1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/PatternMatch.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/InitializePasses.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/InstructionCost.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <map> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 200 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks with a " 202 "vectorize(enable) pragma.")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // This flag enables the stress testing of the VPlan H-CFG construction in the 348 // VPlan-native vectorization path. It must be used in conjuction with 349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 350 // verification of the H-CFGs built. 351 static cl::opt<bool> VPlanBuildStressTest( 352 "vplan-build-stress-test", cl::init(false), cl::Hidden, 353 cl::desc( 354 "Build VPlan for every supported loop nest in the function and bail " 355 "out right after the build (stress test the VPlan H-CFG construction " 356 "in the VPlan-native vectorization path).")); 357 358 cl::opt<bool> llvm::EnableLoopInterleaving( 359 "interleave-loops", cl::init(true), cl::Hidden, 360 cl::desc("Enable loop interleaving in Loop vectorization passes")); 361 cl::opt<bool> llvm::EnableLoopVectorization( 362 "vectorize-loops", cl::init(true), cl::Hidden, 363 cl::desc("Run the Loop vectorization passes")); 364 365 cl::opt<bool> PrintVPlansInDotFormat( 366 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 367 cl::desc("Use dot format instead of plain text when dumping VPlans")); 368 369 /// A helper function that returns true if the given type is irregular. The 370 /// type is irregular if its allocated size doesn't equal the store size of an 371 /// element of the corresponding vector type. 372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 373 // Determine if an array of N elements of type Ty is "bitcast compatible" 374 // with a <N x Ty> vector. 375 // This is only true if there is no padding between the array elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 // Forward declare GeneratedRTChecks. 418 class GeneratedRTChecks; 419 420 namespace llvm { 421 422 AnalysisKey ShouldRunExtraVectorPasses::Key; 423 424 /// InnerLoopVectorizer vectorizes loops which contain only one basic 425 /// block to a specified vectorization factor (VF). 426 /// This class performs the widening of scalars into vectors, or multiple 427 /// scalars. This class also implements the following features: 428 /// * It inserts an epilogue loop for handling loops that don't have iteration 429 /// counts that are known to be a multiple of the vectorization factor. 430 /// * It handles the code generation for reduction variables. 431 /// * Scalarization (implementation using scalars) of un-vectorizable 432 /// instructions. 433 /// InnerLoopVectorizer does not perform any vectorization-legality 434 /// checks, and relies on the caller to check for the different legality 435 /// aspects. The InnerLoopVectorizer relies on the 436 /// LoopVectorizationLegality class to provide information about the induction 437 /// and reduction variables that were found to a given vectorization factor. 438 class InnerLoopVectorizer { 439 public: 440 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 441 LoopInfo *LI, DominatorTree *DT, 442 const TargetLibraryInfo *TLI, 443 const TargetTransformInfo *TTI, AssumptionCache *AC, 444 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 445 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 446 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 447 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 448 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 449 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 450 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 451 PSI(PSI), RTChecks(RTChecks) { 452 // Query this against the original loop and save it here because the profile 453 // of the original loop header may change as the transformation happens. 454 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 455 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 456 } 457 458 virtual ~InnerLoopVectorizer() = default; 459 460 /// Create a new empty loop that will contain vectorized instructions later 461 /// on, while the old loop will be used as the scalar remainder. Control flow 462 /// is generated around the vectorized (and scalar epilogue) loops consisting 463 /// of various checks and bypasses. Return the pre-header block of the new 464 /// loop and the start value for the canonical induction, if it is != 0. The 465 /// latter is the case when vectorizing the epilogue loop. In the case of 466 /// epilogue vectorization, this function is overriden to handle the more 467 /// complex control flow around the loops. 468 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 469 470 /// Widen a single call instruction within the innermost loop. 471 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 472 VPTransformState &State); 473 474 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 475 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 476 477 // Return true if any runtime check is added. 478 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 479 480 /// A type for vectorized values in the new loop. Each value from the 481 /// original loop, when vectorized, is represented by UF vector values in the 482 /// new unrolled loop, where UF is the unroll factor. 483 using VectorParts = SmallVector<Value *, 2>; 484 485 /// A helper function to scalarize a single Instruction in the innermost loop. 486 /// Generates a sequence of scalar instances for each lane between \p MinLane 487 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 488 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 489 /// Instr's operands. 490 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 491 const VPIteration &Instance, bool IfPredicateInstr, 492 VPTransformState &State); 493 494 /// Construct the vector value of a scalarized value \p V one lane at a time. 495 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 496 VPTransformState &State); 497 498 /// Try to vectorize interleaved access group \p Group with the base address 499 /// given in \p Addr, optionally masking the vector operations if \p 500 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 501 /// values in the vectorized loop. 502 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 503 ArrayRef<VPValue *> VPDefs, 504 VPTransformState &State, VPValue *Addr, 505 ArrayRef<VPValue *> StoredValues, 506 VPValue *BlockInMask = nullptr); 507 508 /// Set the debug location in the builder \p Ptr using the debug location in 509 /// \p V. If \p Ptr is None then it uses the class member's Builder. 510 void setDebugLocFromInst(const Value *V); 511 512 /// Fix the non-induction PHIs in \p Plan. 513 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 514 515 /// Returns true if the reordering of FP operations is not allowed, but we are 516 /// able to vectorize with strict in-order reductions for the given RdxDesc. 517 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 518 519 /// Create a broadcast instruction. This method generates a broadcast 520 /// instruction (shuffle) for loop invariant values and for the induction 521 /// value. If this is the induction variable then we extend it to N, N+1, ... 522 /// this is needed because each iteration in the loop corresponds to a SIMD 523 /// element. 524 virtual Value *getBroadcastInstrs(Value *V); 525 526 /// Add metadata from one instruction to another. 527 /// 528 /// This includes both the original MDs from \p From and additional ones (\see 529 /// addNewMetadata). Use this for *newly created* instructions in the vector 530 /// loop. 531 void addMetadata(Instruction *To, Instruction *From); 532 533 /// Similar to the previous function but it adds the metadata to a 534 /// vector of instructions. 535 void addMetadata(ArrayRef<Value *> To, Instruction *From); 536 537 // Returns the resume value (bc.merge.rdx) for a reduction as 538 // generated by fixReduction. 539 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 540 541 protected: 542 friend class LoopVectorizationPlanner; 543 544 /// A small list of PHINodes. 545 using PhiVector = SmallVector<PHINode *, 4>; 546 547 /// A type for scalarized values in the new loop. Each value from the 548 /// original loop, when scalarized, is represented by UF x VF scalar values 549 /// in the new unrolled loop, where UF is the unroll factor and VF is the 550 /// vectorization factor. 551 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 552 553 /// Set up the values of the IVs correctly when exiting the vector loop. 554 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 555 Value *VectorTripCount, Value *EndValue, 556 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 557 VPlan &Plan); 558 559 /// Handle all cross-iteration phis in the header. 560 void fixCrossIterationPHIs(VPTransformState &State); 561 562 /// Create the exit value of first order recurrences in the middle block and 563 /// update their users. 564 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 565 VPTransformState &State); 566 567 /// Create code for the loop exit value of the reduction. 568 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 569 570 /// Clear NSW/NUW flags from reduction instructions if necessary. 571 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 572 VPTransformState &State); 573 574 /// Iteratively sink the scalarized operands of a predicated instruction into 575 /// the block that was created for it. 576 void sinkScalarOperands(Instruction *PredInst); 577 578 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 579 /// represented as. 580 void truncateToMinimalBitwidths(VPTransformState &State); 581 582 /// Returns (and creates if needed) the original loop trip count. 583 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 584 585 /// Returns (and creates if needed) the trip count of the widened loop. 586 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 587 588 /// Returns a bitcasted value to the requested vector type. 589 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 590 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 591 const DataLayout &DL); 592 593 /// Emit a bypass check to see if the vector trip count is zero, including if 594 /// it overflows. 595 void emitIterationCountCheck(BasicBlock *Bypass); 596 597 /// Emit a bypass check to see if all of the SCEV assumptions we've 598 /// had to make are correct. Returns the block containing the checks or 599 /// nullptr if no checks have been added. 600 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 601 602 /// Emit bypass checks to check any memory assumptions we may have made. 603 /// Returns the block containing the checks or nullptr if no checks have been 604 /// added. 605 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 606 607 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 608 /// vector loop preheader, middle block and scalar preheader. 609 void createVectorLoopSkeleton(StringRef Prefix); 610 611 /// Create new phi nodes for the induction variables to resume iteration count 612 /// in the scalar epilogue, from where the vectorized loop left off. 613 /// In cases where the loop skeleton is more complicated (eg. epilogue 614 /// vectorization) and the resume values can come from an additional bypass 615 /// block, the \p AdditionalBypass pair provides information about the bypass 616 /// block and the end value on the edge from bypass to this loop. 617 void createInductionResumeValues( 618 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 619 620 /// Complete the loop skeleton by adding debug MDs, creating appropriate 621 /// conditional branches in the middle block, preparing the builder and 622 /// running the verifier. Return the preheader of the completed vector loop. 623 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 624 625 /// Add additional metadata to \p To that was not present on \p Orig. 626 /// 627 /// Currently this is used to add the noalias annotations based on the 628 /// inserted memchecks. Use this for instructions that are *cloned* into the 629 /// vector loop. 630 void addNewMetadata(Instruction *To, const Instruction *Orig); 631 632 /// Collect poison-generating recipes that may generate a poison value that is 633 /// used after vectorization, even when their operands are not poison. Those 634 /// recipes meet the following conditions: 635 /// * Contribute to the address computation of a recipe generating a widen 636 /// memory load/store (VPWidenMemoryInstructionRecipe or 637 /// VPInterleaveRecipe). 638 /// * Such a widen memory load/store has at least one underlying Instruction 639 /// that is in a basic block that needs predication and after vectorization 640 /// the generated instruction won't be predicated. 641 void collectPoisonGeneratingRecipes(VPTransformState &State); 642 643 /// Allow subclasses to override and print debug traces before/after vplan 644 /// execution, when trace information is requested. 645 virtual void printDebugTracesAtStart(){}; 646 virtual void printDebugTracesAtEnd(){}; 647 648 /// The original loop. 649 Loop *OrigLoop; 650 651 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 652 /// dynamic knowledge to simplify SCEV expressions and converts them to a 653 /// more usable form. 654 PredicatedScalarEvolution &PSE; 655 656 /// Loop Info. 657 LoopInfo *LI; 658 659 /// Dominator Tree. 660 DominatorTree *DT; 661 662 /// Alias Analysis. 663 AAResults *AA; 664 665 /// Target Library Info. 666 const TargetLibraryInfo *TLI; 667 668 /// Target Transform Info. 669 const TargetTransformInfo *TTI; 670 671 /// Assumption Cache. 672 AssumptionCache *AC; 673 674 /// Interface to emit optimization remarks. 675 OptimizationRemarkEmitter *ORE; 676 677 /// LoopVersioning. It's only set up (non-null) if memchecks were 678 /// used. 679 /// 680 /// This is currently only used to add no-alias metadata based on the 681 /// memchecks. The actually versioning is performed manually. 682 std::unique_ptr<LoopVersioning> LVer; 683 684 /// The vectorization SIMD factor to use. Each vector will have this many 685 /// vector elements. 686 ElementCount VF; 687 688 /// The vectorization unroll factor to use. Each scalar is vectorized to this 689 /// many different vector instructions. 690 unsigned UF; 691 692 /// The builder that we use 693 IRBuilder<> Builder; 694 695 // --- Vectorization state --- 696 697 /// The vector-loop preheader. 698 BasicBlock *LoopVectorPreHeader; 699 700 /// The scalar-loop preheader. 701 BasicBlock *LoopScalarPreHeader; 702 703 /// Middle Block between the vector and the scalar. 704 BasicBlock *LoopMiddleBlock; 705 706 /// The unique ExitBlock of the scalar loop if one exists. Note that 707 /// there can be multiple exiting edges reaching this block. 708 BasicBlock *LoopExitBlock; 709 710 /// The scalar loop body. 711 BasicBlock *LoopScalarBody; 712 713 /// A list of all bypass blocks. The first block is the entry of the loop. 714 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 715 716 /// Store instructions that were predicated. 717 SmallVector<Instruction *, 4> PredicatedInstructions; 718 719 /// Trip count of the original loop. 720 Value *TripCount = nullptr; 721 722 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 723 Value *VectorTripCount = nullptr; 724 725 /// The legality analysis. 726 LoopVectorizationLegality *Legal; 727 728 /// The profitablity analysis. 729 LoopVectorizationCostModel *Cost; 730 731 // Record whether runtime checks are added. 732 bool AddedSafetyChecks = false; 733 734 // Holds the end values for each induction variable. We save the end values 735 // so we can later fix-up the external users of the induction variables. 736 DenseMap<PHINode *, Value *> IVEndValues; 737 738 /// BFI and PSI are used to check for profile guided size optimizations. 739 BlockFrequencyInfo *BFI; 740 ProfileSummaryInfo *PSI; 741 742 // Whether this loop should be optimized for size based on profile guided size 743 // optimizatios. 744 bool OptForSizeBasedOnProfile; 745 746 /// Structure to hold information about generated runtime checks, responsible 747 /// for cleaning the checks, if vectorization turns out unprofitable. 748 GeneratedRTChecks &RTChecks; 749 750 // Holds the resume values for reductions in the loops, used to set the 751 // correct start value of reduction PHIs when vectorizing the epilogue. 752 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 753 ReductionResumeValues; 754 }; 755 756 class InnerLoopUnroller : public InnerLoopVectorizer { 757 public: 758 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 759 LoopInfo *LI, DominatorTree *DT, 760 const TargetLibraryInfo *TLI, 761 const TargetTransformInfo *TTI, AssumptionCache *AC, 762 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 763 LoopVectorizationLegality *LVL, 764 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 765 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 766 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 767 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 768 BFI, PSI, Check) {} 769 770 private: 771 Value *getBroadcastInstrs(Value *V) override; 772 }; 773 774 /// Encapsulate information regarding vectorization of a loop and its epilogue. 775 /// This information is meant to be updated and used across two stages of 776 /// epilogue vectorization. 777 struct EpilogueLoopVectorizationInfo { 778 ElementCount MainLoopVF = ElementCount::getFixed(0); 779 unsigned MainLoopUF = 0; 780 ElementCount EpilogueVF = ElementCount::getFixed(0); 781 unsigned EpilogueUF = 0; 782 BasicBlock *MainLoopIterationCountCheck = nullptr; 783 BasicBlock *EpilogueIterationCountCheck = nullptr; 784 BasicBlock *SCEVSafetyCheck = nullptr; 785 BasicBlock *MemSafetyCheck = nullptr; 786 Value *TripCount = nullptr; 787 Value *VectorTripCount = nullptr; 788 789 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 790 ElementCount EVF, unsigned EUF) 791 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 792 assert(EUF == 1 && 793 "A high UF for the epilogue loop is likely not beneficial."); 794 } 795 }; 796 797 /// An extension of the inner loop vectorizer that creates a skeleton for a 798 /// vectorized loop that has its epilogue (residual) also vectorized. 799 /// The idea is to run the vplan on a given loop twice, firstly to setup the 800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 801 /// from the first step and vectorize the epilogue. This is achieved by 802 /// deriving two concrete strategy classes from this base class and invoking 803 /// them in succession from the loop vectorizer planner. 804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 805 public: 806 InnerLoopAndEpilogueVectorizer( 807 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 808 DominatorTree *DT, const TargetLibraryInfo *TLI, 809 const TargetTransformInfo *TTI, AssumptionCache *AC, 810 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 811 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 812 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 813 GeneratedRTChecks &Checks) 814 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 815 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 816 Checks), 817 EPI(EPI) {} 818 819 // Override this function to handle the more complex control flow around the 820 // three loops. 821 std::pair<BasicBlock *, Value *> 822 createVectorizedLoopSkeleton() final override { 823 return createEpilogueVectorizedLoopSkeleton(); 824 } 825 826 /// The interface for creating a vectorized skeleton using one of two 827 /// different strategies, each corresponding to one execution of the vplan 828 /// as described above. 829 virtual std::pair<BasicBlock *, Value *> 830 createEpilogueVectorizedLoopSkeleton() = 0; 831 832 /// Holds and updates state information required to vectorize the main loop 833 /// and its epilogue in two separate passes. This setup helps us avoid 834 /// regenerating and recomputing runtime safety checks. It also helps us to 835 /// shorten the iteration-count-check path length for the cases where the 836 /// iteration count of the loop is so small that the main vector loop is 837 /// completely skipped. 838 EpilogueLoopVectorizationInfo &EPI; 839 }; 840 841 /// A specialized derived class of inner loop vectorizer that performs 842 /// vectorization of *main* loops in the process of vectorizing loops and their 843 /// epilogues. 844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 845 public: 846 EpilogueVectorizerMainLoop( 847 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 848 DominatorTree *DT, const TargetLibraryInfo *TLI, 849 const TargetTransformInfo *TTI, AssumptionCache *AC, 850 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 851 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 852 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 853 GeneratedRTChecks &Check) 854 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 855 EPI, LVL, CM, BFI, PSI, Check) {} 856 /// Implements the interface for creating a vectorized skeleton using the 857 /// *main loop* strategy (ie the first pass of vplan execution). 858 std::pair<BasicBlock *, Value *> 859 createEpilogueVectorizedLoopSkeleton() final override; 860 861 protected: 862 /// Emits an iteration count bypass check once for the main loop (when \p 863 /// ForEpilogue is false) and once for the epilogue loop (when \p 864 /// ForEpilogue is true). 865 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 866 void printDebugTracesAtStart() override; 867 void printDebugTracesAtEnd() override; 868 }; 869 870 // A specialized derived class of inner loop vectorizer that performs 871 // vectorization of *epilogue* loops in the process of vectorizing loops and 872 // their epilogues. 873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 874 public: 875 EpilogueVectorizerEpilogueLoop( 876 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 877 DominatorTree *DT, const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, AssumptionCache *AC, 879 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 880 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 881 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 882 GeneratedRTChecks &Checks) 883 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 884 EPI, LVL, CM, BFI, PSI, Checks) { 885 TripCount = EPI.TripCount; 886 } 887 /// Implements the interface for creating a vectorized skeleton using the 888 /// *epilogue loop* strategy (ie the second pass of vplan execution). 889 std::pair<BasicBlock *, Value *> 890 createEpilogueVectorizedLoopSkeleton() final override; 891 892 protected: 893 /// Emits an iteration count bypass check after the main vector loop has 894 /// finished to see if there are any iterations left to execute by either 895 /// the vector epilogue or the scalar epilogue. 896 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 897 BasicBlock *Bypass, 898 BasicBlock *Insert); 899 void printDebugTracesAtStart() override; 900 void printDebugTracesAtEnd() override; 901 }; 902 } // end namespace llvm 903 904 /// Look for a meaningful debug location on the instruction or it's 905 /// operands. 906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 907 if (!I) 908 return I; 909 910 DebugLoc Empty; 911 if (I->getDebugLoc() != Empty) 912 return I; 913 914 for (Use &Op : I->operands()) { 915 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 916 if (OpInst->getDebugLoc() != Empty) 917 return OpInst; 918 } 919 920 return I; 921 } 922 923 void InnerLoopVectorizer::setDebugLocFromInst( 924 const Value *V) { 925 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 926 const DILocation *DIL = Inst->getDebugLoc(); 927 928 // When a FSDiscriminator is enabled, we don't need to add the multiply 929 // factors to the discriminators. 930 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 931 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 932 // FIXME: For scalable vectors, assume vscale=1. 933 auto NewDIL = 934 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 935 if (NewDIL) 936 Builder.SetCurrentDebugLocation(*NewDIL); 937 else 938 LLVM_DEBUG(dbgs() 939 << "Failed to create new discriminator: " 940 << DIL->getFilename() << " Line: " << DIL->getLine()); 941 } else 942 Builder.SetCurrentDebugLocation(DIL); 943 } else 944 Builder.SetCurrentDebugLocation(DebugLoc()); 945 } 946 947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 948 /// is passed, the message relates to that particular instruction. 949 #ifndef NDEBUG 950 static void debugVectorizationMessage(const StringRef Prefix, 951 const StringRef DebugMsg, 952 Instruction *I) { 953 dbgs() << "LV: " << Prefix << DebugMsg; 954 if (I != nullptr) 955 dbgs() << " " << *I; 956 else 957 dbgs() << '.'; 958 dbgs() << '\n'; 959 } 960 #endif 961 962 /// Create an analysis remark that explains why vectorization failed 963 /// 964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 965 /// RemarkName is the identifier for the remark. If \p I is passed it is an 966 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 967 /// the location of the remark. \return the remark object that can be 968 /// streamed to. 969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 970 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 971 Value *CodeRegion = TheLoop->getHeader(); 972 DebugLoc DL = TheLoop->getStartLoc(); 973 974 if (I) { 975 CodeRegion = I->getParent(); 976 // If there is no debug location attached to the instruction, revert back to 977 // using the loop's. 978 if (I->getDebugLoc()) 979 DL = I->getDebugLoc(); 980 } 981 982 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 983 } 984 985 namespace llvm { 986 987 /// Return a value for Step multiplied by VF. 988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 989 int64_t Step) { 990 assert(Ty->isIntegerTy() && "Expected an integer step"); 991 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 992 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 993 } 994 995 /// Return the runtime value for VF. 996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 997 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 998 return VF.isScalable() ? B.CreateVScale(EC) : EC; 999 } 1000 1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1002 ElementCount VF) { 1003 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1004 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1005 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1006 return B.CreateUIToFP(RuntimeVF, FTy); 1007 } 1008 1009 void reportVectorizationFailure(const StringRef DebugMsg, 1010 const StringRef OREMsg, const StringRef ORETag, 1011 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1012 Instruction *I) { 1013 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1014 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1015 ORE->emit( 1016 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1017 << "loop not vectorized: " << OREMsg); 1018 } 1019 1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1021 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1022 Instruction *I) { 1023 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1024 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1025 ORE->emit( 1026 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1027 << Msg); 1028 } 1029 1030 } // end namespace llvm 1031 1032 #ifndef NDEBUG 1033 /// \return string containing a file name and a line # for the given loop. 1034 static std::string getDebugLocString(const Loop *L) { 1035 std::string Result; 1036 if (L) { 1037 raw_string_ostream OS(Result); 1038 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1039 LoopDbgLoc.print(OS); 1040 else 1041 // Just print the module name. 1042 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1043 OS.flush(); 1044 } 1045 return Result; 1046 } 1047 #endif 1048 1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1050 const Instruction *Orig) { 1051 // If the loop was versioned with memchecks, add the corresponding no-alias 1052 // metadata. 1053 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1054 LVer->annotateInstWithNoAlias(To, Orig); 1055 } 1056 1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1058 VPTransformState &State) { 1059 1060 // Collect recipes in the backward slice of `Root` that may generate a poison 1061 // value that is used after vectorization. 1062 SmallPtrSet<VPRecipeBase *, 16> Visited; 1063 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1064 SmallVector<VPRecipeBase *, 16> Worklist; 1065 Worklist.push_back(Root); 1066 1067 // Traverse the backward slice of Root through its use-def chain. 1068 while (!Worklist.empty()) { 1069 VPRecipeBase *CurRec = Worklist.back(); 1070 Worklist.pop_back(); 1071 1072 if (!Visited.insert(CurRec).second) 1073 continue; 1074 1075 // Prune search if we find another recipe generating a widen memory 1076 // instruction. Widen memory instructions involved in address computation 1077 // will lead to gather/scatter instructions, which don't need to be 1078 // handled. 1079 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1080 isa<VPInterleaveRecipe>(CurRec) || 1081 isa<VPScalarIVStepsRecipe>(CurRec) || 1082 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1083 continue; 1084 1085 // This recipe contributes to the address computation of a widen 1086 // load/store. Collect recipe if its underlying instruction has 1087 // poison-generating flags. 1088 Instruction *Instr = CurRec->getUnderlyingInstr(); 1089 if (Instr && Instr->hasPoisonGeneratingFlags()) 1090 State.MayGeneratePoisonRecipes.insert(CurRec); 1091 1092 // Add new definitions to the worklist. 1093 for (VPValue *operand : CurRec->operands()) 1094 if (VPDef *OpDef = operand->getDef()) 1095 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1096 } 1097 }); 1098 1099 // Traverse all the recipes in the VPlan and collect the poison-generating 1100 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1101 // VPInterleaveRecipe. 1102 auto Iter = depth_first( 1103 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1104 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1105 for (VPRecipeBase &Recipe : *VPBB) { 1106 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1107 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1108 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1109 if (AddrDef && WidenRec->isConsecutive() && 1110 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1111 collectPoisonGeneratingInstrsInBackwardSlice( 1112 cast<VPRecipeBase>(AddrDef)); 1113 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1114 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1115 if (AddrDef) { 1116 // Check if any member of the interleave group needs predication. 1117 const InterleaveGroup<Instruction> *InterGroup = 1118 InterleaveRec->getInterleaveGroup(); 1119 bool NeedPredication = false; 1120 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1121 I < NumMembers; ++I) { 1122 Instruction *Member = InterGroup->getMember(I); 1123 if (Member) 1124 NeedPredication |= 1125 Legal->blockNeedsPredication(Member->getParent()); 1126 } 1127 1128 if (NeedPredication) 1129 collectPoisonGeneratingInstrsInBackwardSlice( 1130 cast<VPRecipeBase>(AddrDef)); 1131 } 1132 } 1133 } 1134 } 1135 } 1136 1137 void InnerLoopVectorizer::addMetadata(Instruction *To, 1138 Instruction *From) { 1139 propagateMetadata(To, From); 1140 addNewMetadata(To, From); 1141 } 1142 1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1144 Instruction *From) { 1145 for (Value *V : To) { 1146 if (Instruction *I = dyn_cast<Instruction>(V)) 1147 addMetadata(I, From); 1148 } 1149 } 1150 1151 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1152 const RecurrenceDescriptor &RdxDesc) { 1153 auto It = ReductionResumeValues.find(&RdxDesc); 1154 assert(It != ReductionResumeValues.end() && 1155 "Expected to find a resume value for the reduction."); 1156 return It->second; 1157 } 1158 1159 namespace llvm { 1160 1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1162 // lowered. 1163 enum ScalarEpilogueLowering { 1164 1165 // The default: allowing scalar epilogues. 1166 CM_ScalarEpilogueAllowed, 1167 1168 // Vectorization with OptForSize: don't allow epilogues. 1169 CM_ScalarEpilogueNotAllowedOptSize, 1170 1171 // A special case of vectorisation with OptForSize: loops with a very small 1172 // trip count are considered for vectorization under OptForSize, thereby 1173 // making sure the cost of their loop body is dominant, free of runtime 1174 // guards and scalar iteration overheads. 1175 CM_ScalarEpilogueNotAllowedLowTripLoop, 1176 1177 // Loop hint predicate indicating an epilogue is undesired. 1178 CM_ScalarEpilogueNotNeededUsePredicate, 1179 1180 // Directive indicating we must either tail fold or not vectorize 1181 CM_ScalarEpilogueNotAllowedUsePredicate 1182 }; 1183 1184 /// ElementCountComparator creates a total ordering for ElementCount 1185 /// for the purposes of using it in a set structure. 1186 struct ElementCountComparator { 1187 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1188 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1189 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1190 } 1191 }; 1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1193 1194 /// LoopVectorizationCostModel - estimates the expected speedups due to 1195 /// vectorization. 1196 /// In many cases vectorization is not profitable. This can happen because of 1197 /// a number of reasons. In this class we mainly attempt to predict the 1198 /// expected speedup/slowdowns due to the supported instruction set. We use the 1199 /// TargetTransformInfo to query the different backends for the cost of 1200 /// different operations. 1201 class LoopVectorizationCostModel { 1202 public: 1203 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1204 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1205 LoopVectorizationLegality *Legal, 1206 const TargetTransformInfo &TTI, 1207 const TargetLibraryInfo *TLI, DemandedBits *DB, 1208 AssumptionCache *AC, 1209 OptimizationRemarkEmitter *ORE, const Function *F, 1210 const LoopVectorizeHints *Hints, 1211 InterleavedAccessInfo &IAI) 1212 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1213 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1214 Hints(Hints), InterleaveInfo(IAI) {} 1215 1216 /// \return An upper bound for the vectorization factors (both fixed and 1217 /// scalable). If the factors are 0, vectorization and interleaving should be 1218 /// avoided up front. 1219 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1220 1221 /// \return True if runtime checks are required for vectorization, and false 1222 /// otherwise. 1223 bool runtimeChecksRequired(); 1224 1225 /// \return The most profitable vectorization factor and the cost of that VF. 1226 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1227 /// then this vectorization factor will be selected if vectorization is 1228 /// possible. 1229 VectorizationFactor 1230 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1231 1232 VectorizationFactor 1233 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1234 const LoopVectorizationPlanner &LVP); 1235 1236 /// Setup cost-based decisions for user vectorization factor. 1237 /// \return true if the UserVF is a feasible VF to be chosen. 1238 bool selectUserVectorizationFactor(ElementCount UserVF) { 1239 collectUniformsAndScalars(UserVF); 1240 collectInstsToScalarize(UserVF); 1241 return expectedCost(UserVF).first.isValid(); 1242 } 1243 1244 /// \return The size (in bits) of the smallest and widest types in the code 1245 /// that needs to be vectorized. We ignore values that remain scalar such as 1246 /// 64 bit loop indices. 1247 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1248 1249 /// \return The desired interleave count. 1250 /// If interleave count has been specified by metadata it will be returned. 1251 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1252 /// are the selected vectorization factor and the cost of the selected VF. 1253 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1254 1255 /// Memory access instruction may be vectorized in more than one way. 1256 /// Form of instruction after vectorization depends on cost. 1257 /// This function takes cost-based decisions for Load/Store instructions 1258 /// and collects them in a map. This decisions map is used for building 1259 /// the lists of loop-uniform and loop-scalar instructions. 1260 /// The calculated cost is saved with widening decision in order to 1261 /// avoid redundant calculations. 1262 void setCostBasedWideningDecision(ElementCount VF); 1263 1264 /// A struct that represents some properties of the register usage 1265 /// of a loop. 1266 struct RegisterUsage { 1267 /// Holds the number of loop invariant values that are used in the loop. 1268 /// The key is ClassID of target-provided register class. 1269 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1270 /// Holds the maximum number of concurrent live intervals in the loop. 1271 /// The key is ClassID of target-provided register class. 1272 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1273 }; 1274 1275 /// \return Returns information about the register usages of the loop for the 1276 /// given vectorization factors. 1277 SmallVector<RegisterUsage, 8> 1278 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1279 1280 /// Collect values we want to ignore in the cost model. 1281 void collectValuesToIgnore(); 1282 1283 /// Collect all element types in the loop for which widening is needed. 1284 void collectElementTypesForWidening(); 1285 1286 /// Split reductions into those that happen in the loop, and those that happen 1287 /// outside. In loop reductions are collected into InLoopReductionChains. 1288 void collectInLoopReductions(); 1289 1290 /// Returns true if we should use strict in-order reductions for the given 1291 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1292 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1293 /// of FP operations. 1294 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1295 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1296 } 1297 1298 /// \returns The smallest bitwidth each instruction can be represented with. 1299 /// The vector equivalents of these instructions should be truncated to this 1300 /// type. 1301 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1302 return MinBWs; 1303 } 1304 1305 /// \returns True if it is more profitable to scalarize instruction \p I for 1306 /// vectorization factor \p VF. 1307 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1308 assert(VF.isVector() && 1309 "Profitable to scalarize relevant only for VF > 1."); 1310 1311 // Cost model is not run in the VPlan-native path - return conservative 1312 // result until this changes. 1313 if (EnableVPlanNativePath) 1314 return false; 1315 1316 auto Scalars = InstsToScalarize.find(VF); 1317 assert(Scalars != InstsToScalarize.end() && 1318 "VF not yet analyzed for scalarization profitability"); 1319 return Scalars->second.find(I) != Scalars->second.end(); 1320 } 1321 1322 /// Returns true if \p I is known to be uniform after vectorization. 1323 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1324 if (VF.isScalar()) 1325 return true; 1326 1327 // Cost model is not run in the VPlan-native path - return conservative 1328 // result until this changes. 1329 if (EnableVPlanNativePath) 1330 return false; 1331 1332 auto UniformsPerVF = Uniforms.find(VF); 1333 assert(UniformsPerVF != Uniforms.end() && 1334 "VF not yet analyzed for uniformity"); 1335 return UniformsPerVF->second.count(I); 1336 } 1337 1338 /// Returns true if \p I is known to be scalar after vectorization. 1339 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1340 if (VF.isScalar()) 1341 return true; 1342 1343 // Cost model is not run in the VPlan-native path - return conservative 1344 // result until this changes. 1345 if (EnableVPlanNativePath) 1346 return false; 1347 1348 auto ScalarsPerVF = Scalars.find(VF); 1349 assert(ScalarsPerVF != Scalars.end() && 1350 "Scalar values are not calculated for VF"); 1351 return ScalarsPerVF->second.count(I); 1352 } 1353 1354 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1355 /// for vectorization factor \p VF. 1356 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1357 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1358 !isProfitableToScalarize(I, VF) && 1359 !isScalarAfterVectorization(I, VF); 1360 } 1361 1362 /// Decision that was taken during cost calculation for memory instruction. 1363 enum InstWidening { 1364 CM_Unknown, 1365 CM_Widen, // For consecutive accesses with stride +1. 1366 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1367 CM_Interleave, 1368 CM_GatherScatter, 1369 CM_Scalarize 1370 }; 1371 1372 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1373 /// instruction \p I and vector width \p VF. 1374 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1375 InstructionCost Cost) { 1376 assert(VF.isVector() && "Expected VF >=2"); 1377 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1378 } 1379 1380 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1381 /// interleaving group \p Grp and vector width \p VF. 1382 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1383 ElementCount VF, InstWidening W, 1384 InstructionCost Cost) { 1385 assert(VF.isVector() && "Expected VF >=2"); 1386 /// Broadcast this decicion to all instructions inside the group. 1387 /// But the cost will be assigned to one instruction only. 1388 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1389 if (auto *I = Grp->getMember(i)) { 1390 if (Grp->getInsertPos() == I) 1391 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1392 else 1393 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1394 } 1395 } 1396 } 1397 1398 /// Return the cost model decision for the given instruction \p I and vector 1399 /// width \p VF. Return CM_Unknown if this instruction did not pass 1400 /// through the cost modeling. 1401 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1402 assert(VF.isVector() && "Expected VF to be a vector VF"); 1403 // Cost model is not run in the VPlan-native path - return conservative 1404 // result until this changes. 1405 if (EnableVPlanNativePath) 1406 return CM_GatherScatter; 1407 1408 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1409 auto Itr = WideningDecisions.find(InstOnVF); 1410 if (Itr == WideningDecisions.end()) 1411 return CM_Unknown; 1412 return Itr->second.first; 1413 } 1414 1415 /// Return the vectorization cost for the given instruction \p I and vector 1416 /// width \p VF. 1417 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1418 assert(VF.isVector() && "Expected VF >=2"); 1419 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1420 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1421 "The cost is not calculated"); 1422 return WideningDecisions[InstOnVF].second; 1423 } 1424 1425 /// Return True if instruction \p I is an optimizable truncate whose operand 1426 /// is an induction variable. Such a truncate will be removed by adding a new 1427 /// induction variable with the destination type. 1428 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1429 // If the instruction is not a truncate, return false. 1430 auto *Trunc = dyn_cast<TruncInst>(I); 1431 if (!Trunc) 1432 return false; 1433 1434 // Get the source and destination types of the truncate. 1435 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1436 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1437 1438 // If the truncate is free for the given types, return false. Replacing a 1439 // free truncate with an induction variable would add an induction variable 1440 // update instruction to each iteration of the loop. We exclude from this 1441 // check the primary induction variable since it will need an update 1442 // instruction regardless. 1443 Value *Op = Trunc->getOperand(0); 1444 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1445 return false; 1446 1447 // If the truncated value is not an induction variable, return false. 1448 return Legal->isInductionPhi(Op); 1449 } 1450 1451 /// Collects the instructions to scalarize for each predicated instruction in 1452 /// the loop. 1453 void collectInstsToScalarize(ElementCount VF); 1454 1455 /// Collect Uniform and Scalar values for the given \p VF. 1456 /// The sets depend on CM decision for Load/Store instructions 1457 /// that may be vectorized as interleave, gather-scatter or scalarized. 1458 void collectUniformsAndScalars(ElementCount VF) { 1459 // Do the analysis once. 1460 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1461 return; 1462 setCostBasedWideningDecision(VF); 1463 collectLoopUniforms(VF); 1464 collectLoopScalars(VF); 1465 } 1466 1467 /// Returns true if the target machine supports masked store operation 1468 /// for the given \p DataType and kind of access to \p Ptr. 1469 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1470 return Legal->isConsecutivePtr(DataType, Ptr) && 1471 TTI.isLegalMaskedStore(DataType, Alignment); 1472 } 1473 1474 /// Returns true if the target machine supports masked load operation 1475 /// for the given \p DataType and kind of access to \p Ptr. 1476 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1477 return Legal->isConsecutivePtr(DataType, Ptr) && 1478 TTI.isLegalMaskedLoad(DataType, Alignment); 1479 } 1480 1481 /// Returns true if the target machine can represent \p V as a masked gather 1482 /// or scatter operation. 1483 bool isLegalGatherOrScatter(Value *V, 1484 ElementCount VF = ElementCount::getFixed(1)) { 1485 bool LI = isa<LoadInst>(V); 1486 bool SI = isa<StoreInst>(V); 1487 if (!LI && !SI) 1488 return false; 1489 auto *Ty = getLoadStoreType(V); 1490 Align Align = getLoadStoreAlignment(V); 1491 if (VF.isVector()) 1492 Ty = VectorType::get(Ty, VF); 1493 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1494 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1495 } 1496 1497 /// Returns true if the target machine supports all of the reduction 1498 /// variables found for the given VF. 1499 bool canVectorizeReductions(ElementCount VF) const { 1500 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1501 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1502 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1503 })); 1504 } 1505 1506 /// Returns true if \p I is an instruction that will be scalarized with 1507 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1508 /// instructions include conditional stores and instructions that may divide 1509 /// by zero. 1510 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1511 1512 // Returns true if \p I is an instruction that will be predicated either 1513 // through scalar predication or masked load/store or masked gather/scatter. 