks at runtime if arrays overlap. We put the
8374   // checks into a separate block to make the more common case of few elements
8375   // faster.
8376   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8377 
8378   // Generate the iteration count check for the main loop, *after* the check
8379   // for the epilogue loop, so that the path-length is shorter for the case
8380   // that goes directly through the vector epilogue. The longer-path length for
8381   // the main loop is compensated for, by the gain from vectorizing the larger
8382   // trip count. Note: the branch will get updated later on when we vectorize
8383   // the epilogue.
8384   EPI.MainLoopIterationCountCheck =
8385       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8386 
8387   // Generate the induction variable.
8388   OldInduction = Legal->getPrimaryInduction();
8389   Type *IdxTy = Legal->getWidestInductionType();
8390   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8391   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8392   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8393   EPI.VectorTripCount = CountRoundDown;
8394   Induction =
8395       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8396                               getDebugLocFromInstOrOperands(OldInduction));
8397 
8398   // Skip induction resume value creation here because they will be created in
8399   // the second pass. If we created them here, they wouldn't be used anyway,
8400   // because the vplan in the second pass still contains the inductions from the
8401   // original loop.
8402 
8403   return completeLoopSkeleton(Lp, OrigLoopID);
8404 }
8405 
8406 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8407   LLVM_DEBUG({
8408     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8409            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8410            << ", Main Loop UF:" << EPI.MainLoopUF
8411            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8412            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8413   });
8414 }
8415 
8416 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8417   DEBUG_WITH_TYPE(VerboseDebug, {
8418     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8419   });
8420 }
8421 
8422 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8423     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8424   assert(L && "Expected valid Loop.");
8425   assert(Bypass && "Expected valid bypass basic block.");
8426   unsigned VFactor =
8427       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8428   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8429   Value *Count = getOrCreateTripCount(L);
8430   // Reuse existing vector loop preheader for TC checks.
8431   // Note that new preheader block is generated for vector loop.
8432   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8433   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8434 
8435   // Generate code to check if the loop's trip count is less than VF * UF of the
8436   // main vector loop.
8437   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8438       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8439 
8440   Value *CheckMinIters = Builder.CreateICmp(
8441       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8442       "min.iters.check");
8443 
8444   if (!ForEpilogue)
8445     TCCheckBlock->setName("vector.main.loop.iter.check");
8446 
8447   // Create new preheader for vector loop.
8448   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8449                                    DT, LI, nullptr, "vector.ph");
8450 
8451   if (ForEpilogue) {
8452     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8453                                  DT->getNode(Bypass)->getIDom()) &&
8454            "TC check is expected to dominate Bypass");
8455 
8456     // Update dominator for Bypass & LoopExit.
8457     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8458     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8459       // For loops with multiple exits, there's no edge from the middle block
8460       // to exit blocks (as the epilogue must run) and thus no need to update
8461       // the immediate dominator of the exit blocks.
8462       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8463 
8464     LoopBypassBlocks.push_back(TCCheckBlock);
8465 
8466     // Save the trip count so we don't have to regenerate it in the
8467     // vec.epilog.iter.check. This is safe to do because the trip count
8468     // generated here dominates the vector epilog iter check.
8469     EPI.TripCount = Count;
8470   }
8471 
8472   ReplaceInstWithInst(
8473       TCCheckBlock->getTerminator(),
8474       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8475 
8476   return TCCheckBlock;
8477 }
8478 
8479 //===--------------------------------------------------------------------===//
8480 // EpilogueVectorizerEpilogueLoop
8481 //===--------------------------------------------------------------------===//
8482 
8483 /// This function is partially responsible for generating the control flow
8484 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8485 BasicBlock *
8486 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8487   MDNode *OrigLoopID = OrigLoop->getLoopID();
8488   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8489 
8490   // Now, compare the remaining count and if there aren't enough iterations to
8491   // execute the vectorized epilogue skip to the scalar part.
8492   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8493   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8494   LoopVectorPreHeader =
8495       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8496                  LI, nullptr, "vec.epilog.ph");
8497   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8498                                           VecEpilogueIterationCountCheck);
8499 
8500   // Adjust the control flow taking the state info from the main loop
8501   // vectorization into account.
8502   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8503          "expected this to be saved from the previous pass.");
8504   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8505       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8506 
8507   DT->changeImmediateDominator(LoopVectorPreHeader,
8508                                EPI.MainLoopIterationCountCheck);
8509 
8510   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8511       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8512 
8513   if (EPI.SCEVSafetyCheck)
8514     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8515         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8516   if (EPI.MemSafetyCheck)
8517     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8518         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8519 
8520   DT->changeImmediateDominator(
8521       VecEpilogueIterationCountCheck,
8522       VecEpilogueIterationCountCheck->getSinglePredecessor());
8523 
8524   DT->changeImmediateDominator(LoopScalarPreHeader,
8525                                EPI.EpilogueIterationCountCheck);
8526   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8527     // If there is an epilogue which must run, there's no edge from the
8528     // middle block to exit blocks  and thus no need to update the immediate
8529     // dominator of the exit blocks.
8530     DT->changeImmediateDominator(LoopExitBlock,
8531                                  EPI.EpilogueIterationCountCheck);
8532 
8533   // Keep track of bypass blocks, as they feed start values to the induction
8534   // phis in the scalar loop preheader.
8535   if (EPI.SCEVSafetyCheck)
8536     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8537   if (EPI.MemSafetyCheck)
8538     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8539   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8540 
8541   // Generate a resume induction for the vector epilogue and put it in the
8542   // vector epilogue preheader
8543   Type *IdxTy = Legal->getWidestInductionType();
8544   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8545                                          LoopVectorPreHeader->getFirstNonPHI());
8546   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8547   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8548                            EPI.MainLoopIterationCountCheck);
8549 
8550   // Generate the induction variable.
8551   OldInduction = Legal->getPrimaryInduction();
8552   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8553   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8554   Value *StartIdx = EPResumeVal;
8555   Induction =
8556       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8557                               getDebugLocFromInstOrOperands(OldInduction));
8558 
8559   // Generate induction resume values. These variables save the new starting
8560   // indexes for the scalar loop. They are used to test if there are any tail
8561   // iterations left once the vector loop has completed.
8562   // Note that when the vectorized epilogue is skipped due to iteration count
8563   // check, then the resume value for the induction variable comes from
8564   // the trip count of the main vector loop, hence passing the AdditionalBypass
8565   // argument.
8566   createInductionResumeValues(Lp, CountRoundDown,
8567                               {VecEpilogueIterationCountCheck,
8568                                EPI.VectorTripCount} /* AdditionalBypass */);
8569 
8570   AddRuntimeUnrollDisableMetaData(Lp);
8571   return completeLoopSkeleton(Lp, OrigLoopID);
8572 }
8573 
8574 BasicBlock *
8575 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8576     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8577 
8578   assert(EPI.TripCount &&
8579          "Expected trip count to have been safed in the first pass.");
8580   assert(
8581       (!isa<Instruction>(EPI.TripCount) ||
8582        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8583       "saved trip count does not dominate insertion point.");
8584   Value *TC = EPI.TripCount;
8585   IRBuilder<> Builder(Insert->getTerminator());
8586   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8587 
8588   // Generate code to check if the loop's trip count is less than VF * UF of the
8589   // vector epilogue loop.
8590   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8591       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8592 
8593   Value *CheckMinIters = Builder.CreateICmp(
8594       P, Count,
8595       ConstantInt::get(Count->getType(),
8596                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8597       "min.epilog.iters.check");
8598 
8599   ReplaceInstWithInst(
8600       Insert->getTerminator(),
8601       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8602 
8603   LoopBypassBlocks.push_back(Insert);
8604   return Insert;
8605 }
8606 
8607 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8608   LLVM_DEBUG({
8609     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8610            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8611            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8612   });
8613 }
8614 
8615 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8616   DEBUG_WITH_TYPE(VerboseDebug, {
8617     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8618   });
8619 }
8620 
8621 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8622     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8623   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8624   bool PredicateAtRangeStart = Predicate(Range.Start);
8625 
8626   for (ElementCount TmpVF = Range.Start * 2;
8627        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8628     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8629       Range.End = TmpVF;
8630       break;
8631     }
8632 
8633   return PredicateAtRangeStart;
8634 }
8635 
8636 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8637 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8638 /// of VF's starting at a given VF and extending it as much as possible. Each
8639 /// vectorization decision can potentially shorten this sub-range during
8640 /// buildVPlan().
8641 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8642                                            ElementCount MaxVF) {
8643   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8644   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8645     VFRange SubRange = {VF, MaxVFPlusOne};
8646     VPlans.push_back(buildVPlan(SubRange));
8647     VF = SubRange.End;
8648   }
8649 }
8650 
8651 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8652                                          VPlanPtr &Plan) {
8653   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8654 
8655   // Look for cached value.
8656   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8657   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8658   if (ECEntryIt != EdgeMaskCache.end())
8659     return ECEntryIt->second;
8660 
8661   VPValue *SrcMask = createBlockInMask(Src, Plan);
8662 
8663   // The terminator has to be a branch inst!