1514 // \p VF is the vectorization factor that will be used to vectorize \p I. 1515 // Superset of instructions that return true for isScalarWithPredication. 1516 bool isPredicatedInst(Instruction *I, ElementCount VF, 1517 bool IsKnownUniform = false) { 1518 // When we know the load is uniform and the original scalar loop was not 1519 // predicated we don't need to mark it as a predicated instruction. Any 1520 // vectorised blocks created when tail-folding are something artificial we 1521 // have introduced and we know there is always at least one active lane. 1522 // That's why we call Legal->blockNeedsPredication here because it doesn't 1523 // query tail-folding. 1524 if (IsKnownUniform && isa<LoadInst>(I) && 1525 !Legal->blockNeedsPredication(I->getParent())) 1526 return false; 1527 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1528 return false; 1529 // Loads and stores that need some form of masked operation are predicated 1530 // instructions. 1531 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1532 return Legal->isMaskRequired(I); 1533 return isScalarWithPredication(I, VF); 1534 } 1535 1536 /// Returns true if \p I is a memory instruction with consecutive memory 1537 /// access that can be widened. 1538 bool 1539 memoryInstructionCanBeWidened(Instruction *I, 1540 ElementCount VF = ElementCount::getFixed(1)); 1541 1542 /// Returns true if \p I is a memory instruction in an interleaved-group 1543 /// of memory accesses that can be vectorized with wide vector loads/stores 1544 /// and shuffles. 1545 bool 1546 interleavedAccessCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Check if \p Instr belongs to any interleaved access group. 1550 bool isAccessInterleaved(Instruction *Instr) { 1551 return InterleaveInfo.isInterleaved(Instr); 1552 } 1553 1554 /// Get the interleaved access group that \p Instr belongs to. 1555 const InterleaveGroup<Instruction> * 1556 getInterleavedAccessGroup(Instruction *Instr) { 1557 return InterleaveInfo.getInterleaveGroup(Instr); 1558 } 1559 1560 /// Returns true if we're required to use a scalar epilogue for at least 1561 /// the final iteration of the original loop. 1562 bool requiresScalarEpilogue(ElementCount VF) const { 1563 if (!isScalarEpilogueAllowed()) 1564 return false; 1565 // If we might exit from anywhere but the latch, must run the exiting 1566 // iteration in scalar form. 1567 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1568 return true; 1569 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1570 } 1571 1572 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1573 /// loop hint annotation. 1574 bool isScalarEpilogueAllowed() const { 1575 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1576 } 1577 1578 /// Returns true if all loop blocks should be masked to fold tail loop. 1579 bool foldTailByMasking() const { return FoldTailByMasking; } 1580 1581 /// Returns true if the instructions in this block requires predication 1582 /// for any reason, e.g. because tail folding now requires a predicate 1583 /// or because the block in the original loop was predicated. 1584 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1585 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1586 } 1587 1588 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1589 /// nodes to the chain of instructions representing the reductions. Uses a 1590 /// MapVector to ensure deterministic iteration order. 1591 using ReductionChainMap = 1592 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1593 1594 /// Return the chain of instructions representing an inloop reduction. 1595 const ReductionChainMap &getInLoopReductionChains() const { 1596 return InLoopReductionChains; 1597 } 1598 1599 /// Returns true if the Phi is part of an inloop reduction. 1600 bool isInLoopReduction(PHINode *Phi) const { 1601 return InLoopReductionChains.count(Phi); 1602 } 1603 1604 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1605 /// with factor VF. Return the cost of the instruction, including 1606 /// scalarization overhead if it's needed. 1607 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1608 1609 /// Estimate cost of a call instruction CI if it were vectorized with factor 1610 /// VF. Return the cost of the instruction, including scalarization overhead 1611 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1612 /// scalarized - 1613 /// i.e. either vector version isn't available, or is too expensive. 1614 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1615 bool &NeedToScalarize) const; 1616 1617 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1618 /// that of B. 1619 bool isMoreProfitable(const VectorizationFactor &A, 1620 const VectorizationFactor &B) const; 1621 1622 /// Invalidates decisions already taken by the cost model. 1623 void invalidateCostModelingDecisions() { 1624 WideningDecisions.clear(); 1625 Uniforms.clear(); 1626 Scalars.clear(); 1627 } 1628 1629 private: 1630 unsigned NumPredStores = 0; 1631 1632 /// Convenience function that returns the value of vscale_range iff 1633 /// vscale_range.min == vscale_range.max or otherwise returns the value 1634 /// returned by the corresponding TLI method. 1635 Optional<unsigned> getVScaleForTuning() const; 1636 1637 /// \return An upper bound for the vectorization factors for both 1638 /// fixed and scalable vectorization, where the minimum-known number of 1639 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1640 /// disabled or unsupported, then the scalable part will be equal to 1641 /// ElementCount::getScalable(0). 1642 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1643 ElementCount UserVF, 1644 bool FoldTailByMasking); 1645 1646 /// \return the maximized element count based on the targets vector 1647 /// registers and the loop trip-count, but limited to a maximum safe VF. 1648 /// This is a helper function of computeFeasibleMaxVF. 1649 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1650 unsigned SmallestType, 1651 unsigned WidestType, 1652 ElementCount MaxSafeVF, 1653 bool FoldTailByMasking); 1654 1655 /// \return the maximum legal scalable VF, based on the safe max number 1656 /// of elements. 1657 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1658 1659 /// The vectorization cost is a combination of the cost itself and a boolean 1660 /// indicating whether any of the contributing operations will actually 1661 /// operate on vector values after type legalization in the backend. If this 1662 /// latter value is false, then all operations will be scalarized (i.e. no 1663 /// vectorization has actually taken place). 1664 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1665 1666 /// Returns the expected execution cost. The unit of the cost does 1667 /// not matter because we use the 'cost' units to compare different 1668 /// vector widths. The cost that is returned is *not* normalized by 1669 /// the factor width. If \p Invalid is not nullptr, this function 1670 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1671 /// each instruction that has an Invalid cost for the given VF. 1672 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1673 VectorizationCostTy 1674 expectedCost(ElementCount VF, 1675 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1676 1677 /// Returns the execution time cost of an instruction for a given vector 1678 /// width. Vector width of one means scalar. 1679 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1680 1681 /// The cost-computation logic from getInstructionCost which provides 1682 /// the vector type as an output parameter. 1683 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1684 Type *&VectorTy); 1685 1686 /// Return the cost of instructions in an inloop reduction pattern, if I is 1687 /// part of that pattern. 1688 Optional<InstructionCost> 1689 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1690 TTI::TargetCostKind CostKind); 1691 1692 /// Calculate vectorization cost of memory instruction \p I. 1693 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for scalarized memory instruction. 1696 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for interleaving group of memory instructions. 1699 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for Gather/Scatter instruction. 1702 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for widening instruction \p I with consecutive 1705 /// memory access. 1706 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1709 /// Load: scalar load + broadcast. 1710 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1711 /// element) 1712 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1713 1714 /// Estimate the overhead of scalarizing an instruction. This is a 1715 /// convenience wrapper for the type-based getScalarizationOverhead API. 1716 InstructionCost getScalarizationOverhead(Instruction *I, 1717 ElementCount VF) const; 1718 1719 /// Returns whether the instruction is a load or store and will be a emitted 1720 /// as a vector operation. 1721 bool isConsecutiveLoadOrStore(Instruction *I); 1722 1723 /// Returns true if an artificially high cost for emulated masked memrefs 1724 /// should be used. 1725 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1726 1727 /// Map of scalar integer values to the smallest bitwidth they can be legally 1728 /// represented as. The vector equivalents of these values should be truncated 1729 /// to this type. 1730 MapVector<Instruction *, uint64_t> MinBWs; 1731 1732 /// A type representing the costs for instructions if they were to be 1733 /// scalarized rather than vectorized. The entries are Instruction-Cost 1734 /// pairs. 1735 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1736 1737 /// A set containing all BasicBlocks that are known to present after 1738 /// vectorization as a predicated block. 1739 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1740 1741 /// Records whether it is allowed to have the original scalar loop execute at 1742 /// least once. This may be needed as a fallback loop in case runtime 1743 /// aliasing/dependence checks fail, or to handle the tail/remainder 1744 /// iterations when the trip count is unknown or doesn't divide by the VF, 1745 /// or as a peel-loop to handle gaps in interleave-groups. 1746 /// Under optsize and when the trip count is very small we don't allow any 1747 /// iterations to execute in the scalar loop. 1748 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1749 1750 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1751 bool FoldTailByMasking = false; 1752 1753 /// A map holding scalar costs for different vectorization factors. The 1754 /// presence of a cost for an instruction in the mapping indicates that the 1755 /// instruction will be scalarized when vectorizing with the associated 1756 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1757 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1758 1759 /// Holds the instructions known to be uniform after vectorization. 1760 /// The data is collected per VF. 1761 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1762 1763 /// Holds the instructions known to be scalar after vectorization. 1764 /// The data is collected per VF. 1765 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1766 1767 /// Holds the instructions (address computations) that are forced to be 1768 /// scalarized. 1769 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1770 1771 /// PHINodes of the reductions that should be expanded in-loop along with 1772 /// their associated chains of reduction operations, in program order from top 1773 /// (PHI) to bottom 1774 ReductionChainMap InLoopReductionChains; 1775 1776 /// A Map of inloop reduction operations and their immediate chain operand. 1777 /// FIXME: This can be removed once reductions can be costed correctly in 1778 /// vplan. This was added to allow quick lookup to the inloop operations, 1779 /// without having to loop through InLoopReductionChains. 1780 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1781 1782 /// Returns the expected difference in cost from scalarizing the expression 1783 /// feeding a predicated instruction \p PredInst. The instructions to 1784 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1785 /// non-negative return value implies the expression will be scalarized. 1786 /// Currently, only single-use chains are considered for scalarization. 1787 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1788 ElementCount VF); 1789 1790 /// Collect the instructions that are uniform after vectorization. An 1791 /// instruction is uniform if we represent it with a single scalar value in 1792 /// the vectorized loop corresponding to each vector iteration. Examples of 1793 /// uniform instructions include pointer operands of consecutive or 1794 /// interleaved memory accesses. Note that although uniformity implies an 1795 /// instruction will be scalar, the reverse is not true. In general, a 1796 /// scalarized instruction will be represented by VF scalar values in the 1797 /// vectorized loop, each corresponding to an iteration of the original 1798 /// scalar loop. 1799 void collectLoopUniforms(ElementCount VF); 1800 1801 /// Collect the instructions that are scalar after vectorization. An 1802 /// instruction is scalar if it is known to be uniform or will be scalarized 1803 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1804 /// to the list if they are used by a load/store instruction that is marked as 1805 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1806 /// VF values in the vectorized loop, each corresponding to an iteration of 1807 /// the original scalar loop. 1808 void collectLoopScalars(ElementCount VF); 1809 1810 /// Keeps cost model vectorization decision and cost for instructions. 1811 /// Right now it is used for memory instructions only. 1812 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1813 std::pair<InstWidening, InstructionCost>>; 1814 1815 DecisionList WideningDecisions; 1816 1817 /// Returns true if \p V is expected to be vectorized and it needs to be 1818 /// extracted. 1819 bool needsExtract(Value *V, ElementCount VF) const { 1820 Instruction *I = dyn_cast<Instruction>(V); 1821 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1822 TheLoop->isLoopInvariant(I)) 1823 return false; 1824 1825 // Assume we can vectorize V (and hence we need extraction) if the 1826 // scalars are not computed yet. This can happen, because it is called 1827 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1828 // the scalars are collected. That should be a safe assumption in most 1829 // cases, because we check if the operands have vectorizable types 1830 // beforehand in LoopVectorizationLegality. 1831 return Scalars.find(VF) == Scalars.end() || 1832 !isScalarAfterVectorization(I, VF); 1833 }; 1834 1835 /// Returns a range containing only operands needing to be extracted. 1836 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1837 ElementCount VF) const { 1838 return SmallVector<Value *, 4>(make_filter_range( 1839 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1840 } 1841 1842 /// Determines if we have the infrastructure to vectorize loop \p L and its 1843 /// epilogue, assuming the main loop is vectorized by \p VF. 1844 bool isCandidateForEpilogueVectorization(const Loop &L, 1845 const ElementCount VF) const; 1846 1847 /// Returns true if epilogue vectorization is considered profitable, and 1848 /// false otherwise. 1849 /// \p VF is the vectorization factor chosen for the original loop. 1850 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1851 1852 public: 1853 /// The loop that we evaluate. 1854 Loop *TheLoop; 1855 1856 /// Predicated scalar evolution analysis. 1857 PredicatedScalarEvolution &PSE; 1858 1859 /// Loop Info analysis. 1860 LoopInfo *LI; 1861 1862 /// Vectorization legality. 1863 LoopVectorizationLegality *Legal; 1864 1865 /// Vector target information. 1866 const TargetTransformInfo &TTI; 1867 1868 /// Target Library Info. 1869 const TargetLibraryInfo *TLI; 1870 1871 /// Demanded bits analysis. 1872 DemandedBits *DB; 1873 1874 /// Assumption cache. 1875 AssumptionCache *AC; 1876 1877 /// Interface to emit optimization remarks. 1878 OptimizationRemarkEmitter *ORE; 1879 1880 const Function *TheFunction; 1881 1882 /// Loop Vectorize Hint. 1883 const LoopVectorizeHints *Hints; 1884 1885 /// The interleave access information contains groups of interleaved accesses 1886 /// with the same stride and close to each other. 1887 InterleavedAccessInfo &InterleaveInfo; 1888 1889 /// Values to ignore in the cost model. 1890 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1891 1892 /// Values to ignore in the cost model when VF > 1. 1893 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1894 1895 /// All element types found in the loop. 1896 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1897 1898 /// Profitable vector factors. 1899 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1900 }; 1901 } // end namespace llvm 1902 1903 /// Helper struct to manage generating runtime checks for vectorization. 1904 /// 1905 /// The runtime checks are created up-front in temporary blocks to allow better 1906 /// estimating the cost and un-linked from the existing IR. After deciding to 1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1908 /// temporary blocks are completely removed. 1909 class GeneratedRTChecks { 1910 /// Basic block which contains the generated SCEV checks, if any. 1911 BasicBlock *SCEVCheckBlock = nullptr; 1912 1913 /// The value representing the result of the generated SCEV checks. If it is 1914 /// nullptr, either no SCEV checks have been generated or they have been used. 1915 Value *SCEVCheckCond = nullptr; 1916 1917 /// Basic block which contains the generated memory runtime checks, if any. 1918 BasicBlock *MemCheckBlock = nullptr; 1919 1920 /// The value representing the result of the generated memory runtime checks. 1921 /// If it is nullptr, either no memory runtime checks have been generated or 1922 /// they have been used. 1923 Value *MemRuntimeCheckCond = nullptr; 1924 1925 DominatorTree *DT; 1926 LoopInfo *LI; 1927 1928 SCEVExpander SCEVExp; 1929 SCEVExpander MemCheckExp; 1930 1931 public: 1932 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1933 const DataLayout &DL) 1934 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1935 MemCheckExp(SE, DL, "scev.check") {} 1936 1937 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1938 /// accurately estimate the cost of the runtime checks. The blocks are 1939 /// un-linked from the IR and is added back during vector code generation. If 1940 /// there is no vector code generation, the check blocks are removed 1941 /// completely. 1942 void Create(Loop *L, const LoopAccessInfo &LAI, 1943 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1944 1945 BasicBlock *LoopHeader = L->getHeader(); 1946 BasicBlock *Preheader = L->getLoopPreheader(); 1947 1948 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1949 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1950 // may be used by SCEVExpander. The blocks will be un-linked from their 1951 // predecessors and removed from LI & DT at the end of the function. 1952 if (!UnionPred.isAlwaysTrue()) { 1953 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1954 nullptr, "vector.scevcheck"); 1955 1956 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1957 &UnionPred, SCEVCheckBlock->getTerminator()); 1958 } 1959 1960 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1961 if (RtPtrChecking.Need) { 1962 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1963 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1964 "vector.memcheck"); 1965 1966 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1967 if (DiffChecks) { 1968 MemRuntimeCheckCond = addDiffRuntimeChecks( 1969 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1970 [VF](IRBuilderBase &B, unsigned Bits) { 1971 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 1972 }, 1973 IC); 1974 } else { 1975 MemRuntimeCheckCond = 1976 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1977 RtPtrChecking.getChecks(), MemCheckExp); 1978 } 1979 assert(MemRuntimeCheckCond && 1980 "no RT checks generated although RtPtrChecking " 1981 "claimed checks are required"); 1982 } 1983 1984 if (!MemCheckBlock && !SCEVCheckBlock) 1985 return; 1986 1987 // Unhook the temporary block with the checks, update various places 1988 // accordingly. 1989 if (SCEVCheckBlock) 1990 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1991 if (MemCheckBlock) 1992 MemCheckBlock->replaceAllUsesWith(Preheader); 1993 1994 if (SCEVCheckBlock) { 1995 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1996 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1997 Preheader->getTerminator()->eraseFromParent(); 1998 } 1999 if (MemCheckBlock) { 2000 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2001 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2002 Preheader->getTerminator()->eraseFromParent(); 2003 } 2004 2005 DT->changeImmediateDominator(LoopHeader, Preheader); 2006 if (MemCheckBlock) { 2007 DT->eraseNode(MemCheckBlock); 2008 LI->removeBlock(MemCheckBlock); 2009 } 2010 if (SCEVCheckBlock) { 2011 DT->eraseNode(SCEVCheckBlock); 2012 LI->removeBlock(SCEVCheckBlock); 2013 } 2014 } 2015 2016 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2017 /// unused. 2018 ~GeneratedRTChecks() { 2019 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2020 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2021 if (!SCEVCheckCond) 2022 SCEVCleaner.markResultUsed(); 2023 2024 if (!MemRuntimeCheckCond) 2025 MemCheckCleaner.markResultUsed(); 2026 2027 if (MemRuntimeCheckCond) { 2028 auto &SE = *MemCheckExp.getSE(); 2029 // Memory runtime check generation creates compares that use expanded 2030 // values. Remove them before running the SCEVExpanderCleaners. 2031 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2032 if (MemCheckExp.isInsertedInstruction(&I)) 2033 continue; 2034 SE.forgetValue(&I); 2035 I.eraseFromParent(); 2036 } 2037 } 2038 MemCheckCleaner.cleanup(); 2039 SCEVCleaner.cleanup(); 2040 2041 if (SCEVCheckCond) 2042 SCEVCheckBlock->eraseFromParent(); 2043 if (MemRuntimeCheckCond) 2044 MemCheckBlock->eraseFromParent(); 2045 } 2046 2047 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2048 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2049 /// depending on the generated condition. 2050 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2051 BasicBlock *LoopVectorPreHeader, 2052 BasicBlock *LoopExitBlock) { 2053 if (!SCEVCheckCond) 2054 return nullptr; 2055 2056 Value *Cond = SCEVCheckCond; 2057 // Mark the check as used, to prevent it from being removed during cleanup. 2058 SCEVCheckCond = nullptr; 2059 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2060 if (C->isZero()) 2061 return nullptr; 2062 2063 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2064 2065 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2066 // Create new preheader for vector loop. 2067 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2068 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2069 2070 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2071 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2072 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2073 SCEVCheckBlock); 2074 2075 DT->addNewBlock(SCEVCheckBlock, Pred); 2076 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2077 2078 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2079 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2080 return SCEVCheckBlock; 2081 } 2082 2083 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2084 /// the branches to branch to the vector preheader or \p Bypass, depending on 2085 /// the generated condition. 2086 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2087 BasicBlock *LoopVectorPreHeader) { 2088 // Check if we generated code that checks in runtime if arrays overlap. 2089 if (!MemRuntimeCheckCond) 2090 return nullptr; 2091 2092 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2093 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2094 MemCheckBlock); 2095 2096 DT->addNewBlock(MemCheckBlock, Pred); 2097 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2098 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2099 2100 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2101 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2102 2103 ReplaceInstWithInst( 2104 MemCheckBlock->getTerminator(), 2105 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2106 MemCheckBlock->getTerminator()->setDebugLoc( 2107 Pred->getTerminator()->getDebugLoc()); 2108 2109 // Mark the check as used, to prevent it from being removed during cleanup. 2110 MemRuntimeCheckCond = nullptr; 2111 return MemCheckBlock; 2112 } 2113 }; 2114 2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2116 // vectorization. The loop needs to be annotated with #pragma omp simd 2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2118 // vector length information is not provided, vectorization is not considered 2119 // explicit. Interleave hints are not allowed either. These limitations will be 2120 // relaxed in the future. 2121 // Please, note that we are currently forced to abuse the pragma 'clang 2122 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2124 // provides *explicit vectorization hints* (LV can bypass legal checks and 2125 // assume that vectorization is legal). However, both hints are implemented 2126 // using the same metadata (llvm.loop.vectorize, processed by 2127 // LoopVectorizeHints). This will be fixed in the future when the native IR 2128 // representation for pragma 'omp simd' is introduced. 2129 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2130 OptimizationRemarkEmitter *ORE) { 2131 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2132 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2133 2134 // Only outer loops with an explicit vectorization hint are supported. 2135 // Unannotated outer loops are ignored. 2136 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2137 return false; 2138 2139 Function *Fn = OuterLp->getHeader()->getParent(); 2140 if (!Hints.allowVectorization(Fn, OuterLp, 2141 true /*VectorizeOnlyWhenForced*/)) { 2142 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2143 return false; 2144 } 2145 2146 if (Hints.getInterleave() > 1) { 2147 // TODO: Interleave support is future work. 2148 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2149 "outer loops.\n"); 2150 Hints.emitRemarkWithHints(); 2151 return false; 2152 } 2153 2154 return true; 2155 } 2156 2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2158 OptimizationRemarkEmitter *ORE, 2159 SmallVectorImpl<Loop *> &V) { 2160 // Collect inner loops and outer loops without irreducible control flow. For 2161 // now, only collect outer loops that have explicit vectorization hints. If we 2162 // are stress testing the VPlan H-CFG construction, we collect the outermost 2163 // loop of every loop nest. 2164 if (L.isInnermost() || VPlanBuildStressTest || 2165 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2166 LoopBlocksRPO RPOT(&L); 2167 RPOT.perform(LI); 2168 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2169 V.push_back(&L); 2170 // TODO: Collect inner loops inside marked outer loops in case 2171 // vectorization fails for the outer loop. Do not invoke 2172 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2173 // already known to be reducible. We can use an inherited attribute for 2174 // that. 2175 return; 2176 } 2177 } 2178 for (Loop *InnerL : L) 2179 collectSupportedLoops(*InnerL, LI, ORE, V); 2180 } 2181 2182 namespace { 2183 2184 /// The LoopVectorize Pass. 2185 struct LoopVectorize : public FunctionPass { 2186 /// Pass identification, replacement for typeid 2187 static char ID; 2188 2189 LoopVectorizePass Impl; 2190 2191 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2192 bool VectorizeOnlyWhenForced = false) 2193 : FunctionPass(ID), 2194 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2195 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2196 } 2197 2198 bool runOnFunction(Function &F) override { 2199 if (skipFunction(F)) 2200 return false; 2201 2202 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2203 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2204 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2205 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2206 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2207 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2208 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2209 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2210 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2211 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2212 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2213 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2214 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2215 2216 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2217 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2218 2219 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2220 GetLAA, *ORE, PSI).MadeAnyChange; 2221 } 2222 2223 void getAnalysisUsage(AnalysisUsage &AU) const override { 2224 AU.addRequired<AssumptionCacheTracker>(); 2225 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2226 AU.addRequired<DominatorTreeWrapperPass>(); 2227 AU.addRequired<LoopInfoWrapperPass>(); 2228 AU.addRequired<ScalarEvolutionWrapperPass>(); 2229 AU.addRequired<TargetTransformInfoWrapperPass>(); 2230 AU.addRequired<AAResultsWrapperPass>(); 2231 AU.addRequired<LoopAccessLegacyAnalysis>(); 2232 AU.addRequired<DemandedBitsWrapperPass>(); 2233 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2234 AU.addRequired<InjectTLIMappingsLegacy>(); 2235 2236 // We currently do not preserve loopinfo/dominator analyses with outer loop 2237 // vectorization. Until this is addressed, mark these analyses as preserved 2238 // only for non-VPlan-native path. 2239 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2240 if (!EnableVPlanNativePath) { 2241 AU.addPreserved<LoopInfoWrapperPass>(); 2242 AU.addPreserved<DominatorTreeWrapperPass>(); 2243 } 2244 2245 AU.addPreserved<BasicAAWrapperPass>(); 2246 AU.addPreserved<GlobalsAAWrapperPass>(); 2247 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2248 } 2249 }; 2250 2251 } // end anonymous namespace 2252 2253 //===----------------------------------------------------------------------===// 2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2255 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2256 //===----------------------------------------------------------------------===// 2257 2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2259 // We need to place the broadcast of invariant variables outside the loop, 2260 // but only if it's proven safe to do so. Else, broadcast will be inside 2261 // vector loop body. 2262 Instruction *Instr = dyn_cast<Instruction>(V); 2263 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2264 (!Instr || 2265 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2266 // Place the code for broadcasting invariant variables in the new preheader. 2267 IRBuilder<>::InsertPointGuard Guard(Builder); 2268 if (SafeToHoist) 2269 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2270 2271 // Broadcast the scalar into all locations in the vector. 2272 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2273 2274 return Shuf; 2275 } 2276 2277 /// This function adds 2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2279 /// to each vector element of Val. The sequence starts at StartIndex. 2280 /// \p Opcode is relevant for FP induction variable. 2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2282 Instruction::BinaryOps BinOp, ElementCount VF, 2283 IRBuilderBase &Builder) { 2284 assert(VF.isVector() && "only vector VFs are supported"); 2285 2286 // Create and check the types. 2287 auto *ValVTy = cast<VectorType>(Val->getType()); 2288 ElementCount VLen = ValVTy->getElementCount(); 2289 2290 Type *STy = Val->getType()->getScalarType(); 2291 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2292 "Induction Step must be an integer or FP"); 2293 assert(Step->getType() == STy && "Step has wrong type"); 2294 2295 SmallVector<Constant *, 8> Indices; 2296 2297 // Create a vector of consecutive numbers from zero to VF. 2298 VectorType *InitVecValVTy = ValVTy; 2299 if (STy->isFloatingPointTy()) { 2300 Type *InitVecValSTy = 2301 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2302 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2303 } 2304 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2305 2306 // Splat the StartIdx 2307 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2308 2309 if (STy->isIntegerTy()) { 2310 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2311 Step = Builder.CreateVectorSplat(VLen, Step); 2312 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2313 // FIXME: The newly created binary instructions should contain nsw/nuw 2314 // flags, which can be found from the original scalar operations. 2315 Step = Builder.CreateMul(InitVec, Step); 2316 return Builder.CreateAdd(Val, Step, "induction"); 2317 } 2318 2319 // Floating point induction. 2320 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2321 "Binary Opcode should be specified for FP induction"); 2322 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2323 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2324 2325 Step = Builder.CreateVectorSplat(VLen, Step); 2326 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2327 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2328 } 2329 2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2331 /// variable on which to base the steps, \p Step is the size of the step. 2332 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2333 const InductionDescriptor &ID, VPValue *Def, 2334 VPTransformState &State) { 2335 IRBuilderBase &Builder = State.Builder; 2336 // We shouldn't have to build scalar steps if we aren't vectorizing. 2337 assert(State.VF.isVector() && "VF should be greater than one"); 2338 // Get the value type and ensure it and the step have the same integer type. 2339 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2340 assert(ScalarIVTy == Step->getType() && 2341 "Val and Step should have the same type"); 2342 2343 // We build scalar steps for both integer and floating-point induction 2344 // variables. Here, we determine the kind of arithmetic we will perform. 2345 Instruction::BinaryOps AddOp; 2346 Instruction::BinaryOps MulOp; 2347 if (ScalarIVTy->isIntegerTy()) { 2348 AddOp = Instruction::Add; 2349 MulOp = Instruction::Mul; 2350 } else { 2351 AddOp = ID.getInductionOpcode(); 2352 MulOp = Instruction::FMul; 2353 } 2354 2355 // Determine the number of scalars we need to generate for each unroll 2356 // iteration. 2357 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2358 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2359 // Compute the scalar steps and save the results in State. 2360 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2361 ScalarIVTy->getScalarSizeInBits()); 2362 Type *VecIVTy = nullptr; 2363 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2364 if (!FirstLaneOnly && State.VF.isScalable()) { 2365 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2366 UnitStepVec = 2367 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2368 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2369 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2370 } 2371 2372 for (unsigned Part = 0; Part < State.UF; ++Part) { 2373 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2374 2375 if (!FirstLaneOnly && State.VF.isScalable()) { 2376 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2377 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2378 if (ScalarIVTy->isFloatingPointTy()) 2379 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2380 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2381 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2382 State.set(Def, Add, Part); 2383 // It's useful to record the lane values too for the known minimum number 2384 // of elements so we do those below. This improves the code quality when 2385 // trying to extract the first element, for example. 2386 } 2387 2388 if (ScalarIVTy->isFloatingPointTy()) 2389 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2390 2391 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2392 Value *StartIdx = Builder.CreateBinOp( 2393 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2394 // The step returned by `createStepForVF` is a runtime-evaluated value 2395 // when VF is scalable. Otherwise, it should be folded into a Constant. 2396 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2397 "Expected StartIdx to be folded to a constant when VF is not " 2398 "scalable"); 2399 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2400 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2401 State.set(Def, Add, VPIteration(Part, Lane)); 2402 } 2403 } 2404 } 2405 2406 // Generate code for the induction step. Note that induction steps are 2407 // required to be loop-invariant 2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2409 Instruction *InsertBefore, 2410 Loop *OrigLoop = nullptr) { 2411 const DataLayout &DL = SE.getDataLayout(); 2412 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2413 "Induction step should be loop invariant"); 2414 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2415 return E->getValue(); 2416 2417 SCEVExpander Exp(SE, DL, "induction"); 2418 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2419 } 2420 2421 /// Compute the transformed value of Index at offset StartValue using step 2422 /// StepValue. 2423 /// For integer induction, returns StartValue + Index * StepValue. 2424 /// For pointer induction, returns StartValue[Index * StepValue]. 2425 /// FIXME: The newly created binary instructions should contain nsw/nuw 2426 /// flags, which can be found from the original scalar operations. 2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2428 Value *StartValue, Value *Step, 2429 const InductionDescriptor &ID) { 2430 assert(Index->getType()->getScalarType() == Step->getType() && 2431 "Index scalar type does not match StepValue type"); 2432 2433 // Note: the IR at this point is broken. We cannot use SE to create any new 2434 // SCEV and then expand it, hoping that SCEV's simplification will give us 2435 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2436 // lead to various SCEV crashes. So all we can do is to use builder and rely 2437 // on InstCombine for future simplifications. Here we handle some trivial 2438 // cases only. 2439 auto CreateAdd = [&B](Value *X, Value *Y) { 2440 assert(X->getType() == Y->getType() && "Types don't match!"); 2441 if (auto *CX = dyn_cast<ConstantInt>(X)) 2442 if (CX->isZero()) 2443 return Y; 2444 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2445 if (CY->isZero()) 2446 return X; 2447 return B.CreateAdd(X, Y); 2448 }; 2449 2450 // We allow X to be a vector type, in which case Y will potentially be 2451 // splatted into a vector with the same element count. 2452 auto CreateMul = [&B](Value *X, Value *Y) { 2453 assert(X->getType()->getScalarType() == Y->getType() && 2454 "Types don't match!"); 2455 if (auto *CX = dyn_cast<ConstantInt>(X)) 2456 if (CX->isOne()) 2457 return Y; 2458 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2459 if (CY->isOne()) 2460 return X; 2461 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2462 if (XVTy && !isa<VectorType>(Y->getType())) 2463 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2464 return B.CreateMul(X, Y); 2465 }; 2466 2467 switch (ID.getKind()) { 2468 case InductionDescriptor::IK_IntInduction: { 2469 assert(!isa<VectorType>(Index->getType()) && 2470 "Vector indices not supported for integer inductions yet"); 2471 assert(Index->getType() == StartValue->getType() && 2472 "Index type does not match StartValue type"); 2473 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2474 return B.CreateSub(StartValue, Index); 2475 auto *Offset = CreateMul(Index, Step); 2476 return CreateAdd(StartValue, Offset); 2477 } 2478 case InductionDescriptor::IK_PtrInduction: { 2479 assert(isa<Constant>(Step) && 2480 "Expected constant step for pointer induction"); 2481 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2482 } 2483 case InductionDescriptor::IK_FpInduction: { 2484 assert(!isa<VectorType>(Index->getType()) && 2485 "Vector indices not supported for FP inductions yet"); 2486 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2487 auto InductionBinOp = ID.getInductionBinOp(); 2488 assert(InductionBinOp && 2489 (InductionBinOp->getOpcode() == Instruction::FAdd || 2490 InductionBinOp->getOpcode() == Instruction::FSub) && 2491 "Original bin op should be defined for FP induction"); 2492 2493 Value *MulExp = B.CreateFMul(Step, Index); 2494 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2495 "induction"); 2496 } 2497 case InductionDescriptor::IK_NoInduction: 2498 return nullptr; 2499 } 2500 llvm_unreachable("invalid enum"); 2501 } 2502 2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2504 const VPIteration &Instance, 2505 VPTransformState &State) { 2506 Value *ScalarInst = State.get(Def, Instance); 2507 Value *VectorValue = State.get(Def, Instance.Part); 2508 VectorValue = Builder.CreateInsertElement( 2509 VectorValue, ScalarInst, 2510 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2511 State.set(Def, VectorValue, Instance.Part); 2512 } 2513 2514 // Return whether we allow using masked interleave-groups (for dealing with 2515 // strided loads/stores that reside in predicated blocks, or for dealing 2516 // with gaps). 2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2518 // If an override option has been passed in for interleaved accesses, use it. 2519 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2520 return EnableMaskedInterleavedMemAccesses; 2521 2522 return TTI.enableMaskedInterleavedAccessVectorization(); 2523 } 2524 2525 // Try to vectorize the interleave group that \p Instr belongs to. 2526 // 2527 // E.g. Translate following interleaved load group (factor = 3): 2528 // for (i = 0; i < N; i+=3) { 2529 // R = Pic[i]; // Member of index 0 2530 // G = Pic[i+1]; // Member of index 1 2531 // B = Pic[i+2]; // Member of index 2 2532 // ... // do something to R, G, B 2533 // } 2534 // To: 2535 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2536 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2537 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2538 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2539 // 2540 // Or translate following interleaved store group (factor = 3): 2541 // for (i = 0; i < N; i+=3) { 2542 // ... do something to R, G, B 2543 // Pic[i] = R; // Member of index 0 2544 // Pic[i+1] = G; // Member of index 1 2545 // Pic[i+2] = B; // Member of index 2 2546 // } 2547 // To: 2548 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2549 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2550 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2551 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2552 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2553 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2554 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2555 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2556 VPValue *BlockInMask) { 2557 Instruction *Instr = Group->getInsertPos(); 2558 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2559 2560 // Prepare for the vector type of the interleaved load/store. 2561 Type *ScalarTy = getLoadStoreType(Instr); 2562 unsigned InterleaveFactor = Group->getFactor(); 2563 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2564 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2565 2566 // Prepare for the new pointers. 2567 SmallVector<Value *, 2> AddrParts; 2568 unsigned Index = Group->getIndex(Instr); 2569 2570 // TODO: extend the masked interleaved-group support to reversed access. 2571 assert((!BlockInMask || !Group->isReverse()) && 2572 "Reversed masked interleave-group not supported."); 2573 2574 // If the group is reverse, adjust the index to refer to the last vector lane 2575 // instead of the first. We adjust the index from the first vector lane, 2576 // rather than directly getting the pointer for lane VF - 1, because the 2577 // pointer operand of the interleaved access is supposed to be uniform. For 2578 // uniform instructions, we're only required to generate a value for the 2579 // first vector lane in each unroll iteration. 2580 if (Group->isReverse()) 2581 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2582 2583 for (unsigned Part = 0; Part < UF; Part++) { 2584 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2585 setDebugLocFromInst(AddrPart); 2586 2587 // Notice current instruction could be any index. Need to adjust the address 2588 // to the member of index 0. 2589 // 2590 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2591 // b = A[i]; // Member of index 0 2592 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2593 // 2594 // E.g. A[i+1] = a; // Member of index 1 2595 // A[i] = b; // Member of index 0 2596 // A[i+2] = c; // Member of index 2 (Current instruction) 2597 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2598 2599 bool InBounds = false; 2600 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2601 InBounds = gep->isInBounds(); 2602 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2603 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2604 2605 // Cast to the vector pointer type. 2606 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2607 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2608 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2609 } 2610 2611 setDebugLocFromInst(Instr); 2612 Value *PoisonVec = PoisonValue::get(VecTy); 2613 2614 Value *MaskForGaps = nullptr; 2615 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2616 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2617 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2618 } 2619 2620 // Vectorize the interleaved load group. 2621 if (isa<LoadInst>(Instr)) { 2622 // For each unroll part, create a wide load for the group. 