8664   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8665   assert(BI && "Unexpected terminator found");
8666 
8667   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8668     return EdgeMaskCache[Edge] = SrcMask;
8669 
8670   // If source is an exiting block, we know the exit edge is dynamically dead
8671   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8672   // adding uses of an otherwise potentially dead instruction.
8673   if (OrigLoop->isLoopExiting(Src))
8674     return EdgeMaskCache[Edge] = SrcMask;
8675 
8676   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8677   assert(EdgeMask && "No Edge Mask found for condition");
8678 
8679   if (BI->getSuccessor(0) != Dst)
8680     EdgeMask = Builder.createNot(EdgeMask);
8681 
8682   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8683     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8684     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8685     // The select version does not introduce new UB if SrcMask is false and
8686     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8687     VPValue *False = Plan->getOrAddVPValue(
8688         ConstantInt::getFalse(BI->getCondition()->getType()));
8689     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8690   }
8691 
8692   return EdgeMaskCache[Edge] = EdgeMask;
8693 }
8694 
8695 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8696   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8697 
8698   // Look for cached value.
8699   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8700   if (BCEntryIt != BlockMaskCache.end())
8701     return BCEntryIt->second;
8702 
8703   // All-one mask is modelled as no-mask following the convention for masked
8704   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8705   VPValue *BlockMask = nullptr;
8706 
8707   if (OrigLoop->getHeader() == BB) {
8708     if (!CM.blockNeedsPredication(BB))
8709       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8710 
8711     // Create the block in mask as the first non-phi instruction in the block.
8712     VPBuilder::InsertPointGuard Guard(Builder);
8713     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8714     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8715 
8716     // Introduce the early-exit compare IV <= BTC to form header block mask.
8717     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8718     // Start by constructing the desired canonical IV.
8719     VPValue *IV = nullptr;
8720     if (Legal->getPrimaryInduction())
8721       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8722     else {
8723       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8724       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8725       IV = IVRecipe->getVPSingleValue();
8726     }
8727     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8728     bool TailFolded = !CM.isScalarEpilogueAllowed();
8729 
8730     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8731       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8732       // as a second argument, we only pass the IV here and extract the
8733       // tripcount from the transform state where codegen of the VP instructions
8734       // happen.
8735       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8736     } else {
8737       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8738     }
8739     return BlockMaskCache[BB] = BlockMask;
8740   }
8741 
8742   // This is the block mask. We OR all incoming edges.
8743   for (auto *Predecessor : predecessors(BB)) {
8744     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8745     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8746       return BlockMaskCache[BB] = EdgeMask;
8747 
8748     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8749       BlockMask = EdgeMask;
8750       continue;
8751     }
8752 
8753     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8754   }
8755 
8756   return BlockMaskCache[BB] = BlockMask;
8757 }
8758 
8759 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8760                                                 ArrayRef<VPValue *> Operands,
8761                                                 VFRange &Range,
8762                                                 VPlanPtr &Plan) {
8763   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8764          "Must be called with either a load or store");
8765 
8766   auto willWiden = [&](ElementCount VF) -> bool {
8767     if (VF.isScalar())
8768       return false;
8769     LoopVectorizationCostModel::InstWidening Decision =
8770         CM.getWideningDecision(I, VF);
8771     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8772            "CM decision should be taken at this point.");
8773     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8774       return true;
8775     if (CM.isScalarAfterVectorization(I, VF) ||
8776         CM.isProfitableToScalarize(I, VF))
8777       return false;
8778     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8779   };
8780 
8781   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8782     return nullptr;
8783 
8784   VPValue *Mask = nullptr;
8785   if (Legal->isMaskRequired(I))
8786     Mask = createBlockInMask(I->getParent(), Plan);
8787 
8788   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8789     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8790 
8791   StoreInst *Store = cast<StoreInst>(I);
8792   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8793                                             Mask);
8794 }
8795 
8796 VPWidenIntOrFpInductionRecipe *
8797 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8798                                            ArrayRef<VPValue *> Operands) const {
8799   // Check if this is an integer or fp induction. If so, build the recipe that
8800   // produces its scalar and vector values.
8801   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8802   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8803       II.getKind() == InductionDescriptor::IK_FpInduction) {
8804     assert(II.getStartValue() ==
8805            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8806     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8807     return new VPWidenIntOrFpInductionRecipe(
8808         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8809   }
8810 
8811   return nullptr;
8812 }
8813 
8814 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8815     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8816     VPlan &Plan) const {
8817   // Optimize the special case where the source is a constant integer
8818   // induction variable. Notice that we can only optimize the 'trunc' case
8819   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8820   // (c) other casts depend on pointer size.
8821 
8822   // Determine whether \p K is a truncation based on an induction variable that
8823   // can be optimized.
8824   auto isOptimizableIVTruncate =
8825       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8826     return [=](ElementCount VF) -> bool {
8827       return CM.isOptimizableIVTruncate(K, VF);
8828     };
8829   };
8830 
8831   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8832           isOptimizableIVTruncate(I), Range)) {
8833 
8834     InductionDescriptor II =
8835         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8836     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8837     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8838                                              Start, nullptr, I);
8839   }
8840   return nullptr;
8841 }
8842 
8843 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8844                                                 ArrayRef<VPValue *> Operands,
8845                                                 VPlanPtr &Plan) {
8846   // If all incoming values are equal, the incoming VPValue can be used directly
8847   // instead of creating a new VPBlendRecipe.
8848   VPValue *FirstIncoming = Operands[0];
8849   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8850         return FirstIncoming == Inc;
8851       })) {
8852     return Operands[0];
8853   }
8854 
8855   // We know that all PHIs in non-header blocks are converted into selects, so
8856   // we don't have to worry about the insertion order and we can just use the
8857   // builder. At this point we generate the predication tree. There may be
8858   // duplications since this is a simple recursive scan, but future
8859   // optimizations will clean it up.
8860   SmallVector<VPValue *, 2> OperandsWithMask;
8861   unsigned NumIncoming = Phi->getNumIncomingValues();
8862 
8863   for (unsigned In = 0; In < NumIncoming; In++) {
8864     VPValue *EdgeMask =
8865       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8866     assert((EdgeMask || NumIncoming == 1) &&
8867            "Multiple predecessors with one having a full mask");
8868     OperandsWithMask.push_back(Operands[In]);
8869     if (EdgeMask)
8870       OperandsWithMask.push_back(EdgeMask);
8871   }
8872   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8873 }
8874 
8875 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8876                                                    ArrayRef<VPValue *> Operands,
8877                                                    VFRange &Range) const {
8878 
8879   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8880       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8881       Range);
8882 
8883   if (IsPredicated)
8884     return nullptr;
8885 
8886   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8887   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8888              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8889              ID == Intrinsic::pseudoprobe ||
8890              ID == Intrinsic::experimental_noalias_scope_decl))
8891     return nullptr;
8892 
8893   auto willWiden = [&](ElementCount VF) -> bool {
8894     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8895     // The following case may be scalarized depending on the VF.
8896     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8897     // version of the instruction.
8898     // Is it beneficial to perform intrinsic call compared to lib call?
8899     bool NeedToScalarize = false;
8900     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8901     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8902     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8903     return UseVectorIntrinsic || !NeedToScalarize;
8904   };
8905 
8906   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8907     return nullptr;
8908 
8909   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8910   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8911 }
8912 
8913 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8914   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8915          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8916   // Instruction should be widened, unless it is scalar after vectorization,
8917   // scalarization is profitable or it is predicated.
8918   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8919     return CM.isScalarAfterVectorization(I, VF) ||
8920            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8921   };
8922   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8923                                                              Range);
8924 }
8925 
8926 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8927                                            ArrayRef<VPValue *> Operands) const {
8928   auto IsVectorizableOpcode = [](unsigned Opcode) {
8929     switch (Opcode) {
8930     case Instruction::Add:
8931     case Instruction::And:
8932     case Instruction::AShr:
8933     case Instruction::BitCast:
8934     case Instruction::FAdd:
8935     case Instruction::FCmp:
8936     case Instruction::FDiv:
8937     case Instruction::FMul:
8938     case Instruction::FNeg:
8939     case Instruction::FPExt:
8940     case Instruction::FPToSI:
8941     case Instruction::FPToUI:
8942     case Instruction::FPTrunc:
8943     case Instruction::FRem:
8944     case Instruction::FSub:
8945     case Instruction::ICmp:
8946     case Instruction::IntToPtr:
8947     case Instruction::LShr:
8948     case Instruction::Mul:
8949     case Instruction::Or:
8950     case Instruction::PtrToInt:
8951     case Instruction::SDiv:
8952     case Instruction::Select:
8953     case Instruction::SExt:
8954     case Instruction::Shl:
8955     case Instruction::SIToFP:
8956     case Instruction::SRem:
8957     case Instruction::Sub:
8958     case Instruction::Trunc:
8959     case Instruction::UDiv:
8960     case Instruction::UIToFP:
8961     case Instruction::URem:
8962     case Instruction::Xor:
8963     case Instruction::ZExt:
8964       return true;
8965     }
8966     return false;
8967   };
8968 
8969   if (!IsVectorizableOpcode(I->getOpcode()))
8970     return nullptr;
8971 
8972   // Success: widen this instruction.