2623 SmallVector<Value *, 2> NewLoads; 2624 for (unsigned Part = 0; Part < UF; Part++) { 2625 Instruction *NewLoad; 2626 if (BlockInMask || MaskForGaps) { 2627 assert(useMaskedInterleavedAccesses(*TTI) && 2628 "masked interleaved groups are not allowed."); 2629 Value *GroupMask = MaskForGaps; 2630 if (BlockInMask) { 2631 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2632 Value *ShuffledMask = Builder.CreateShuffleVector( 2633 BlockInMaskPart, 2634 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2635 "interleaved.mask"); 2636 GroupMask = MaskForGaps 2637 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2638 MaskForGaps) 2639 : ShuffledMask; 2640 } 2641 NewLoad = 2642 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2643 GroupMask, PoisonVec, "wide.masked.vec"); 2644 } 2645 else 2646 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2647 Group->getAlign(), "wide.vec"); 2648 Group->addMetadata(NewLoad); 2649 NewLoads.push_back(NewLoad); 2650 } 2651 2652 // For each member in the group, shuffle out the appropriate data from the 2653 // wide loads. 2654 unsigned J = 0; 2655 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2656 Instruction *Member = Group->getMember(I); 2657 2658 // Skip the gaps in the group. 2659 if (!Member) 2660 continue; 2661 2662 auto StrideMask = 2663 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2664 for (unsigned Part = 0; Part < UF; Part++) { 2665 Value *StridedVec = Builder.CreateShuffleVector( 2666 NewLoads[Part], StrideMask, "strided.vec"); 2667 2668 // If this member has different type, cast the result type. 2669 if (Member->getType() != ScalarTy) { 2670 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2671 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2672 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2673 } 2674 2675 if (Group->isReverse()) 2676 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2677 2678 State.set(VPDefs[J], StridedVec, Part); 2679 } 2680 ++J; 2681 } 2682 return; 2683 } 2684 2685 // The sub vector type for current instruction. 2686 auto *SubVT = VectorType::get(ScalarTy, VF); 2687 2688 // Vectorize the interleaved store group. 2689 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2690 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2691 "masked interleaved groups are not allowed."); 2692 assert((!MaskForGaps || !VF.isScalable()) && 2693 "masking gaps for scalable vectors is not yet supported."); 2694 for (unsigned Part = 0; Part < UF; Part++) { 2695 // Collect the stored vector from each member. 2696 SmallVector<Value *, 4> StoredVecs; 2697 for (unsigned i = 0; i < InterleaveFactor; i++) { 2698 assert((Group->getMember(i) || MaskForGaps) && 2699 "Fail to get a member from an interleaved store group"); 2700 Instruction *Member = Group->getMember(i); 2701 2702 // Skip the gaps in the group. 2703 if (!Member) { 2704 Value *Undef = PoisonValue::get(SubVT); 2705 StoredVecs.push_back(Undef); 2706 continue; 2707 } 2708 2709 Value *StoredVec = State.get(StoredValues[i], Part); 2710 2711 if (Group->isReverse()) 2712 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2713 2714 // If this member has different type, cast it to a unified type. 2715 2716 if (StoredVec->getType() != SubVT) 2717 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2718 2719 StoredVecs.push_back(StoredVec); 2720 } 2721 2722 // Concatenate all vectors into a wide vector. 2723 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2724 2725 // Interleave the elements in the wide vector. 2726 Value *IVec = Builder.CreateShuffleVector( 2727 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2728 "interleaved.vec"); 2729 2730 Instruction *NewStoreInstr; 2731 if (BlockInMask || MaskForGaps) { 2732 Value *GroupMask = MaskForGaps; 2733 if (BlockInMask) { 2734 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2735 Value *ShuffledMask = Builder.CreateShuffleVector( 2736 BlockInMaskPart, 2737 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2738 "interleaved.mask"); 2739 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2740 ShuffledMask, MaskForGaps) 2741 : ShuffledMask; 2742 } 2743 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2744 Group->getAlign(), GroupMask); 2745 } else 2746 NewStoreInstr = 2747 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2748 2749 Group->addMetadata(NewStoreInstr); 2750 } 2751 } 2752 2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2754 VPReplicateRecipe *RepRecipe, 2755 const VPIteration &Instance, 2756 bool IfPredicateInstr, 2757 VPTransformState &State) { 2758 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2759 2760 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2761 // the first lane and part. 2762 if (isa<NoAliasScopeDeclInst>(Instr)) 2763 if (!Instance.isFirstIteration()) 2764 return; 2765 2766 // Does this instruction return a value ? 2767 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2768 2769 Instruction *Cloned = Instr->clone(); 2770 if (!IsVoidRetTy) 2771 Cloned->setName(Instr->getName() + ".cloned"); 2772 2773 // If the scalarized instruction contributes to the address computation of a 2774 // widen masked load/store which was in a basic block that needed predication 2775 // and is not predicated after vectorization, we can't propagate 2776 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2777 // instruction could feed a poison value to the base address of the widen 2778 // load/store. 2779 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2780 Cloned->dropPoisonGeneratingFlags(); 2781 2782 if (Instr->getDebugLoc()) 2783 setDebugLocFromInst(Instr); 2784 2785 // Replace the operands of the cloned instructions with their scalar 2786 // equivalents in the new loop. 2787 for (auto &I : enumerate(RepRecipe->operands())) { 2788 auto InputInstance = Instance; 2789 VPValue *Operand = I.value(); 2790 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2791 if (OperandR && OperandR->isUniform()) 2792 InputInstance.Lane = VPLane::getFirstLane(); 2793 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2794 } 2795 addNewMetadata(Cloned, Instr); 2796 2797 // Place the cloned scalar in the new loop. 2798 State.Builder.Insert(Cloned); 2799 2800 State.set(RepRecipe, Cloned, Instance); 2801 2802 // If we just cloned a new assumption, add it the assumption cache. 2803 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2804 AC->registerAssumption(II); 2805 2806 // End if-block. 2807 if (IfPredicateInstr) 2808 PredicatedInstructions.push_back(Cloned); 2809 } 2810 2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2812 if (TripCount) 2813 return TripCount; 2814 2815 assert(InsertBlock); 2816 IRBuilder<> Builder(InsertBlock->getTerminator()); 2817 // Find the loop boundaries. 2818 ScalarEvolution *SE = PSE.getSE(); 2819 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2820 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2821 "Invalid loop count"); 2822 2823 Type *IdxTy = Legal->getWidestInductionType(); 2824 assert(IdxTy && "No type for induction"); 2825 2826 // The exit count might have the type of i64 while the phi is i32. This can 2827 // happen if we have an induction variable that is sign extended before the 2828 // compare. The only way that we get a backedge taken count is that the 2829 // induction variable was signed and as such will not overflow. In such a case 2830 // truncation is legal. 2831 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2832 IdxTy->getPrimitiveSizeInBits()) 2833 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2834 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2835 2836 // Get the total trip count from the count by adding 1. 2837 const SCEV *ExitCount = SE->getAddExpr( 2838 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2839 2840 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2841 2842 // Expand the trip count and place the new instructions in the preheader. 2843 // Notice that the pre-header does not change, only the loop body. 2844 SCEVExpander Exp(*SE, DL, "induction"); 2845 2846 // Count holds the overall loop count (N). 2847 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2848 InsertBlock->getTerminator()); 2849 2850 if (TripCount->getType()->isPointerTy()) 2851 TripCount = 2852 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2853 InsertBlock->getTerminator()); 2854 2855 return TripCount; 2856 } 2857 2858 Value * 2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2860 if (VectorTripCount) 2861 return VectorTripCount; 2862 2863 Value *TC = getOrCreateTripCount(InsertBlock); 2864 IRBuilder<> Builder(InsertBlock->getTerminator()); 2865 2866 Type *Ty = TC->getType(); 2867 // This is where we can make the step a runtime constant. 2868 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2869 2870 // If the tail is to be folded by masking, round the number of iterations N 2871 // up to a multiple of Step instead of rounding down. This is done by first 2872 // adding Step-1 and then rounding down. Note that it's ok if this addition 2873 // overflows: the vector induction variable will eventually wrap to zero given 2874 // that it starts at zero and its Step is a power of two; the loop will then 2875 // exit, with the last early-exit vector comparison also producing all-true. 2876 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2877 // is accounted for in emitIterationCountCheck that adds an overflow check. 2878 if (Cost->foldTailByMasking()) { 2879 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2880 "VF*UF must be a power of 2 when folding tail by masking"); 2881 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2882 TC = Builder.CreateAdd( 2883 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2884 } 2885 2886 // Now we need to generate the expression for the part of the loop that the 2887 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2888 // iterations are not required for correctness, or N - Step, otherwise. Step 2889 // is equal to the vectorization factor (number of SIMD elements) times the 2890 // unroll factor (number of SIMD instructions). 2891 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2892 2893 // There are cases where we *must* run at least one iteration in the remainder 2894 // loop. See the cost model for when this can happen. If the step evenly 2895 // divides the trip count, we set the remainder to be equal to the step. If 2896 // the step does not evenly divide the trip count, no adjustment is necessary 2897 // since there will already be scalar iterations. Note that the minimum 2898 // iterations check ensures that N >= Step. 2899 if (Cost->requiresScalarEpilogue(VF)) { 2900 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2901 R = Builder.CreateSelect(IsZero, Step, R); 2902 } 2903 2904 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2905 2906 return VectorTripCount; 2907 } 2908 2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2910 const DataLayout &DL) { 2911 // Verify that V is a vector type with same number of elements as DstVTy. 2912 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2913 unsigned VF = DstFVTy->getNumElements(); 2914 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2915 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2916 Type *SrcElemTy = SrcVecTy->getElementType(); 2917 Type *DstElemTy = DstFVTy->getElementType(); 2918 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2919 "Vector elements must have same size"); 2920 2921 // Do a direct cast if element types are castable. 2922 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2923 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2924 } 2925 // V cannot be directly casted to desired vector type. 2926 // May happen when V is a floating point vector but DstVTy is a vector of 2927 // pointers or vice-versa. Handle this using a two-step bitcast using an 2928 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2929 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2930 "Only one type should be a pointer type"); 2931 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2932 "Only one type should be a floating point type"); 2933 Type *IntTy = 2934 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2935 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2936 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2937 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2938 } 2939 2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2941 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2942 // Reuse existing vector loop preheader for TC checks. 2943 // Note that new preheader block is generated for vector loop. 2944 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2945 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2946 2947 // Generate code to check if the loop's trip count is less than VF * UF, or 2948 // equal to it in case a scalar epilogue is required; this implies that the 2949 // vector trip count is zero. This check also covers the case where adding one 2950 // to the backedge-taken count overflowed leading to an incorrect trip count 2951 // of zero. In this case we will also jump to the scalar loop. 2952 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2953 : ICmpInst::ICMP_ULT; 2954 2955 // If tail is to be folded, vector loop takes care of all iterations. 2956 Type *CountTy = Count->getType(); 2957 Value *CheckMinIters = Builder.getFalse(); 2958 Value *Step = createStepForVF(Builder, CountTy, VF, UF); 2959 if (!Cost->foldTailByMasking()) 2960 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2961 else if (VF.isScalable()) { 2962 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2963 // an overflow to zero when updating induction variables and so an 2964 // additional overflow check is required before entering the vector loop. 2965 2966 // Get the maximum unsigned value for the type. 2967 Value *MaxUIntTripCount = 2968 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2969 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2970 2971 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2972 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step); 2973 } 2974 // Create new preheader for vector loop. 2975 LoopVectorPreHeader = 2976 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2977 "vector.ph"); 2978 2979 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2980 DT->getNode(Bypass)->getIDom()) && 2981 "TC check is expected to dominate Bypass"); 2982 2983 // Update dominator for Bypass & LoopExit (if needed). 2984 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2985 if (!Cost->requiresScalarEpilogue(VF)) 2986 // If there is an epilogue which must run, there's no edge from the 2987 // middle block to exit blocks and thus no need to update the immediate 2988 // dominator of the exit blocks. 2989 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2990 2991 ReplaceInstWithInst( 2992 TCCheckBlock->getTerminator(), 2993 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2994 LoopBypassBlocks.push_back(TCCheckBlock); 2995 } 2996 2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 2998 2999 BasicBlock *const SCEVCheckBlock = 3000 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3001 if (!SCEVCheckBlock) 3002 return nullptr; 3003 3004 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3005 (OptForSizeBasedOnProfile && 3006 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3007 "Cannot SCEV check stride or overflow when optimizing for size"); 3008 3009 3010 // Update dominator only if this is first RT check. 3011 if (LoopBypassBlocks.empty()) { 3012 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3013 if (!Cost->requiresScalarEpilogue(VF)) 3014 // If there is an epilogue which must run, there's no edge from the 3015 // middle block to exit blocks and thus no need to update the immediate 3016 // dominator of the exit blocks. 3017 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3018 } 3019 3020 LoopBypassBlocks.push_back(SCEVCheckBlock); 3021 AddedSafetyChecks = true; 3022 return SCEVCheckBlock; 3023 } 3024 3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3026 // VPlan-native path does not do any analysis for runtime checks currently. 3027 if (EnableVPlanNativePath) 3028 return nullptr; 3029 3030 BasicBlock *const MemCheckBlock = 3031 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3032 3033 // Check if we generated code that checks in runtime if arrays overlap. We put 3034 // the checks into a separate block to make the more common case of few 3035 // elements faster. 3036 if (!MemCheckBlock) 3037 return nullptr; 3038 3039 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3040 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3041 "Cannot emit memory checks when optimizing for size, unless forced " 3042 "to vectorize."); 3043 ORE->emit([&]() { 3044 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3045 OrigLoop->getStartLoc(), 3046 OrigLoop->getHeader()) 3047 << "Code-size may be reduced by not forcing " 3048 "vectorization, or by source-code modifications " 3049 "eliminating the need for runtime checks " 3050 "(e.g., adding 'restrict')."; 3051 }); 3052 } 3053 3054 LoopBypassBlocks.push_back(MemCheckBlock); 3055 3056 AddedSafetyChecks = true; 3057 3058 // Only use noalias metadata when using memory checks guaranteeing no overlap 3059 // across all iterations. 3060 if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) { 3061 // We currently don't use LoopVersioning for the actual loop cloning but we 3062 // still use it to add the noalias metadata. 3063 LVer = std::make_unique<LoopVersioning>( 3064 *Legal->getLAI(), 3065 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3066 DT, PSE.getSE()); 3067 LVer->prepareNoAliasMetadata(); 3068 } 3069 return MemCheckBlock; 3070 } 3071 3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3073 LoopScalarBody = OrigLoop->getHeader(); 3074 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3075 assert(LoopVectorPreHeader && "Invalid loop structure"); 3076 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3077 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3078 "multiple exit loop without required epilogue?"); 3079 3080 LoopMiddleBlock = 3081 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3082 LI, nullptr, Twine(Prefix) + "middle.block"); 3083 LoopScalarPreHeader = 3084 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3085 nullptr, Twine(Prefix) + "scalar.ph"); 3086 3087 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3088 3089 // Set up the middle block terminator. Two cases: 3090 // 1) If we know that we must execute the scalar epilogue, emit an 3091 // unconditional branch. 3092 // 2) Otherwise, we must have a single unique exit block (due to how we 3093 // implement the multiple exit case). In this case, set up a conditonal 3094 // branch from the middle block to the loop scalar preheader, and the 3095 // exit block. completeLoopSkeleton will update the condition to use an 3096 // iteration check, if required to decide whether to execute the remainder. 3097 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3098 BranchInst::Create(LoopScalarPreHeader) : 3099 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3100 Builder.getTrue()); 3101 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3102 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3103 3104 // Update dominator for loop exit. During skeleton creation, only the vector 3105 // pre-header and the middle block are created. The vector loop is entirely 3106 // created during VPlan exection. 3107 if (!Cost->requiresScalarEpilogue(VF)) 3108 // If there is an epilogue which must run, there's no edge from the 3109 // middle block to exit blocks and thus no need to update the immediate 3110 // dominator of the exit blocks. 3111 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3112 } 3113 3114 void InnerLoopVectorizer::createInductionResumeValues( 3115 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3116 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3117 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3118 "Inconsistent information about additional bypass."); 3119 3120 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3121 assert(VectorTripCount && "Expected valid arguments"); 3122 // We are going to resume the execution of the scalar loop. 3123 // Go over all of the induction variables that we found and fix the 3124 // PHIs that are left in the scalar version of the loop. 3125 // The starting values of PHI nodes depend on the counter of the last 3126 // iteration in the vectorized loop. 3127 // If we come from a bypass edge then we need to start from the original 3128 // start value. 3129 Instruction *OldInduction = Legal->getPrimaryInduction(); 3130 for (auto &InductionEntry : Legal->getInductionVars()) { 3131 PHINode *OrigPhi = InductionEntry.first; 3132 InductionDescriptor II = InductionEntry.second; 3133 3134 Value *&EndValue = IVEndValues[OrigPhi]; 3135 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3136 if (OrigPhi == OldInduction) { 3137 // We know what the end value is. 3138 EndValue = VectorTripCount; 3139 } else { 3140 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3141 3142 // Fast-math-flags propagate from the original induction instruction. 3143 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3144 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3145 3146 Type *StepType = II.getStep()->getType(); 3147 Instruction::CastOps CastOp = 3148 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3149 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3150 Value *Step = 3151 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3152 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3153 EndValue->setName("ind.end"); 3154 3155 // Compute the end value for the additional bypass (if applicable). 3156 if (AdditionalBypass.first) { 3157 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3158 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3159 StepType, true); 3160 Value *Step = 3161 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3162 VTC = 3163 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3164 EndValueFromAdditionalBypass = 3165 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3166 EndValueFromAdditionalBypass->setName("ind.end"); 3167 } 3168 } 3169 3170 // Create phi nodes to merge from the backedge-taken check block. 3171 PHINode *BCResumeVal = 3172 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3173 LoopScalarPreHeader->getTerminator()); 3174 // Copy original phi DL over to the new one. 3175 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3176 3177 // The new PHI merges the original incoming value, in case of a bypass, 3178 // or the value at the end of the vectorized loop. 3179 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3180 3181 // Fix the scalar body counter (PHI node). 3182 // The old induction's phi node in the scalar body needs the truncated 3183 // value. 3184 for (BasicBlock *BB : LoopBypassBlocks) 3185 BCResumeVal->addIncoming(II.getStartValue(), BB); 3186 3187 if (AdditionalBypass.first) 3188 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3189 EndValueFromAdditionalBypass); 3190 3191 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3192 } 3193 } 3194 3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3196 // The trip counts should be cached by now. 3197 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3198 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3199 3200 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3201 3202 // Add a check in the middle block to see if we have completed 3203 // all of the iterations in the first vector loop. Three cases: 3204 // 1) If we require a scalar epilogue, there is no conditional branch as 3205 // we unconditionally branch to the scalar preheader. Do nothing. 3206 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3207 // Thus if tail is to be folded, we know we don't need to run the 3208 // remainder and we can use the previous value for the condition (true). 3209 // 3) Otherwise, construct a runtime check. 3210 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3211 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3212 Count, VectorTripCount, "cmp.n", 3213 LoopMiddleBlock->getTerminator()); 3214 3215 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3216 // of the corresponding compare because they may have ended up with 3217 // different line numbers and we want to avoid awkward line stepping while 3218 // debugging. Eg. if the compare has got a line number inside the loop. 3219 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3220 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3221 } 3222 3223 #ifdef EXPENSIVE_CHECKS 3224 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3225 #endif 3226 3227 return LoopVectorPreHeader; 3228 } 3229 3230 std::pair<BasicBlock *, Value *> 3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3232 /* 3233 In this function we generate a new loop. The new loop will contain 3234 the vectorized instructions while the old loop will continue to run the 3235 scalar remainder. 3236 3237 [ ] <-- loop iteration number check. 3238 / | 3239 / v 3240 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3241 | / | 3242 | / v 3243 || [ ] <-- vector pre header. 3244 |/ | 3245 | v 3246 | [ ] \ 3247 | [ ]_| <-- vector loop (created during VPlan execution). 3248 | | 3249 | v 3250 \ -[ ] <--- middle-block. 3251 \/ | 3252 /\ v 3253 | ->[ ] <--- new preheader. 3254 | | 3255 (opt) v <-- edge from middle to exit iff epilogue is not required. 3256 | [ ] \ 3257 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3258 \ | 3259 \ v 3260 >[ ] <-- exit block(s). 3261 ... 3262 */ 3263 3264 // Get the metadata of the original loop before it gets modified. 3265 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3266 3267 // Workaround! Compute the trip count of the original loop and cache it 3268 // before we start modifying the CFG. This code has a systemic problem 3269 // wherein it tries to run analysis over partially constructed IR; this is 3270 // wrong, and not simply for SCEV. The trip count of the original loop 3271 // simply happens to be prone to hitting this in practice. In theory, we 3272 // can hit the same issue for any SCEV, or ValueTracking query done during 3273 // mutation. See PR49900. 3274 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3275 3276 // Create an empty vector loop, and prepare basic blocks for the runtime 3277 // checks. 3278 createVectorLoopSkeleton(""); 3279 3280 // Now, compare the new count to zero. If it is zero skip the vector loop and 3281 // jump to the scalar loop. This check also covers the case where the 3282 // backedge-taken count is uint##_max: adding one to it will overflow leading 3283 // to an incorrect trip count of zero. In this (rare) case we will also jump 3284 // to the scalar loop. 3285 emitIterationCountCheck(LoopScalarPreHeader); 3286 3287 // Generate the code to check any assumptions that we've made for SCEV 3288 // expressions. 3289 emitSCEVChecks(LoopScalarPreHeader); 3290 3291 // Generate the code that checks in runtime if arrays overlap. We put the 3292 // checks into a separate block to make the more common case of few elements 3293 // faster. 3294 emitMemRuntimeChecks(LoopScalarPreHeader); 3295 3296 // Emit phis for the new starting index of the scalar loop. 3297 createInductionResumeValues(); 3298 3299 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3300 } 3301 3302 // Fix up external users of the induction variable. At this point, we are 3303 // in LCSSA form, with all external PHIs that use the IV having one input value, 3304 // coming from the remainder loop. We need those PHIs to also have a correct 3305 // value for the IV when arriving directly from the middle block. 3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3307 const InductionDescriptor &II, 3308 Value *VectorTripCount, Value *EndValue, 3309 BasicBlock *MiddleBlock, 3310 BasicBlock *VectorHeader, VPlan &Plan) { 3311 // There are two kinds of external IV usages - those that use the value 3312 // computed in the last iteration (the PHI) and those that use the penultimate 3313 // value (the value that feeds into the phi from the loop latch). 3314 // We allow both, but they, obviously, have different values. 3315 3316 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3317 3318 DenseMap<Value *, Value *> MissingVals; 3319 3320 // An external user of the last iteration's value should see the value that 3321 // the remainder loop uses to initialize its own IV. 3322 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3323 for (User *U : PostInc->users()) { 3324 Instruction *UI = cast<Instruction>(U); 3325 if (!OrigLoop->contains(UI)) { 3326 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3327 MissingVals[UI] = EndValue; 3328 } 3329 } 3330 3331 // An external user of the penultimate value need to see EndValue - Step. 3332 // The simplest way to get this is to recompute it from the constituent SCEVs, 3333 // that is Start + (Step * (CRD - 1)). 3334 for (User *U : OrigPhi->users()) { 3335 auto *UI = cast<Instruction>(U); 3336 if (!OrigLoop->contains(UI)) { 3337 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3338 3339 IRBuilder<> B(MiddleBlock->getTerminator()); 3340 3341 // Fast-math-flags propagate from the original induction instruction. 3342 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3343 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3344 3345 Value *CountMinusOne = B.CreateSub( 3346 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3347 Value *CMO = 3348 !II.getStep()->getType()->isIntegerTy() 3349 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3350 II.getStep()->getType()) 3351 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3352 CMO->setName("cast.cmo"); 3353 3354 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3355 VectorHeader->getTerminator()); 3356 Value *Escape = 3357 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3358 Escape->setName("ind.escape"); 3359 MissingVals[UI] = Escape; 3360 } 3361 } 3362 3363 for (auto &I : MissingVals) { 3364 PHINode *PHI = cast<PHINode>(I.first); 3365 // One corner case we have to handle is two IVs "chasing" each-other, 3366 // that is %IV2 = phi [...], [ %IV1, %latch ] 3367 // In this case, if IV1 has an external use, we need to avoid adding both 3368 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3369 // don't already have an incoming value for the middle block. 3370 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3371 PHI->addIncoming(I.second, MiddleBlock); 3372 Plan.removeLiveOut(PHI); 3373 } 3374 } 3375 } 3376 3377 namespace { 3378 3379 struct CSEDenseMapInfo { 3380 static bool canHandle(const Instruction *I) { 3381 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3382 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3383 } 3384 3385 static inline Instruction *getEmptyKey() { 3386 return DenseMapInfo<Instruction *>::getEmptyKey(); 3387 } 3388 3389 static inline Instruction *getTombstoneKey() { 3390 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3391 } 3392 3393 static unsigned getHashValue(const Instruction *I) { 3394 assert(canHandle(I) && "Unknown instruction!"); 3395 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3396 I->value_op_end())); 3397 } 3398 3399 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3400 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3401 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3402 return LHS == RHS; 3403 return LHS->isIdenticalTo(RHS); 3404 } 3405 }; 3406 3407 } // end anonymous namespace 3408 3409 ///Perform cse of induction variable instructions. 3410 static void cse(BasicBlock *BB) { 3411 // Perform simple cse. 3412 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3413 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3414 if (!CSEDenseMapInfo::canHandle(&In)) 3415 continue; 3416 3417 // Check if we can replace this instruction with any of the 3418 // visited instructions. 3419 if (Instruction *V = CSEMap.lookup(&In)) { 3420 In.replaceAllUsesWith(V); 3421 In.eraseFromParent(); 3422 continue; 3423 } 3424 3425 CSEMap[&In] = &In; 3426 } 3427 } 3428 3429 InstructionCost 3430 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3431 bool &NeedToScalarize) const { 3432 Function *F = CI->getCalledFunction(); 3433 Type *ScalarRetTy = CI->getType(); 3434 SmallVector<Type *, 4> Tys, ScalarTys; 3435 for (auto &ArgOp : CI->args()) 3436 ScalarTys.push_back(ArgOp->getType()); 3437 3438 // Estimate cost of scalarized vector call. The source operands are assumed 3439 // to be vectors, so we need to extract individual elements from there, 3440 // execute VF scalar calls, and then gather the result into the vector return 3441 // value. 3442 InstructionCost ScalarCallCost = 3443 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3444 if (VF.isScalar()) 3445 return ScalarCallCost; 3446 3447 // Compute corresponding vector type for return value and arguments. 3448 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3449 for (Type *ScalarTy : ScalarTys) 3450 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3451 3452 // Compute costs of unpacking argument values for the scalar calls and 3453 // packing the return values to a vector. 3454 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3455 3456 InstructionCost Cost = 3457 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3458 3459 // If we can't emit a vector call for this function, then the currently found 3460 // cost is the cost we need to return. 3461 NeedToScalarize = true; 3462 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3463 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3464 3465 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3466 return Cost; 3467 3468 // If the corresponding vector cost is cheaper, return its cost. 3469 InstructionCost VectorCallCost = 3470 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3471 if (VectorCallCost < Cost) { 3472 NeedToScalarize = false; 3473 Cost = VectorCallCost; 3474 } 3475 return Cost; 3476 } 3477 3478 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3479 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3480 return Elt; 3481 return VectorType::get(Elt, VF); 3482 } 3483 3484 InstructionCost 3485 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3486 ElementCount VF) const { 3487 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3488 assert(ID && "Expected intrinsic call!"); 3489 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3490 FastMathFlags FMF; 3491 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3492 FMF = FPMO->getFastMathFlags(); 3493 3494 SmallVector<const Value *> Arguments(CI->args()); 3495 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3496 SmallVector<Type *> ParamTys; 3497 std::transform(FTy->param_begin(), FTy->param_end(), 3498 std::back_inserter(ParamTys), 3499 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3500 3501 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3502 dyn_cast<IntrinsicInst>(CI)); 3503 return TTI.getIntrinsicInstrCost(CostAttrs, 3504 TargetTransformInfo::TCK_RecipThroughput); 3505 } 3506 3507 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3508 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3509 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3510 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3511 } 3512 3513 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3514 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3515 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3516 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3517 } 3518 3519 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3520 // For every instruction `I` in MinBWs, truncate the operands, create a 3521 // truncated version of `I` and reextend its result. InstCombine runs 3522 // later and will remove any ext/trunc pairs. 3523 SmallPtrSet<Value *, 4> Erased; 3524 for (const auto &KV : Cost->getMinimalBitwidths()) { 3525 // If the value wasn't vectorized, we must maintain the original scalar 3526 // type. The absence of the value from State indicates that it 3527 // wasn't vectorized. 3528 // FIXME: Should not rely on getVPValue at this point. 3529 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3530 if (!State.hasAnyVectorValue(Def)) 3531 continue; 3532 for (unsigned Part = 0; Part < UF; ++Part) { 3533 Value *I = State.get(Def, Part); 3534 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3535 continue; 3536 Type *OriginalTy = I->getType(); 3537 Type *ScalarTruncatedTy = 3538 IntegerType::get(OriginalTy->getContext(), KV.second); 3539 auto *TruncatedTy = VectorType::get( 3540 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3541 if (TruncatedTy == OriginalTy) 3542 continue; 3543 3544 IRBuilder<> B(cast<Instruction>(I)); 3545 auto ShrinkOperand = [&](Value *V) -> Value * { 3546 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3547 if (ZI->getSrcTy() == TruncatedTy) 3548 return ZI->getOperand(0); 3549 return B.CreateZExtOrTrunc(V, TruncatedTy); 3550 }; 3551 3552 // The actual instruction modification depends on the instruction type, 3553 // unfortunately. 3554 Value *NewI = nullptr; 3555 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3556 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3557 ShrinkOperand(BO->getOperand(1))); 3558 3559 // Any wrapping introduced by shrinking this operation shouldn't be 3560 // considered undefined behavior. So, we can't unconditionally copy 3561 // arithmetic wrapping flags to NewI. 3562 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3563 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3564 NewI = 3565 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3566 ShrinkOperand(CI->getOperand(1))); 3567 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3568 NewI = B.CreateSelect(SI->getCondition(), 3569 ShrinkOperand(SI->getTrueValue()), 3570 ShrinkOperand(SI->getFalseValue())); 3571 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3572 switch (CI->getOpcode()) { 3573 default: 3574 llvm_unreachable("Unhandled cast!"); 3575 case Instruction::Trunc: 3576 NewI = ShrinkOperand(CI->getOperand(0)); 3577 break; 3578 case Instruction::SExt: 3579 NewI = B.CreateSExtOrTrunc( 3580 CI->getOperand(0), 3581 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3582 break; 3583 case Instruction::ZExt: 3584 NewI = B.CreateZExtOrTrunc( 3585 CI->getOperand(0), 3586 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3587 break; 3588 } 3589 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3590 auto Elements0 = 3591 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3592 auto *O0 = B.CreateZExtOrTrunc( 3593 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3594 auto Elements1 = 3595 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3596 auto *O1 = B.CreateZExtOrTrunc( 3597 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3598 3599 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3600 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3601 // Don't do anything with the operands, just extend the result. 3602 continue; 3603 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3604 auto Elements = 3605 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3606 auto *O0 = B.CreateZExtOrTrunc( 3607 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3608 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3609 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3610 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3611 auto Elements = 3612 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3613 auto *O0 = B.CreateZExtOrTrunc( 3614 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3615 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3616 } else { 3617 // If we don't know what to do, be conservative and don't do anything. 3618 continue; 3619 } 3620 3621 // Lastly, extend the result. 3622 NewI->takeName(cast<Instruction>(I)); 3623 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3624 I->replaceAllUsesWith(Res); 3625 cast<Instruction>(I)->eraseFromParent(); 3626 Erased.insert(I); 3627 State.reset(Def, Res, Part); 3628 } 3629 } 3630 3631 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3632 for (const auto &KV : Cost->getMinimalBitwidths()) { 3633 // If the value wasn't vectorized, we must maintain the original scalar 3634 // type. The absence of the value from State indicates that it 3635 // wasn't vectorized. 3636 // FIXME: Should not rely on getVPValue at this point. 3637 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3638 if (!State.hasAnyVectorValue(Def)) 3639 continue; 3640 for (unsigned Part = 0; Part < UF; ++Part) { 3641 Value *I = State.get(Def, Part); 3642 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3643 if (Inst && Inst->use_empty()) { 3644 Value *NewI = Inst->getOperand(0); 3645 Inst->eraseFromParent(); 3646 State.reset(Def, NewI, Part); 3647 } 3648 } 3649 } 3650 } 3651 3652 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3653 VPlan &Plan) { 3654 // Insert truncates and extends for any truncated instructions as hints to 3655 // InstCombine. 3656 if (VF.isVector()) 3657 truncateToMinimalBitwidths(State); 3658 3659 // Fix widened non-induction PHIs by setting up the PHI operands. 3660 if (EnableVPlanNativePath) 3661 fixNonInductionPHIs(Plan, State); 3662 3663 // At this point every instruction in the original loop is widened to a 3664 // vector form. Now we need to fix the recurrences in the loop. These PHI 3665 // nodes are currently empty because we did not want to introduce cycles. 3666 // This is the second stage of vectorizing recurrences. 3667 fixCrossIterationPHIs(State); 3668 3669 // Forget the original basic block. 3670 PSE.getSE()->forgetLoop(OrigLoop); 3671 3672 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3673 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3674 if (Cost->requiresScalarEpilogue(VF)) { 3675 // No edge from the middle block to the unique exit block has been inserted 3676 // and there is nothing to fix from vector loop; phis should have incoming 3677 // from scalar loop only. 3678 Plan.clearLiveOuts(); 3679 } else { 3680 // If we inserted an edge from the middle block to the unique exit block, 3681 // update uses outside the loop (phis) to account for the newly inserted 3682 // edge. 3683 3684 // Fix-up external users of the induction variables. 3685 for (auto &Entry : Legal->getInductionVars()) 3686 fixupIVUsers(Entry.first, Entry.second, 3687 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3688 IVEndValues[Entry.first], LoopMiddleBlock, 3689 VectorLoop->getHeader(), Plan); 3690 } 3691 3692 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3693 // in the exit block, so update the builder. 3694 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3695 for (auto &KV : Plan.getLiveOuts()) 3696 KV.second->fixPhi(Plan, State); 3697 3698 for (Instruction *PI : PredicatedInstructions) 3699 sinkScalarOperands(&*PI); 3700 3701 // Remove redundant induction instructions. 3702 cse(VectorLoop->getHeader()); 3703 3704 // Set/update profile weights for the vector and remainder loops as original 3705 // loop iterations are now distributed among them. Note that original loop 3706 // represented by LoopScalarBody becomes remainder loop after vectorization. 3707 // 3708 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3709 // end up getting slightly roughened result but that should be OK since 3710 // profile is not inherently precise anyway. Note also possible bypass of 3711 // vector code caused by legality checks is ignored, assigning all the weight 3712 // to the vector loop, optimistically. 3713 // 3714 // For scalable vectorization we can't know at compile time how many iterations 3715 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3716 // vscale of '1'. 3717 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3718 LI->getLoopFor(LoopScalarBody), 3719 VF.getKnownMinValue() * UF); 3720 } 3721 3722 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3723 // In order to support recurrences we need to be able to vectorize Phi nodes. 3724 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3725 // stage #2: We now need to fix the recurrences by adding incoming edges to 3726 // the currently empty PHI nodes. At this point every instruction in the 3727 // original loop is widened to a vector form so we can use them to construct 3728 // the incoming edges. 3729 VPBasicBlock *Header = 3730 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3731 for (VPRecipeBase &R : Header->phis()) { 3732 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3733 fixReduction(ReductionPhi, State); 3734 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3735 fixFirstOrderRecurrence(FOR, State); 3736 } 3737 } 3738 3739 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3740 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3741 // This is the second phase of vectorizing first-order recurrences. An 3742 // overview of the transformation is described below. Suppose we have the 3743 // following loop. 3744 // 3745 // for (int i = 0; i < n; ++i) 3746 // b[i] = a[i] - a[i - 1]; 3747 // 3748 // There is a first-order recurrence on "a". For this loop, the shorthand 3749 // scalar IR looks like: 3750 // 3751 // scalar.ph: 3752 // s_init = a[-1] 3753 // br scalar.body 3754 // 3755 // scalar.body: 3756 // i = phi [0, scalar.ph], [i+1, scalar.body] 3757 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3758 // s2 = a[i] 3759 // b[i] = s2 - s1 3760 // br cond, scalar.body, ... 3761 // 3762 // In this example, s1 is a recurrence because it's value depends on the 3763 // previous iteration. In the first phase of vectorization, we created a 3764 // vector phi v1 for s1. We now complete the vectorization and produce the 3765 // shorthand vector IR shown below (for VF = 4, UF = 1). 