8973   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8974 }
8975 
8976 void VPRecipeBuilder::fixHeaderPhis() {
8977   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8978   for (VPWidenPHIRecipe *R : PhisToFix) {
8979     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8980     VPRecipeBase *IncR =
8981         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8982     R->addOperand(IncR->getVPSingleValue());
8983   }
8984 }
8985 
8986 VPBasicBlock *VPRecipeBuilder::handleReplication(
8987     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8988     VPlanPtr &Plan) {
8989   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8990       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8991       Range);
8992 
8993   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8994       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8995 
8996   // Even if the instruction is not marked as uniform, there are certain
8997   // intrinsic calls that can be effectively treated as such, so we check for
8998   // them here. Conservatively, we only do this for scalable vectors, since
8999   // for fixed-width VFs we can always fall back on full scalarization.
9000   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9001     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9002     case Intrinsic::assume:
9003     case Intrinsic::lifetime_start:
9004     case Intrinsic::lifetime_end:
9005       // For scalable vectors if one of the operands is variant then we still
9006       // want to mark as uniform, which will generate one instruction for just
9007       // the first lane of the vector. We can't scalarize the call in the same
9008       // way as for fixed-width vectors because we don't know how many lanes
9009       // there are.
9010       //
9011       // The reasons for doing it this way for scalable vectors are:
9012       //   1. For the assume intrinsic generating the instruction for the first
9013       //      lane is still be better than not generating any at all. For
9014       //      example, the input may be a splat across all lanes.
9015       //   2. For the lifetime start/end intrinsics the pointer operand only
9016       //      does anything useful when the input comes from a stack object,
9017       //      which suggests it should always be uniform. For non-stack objects
9018       //      the effect is to poison the object, which still allows us to
9019       //      remove the call.
9020       IsUniform = true;
9021       break;
9022     default:
9023       break;
9024     }
9025   }
9026 
9027   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9028                                        IsUniform, IsPredicated);
9029   setRecipe(I, Recipe);
9030   Plan->addVPValue(I, Recipe);
9031 
9032   // Find if I uses a predicated instruction. If so, it will use its scalar
9033   // value. Avoid hoisting the insert-element which packs the scalar value into
9034   // a vector value, as that happens iff all users use the vector value.
9035   for (VPValue *Op : Recipe->operands()) {
9036     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9037     if (!PredR)
9038       continue;
9039     auto *RepR =
9040         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9041     assert(RepR->isPredicated() &&
9042            "expected Replicate recipe to be predicated");
9043     RepR->setAlsoPack(false);
9044   }
9045 
9046   // Finalize the recipe for Instr, first if it is not predicated.
9047   if (!IsPredicated) {
9048     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9049     VPBB->appendRecipe(Recipe);
9050     return VPBB;
9051   }
9052   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9053   assert(VPBB->getSuccessors().empty() &&
9054          "VPBB has successors when handling predicated replication.");
9055   // Record predicated instructions for above packing optimizations.
9056   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9057   VPBlockUtils::insertBlockAfter(Region, VPBB);
9058   auto *RegSucc = new VPBasicBlock();
9059   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9060   return RegSucc;
9061 }
9062 
9063 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9064                                                       VPRecipeBase *PredRecipe,
9065                                                       VPlanPtr &Plan) {
9066   // Instructions marked for predication are replicated and placed under an
9067   // if-then construct to prevent side-effects.
9068 
9069   // Generate recipes to compute the block mask for this region.
9070   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9071 
9072   // Build the triangular if-then region.
9073   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9074   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9075   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9076   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9077   auto *PHIRecipe = Instr->getType()->isVoidTy()
9078                         ? nullptr
9079                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9080   if (PHIRecipe) {
9081     Plan->removeVPValueFor(Instr);
9082     Plan->addVPValue(Instr, PHIRecipe);
9083   }
9084   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9085   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9086   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9087 
9088   // Note: first set Entry as region entry and then connect successors starting
9089   // from it in order, to propagate the "parent" of each VPBasicBlock.
9090   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9091   VPBlockUtils::connectBlocks(Pred, Exit);
9092 
9093   return Region;
9094 }
9095 
9096 VPRecipeOrVPValueTy
9097 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9098                                         ArrayRef<VPValue *> Operands,
9099                                         VFRange &Range, VPlanPtr &Plan) {
9100   // First, check for specific widening recipes that deal with calls, memory
9101   // operations, inductions and Phi nodes.
9102   if (auto *CI = dyn_cast<CallInst>(Instr))
9103     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9104 
9105   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9106     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9107 
9108   VPRecipeBase *Recipe;
9109   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9110     if (Phi->getParent() != OrigLoop->getHeader())
9111       return tryToBlend(Phi, Operands, Plan);
9112     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9113       return toVPRecipeResult(Recipe);
9114 
9115     VPWidenPHIRecipe *PhiRecipe = nullptr;
9116     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9117       VPValue *StartV = Operands[0];
9118       if (Legal->isReductionVariable(Phi)) {
9119         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9120         assert(RdxDesc.getRecurrenceStartValue() ==
9121                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9122         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9123                                              CM.isInLoopReduction(Phi),
9124                                              CM.useOrderedReductions(RdxDesc));
9125       } else {
9126         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9127       }
9128 
9129       // Record the incoming value from the backedge, so we can add the incoming
9130       // value from the backedge after all recipes have been created.
9131       recordRecipeOf(cast<Instruction>(
9132           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9133       PhisToFix.push_back(PhiRecipe);
9134     } else {
9135       // TODO: record start and backedge value for remaining pointer induction
9136       // phis.
9137       assert(Phi->getType()->isPointerTy() &&
9138              "only pointer phis should be handled here");
9139       PhiRecipe = new VPWidenPHIRecipe(Phi);
9140     }
9141 
9142     return toVPRecipeResult(PhiRecipe);
9143   }
9144 
9145   if (isa<TruncInst>(Instr) &&
9146       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9147                                                Range, *Plan)))
9148     return toVPRecipeResult(Recipe);
9149 
9150   if (!shouldWiden(Instr, Range))
9151     return nullptr;
9152 
9153   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9154     return toVPRecipeResult(new VPWidenGEPRecipe(
9155         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9156 
9157   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9158     bool InvariantCond =
9159         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9160     return toVPRecipeResult(new VPWidenSelectRecipe(
9161         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9162   }
9163 
9164   return toVPRecipeResult(tryToWiden(Instr, Operands));
9165 }
9166 
9167 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9168                                                         ElementCount MaxVF) {
9169   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9170 
9171   // Collect instructions from the original loop that will become trivially dead
9172   // in the vectorized loop. We don't need to vectorize these instructions. For
9173   // example, original induction update instructions can become dead because we
9174   // separately emit induction "steps" when generating code for the new loop.
9175   // Similarly, we create a new latch condition when setting up the structure
9176   // of the new loop, so the old one can become dead.
9177   SmallPtrSet<Instruction *, 4> DeadInstructions;
9178   collectTriviallyDeadInstructions(DeadInstructions);
9179 
9180   // Add assume instructions we need to drop to DeadInstructions, to prevent
9181   // them from being added to the VPlan.
9182   // TODO: We only need to drop assumes in blocks that get flattend. If the
9183   // control flow is preserved, we should keep them.
9184   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9185   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9186 
9187   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9188   // Dead instructions do not need sinking. Remove them from SinkAfter.
9189   for (Instruction *I : DeadInstructions)
9190     SinkAfter.erase(I);
9191 
9192   // Cannot sink instructions after dead instructions (there won't be any
9193   // recipes for them). Instead, find the first non-dead previous instruction.
9194   for (auto &P : Legal->getSinkAfter()) {
9195     Instruction *SinkTarget = P.second;
9196     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9197     (void)FirstInst;
9198     while (DeadInstructions.contains(SinkTarget)) {
9199       assert(
9200           SinkTarget != FirstInst &&
9201           "Must find a live instruction (at least the one feeding the "
9202           "first-order recurrence PHI) before reaching beginning of the block");
9203       SinkTarget = SinkTarget->getPrevNode();
9204       assert(SinkTarget != P.first &&
9205              "sink source equals target, no sinking required");
9206     }
9207     P.second = SinkTarget;
9208   }
9209 
9210   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9211   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9212     VFRange SubRange = {VF, MaxVFPlusOne};
9213     VPlans.push_back(
9214         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9215     VF = SubRange.End;
9216   }
9217 }
9218 
9219 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9220     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9221     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9222 
9223   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9224 
9225   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9226 
9227   // ---------------------------------------------------------------------------
9228   // Pre-construction: record ingredients whose recipes we'll need to further
9229   // process after constructing the initial VPlan.
9230   // ---------------------------------------------------------------------------
9231 
9232   // Mark instructions we'll need to sink later and their targets as
9233   // ingredients whose recipe we'll need to record.
9234   for (auto &Entry : SinkAfter) {
9235     RecipeBuilder.recordRecipeOf(Entry.first);
9236     RecipeBuilder.recordRecipeOf(Entry.second);
9237   }
9238   for (auto &Reduction : CM.getInLoopReductionChains()) {
9239     PHINode *Phi = Reduction.first;
9240     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9241     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9242 
9243     RecipeBuilder.recordRecipeOf(Phi);
9244     for (auto &R : ReductionOperations) {
9245       RecipeBuilder.recordRecipeOf(R);
9246       // For min/max reducitons, where we have a pair of icmp/select, we also
9247       // need to record the ICmp recipe, so it can be removed later.
9248       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9249         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9250     }
9251   }
9252 
9253   // For each interleave group which is relevant for this (possibly trimmed)
9254   // Range, add it to the set of groups to be later applied to the VPlan and add
9255   // placeholders for its members' Recipes which we'll be replacing with a
9256   // single VPInterleaveRecipe.
9257   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9258     auto applyIG = [IG, this](ElementCount VF) -> bool {
9259       return (VF.isVector() && // Query is illegal for VF == 1
9260               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9261                   LoopVectorizationCostModel::CM_Interleave);
9262     };
9263     if (!getDecisionAndClampRange(applyIG, Range))
9264       continue;
9265     InterleaveGroups.insert(IG);
9266     for (unsigned i = 0; i < IG->getFactor(); i++)
9267       if (Instruction *Member = IG->getMember(i))
9268         RecipeBuilder.recordRecipeOf(Member);
9269   };
9270 
9271   // ---------------------------------------------------------------------------
9272   // Build initial VPlan: Scan the body of the loop in a topological order to
9273   // visit each basic block after having visited its predecessor basic blocks.
9274   // ---------------------------------------------------------------------------
9275 
9276   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9277   auto Plan = std::make_unique<VPlan>();
9278   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9279   Plan->setEntry(VPBB);
9280 
9281   // Scan the body of the loop in a topological order to visit each basic block
9282   // after having visited its predecessor basic blocks.
9283   LoopBlocksDFS DFS(OrigLoop);
9284   DFS.perform(LI);
9285 
9286   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9287     // Relevant instructions from basic block BB will be grouped into VPRecipe
9288     // ingredients and fill a new VPBasicBlock.
9289     unsigned VPBBsForBB = 0;
9290     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9291     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9292     VPBB = FirstVPBBForBB;
9293     Builder.setInsertPoint(VPBB);
9294 
9295     // Introduce each ingredient into VPlan.
9296     // TODO: Model and preserve debug instrinsics in VPlan.
9297     for (Instruction &I : BB->instructionsWithoutDebug()) {
9298       Instruction *Instr = &I;
9299 
9300       // First filter out irrelevant instructions, to ensure no recipes are
9301       // built for them.
9302       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9303         continue;
9304 
9305       SmallVector<VPValue *, 4> Operands;
9306       auto *Phi = dyn_cast<PHINode>(Instr);
9307       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9308         Operands.push_back(Plan->getOrAddVPValue(
9309             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9310       } else {
9311         auto OpRange = Plan->mapToVPValues(Instr->operands());
9312         Operands = {OpRange.begin(), OpRange.end()};
9313       }
9314       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9315               Instr, Operands, Range, Plan)) {
9316         // If Instr can be simplified to an existing VPValue, use it.
9317         if (RecipeOrValue.is<VPValue *>()) {
9318           auto *VPV = RecipeOrValue.get<VPValue *>();
9319           Plan->addVPValue(Instr, VPV);
9320           // If the re-used value is a recipe, register the recipe for the
9321           // instruction, in case the recipe for Instr needs to be recorded.
9322           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9323             RecipeBuilder.setRecipe(Instr, R);
9324           continue;
9325         }
9326         // Otherwise, add the new recipe.
9327         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9328         for (auto *Def : Recipe->definedValues()) {
9329           auto *UV = Def->getUnderlyingValue();
9330           Plan->addVPValue(UV, Def);
9331         }
9332 
9333         RecipeBuilder.setRecipe(Instr, Recipe);
9334         VPBB->appendRecipe(Recipe);
9335         continue;
9336       }
9337 
9338       // Otherwise, if all widening options failed, Instruction is to be
9339       // replicated. This may create a successor for VPBB.
9340       VPBasicBlock *NextVPBB =
9341           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9342       if (NextVPBB != VPBB) {
9343         VPBB = NextVPBB;
9344         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9345                                     : "");
9346       }
9347     }
9348   }
9349 
9350   RecipeBuilder.fixHeaderPhis();
9351 
9352   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9353   // may also be empty, such as the last one VPBB, reflecting original
9354   // basic-blocks with no recipes.
9355   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9356   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9357   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9358   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9359   delete PreEntry;
9360 
9361   // ---------------------------------------------------------------------------
9362   // Transform initial VPlan: Apply previously taken decisions, in order, to
9363   // bring the VPlan to its final state.
9364   // ---------------------------------------------------------------------------
9365 
9366   // Apply Sink-After legal constraints.
9367   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9368     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9369     if (Region && Region->isReplicator()) {
9370       assert(Region->getNumSuccessors() == 1 &&
9371              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9372       assert(R->getParent()->size() == 1 &&
9373              "A recipe in an original replicator region must be the only "
9374              "recipe in its block");
9375       return Region;
9376     }
9377     return nullptr;
9378   };
9379   for (auto &Entry : SinkAfter) {
9380     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9381     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9382 
9383     auto *TargetRegion = GetReplicateRegion(Target);
9384     auto *SinkRegion = GetReplicateRegion(Sink);
9385     if (!SinkRegion) {
9386       // If the sink source is not a replicate region, sink the recipe directly.
9387       if (TargetRegion) {
9388         // The target is in a replication region, make sure to move Sink to
9389         // the block after it, not into the replication region itself.
9390         VPBasicBlock *NextBlock =
9391             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9392         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9393       } else
9394         Sink->moveAfter(Target);
9395       continue;
9396     }
9397 
9398     // The sink source is in a replicate region. Unhook the region from the CFG.
9399     auto *SinkPred = SinkRegion->getSinglePredecessor();
9400     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9401     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9402     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9403     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9404 
9405     if (TargetRegion) {
9406       // The target recipe is also in a replicate region, move the sink region
9407       // after the target region.
9408       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9409       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9410       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9411       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9412     } else {
9413       // The sink source is in a replicate region, we need to move the whole
9414       // replicate region, which should only contain a single recipe in the
9415       // main block.
9416       auto *SplitBlock =
9417           Target->getParent()->splitAt(std::next(Target->getIterator()));
9418 
9419       auto *SplitPred = SplitBlock->getSinglePredecessor();
9420 
9421       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9422       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9423       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9424       if (VPBB == SplitPred)
9425         VPBB = SplitBlock;
9426     }
9427   }
9428 
9429   // Adjust the recipes for any inloop reductions.
9430   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9431 
9432   // Introduce a recipe to combine the incoming and previous values of a
9433   // first-order recurrence.
9434   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9435     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9436     if (!RecurPhi)
9437       continue;
9438 
9439     auto *RecurSplice = cast<VPInstruction>(
9440         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9441                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9442 
9443     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9444     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9445       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9446       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9447     } else
9448       RecurSplice->moveAfter(PrevRecipe);
9449     RecurPhi->replaceAllUsesWith(RecurSplice);
9450     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9451     // all users.
9452     RecurSplice->setOperand(0, RecurPhi);
9453   }
9454 
9455   // Interleave memory: for each Interleave Group we marked earlier as relevant
9456   // for this VPlan, replace the Recipes widening its memory instructions with a
9457   // single VPInterleaveRecipe at its insertion point.
9458   for (auto IG : InterleaveGroups) {
9459     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9460         RecipeBuilder.getRecipe(IG->getInsertPos()));
9461     SmallVector<VPValue *, 4> StoredValues;
9462     for (unsigned i = 0; i < IG->getFactor(); ++i)
9463       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9464         auto *StoreR =
9465             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9466         StoredValues.push_back(StoreR->getStoredValue());
9467       }
9468 
9469     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9470                                         Recipe->getMask());
9471     VPIG->insertBefore(Recipe);
9472     unsigned J = 0;
9473     for (unsigned i = 0; i < IG->getFactor(); ++i)
9474       if (Instruction *Member = IG->getMember(i)) {
9475         if (!Member->getType()->isVoidTy()) {
9476           VPValue *OriginalV = Plan->getVPValue(Member);
9477           Plan->removeVPValueFor(Member);
9478           Plan->addVPValue(Member, VPIG->getVPValue(J));
9479           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9480           J++;
9481         }
9482         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9483       }
9484   }
9485 
9486   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9487   // in ways that accessing values using original IR values is incorrect.
9488   Plan->disableValue2VPValue();
9489 
9490   VPlanTransforms::sinkScalarOperands(*Plan);
9491   VPlanTransforms::mergeReplicateRegions(*Plan);
9492 
9493   std::string PlanName;
9494   raw_string_ostream RSO(PlanName);
9495   ElementCount VF = Range.Start;
9496   Plan->addVF(VF);
9497   RSO << "Initial VPlan for VF={" << VF;
9498   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9499     Plan->addVF(VF);
9500     RSO << "," << VF;
9501   }
9502   RSO << "},UF>=1";
9503   RSO.flush();
9504   Plan->setName(PlanName);
9505 
9506   return Plan;
9507 }
9508 
9509 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9510   // Outer loop handling: They may require CFG and instruction level
9511   // transformations before even evaluating whether vectorization is profitable.