3766 // 3767 // vector.ph: 3768 // v_init = vector(..., ..., ..., a[-1]) 3769 // br vector.body 3770 // 3771 // vector.body 3772 // i = phi [0, vector.ph], [i+4, vector.body] 3773 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3774 // v2 = a[i, i+1, i+2, i+3]; 3775 // v3 = vector(v1(3), v2(0, 1, 2)) 3776 // b[i, i+1, i+2, i+3] = v2 - v3 3777 // br cond, vector.body, middle.block 3778 // 3779 // middle.block: 3780 // x = v2(3) 3781 // br scalar.ph 3782 // 3783 // scalar.ph: 3784 // s_init = phi [x, middle.block], [a[-1], otherwise] 3785 // br scalar.body 3786 // 3787 // After execution completes the vector loop, we extract the next value of 3788 // the recurrence (x) to use as the initial value in the scalar loop. 3789 3790 // Extract the last vector element in the middle block. This will be the 3791 // initial value for the recurrence when jumping to the scalar loop. 3792 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3793 Value *Incoming = State.get(PreviousDef, UF - 1); 3794 auto *ExtractForScalar = Incoming; 3795 auto *IdxTy = Builder.getInt32Ty(); 3796 if (VF.isVector()) { 3797 auto *One = ConstantInt::get(IdxTy, 1); 3798 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3799 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3800 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3801 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3802 "vector.recur.extract"); 3803 } 3804 // Extract the second last element in the middle block if the 3805 // Phi is used outside the loop. We need to extract the phi itself 3806 // and not the last element (the phi update in the current iteration). This 3807 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3808 // when the scalar loop is not run at all. 3809 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3810 if (VF.isVector()) { 3811 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3812 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3813 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3814 Incoming, Idx, "vector.recur.extract.for.phi"); 3815 } else if (UF > 1) 3816 // When loop is unrolled without vectorizing, initialize 3817 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3818 // of `Incoming`. This is analogous to the vectorized case above: extracting 3819 // the second last element when VF > 1. 3820 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3821 3822 // Fix the initial value of the original recurrence in the scalar loop. 3823 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3824 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3825 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3826 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3827 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3828 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3829 Start->addIncoming(Incoming, BB); 3830 } 3831 3832 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3833 Phi->setName("scalar.recur"); 3834 3835 // Finally, fix users of the recurrence outside the loop. The users will need 3836 // either the last value of the scalar recurrence or the last value of the 3837 // vector recurrence we extracted in the middle block. Since the loop is in 3838 // LCSSA form, we just need to find all the phi nodes for the original scalar 3839 // recurrence in the exit block, and then add an edge for the middle block. 3840 // Note that LCSSA does not imply single entry when the original scalar loop 3841 // had multiple exiting edges (as we always run the last iteration in the 3842 // scalar epilogue); in that case, there is no edge from middle to exit and 3843 // and thus no phis which needed updated. 3844 if (!Cost->requiresScalarEpilogue(VF)) 3845 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3846 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3847 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3848 State.Plan->removeLiveOut(&LCSSAPhi); 3849 } 3850 } 3851 3852 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3853 VPTransformState &State) { 3854 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3855 // Get it's reduction variable descriptor. 3856 assert(Legal->isReductionVariable(OrigPhi) && 3857 "Unable to find the reduction variable"); 3858 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3859 3860 RecurKind RK = RdxDesc.getRecurrenceKind(); 3861 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3862 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3863 setDebugLocFromInst(ReductionStartValue); 3864 3865 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3866 // This is the vector-clone of the value that leaves the loop. 3867 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3868 3869 // Wrap flags are in general invalid after vectorization, clear them. 3870 clearReductionWrapFlags(PhiR, State); 3871 3872 // Before each round, move the insertion point right between 3873 // the PHIs and the values we are going to write. 3874 // This allows us to write both PHINodes and the extractelement 3875 // instructions. 3876 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3877 3878 setDebugLocFromInst(LoopExitInst); 3879 3880 Type *PhiTy = OrigPhi->getType(); 3881 3882 VPBasicBlock *LatchVPBB = 3883 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3884 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3885 // If tail is folded by masking, the vector value to leave the loop should be 3886 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3887 // instead of the former. For an inloop reduction the reduction will already 3888 // be predicated, and does not need to be handled here. 3889 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3890 for (unsigned Part = 0; Part < UF; ++Part) { 3891 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3892 SelectInst *Sel = nullptr; 3893 for (User *U : VecLoopExitInst->users()) { 3894 if (isa<SelectInst>(U)) { 3895 assert(!Sel && "Reduction exit feeding two selects"); 3896 Sel = cast<SelectInst>(U); 3897 } else 3898 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3899 } 3900 assert(Sel && "Reduction exit feeds no select"); 3901 State.reset(LoopExitInstDef, Sel, Part); 3902 3903 if (isa<FPMathOperator>(Sel)) 3904 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3905 3906 // If the target can create a predicated operator for the reduction at no 3907 // extra cost in the loop (for example a predicated vadd), it can be 3908 // cheaper for the select to remain in the loop than be sunk out of it, 3909 // and so use the select value for the phi instead of the old 3910 // LoopExitValue. 3911 if (PreferPredicatedReductionSelect || 3912 TTI->preferPredicatedReductionSelect( 3913 RdxDesc.getOpcode(), PhiTy, 3914 TargetTransformInfo::ReductionFlags())) { 3915 auto *VecRdxPhi = 3916 cast<PHINode>(State.get(PhiR, Part)); 3917 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3918 } 3919 } 3920 } 3921 3922 // If the vector reduction can be performed in a smaller type, we truncate 3923 // then extend the loop exit value to enable InstCombine to evaluate the 3924 // entire expression in the smaller type. 3925 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3926 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3927 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3928 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3929 VectorParts RdxParts(UF); 3930 for (unsigned Part = 0; Part < UF; ++Part) { 3931 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3932 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3933 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3934 : Builder.CreateZExt(Trunc, VecTy); 3935 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3936 if (U != Trunc) { 3937 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3938 RdxParts[Part] = Extnd; 3939 } 3940 } 3941 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3942 for (unsigned Part = 0; Part < UF; ++Part) { 3943 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3944 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3945 } 3946 } 3947 3948 // Reduce all of the unrolled parts into a single vector. 3949 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3950 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3951 3952 // The middle block terminator has already been assigned a DebugLoc here (the 3953 // OrigLoop's single latch terminator). We want the whole middle block to 3954 // appear to execute on this line because: (a) it is all compiler generated, 3955 // (b) these instructions are always executed after evaluating the latch 3956 // conditional branch, and (c) other passes may add new predecessors which 3957 // terminate on this line. This is the easiest way to ensure we don't 3958 // accidentally cause an extra step back into the loop while debugging. 3959 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3960 if (PhiR->isOrdered()) 3961 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3962 else { 3963 // Floating-point operations should have some FMF to enable the reduction. 3964 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3965 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3966 for (unsigned Part = 1; Part < UF; ++Part) { 3967 Value *RdxPart = State.get(LoopExitInstDef, Part); 3968 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3969 ReducedPartRdx = Builder.CreateBinOp( 3970 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3971 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3972 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3973 ReducedPartRdx, RdxPart); 3974 else 3975 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3976 } 3977 } 3978 3979 // Create the reduction after the loop. Note that inloop reductions create the 3980 // target reduction in the loop using a Reduction recipe. 3981 if (VF.isVector() && !PhiR->isInLoop()) { 3982 ReducedPartRdx = 3983 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3984 // If the reduction can be performed in a smaller type, we need to extend 3985 // the reduction to the wider type before we branch to the original loop. 3986 if (PhiTy != RdxDesc.getRecurrenceType()) 3987 ReducedPartRdx = RdxDesc.isSigned() 3988 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3989 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3990 } 3991 3992 PHINode *ResumePhi = 3993 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3994 3995 // Create a phi node that merges control-flow from the backedge-taken check 3996 // block and the middle block. 3997 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3998 LoopScalarPreHeader->getTerminator()); 3999 4000 // If we are fixing reductions in the epilogue loop then we should already 4001 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4002 // we carry over the incoming values correctly. 4003 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4004 if (Incoming == LoopMiddleBlock) 4005 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4006 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4007 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4008 Incoming); 4009 else 4010 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4011 } 4012 4013 // Set the resume value for this reduction 4014 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4015 4016 // If there were stores of the reduction value to a uniform memory address 4017 // inside the loop, create the final store here. 4018 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4019 StoreInst *NewSI = 4020 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4021 propagateMetadata(NewSI, SI); 4022 4023 // If the reduction value is used in other places, 4024 // then let the code below create PHI's for that. 4025 } 4026 4027 // Now, we need to fix the users of the reduction variable 4028 // inside and outside of the scalar remainder loop. 4029 4030 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4031 // in the exit blocks. See comment on analogous loop in 4032 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4033 if (!Cost->requiresScalarEpilogue(VF)) 4034 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4035 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4036 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4037 State.Plan->removeLiveOut(&LCSSAPhi); 4038 } 4039 4040 // Fix the scalar loop reduction variable with the incoming reduction sum 4041 // from the vector body and from the backedge value. 4042 int IncomingEdgeBlockIdx = 4043 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4044 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4045 // Pick the other block. 4046 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4047 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4048 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4049 } 4050 4051 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4052 VPTransformState &State) { 4053 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4054 RecurKind RK = RdxDesc.getRecurrenceKind(); 4055 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4056 return; 4057 4058 SmallVector<VPValue *, 8> Worklist; 4059 SmallPtrSet<VPValue *, 8> Visited; 4060 Worklist.push_back(PhiR); 4061 Visited.insert(PhiR); 4062 4063 while (!Worklist.empty()) { 4064 VPValue *Cur = Worklist.pop_back_val(); 4065 for (unsigned Part = 0; Part < UF; ++Part) { 4066 Value *V = State.get(Cur, Part); 4067 if (!isa<OverflowingBinaryOperator>(V)) 4068 break; 4069 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4070 } 4071 4072 for (VPUser *U : Cur->users()) { 4073 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4074 if (!UserRecipe) 4075 continue; 4076 for (VPValue *V : UserRecipe->definedValues()) 4077 if (Visited.insert(V).second) 4078 Worklist.push_back(V); 4079 } 4080 } 4081 } 4082 4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4084 // The basic block and loop containing the predicated instruction. 4085 auto *PredBB = PredInst->getParent(); 4086 auto *VectorLoop = LI->getLoopFor(PredBB); 4087 4088 // Initialize a worklist with the operands of the predicated instruction. 4089 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4090 4091 // Holds instructions that we need to analyze again. An instruction may be 4092 // reanalyzed if we don't yet know if we can sink it or not. 4093 SmallVector<Instruction *, 8> InstsToReanalyze; 4094 4095 // Returns true if a given use occurs in the predicated block. Phi nodes use 4096 // their operands in their corresponding predecessor blocks. 4097 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4098 auto *I = cast<Instruction>(U.getUser()); 4099 BasicBlock *BB = I->getParent(); 4100 if (auto *Phi = dyn_cast<PHINode>(I)) 4101 BB = Phi->getIncomingBlock( 4102 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4103 return BB == PredBB; 4104 }; 4105 4106 // Iteratively sink the scalarized operands of the predicated instruction 4107 // into the block we created for it. When an instruction is sunk, it's 4108 // operands are then added to the worklist. The algorithm ends after one pass 4109 // through the worklist doesn't sink a single instruction. 4110 bool Changed; 4111 do { 4112 // Add the instructions that need to be reanalyzed to the worklist, and 4113 // reset the changed indicator. 4114 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4115 InstsToReanalyze.clear(); 4116 Changed = false; 4117 4118 while (!Worklist.empty()) { 4119 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4120 4121 // We can't sink an instruction if it is a phi node, is not in the loop, 4122 // or may have side effects. 4123 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4124 I->mayHaveSideEffects()) 4125 continue; 4126 4127 // If the instruction is already in PredBB, check if we can sink its 4128 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4129 // sinking the scalar instruction I, hence it appears in PredBB; but it 4130 // may have failed to sink I's operands (recursively), which we try 4131 // (again) here. 4132 if (I->getParent() == PredBB) { 4133 Worklist.insert(I->op_begin(), I->op_end()); 4134 continue; 4135 } 4136 4137 // It's legal to sink the instruction if all its uses occur in the 4138 // predicated block. Otherwise, there's nothing to do yet, and we may 4139 // need to reanalyze the instruction. 4140 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4141 InstsToReanalyze.push_back(I); 4142 continue; 4143 } 4144 4145 // Move the instruction to the beginning of the predicated block, and add 4146 // it's operands to the worklist. 4147 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4148 Worklist.insert(I->op_begin(), I->op_end()); 4149 4150 // The sinking may have enabled other instructions to be sunk, so we will 4151 // need to iterate. 4152 Changed = true; 4153 } 4154 } while (Changed); 4155 } 4156 4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4158 VPTransformState &State) { 4159 auto Iter = depth_first( 4160 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4161 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4162 for (VPRecipeBase &P : VPBB->phis()) { 4163 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4164 if (!VPPhi) 4165 continue; 4166 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4167 // Make sure the builder has a valid insert point. 4168 Builder.SetInsertPoint(NewPhi); 4169 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4170 VPValue *Inc = VPPhi->getIncomingValue(i); 4171 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4172 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4173 } 4174 } 4175 } 4176 } 4177 4178 bool InnerLoopVectorizer::useOrderedReductions( 4179 const RecurrenceDescriptor &RdxDesc) { 4180 return Cost->useOrderedReductions(RdxDesc); 4181 } 4182 4183 /// A helper function for checking whether an integer division-related 4184 /// instruction may divide by zero (in which case it must be predicated if 4185 /// executed conditionally in the scalar code). 4186 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4187 /// Non-zero divisors that are non compile-time constants will not be 4188 /// converted into multiplication, so we will still end up scalarizing 4189 /// the division, but can do so w/o predication. 4190 static bool mayDivideByZero(Instruction &I) { 4191 assert((I.getOpcode() == Instruction::UDiv || 4192 I.getOpcode() == Instruction::SDiv || 4193 I.getOpcode() == Instruction::URem || 4194 I.getOpcode() == Instruction::SRem) && 4195 "Unexpected instruction"); 4196 Value *Divisor = I.getOperand(1); 4197 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4198 return !CInt || CInt->isZero(); 4199 } 4200 4201 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4202 VPUser &ArgOperands, 4203 VPTransformState &State) { 4204 assert(!isa<DbgInfoIntrinsic>(I) && 4205 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4206 setDebugLocFromInst(&I); 4207 4208 Module *M = I.getParent()->getParent()->getParent(); 4209 auto *CI = cast<CallInst>(&I); 4210 4211 SmallVector<Type *, 4> Tys; 4212 for (Value *ArgOperand : CI->args()) 4213 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4214 4215 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4216 4217 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4218 // version of the instruction. 4219 // Is it beneficial to perform intrinsic call compared to lib call? 4220 bool NeedToScalarize = false; 4221 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4222 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4223 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4224 assert((UseVectorIntrinsic || !NeedToScalarize) && 4225 "Instruction should be scalarized elsewhere."); 4226 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4227 "Either the intrinsic cost or vector call cost must be valid"); 4228 4229 for (unsigned Part = 0; Part < UF; ++Part) { 4230 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4231 SmallVector<Value *, 4> Args; 4232 for (auto &I : enumerate(ArgOperands.operands())) { 4233 // Some intrinsics have a scalar argument - don't replace it with a 4234 // vector. 4235 Value *Arg; 4236 if (!UseVectorIntrinsic || 4237 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4238 Arg = State.get(I.value(), Part); 4239 else 4240 Arg = State.get(I.value(), VPIteration(0, 0)); 4241 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4242 TysForDecl.push_back(Arg->getType()); 4243 Args.push_back(Arg); 4244 } 4245 4246 Function *VectorF; 4247 if (UseVectorIntrinsic) { 4248 // Use vector version of the intrinsic. 4249 if (VF.isVector()) 4250 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4251 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4252 assert(VectorF && "Can't retrieve vector intrinsic."); 4253 } else { 4254 // Use vector version of the function call. 4255 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4256 #ifndef NDEBUG 4257 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4258 "Can't create vector function."); 4259 #endif 4260 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4261 } 4262 SmallVector<OperandBundleDef, 1> OpBundles; 4263 CI->getOperandBundlesAsDefs(OpBundles); 4264 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4265 4266 if (isa<FPMathOperator>(V)) 4267 V->copyFastMathFlags(CI); 4268 4269 State.set(Def, V, Part); 4270 addMetadata(V, &I); 4271 } 4272 } 4273 4274 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4275 // We should not collect Scalars more than once per VF. Right now, this 4276 // function is called from collectUniformsAndScalars(), which already does 4277 // this check. Collecting Scalars for VF=1 does not make any sense. 4278 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4279 "This function should not be visited twice for the same VF"); 4280 4281 // This avoids any chances of creating a REPLICATE recipe during planning 4282 // since that would result in generation of scalarized code during execution, 4283 // which is not supported for scalable vectors. 4284 if (VF.isScalable()) { 4285 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4286 return; 4287 } 4288 4289 SmallSetVector<Instruction *, 8> Worklist; 4290 4291 // These sets are used to seed the analysis with pointers used by memory 4292 // accesses that will remain scalar. 4293 SmallSetVector<Instruction *, 8> ScalarPtrs; 4294 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4295 auto *Latch = TheLoop->getLoopLatch(); 4296 4297 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4298 // The pointer operands of loads and stores will be scalar as long as the 4299 // memory access is not a gather or scatter operation. The value operand of a 4300 // store will remain scalar if the store is scalarized. 4301 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4302 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4303 assert(WideningDecision != CM_Unknown && 4304 "Widening decision should be ready at this moment"); 4305 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4306 if (Ptr == Store->getValueOperand()) 4307 return WideningDecision == CM_Scalarize; 4308 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4309 "Ptr is neither a value or pointer operand"); 4310 return WideningDecision != CM_GatherScatter; 4311 }; 4312 4313 // A helper that returns true if the given value is a bitcast or 4314 // getelementptr instruction contained in the loop. 4315 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4316 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4317 isa<GetElementPtrInst>(V)) && 4318 !TheLoop->isLoopInvariant(V); 4319 }; 4320 4321 // A helper that evaluates a memory access's use of a pointer. If the use will 4322 // be a scalar use and the pointer is only used by memory accesses, we place 4323 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4324 // PossibleNonScalarPtrs. 4325 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4326 // We only care about bitcast and getelementptr instructions contained in 4327 // the loop. 4328 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4329 return; 4330 4331 // If the pointer has already been identified as scalar (e.g., if it was 4332 // also identified as uniform), there's nothing to do. 4333 auto *I = cast<Instruction>(Ptr); 4334 if (Worklist.count(I)) 4335 return; 4336 4337 // If the use of the pointer will be a scalar use, and all users of the 4338 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4339 // place the pointer in PossibleNonScalarPtrs. 4340 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4341 return isa<LoadInst>(U) || isa<StoreInst>(U); 4342 })) 4343 ScalarPtrs.insert(I); 4344 else 4345 PossibleNonScalarPtrs.insert(I); 4346 }; 4347 4348 // We seed the scalars analysis with three classes of instructions: (1) 4349 // instructions marked uniform-after-vectorization and (2) bitcast, 4350 // getelementptr and (pointer) phi instructions used by memory accesses 4351 // requiring a scalar use. 4352 // 4353 // (1) Add to the worklist all instructions that have been identified as 4354 // uniform-after-vectorization. 4355 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4356 4357 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4358 // memory accesses requiring a scalar use. The pointer operands of loads and 4359 // stores will be scalar as long as the memory accesses is not a gather or 4360 // scatter operation. The value operand of a store will remain scalar if the 4361 // store is scalarized. 4362 for (auto *BB : TheLoop->blocks()) 4363 for (auto &I : *BB) { 4364 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4365 evaluatePtrUse(Load, Load->getPointerOperand()); 4366 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4367 evaluatePtrUse(Store, Store->getPointerOperand()); 4368 evaluatePtrUse(Store, Store->getValueOperand()); 4369 } 4370 } 4371 for (auto *I : ScalarPtrs) 4372 if (!PossibleNonScalarPtrs.count(I)) { 4373 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4374 Worklist.insert(I); 4375 } 4376 4377 // Insert the forced scalars. 4378 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4379 // induction variable when the PHI user is scalarized. 4380 auto ForcedScalar = ForcedScalars.find(VF); 4381 if (ForcedScalar != ForcedScalars.end()) 4382 for (auto *I : ForcedScalar->second) 4383 Worklist.insert(I); 4384 4385 // Expand the worklist by looking through any bitcasts and getelementptr 4386 // instructions we've already identified as scalar. This is similar to the 4387 // expansion step in collectLoopUniforms(); however, here we're only 4388 // expanding to include additional bitcasts and getelementptr instructions. 4389 unsigned Idx = 0; 4390 while (Idx != Worklist.size()) { 4391 Instruction *Dst = Worklist[Idx++]; 4392 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4393 continue; 4394 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4395 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4396 auto *J = cast<Instruction>(U); 4397 return !TheLoop->contains(J) || Worklist.count(J) || 4398 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4399 isScalarUse(J, Src)); 4400 })) { 4401 Worklist.insert(Src); 4402 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4403 } 4404 } 4405 4406 // An induction variable will remain scalar if all users of the induction 4407 // variable and induction variable update remain scalar. 4408 for (auto &Induction : Legal->getInductionVars()) { 4409 auto *Ind = Induction.first; 4410 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4411 4412 // If tail-folding is applied, the primary induction variable will be used 4413 // to feed a vector compare. 4414 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4415 continue; 4416 4417 // Returns true if \p Indvar is a pointer induction that is used directly by 4418 // load/store instruction \p I. 4419 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4420 Instruction *I) { 4421 return Induction.second.getKind() == 4422 InductionDescriptor::IK_PtrInduction && 4423 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4424 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4425 }; 4426 4427 // Determine if all users of the induction variable are scalar after 4428 // vectorization. 4429 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4430 auto *I = cast<Instruction>(U); 4431 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4432 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4433 }); 4434 if (!ScalarInd) 4435 continue; 4436 4437 // Determine if all users of the induction variable update instruction are 4438 // scalar after vectorization. 4439 auto ScalarIndUpdate = 4440 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4441 auto *I = cast<Instruction>(U); 4442 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4443 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4444 }); 4445 if (!ScalarIndUpdate) 4446 continue; 4447 4448 // The induction variable and its update instruction will remain scalar. 4449 Worklist.insert(Ind); 4450 Worklist.insert(IndUpdate); 4451 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4452 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4453 << "\n"); 4454 } 4455 4456 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4457 } 4458 4459 bool LoopVectorizationCostModel::isScalarWithPredication( 4460 Instruction *I, ElementCount VF) const { 4461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4462 return false; 4463 switch(I->getOpcode()) { 4464 default: 4465 break; 4466 case Instruction::Load: 4467 case Instruction::Store: { 4468 if (!Legal->isMaskRequired(I)) 4469 return false; 4470 auto *Ptr = getLoadStorePointerOperand(I); 4471 auto *Ty = getLoadStoreType(I); 4472 Type *VTy = Ty; 4473 if (VF.isVector()) 4474 VTy = VectorType::get(Ty, VF); 4475 const Align Alignment = getLoadStoreAlignment(I); 4476 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4477 TTI.isLegalMaskedGather(VTy, Alignment)) 4478 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4479 TTI.isLegalMaskedScatter(VTy, Alignment)); 4480 } 4481 case Instruction::UDiv: 4482 case Instruction::SDiv: 4483 case Instruction::SRem: 4484 case Instruction::URem: 4485 return mayDivideByZero(*I); 4486 } 4487 return false; 4488 } 4489 4490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4491 Instruction *I, ElementCount VF) { 4492 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4493 assert(getWideningDecision(I, VF) == CM_Unknown && 4494 "Decision should not be set yet."); 4495 auto *Group = getInterleavedAccessGroup(I); 4496 assert(Group && "Must have a group."); 4497 4498 // If the instruction's allocated size doesn't equal it's type size, it 4499 // requires padding and will be scalarized. 4500 auto &DL = I->getModule()->getDataLayout(); 4501 auto *ScalarTy = getLoadStoreType(I); 4502 if (hasIrregularType(ScalarTy, DL)) 4503 return false; 4504 4505 // If the group involves a non-integral pointer, we may not be able to 4506 // losslessly cast all values to a common type. 4507 unsigned InterleaveFactor = Group->getFactor(); 4508 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4509 for (unsigned i = 0; i < InterleaveFactor; i++) { 4510 Instruction *Member = Group->getMember(i); 4511 if (!Member) 4512 continue; 4513 auto *MemberTy = getLoadStoreType(Member); 4514 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4515 // Don't coerce non-integral pointers to integers or vice versa. 4516 if (MemberNI != ScalarNI) { 4517 // TODO: Consider adding special nullptr value case here 4518 return false; 4519 } else if (MemberNI && ScalarNI && 4520 ScalarTy->getPointerAddressSpace() != 4521 MemberTy->getPointerAddressSpace()) { 4522 return false; 4523 } 4524 } 4525 4526 // Check if masking is required. 4527 // A Group may need masking for one of two reasons: it resides in a block that 4528 // needs predication, or it was decided to use masking to deal with gaps 4529 // (either a gap at the end of a load-access that may result in a speculative 4530 // load, or any gaps in a store-access). 4531 bool PredicatedAccessRequiresMasking = 4532 blockNeedsPredicationForAnyReason(I->getParent()) && 4533 Legal->isMaskRequired(I); 4534 bool LoadAccessWithGapsRequiresEpilogMasking = 4535 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4536 !isScalarEpilogueAllowed(); 4537 bool StoreAccessWithGapsRequiresMasking = 4538 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4539 if (!PredicatedAccessRequiresMasking && 4540 !LoadAccessWithGapsRequiresEpilogMasking && 4541 !StoreAccessWithGapsRequiresMasking) 4542 return true; 4543 4544 // If masked interleaving is required, we expect that the user/target had 4545 // enabled it, because otherwise it either wouldn't have been created or 4546 // it should have been invalidated by the CostModel. 4547 assert(useMaskedInterleavedAccesses(TTI) && 4548 "Masked interleave-groups for predicated accesses are not enabled."); 4549 4550 if (Group->isReverse()) 4551 return false; 4552 4553 auto *Ty = getLoadStoreType(I); 4554 const Align Alignment = getLoadStoreAlignment(I); 4555 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4556 : TTI.isLegalMaskedStore(Ty, Alignment); 4557 } 4558 4559 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4560 Instruction *I, ElementCount VF) { 4561 // Get and ensure we have a valid memory instruction. 4562 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4563 4564 auto *Ptr = getLoadStorePointerOperand(I); 4565 auto *ScalarTy = getLoadStoreType(I); 4566 4567 // In order to be widened, the pointer should be consecutive, first of all. 4568 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4569 return false; 4570 4571 // If the instruction is a store located in a predicated block, it will be 4572 // scalarized. 4573 if (isScalarWithPredication(I, VF)) 4574 return false; 4575 4576 // If the instruction's allocated size doesn't equal it's type size, it 4577 // requires padding and will be scalarized. 4578 auto &DL = I->getModule()->getDataLayout(); 4579 if (hasIrregularType(ScalarTy, DL)) 4580 return false; 4581 4582 return true; 4583 } 4584 4585 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4586 // We should not collect Uniforms more than once per VF. Right now, 4587 // this function is called from collectUniformsAndScalars(), which 4588 // already does this check. Collecting Uniforms for VF=1 does not make any 4589 // sense. 4590 4591 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4592 "This function should not be visited twice for the same VF"); 4593 4594 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4595 // not analyze again. Uniforms.count(VF) will return 1. 4596 Uniforms[VF].clear(); 4597 4598 // We now know that the loop is vectorizable! 4599 // Collect instructions inside the loop that will remain uniform after 4600 // vectorization. 4601 4602 // Global values, params and instructions outside of current loop are out of 4603 // scope. 4604 auto isOutOfScope = [&](Value *V) -> bool { 4605 Instruction *I = dyn_cast<Instruction>(V); 4606 return (!I || !TheLoop->contains(I)); 4607 }; 4608 4609 // Worklist containing uniform instructions demanding lane 0. 4610 SetVector<Instruction *> Worklist; 4611 BasicBlock *Latch = TheLoop->getLoopLatch(); 4612 4613 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4614 // that are scalar with predication must not be considered uniform after 4615 // vectorization, because that would create an erroneous replicating region 4616 // where only a single instance out of VF should be formed. 4617 // TODO: optimize such seldom cases if found important, see PR40816. 4618 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4619 if (isOutOfScope(I)) { 4620 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4621 << *I << "\n"); 4622 return; 4623 } 4624 if (isScalarWithPredication(I, VF)) { 4625 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4626 << *I << "\n"); 4627 return; 4628 } 4629 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4630 Worklist.insert(I); 4631 }; 4632 4633 // Start with the conditional branch. If the branch condition is an 4634 // instruction contained in the loop that is only used by the branch, it is 4635 // uniform. 4636 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4637 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4638 addToWorklistIfAllowed(Cmp); 4639 4640 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4641 InstWidening WideningDecision = getWideningDecision(I, VF); 4642 assert(WideningDecision != CM_Unknown && 4643 "Widening decision should be ready at this moment"); 4644 4645 // A uniform memory op is itself uniform. We exclude uniform stores 4646 // here as they demand the last lane, not the first one. 4647 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4648 assert(WideningDecision == CM_Scalarize); 4649 return true; 4650 } 4651 4652 return (WideningDecision == CM_Widen || 4653 WideningDecision == CM_Widen_Reverse || 4654 WideningDecision == CM_Interleave); 4655 }; 4656 4657 4658 // Returns true if Ptr is the pointer operand of a memory access instruction 4659 // I, and I is known to not require scalarization. 4660 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4661 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4662 }; 4663 4664 // Holds a list of values which are known to have at least one uniform use. 4665 // Note that there may be other uses which aren't uniform. A "uniform use" 4666 // here is something which only demands lane 0 of the unrolled iterations; 4667 // it does not imply that all lanes produce the same value (e.g. this is not 4668 // the usual meaning of uniform) 4669 SetVector<Value *> HasUniformUse; 4670 4671 // Scan the loop for instructions which are either a) known to have only 4672 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4673 for (auto *BB : TheLoop->blocks()) 4674 for (auto &I : *BB) { 4675 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4676 switch (II->getIntrinsicID()) { 4677 case Intrinsic::sideeffect: 4678 case Intrinsic::experimental_noalias_scope_decl: 4679 case Intrinsic::assume: 4680 case Intrinsic::lifetime_start: 4681 case Intrinsic::lifetime_end: 4682 if (TheLoop->hasLoopInvariantOperands(&I)) 4683 addToWorklistIfAllowed(&I); 4684 break; 4685 default: 4686 break; 4687 } 4688 } 4689 4690 // ExtractValue instructions must be uniform, because the operands are 4691 // known to be loop-invariant. 4692 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4693 assert(isOutOfScope(EVI->getAggregateOperand()) && 4694 "Expected aggregate value to be loop invariant"); 4695 addToWorklistIfAllowed(EVI); 4696 continue; 4697 } 4698 4699 // If there's no pointer operand, there's nothing to do. 4700 auto *Ptr = getLoadStorePointerOperand(&I); 4701 if (!Ptr) 4702 continue; 4703 4704 // A uniform memory op is itself uniform. We exclude uniform stores 4705 // here as they demand the last lane, not the first one. 4706 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4707 addToWorklistIfAllowed(&I); 4708 4709 if (isUniformDecision(&I, VF)) { 4710 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4711 HasUniformUse.insert(Ptr); 4712 } 4713 } 4714 4715 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4716 // demanding) users. Since loops are assumed to be in LCSSA form, this 4717 // disallows uses outside the loop as well. 4718 for (auto *V : HasUniformUse) { 4719 if (isOutOfScope(V)) 4720 continue; 4721 auto *I = cast<Instruction>(V); 4722 auto UsersAreMemAccesses = 4723 llvm::all_of(I->users(), [&](User *U) -> bool { 4724 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4725 }); 4726 if (UsersAreMemAccesses) 4727 addToWorklistIfAllowed(I); 4728 } 4729 4730 // Expand Worklist in topological order: whenever a new instruction 4731 // is added , its users should be already inside Worklist. It ensures 4732 // a uniform instruction will only be used by uniform instructions. 4733 unsigned idx = 0; 4734 while (idx != Worklist.size()) { 4735 Instruction *I = Worklist[idx++]; 4736 4737 for (auto OV : I->operand_values()) { 4738 // isOutOfScope operands cannot be uniform instructions. 4739 if (isOutOfScope(OV)) 4740 continue; 4741 // First order recurrence Phi's should typically be considered 4742 // non-uniform. 4743 auto *OP = dyn_cast<PHINode>(OV); 4744 if (OP && Legal->isFirstOrderRecurrence(OP)) 4745 continue; 4746 // If all the users of the operand are uniform, then add the 4747 // operand into the uniform worklist. 4748 auto *OI = cast<Instruction>(OV); 4749 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4750 auto *J = cast<Instruction>(U); 4751 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4752 })) 4753 addToWorklistIfAllowed(OI); 4754 } 4755 } 4756 4757 // For an instruction to be added into Worklist above, all its users inside 4758 // the loop should also be in Worklist. However, this condition cannot be 4759 // true for phi nodes that form a cyclic dependence. We must process phi 4760 // nodes separately. An induction variable will remain uniform if all users 4761 // of the induction variable and induction variable update remain uniform. 4762 // The code below handles both pointer and non-pointer induction variables. 4763 for (auto &Induction : Legal->getInductionVars()) { 4764 auto *Ind = Induction.first; 4765 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4766 4767 // Determine if all users of the induction variable are uniform after 4768 // vectorization. 4769 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4770 auto *I = cast<Instruction>(U); 4771 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4772 isVectorizedMemAccessUse(I, Ind); 4773 }); 4774 if (!UniformInd) 4775 continue; 4776 4777 // Determine if all users of the induction variable update instruction are 4778 // uniform after vectorization. 4779 auto UniformIndUpdate = 4780 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4781 auto *I = cast<Instruction>(U); 4782 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4783 isVectorizedMemAccessUse(I, IndUpdate); 4784 }); 4785 if (!UniformIndUpdate) 4786 continue; 4787 4788 // The induction variable and its update instruction will remain uniform. 4789 addToWorklistIfAllowed(Ind); 4790 addToWorklistIfAllowed(IndUpdate); 4791 } 4792 4793 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4794 } 4795 4796 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4797 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4798 4799 if (Legal->getRuntimePointerChecking()->Need) { 4800 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4801 "runtime pointer checks needed. Enable vectorization of this " 4802 "loop with '#pragma clang loop vectorize(enable)' when " 4803 "compiling with -Os/-Oz", 4804 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4805 return true; 4806 } 4807 4808 if (!PSE.getPredicate().isAlwaysTrue()) { 4809 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4810 "runtime SCEV checks needed. Enable vectorization of this " 4811 "loop with '#pragma clang loop vectorize(enable)' when " 4812 "compiling with -Os/-Oz", 4813 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4814 return true; 4815 } 4816 4817 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4818 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4819 reportVectorizationFailure("Runtime stride check for small trip count", 4820 "runtime stride == 1 checks needed. Enable vectorization of " 4821 "this loop without such check by compiling with -Os/-Oz", 4822 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4823 return true; 4824 } 4825 4826 return false; 4827 } 4828 4829 ElementCount 4830 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4831 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4832 return ElementCount::getScalable(0); 4833 4834 if (Hints->isScalableVectorizationDisabled()) { 4835 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4836 "ScalableVectorizationDisabled", ORE, TheLoop); 4837 return ElementCount::getScalable(0); 4838 } 4839 4840 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4841 4842 auto MaxScalableVF = ElementCount::getScalable( 4843 std::numeric_limits<ElementCount::ScalarTy>::max()); 4844 4845 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4846 // FIXME: While for scalable vectors this is currently sufficient, this should 4847 // be replaced by a more detailed mechanism that filters out specific VFs, 4848 // instead of invalidating vectorization for a whole set of VFs based on the 4849 // MaxVF. 4850 4851 // Disable scalable vectorization if the loop contains unsupported reductions. 4852 if (!canVectorizeReductions(MaxScalableVF)) { 4853 reportVectorizationInfo( 4854 "Scalable vectorization not supported for the reduction " 4855 "operations found in this loop.", 4856 "ScalableVFUnfeasible", ORE, TheLoop); 4857 return ElementCount::getScalable(0); 4858 } 4859 4860 // Disable scalable vectorization if the loop contains any instructions 4861 // with element types not supported for scalable vectors. 4862 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4863 return !Ty->isVoidTy() && 4864 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4865 })) { 4866 reportVectorizationInfo("Scalable vectorization is not supported " 4867 "for all element types found in this loop.", 4868 "ScalableVFUnfeasible", ORE, TheLoop); 4869 return ElementCount::getScalable(0); 4870 } 4871 4872 if (Legal->isSafeForAnyVectorWidth()) 4873 return MaxScalableVF; 4874 4875 // Limit MaxScalableVF by the maximum safe dependence distance. 4876 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4877 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4878 MaxVScale = 4879 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4880 MaxScalableVF = ElementCount::getScalable( 4881 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4882 if (!MaxScalableVF) 4883 reportVectorizationInfo( 4884 "Max legal vector width too small, scalable vectorization " 4885 "unfeasible.", 4886 "ScalableVFUnfeasible", ORE, TheLoop); 4887 4888 return MaxScalableVF; 4889 } 4890 4891 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4892 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4893 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4894 unsigned SmallestType, WidestType; 4895 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4896 4897 // Get the maximum safe dependence distance in bits computed by LAA. 4898 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4899 // the memory accesses that is most restrictive (involved in the smallest 4900 // dependence distance). 4901 unsigned MaxSafeElements = 4902 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4903 4904 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4905 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4906 4907 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4908 << ".\n"); 4909 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4910 << ".\n"); 4911 4912 // First analyze the UserVF, fall back if the UserVF should be ignored. 4913 if (UserVF) { 4914 auto MaxSafeUserVF = 4915 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4916 4917 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4918 // If `VF=vscale x N` is safe, then so is `VF=N` 4919 if (UserVF.isScalable()) 4920 return FixedScalableVFPair( 4921 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4922 else 4923 return UserVF; 4924 } 4925 4926 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4927 4928 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4929 // is better to ignore the hint and let the compiler choose a suitable VF. 4930 if (!UserVF.isScalable()) { 4931 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4932 << " is unsafe, clamping to max safe VF=" 4933 << MaxSafeFixedVF << ".\n"); 4934 ORE->emit([&]() { 4935 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4936 TheLoop->getStartLoc(), 4937 TheLoop->getHeader()) 4938 << "User-specified vectorization factor " 4939 << ore::NV("UserVectorizationFactor", UserVF) 4940 << " is unsafe, clamping to maximum safe vectorization factor " 4941 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4942 }); 4943 return MaxSafeFixedVF; 4944 } 4945 4946 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4947 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4948 << " is ignored because scalable vectors are not " 4949 "available.\n"); 4950 ORE->emit([&]() { 4951 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4952 TheLoop->getStartLoc(), 4953 TheLoop->getHeader()) 4954 << "User-specified vectorization factor " 4955 << ore::NV("UserVectorizationFactor", UserVF) 4956 << " is ignored because the target does not support scalable " 4957 "vectors. The compiler will pick a more suitable value."; 4958 }); 4959 } else { 4960 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4961 << " is unsafe. Ignoring scalable UserVF.\n"); 4962 ORE->emit([&]() { 4963 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4964 TheLoop->getStartLoc(), 4965 TheLoop->getHeader()) 4966 << "User-specified vectorization factor " 4967 << ore::NV("UserVectorizationFactor", UserVF) 4968 << " is unsafe. Ignoring the hint to let the compiler pick a " 4969 "more suitable value."; 4970 }); 4971 } 4972 } 4973 4974 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4975 << " / " << WidestType << " bits.\n"); 4976 4977 FixedScalableVFPair Result(ElementCount::getFixed(1), 4978 ElementCount::getScalable(0)); 4979 if (auto MaxVF = 4980 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4981 MaxSafeFixedVF, FoldTailByMasking)) 4982 Result.FixedVF = MaxVF; 4983 4984 if (auto MaxVF = 4985 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4986 MaxSafeScalableVF, FoldTailByMasking)) 4987 if (MaxVF.isScalable()) { 4988 Result.ScalableVF = MaxVF; 4989 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4990 << "\n"); 4991 } 4992 4993 return Result; 4994 } 4995 4996 FixedScalableVFPair 4997 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4998 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4999 // TODO: It may by useful to do since it's still likely to be dynamically 5000 // uniform if the target can skip. 5001 reportVectorizationFailure( 5002 "Not inserting runtime ptr check for divergent target", 5003 "runtime pointer checks needed. Not enabled for divergent target", 5004 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5005 return FixedScalableVFPair::getNone(); 5006 } 5007 5008 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5009 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5010 if (TC == 1) { 5011 reportVectorizationFailure("Single iteration (non) loop", 5012 "loop trip count is one, irrelevant for vectorization", 5013 "SingleIterationLoop", ORE, TheLoop); 5014 return FixedScalableVFPair::getNone(); 5015 } 5016 5017 switch (ScalarEpilogueStatus) { 5018 case CM_ScalarEpilogueAllowed: 5019 return computeFeasibleMaxVF(TC, UserVF, false); 5020 case CM_ScalarEpilogueNotAllowedUsePredicate: 5021 LLVM_FALLTHROUGH; 5022 case CM_ScalarEpilogueNotNeededUsePredicate: 5023 LLVM_DEBUG( 5024 dbgs() << "LV: vector predicate hint/switch found.\n" 5025 << "LV: Not allowing scalar epilogue, creating predicated " 5026 << "vector loop.\n"); 5027 break; 5028 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5029 // fallthrough as a special case of OptForSize 5030 case CM_ScalarEpilogueNotAllowedOptSize: 5031 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5032 LLVM_DEBUG( 5033 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5034 else 5035 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5036 << "count.\n"); 5037 5038 // Bail if runtime checks are required, which are not good when optimising 5039 // for size. 5040 if (runtimeChecksRequired()) 5041 return FixedScalableVFPair::getNone(); 5042 5043 break; 5044 } 5045 5046 // The only loops we can vectorize without a scalar epilogue, are loops with 5047 // a bottom-test and a single exiting block. We'd have to handle the fact 5048 // that not every instruction executes on the last iteration. This will 5049 // require a lane mask which varies through the vector loop body. (TODO) 5050 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5051 // If there was a tail-folding hint/switch, but we can't fold the tail by 5052 // masking, fallback to a vectorization with a scalar epilogue. 5053 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5054 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5055 "scalar epilogue instead.\n"); 5056 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5057 return computeFeasibleMaxVF(TC, UserVF, false); 5058 } 5059 return FixedScalableVFPair::getNone(); 5060 } 5061 5062 // Now try the tail folding 5063 5064 // Invalidate interleave groups that require an epilogue if we can't mask 5065 // the interleave-group. 5066 if (!useMaskedInterleavedAccesses(TTI)) { 5067 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5068 "No decisions should have been taken at this point"); 5069 // Note: There is no need to invalidate any cost modeling decisions here, as 5070 // non where taken so far. 5071 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5072 } 5073 5074 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5075 // Avoid tail folding if the trip count is known to be a multiple of any VF 5076 // we chose. 5077 // FIXME: The condition below pessimises the case for fixed-width vectors, 5078 // when scalable VFs are also candidates for vectorization. 5079 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5080 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5081 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5082 "MaxFixedVF must be a power of 2"); 5083 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5084 : MaxFixedVF.getFixedValue(); 5085 ScalarEvolution *SE = PSE.getSE(); 5086 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5087 const SCEV *ExitCount = SE->getAddExpr( 5088 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5089 const SCEV *Rem = SE->getURemExpr( 5090 SE->applyLoopGuards(ExitCount, TheLoop), 5091 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5092 if (Rem->isZero()) { 5093 // Accept MaxFixedVF if we do not have a tail. 5094 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5095 return MaxFactors; 5096 } 5097 } 5098 5099 // If we don't know the precise trip count, or if the trip count that we 5100 // found modulo the vectorization factor is not zero, try to fold the tail 5101 // by masking. 5102 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5103 if (Legal->prepareToFoldTailByMasking()) { 5104 FoldTailByMasking = true; 5105 return MaxFactors; 5106 } 5107 5108 // If there was a tail-folding hint/switch, but we can't fold the tail by 5109 // masking, fallback to a vectorization with a scalar epilogue. 5110 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5111 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5112 "scalar epilogue instead.\n"); 5113 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5114 return MaxFactors; 5115 } 5116 5117 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5118 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5119 return FixedScalableVFPair::getNone(); 5120 } 5121 5122 if (TC == 0) { 5123 reportVectorizationFailure( 5124 "Unable to calculate the loop count due to complex control flow", 5125 "unable to calculate the loop count due to complex control flow", 5126 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5127 return FixedScalableVFPair::getNone(); 5128 } 5129 5130 reportVectorizationFailure( 5131 "Cannot optimize for size and vectorize at the same time.", 5132 "cannot optimize for size and vectorize at the same time. " 5133 "Enable vectorization of this loop with '#pragma clang loop " 5134 "vectorize(enable)' when compiling with -Os/-Oz", 5135 "NoTailLoopWithOptForSize", ORE, TheLoop); 5136 return FixedScalableVFPair::getNone(); 5137 } 5138 5139 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5140 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5141 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5142 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5143 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5144 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5145 : TargetTransformInfo::RGK_FixedWidthVector); 5146 5147 // Convenience function to return the minimum of two ElementCounts. 5148 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5149 assert((LHS.isScalable() == RHS.isScalable()) && 5150 "Scalable flags must match"); 5151 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5152 }; 5153 5154 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5155 // Note that both WidestRegister and WidestType may not be a powers of 2. 5156 auto MaxVectorElementCount = ElementCount::get( 5157 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5158 ComputeScalableMaxVF); 5159 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5160 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5161 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5162 5163 if (!MaxVectorElementCount) { 5164 LLVM_DEBUG(dbgs() << "LV: The target has no " 5165 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5166 << " vector registers.\n"); 5167 return ElementCount::getFixed(1); 5168 } 5169 5170 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5171 if (ConstTripCount && 5172 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5173 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5174 // If loop trip count (TC) is known at compile time there is no point in 5175 // choosing VF greater than TC (as done in the loop below). Select maximum 5176 // power of two which doesn't exceed TC. 5177 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5178 // when the TC is less than or equal to the known number of lanes. 5179 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5180 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5181 "exceeding the constant trip count: " 5182 << ClampedConstTripCount << "\n"); 5183 return ElementCount::getFixed(ClampedConstTripCount); 5184 } 5185 5186 TargetTransformInfo::RegisterKind RegKind = 5187 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5188 : TargetTransformInfo::RGK_FixedWidthVector; 5189 ElementCount MaxVF = MaxVectorElementCount; 5190 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5191 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5192 auto MaxVectorElementCountMaxBW = ElementCount::get( 5193 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5194 ComputeScalableMaxVF); 5195 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5196 5197 // Collect all viable vectorization factors larger than the default MaxVF 5198 // (i.e. MaxVectorElementCount). 5199 SmallVector<ElementCount, 8> VFs; 5200 for (ElementCount VS = MaxVectorElementCount * 2; 5201 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5202 VFs.push_back(VS); 5203 5204 // For each VF calculate its register usage. 5205 auto RUs = calculateRegisterUsage(VFs); 5206 5207 // Select the largest VF which doesn't require more registers than existing 5208 // ones. 5209 for (int i = RUs.size() - 1; i >= 0; --i) { 5210 bool Selected = true; 5211 for (auto &pair : RUs[i].MaxLocalUsers) { 5212 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5213 if (pair.second > TargetNumRegisters) 5214 Selected = false; 5215 } 5216 if (Selected) { 5217 MaxVF = VFs[i]; 5218 break; 5219 } 5220 } 5221 if (ElementCount MinVF = 5222 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5223 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5224 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5225 << ") with target's minimum: " << MinVF << '\n'); 5226 MaxVF = MinVF; 5227 } 5228 } 5229 5230 // Invalidate any widening decisions we might have made, in case the loop 5231 // requires prediction (decided later), but we have already made some 5232 // load/store widening decisions. 5233 invalidateCostModelingDecisions(); 5234 } 5235 return MaxVF; 5236 } 5237 5238 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5239 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5240 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5241 auto Min = Attr.getVScaleRangeMin(); 5242 auto Max = Attr.getVScaleRangeMax(); 5243 if (Max && Min == Max) 5244 return Max; 5245 } 5246 5247 return TTI.getVScaleForTuning(); 5248 } 5249 5250 bool LoopVectorizationCostModel::isMoreProfitable( 5251 const VectorizationFactor &A, const VectorizationFactor &B) const { 5252 InstructionCost CostA = A.Cost; 5253 InstructionCost CostB = B.Cost; 5254 5255 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5256 5257 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5258 MaxTripCount) { 5259 // If we are folding the tail and the trip count is a known (possibly small) 5260 // constant, the trip count will be rounded up to an integer number of 5261 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5262 // which we compare directly. When not folding the tail, the total cost will 5263 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5264 // approximated with the per-lane cost below instead of using the tripcount 5265 // as here. 5266 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5267 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5268 return RTCostA < RTCostB; 5269 } 5270 5271 // Improve estimate for the vector width if it is scalable. 5272 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5273 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5274 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5275 if (A.Width.isScalable()) 5276 EstimatedWidthA *= VScale.getValue(); 5277 if (B.Width.isScalable()) 5278 EstimatedWidthB *= VScale.getValue(); 5279 } 5280 5281 // Assume vscale may be larger than 1 (or the value being tuned for), 5282 // so that scalable vectorization is slightly favorable over fixed-width 5283 // vectorization. 5284 if (A.Width.isScalable() && !B.Width.isScalable()) 5285 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5286 5287 // To avoid the need for FP division: 5288 // (CostA / A.Width) < (CostB / B.Width) 5289 // <=> (CostA * B.Width) < (CostB * A.Width) 5290 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5291 } 5292 5293 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5294 const ElementCountSet &VFCandidates) { 5295 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5296 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5297 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5298 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5299 "Expected Scalar VF to be a candidate"); 5300 5301 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5302 VectorizationFactor ChosenFactor = ScalarCost; 5303 5304 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5305 if (ForceVectorization && VFCandidates.size() > 1) { 5306 // Ignore scalar width, because the user explicitly wants vectorization. 5307 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5308 // evaluation. 5309 ChosenFactor.Cost = InstructionCost::getMax(); 5310 } 5311 5312 SmallVector<InstructionVFPair> InvalidCosts; 5313 for (const auto &i : VFCandidates) { 5314 // The cost for scalar VF=1 is already calculated, so ignore it. 5315 if (i.isScalar()) 5316 continue; 5317 5318 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5319 VectorizationFactor Candidate(i, C.first); 5320 5321 #ifndef NDEBUG 5322 unsigned AssumedMinimumVscale = 1; 5323 if (Optional<unsigned> VScale = getVScaleForTuning()) 5324 AssumedMinimumVscale = *VScale; 5325 unsigned Width = 5326 Candidate.Width.isScalable() 5327 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5328 : Candidate.Width.getFixedValue(); 5329 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5330 << " costs: " << (Candidate.Cost / Width)); 5331 if (i.isScalable()) 5332 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5333 << AssumedMinimumVscale << ")"); 5334 LLVM_DEBUG(dbgs() << ".\n"); 5335 #endif 5336 5337 if (!C.second && !ForceVectorization) { 5338 LLVM_DEBUG( 5339 dbgs() << "LV: Not considering vector loop of width " << i 5340 << " because it will not generate any vector instructions.\n"); 5341 continue; 5342 } 5343 5344 // If profitable add it to ProfitableVF list. 5345 if (isMoreProfitable(Candidate, ScalarCost)) 5346 ProfitableVFs.push_back(Candidate); 5347 5348 if (isMoreProfitable(Candidate, ChosenFactor)) 5349 ChosenFactor = Candidate; 5350 } 5351 5352 // Emit a report of VFs with invalid costs in the loop. 5353 if (!InvalidCosts.empty()) { 5354 // Group the remarks per instruction, keeping the instruction order from 5355 // InvalidCosts. 5356 std::map<Instruction *, unsigned> Numbering; 5357 unsigned I = 0; 5358 for (auto &Pair : InvalidCosts) 5359 if (!Numbering.count(Pair.first)) 5360 Numbering[Pair.first] = I++; 5361 5362 // Sort the list, first on instruction(number) then on VF. 5363 llvm::sort(InvalidCosts, 5364 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5365 if (Numbering[A.first] != Numbering[B.first]) 5366 return Numbering[A.first] < Numbering[B.first]; 5367 ElementCountComparator ECC; 5368 return ECC(A.second, B.second); 5369 }); 5370 5371 // For a list of ordered instruction-vf pairs: 5372 // [(load, vf1), (load, vf2), (store, vf1)] 5373 // Group the instructions together to emit separate remarks for: 5374 // load (vf1, vf2) 5375 // store (vf1) 5376 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5377 auto Subset = ArrayRef<InstructionVFPair>(); 5378 do { 5379 if (Subset.empty()) 5380 Subset = Tail.take_front(1); 5381 5382 Instruction *I = Subset.front().first; 5383 5384 // If the next instruction is different, or if there are no other pairs, 5385 // emit a remark for the collated subset. e.g. 5386 // [(load, vf1), (load, vf2))] 5387 // to emit: 5388 // remark: invalid costs for 'load' at VF=(vf, vf2) 5389 if (Subset == Tail || Tail[Subset.size()].first != I) { 5390 std::string OutString; 5391 raw_string_ostream OS(OutString); 5392 assert(!Subset.empty() && "Unexpected empty range"); 5393 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5394 for (auto &Pair : Subset) 5395 OS << (Pair.second == Subset.front().second ? "" : ", ") 5396 << Pair.second; 5397 OS << "):"; 5398 if (auto *CI = dyn_cast<CallInst>(I)) 5399 OS << " call to " << CI->getCalledFunction()->getName(); 5400 else 5401 OS << " " << I->getOpcodeName(); 5402 OS.flush(); 5403 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5404 Tail = Tail.drop_front(Subset.size()); 5405 Subset = {}; 5406 } else 5407 // Grow the subset by one element 5408 Subset = Tail.take_front(Subset.size() + 1); 5409 } while (!Tail.empty()); 5410 } 5411 5412 if (!EnableCondStoresVectorization && NumPredStores) { 5413 reportVectorizationFailure("There are conditional stores.", 5414 "store that is conditionally executed prevents vectorization", 5415 "ConditionalStore", ORE, TheLoop); 5416 ChosenFactor = ScalarCost; 5417 } 5418 5419 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5420 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5421 << "LV: Vectorization seems to be not beneficial, " 5422 << "but was forced by a user.\n"); 5423 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5424 return ChosenFactor; 5425 } 5426 5427 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5428 const Loop &L, ElementCount VF) const { 5429 // Cross iteration phis such as reductions need special handling and are 5430 // currently unsupported. 5431 if (any_of(L.getHeader()->phis(), 5432 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5433 return false; 5434 5435 // Phis with uses outside of the loop require special handling and are 5436 // currently unsupported. 5437 for (auto &Entry : Legal->getInductionVars()) { 5438 // Look for uses of the value of the induction at the last iteration. 5439 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5440 for (User *U : PostInc->users()) 5441 if (!L.contains(cast<Instruction>(U))) 5442 return false; 5443 // Look for uses of penultimate value of the induction. 5444 for (User *U : Entry.first->users()) 5445 if (!L.contains(cast<Instruction>(U))) 5446 return false; 5447 } 5448 5449 // Induction variables that are widened require special handling that is 5450 // currently not supported. 5451 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5452 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5453 this->isProfitableToScalarize(Entry.first, VF)); 5454 })) 5455 return false; 5456 5457 // Epilogue vectorization code has not been auditted to ensure it handles 5458 // non-latch exits properly. It may be fine, but it needs auditted and 5459 // tested. 5460 if (L.getExitingBlock() != L.getLoopLatch()) 5461 return false; 5462 5463 return true; 5464 } 5465 5466 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5467 const ElementCount VF) const { 5468 // FIXME: We need a much better cost-model to take different parameters such 5469 // as register pressure, code size increase and cost of extra branches into 5470 // account. For now we apply a very crude heuristic and only consider loops 5471 // with vectorization factors larger than a certain value. 5472 // We also consider epilogue vectorization unprofitable for targets that don't 5473 // consider interleaving beneficial (eg. MVE). 5474 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5475 return false; 5476 // FIXME: We should consider changing the threshold for scalable 5477 // vectors to take VScaleForTuning into account. 5478 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5479 return true; 5480 return false; 5481 } 5482 5483 VectorizationFactor 5484 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5485 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5486 VectorizationFactor Result = VectorizationFactor::Disabled(); 5487 if (!EnableEpilogueVectorization) { 5488 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5489 return Result; 5490 } 5491 5492 if (!isScalarEpilogueAllowed()) { 5493 LLVM_DEBUG( 5494 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5495 "allowed.\n";); 5496 return Result; 5497 } 5498 5499 // Not really a cost consideration, but check for unsupported cases here to 5500 // simplify the logic. 5501 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5502 LLVM_DEBUG( 5503 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5504 "not a supported candidate.\n";); 5505 return Result; 5506 } 5507 5508 if (EpilogueVectorizationForceVF > 1) { 5509 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5510 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5511 if (LVP.hasPlanWithVF(ForcedEC)) 5512 return {ForcedEC, 0}; 5513 else { 5514 LLVM_DEBUG( 5515 dbgs() 5516 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5517 return Result; 5518 } 5519 } 5520 5521 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5522 TheLoop->getHeader()->getParent()->hasMinSize()) { 5523 LLVM_DEBUG( 5524 dbgs() 5525 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5526 return Result; 5527 } 5528 5529 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5530 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5531 "this loop\n"); 5532 return Result; 5533 } 5534 5535 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5536 // the main loop handles 8 lanes per iteration. We could still benefit from 5537 // vectorizing the epilogue loop with VF=4. 5538 ElementCount EstimatedRuntimeVF = MainLoopVF; 5539 if (MainLoopVF.isScalable()) { 5540 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5541 if (Optional<unsigned> VScale = getVScaleForTuning()) 5542 EstimatedRuntimeVF *= *VScale; 5543 } 5544 5545 for (auto &NextVF : ProfitableVFs) 5546 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5547 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5548 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5549 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5550 LVP.hasPlanWithVF(NextVF.Width)) 5551 Result = NextVF; 5552 5553 if (Result != VectorizationFactor::Disabled()) 5554 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5555 << Result.Width << "\n";); 5556 return Result; 5557 } 5558 5559 std::pair<unsigned, unsigned> 5560 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5561 unsigned MinWidth = -1U; 5562 unsigned MaxWidth = 8; 5563 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5564 // For in-loop reductions, no element types are added to ElementTypesInLoop 5565 // if there are no loads/stores in the loop. In this case, check through the 5566 // reduction variables to determine the maximum width. 5567 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5568 // Reset MaxWidth so that we can find the smallest type used by recurrences 5569 // in the loop. 5570 MaxWidth = -1U; 5571 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5572 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5573 // When finding the min width used by the recurrence we need to account 5574 // for casts on the input operands of the recurrence. 5575 MaxWidth = std::min<unsigned>( 5576 MaxWidth, std::min<unsigned>( 5577 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5578 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5579 } 5580 } else { 5581 for (Type *T : ElementTypesInLoop) { 5582 MinWidth = std::min<unsigned>( 5583 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5584 MaxWidth = std::max<unsigned>( 5585 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5586 } 5587 } 5588 return {MinWidth, MaxWidth}; 5589 } 5590 5591 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5592 ElementTypesInLoop.clear(); 5593 // For each block. 5594 for (BasicBlock *BB : TheLoop->blocks()) { 5595 // For each instruction in the loop. 5596 for (Instruction &I : BB->instructionsWithoutDebug()) { 5597 Type *T = I.getType(); 5598 5599 // Skip ignored values. 5600 if (ValuesToIgnore.count(&I)) 5601 continue; 5602 5603 // Only examine Loads, Stores and PHINodes. 5604 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5605 continue; 5606 5607 // Examine PHI nodes that are reduction variables. Update the type to 5608 // account for the recurrence type. 5609 if (auto *PN = dyn_cast<PHINode>(&I)) { 5610 if (!Legal->isReductionVariable(PN)) 5611 continue; 5612 const RecurrenceDescriptor &RdxDesc = 5613 Legal->getReductionVars().find(PN)->second; 5614 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5615 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5616 RdxDesc.getRecurrenceType(), 5617 TargetTransformInfo::ReductionFlags())) 5618 continue; 5619 T = RdxDesc.getRecurrenceType(); 5620 } 5621 5622 // Examine the stored values. 5623 if (auto *ST = dyn_cast<StoreInst>(&I)) 5624 T = ST->getValueOperand()->getType(); 5625 5626 assert(T->isSized() && 5627 "Expected the load/store/recurrence type to be sized"); 5628 5629 ElementTypesInLoop.insert(T); 5630 } 5631 } 5632 } 5633 5634 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5635 unsigned LoopCost) { 5636 // -- The interleave heuristics -- 5637 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5638 // There are many micro-architectural considerations that we can't predict 5639 // at this level. For example, frontend pressure (on decode or fetch) due to 5640 // code size, or the number and capabilities of the execution ports. 5641 // 5642 // We use the following heuristics to select the interleave count: 5643 // 1. If the code has reductions, then we interleave to break the cross 5644 // iteration dependency. 5645 // 2. If the loop is really small, then we interleave to reduce the loop 5646 // overhead. 5647 // 3. We don't interleave if we think that we will spill registers to memory 5648 // due to the increased register pressure. 5649 5650 if (!isScalarEpilogueAllowed()) 5651 return 1; 5652 5653 // We used the distance for the interleave count. 5654 if (Legal->getMaxSafeDepDistBytes() != -1U) 5655 return 1; 5656 5657 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5658 const bool HasReductions = !Legal->getReductionVars().empty(); 5659 // Do not interleave loops with a relatively small known or estimated trip 5660 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5661 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5662 // because with the above conditions interleaving can expose ILP and break 5663 // cross iteration dependences for reductions. 5664 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5665 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5666 return 1; 5667 5668 // If we did not calculate the cost for VF (because the user selected the VF) 5669 // then we calculate the cost of VF here. 5670 if (LoopCost == 0) { 5671 InstructionCost C = expectedCost(VF).first; 5672 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5673 LoopCost = *C.getValue(); 5674 5675 // Loop body is free and there is no need for interleaving. 5676 if (LoopCost == 0) 5677 return 1; 5678 } 5679 5680 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5681 // We divide by these constants so assume that we have at least one 5682 // instruction that uses at least one register. 5683 for (auto& pair : R.MaxLocalUsers) { 5684 pair.second = std::max(pair.second, 1U); 5685 } 5686 5687 // We calculate the interleave count using the following formula. 5688 // Subtract the number of loop invariants from the number of available 5689 // registers. These registers are used by all of the interleaved instances. 5690 // Next, divide the remaining registers by the number of registers that is 5691 // required by the loop, in order to estimate how many parallel instances 5692 // fit without causing spills. All of this is rounded down if necessary to be 5693 // a power of two. We want power of two interleave count to simplify any 5694 // addressing operations or alignment considerations. 5695 // We also want power of two interleave counts to ensure that the induction 5696 // variable of the vector loop wraps to zero, when tail is folded by masking; 5697 // this currently happens when OptForSize, in which case IC is set to 1 above. 5698 unsigned IC = UINT_MAX; 5699 5700 for (auto& pair : R.MaxLocalUsers) { 5701 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5702 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5703 << " registers of " 5704 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5705 if (VF.isScalar()) { 5706 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5707 TargetNumRegisters = ForceTargetNumScalarRegs; 5708 } else { 5709 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5710 TargetNumRegisters = ForceTargetNumVectorRegs; 5711 } 5712 unsigned MaxLocalUsers = pair.second; 5713 unsigned LoopInvariantRegs = 0; 5714 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5715 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5716 5717 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5718 // Don't count the induction variable as interleaved. 5719 if (EnableIndVarRegisterHeur) { 5720 TmpIC = 5721 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5722 std::max(1U, (MaxLocalUsers - 1))); 5723 } 5724 5725 IC = std::min(IC, TmpIC); 5726 } 5727 5728 // Clamp the interleave ranges to reasonable counts. 5729 unsigned MaxInterleaveCount = 5730 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5731 5732 // Check if the user has overridden the max. 5733 if (VF.isScalar()) { 5734 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5735 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5736 } else { 5737 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5738 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5739 } 5740 5741 // If trip count is known or estimated compile time constant, limit the 5742 // interleave count to be less than the trip count divided by VF, provided it 5743 // is at least 1. 5744 // 5745 // For scalable vectors we can't know if interleaving is beneficial. It may 5746 // not be beneficial for small loops if none of the lanes in the second vector 5747 // iterations is enabled. However, for larger loops, there is likely to be a 5748 // similar benefit as for fixed-width vectors. For now, we choose to leave 5749 // the InterleaveCount as if vscale is '1', although if some information about 5750 // the vector is known (e.g. min vector size), we can make a better decision. 5751 if (BestKnownTC) { 5752 MaxInterleaveCount = 5753 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5754 // Make sure MaxInterleaveCount is greater than 0. 5755 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5756 } 5757 5758 assert(MaxInterleaveCount > 0 && 5759 "Maximum interleave count must be greater than 0"); 5760 5761 // Clamp the calculated IC to be between the 1 and the max interleave count 5762 // that the target and trip count allows. 5763 if (IC > MaxInterleaveCount) 5764 IC = MaxInterleaveCount; 5765 else 5766 // Make sure IC is greater than 0. 5767 IC = std::max(1u, IC); 5768 5769 assert(IC > 0 && "Interleave count must be greater than 0."); 5770 5771 // Interleave if we vectorized this loop and there is a reduction that could 5772 // benefit from interleaving. 5773 if (VF.isVector() && HasReductions) { 5774 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5775 return IC; 5776 } 5777 5778 // For any scalar loop that either requires runtime checks or predication we 5779 // are better off leaving this to the unroller. Note that if we've already 5780 // vectorized the loop we will have done the runtime check and so interleaving 5781 // won't require further checks. 5782 bool ScalarInterleavingRequiresPredication = 5783 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5784 return Legal->blockNeedsPredication(BB); 5785 })); 5786 bool ScalarInterleavingRequiresRuntimePointerCheck = 5787 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5788 5789 // We want to interleave small loops in order to reduce the loop overhead and 5790 // potentially expose ILP opportunities. 5791 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5792 << "LV: IC is " << IC << '\n' 5793 << "LV: VF is " << VF << '\n'); 5794 const bool AggressivelyInterleaveReductions = 5795 TTI.enableAggressiveInterleaving(HasReductions); 5796 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5797 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5798 // We assume that the cost overhead is 1 and we use the cost model 5799 // to estimate the cost of the loop and interleave until the cost of the 5800 // loop overhead is about 5% of the cost of the loop. 5801 unsigned SmallIC = 5802 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5803 5804 // Interleave until store/load ports (estimated by max interleave count) are 5805 // saturated. 5806 unsigned NumStores = Legal->getNumStores(); 5807 unsigned NumLoads = Legal->getNumLoads(); 5808 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5809 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5810 5811 // There is little point in interleaving for reductions containing selects 5812 // and compares when VF=1 since it may just create more overhead than it's 5813 // worth for loops with small trip counts. This is because we still have to 5814 // do the final reduction after the loop. 5815 bool HasSelectCmpReductions = 5816 HasReductions && 5817 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5818 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5819 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5820 RdxDesc.getRecurrenceKind()); 5821 }); 5822 if (HasSelectCmpReductions) { 5823 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5824 return 1; 5825 } 5826 5827 // If we have a scalar reduction (vector reductions are already dealt with 5828 // by this point), we can increase the critical path length if the loop 5829 // we're interleaving is inside another loop. For tree-wise reductions 5830 // set the limit to 2, and for ordered reductions it's best to disable 5831 // interleaving entirely. 5832 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5833 bool HasOrderedReductions = 5834 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5835 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5836 return RdxDesc.isOrdered(); 5837 }); 5838 if (HasOrderedReductions) { 5839 LLVM_DEBUG( 5840 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5841 return 1; 5842 } 5843 5844 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5845 SmallIC = std::min(SmallIC, F); 5846 StoresIC = std::min(StoresIC, F); 5847 LoadsIC = std::min(LoadsIC, F); 5848 } 5849 5850 if (EnableLoadStoreRuntimeInterleave && 5851 std::max(StoresIC, LoadsIC) > SmallIC) { 5852 LLVM_DEBUG( 5853 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5854 return std::max(StoresIC, LoadsIC); 5855 } 5856 5857 // If there are scalar reductions and TTI has enabled aggressive 5858 // interleaving for reductions, we will interleave to expose ILP. 5859 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5860 AggressivelyInterleaveReductions) { 5861 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5862 // Interleave no less than SmallIC but not as aggressive as the normal IC 5863 // to satisfy the rare situation when resources are too limited. 5864 return std::max(IC / 2, SmallIC); 5865 } else { 5866 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5867 return SmallIC; 5868 } 5869 } 5870 5871 // Interleave if this is a large loop (small loops are already dealt with by 5872 // this point) that could benefit from interleaving. 5873 if (AggressivelyInterleaveReductions) { 5874 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5875 return IC; 5876 } 5877 5878 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5879 return 1; 5880 } 5881 5882 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5883 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5884 // This function calculates the register usage by measuring the highest number 5885 // of values that are alive at a single location. Obviously, this is a very 5886 // rough estimation. We scan the loop in a topological order in order and 5887 // assign a number to each instruction. We use RPO to ensure that defs are 5888 // met before their users. We assume that each instruction that has in-loop 5889 // users starts an interval. We record every time that an in-loop value is 5890 // used, so we have a list of the first and last occurrences of each 5891 // instruction. Next, we transpose this data structure into a multi map that 5892 // holds the list of intervals that *end* at a specific location. This multi 5893 // map allows us to perform a linear search. We scan the instructions linearly 5894 // and record each time that a new interval starts, by placing it in a set. 5895 // If we find this value in the multi-map then we remove it from the set. 5896 // The max register usage is the maximum size of the set. 5897 // We also search for instructions that are defined outside the loop, but are 5898 // used inside the loop. We need this number separately from the max-interval 5899 // usage number because when we unroll, loop-invariant values do not take 5900 // more register. 5901 LoopBlocksDFS DFS(TheLoop); 5902 DFS.perform(LI); 5903 5904 RegisterUsage RU; 5905 5906 // Each 'key' in the map opens a new interval. The values 5907 // of the map are the index of the 'last seen' usage of the 5908 // instruction that is the key. 5909 using IntervalMap = DenseMap<Instruction *, unsigned>; 5910 5911 // Maps instruction to its index. 5912 SmallVector<Instruction *, 64> IdxToInstr; 5913 // Marks the end of each interval. 5914 IntervalMap EndPoint; 5915 // Saves the list of instruction indices that are used in the loop. 5916 SmallPtrSet<Instruction *, 8> Ends; 5917 // Saves the list of values that are used in the loop but are 5918 // defined outside the loop, such as arguments and constants. 5919 SmallPtrSet<Value *, 8> LoopInvariants; 5920 5921 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5922 for (Instruction &I : BB->instructionsWithoutDebug()) { 5923 IdxToInstr.push_back(&I); 5924 5925 // Save the end location of each USE. 5926 for (Value *U : I.operands()) { 5927 auto *Instr = dyn_cast<Instruction>(U); 5928 5929 // Ignore non-instruction values such as arguments, constants, etc. 5930 if (!Instr) 5931 continue; 5932 5933 // If this instruction is outside the loop then record it and continue. 5934 if (!TheLoop->contains(Instr)) { 5935 LoopInvariants.insert(Instr); 5936 continue; 5937 } 5938 5939 // Overwrite previous end points. 5940 EndPoint[Instr] = IdxToInstr.size(); 5941 Ends.insert(Instr); 5942 } 5943 } 5944 } 5945 5946 // Saves the list of intervals that end with the index in 'key'. 5947 using InstrList = SmallVector<Instruction *, 2>; 5948 DenseMap<unsigned, InstrList> TransposeEnds; 5949 5950 // Transpose the EndPoints to a list of values that end at each index. 5951 for (auto &Interval : EndPoint) 5952 TransposeEnds[Interval.second].push_back(Interval.first); 5953 5954 SmallPtrSet<Instruction *, 8> OpenIntervals; 5955 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5956 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5957 5958 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5959 5960 auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned { 5961 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5962 return 0; 5963 return TTI.getRegUsageForType(VectorType::get(Ty, VF)); 5964 }; 5965 5966 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5967 Instruction *I = IdxToInstr[i]; 5968 5969 // Remove all of the instructions that end at this location. 5970 InstrList &List = TransposeEnds[i]; 5971 for (Instruction *ToRemove : List) 5972 OpenIntervals.erase(ToRemove); 5973 5974 // Ignore instructions that are never used within the loop. 5975 if (!Ends.count(I)) 5976 continue; 5977 5978 // Skip ignored values. 5979 if (ValuesToIgnore.count(I)) 5980 continue; 5981 5982 // For each VF find the maximum usage of registers. 5983 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5984 // Count the number of live intervals. 5985 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5986 5987 if (VFs[j].isScalar()) { 5988 for (auto Inst : OpenIntervals) { 5989 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5990 if (RegUsage.find(ClassID) == RegUsage.end()) 5991 RegUsage[ClassID] = 1; 5992 else 5993 RegUsage[ClassID] += 1; 5994 } 5995 } else { 5996 collectUniformsAndScalars(VFs[j]); 5997 for (auto Inst : OpenIntervals) { 5998 // Skip ignored values for VF > 1. 5999 if (VecValuesToIgnore.count(Inst)) 6000 continue; 6001 if (isScalarAfterVectorization(Inst, VFs[j])) { 6002 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6003 if (RegUsage.find(ClassID) == RegUsage.end()) 6004 RegUsage[ClassID] = 1; 6005 else 6006 RegUsage[ClassID] += 1; 6007 } else { 6008 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6009 if (RegUsage.find(ClassID) == RegUsage.end()) 6010 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6011 else 6012 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6013 } 6014 } 6015 } 6016 6017 for (auto& pair : RegUsage) { 6018 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6019 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6020 else 6021 MaxUsages[j][pair.first] = pair.second; 6022 } 6023 } 6024 6025 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6026 << OpenIntervals.size() << '\n'); 6027 6028 // Add the current instruction to the list of open intervals. 6029 OpenIntervals.insert(I); 6030 } 6031 6032 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6033 SmallMapVector<unsigned, unsigned, 4> Invariant; 6034 6035 for (auto Inst : LoopInvariants) { 6036 unsigned Usage = 6037 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6038 unsigned ClassID = 6039 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6040 if (Invariant.find(ClassID) == Invariant.end()) 6041 Invariant[ClassID] = Usage; 6042 else 6043 Invariant[ClassID] += Usage; 6044 } 6045 6046 LLVM_DEBUG({ 6047 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6048 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6049 << " item\n"; 6050 for (const auto &pair : MaxUsages[i]) { 6051 dbgs() << "LV(REG): RegisterClass: " 6052 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6053 << " registers\n"; 6054 } 6055 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6056 << " item\n"; 6057 for (const auto &pair : Invariant) { 6058 dbgs() << "LV(REG): RegisterClass: " 6059 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6060 << " registers\n"; 6061 } 6062 }); 6063 6064 RU.LoopInvariantRegs = Invariant; 6065 RU.MaxLocalUsers = MaxUsages[i]; 6066 RUs[i] = RU; 6067 } 6068 6069 return RUs; 6070 } 6071 6072 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6073 ElementCount VF) { 6074 // TODO: Cost model for emulated masked load/store is completely 6075 // broken. This hack guides the cost model to use an artificially 6076 // high enough value to practically disable vectorization with such 6077 // operations, except where previously deployed legality hack allowed 6078 // using very low cost values. This is to avoid regressions coming simply 6079 // from moving "masked load/store" check from legality to cost model. 6080 // Masked Load/Gather emulation was previously never allowed. 6081 // Limited number of Masked Store/Scatter emulation was allowed. 6082 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6083 return isa<LoadInst>(I) || 6084 (isa<StoreInst>(I) && 6085 NumPredStores > NumberOfStoresToPredicate); 6086 } 6087 6088 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6089 // If we aren't vectorizing the loop, or if we've already collected the 6090 // instructions to scalarize, there's nothing to do. Collection may already 6091 // have occurred if we have a user-selected VF and are now computing the 6092 // expected cost for interleaving. 6093 if (VF.isScalar() || VF.isZero() || 6094 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6095 return; 6096 6097 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6098 // not profitable to scalarize any instructions, the presence of VF in the 6099 // map will indicate that we've analyzed it already. 6100 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6101 6102 // Find all the instructions that are scalar with predication in the loop and 6103 // determine if it would be better to not if-convert the blocks they are in. 6104 // If so, we also record the instructions to scalarize. 6105 for (BasicBlock *BB : TheLoop->blocks()) { 6106 if (!blockNeedsPredicationForAnyReason(BB)) 6107 continue; 6108 for (Instruction &I : *BB) 6109 if (isScalarWithPredication(&I, VF)) { 6110 ScalarCostsTy ScalarCosts; 6111 // Do not apply discount if scalable, because that would lead to 6112 // invalid scalarization costs. 