9512   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9513   // the vectorization pipeline.
9514   assert(!OrigLoop->isInnermost());
9515   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9516 
9517   // Create new empty VPlan
9518   auto Plan = std::make_unique<VPlan>();
9519 
9520   // Build hierarchical CFG
9521   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9522   HCFGBuilder.buildHierarchicalCFG();
9523 
9524   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9525        VF *= 2)
9526     Plan->addVF(VF);
9527 
9528   if (EnableVPlanPredication) {
9529     VPlanPredicator VPP(*Plan);
9530     VPP.predicate();
9531 
9532     // Avoid running transformation to recipes until masked code generation in
9533     // VPlan-native path is in place.
9534     return Plan;
9535   }
9536 
9537   SmallPtrSet<Instruction *, 1> DeadInstructions;
9538   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9539                                              Legal->getInductionVars(),
9540                                              DeadInstructions, *PSE.getSE());
9541   return Plan;
9542 }
9543 
9544 // Adjust the recipes for reductions. For in-loop reductions the chain of
9545 // instructions leading from the loop exit instr to the phi need to be converted
9546 // to reductions, with one operand being vector and the other being the scalar
9547 // reduction chain. For other reductions, a select is introduced between the phi
9548 // and live-out recipes when folding the tail.
9549 void LoopVectorizationPlanner::adjustRecipesForReductions(
9550     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9551     ElementCount MinVF) {
9552   for (auto &Reduction : CM.getInLoopReductionChains()) {
9553     PHINode *Phi = Reduction.first;
9554     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9555     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9556 
9557     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9558       continue;
9559 
9560     // ReductionOperations are orders top-down from the phi's use to the
9561     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9562     // which of the two operands will remain scalar and which will be reduced.
9563     // For minmax the chain will be the select instructions.
9564     Instruction *Chain = Phi;
9565     for (Instruction *R : ReductionOperations) {
9566       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9567       RecurKind Kind = RdxDesc.getRecurrenceKind();
9568 
9569       VPValue *ChainOp = Plan->getVPValue(Chain);
9570       unsigned FirstOpId;
9571       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9572         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9573                "Expected to replace a VPWidenSelectSC");
9574         FirstOpId = 1;
9575       } else {
9576         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9577                "Expected to replace a VPWidenSC");
9578         FirstOpId = 0;
9579       }
9580       unsigned VecOpId =
9581           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9582       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9583 
9584       auto *CondOp = CM.foldTailByMasking()
9585                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9586                          : nullptr;
9587       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9588           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9589       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9590       Plan->removeVPValueFor(R);
9591       Plan->addVPValue(R, RedRecipe);
9592       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9593       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9594       WidenRecipe->eraseFromParent();
9595 
9596       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9597         VPRecipeBase *CompareRecipe =
9598             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9599         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9600                "Expected to replace a VPWidenSC");
9601         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9602                "Expected no remaining users");
9603         CompareRecipe->eraseFromParent();
9604       }
9605       Chain = R;
9606     }
9607   }
9608 
9609   // If tail is folded by masking, introduce selects between the phi
9610   // and the live-out instruction of each reduction, at the end of the latch.
9611   if (CM.foldTailByMasking()) {
9612     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9613       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9614       if (!PhiR || PhiR->isInLoop())
9615         continue;
9616       Builder.setInsertPoint(LatchVPBB);
9617       VPValue *Cond =
9618           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9619       VPValue *Red = PhiR->getBackedgeValue();
9620       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9621     }
9622   }
9623 }
9624 
9625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9626 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9627                                VPSlotTracker &SlotTracker) const {
9628   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9629   IG->getInsertPos()->printAsOperand(O, false);
9630   O << ", ";
9631   getAddr()->printAsOperand(O, SlotTracker);
9632   VPValue *Mask = getMask();
9633   if (Mask) {
9634     O << ", ";
9635     Mask->printAsOperand(O, SlotTracker);
9636   }
9637 
9638   unsigned OpIdx = 0;
9639   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9640     if (!IG->getMember(i))
9641       continue;
9642     if (getNumStoreOperands() > 0) {
9643       O << "\n" << Indent << "  store ";
9644       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9645       O << " to index " << i;
9646     } else {
9647       O << "\n" << Indent << "  ";
9648       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9649       O << " = load from index " << i;
9650     }
9651     ++OpIdx;
9652   }
9653 }
9654 #endif
9655 
9656 void VPWidenCallRecipe::execute(VPTransformState &State) {
9657   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9658                                   *this, State);
9659 }
9660 
9661 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9662   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9663                                     this, *this, InvariantCond, State);
9664 }
9665 
9666 void VPWidenRecipe::execute(VPTransformState &State) {
9667   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9668 }
9669 
9670 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9671   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9672                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9673                       IsIndexLoopInvariant, State);
9674 }
9675 
9676 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9677   assert(!State.Instance && "Int or FP induction being replicated.");
9678   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9679                                    getTruncInst(), getVPValue(0),
9680                                    getCastValue(), State);
9681 }
9682 
9683 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9684   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9685                                  State);
9686 }
9687 
9688 void VPBlendRecipe::execute(VPTransformState &State) {
9689   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9690   // We know that all PHIs in non-header blocks are converted into
9691   // selects, so we don't have to worry about the insertion order and we
9692   // can just use the builder.
9693   // At this point we generate the predication tree. There may be
9694   // duplications since this is a simple recursive scan, but future
9695   // optimizations will clean it up.
9696 
9697   unsigned NumIncoming = getNumIncomingValues();
9698 
9699   // Generate a sequence of selects of the form:
9700   // SELECT(Mask3, In3,
9701   //        SELECT(Mask2, In2,
9702   //               SELECT(Mask1, In1,
9703   //                      In0)))
9704   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9705   // are essentially undef are taken from In0.
9706   InnerLoopVectorizer::VectorParts Entry(State.UF);
9707   for (unsigned In = 0; In < NumIncoming; ++In) {
9708     for (unsigned Part = 0; Part < State.UF; ++Part) {
9709       // We might have single edge PHIs (blocks) - use an identity
9710       // 'select' for the first PHI operand.
9711       Value *In0 = State.get(getIncomingValue(In), Part);
9712       if (In == 0)
9713         Entry[Part] = In0; // Initialize with the first incoming value.
9714       else {
9715         // Select between the current value and the previous incoming edge
9716         // based on the incoming mask.
9717         Value *Cond = State.get(getMask(In), Part);
9718         Entry[Part] =
9719             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9720       }
9721     }
9722   }
9723   for (unsigned Part = 0; Part < State.UF; ++Part)
9724     State.set(this, Entry[Part], Part);
9725 }
9726 
9727 void VPInterleaveRecipe::execute(VPTransformState &State) {
9728   assert(!State.Instance && "Interleave group being replicated.");
9729   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9730                                       getStoredValues(), getMask());
9731 }
9732 
9733 void VPReductionRecipe::execute(VPTransformState &State) {
9734   assert(!State.Instance && "Reduction being replicated.");
9735   Value *PrevInChain = State.get(getChainOp(), 0);
9736   for (unsigned Part = 0; Part < State.UF; ++Part) {
9737     RecurKind Kind = RdxDesc->getRecurrenceKind();
9738     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9739     Value *NewVecOp = State.get(getVecOp(), Part);
9740     if (VPValue *Cond = getCondOp()) {
9741       Value *NewCond = State.get(Cond, Part);
9742       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9743       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9744           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9745       Constant *IdenVec =
9746           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9747       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9748       NewVecOp = Select;
9749     }
9750     Value *NewRed;
9751     Value *NextInChain;
9752     if (IsOrdered) {
9753       if (State.VF.isVector())
9754         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9755                                         PrevInChain);
9756       else
9757         NewRed = State.Builder.CreateBinOp(
9758             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9759             PrevInChain, NewVecOp);
9760       PrevInChain = NewRed;
9761     } else {
9762       PrevInChain = State.get(getChainOp(), Part);
9763       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9764     }
9765     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9766       NextInChain =
9767           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9768                          NewRed, PrevInChain);
9769     } else if (IsOrdered)
9770       NextInChain = NewRed;
9771     else {
9772       NextInChain = State.Builder.CreateBinOp(
9773           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9774           PrevInChain);
9775     }
9776     State.set(this, NextInChain, Part);
9777   }
9778 }
9779 
9780 void VPReplicateRecipe::execute(VPTransformState &State) {
9781   if (State.Instance) { // Generate a single instance.
9782     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9783     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9784                                     *State.Instance, IsPredicated, State);
9785     // Insert scalar instance packing it into a vector.
9786     if (AlsoPack && State.VF.isVector()) {
9787       // If we're constructing lane 0, initialize to start from poison.
9788       if (State.Instance->Lane.isFirstLane()) {
9789         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9790         Value *Poison = PoisonValue::get(
9791             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9792         State.set(this, Poison, State.Instance->Part);
9793       }
9794       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9795     }
9796     return;
9797   }
9798 
9799   // Generate scalar instances for all VF lanes of all UF parts, unless the
9800   // instruction is uniform inwhich case generate only the first lane for each
9801   // of the UF parts.