6113 // Do not apply discount logic if hacked cost is needed 6114 // for emulated masked memrefs. 6115 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6116 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6117 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6118 // Remember that BB will remain after vectorization. 6119 PredicatedBBsAfterVectorization.insert(BB); 6120 } 6121 } 6122 } 6123 6124 int LoopVectorizationCostModel::computePredInstDiscount( 6125 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6126 assert(!isUniformAfterVectorization(PredInst, VF) && 6127 "Instruction marked uniform-after-vectorization will be predicated"); 6128 6129 // Initialize the discount to zero, meaning that the scalar version and the 6130 // vector version cost the same. 6131 InstructionCost Discount = 0; 6132 6133 // Holds instructions to analyze. The instructions we visit are mapped in 6134 // ScalarCosts. Those instructions are the ones that would be scalarized if 6135 // we find that the scalar version costs less. 6136 SmallVector<Instruction *, 8> Worklist; 6137 6138 // Returns true if the given instruction can be scalarized. 6139 auto canBeScalarized = [&](Instruction *I) -> bool { 6140 // We only attempt to scalarize instructions forming a single-use chain 6141 // from the original predicated block that would otherwise be vectorized. 6142 // Although not strictly necessary, we give up on instructions we know will 6143 // already be scalar to avoid traversing chains that are unlikely to be 6144 // beneficial. 6145 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6146 isScalarAfterVectorization(I, VF)) 6147 return false; 6148 6149 // If the instruction is scalar with predication, it will be analyzed 6150 // separately. We ignore it within the context of PredInst. 6151 if (isScalarWithPredication(I, VF)) 6152 return false; 6153 6154 // If any of the instruction's operands are uniform after vectorization, 6155 // the instruction cannot be scalarized. This prevents, for example, a 6156 // masked load from being scalarized. 6157 // 6158 // We assume we will only emit a value for lane zero of an instruction 6159 // marked uniform after vectorization, rather than VF identical values. 6160 // Thus, if we scalarize an instruction that uses a uniform, we would 6161 // create uses of values corresponding to the lanes we aren't emitting code 6162 // for. This behavior can be changed by allowing getScalarValue to clone 6163 // the lane zero values for uniforms rather than asserting. 6164 for (Use &U : I->operands()) 6165 if (auto *J = dyn_cast<Instruction>(U.get())) 6166 if (isUniformAfterVectorization(J, VF)) 6167 return false; 6168 6169 // Otherwise, we can scalarize the instruction. 6170 return true; 6171 }; 6172 6173 // Compute the expected cost discount from scalarizing the entire expression 6174 // feeding the predicated instruction. We currently only consider expressions 6175 // that are single-use instruction chains. 6176 Worklist.push_back(PredInst); 6177 while (!Worklist.empty()) { 6178 Instruction *I = Worklist.pop_back_val(); 6179 6180 // If we've already analyzed the instruction, there's nothing to do. 6181 if (ScalarCosts.find(I) != ScalarCosts.end()) 6182 continue; 6183 6184 // Compute the cost of the vector instruction. Note that this cost already 6185 // includes the scalarization overhead of the predicated instruction. 6186 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6187 6188 // Compute the cost of the scalarized instruction. This cost is the cost of 6189 // the instruction as if it wasn't if-converted and instead remained in the 6190 // predicated block. We will scale this cost by block probability after 6191 // computing the scalarization overhead. 6192 InstructionCost ScalarCost = 6193 VF.getFixedValue() * 6194 getInstructionCost(I, ElementCount::getFixed(1)).first; 6195 6196 // Compute the scalarization overhead of needed insertelement instructions 6197 // and phi nodes. 6198 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6199 ScalarCost += TTI.getScalarizationOverhead( 6200 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6201 APInt::getAllOnes(VF.getFixedValue()), true, false); 6202 ScalarCost += 6203 VF.getFixedValue() * 6204 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6205 } 6206 6207 // Compute the scalarization overhead of needed extractelement 6208 // instructions. For each of the instruction's operands, if the operand can 6209 // be scalarized, add it to the worklist; otherwise, account for the 6210 // overhead. 6211 for (Use &U : I->operands()) 6212 if (auto *J = dyn_cast<Instruction>(U.get())) { 6213 assert(VectorType::isValidElementType(J->getType()) && 6214 "Instruction has non-scalar type"); 6215 if (canBeScalarized(J)) 6216 Worklist.push_back(J); 6217 else if (needsExtract(J, VF)) { 6218 ScalarCost += TTI.getScalarizationOverhead( 6219 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6220 APInt::getAllOnes(VF.getFixedValue()), false, true); 6221 } 6222 } 6223 6224 // Scale the total scalar cost by block probability. 6225 ScalarCost /= getReciprocalPredBlockProb(); 6226 6227 // Compute the discount. A non-negative discount means the vector version 6228 // of the instruction costs more, and scalarizing would be beneficial. 6229 Discount += VectorCost - ScalarCost; 6230 ScalarCosts[I] = ScalarCost; 6231 } 6232 6233 return *Discount.getValue(); 6234 } 6235 6236 LoopVectorizationCostModel::VectorizationCostTy 6237 LoopVectorizationCostModel::expectedCost( 6238 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6239 VectorizationCostTy Cost; 6240 6241 // For each block. 6242 for (BasicBlock *BB : TheLoop->blocks()) { 6243 VectorizationCostTy BlockCost; 6244 6245 // For each instruction in the old loop. 6246 for (Instruction &I : BB->instructionsWithoutDebug()) { 6247 // Skip ignored values. 6248 if (ValuesToIgnore.count(&I) || 6249 (VF.isVector() && VecValuesToIgnore.count(&I))) 6250 continue; 6251 6252 VectorizationCostTy C = getInstructionCost(&I, VF); 6253 6254 // Check if we should override the cost. 6255 if (C.first.isValid() && 6256 ForceTargetInstructionCost.getNumOccurrences() > 0) 6257 C.first = InstructionCost(ForceTargetInstructionCost); 6258 6259 // Keep a list of instructions with invalid costs. 6260 if (Invalid && !C.first.isValid()) 6261 Invalid->emplace_back(&I, VF); 6262 6263 BlockCost.first += C.first; 6264 BlockCost.second |= C.second; 6265 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6266 << " for VF " << VF << " For instruction: " << I 6267 << '\n'); 6268 } 6269 6270 // If we are vectorizing a predicated block, it will have been 6271 // if-converted. This means that the block's instructions (aside from 6272 // stores and instructions that may divide by zero) will now be 6273 // unconditionally executed. For the scalar case, we may not always execute 6274 // the predicated block, if it is an if-else block. Thus, scale the block's 6275 // cost by the probability of executing it. blockNeedsPredication from 6276 // Legal is used so as to not include all blocks in tail folded loops. 6277 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6278 BlockCost.first /= getReciprocalPredBlockProb(); 6279 6280 Cost.first += BlockCost.first; 6281 Cost.second |= BlockCost.second; 6282 } 6283 6284 return Cost; 6285 } 6286 6287 /// Gets Address Access SCEV after verifying that the access pattern 6288 /// is loop invariant except the induction variable dependence. 6289 /// 6290 /// This SCEV can be sent to the Target in order to estimate the address 6291 /// calculation cost. 6292 static const SCEV *getAddressAccessSCEV( 6293 Value *Ptr, 6294 LoopVectorizationLegality *Legal, 6295 PredicatedScalarEvolution &PSE, 6296 const Loop *TheLoop) { 6297 6298 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6299 if (!Gep) 6300 return nullptr; 6301 6302 // We are looking for a gep with all loop invariant indices except for one 6303 // which should be an induction variable. 6304 auto SE = PSE.getSE(); 6305 unsigned NumOperands = Gep->getNumOperands(); 6306 for (unsigned i = 1; i < NumOperands; ++i) { 6307 Value *Opd = Gep->getOperand(i); 6308 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6309 !Legal->isInductionVariable(Opd)) 6310 return nullptr; 6311 } 6312 6313 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6314 return PSE.getSCEV(Ptr); 6315 } 6316 6317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6318 return Legal->hasStride(I->getOperand(0)) || 6319 Legal->hasStride(I->getOperand(1)); 6320 } 6321 6322 InstructionCost 6323 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6324 ElementCount VF) { 6325 assert(VF.isVector() && 6326 "Scalarization cost of instruction implies vectorization."); 6327 if (VF.isScalable()) 6328 return InstructionCost::getInvalid(); 6329 6330 Type *ValTy = getLoadStoreType(I); 6331 auto SE = PSE.getSE(); 6332 6333 unsigned AS = getLoadStoreAddressSpace(I); 6334 Value *Ptr = getLoadStorePointerOperand(I); 6335 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6336 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6337 // that it is being called from this specific place. 6338 6339 // Figure out whether the access is strided and get the stride value 6340 // if it's known in compile time 6341 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6342 6343 // Get the cost of the scalar memory instruction and address computation. 6344 InstructionCost Cost = 6345 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6346 6347 // Don't pass *I here, since it is scalar but will actually be part of a 6348 // vectorized loop where the user of it is a vectorized instruction. 6349 const Align Alignment = getLoadStoreAlignment(I); 6350 Cost += VF.getKnownMinValue() * 6351 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6352 AS, TTI::TCK_RecipThroughput); 6353 6354 // Get the overhead of the extractelement and insertelement instructions 6355 // we might create due to scalarization. 6356 Cost += getScalarizationOverhead(I, VF); 6357 6358 // If we have a predicated load/store, it will need extra i1 extracts and 6359 // conditional branches, but may not be executed for each vector lane. Scale 6360 // the cost by the probability of executing the predicated block. 6361 if (isPredicatedInst(I, VF)) { 6362 Cost /= getReciprocalPredBlockProb(); 6363 6364 // Add the cost of an i1 extract and a branch 6365 auto *Vec_i1Ty = 6366 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6367 Cost += TTI.getScalarizationOverhead( 6368 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6369 /*Insert=*/false, /*Extract=*/true); 6370 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6371 6372 if (useEmulatedMaskMemRefHack(I, VF)) 6373 // Artificially setting to a high enough value to practically disable 6374 // vectorization with such operations. 6375 Cost = 3000000; 6376 } 6377 6378 return Cost; 6379 } 6380 6381 InstructionCost 6382 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6383 ElementCount VF) { 6384 Type *ValTy = getLoadStoreType(I); 6385 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6386 Value *Ptr = getLoadStorePointerOperand(I); 6387 unsigned AS = getLoadStoreAddressSpace(I); 6388 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6389 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6390 6391 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6392 "Stride should be 1 or -1 for consecutive memory access"); 6393 const Align Alignment = getLoadStoreAlignment(I); 6394 InstructionCost Cost = 0; 6395 if (Legal->isMaskRequired(I)) 6396 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6397 CostKind); 6398 else 6399 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6400 CostKind, I); 6401 6402 bool Reverse = ConsecutiveStride < 0; 6403 if (Reverse) 6404 Cost += 6405 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6406 return Cost; 6407 } 6408 6409 InstructionCost 6410 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6411 ElementCount VF) { 6412 assert(Legal->isUniformMemOp(*I)); 6413 6414 Type *ValTy = getLoadStoreType(I); 6415 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6416 const Align Alignment = getLoadStoreAlignment(I); 6417 unsigned AS = getLoadStoreAddressSpace(I); 6418 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6419 if (isa<LoadInst>(I)) { 6420 return TTI.getAddressComputationCost(ValTy) + 6421 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6422 CostKind) + 6423 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6424 } 6425 StoreInst *SI = cast<StoreInst>(I); 6426 6427 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6428 return TTI.getAddressComputationCost(ValTy) + 6429 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6430 CostKind) + 6431 (isLoopInvariantStoreValue 6432 ? 0 6433 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6434 VF.getKnownMinValue() - 1)); 6435 } 6436 6437 InstructionCost 6438 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6439 ElementCount VF) { 6440 Type *ValTy = getLoadStoreType(I); 6441 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6442 const Align Alignment = getLoadStoreAlignment(I); 6443 const Value *Ptr = getLoadStorePointerOperand(I); 6444 6445 return TTI.getAddressComputationCost(VectorTy) + 6446 TTI.getGatherScatterOpCost( 6447 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6448 TargetTransformInfo::TCK_RecipThroughput, I); 6449 } 6450 6451 InstructionCost 6452 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6453 ElementCount VF) { 6454 // TODO: Once we have support for interleaving with scalable vectors 6455 // we can calculate the cost properly here. 6456 if (VF.isScalable()) 6457 return InstructionCost::getInvalid(); 6458 6459 Type *ValTy = getLoadStoreType(I); 6460 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6461 unsigned AS = getLoadStoreAddressSpace(I); 6462 6463 auto Group = getInterleavedAccessGroup(I); 6464 assert(Group && "Fail to get an interleaved access group."); 6465 6466 unsigned InterleaveFactor = Group->getFactor(); 6467 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6468 6469 // Holds the indices of existing members in the interleaved group. 6470 SmallVector<unsigned, 4> Indices; 6471 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6472 if (Group->getMember(IF)) 6473 Indices.push_back(IF); 6474 6475 // Calculate the cost of the whole interleaved group. 6476 bool UseMaskForGaps = 6477 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6478 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6479 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6480 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6481 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6482 6483 if (Group->isReverse()) { 6484 // TODO: Add support for reversed masked interleaved access. 6485 assert(!Legal->isMaskRequired(I) && 6486 "Reverse masked interleaved access not supported."); 6487 Cost += 6488 Group->getNumMembers() * 6489 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6490 } 6491 return Cost; 6492 } 6493 6494 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6495 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6496 using namespace llvm::PatternMatch; 6497 // Early exit for no inloop reductions 6498 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6499 return None; 6500 auto *VectorTy = cast<VectorType>(Ty); 6501 6502 // We are looking for a pattern of, and finding the minimal acceptable cost: 6503 // reduce(mul(ext(A), ext(B))) or 6504 // reduce(mul(A, B)) or 6505 // reduce(ext(A)) or 6506 // reduce(A). 6507 // The basic idea is that we walk down the tree to do that, finding the root 6508 // reduction instruction in InLoopReductionImmediateChains. From there we find 6509 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6510 // of the components. If the reduction cost is lower then we return it for the 6511 // reduction instruction and 0 for the other instructions in the pattern. If 6512 // it is not we return an invalid cost specifying the orignal cost method 6513 // should be used. 6514 Instruction *RetI = I; 6515 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6516 if (!RetI->hasOneUser()) 6517 return None; 6518 RetI = RetI->user_back(); 6519 } 6520 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6521 RetI->user_back()->getOpcode() == Instruction::Add) { 6522 if (!RetI->hasOneUser()) 6523 return None; 6524 RetI = RetI->user_back(); 6525 } 6526 6527 // Test if the found instruction is a reduction, and if not return an invalid 6528 // cost specifying the parent to use the original cost modelling. 6529 if (!InLoopReductionImmediateChains.count(RetI)) 6530 return None; 6531 6532 // Find the reduction this chain is a part of and calculate the basic cost of 6533 // the reduction on its own. 6534 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6535 Instruction *ReductionPhi = LastChain; 6536 while (!isa<PHINode>(ReductionPhi)) 6537 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6538 6539 const RecurrenceDescriptor &RdxDesc = 6540 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6541 6542 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6543 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6544 6545 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6546 // normal fmul instruction to the cost of the fadd reduction. 6547 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6548 BaseCost += 6549 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6550 6551 // If we're using ordered reductions then we can just return the base cost 6552 // here, since getArithmeticReductionCost calculates the full ordered 6553 // reduction cost when FP reassociation is not allowed. 6554 if (useOrderedReductions(RdxDesc)) 6555 return BaseCost; 6556 6557 // Get the operand that was not the reduction chain and match it to one of the 6558 // patterns, returning the better cost if it is found. 6559 Instruction *RedOp = RetI->getOperand(1) == LastChain 6560 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6561 : dyn_cast<Instruction>(RetI->getOperand(1)); 6562 6563 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6564 6565 Instruction *Op0, *Op1; 6566 if (RedOp && 6567 match(RedOp, 6568 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6569 match(Op0, m_ZExtOrSExt(m_Value())) && 6570 Op0->getOpcode() == Op1->getOpcode() && 6571 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6572 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6573 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6574 6575 // Matched reduce(ext(mul(ext(A), ext(B))) 6576 // Note that the extend opcodes need to all match, or if A==B they will have 6577 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6578 // which is equally fine. 6579 bool IsUnsigned = isa<ZExtInst>(Op0); 6580 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6581 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6582 6583 InstructionCost ExtCost = 6584 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6585 TTI::CastContextHint::None, CostKind, Op0); 6586 InstructionCost MulCost = 6587 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6588 InstructionCost Ext2Cost = 6589 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6590 TTI::CastContextHint::None, CostKind, RedOp); 6591 6592 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6593 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6594 CostKind); 6595 6596 if (RedCost.isValid() && 6597 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6598 return I == RetI ? RedCost : 0; 6599 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6600 !TheLoop->isLoopInvariant(RedOp)) { 6601 // Matched reduce(ext(A)) 6602 bool IsUnsigned = isa<ZExtInst>(RedOp); 6603 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6604 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6605 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6606 CostKind); 6607 6608 InstructionCost ExtCost = 6609 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6610 TTI::CastContextHint::None, CostKind, RedOp); 6611 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6612 return I == RetI ? RedCost : 0; 6613 } else if (RedOp && 6614 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6615 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6616 Op0->getOpcode() == Op1->getOpcode() && 6617 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6618 bool IsUnsigned = isa<ZExtInst>(Op0); 6619 Type *Op0Ty = Op0->getOperand(0)->getType(); 6620 Type *Op1Ty = Op1->getOperand(0)->getType(); 6621 Type *LargestOpTy = 6622 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6623 : Op0Ty; 6624 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6625 6626 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6627 // different sizes. We take the largest type as the ext to reduce, and add 6628 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6629 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6630 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6631 TTI::CastContextHint::None, CostKind, Op0); 6632 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6633 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6634 TTI::CastContextHint::None, CostKind, Op1); 6635 InstructionCost MulCost = 6636 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6637 6638 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6639 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6640 CostKind); 6641 InstructionCost ExtraExtCost = 0; 6642 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6643 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6644 ExtraExtCost = TTI.getCastInstrCost( 6645 ExtraExtOp->getOpcode(), ExtType, 6646 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6647 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6648 } 6649 6650 if (RedCost.isValid() && 6651 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6652 return I == RetI ? RedCost : 0; 6653 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6654 // Matched reduce(mul()) 6655 InstructionCost MulCost = 6656 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6657 6658 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6659 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6660 CostKind); 6661 6662 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6663 return I == RetI ? RedCost : 0; 6664 } 6665 } 6666 6667 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6668 } 6669 6670 InstructionCost 6671 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6672 ElementCount VF) { 6673 // Calculate scalar cost only. Vectorization cost should be ready at this 6674 // moment. 6675 if (VF.isScalar()) { 6676 Type *ValTy = getLoadStoreType(I); 6677 const Align Alignment = getLoadStoreAlignment(I); 6678 unsigned AS = getLoadStoreAddressSpace(I); 6679 6680 return TTI.getAddressComputationCost(ValTy) + 6681 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6682 TTI::TCK_RecipThroughput, I); 6683 } 6684 return getWideningCost(I, VF); 6685 } 6686 6687 LoopVectorizationCostModel::VectorizationCostTy 6688 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6689 ElementCount VF) { 6690 // If we know that this instruction will remain uniform, check the cost of 6691 // the scalar version. 6692 if (isUniformAfterVectorization(I, VF)) 6693 VF = ElementCount::getFixed(1); 6694 6695 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6696 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6697 6698 // Forced scalars do not have any scalarization overhead. 6699 auto ForcedScalar = ForcedScalars.find(VF); 6700 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6701 auto InstSet = ForcedScalar->second; 6702 if (InstSet.count(I)) 6703 return VectorizationCostTy( 6704 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6705 VF.getKnownMinValue()), 6706 false); 6707 } 6708 6709 Type *VectorTy; 6710 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6711 6712 bool TypeNotScalarized = false; 6713 if (VF.isVector() && VectorTy->isVectorTy()) { 6714 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6715 if (NumParts) 6716 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6717 else 6718 C = InstructionCost::getInvalid(); 6719 } 6720 return VectorizationCostTy(C, TypeNotScalarized); 6721 } 6722 6723 InstructionCost 6724 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6725 ElementCount VF) const { 6726 6727 // There is no mechanism yet to create a scalable scalarization loop, 6728 // so this is currently Invalid. 6729 if (VF.isScalable()) 6730 return InstructionCost::getInvalid(); 6731 6732 if (VF.isScalar()) 6733 return 0; 6734 6735 InstructionCost Cost = 0; 6736 Type *RetTy = ToVectorTy(I->getType(), VF); 6737 if (!RetTy->isVoidTy() && 6738 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6739 Cost += TTI.getScalarizationOverhead( 6740 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6741 false); 6742 6743 // Some targets keep addresses scalar. 6744 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6745 return Cost; 6746 6747 // Some targets support efficient element stores. 6748 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6749 return Cost; 6750 6751 // Collect operands to consider. 6752 CallInst *CI = dyn_cast<CallInst>(I); 6753 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6754 6755 // Skip operands that do not require extraction/scalarization and do not incur 6756 // any overhead. 6757 SmallVector<Type *> Tys; 6758 for (auto *V : filterExtractingOperands(Ops, VF)) 6759 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6760 return Cost + TTI.getOperandsScalarizationOverhead( 6761 filterExtractingOperands(Ops, VF), Tys); 6762 } 6763 6764 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6765 if (VF.isScalar()) 6766 return; 6767 NumPredStores = 0; 6768 for (BasicBlock *BB : TheLoop->blocks()) { 6769 // For each instruction in the old loop. 6770 for (Instruction &I : *BB) { 6771 Value *Ptr = getLoadStorePointerOperand(&I); 6772 if (!Ptr) 6773 continue; 6774 6775 // TODO: We should generate better code and update the cost model for 6776 // predicated uniform stores. Today they are treated as any other 6777 // predicated store (see added test cases in 6778 // invariant-store-vectorization.ll). 6779 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6780 NumPredStores++; 6781 6782 if (Legal->isUniformMemOp(I)) { 6783 // TODO: Avoid replicating loads and stores instead of 6784 // relying on instcombine to remove them. 6785 // Load: Scalar load + broadcast 6786 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6787 InstructionCost Cost; 6788 if (isa<StoreInst>(&I) && VF.isScalable() && 6789 isLegalGatherOrScatter(&I, VF)) { 6790 Cost = getGatherScatterCost(&I, VF); 6791 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6792 } else { 6793 Cost = getUniformMemOpCost(&I, VF); 6794 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6795 } 6796 continue; 6797 } 6798 6799 // We assume that widening is the best solution when possible. 6800 if (memoryInstructionCanBeWidened(&I, VF)) { 6801 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6802 int ConsecutiveStride = Legal->isConsecutivePtr( 6803 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6804 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6805 "Expected consecutive stride."); 6806 InstWidening Decision = 6807 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6808 setWideningDecision(&I, VF, Decision, Cost); 6809 continue; 6810 } 6811 6812 // Choose between Interleaving, Gather/Scatter or Scalarization. 6813 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6814 unsigned NumAccesses = 1; 6815 if (isAccessInterleaved(&I)) { 6816 auto Group = getInterleavedAccessGroup(&I); 6817 assert(Group && "Fail to get an interleaved access group."); 6818 6819 // Make one decision for the whole group. 6820 if (getWideningDecision(&I, VF) != CM_Unknown) 6821 continue; 6822 6823 NumAccesses = Group->getNumMembers(); 6824 if (interleavedAccessCanBeWidened(&I, VF)) 6825 InterleaveCost = getInterleaveGroupCost(&I, VF); 6826 } 6827 6828 InstructionCost GatherScatterCost = 6829 isLegalGatherOrScatter(&I, VF) 6830 ? getGatherScatterCost(&I, VF) * NumAccesses 6831 : InstructionCost::getInvalid(); 6832 6833 InstructionCost ScalarizationCost = 6834 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6835 6836 // Choose better solution for the current VF, 6837 // write down this decision and use it during vectorization. 6838 InstructionCost Cost; 6839 InstWidening Decision; 6840 if (InterleaveCost <= GatherScatterCost && 6841 InterleaveCost < ScalarizationCost) { 6842 Decision = CM_Interleave; 6843 Cost = InterleaveCost; 6844 } else if (GatherScatterCost < ScalarizationCost) { 6845 Decision = CM_GatherScatter; 6846 Cost = GatherScatterCost; 6847 } else { 6848 Decision = CM_Scalarize; 6849 Cost = ScalarizationCost; 6850 } 6851 // If the instructions belongs to an interleave group, the whole group 6852 // receives the same decision. The whole group receives the cost, but 6853 // the cost will actually be assigned to one instruction. 6854 if (auto Group = getInterleavedAccessGroup(&I)) 6855 setWideningDecision(Group, VF, Decision, Cost); 6856 else 6857 setWideningDecision(&I, VF, Decision, Cost); 6858 } 6859 } 6860 6861 // Make sure that any load of address and any other address computation 6862 // remains scalar unless there is gather/scatter support. This avoids 6863 // inevitable extracts into address registers, and also has the benefit of 6864 // activating LSR more, since that pass can't optimize vectorized 6865 // addresses. 6866 if (TTI.prefersVectorizedAddressing()) 6867 return; 6868 6869 // Start with all scalar pointer uses. 6870 SmallPtrSet<Instruction *, 8> AddrDefs; 6871 for (BasicBlock *BB : TheLoop->blocks()) 6872 for (Instruction &I : *BB) { 6873 Instruction *PtrDef = 6874 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6875 if (PtrDef && TheLoop->contains(PtrDef) && 6876 getWideningDecision(&I, VF) != CM_GatherScatter) 6877 AddrDefs.insert(PtrDef); 6878 } 6879 6880 // Add all instructions used to generate the addresses. 6881 SmallVector<Instruction *, 4> Worklist; 6882 append_range(Worklist, AddrDefs); 6883 while (!Worklist.empty()) { 6884 Instruction *I = Worklist.pop_back_val(); 6885 for (auto &Op : I->operands()) 6886 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6887 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6888 AddrDefs.insert(InstOp).second) 6889 Worklist.push_back(InstOp); 6890 } 6891 6892 for (auto *I : AddrDefs) { 6893 if (isa<LoadInst>(I)) { 6894 // Setting the desired widening decision should ideally be handled in 6895 // by cost functions, but since this involves the task of finding out 6896 // if the loaded register is involved in an address computation, it is 6897 // instead changed here when we know this is the case. 6898 InstWidening Decision = getWideningDecision(I, VF); 6899 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6900 // Scalarize a widened load of address. 6901 setWideningDecision( 6902 I, VF, CM_Scalarize, 6903 (VF.getKnownMinValue() * 6904 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6905 else if (auto Group = getInterleavedAccessGroup(I)) { 6906 // Scalarize an interleave group of address loads. 6907 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6908 if (Instruction *Member = Group->getMember(I)) 6909 setWideningDecision( 6910 Member, VF, CM_Scalarize, 6911 (VF.getKnownMinValue() * 6912 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6913 } 6914 } 6915 } else 6916 // Make sure I gets scalarized and a cost estimate without 6917 // scalarization overhead. 6918 ForcedScalars[VF].insert(I); 6919 } 6920 } 6921 6922 InstructionCost 6923 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6924 Type *&VectorTy) { 6925 Type *RetTy = I->getType(); 6926 if (canTruncateToMinimalBitwidth(I, VF)) 6927 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6928 auto SE = PSE.getSE(); 6929 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6930 6931 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6932 ElementCount VF) -> bool { 6933 if (VF.isScalar()) 6934 return true; 6935 6936 auto Scalarized = InstsToScalarize.find(VF); 6937 assert(Scalarized != InstsToScalarize.end() && 6938 "VF not yet analyzed for scalarization profitability"); 6939 return !Scalarized->second.count(I) && 6940 llvm::all_of(I->users(), [&](User *U) { 6941 auto *UI = cast<Instruction>(U); 6942 return !Scalarized->second.count(UI); 6943 }); 6944 }; 6945 (void) hasSingleCopyAfterVectorization; 6946 6947 if (isScalarAfterVectorization(I, VF)) { 6948 // With the exception of GEPs and PHIs, after scalarization there should 6949 // only be one copy of the instruction generated in the loop. This is 6950 // because the VF is either 1, or any instructions that need scalarizing 6951 // have already been dealt with by the the time we get here. As a result, 6952 // it means we don't have to multiply the instruction cost by VF. 6953 assert(I->getOpcode() == Instruction::GetElementPtr || 6954 I->getOpcode() == Instruction::PHI || 6955 (I->getOpcode() == Instruction::BitCast && 6956 I->getType()->isPointerTy()) || 6957 hasSingleCopyAfterVectorization(I, VF)); 6958 VectorTy = RetTy; 6959 } else 6960 VectorTy = ToVectorTy(RetTy, VF); 6961 6962 // TODO: We need to estimate the cost of intrinsic calls. 6963 switch (I->getOpcode()) { 6964 case Instruction::GetElementPtr: 6965 // We mark this instruction as zero-cost because the cost of GEPs in 6966 // vectorized code depends on whether the corresponding memory instruction 6967 // is scalarized or not. Therefore, we handle GEPs with the memory 6968 // instruction cost. 6969 return 0; 6970 case Instruction::Br: { 6971 // In cases of scalarized and predicated instructions, there will be VF 6972 // predicated blocks in the vectorized loop. Each branch around these 6973 // blocks requires also an extract of its vector compare i1 element. 6974 bool ScalarPredicatedBB = false; 6975 BranchInst *BI = cast<BranchInst>(I); 6976 if (VF.isVector() && BI->isConditional() && 6977 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6978 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6979 ScalarPredicatedBB = true; 6980 6981 if (ScalarPredicatedBB) { 6982 // Not possible to scalarize scalable vector with predicated instructions. 6983 if (VF.isScalable()) 6984 return InstructionCost::getInvalid(); 6985 // Return cost for branches around scalarized and predicated blocks. 6986 auto *Vec_i1Ty = 6987 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6988 return ( 6989 TTI.getScalarizationOverhead( 6990 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6991 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6992 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6993 // The back-edge branch will remain, as will all scalar branches. 6994 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6995 else 6996 // This branch will be eliminated by if-conversion. 6997 return 0; 6998 // Note: We currently assume zero cost for an unconditional branch inside 6999 // a predicated block since it will become a fall-through, although we 7000 // may decide in the future to call TTI for all branches. 7001 } 7002 case Instruction::PHI: { 7003 auto *Phi = cast<PHINode>(I); 7004 7005 // First-order recurrences are replaced by vector shuffles inside the loop. 7006 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7007 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7008 return TTI.getShuffleCost( 7009 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7010 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7011 7012 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7013 // converted into select instructions. We require N - 1 selects per phi 7014 // node, where N is the number of incoming values. 7015 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7016 return (Phi->getNumIncomingValues() - 1) * 7017 TTI.getCmpSelInstrCost( 7018 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7019 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7020 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7021 7022 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7023 } 7024 case Instruction::UDiv: 7025 case Instruction::SDiv: 7026 case Instruction::URem: 7027 case Instruction::SRem: 7028 // If we have a predicated instruction, it may not be executed for each 7029 // vector lane. Get the scalarization cost and scale this amount by the 7030 // probability of executing the predicated block. If the instruction is not 7031 // predicated, we fall through to the next case. 7032 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7033 InstructionCost Cost = 0; 7034 7035 // These instructions have a non-void type, so account for the phi nodes 7036 // that we will create. This cost is likely to be zero. The phi node 7037 // cost, if any, should be scaled by the block probability because it 7038 // models a copy at the end of each predicated block. 7039 Cost += VF.getKnownMinValue() * 7040 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7041 7042 // The cost of the non-predicated instruction. 7043 Cost += VF.getKnownMinValue() * 7044 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7045 7046 // The cost of insertelement and extractelement instructions needed for 7047 // scalarization. 7048 Cost += getScalarizationOverhead(I, VF); 7049 7050 // Scale the cost by the probability of executing the predicated blocks. 7051 // This assumes the predicated block for each vector lane is equally 7052 // likely. 7053 return Cost / getReciprocalPredBlockProb(); 7054 } 7055 LLVM_FALLTHROUGH; 7056 case Instruction::Add: 7057 case Instruction::FAdd: 7058 case Instruction::Sub: 7059 case Instruction::FSub: 7060 case Instruction::Mul: 7061 case Instruction::FMul: 7062 case Instruction::FDiv: 7063 case Instruction::FRem: 7064 case Instruction::Shl: 7065 case Instruction::LShr: 7066 case Instruction::AShr: 7067 case Instruction::And: 7068 case Instruction::Or: 7069 case Instruction::Xor: { 7070 // Since we will replace the stride by 1 the multiplication should go away. 7071 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7072 return 0; 7073 7074 // Detect reduction patterns 7075 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7076 return *RedCost; 7077 7078 // Certain instructions can be cheaper to vectorize if they have a constant 7079 // second vector operand. One example of this are shifts on x86. 7080 Value *Op2 = I->getOperand(1); 7081 TargetTransformInfo::OperandValueProperties Op2VP; 7082 TargetTransformInfo::OperandValueKind Op2VK = 7083 TTI.getOperandInfo(Op2, Op2VP); 7084 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7085 Op2VK = TargetTransformInfo::OK_UniformValue; 7086 7087 SmallVector<const Value *, 4> Operands(I->operand_values()); 7088 return TTI.getArithmeticInstrCost( 7089 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7090 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7091 } 7092 case Instruction::FNeg: { 7093 return TTI.getArithmeticInstrCost( 7094 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7095 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7096 TargetTransformInfo::OP_None, I->getOperand(0), I); 7097 } 7098 case Instruction::Select: { 7099 SelectInst *SI = cast<SelectInst>(I); 7100 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7101 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7102 7103 const Value *Op0, *Op1; 7104 using namespace llvm::PatternMatch; 7105 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7106 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7107 // select x, y, false --> x & y 7108 // select x, true, y --> x | y 7109 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7110 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7111 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7112 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7113 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7114 Op1->getType()->getScalarSizeInBits() == 1); 7115 7116 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7117 return TTI.getArithmeticInstrCost( 7118 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7119 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7120 } 7121 7122 Type *CondTy = SI->getCondition()->getType(); 7123 if (!ScalarCond) 7124 CondTy = VectorType::get(CondTy, VF); 7125 7126 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7127 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7128 Pred = Cmp->getPredicate(); 7129 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7130 CostKind, I); 7131 } 7132 case Instruction::ICmp: 7133 case Instruction::FCmp: { 7134 Type *ValTy = I->getOperand(0)->getType(); 7135 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7136 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7137 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7138 VectorTy = ToVectorTy(ValTy, VF); 7139 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7140 cast<CmpInst>(I)->getPredicate(), CostKind, 7141 I); 7142 } 7143 case Instruction::Store: 7144 case Instruction::Load: { 7145 ElementCount Width = VF; 7146 if (Width.isVector()) { 7147 InstWidening Decision = getWideningDecision(I, Width); 7148 assert(Decision != CM_Unknown && 7149 "CM decision should be taken at this point"); 7150 if (Decision == CM_Scalarize) { 7151 if (VF.isScalable() && isa<StoreInst>(I)) 7152 // We can't scalarize a scalable vector store (even a uniform one 7153 // currently), return an invalid cost so as to prevent vectorization. 7154 return InstructionCost::getInvalid(); 7155 Width = ElementCount::getFixed(1); 7156 } 7157 } 7158 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7159 return getMemoryInstructionCost(I, VF); 7160 } 7161 case Instruction::BitCast: 7162 if (I->getType()->isPointerTy()) 7163 return 0; 7164 LLVM_FALLTHROUGH; 7165 case Instruction::ZExt: 7166 case Instruction::SExt: 7167 case Instruction::FPToUI: 7168 case Instruction::FPToSI: 7169 case Instruction::FPExt: 7170 case Instruction::PtrToInt: 7171 case Instruction::IntToPtr: 7172 case Instruction::SIToFP: 7173 case Instruction::UIToFP: 7174 case Instruction::Trunc: 7175 case Instruction::FPTrunc: { 7176 // Computes the CastContextHint from a Load/Store instruction. 7177 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7178 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7179 "Expected a load or a store!"); 7180 7181 if (VF.isScalar() || !TheLoop->contains(I)) 7182 return TTI::CastContextHint::Normal; 7183 7184 switch (getWideningDecision(I, VF)) { 7185 case LoopVectorizationCostModel::CM_GatherScatter: 7186 return TTI::CastContextHint::GatherScatter; 7187 case LoopVectorizationCostModel::CM_Interleave: 7188 return TTI::CastContextHint::Interleave; 7189 case LoopVectorizationCostModel::CM_Scalarize: 7190 case LoopVectorizationCostModel::CM_Widen: 7191 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7192 : TTI::CastContextHint::Normal; 7193 case LoopVectorizationCostModel::CM_Widen_Reverse: 7194 return TTI::CastContextHint::Reversed; 7195 case LoopVectorizationCostModel::CM_Unknown: 7196 llvm_unreachable("Instr did not go through cost modelling?"); 7197 } 7198 7199 llvm_unreachable("Unhandled case!"); 7200 }; 7201 7202 unsigned Opcode = I->getOpcode(); 7203 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7204 // For Trunc, the context is the only user, which must be a StoreInst. 7205 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7206 if (I->hasOneUse()) 7207 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7208 CCH = ComputeCCH(Store); 7209 } 7210 // For Z/Sext, the context is the operand, which must be a LoadInst. 7211 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7212 Opcode == Instruction::FPExt) { 7213 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7214 CCH = ComputeCCH(Load); 7215 } 7216 7217 // We optimize the truncation of induction variables having constant 7218 // integer steps. The cost of these truncations is the same as the scalar 7219 // operation. 7220 if (isOptimizableIVTruncate(I, VF)) { 7221 auto *Trunc = cast<TruncInst>(I); 7222 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7223 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7224 } 7225 7226 // Detect reduction patterns 7227 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7228 return *RedCost; 7229 7230 Type *SrcScalarTy = I->getOperand(0)->getType(); 7231 Type *SrcVecTy = 7232 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7233 if (canTruncateToMinimalBitwidth(I, VF)) { 7234 // This cast is going to be shrunk. This may remove the cast or it might 7235 // turn it into slightly different cast. For example, if MinBW == 16, 7236 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7237 // 7238 // Calculate the modified src and dest types. 7239 Type *MinVecTy = VectorTy; 7240 if (Opcode == Instruction::Trunc) { 7241 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7242 VectorTy = 7243 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7244 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7245 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7246 VectorTy = 7247 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7248 } 7249 } 7250 7251 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7252 } 7253 case Instruction::Call: { 7254 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7255 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7256 return *RedCost; 7257 bool NeedToScalarize; 7258 CallInst *CI = cast<CallInst>(I); 7259 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7260 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7261 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7262 return std::min(CallCost, IntrinsicCost); 7263 } 7264 return CallCost; 7265 } 7266 case Instruction::ExtractValue: 7267 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7268 case Instruction::Alloca: 7269 // We cannot easily widen alloca to a scalable alloca, as 7270 // the result would need to be a vector of pointers. 7271 if (VF.isScalable()) 7272 return InstructionCost::getInvalid(); 7273 LLVM_FALLTHROUGH; 7274 default: 7275 // This opcode is unknown. Assume that it is the same as 'mul'. 7276 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7277 } // end of switch. 7278 } 7279 7280 char LoopVectorize::ID = 0; 7281 7282 static const char lv_name[] = "Loop Vectorization"; 7283 7284 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7285 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7286 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7288 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7289 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7290 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7295 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7297 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7298 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7299 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7300 7301 namespace llvm { 7302 7303 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7304 7305 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7306 bool VectorizeOnlyWhenForced) { 7307 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7308 } 7309 7310 } // end namespace llvm 7311 7312 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7313 // Check if the pointer operand of a load or store instruction is 7314 // consecutive. 7315 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7316 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7317 return false; 7318 } 7319 7320 void LoopVectorizationCostModel::collectValuesToIgnore() { 7321 // Ignore ephemeral values. 7322 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7323 7324 // Find all stores to invariant variables. Since they are going to sink 7325 // outside the loop we do not need calculate cost for them. 7326 for (BasicBlock *BB : TheLoop->blocks()) 7327 for (Instruction &I : *BB) { 7328 StoreInst *SI; 7329 if ((SI = dyn_cast<StoreInst>(&I)) && 7330 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7331 ValuesToIgnore.insert(&I); 7332 } 7333 7334 // Ignore type-promoting instructions we identified during reduction 7335 // detection. 7336 for (auto &Reduction : Legal->getReductionVars()) { 7337 const RecurrenceDescriptor &RedDes = Reduction.second; 7338 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7339 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7340 } 7341 // Ignore type-casting instructions we identified during induction 7342 // detection. 7343 for (auto &Induction : Legal->getInductionVars()) { 7344 const InductionDescriptor &IndDes = Induction.second; 7345 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7346 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7347 } 7348 } 7349 7350 void LoopVectorizationCostModel::collectInLoopReductions() { 7351 for (auto &Reduction : Legal->getReductionVars()) { 7352 PHINode *Phi = Reduction.first; 7353 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7354 7355 // We don't collect reductions that are type promoted (yet). 7356 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7357 continue; 7358 7359 // If the target would prefer this reduction to happen "in-loop", then we 7360 // want to record it as such. 7361 unsigned Opcode = RdxDesc.getOpcode(); 7362 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7363 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7364 TargetTransformInfo::ReductionFlags())) 7365 continue; 7366 7367 // Check that we can correctly put the reductions into the loop, by 7368 // finding the chain of operations that leads from the phi to the loop 7369 // exit value. 7370 SmallVector<Instruction *, 4> ReductionOperations = 7371 RdxDesc.getReductionOpChain(Phi, TheLoop); 7372 bool InLoop = !ReductionOperations.empty(); 7373 if (InLoop) { 7374 InLoopReductionChains[Phi] = ReductionOperations; 7375 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7376 Instruction *LastChain = Phi; 7377 for (auto *I : ReductionOperations) { 7378 InLoopReductionImmediateChains[I] = LastChain; 7379 LastChain = I; 7380 } 7381 } 7382 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7383 << " reduction for phi: " << *Phi << "\n"); 7384 } 7385 } 7386 7387 // TODO: we could return a pair of values that specify the max VF and 7388 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7389 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7390 // doesn't have a cost model that can choose which plan to execute if 7391 // more than one is generated. 7392 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7393 LoopVectorizationCostModel &CM) { 7394 unsigned WidestType; 7395 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7396 return WidestVectorRegBits / WidestType; 7397 } 7398 7399 VectorizationFactor 7400 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7401 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7402 ElementCount VF = UserVF; 7403 // Outer loop handling: They may require CFG and instruction level 7404 // transformations before even evaluating whether vectorization is profitable. 7405 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7406 // the vectorization pipeline. 7407 if (!OrigLoop->isInnermost()) { 7408 // If the user doesn't provide a vectorization factor, determine a 7409 // reasonable one. 7410 if (UserVF.isZero()) { 7411 VF = ElementCount::getFixed(determineVPlanVF( 7412 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7413 .getFixedSize(), 7414 CM)); 7415 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7416 7417 // Make sure we have a VF > 1 for stress testing. 7418 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7419 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7420 << "overriding computed VF.\n"); 7421 VF = ElementCount::getFixed(4); 7422 } 7423 } 7424 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7425 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7426 "VF needs to be a power of two"); 7427 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7428 << "VF " << VF << " to build VPlans.\n"); 7429 buildVPlans(VF, VF); 7430 7431 // For VPlan build stress testing, we bail out after VPlan construction. 7432 if (VPlanBuildStressTest) 7433 return VectorizationFactor::Disabled(); 7434 7435 return {VF, 0 /*Cost*/}; 7436 } 7437 7438 LLVM_DEBUG( 7439 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7440 "VPlan-native path.\n"); 7441 return VectorizationFactor::Disabled(); 7442 } 7443 7444 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const { 7445 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7446 return (NumRuntimePointerChecks > 7447 VectorizerParams::RuntimeMemoryCheckThreshold && 7448 !Hints.allowReordering()) || 7449 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7450 } 7451 7452 Optional<VectorizationFactor> 7453 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7454 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7455 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7456 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7457 return None; 7458 7459 // Invalidate interleave groups if all blocks of loop will be predicated. 7460 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7461 !useMaskedInterleavedAccesses(*TTI)) { 7462 LLVM_DEBUG( 7463 dbgs() 7464 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7465 "which requires masked-interleaved support.\n"); 7466 if (CM.InterleaveInfo.invalidateGroups()) 7467 // Invalidating interleave groups also requires invalidating all decisions 7468 // based on them, which includes widening decisions and uniform and scalar 7469 // values. 7470 CM.invalidateCostModelingDecisions(); 7471 } 7472 7473 ElementCount MaxUserVF = 7474 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7475 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7476 if (!UserVF.isZero() && UserVFIsLegal) { 7477 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7478 "VF needs to be a power of two"); 7479 // Collect the instructions (and their associated costs) that will be more 7480 // profitable to scalarize. 7481 if (CM.selectUserVectorizationFactor(UserVF)) { 7482 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7483 CM.collectInLoopReductions(); 7484 buildVPlansWithVPRecipes(UserVF, UserVF); 7485 LLVM_DEBUG(printPlans(dbgs())); 7486 return {{UserVF, 0}}; 7487 } else 7488 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7489 "InvalidCost", ORE, OrigLoop); 7490 } 7491 7492 // Populate the set of Vectorization Factor Candidates. 7493 ElementCountSet VFCandidates; 7494 for (auto VF = ElementCount::getFixed(1); 7495 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7496 VFCandidates.insert(VF); 7497 for (auto VF = ElementCount::getScalable(1); 7498 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7499 VFCandidates.insert(VF); 7500 7501 for (const auto &VF : VFCandidates) { 7502 // Collect Uniform and Scalar instructions after vectorization with VF. 7503 CM.collectUniformsAndScalars(VF); 7504 7505 // Collect the instructions (and their associated costs) that will be more 7506 // profitable to scalarize. 7507 if (VF.isVector()) 7508 CM.collectInstsToScalarize(VF); 7509 } 7510 7511 CM.collectInLoopReductions(); 7512 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7513 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7514 7515 LLVM_DEBUG(printPlans(dbgs())); 7516 if (!MaxFactors.hasVector()) 7517 return VectorizationFactor::Disabled(); 7518 7519 // Select the optimal vectorization factor. 7520 return CM.selectVectorizationFactor(VFCandidates); 7521 } 7522 7523 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7524 assert(count_if(VPlans, 7525 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7526 1 && 7527 "Best VF has not a single VPlan."); 7528 7529 for (const VPlanPtr &Plan : VPlans) { 7530 if (Plan->hasVF(VF)) 7531 return *Plan.get(); 7532 } 7533 llvm_unreachable("No plan found!"); 7534 } 7535 7536 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7537 SmallVector<Metadata *, 4> MDs; 7538 // Reserve first location for self reference to the LoopID metadata node. 7539 MDs.push_back(nullptr); 7540 bool IsUnrollMetadata = false; 7541 MDNode *LoopID = L->getLoopID(); 7542 if (LoopID) { 7543 // First find existing loop unrolling disable metadata. 7544 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7545 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7546 if (MD) { 7547 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7548 IsUnrollMetadata = 7549 S && S->getString().startswith("llvm.loop.unroll.disable"); 7550 } 7551 MDs.push_back(LoopID->getOperand(i)); 7552 } 7553 } 7554 7555 if (!IsUnrollMetadata) { 7556 // Add runtime unroll disable metadata. 7557 LLVMContext &Context = L->getHeader()->getContext(); 7558 SmallVector<Metadata *, 1> DisableOperands; 7559 DisableOperands.push_back( 7560 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7561 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7562 MDs.push_back(DisableNode); 7563 MDNode *NewLoopID = MDNode::get(Context, MDs); 7564 // Set operand 0 to refer to the loop id itself. 7565 NewLoopID->replaceOperandWith(0, NewLoopID); 7566 L->setLoopID(NewLoopID); 7567 } 7568 } 7569 7570 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7571 VPlan &BestVPlan, 7572 InnerLoopVectorizer &ILV, 7573 DominatorTree *DT) { 7574 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7575 << '\n'); 7576 7577 // Perform the actual loop transformation. 7578 7579 // 1. Set up the skeleton for vectorization, including vector pre-header and 7580 // middle block. The vector loop is created during VPlan execution. 7581 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7582 Value *CanonicalIVStartValue; 7583 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7584 ILV.createVectorizedLoopSkeleton(); 7585 ILV.collectPoisonGeneratingRecipes(State); 7586 7587 ILV.printDebugTracesAtStart(); 7588 7589 //===------------------------------------------------===// 7590 // 7591 // Notice: any optimization or new instruction that go 7592 // into the code below should also be implemented in 7593 // the cost-model. 7594 // 7595 //===------------------------------------------------===// 7596 7597 // 2. Copy and widen instructions from the old loop into the new loop. 7598 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7599 ILV.getOrCreateVectorTripCount(nullptr), 7600 CanonicalIVStartValue, State); 7601 BestVPlan.execute(&State); 7602 7603 // Keep all loop hints from the original loop on the vector loop (we'll 7604 // replace the vectorizer-specific hints below). 7605 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7606 7607 Optional<MDNode *> VectorizedLoopID = 7608 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7609 LLVMLoopVectorizeFollowupVectorized}); 7610 7611 VPBasicBlock *HeaderVPBB = 7612 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7613 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7614 if (VectorizedLoopID.hasValue()) 7615 L->setLoopID(VectorizedLoopID.getValue()); 7616 else { 7617 // Keep all loop hints from the original loop on the vector loop (we'll 7618 // replace the vectorizer-specific hints below). 7619 if (MDNode *LID = OrigLoop->getLoopID()) 7620 L->setLoopID(LID); 7621 7622 LoopVectorizeHints Hints(L, true, *ORE); 7623 Hints.setAlreadyVectorized(); 7624 } 7625 // Disable runtime unrolling when vectorizing the epilogue loop. 7626 if (CanonicalIVStartValue) 7627 AddRuntimeUnrollDisableMetaData(L); 7628 7629 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7630 // predication, updating analyses. 7631 ILV.fixVectorizedLoop(State, BestVPlan); 7632 7633 ILV.printDebugTracesAtEnd(); 7634 } 7635 7636 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7637 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7638 for (const auto &Plan : VPlans) 7639 if (PrintVPlansInDotFormat) 7640 Plan->printDOT(O); 7641 else 7642 Plan->print(O); 7643 } 7644 #endif 7645 7646 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7647 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7648 7649 // We create new control-flow for the vectorized loop, so the original exit 7650 // conditions will be dead after vectorization if it's only used by the 7651 // terminator 7652 SmallVector<BasicBlock*> ExitingBlocks; 7653 OrigLoop->getExitingBlocks(ExitingBlocks); 7654 for (auto *BB : ExitingBlocks) { 7655 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7656 if (!Cmp || !Cmp->hasOneUse()) 7657 continue; 7658 7659 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7660 if (!DeadInstructions.insert(Cmp).second) 7661 continue; 7662 7663 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7664 // TODO: can recurse through operands in general 7665 for (Value *Op : Cmp->operands()) { 7666 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7667 DeadInstructions.insert(cast<Instruction>(Op)); 7668 } 7669 } 7670 7671 // We create new "steps" for induction variable updates to which the original 7672 // induction variables map. An original update instruction will be dead if 7673 // all its users except the induction variable are dead. 7674 auto *Latch = OrigLoop->getLoopLatch(); 7675 for (auto &Induction : Legal->getInductionVars()) { 7676 PHINode *Ind = Induction.first; 7677 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7678 7679 // If the tail is to be folded by masking, the primary induction variable, 7680 // if exists, isn't dead: it will be used for masking. Don't kill it. 7681 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7682 continue; 7683 7684 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7685 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7686 })) 7687 DeadInstructions.insert(IndUpdate); 7688 } 7689 } 7690 7691 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7692 7693 //===--------------------------------------------------------------------===// 7694 // EpilogueVectorizerMainLoop 7695 //===--------------------------------------------------------------------===// 7696 7697 /// This function is partially responsible for generating the control flow 7698 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7699 std::pair<BasicBlock *, Value *> 7700 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7701 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7702 7703 // Workaround! Compute the trip count of the original loop and cache it 7704 // before we start modifying the CFG. This code has a systemic problem 7705 // wherein it tries to run analysis over partially constructed IR; this is 7706 // wrong, and not simply for SCEV. The trip count of the original loop 7707 // simply happens to be prone to hitting this in practice. In theory, we 7708 // can hit the same issue for any SCEV, or ValueTracking query done during 7709 // mutation. See PR49900. 7710 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7711 createVectorLoopSkeleton(""); 7712 7713 // Generate the code to check the minimum iteration count of the vector 7714 // epilogue (see below). 7715 EPI.EpilogueIterationCountCheck = 7716 emitIterationCountCheck(LoopScalarPreHeader, true); 7717 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7718 7719 // Generate the code to check any assumptions that we've made for SCEV 7720 // expressions. 7721 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7722 7723 // Generate the code that checks at runtime if arrays overlap. We put the 7724 // checks into a separate block to make the more common case of few elements 7725 // faster. 7726 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7727 7728 // Generate the iteration count check for the main loop, *after* the check 7729 // for the epilogue loop, so that the path-length is shorter for the case 7730 // that goes directly through the vector epilogue. The longer-path length for 7731 // the main loop is compensated for, by the gain from vectorizing the larger 7732 // trip count. Note: the branch will get updated later on when we vectorize 7733 // the epilogue. 7734 EPI.MainLoopIterationCountCheck = 7735 emitIterationCountCheck(LoopScalarPreHeader, false); 7736 7737 // Generate the induction variable. 7738 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7739 7740 // Skip induction resume value creation here because they will be created in 7741 // the second pass. If we created them here, they wouldn't be used anyway, 7742 // because the vplan in the second pass still contains the inductions from the 7743 // original loop. 7744 7745 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7746 } 7747 7748 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7749 LLVM_DEBUG({ 7750 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7751 << "Main Loop VF:" << EPI.MainLoopVF 7752 << ", Main Loop UF:" << EPI.MainLoopUF 7753 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7754 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7755 }); 7756 } 7757 7758 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7759 DEBUG_WITH_TYPE(VerboseDebug, { 7760 dbgs() << "intermediate fn:\n" 7761 << *OrigLoop->getHeader()->getParent() << "\n"; 7762 }); 7763 } 7764 7765 BasicBlock * 7766 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7767 bool ForEpilogue) { 7768 assert(Bypass && "Expected valid bypass basic block."); 7769 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7770 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7771 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7772 // Reuse existing vector loop preheader for TC checks. 7773 // Note that new preheader block is generated for vector loop. 7774 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7775 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7776 7777 // Generate code to check if the loop's trip count is less than VF * UF of the 7778 // main vector loop. 7779 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7780 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7781 7782 Value *CheckMinIters = Builder.CreateICmp( 7783 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7784 "min.iters.check"); 7785 7786 if (!ForEpilogue) 7787 TCCheckBlock->setName("vector.main.loop.iter.check"); 7788 7789 // Create new preheader for vector loop. 7790 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7791 DT, LI, nullptr, "vector.ph"); 7792 7793 if (ForEpilogue) { 7794 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7795 DT->getNode(Bypass)->getIDom()) && 7796 "TC check is expected to dominate Bypass"); 7797 7798 // Update dominator for Bypass & LoopExit. 7799 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7800 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7801 // For loops with multiple exits, there's no edge from the middle block 7802 // to exit blocks (as the epilogue must run) and thus no need to update 7803 // the immediate dominator of the exit blocks. 7804 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7805 7806 LoopBypassBlocks.push_back(TCCheckBlock); 7807 7808 // Save the trip count so we don't have to regenerate it in the 7809 // vec.epilog.iter.check. This is safe to do because the trip count 7810 // generated here dominates the vector epilog iter check. 7811 EPI.TripCount = Count; 7812 } 7813 7814 ReplaceInstWithInst( 7815 TCCheckBlock->getTerminator(), 7816 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7817 7818 return TCCheckBlock; 7819 } 7820 7821 //===--------------------------------------------------------------------===// 7822 // EpilogueVectorizerEpilogueLoop 7823 //===--------------------------------------------------------------------===// 7824 7825 /// This function is partially responsible for generating the control flow 7826 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7827 std::pair<BasicBlock *, Value *> 7828 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7829 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7830 createVectorLoopSkeleton("vec.epilog."); 7831 7832 // Now, compare the remaining count and if there aren't enough iterations to 7833 // execute the vectorized epilogue skip to the scalar part. 7834 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7835 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7836 LoopVectorPreHeader = 7837 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7838 LI, nullptr, "vec.epilog.ph"); 7839 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7840 VecEpilogueIterationCountCheck); 7841 7842 // Adjust the control flow taking the state info from the main loop 7843 // vectorization into account. 7844 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7845 "expected this to be saved from the previous pass."); 7846 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7847 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7848 7849 DT->changeImmediateDominator(LoopVectorPreHeader, 7850 EPI.MainLoopIterationCountCheck); 7851 7852 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7853 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7854 7855 if (EPI.SCEVSafetyCheck) 7856 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7857 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7858 if (EPI.MemSafetyCheck) 7859 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7860 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7861 7862 DT->changeImmediateDominator( 7863 VecEpilogueIterationCountCheck, 7864 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7865 7866 DT->changeImmediateDominator(LoopScalarPreHeader, 7867 EPI.EpilogueIterationCountCheck); 7868 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7869 // If there is an epilogue which must run, there's no edge from the 7870 // middle block to exit blocks and thus no need to update the immediate 7871 // dominator of the exit blocks. 7872 DT->changeImmediateDominator(LoopExitBlock, 7873 EPI.EpilogueIterationCountCheck); 7874 7875 // Keep track of bypass blocks, as they feed start values to the induction 7876 // phis in the scalar loop preheader. 7877 if (EPI.SCEVSafetyCheck) 7878 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7879 if (EPI.MemSafetyCheck) 7880 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7881 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7882 7883 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7884 // merge control-flow from the latch block and the middle block. Update the 7885 // incoming values here and move the Phi into the preheader. 7886 SmallVector<PHINode *, 4> PhisInBlock; 7887 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7888 PhisInBlock.push_back(&Phi); 7889 7890 for (PHINode *Phi : PhisInBlock) { 7891 Phi->replaceIncomingBlockWith( 7892 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7893 VecEpilogueIterationCountCheck); 7894 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7895 if (EPI.SCEVSafetyCheck) 7896 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7897 if (EPI.MemSafetyCheck) 7898 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7899 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7900 } 7901 7902 // Generate a resume induction for the vector epilogue and put it in the 7903 // vector epilogue preheader 7904 Type *IdxTy = Legal->getWidestInductionType(); 7905 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7906 LoopVectorPreHeader->getFirstNonPHI()); 7907 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7908 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7909 EPI.MainLoopIterationCountCheck); 7910 7911 // Generate induction resume values. These variables save the new starting 7912 // indexes for the scalar loop. They are used to test if there are any tail 7913 // iterations left once the vector loop has completed. 7914 // Note that when the vectorized epilogue is skipped due to iteration count 7915 // check, then the resume value for the induction variable comes from 7916 // the trip count of the main vector loop, hence passing the AdditionalBypass 7917 // argument. 7918 createInductionResumeValues({VecEpilogueIterationCountCheck, 7919 EPI.VectorTripCount} /* AdditionalBypass */); 7920 7921 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7922 } 7923 7924 BasicBlock * 7925 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7926 BasicBlock *Bypass, BasicBlock *Insert) { 7927 7928 assert(EPI.TripCount && 7929 "Expected trip count to have been safed in the first pass."); 7930 assert( 7931 (!isa<Instruction>(EPI.TripCount) || 7932 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7933 "saved trip count does not dominate insertion point."); 7934 Value *TC = EPI.TripCount; 7935 IRBuilder<> Builder(Insert->getTerminator()); 7936 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7937 7938 // Generate code to check if the loop's trip count is less than VF * UF of the 7939 // vector epilogue loop. 7940 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7941 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7942 7943 Value *CheckMinIters = 7944 Builder.CreateICmp(P, Count, 7945 createStepForVF(Builder, Count->getType(), 7946 EPI.EpilogueVF, EPI.EpilogueUF), 7947 "min.epilog.iters.check"); 7948 7949 ReplaceInstWithInst( 7950 Insert->getTerminator(), 7951 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7952 7953 LoopBypassBlocks.push_back(Insert); 7954 return Insert; 7955 } 7956 7957 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7958 LLVM_DEBUG({ 7959 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7960 << "Epilogue Loop VF:" << EPI.EpilogueVF 7961 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7962 }); 7963 } 7964 7965 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7966 DEBUG_WITH_TYPE(VerboseDebug, { 7967 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7968 }); 7969 } 7970 7971 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7972 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7973 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7974 bool PredicateAtRangeStart = Predicate(Range.Start); 7975 7976 for (ElementCount TmpVF = Range.Start * 2; 7977 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7978 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7979 Range.End = TmpVF; 7980 break; 7981 } 7982 7983 return PredicateAtRangeStart; 7984 } 7985 7986 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7987 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7988 /// of VF's starting at a given VF and extending it as much as possible. Each 7989 /// vectorization decision can potentially shorten this sub-range during 7990 /// buildVPlan(). 7991 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7992 ElementCount MaxVF) { 7993 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7994 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7995 VFRange SubRange = {VF, MaxVFPlusOne}; 7996 VPlans.push_back(buildVPlan(SubRange)); 7997 VF = SubRange.End; 7998 } 7999 } 8000 8001 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8002 VPlanPtr &Plan) { 8003 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8004 8005 // Look for cached value. 8006 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8007 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8008 if (ECEntryIt != EdgeMaskCache.end()) 8009 return ECEntryIt->second; 8010 8011 VPValue *SrcMask = createBlockInMask(Src, Plan); 8012 8013 // The terminator has to be a branch inst! 8014 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8015 assert(BI && "Unexpected terminator found"); 8016 8017 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8018 return EdgeMaskCache[Edge] = SrcMask; 8019 8020 // If source is an exiting block, we know the exit edge is dynamically dead 8021 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8022 // adding uses of an otherwise potentially dead instruction. 8023 if (OrigLoop->isLoopExiting(Src)) 8024 return EdgeMaskCache[Edge] = SrcMask; 8025 8026 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8027 assert(EdgeMask && "No Edge Mask found for condition"); 8028 8029 if (BI->getSuccessor(0) != Dst) 8030 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8031 8032 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8033 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8034 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8035 // The select version does not introduce new UB if SrcMask is false and 8036 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8037 VPValue *False = Plan->getOrAddVPValue( 8038 ConstantInt::getFalse(BI->getCondition()->getType())); 8039 EdgeMask = 8040 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8041 } 8042 8043 return EdgeMaskCache[Edge] = EdgeMask; 8044 } 8045 8046 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8047 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8048 8049 // Look for cached value. 8050 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8051 if (BCEntryIt != BlockMaskCache.end()) 8052 return BCEntryIt->second; 8053 8054 // All-one mask is modelled as no-mask following the convention for masked 8055 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8056 VPValue *BlockMask = nullptr; 8057 8058 if (OrigLoop->getHeader() == BB) { 8059 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8060 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8061 8062 // Introduce the early-exit compare IV <= BTC to form header block mask. 8063 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8064 // constructing the desired canonical IV in the header block as its first 8065 // non-phi instructions. 8066 assert(CM.foldTailByMasking() && "must fold the tail"); 8067 VPBasicBlock *HeaderVPBB = 8068 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8069 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8070 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8071 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8072 8073 VPBuilder::InsertPointGuard Guard(Builder); 8074 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8075 if (CM.TTI.emitGetActiveLaneMask()) { 8076 VPValue *TC = Plan->getOrCreateTripCount(); 8077 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8078 } else { 8079 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8080 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8081 } 8082 return BlockMaskCache[BB] = BlockMask; 8083 } 8084 8085 // This is the block mask. We OR all incoming edges. 8086 for (auto *Predecessor : predecessors(BB)) { 8087 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8088 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8089 return BlockMaskCache[BB] = EdgeMask; 8090 8091 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8092 BlockMask = EdgeMask; 8093 continue; 8094 } 8095 8096 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8097 } 8098 8099 return BlockMaskCache[BB] = BlockMask; 8100 } 8101 8102 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8103 ArrayRef<VPValue *> Operands, 8104 VFRange &Range, 8105 VPlanPtr &Plan) { 8106 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8107 "Must be called with either a load or store"); 8108 8109 auto willWiden = [&](ElementCount VF) -> bool { 8110 LoopVectorizationCostModel::InstWidening Decision = 8111 CM.getWideningDecision(I, VF); 8112 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8113 "CM decision should be taken at this point."); 8114 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8115 return true; 8116 if (CM.isScalarAfterVectorization(I, VF) || 8117 CM.isProfitableToScalarize(I, VF)) 8118 return false; 8119 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8120 }; 8121 8122 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8123 return nullptr; 8124 8125 VPValue *Mask = nullptr; 8126 if (Legal->isMaskRequired(I)) 8127 Mask = createBlockInMask(I->getParent(), Plan); 8128 8129 // Determine if the pointer operand of the access is either consecutive or 8130 // reverse consecutive. 8131 LoopVectorizationCostModel::InstWidening Decision = 8132 CM.getWideningDecision(I, Range.Start); 8133 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8134 bool Consecutive = 8135 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8136 8137 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8138 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8139 Consecutive, Reverse); 8140 8141 StoreInst *Store = cast<StoreInst>(I); 8142 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8143 Mask, Consecutive, Reverse); 8144 } 8145 8146 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8147 /// insert a recipe to expand the step for the induction recipe. 8148 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8149 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8150 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8151 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8152 // Returns true if an instruction \p I should be scalarized instead of 8153 // vectorized for the chosen vectorization factor. 8154 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8155 return CM.isScalarAfterVectorization(I, VF) || 8156 CM.isProfitableToScalarize(I, VF); 8157 }; 8158 8159 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8160 [&](ElementCount VF) { 8161 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8162 }, 8163 Range); 8164 assert(IndDesc.getStartValue() == 8165 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8166 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8167 "step must be loop invariant"); 8168 8169 VPValue *Step = 8170 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8171 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8172 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8173 !NeedsScalarIVOnly); 8174 } 8175 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8176 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8177 !NeedsScalarIVOnly); 8178 } 8179 8180 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8181 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8182 8183 // Check if this is an integer or fp induction. If so, build the recipe that 8184 // produces its scalar and vector values. 8185 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8186 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8187 *PSE.getSE(), *OrigLoop, Range); 8188 8189 // Check if this is pointer induction. If so, build the recipe for it. 8190 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8191 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8192 *PSE.getSE()); 8193 return nullptr; 8194 } 8195 8196 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8197 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8198 // Optimize the special case where the source is a constant integer 8199 // induction variable. Notice that we can only optimize the 'trunc' case 8200 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8201 // (c) other casts depend on pointer size. 8202 8203 // Determine whether \p K is a truncation based on an induction variable that 8204 // can be optimized. 8205 auto isOptimizableIVTruncate = 8206 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8207 return [=](ElementCount VF) -> bool { 8208 return CM.isOptimizableIVTruncate(K, VF); 8209 }; 8210 }; 8211 8212 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8213 isOptimizableIVTruncate(I), Range)) { 8214 8215 auto *Phi = cast<PHINode>(I->getOperand(0)); 8216 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8217 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8218 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8219 *PSE.getSE(), *OrigLoop, Range); 8220 } 8221 return nullptr; 8222 } 8223 8224 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8225 ArrayRef<VPValue *> Operands, 8226 VPlanPtr &Plan) { 8227 // If all incoming values are equal, the incoming VPValue can be used directly 8228 // instead of creating a new VPBlendRecipe. 8229 VPValue *FirstIncoming = Operands[0]; 8230 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8231 return FirstIncoming == Inc; 8232 })) { 8233 return Operands[0]; 8234 } 8235 8236 unsigned NumIncoming = Phi->getNumIncomingValues(); 8237 // For in-loop reductions, we do not need to create an additional select. 8238 VPValue *InLoopVal = nullptr; 8239 for (unsigned In = 0; In < NumIncoming; In++) { 8240 PHINode *PhiOp = 8241 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8242 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8243 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8244 InLoopVal = Operands[In]; 8245 } 8246 } 8247 8248 assert((!InLoopVal || NumIncoming == 2) && 8249 "Found an in-loop reduction for PHI with unexpected number of " 8250 "incoming values"); 8251 if (InLoopVal) 8252 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8253 8254 // We know that all PHIs in non-header blocks are converted into selects, so 8255 // we don't have to worry about the insertion order and we can just use the 8256 // builder. At this point we generate the predication tree. There may be 8257 // duplications since this is a simple recursive scan, but future 8258 // optimizations will clean it up. 8259 SmallVector<VPValue *, 2> OperandsWithMask; 8260 8261 for (unsigned In = 0; In < NumIncoming; In++) { 8262 VPValue *EdgeMask = 8263 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8264 assert((EdgeMask || NumIncoming == 1) && 8265 "Multiple predecessors with one having a full mask"); 8266 OperandsWithMask.push_back(Operands[In]); 8267 if (EdgeMask) 8268 OperandsWithMask.push_back(EdgeMask); 8269 } 8270 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8271 } 8272 8273 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8274 ArrayRef<VPValue *> Operands, 8275 VFRange &Range) const { 8276 8277 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8278 [this, CI](ElementCount VF) { 8279 return CM.isScalarWithPredication(CI, VF); 8280 }, 8281 Range); 8282 8283 if (IsPredicated) 8284 return nullptr; 8285 8286 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8287 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8288 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8289 ID == Intrinsic::pseudoprobe || 8290 ID == Intrinsic::experimental_noalias_scope_decl)) 8291 return nullptr; 8292 8293 auto willWiden = [&](ElementCount VF) -> bool { 8294 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8295 // The following case may be scalarized depending on the VF. 8296 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8297 // version of the instruction. 8298 // Is it beneficial to perform intrinsic call compared to lib call? 8299 bool NeedToScalarize = false; 8300 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8301 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8302 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8303 return UseVectorIntrinsic || !NeedToScalarize; 8304 }; 8305 8306 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8307 return nullptr; 8308 8309 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8310 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8311 } 8312 8313 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8314 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8315 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8316 // Instruction should be widened, unless it is scalar after vectorization, 8317 // scalarization is profitable or it is predicated. 8318 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8319 return CM.isScalarAfterVectorization(I, VF) || 8320 CM.isProfitableToScalarize(I, VF) || 8321 CM.isScalarWithPredication(I, VF); 8322 }; 8323 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8324 Range); 8325 } 8326 8327 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8328 ArrayRef<VPValue *> Operands) const { 8329 auto IsVectorizableOpcode = [](unsigned Opcode) { 8330 switch (Opcode) { 8331 case Instruction::Add: 8332 case Instruction::And: 8333 case Instruction::AShr: 8334 case Instruction::BitCast: 8335 case Instruction::FAdd: 8336 case Instruction::FCmp: 8337 case Instruction::FDiv: 8338 case Instruction::FMul: 8339 case Instruction::FNeg: 8340 case Instruction::FPExt: 8341 case Instruction::FPToSI: 8342 case Instruction::FPToUI: 8343 case Instruction::FPTrunc: 8344 case Instruction::FRem: 8345 case Instruction::FSub: 8346 case Instruction::ICmp: 8347 case Instruction::IntToPtr: 8348 case Instruction::LShr: 8349 case Instruction::Mul: 8350 case Instruction::Or: 8351 case Instruction::PtrToInt: 8352 case Instruction::SDiv: 8353 case Instruction::Select: 8354 case Instruction::SExt: 8355 case Instruction::Shl: 8356 case Instruction::SIToFP: 8357 case Instruction::SRem: 8358 case Instruction::Sub: 8359 case Instruction::Trunc: 8360 case Instruction::UDiv: 8361 case Instruction::UIToFP: 8362 case Instruction::URem: 8363 case Instruction::Xor: 8364 case Instruction::ZExt: 8365 case Instruction::Freeze: 8366 return true; 8367 } 8368 return false; 8369 }; 8370 8371 if (!IsVectorizableOpcode(I->getOpcode())) 8372 return nullptr; 8373 8374 // Success: widen this instruction. 8375 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8376 } 8377 8378 void VPRecipeBuilder::fixHeaderPhis() { 8379 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8380 for (VPHeaderPHIRecipe *R : PhisToFix) { 8381 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8382 VPRecipeBase *IncR = 8383 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8384 R->addOperand(IncR->getVPSingleValue()); 8385 } 8386 } 8387 8388 VPBasicBlock *VPRecipeBuilder::handleReplication( 8389 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8390 VPlanPtr &Plan) { 8391 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8392 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8393 Range); 8394 8395 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8396 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8397 Range); 8398 8399 // Even if the instruction is not marked as uniform, there are certain 8400 // intrinsic calls that can be effectively treated as such, so we check for 8401 // them here. Conservatively, we only do this for scalable vectors, since 8402 // for fixed-width VFs we can always fall back on full scalarization. 8403 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8404 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8405 case Intrinsic::assume: 8406 case Intrinsic::lifetime_start: 8407 case Intrinsic::lifetime_end: 8408 // For scalable vectors if one of the operands is variant then we still 8409 // want to mark as uniform, which will generate one instruction for just 8410 // the first lane of the vector. We can't scalarize the call in the same 8411 // way as for fixed-width vectors because we don't know how many lanes 8412 // there are. 8413 // 8414 // The reasons for doing it this way for scalable vectors are: 8415 // 1. For the assume intrinsic generating the instruction for the first 8416 // lane is still be better than not generating any at all. For 8417 // example, the input may be a splat across all lanes. 8418 // 2. For the lifetime start/end intrinsics the pointer operand only 8419 // does anything useful when the input comes from a stack object, 8420 // which suggests it should always be uniform. For non-stack objects 8421 // the effect is to poison the object, which still allows us to 8422 // remove the call. 8423 IsUniform = true; 8424 break; 8425 default: 8426 break; 8427 } 8428 } 8429 8430 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8431 IsUniform, IsPredicated); 8432 setRecipe(I, Recipe); 8433 Plan->addVPValue(I, Recipe); 8434 8435 // Find if I uses a predicated instruction. If so, it will use its scalar 8436 // value. Avoid hoisting the insert-element which packs the scalar value into 8437 // a vector value, as that happens iff all users use the vector value. 8438 for (VPValue *Op : Recipe->operands()) { 8439 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8440 if (!PredR) 8441 continue; 8442 auto *RepR = 8443 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8444 assert(RepR->isPredicated() && 8445 "expected Replicate recipe to be predicated"); 8446 RepR->setAlsoPack(false); 8447 } 8448 8449 // Finalize the recipe for Instr, first if it is not predicated. 8450 if (!IsPredicated) { 8451 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8452 VPBB->appendRecipe(Recipe); 8453 return VPBB; 8454 } 8455 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8456 8457 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8458 assert(SingleSucc && "VPBB must have a single successor when handling " 8459 "predicated replication."); 8460 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8461 // Record predicated instructions for above packing optimizations. 8462 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8463 VPBlockUtils::insertBlockAfter(Region, VPBB); 8464 auto *RegSucc = new VPBasicBlock(); 8465 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8466 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8467 return RegSucc; 8468 } 8469 8470 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8471 VPRecipeBase *PredRecipe, 8472 VPlanPtr &Plan) { 8473 // Instructions marked for predication are replicated and placed under an 8474 // if-then construct to prevent side-effects. 8475 8476 // Generate recipes to compute the block mask for this region. 8477 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8478 8479 // Build the triangular if-then region. 