9802   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9803   assert((!State.VF.isScalable() || IsUniform) &&
9804          "Can't scalarize a scalable vector");
9805   for (unsigned Part = 0; Part < State.UF; ++Part)
9806     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9807       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9808                                       VPIteration(Part, Lane), IsPredicated,
9809                                       State);
9810 }
9811 
9812 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9813   assert(State.Instance && "Branch on Mask works only on single instance.");
9814 
9815   unsigned Part = State.Instance->Part;
9816   unsigned Lane = State.Instance->Lane.getKnownLane();
9817 
9818   Value *ConditionBit = nullptr;
9819   VPValue *BlockInMask = getMask();
9820   if (BlockInMask) {
9821     ConditionBit = State.get(BlockInMask, Part);
9822     if (ConditionBit->getType()->isVectorTy())
9823       ConditionBit = State.Builder.CreateExtractElement(
9824           ConditionBit, State.Builder.getInt32(Lane));
9825   } else // Block in mask is all-one.
9826     ConditionBit = State.Builder.getTrue();
9827 
9828   // Replace the temporary unreachable terminator with a new conditional branch,
9829   // whose two destinations will be set later when they are created.
9830   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9831   assert(isa<UnreachableInst>(CurrentTerminator) &&
9832          "Expected to replace unreachable terminator with conditional branch.");
9833   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9834   CondBr->setSuccessor(0, nullptr);
9835   ReplaceInstWithInst(CurrentTerminator, CondBr);
9836 }
9837 
9838 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9839   assert(State.Instance && "Predicated instruction PHI works per instance.");
9840   Instruction *ScalarPredInst =
9841       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9842   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9843   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9844   assert(PredicatingBB && "Predicated block has no single predecessor.");
9845   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9846          "operand must be VPReplicateRecipe");
9847 
9848   // By current pack/unpack logic we need to generate only a single phi node: if
9849   // a vector value for the predicated instruction exists at this point it means
9850   // the instruction has vector users only, and a phi for the vector value is
9851   // needed. In this case the recipe of the predicated instruction is marked to
9852   // also do that packing, thereby "hoisting" the insert-element sequence.
9853   // Otherwise, a phi node for the scalar value is needed.
9854   unsigned Part = State.Instance->Part;
9855   if (State.hasVectorValue(getOperand(0), Part)) {
9856     Value *VectorValue = State.get(getOperand(0), Part);
9857     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9858     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9859     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9860     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9861     if (State.hasVectorValue(this, Part))
9862       State.reset(this, VPhi, Part);
9863     else
9864       State.set(this, VPhi, Part);
9865     // NOTE: Currently we need to update the value of the operand, so the next
9866     // predicated iteration inserts its generated value in the correct vector.
9867     State.reset(getOperand(0), VPhi, Part);
9868   } else {
9869     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9870     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9871     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9872                      PredicatingBB);
9873     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9874     if (State.hasScalarValue(this, *State.Instance))
9875       State.reset(this, Phi, *State.Instance);
9876     else
9877       State.set(this, Phi, *State.Instance);
9878     // NOTE: Currently we need to update the value of the operand, so the next
9879     // predicated iteration inserts its generated value in the correct vector.
9880     State.reset(getOperand(0), Phi, *State.Instance);
9881   }
9882 }
9883 
9884 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9885   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9886   State.ILV->vectorizeMemoryInstruction(
9887       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9888       StoredValue, getMask());
9889 }
9890 
9891 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9892 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9893 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9894 // for predication.
9895 static ScalarEpilogueLowering getScalarEpilogueLowering(
9896     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9897     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9898     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9899     LoopVectorizationLegality &LVL) {
9900   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9901   // don't look at hints or options, and don't request a scalar epilogue.
9902   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9903   // LoopAccessInfo (due to code dependency and not being able to reliably get
9904   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9905   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9906   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9907   // back to the old way and vectorize with versioning when forced. See D81345.)
9908   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9909                                                       PGSOQueryType::IRPass) &&
9910                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9911     return CM_ScalarEpilogueNotAllowedOptSize;
9912 
9913   // 2) If set, obey the directives
9914   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9915     switch (PreferPredicateOverEpilogue) {
9916     case PreferPredicateTy::ScalarEpilogue:
9917       return CM_ScalarEpilogueAllowed;
9918     case PreferPredicateTy::PredicateElseScalarEpilogue:
9919       return CM_ScalarEpilogueNotNeededUsePredicate;
9920     case PreferPredicateTy::PredicateOrDontVectorize:
9921       return CM_ScalarEpilogueNotAllowedUsePredicate;
9922     };
9923   }
9924 
9925   // 3) If set, obey the hints
9926   switch (Hints.getPredicate()) {
9927   case LoopVectorizeHints::FK_Enabled:
9928     return CM_ScalarEpilogueNotNeededUsePredicate;
9929   case LoopVectorizeHints::FK_Disabled:
9930     return CM_ScalarEpilogueAllowed;
9931   };
9932 
9933   // 4) if the TTI hook indicates this is profitable, request predication.
9934   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9935                                        LVL.getLAI()))
9936     return CM_ScalarEpilogueNotNeededUsePredicate;
9937 
9938   return CM_ScalarEpilogueAllowed;
9939 }
9940 
9941 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9942   // If Values have been set for this Def return the one relevant for \p Part.
9943   if (hasVectorValue(Def, Part))
9944     return Data.PerPartOutput[Def][Part];
9945 
9946   if (!hasScalarValue(Def, {Part, 0})) {
9947     Value *IRV = Def->getLiveInIRValue();
9948     Value *B = ILV->getBroadcastInstrs(IRV);
9949     set(Def, B, Part);
9950     return B;
9951   }
9952 
9953   Value *ScalarValue = get(Def, {Part, 0});
9954   // If we aren't vectorizing, we can just copy the scalar map values over
9955   // to the vector map.
9956   if (VF.isScalar()) {
9957     set(Def, ScalarValue, Part);
9958     return ScalarValue;
9959   }
9960 
9961   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9962   bool IsUniform = RepR && RepR->isUniform();
9963 
9964   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9965   // Check if there is a scalar value for the selected lane.
9966   if (!hasScalarValue(Def, {Part, LastLane})) {
9967     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9968     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9969            "unexpected recipe found to be invariant");
9970     IsUniform = true;
9971     LastLane = 0;
9972   }
9973 
9974   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9975   // Set the insert point after the last scalarized instruction or after the
9976   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9977   // will directly follow the scalar definitions.
9978   auto OldIP = Builder.saveIP();
9979   auto NewIP =
9980       isa<PHINode>(LastInst)
9981           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9982           : std::next(BasicBlock::iterator(LastInst));
9983   Builder.SetInsertPoint(&*NewIP);
9984 
9985   // However, if we are vectorizing, we need to construct the vector values.
9986   // If the value is known to be uniform after vectorization, we can just
9987   // broadcast the scalar value corresponding to lane zero for each unroll
9988   // iteration. Otherwise, we construct the vector values using
9989   // insertelement instructions. Since the resulting vectors are stored in
9990   // State, we will only generate the insertelements once.
9991   Value *VectorValue = nullptr;
9992   if (IsUniform) {
9993     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9994     set(Def, VectorValue, Part);
9995   } else {
9996     // Initialize packing with insertelements to start from undef.
9997     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9998     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9999     set(Def, Undef, Part);
10000     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10001       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10002     VectorValue = get(Def, Part);
10003   }
10004   Builder.restoreIP(OldIP);
10005   return VectorValue;
10006 }
10007 
10008 // Process the loop in the VPlan-native vectorization path. This path builds
10009 // VPlan upfront in the vectorization pipeline, which allows to apply
10010 // VPlan-to-VPlan transformations from the very beginning without modifying the
10011 // input LLVM IR.
10012 static bool processLoopInVPlanNativePath(
10013     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10014     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10015     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10016     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10017     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10018     LoopVectorizationRequirements &Requirements) {
10019 
10020   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10021     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10022     return false;
10023   }
10024   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10025   Function *F = L->getHeader()->getParent();
10026   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10027 
10028   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10029       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10030 
10031   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10032                                 &Hints, IAI);
10033   // Use the planner for outer loop vectorization.
10034   // TODO: CM is not used at this point inside the planner. Turn CM into an
10035   // optional argument if we don't need it in the future.
10036   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10037                                Requirements, ORE);
10038 
10039   // Get user vectorization factor.
10040   ElementCount UserVF = Hints.getWidth();
10041 
10042   CM.collectElementTypesForWidening();
10043 
10044   // Plan how to best vectorize, return the best VF and its cost.
10045   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10046 
10047   // If we are stress testing VPlan builds, do not attempt to generate vector
10048   // code. Masked vector code generation support will follow soon.
10049   // Also, do not attempt to vectorize if no vector code will be produced.
10050   if (VPlanBuildStressTest || EnableVPlanPredication ||
10051       VectorizationFactor::Disabled() == VF)
10052     return false;
10053 
10054   LVP.setBestPlan(VF.Width, 1);
10055 
10056   {
10057     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10058                              F->getParent()->getDataLayout());
10059     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10060                            &CM, BFI, PSI, Checks);
10061     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10062                       << L->getHeader()->getParent()->getName() << "\"\n");
10063     LVP.executePlan(LB, DT);
10064   }
10065 
10066   // Mark the loop as already vectorized to avoid vectorizing again.
10067   Hints.setAlreadyVectorized();
10068   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10069   return true;
10070 }
10071 
10072 // Emit a remark if there are stores to floats that required a floating point
10073 // extension. If the vectorized loop was generated with floating point there
10074 // will be a performance penalty from the conversion overhead and the change in
10075 // the vector width.
10076 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10077   SmallVector<Instruction *, 4> Worklist;
10078   for (BasicBlock *BB : L->getBlocks()) {
10079     for (Instruction &Inst : *BB) {
10080       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10081         if (S->getValueOperand()->getType()->isFloatTy())
10082           Worklist.push_back(S);
10083       }
10084     }
10085   }
10086 
10087   // Traverse the floating point stores upwards searching, for floating point
10088   // conversions.
10089   SmallPtrSet<const Instruction *, 4> Visited;
10090   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10091   while (!Worklist.empty()) {
10092     auto *I = Worklist.pop_back_val();
10093     if (!L->contains(I))
10094       continue;
10095     if (!Visited.insert(I).second)
10096       continue;
10097 
10098     // Emit a remark if the floating point store required a floating
10099     // point conversion.
10100     // TODO: More work could be done to identify the root cause such as a
10101     // constant or a function return type and point the user to it.
10102     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10103       ORE->emit([&]() {
10104         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10105                                           I->getDebugLoc(), L->getHeader())
10106                << "floating point conversion changes vector width. "
10107                << "Mixed floating point precision requires an up/down "
10108                << "cast that will negatively impact performance.";
10109       });
10110 
10111     for (Use &Op : I->operands())
10112       if (auto *OpI = dyn_cast<Instruction>(Op))
10113         Worklist.push_back(OpI);
10114   }
10115 }
10116 
10117 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10118     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10119                                !EnableLoopInterleaving),
10120       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10121                               !EnableLoopVectorization) {}
10122 
10123 bool LoopVectorizePass::processLoop(Loop *L) {
10124   assert((EnableVPlanNativePath || L->isInnermost()) &&
10125          "VPlan-native path is not enabled. Only process inner loops.");
10126 
10127 #ifndef NDEBUG
10128   const std::string DebugLocStr = getDebugLocString(L);
10129 #endif /* NDEBUG */
10130 
10131   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10132                     << L->getHeader()->getParent()->getName() << "\" from "
10133                     << DebugLocStr << "\n");
10134 
10135   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10136 
10137   LLVM_DEBUG(
10138       dbgs() << "LV: Loop hints:"
10139              << " force="
10140              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10141                      ? "disabled"
10142                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10143                             ? "enabled"
10144                             : "?"))
10145              << " width=" << Hints.getWidth()
10146              << " interleave=" << Hints.getInterleave() << "\n");
10147 
10148   // Function containing loop
10149   Function *F = L->getHeader()->getParent();
10150 
10151   // Looking at the diagnostic output is the only way to determine if a loop
10152   // was vectorized (other than looking at the IR or machine code), so it
10153   // is important to generate an optimization remark for each loop. Most of
10154   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10155   // generated as OptimizationRemark and OptimizationRemarkMissed are
10156   // less verbose reporting vectorized loops and unvectorized loops that may
10157   // benefit from vectorization, respectively.
10158 
10159   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10160     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10161     return false;
10162   }
10163 
10164   PredicatedScalarEvolution PSE(*SE, *L);
10165 
10166   // Check if it is legal to vectorize the loop.
10167   LoopVectorizationRequirements Requirements;
10168   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10169                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10170   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10171     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10172     Hints.emitRemarkWithHints();
10173     return false;
10174   }
10175 
10176   // Check the function attributes and profiles to find out if this function
10177   // should be optimized for size.
10178   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10179       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10180 
10181   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10182   // here. They may require CFG and instruction level transformations before
10183   // even evaluating whether vectorization is profitable. Since we cannot modify
10184   // the incoming IR, we need to build VPlan upfront in the vectorization
10185   // pipeline.
10186   if (!L->isInnermost())
10187     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10188                                         ORE, BFI, PSI, Hints, Requirements);
10189 
10190   assert(L->isInnermost() && "Inner loop expected.");
10191 
10192   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10193   // count by optimizing for size, to minimize overheads.
10194   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10195   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10196     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10197                       << "This loop is worth vectorizing only if no scalar "
10198                       << "iteration overheads are incurred.");
10199     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10200       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10201     else {
10202       LLVM_DEBUG(dbgs() << "\n");
10203       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10204     }
10205   }
10206 
10207   // Check the function attributes to see if implicit floats are allowed.
10208   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10209   // an integer loop and the vector instructions selected are purely integer
10210   // vector instructions?
10211   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10212     reportVectorizationFailure(
10213         "Can't vectorize when the NoImplicitFloat attribute is used",
10214         "loop not vectorized due to NoImplicitFloat attribute",
10215         "NoImplicitFloat", ORE, L);
10216     Hints.emitRemarkWithHints();
10217     return false;
10218   }
10219 
10220   // Check if the target supports potentially unsafe FP vectorization.
10221   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10222   // for the target we're vectorizing for, to make sure none of the
10223   // additional fp-math flags can help.
10224   if (Hints.isPotentiallyUnsafe() &&
10225       TTI->isFPVectorizationPotentiallyUnsafe()) {
10226     reportVectorizationFailure(
10227         "Potentially unsafe FP op prevents vectorization",
10228         "loop not vectorized due to unsafe FP support.",
10229         "UnsafeFP", ORE, L);
10230     Hints.emitRemarkWithHints();
10231     return false;
10232   }
10233 
10234   bool AllowOrderedReductions;
10235   // If the flag is set, use that instead and override the TTI behaviour.
10236   if (ForceOrderedReductions.getNumOccurrences() > 0)
10237     AllowOrderedReductions = ForceOrderedReductions;
10238   else
10239     AllowOrderedReductions = TTI->enableOrderedReductions();
10240   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10241     ORE->emit([&]() {
10242       auto *ExactFPMathInst = Requirements.getExactFPInst();
10243       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10244                                                  ExactFPMathInst->getDebugLoc(),
10245                                                  ExactFPMathInst->getParent())
10246              << "loop not vectorized: cannot prove it is safe to reorder "
10247                 "floating-point operations";
10248     });
10249     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10250                          "reorder floating-point operations\n");
10251     Hints.emitRemarkWithHints();
10252     return false;
10253   }
10254 
10255   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10256   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10257 
10258   // If an override option has been passed in for interleaved accesses, use it.
10259   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10260     UseInterleaved = EnableInterleavedMemAccesses;
10261 
10262   // Analyze interleaved memory accesses.
10263   if (UseInterleaved) {
10264     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10265   }
10266 
10267   // Use the cost model.
10268   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10269                                 F, &Hints, IAI);
10270   CM.collectValuesToIgnore();
10271   CM.collectElementTypesForWidening();
10272 
10273   // Use the planner for vectorization.
10274   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10275                                Requirements, ORE);
10276 
10277   // Get user vectorization factor and interleave count.
10278   ElementCount UserVF = Hints.getWidth();
10279   unsigned UserIC = Hints.getInterleave();
10280 
10281   // Plan how to best vectorize, return the best VF and its cost.
10282   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10283 
10284   VectorizationFactor VF = VectorizationFactor::Disabled();
10285   unsigned IC = 1;
10286 
10287   if (MaybeVF) {
10288     VF = *MaybeVF;
10289     // Select the interleave count.
10290     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10291   }
10292 
10293   // Identify the diagnostic messages that should be produced.
10294   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10295   bool VectorizeLoop = true, InterleaveLoop = true;
10296   if (VF.Width.isScalar()) {
10297     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10298     VecDiagMsg = std::make_pair(
10299         "VectorizationNotBeneficial",
10300         "the cost-model indicates that vectorization is not beneficial");
10301     VectorizeLoop = false;
10302   }
10303 
10304   if (!MaybeVF && UserIC > 1) {
10305     // Tell the user interleaving was avoided up-front, despite being explicitly
10306     // requested.
10307     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10308                          "interleaving should be avoided up front\n");
10309     IntDiagMsg = std::make_pair(
10310         "InterleavingAvoided",
10311         "Ignoring UserIC, because interleaving was avoided up front");
10312     InterleaveLoop = false;
10313   } else if (IC == 1 && UserIC <= 1) {
10314     // Tell the user interleaving is not beneficial.
10315     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10316     IntDiagMsg = std::make_pair(
10317         "InterleavingNotBeneficial",
10318         "the cost-model indicates that interleaving is not beneficial");
10319     InterleaveLoop = false;
10320     if (UserIC == 1) {
10321       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10322       IntDiagMsg.second +=
10323           " and is explicitly disabled or interleave count is set to 1";
10324     }
10325   } else if (IC > 1 && UserIC == 1) {
10326     // Tell the user interleaving is beneficial, but it explicitly disabled.
10327     LLVM_DEBUG(
10328         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10329     IntDiagMsg = std::make_pair(
10330         "InterleavingBeneficialButDisabled",
10331         "the cost-model indicates that interleaving is beneficial "
10332         "but is explicitly disabled or interleave count is set to 1");
10333     InterleaveLoop = false;
10334   }
10335 
10336   // Override IC if user provided an interleave count.
10337   IC = UserIC > 0 ? UserIC : IC;
10338 
10339   // Emit diagnostic messages, if any.
10340   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10341   if (!VectorizeLoop && !InterleaveLoop) {
10342     // Do not vectorize or interleaving the loop.
10343     ORE->emit([&]() {
10344       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10345                                       L->getStartLoc(), L->getHeader())
10346              << VecDiagMsg.second;
10347     });
10348     ORE->emit([&]() {
10349       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10350                                       L->getStartLoc(), L->getHeader())
10351              << IntDiagMsg.second;
10352     });
10353     return false;
10354   } else if (!VectorizeLoop && InterleaveLoop) {
10355     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10356     ORE->emit([&]() {
10357       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10358                                         L->getStartLoc(), L->getHeader())
10359              << VecDiagMsg.second;
10360     });
10361   } else if (VectorizeLoop && !InterleaveLoop) {
10362     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10363                       << ") in " << DebugLocStr << '\n');
10364     ORE->emit([&]() {
10365       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10366                                         L->getStartLoc(), L->getHeader())
10367              << IntDiagMsg.second;
10368     });
10369   } else if (VectorizeLoop && InterleaveLoop) {
10370     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10371                       << ") in " << DebugLocStr << '\n');
10372     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10373   }
10374 
10375   bool DisableRuntimeUnroll = false;
10376   MDNode *OrigLoopID = L->getLoopID();
10377   {
10378     // Optimistically generate runtime checks. Drop them if they turn out to not
10379     // be profitable. Limit the scope of Checks, so the cleanup happens
10380     // immediately after vector codegeneration is done.
10381     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10382                              F->getParent()->getDataLayout());
10383     if (!VF.Width.isScalar() || IC > 1)
10384       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10385     LVP.setBestPlan(VF.Width, IC);
10386 
10387     using namespace ore;
10388     if (!VectorizeLoop) {
10389       assert(IC > 1 && "interleave count should not be 1 or 0");
10390       // If we decided that it is not legal to vectorize the loop, then
10391       // interleave it.
10392       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10393                                  &CM, BFI, PSI, Checks);
10394       LVP.executePlan(Unroller, DT);
10395 
10396       ORE->emit([&]() {
10397         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10398                                   L->getHeader())
10399                << "interleaved loop (interleaved count: "
10400                << NV("InterleaveCount", IC) << ")";
10401       });
10402     } else {
10403       // If we decided that it is *legal* to vectorize the loop, then do it.
10404 
10405       // Consider vectorizing the epilogue too if it's profitable.
10406       VectorizationFactor EpilogueVF =
10407           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10408       if (EpilogueVF.Width.isVector()) {
10409 
10410         // The first pass vectorizes the main loop and creates a scalar epilogue
10411         // to be vectorized by executing the plan (potentially with a different
10412         // factor) again shortly afterwards.
10413         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10414                                           EpilogueVF.Width.getKnownMinValue(),
10415                                           1);
10416         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10417                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10418 
10419         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10420         LVP.executePlan(MainILV, DT);
10421         ++LoopsVectorized;
10422 
10423         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10424         formLCSSARecursively(*L, *DT, LI, SE);
10425 
10426         // Second pass vectorizes the epilogue and adjusts the control flow
10427         // edges from the first pass.
10428         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10429         EPI.MainLoopVF = EPI.EpilogueVF;
10430         EPI.MainLoopUF = EPI.EpilogueUF;
10431         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10432                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10433                                                  Checks);
10434         LVP.executePlan(EpilogILV, DT);
10435         ++LoopsEpilogueVectorized;
10436 
10437         if (!MainILV.areSafetyChecksAdded())
10438           DisableRuntimeUnroll = true;
10439       } else {
10440         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10441                                &LVL, &CM, BFI, PSI, Checks);
10442         LVP.executePlan(LB, DT);
10443         ++LoopsVectorized;
10444 
10445         // Add metadata to disable runtime unrolling a scalar loop when there
10446         // are no runtime checks about strides and memory. A scalar loop that is
10447         // rarely used is not worth unrolling.
10448         if (!LB.areSafetyChecksAdded())
10449           DisableRuntimeUnroll = true;
10450       }
10451       // Report the vectorization decision.
10452       ORE->emit([&]() {
10453         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10454                                   L->getHeader())
10455                << "vectorized loop (vectorization width: "
10456                << NV("VectorizationFactor", VF.Width)
10457                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10458       });
10459     }
10460 
10461     if (ORE->allowExtraAnalysis(LV_NAME))
10462       checkMixedPrecision(L, ORE);
10463   }
10464 
10465   Optional<MDNode *> RemainderLoopID =
10466       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10467                                       LLVMLoopVectorizeFollowupEpilogue});
10468   if (RemainderLoopID.hasValue()) {
10469     L->setLoopID(RemainderLoopID.getValue());
10470   } else {
10471     if (DisableRuntimeUnroll)
10472       AddRuntimeUnrollDisableMetaData(L);
10473 
10474     // Mark the loop as already vectorized to avoid vectorizing again.
10475     Hints.setAlreadyVectorized();
10476   }
10477 
10478   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10479   return true;
10480 }
10481 
10482 LoopVectorizeResult LoopVectorizePass::runImpl(
10483     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10484     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10485     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10486     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10487     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10488   SE = &SE_;
10489   LI = &LI_;
10490   TTI = &TTI_;
10491   DT = &DT_;
10492   BFI = &BFI_;
10493   TLI = TLI_;
10494   AA = &AA_;
10495   AC = &AC_;
10496   GetLAA = &GetLAA_;
10497   DB = &DB_;
10498   ORE = &ORE_;
10499   PSI = PSI_;
10500 
10501   // Don't attempt if
10502   // 1. the target claims to have no vector registers, and
10503   // 2. interleaving won't help ILP.
10504   //
10505   // The second condition is necessary because, even if the target has no
10506   // vector registers, loop vectorization may still enable scalar
10507   // interleaving.
10508   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10509       TTI->getMaxInterleaveFactor(1) < 2)
10510     return LoopVectorizeResult(false, false);
10511 
10512   bool Changed = false, CFGChanged = false;
10513 
10514   // The vectorizer requires loops to be in simplified form.
10515   // Since simplification may add new inner loops, it has to run before the
10516   // legality and profitability checks. This means running the loop vectorizer
10517   // will simplify all loops, regardless of whether anything end up being
10518   // vectorized.
10519   for (auto &L : *LI)
10520     Changed |= CFGChanged |=
10521         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10522 
10523   // Build up a worklist of inner-loops to vectorize. This is necessary as
10524   // the act of vectorizing or partially unrolling a loop creates new loops
10525   // and can invalidate iterators across the loops.
10526   SmallVector<Loop *, 8> Worklist;
10527 
10528   for (Loop *L : *LI)
10529     collectSupportedLoops(*L, LI, ORE, Worklist);
10530 
10531   LoopsAnalyzed += Worklist.size();
10532 
10533   // Now walk the identified inner loops.
10534   while (!Worklist.empty()) {
10535     Loop *L = Worklist.pop_back_val();
10536 
10537     // For the inner loops we actually process, form LCSSA to simplify the
10538     // transform.
10539     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10540 
10541     Changed |= CFGChanged |= processLoop(L);
10542   }
10543 
10544   // Process each loop nest in the function.
10545   return LoopVectorizeResult(Changed, CFGChanged);
10546 }
10547 
10548 PreservedAnalyses LoopVectorizePass::run(Function &F,
10549                                          FunctionAnalysisManager &AM) {
10550     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10551     auto &LI = AM.getResult<LoopAnalysis>(F);
10552     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10553     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10554     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10555     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10556     auto &AA = AM.getResult<AAManager>(F);
10557     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10558     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10559     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10560 
10561     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10562     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10563         [&](Loop &L) -> const LoopAccessInfo & {
10564       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10565                                         TLI, TTI, nullptr, nullptr};
10566       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10567     };
10568     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10569     ProfileSummaryInfo *PSI =
10570         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10571     LoopVectorizeResult Result =
10572         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10573     if (!Result.MadeAnyChange)
10574       return PreservedAnalyses::all();
10575     PreservedAnalyses PA;
10576 
10577     // We currently do not preserve loopinfo/dominator analyses with outer loop
10578     // vectorization. Until this is addressed, mark these analyses as preserved
10579     // only for non-VPlan-native path.
10580     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10581     if (!EnableVPlanNativePath) {
10582       PA.preserve<LoopAnalysis>();
10583       PA.preserve<DominatorTreeAnalysis>();
10584     }
10585     if (!Result.MadeCFGChange)
10586       PA.preserveSet<CFGAnalyses>();
10587     return PA;
10588 }
10589