8480 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8481 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8482 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8483 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8484 auto *PHIRecipe = Instr->getType()->isVoidTy() 8485 ? nullptr 8486 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8487 if (PHIRecipe) { 8488 Plan->removeVPValueFor(Instr); 8489 Plan->addVPValue(Instr, PHIRecipe); 8490 } 8491 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8492 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8493 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8494 8495 // Note: first set Entry as region entry and then connect successors starting 8496 // from it in order, to propagate the "parent" of each VPBasicBlock. 8497 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8498 VPBlockUtils::connectBlocks(Pred, Exiting); 8499 8500 return Region; 8501 } 8502 8503 VPRecipeOrVPValueTy 8504 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8505 ArrayRef<VPValue *> Operands, 8506 VFRange &Range, VPlanPtr &Plan) { 8507 // First, check for specific widening recipes that deal with inductions, Phi 8508 // nodes, calls and memory operations. 8509 VPRecipeBase *Recipe; 8510 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8511 if (Phi->getParent() != OrigLoop->getHeader()) 8512 return tryToBlend(Phi, Operands, Plan); 8513 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8514 return toVPRecipeResult(Recipe); 8515 8516 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8517 assert((Legal->isReductionVariable(Phi) || 8518 Legal->isFirstOrderRecurrence(Phi)) && 8519 "can only widen reductions and first-order recurrences here"); 8520 VPValue *StartV = Operands[0]; 8521 if (Legal->isReductionVariable(Phi)) { 8522 const RecurrenceDescriptor &RdxDesc = 8523 Legal->getReductionVars().find(Phi)->second; 8524 assert(RdxDesc.getRecurrenceStartValue() == 8525 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8526 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8527 CM.isInLoopReduction(Phi), 8528 CM.useOrderedReductions(RdxDesc)); 8529 } else { 8530 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8531 } 8532 8533 // Record the incoming value from the backedge, so we can add the incoming 8534 // value from the backedge after all recipes have been created. 8535 recordRecipeOf(cast<Instruction>( 8536 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8537 PhisToFix.push_back(PhiRecipe); 8538 return toVPRecipeResult(PhiRecipe); 8539 } 8540 8541 if (isa<TruncInst>(Instr) && 8542 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8543 Range, *Plan))) 8544 return toVPRecipeResult(Recipe); 8545 8546 // All widen recipes below deal only with VF > 1. 8547 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8548 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8549 return nullptr; 8550 8551 if (auto *CI = dyn_cast<CallInst>(Instr)) 8552 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8553 8554 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8555 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8556 8557 if (!shouldWiden(Instr, Range)) 8558 return nullptr; 8559 8560 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8561 return toVPRecipeResult(new VPWidenGEPRecipe( 8562 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8563 8564 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8565 bool InvariantCond = 8566 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8567 return toVPRecipeResult(new VPWidenSelectRecipe( 8568 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8569 } 8570 8571 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8572 } 8573 8574 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8575 ElementCount MaxVF) { 8576 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8577 8578 // Collect instructions from the original loop that will become trivially dead 8579 // in the vectorized loop. We don't need to vectorize these instructions. For 8580 // example, original induction update instructions can become dead because we 8581 // separately emit induction "steps" when generating code for the new loop. 8582 // Similarly, we create a new latch condition when setting up the structure 8583 // of the new loop, so the old one can become dead. 8584 SmallPtrSet<Instruction *, 4> DeadInstructions; 8585 collectTriviallyDeadInstructions(DeadInstructions); 8586 8587 // Add assume instructions we need to drop to DeadInstructions, to prevent 8588 // them from being added to the VPlan. 8589 // TODO: We only need to drop assumes in blocks that get flattend. If the 8590 // control flow is preserved, we should keep them. 8591 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8592 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8593 8594 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8595 // Dead instructions do not need sinking. Remove them from SinkAfter. 8596 for (Instruction *I : DeadInstructions) 8597 SinkAfter.erase(I); 8598 8599 // Cannot sink instructions after dead instructions (there won't be any 8600 // recipes for them). Instead, find the first non-dead previous instruction. 8601 for (auto &P : Legal->getSinkAfter()) { 8602 Instruction *SinkTarget = P.second; 8603 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8604 (void)FirstInst; 8605 while (DeadInstructions.contains(SinkTarget)) { 8606 assert( 8607 SinkTarget != FirstInst && 8608 "Must find a live instruction (at least the one feeding the " 8609 "first-order recurrence PHI) before reaching beginning of the block"); 8610 SinkTarget = SinkTarget->getPrevNode(); 8611 assert(SinkTarget != P.first && 8612 "sink source equals target, no sinking required"); 8613 } 8614 P.second = SinkTarget; 8615 } 8616 8617 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8618 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8619 VFRange SubRange = {VF, MaxVFPlusOne}; 8620 VPlans.push_back( 8621 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8622 VF = SubRange.End; 8623 } 8624 } 8625 8626 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8627 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8628 // BranchOnCount VPInstruction to the latch. 8629 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8630 bool HasNUW) { 8631 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8632 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8633 8634 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8635 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8636 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8637 Header->insert(CanonicalIVPHI, Header->begin()); 8638 8639 auto *CanonicalIVIncrement = 8640 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8641 : VPInstruction::CanonicalIVIncrement, 8642 {CanonicalIVPHI}, DL); 8643 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8644 8645 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8646 EB->appendRecipe(CanonicalIVIncrement); 8647 8648 auto *BranchOnCount = 8649 new VPInstruction(VPInstruction::BranchOnCount, 8650 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8651 EB->appendRecipe(BranchOnCount); 8652 } 8653 8654 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8655 // original exit block. 8656 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8657 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8658 VPlan &Plan) { 8659 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8660 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8661 // Only handle single-exit loops with unique exit blocks for now. 8662 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8663 return; 8664 8665 // Introduce VPUsers modeling the exit values. 8666 for (PHINode &ExitPhi : ExitBB->phis()) { 8667 Value *IncomingValue = 8668 ExitPhi.getIncomingValueForBlock(ExitingBB); 8669 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8670 Plan.addLiveOut(&ExitPhi, V); 8671 } 8672 } 8673 8674 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8675 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8676 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8677 8678 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8679 8680 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8681 8682 // --------------------------------------------------------------------------- 8683 // Pre-construction: record ingredients whose recipes we'll need to further 8684 // process after constructing the initial VPlan. 8685 // --------------------------------------------------------------------------- 8686 8687 // Mark instructions we'll need to sink later and their targets as 8688 // ingredients whose recipe we'll need to record. 8689 for (auto &Entry : SinkAfter) { 8690 RecipeBuilder.recordRecipeOf(Entry.first); 8691 RecipeBuilder.recordRecipeOf(Entry.second); 8692 } 8693 for (auto &Reduction : CM.getInLoopReductionChains()) { 8694 PHINode *Phi = Reduction.first; 8695 RecurKind Kind = 8696 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8697 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8698 8699 RecipeBuilder.recordRecipeOf(Phi); 8700 for (auto &R : ReductionOperations) { 8701 RecipeBuilder.recordRecipeOf(R); 8702 // For min/max reductions, where we have a pair of icmp/select, we also 8703 // need to record the ICmp recipe, so it can be removed later. 8704 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8705 "Only min/max recurrences allowed for inloop reductions"); 8706 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8707 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8708 } 8709 } 8710 8711 // For each interleave group which is relevant for this (possibly trimmed) 8712 // Range, add it to the set of groups to be later applied to the VPlan and add 8713 // placeholders for its members' Recipes which we'll be replacing with a 8714 // single VPInterleaveRecipe. 8715 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8716 auto applyIG = [IG, this](ElementCount VF) -> bool { 8717 return (VF.isVector() && // Query is illegal for VF == 1 8718 CM.getWideningDecision(IG->getInsertPos(), VF) == 8719 LoopVectorizationCostModel::CM_Interleave); 8720 }; 8721 if (!getDecisionAndClampRange(applyIG, Range)) 8722 continue; 8723 InterleaveGroups.insert(IG); 8724 for (unsigned i = 0; i < IG->getFactor(); i++) 8725 if (Instruction *Member = IG->getMember(i)) 8726 RecipeBuilder.recordRecipeOf(Member); 8727 }; 8728 8729 // --------------------------------------------------------------------------- 8730 // Build initial VPlan: Scan the body of the loop in a topological order to 8731 // visit each basic block after having visited its predecessor basic blocks. 8732 // --------------------------------------------------------------------------- 8733 8734 // Create initial VPlan skeleton, starting with a block for the pre-header, 8735 // followed by a region for the vector loop, followed by the middle block. The 8736 // skeleton vector loop region contains a header and latch block. 8737 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8738 auto Plan = std::make_unique<VPlan>(Preheader); 8739 8740 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8741 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8742 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8743 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8744 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8745 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8746 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8747 8748 Instruction *DLInst = 8749 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8750 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8751 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8752 !CM.foldTailByMasking()); 8753 8754 // Scan the body of the loop in a topological order to visit each basic block 8755 // after having visited its predecessor basic blocks. 8756 LoopBlocksDFS DFS(OrigLoop); 8757 DFS.perform(LI); 8758 8759 VPBasicBlock *VPBB = HeaderVPBB; 8760 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8761 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8762 // Relevant instructions from basic block BB will be grouped into VPRecipe 8763 // ingredients and fill a new VPBasicBlock. 8764 unsigned VPBBsForBB = 0; 8765 if (VPBB != HeaderVPBB) 8766 VPBB->setName(BB->getName()); 8767 Builder.setInsertPoint(VPBB); 8768 8769 // Introduce each ingredient into VPlan. 8770 // TODO: Model and preserve debug intrinsics in VPlan. 8771 for (Instruction &I : BB->instructionsWithoutDebug()) { 8772 Instruction *Instr = &I; 8773 8774 // First filter out irrelevant instructions, to ensure no recipes are 8775 // built for them. 8776 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8777 continue; 8778 8779 SmallVector<VPValue *, 4> Operands; 8780 auto *Phi = dyn_cast<PHINode>(Instr); 8781 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8782 Operands.push_back(Plan->getOrAddVPValue( 8783 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8784 } else { 8785 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8786 Operands = {OpRange.begin(), OpRange.end()}; 8787 } 8788 8789 // Invariant stores inside loop will be deleted and a single store 8790 // with the final reduction value will be added to the exit block 8791 StoreInst *SI; 8792 if ((SI = dyn_cast<StoreInst>(&I)) && 8793 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8794 continue; 8795 8796 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8797 Instr, Operands, Range, Plan)) { 8798 // If Instr can be simplified to an existing VPValue, use it. 8799 if (RecipeOrValue.is<VPValue *>()) { 8800 auto *VPV = RecipeOrValue.get<VPValue *>(); 8801 Plan->addVPValue(Instr, VPV); 8802 // If the re-used value is a recipe, register the recipe for the 8803 // instruction, in case the recipe for Instr needs to be recorded. 8804 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8805 RecipeBuilder.setRecipe(Instr, R); 8806 continue; 8807 } 8808 // Otherwise, add the new recipe. 8809 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8810 for (auto *Def : Recipe->definedValues()) { 8811 auto *UV = Def->getUnderlyingValue(); 8812 Plan->addVPValue(UV, Def); 8813 } 8814 8815 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8816 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8817 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8818 // of the header block. That can happen for truncates of induction 8819 // variables. Those recipes are moved to the phi section of the header 8820 // block after applying SinkAfter, which relies on the original 8821 // position of the trunc. 8822 assert(isa<TruncInst>(Instr)); 8823 InductionsToMove.push_back( 8824 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8825 } 8826 RecipeBuilder.setRecipe(Instr, Recipe); 8827 VPBB->appendRecipe(Recipe); 8828 continue; 8829 } 8830 8831 // Otherwise, if all widening options failed, Instruction is to be 8832 // replicated. This may create a successor for VPBB. 8833 VPBasicBlock *NextVPBB = 8834 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8835 if (NextVPBB != VPBB) { 8836 VPBB = NextVPBB; 8837 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8838 : ""); 8839 } 8840 } 8841 8842 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8843 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8844 } 8845 8846 HeaderVPBB->setName("vector.body"); 8847 8848 // Fold the last, empty block into its predecessor. 8849 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8850 assert(VPBB && "expected to fold last (empty) block"); 8851 // After here, VPBB should not be used. 8852 VPBB = nullptr; 8853 8854 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8855 8856 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8857 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8858 "entry block must be set to a VPRegionBlock having a non-empty entry " 8859 "VPBasicBlock"); 8860 RecipeBuilder.fixHeaderPhis(); 8861 8862 // --------------------------------------------------------------------------- 8863 // Transform initial VPlan: Apply previously taken decisions, in order, to 8864 // bring the VPlan to its final state. 8865 // --------------------------------------------------------------------------- 8866 8867 // Apply Sink-After legal constraints. 8868 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8869 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8870 if (Region && Region->isReplicator()) { 8871 assert(Region->getNumSuccessors() == 1 && 8872 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8873 assert(R->getParent()->size() == 1 && 8874 "A recipe in an original replicator region must be the only " 8875 "recipe in its block"); 8876 return Region; 8877 } 8878 return nullptr; 8879 }; 8880 for (auto &Entry : SinkAfter) { 8881 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8882 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8883 8884 auto *TargetRegion = GetReplicateRegion(Target); 8885 auto *SinkRegion = GetReplicateRegion(Sink); 8886 if (!SinkRegion) { 8887 // If the sink source is not a replicate region, sink the recipe directly. 8888 if (TargetRegion) { 8889 // The target is in a replication region, make sure to move Sink to 8890 // the block after it, not into the replication region itself. 8891 VPBasicBlock *NextBlock = 8892 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8893 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8894 } else 8895 Sink->moveAfter(Target); 8896 continue; 8897 } 8898 8899 // The sink source is in a replicate region. Unhook the region from the CFG. 8900 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8901 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8902 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8903 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8904 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8905 8906 if (TargetRegion) { 8907 // The target recipe is also in a replicate region, move the sink region 8908 // after the target region. 8909 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8910 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8911 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8912 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8913 } else { 8914 // The sink source is in a replicate region, we need to move the whole 8915 // replicate region, which should only contain a single recipe in the 8916 // main block. 8917 auto *SplitBlock = 8918 Target->getParent()->splitAt(std::next(Target->getIterator())); 8919 8920 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8921 8922 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8923 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8924 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8925 } 8926 } 8927 8928 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8929 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8930 8931 // Now that sink-after is done, move induction recipes for optimized truncates 8932 // to the phi section of the header block. 8933 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8934 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8935 8936 // Adjust the recipes for any inloop reductions. 8937 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8938 RecipeBuilder, Range.Start); 8939 8940 // Introduce a recipe to combine the incoming and previous values of a 8941 // first-order recurrence. 8942 for (VPRecipeBase &R : 8943 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8944 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8945 if (!RecurPhi) 8946 continue; 8947 8948 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8949 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8950 auto *Region = GetReplicateRegion(PrevRecipe); 8951 if (Region) 8952 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8953 if (!InsertBlock) { 8954 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8955 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8956 } 8957 if (Region || PrevRecipe->isPhi()) 8958 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8959 else 8960 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8961 8962 auto *RecurSplice = cast<VPInstruction>( 8963 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8964 {RecurPhi, RecurPhi->getBackedgeValue()})); 8965 8966 RecurPhi->replaceAllUsesWith(RecurSplice); 8967 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8968 // all users. 8969 RecurSplice->setOperand(0, RecurPhi); 8970 } 8971 8972 // Interleave memory: for each Interleave Group we marked earlier as relevant 8973 // for this VPlan, replace the Recipes widening its memory instructions with a 8974 // single VPInterleaveRecipe at its insertion point. 8975 for (auto IG : InterleaveGroups) { 8976 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8977 RecipeBuilder.getRecipe(IG->getInsertPos())); 8978 SmallVector<VPValue *, 4> StoredValues; 8979 for (unsigned i = 0; i < IG->getFactor(); ++i) 8980 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8981 auto *StoreR = 8982 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8983 StoredValues.push_back(StoreR->getStoredValue()); 8984 } 8985 8986 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8987 Recipe->getMask()); 8988 VPIG->insertBefore(Recipe); 8989 unsigned J = 0; 8990 for (unsigned i = 0; i < IG->getFactor(); ++i) 8991 if (Instruction *Member = IG->getMember(i)) { 8992 if (!Member->getType()->isVoidTy()) { 8993 VPValue *OriginalV = Plan->getVPValue(Member); 8994 Plan->removeVPValueFor(Member); 8995 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8996 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8997 J++; 8998 } 8999 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9000 } 9001 } 9002 9003 std::string PlanName; 9004 raw_string_ostream RSO(PlanName); 9005 ElementCount VF = Range.Start; 9006 Plan->addVF(VF); 9007 RSO << "Initial VPlan for VF={" << VF; 9008 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9009 Plan->addVF(VF); 9010 RSO << "," << VF; 9011 } 9012 RSO << "},UF>=1"; 9013 RSO.flush(); 9014 Plan->setName(PlanName); 9015 9016 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9017 // in ways that accessing values using original IR values is incorrect. 9018 Plan->disableValue2VPValue(); 9019 9020 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9021 VPlanTransforms::sinkScalarOperands(*Plan); 9022 VPlanTransforms::mergeReplicateRegions(*Plan); 9023 VPlanTransforms::removeDeadRecipes(*Plan); 9024 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9025 9026 // Fold Exit block into its predecessor if possible. 9027 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9028 // VPBasicBlock as exit. 9029 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9030 9031 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9032 return Plan; 9033 } 9034 9035 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9036 // Outer loop handling: They may require CFG and instruction level 9037 // transformations before even evaluating whether vectorization is profitable. 9038 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9039 // the vectorization pipeline. 9040 assert(!OrigLoop->isInnermost()); 9041 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9042 9043 // Create new empty VPlan 9044 auto Plan = std::make_unique<VPlan>(); 9045 9046 // Build hierarchical CFG 9047 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9048 HCFGBuilder.buildHierarchicalCFG(); 9049 9050 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9051 VF *= 2) 9052 Plan->addVF(VF); 9053 9054 SmallPtrSet<Instruction *, 1> DeadInstructions; 9055 VPlanTransforms::VPInstructionsToVPRecipes( 9056 OrigLoop, Plan, 9057 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9058 DeadInstructions, *PSE.getSE()); 9059 9060 // Remove the existing terminator of the exiting block of the top-most region. 9061 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9062 auto *Term = 9063 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9064 Term->eraseFromParent(); 9065 9066 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9067 true); 9068 return Plan; 9069 } 9070 9071 // Adjust the recipes for reductions. For in-loop reductions the chain of 9072 // instructions leading from the loop exit instr to the phi need to be converted 9073 // to reductions, with one operand being vector and the other being the scalar 9074 // reduction chain. For other reductions, a select is introduced between the phi 9075 // and live-out recipes when folding the tail. 9076 void LoopVectorizationPlanner::adjustRecipesForReductions( 9077 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9078 ElementCount MinVF) { 9079 for (auto &Reduction : CM.getInLoopReductionChains()) { 9080 PHINode *Phi = Reduction.first; 9081 const RecurrenceDescriptor &RdxDesc = 9082 Legal->getReductionVars().find(Phi)->second; 9083 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9084 9085 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9086 continue; 9087 9088 // ReductionOperations are orders top-down from the phi's use to the 9089 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9090 // which of the two operands will remain scalar and which will be reduced. 9091 // For minmax the chain will be the select instructions. 9092 Instruction *Chain = Phi; 9093 for (Instruction *R : ReductionOperations) { 9094 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9095 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9096 9097 VPValue *ChainOp = Plan->getVPValue(Chain); 9098 unsigned FirstOpId; 9099 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9100 "Only min/max recurrences allowed for inloop reductions"); 9101 // Recognize a call to the llvm.fmuladd intrinsic. 9102 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9103 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9104 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9105 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9106 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9107 "Expected to replace a VPWidenSelectSC"); 9108 FirstOpId = 1; 9109 } else { 9110 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9111 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9112 "Expected to replace a VPWidenSC"); 9113 FirstOpId = 0; 9114 } 9115 unsigned VecOpId = 9116 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9117 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9118 9119 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9120 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9121 : nullptr; 9122 9123 if (IsFMulAdd) { 9124 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9125 // need to create an fmul recipe to use as the vector operand for the 9126 // fadd reduction. 9127 VPInstruction *FMulRecipe = new VPInstruction( 9128 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9129 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9130 WidenRecipe->getParent()->insert(FMulRecipe, 9131 WidenRecipe->getIterator()); 9132 VecOp = FMulRecipe; 9133 } 9134 VPReductionRecipe *RedRecipe = 9135 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9136 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9137 Plan->removeVPValueFor(R); 9138 Plan->addVPValue(R, RedRecipe); 9139 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9140 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9141 WidenRecipe->eraseFromParent(); 9142 9143 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9144 VPRecipeBase *CompareRecipe = 9145 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9146 assert(isa<VPWidenRecipe>(CompareRecipe) && 9147 "Expected to replace a VPWidenSC"); 9148 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9149 "Expected no remaining users"); 9150 CompareRecipe->eraseFromParent(); 9151 } 9152 Chain = R; 9153 } 9154 } 9155 9156 // If tail is folded by masking, introduce selects between the phi 9157 // and the live-out instruction of each reduction, at the beginning of the 9158 // dedicated latch block. 9159 if (CM.foldTailByMasking()) { 9160 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9161 for (VPRecipeBase &R : 9162 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9163 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9164 if (!PhiR || PhiR->isInLoop()) 9165 continue; 9166 VPValue *Cond = 9167 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9168 VPValue *Red = PhiR->getBackedgeValue(); 9169 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9170 "reduction recipe must be defined before latch"); 9171 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9172 } 9173 } 9174 } 9175 9176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9177 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9178 VPSlotTracker &SlotTracker) const { 9179 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9180 IG->getInsertPos()->printAsOperand(O, false); 9181 O << ", "; 9182 getAddr()->printAsOperand(O, SlotTracker); 9183 VPValue *Mask = getMask(); 9184 if (Mask) { 9185 O << ", "; 9186 Mask->printAsOperand(O, SlotTracker); 9187 } 9188 9189 unsigned OpIdx = 0; 9190 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9191 if (!IG->getMember(i)) 9192 continue; 9193 if (getNumStoreOperands() > 0) { 9194 O << "\n" << Indent << " store "; 9195 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9196 O << " to index " << i; 9197 } else { 9198 O << "\n" << Indent << " "; 9199 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9200 O << " = load from index " << i; 9201 } 9202 ++OpIdx; 9203 } 9204 } 9205 #endif 9206 9207 void VPWidenCallRecipe::execute(VPTransformState &State) { 9208 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9209 *this, State); 9210 } 9211 9212 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9213 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9214 State.ILV->setDebugLocFromInst(&I); 9215 9216 // The condition can be loop invariant but still defined inside the 9217 // loop. This means that we can't just use the original 'cond' value. 9218 // We have to take the 'vectorized' value and pick the first lane. 9219 // Instcombine will make this a no-op. 9220 auto *InvarCond = 9221 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9222 9223 for (unsigned Part = 0; Part < State.UF; ++Part) { 9224 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9225 Value *Op0 = State.get(getOperand(1), Part); 9226 Value *Op1 = State.get(getOperand(2), Part); 9227 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9228 State.set(this, Sel, Part); 9229 State.ILV->addMetadata(Sel, &I); 9230 } 9231 } 9232 9233 void VPWidenRecipe::execute(VPTransformState &State) { 9234 auto &I = *cast<Instruction>(getUnderlyingValue()); 9235 auto &Builder = State.Builder; 9236 switch (I.getOpcode()) { 9237 case Instruction::Call: 9238 case Instruction::Br: 9239 case Instruction::PHI: 9240 case Instruction::GetElementPtr: 9241 case Instruction::Select: 9242 llvm_unreachable("This instruction is handled by a different recipe."); 9243 case Instruction::UDiv: 9244 case Instruction::SDiv: 9245 case Instruction::SRem: 9246 case Instruction::URem: 9247 case Instruction::Add: 9248 case Instruction::FAdd: 9249 case Instruction::Sub: 9250 case Instruction::FSub: 9251 case Instruction::FNeg: 9252 case Instruction::Mul: 9253 case Instruction::FMul: 9254 case Instruction::FDiv: 9255 case Instruction::FRem: 9256 case Instruction::Shl: 9257 case Instruction::LShr: 9258 case Instruction::AShr: 9259 case Instruction::And: 9260 case Instruction::Or: 9261 case Instruction::Xor: { 9262 // Just widen unops and binops. 9263 State.ILV->setDebugLocFromInst(&I); 9264 9265 for (unsigned Part = 0; Part < State.UF; ++Part) { 9266 SmallVector<Value *, 2> Ops; 9267 for (VPValue *VPOp : operands()) 9268 Ops.push_back(State.get(VPOp, Part)); 9269 9270 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9271 9272 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9273 VecOp->copyIRFlags(&I); 9274 9275 // If the instruction is vectorized and was in a basic block that needed 9276 // predication, we can't propagate poison-generating flags (nuw/nsw, 9277 // exact, etc.). The control flow has been linearized and the 9278 // instruction is no longer guarded by the predicate, which could make 9279 // the flag properties to no longer hold. 9280 if (State.MayGeneratePoisonRecipes.contains(this)) 9281 VecOp->dropPoisonGeneratingFlags(); 9282 } 9283 9284 // Use this vector value for all users of the original instruction. 9285 State.set(this, V, Part); 9286 State.ILV->addMetadata(V, &I); 9287 } 9288 9289 break; 9290 } 9291 case Instruction::Freeze: { 9292 State.ILV->setDebugLocFromInst(&I); 9293 9294 for (unsigned Part = 0; Part < State.UF; ++Part) { 9295 Value *Op = State.get(getOperand(0), Part); 9296 9297 Value *Freeze = Builder.CreateFreeze(Op); 9298 State.set(this, Freeze, Part); 9299 } 9300 break; 9301 } 9302 case Instruction::ICmp: 9303 case Instruction::FCmp: { 9304 // Widen compares. Generate vector compares. 9305 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9306 auto *Cmp = cast<CmpInst>(&I); 9307 State.ILV->setDebugLocFromInst(Cmp); 9308 for (unsigned Part = 0; Part < State.UF; ++Part) { 9309 Value *A = State.get(getOperand(0), Part); 9310 Value *B = State.get(getOperand(1), Part); 9311 Value *C = nullptr; 9312 if (FCmp) { 9313 // Propagate fast math flags. 9314 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9315 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9316 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9317 } else { 9318 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9319 } 9320 State.set(this, C, Part); 9321 State.ILV->addMetadata(C, &I); 9322 } 9323 9324 break; 9325 } 9326 9327 case Instruction::ZExt: 9328 case Instruction::SExt: 9329 case Instruction::FPToUI: 9330 case Instruction::FPToSI: 9331 case Instruction::FPExt: 9332 case Instruction::PtrToInt: 9333 case Instruction::IntToPtr: 9334 case Instruction::SIToFP: 9335 case Instruction::UIToFP: 9336 case Instruction::Trunc: 9337 case Instruction::FPTrunc: 9338 case Instruction::BitCast: { 9339 auto *CI = cast<CastInst>(&I); 9340 State.ILV->setDebugLocFromInst(CI); 9341 9342 /// Vectorize casts. 9343 Type *DestTy = (State.VF.isScalar()) 9344 ? CI->getType() 9345 : VectorType::get(CI->getType(), State.VF); 9346 9347 for (unsigned Part = 0; Part < State.UF; ++Part) { 9348 Value *A = State.get(getOperand(0), Part); 9349 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9350 State.set(this, Cast, Part); 9351 State.ILV->addMetadata(Cast, &I); 9352 } 9353 break; 9354 } 9355 default: 9356 // This instruction is not vectorized by simple widening. 9357 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9358 llvm_unreachable("Unhandled instruction!"); 9359 } // end of switch. 9360 } 9361 9362 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9363 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9364 // Construct a vector GEP by widening the operands of the scalar GEP as 9365 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9366 // results in a vector of pointers when at least one operand of the GEP 9367 // is vector-typed. Thus, to keep the representation compact, we only use 9368 // vector-typed operands for loop-varying values. 9369 9370 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9371 // If we are vectorizing, but the GEP has only loop-invariant operands, 9372 // the GEP we build (by only using vector-typed operands for 9373 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9374 // produce a vector of pointers, we need to either arbitrarily pick an 9375 // operand to broadcast, or broadcast a clone of the original GEP. 9376 // Here, we broadcast a clone of the original. 9377 // 9378 // TODO: If at some point we decide to scalarize instructions having 9379 // loop-invariant operands, this special case will no longer be 9380 // required. We would add the scalarization decision to 9381 // collectLoopScalars() and teach getVectorValue() to broadcast 9382 // the lane-zero scalar value. 9383 auto *Clone = State.Builder.Insert(GEP->clone()); 9384 for (unsigned Part = 0; Part < State.UF; ++Part) { 9385 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9386 State.set(this, EntryPart, Part); 9387 State.ILV->addMetadata(EntryPart, GEP); 9388 } 9389 } else { 9390 // If the GEP has at least one loop-varying operand, we are sure to 9391 // produce a vector of pointers. But if we are only unrolling, we want 9392 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9393 // produce with the code below will be scalar (if VF == 1) or vector 9394 // (otherwise). Note that for the unroll-only case, we still maintain 9395 // values in the vector mapping with initVector, as we do for other 9396 // instructions. 9397 for (unsigned Part = 0; Part < State.UF; ++Part) { 9398 // The pointer operand of the new GEP. If it's loop-invariant, we 9399 // won't broadcast it. 9400 auto *Ptr = IsPtrLoopInvariant 9401 ? State.get(getOperand(0), VPIteration(0, 0)) 9402 : State.get(getOperand(0), Part); 9403 9404 // Collect all the indices for the new GEP. If any index is 9405 // loop-invariant, we won't broadcast it. 9406 SmallVector<Value *, 4> Indices; 9407 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9408 VPValue *Operand = getOperand(I); 9409 if (IsIndexLoopInvariant[I - 1]) 9410 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9411 else 9412 Indices.push_back(State.get(Operand, Part)); 9413 } 9414 9415 // If the GEP instruction is vectorized and was in a basic block that 9416 // needed predication, we can't propagate the poison-generating 'inbounds' 9417 // flag. The control flow has been linearized and the GEP is no longer 9418 // guarded by the predicate, which could make the 'inbounds' properties to 9419 // no longer hold. 9420 bool IsInBounds = 9421 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9422 9423 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9424 // but it should be a vector, otherwise. 9425 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr, 9426 Indices, "", IsInBounds); 9427 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9428 "NewGEP is not a pointer vector"); 9429 State.set(this, NewGEP, Part); 9430 State.ILV->addMetadata(NewGEP, GEP); 9431 } 9432 } 9433 } 9434 9435 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9436 assert(!State.Instance && "Int or FP induction being replicated."); 9437 9438 Value *Start = getStartValue()->getLiveInIRValue(); 9439 const InductionDescriptor &ID = getInductionDescriptor(); 9440 TruncInst *Trunc = getTruncInst(); 9441 IRBuilderBase &Builder = State.Builder; 9442 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9443 assert(State.VF.isVector() && "must have vector VF"); 9444 9445 // The value from the original loop to which we are mapping the new induction 9446 // variable. 9447 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9448 9449 // Fast-math-flags propagate from the original induction instruction. 9450 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9451 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9452 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9453 9454 // Now do the actual transformations, and start with fetching the step value. 9455 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9456 9457 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9458 "Expected either an induction phi-node or a truncate of it!"); 9459 9460 // Construct the initial value of the vector IV in the vector loop preheader 9461 auto CurrIP = Builder.saveIP(); 9462 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9463 Builder.SetInsertPoint(VectorPH->getTerminator()); 9464 if (isa<TruncInst>(EntryVal)) { 9465 assert(Start->getType()->isIntegerTy() && 9466 "Truncation requires an integer type"); 9467 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9468 Step = Builder.CreateTrunc(Step, TruncType); 9469 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9470 } 9471 9472 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9473 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9474 Value *SteppedStart = getStepVector( 9475 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9476 9477 // We create vector phi nodes for both integer and floating-point induction 9478 // variables. Here, we determine the kind of arithmetic we will perform. 9479 Instruction::BinaryOps AddOp; 9480 Instruction::BinaryOps MulOp; 9481 if (Step->getType()->isIntegerTy()) { 9482 AddOp = Instruction::Add; 9483 MulOp = Instruction::Mul; 9484 } else { 9485 AddOp = ID.getInductionOpcode(); 9486 MulOp = Instruction::FMul; 9487 } 9488 9489 // Multiply the vectorization factor by the step using integer or 9490 // floating-point arithmetic as appropriate. 9491 Type *StepType = Step->getType(); 9492 Value *RuntimeVF; 9493 if (Step->getType()->isFloatingPointTy()) 9494 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9495 else 9496 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9497 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9498 9499 // Create a vector splat to use in the induction update. 9500 // 9501 // FIXME: If the step is non-constant, we create the vector splat with 9502 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9503 // handle a constant vector splat. 9504 Value *SplatVF = isa<Constant>(Mul) 9505 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9506 : Builder.CreateVectorSplat(State.VF, Mul); 9507 Builder.restoreIP(CurrIP); 9508 9509 // We may need to add the step a number of times, depending on the unroll 9510 // factor. The last of those goes into the PHI. 9511 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9512 &*State.CFG.PrevBB->getFirstInsertionPt()); 9513 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9514 Instruction *LastInduction = VecInd; 9515 for (unsigned Part = 0; Part < State.UF; ++Part) { 9516 State.set(this, LastInduction, Part); 9517 9518 if (isa<TruncInst>(EntryVal)) 9519 State.ILV->addMetadata(LastInduction, EntryVal); 9520 9521 LastInduction = cast<Instruction>( 9522 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9523 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9524 } 9525 9526 LastInduction->setName("vec.ind.next"); 9527 VecInd->addIncoming(SteppedStart, VectorPH); 9528 // Add induction update using an incorrect block temporarily. The phi node 9529 // will be fixed after VPlan execution. Note that at this point the latch 9530 // block cannot be used, as it does not exist yet. 9531 // TODO: Model increment value in VPlan, by turning the recipe into a 9532 // multi-def and a subclass of VPHeaderPHIRecipe. 9533 VecInd->addIncoming(LastInduction, VectorPH); 9534 } 9535 9536 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9537 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9538 "Not a pointer induction according to InductionDescriptor!"); 9539 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9540 "Unexpected type."); 9541 9542 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9543 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9544 9545 if (onlyScalarsGenerated(State.VF)) { 9546 // This is the normalized GEP that starts counting at zero. 9547 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9548 CanonicalIV, IndDesc.getStep()->getType()); 9549 // Determine the number of scalars we need to generate for each unroll 9550 // iteration. If the instruction is uniform, we only need to generate the 9551 // first lane. Otherwise, we generate all VF values. 9552 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9553 assert((IsUniform || !State.VF.isScalable()) && 9554 "Cannot scalarize a scalable VF"); 9555 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9556 9557 for (unsigned Part = 0; Part < State.UF; ++Part) { 9558 Value *PartStart = 9559 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9560 9561 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9562 Value *Idx = State.Builder.CreateAdd( 9563 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9564 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9565 9566 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9567 State.CFG.PrevBB->getTerminator()); 9568 Value *SclrGep = emitTransformedIndex( 9569 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9570 SclrGep->setName("next.gep"); 9571 State.set(this, SclrGep, VPIteration(Part, Lane)); 9572 } 9573 } 9574 return; 9575 } 9576 9577 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9578 "Induction step not a SCEV constant!"); 9579 Type *PhiType = IndDesc.getStep()->getType(); 9580 9581 // Build a pointer phi 9582 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9583 Type *ScStValueType = ScalarStartValue->getType(); 9584 PHINode *NewPointerPhi = 9585 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9586 9587 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9588 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9589 9590 // A pointer induction, performed by using a gep 9591 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9592 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9593 9594 const SCEV *ScalarStep = IndDesc.getStep(); 9595 SCEVExpander Exp(SE, DL, "induction"); 9596 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9597 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9598 Value *NumUnrolledElems = 9599 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9600 Value *InductionGEP = GetElementPtrInst::Create( 9601 IndDesc.getElementType(), NewPointerPhi, 9602 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9603 InductionLoc); 9604 // Add induction update using an incorrect block temporarily. The phi node 9605 // will be fixed after VPlan execution. Note that at this point the latch 9606 // block cannot be used, as it does not exist yet. 9607 // TODO: Model increment value in VPlan, by turning the recipe into a 9608 // multi-def and a subclass of VPHeaderPHIRecipe. 9609 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9610 9611 // Create UF many actual address geps that use the pointer 9612 // phi as base and a vectorized version of the step value 9613 // (<step*0, ..., step*N>) as offset. 9614 for (unsigned Part = 0; Part < State.UF; ++Part) { 9615 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9616 Value *StartOffsetScalar = 9617 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9618 Value *StartOffset = 9619 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9620 // Create a vector of consecutive numbers from zero to VF. 9621 StartOffset = State.Builder.CreateAdd( 9622 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9623 9624 Value *GEP = State.Builder.CreateGEP( 9625 IndDesc.getElementType(), NewPointerPhi, 9626 State.Builder.CreateMul( 9627 StartOffset, 9628 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9629 "vector.gep")); 9630 State.set(this, GEP, Part); 9631 } 9632 } 9633 9634 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9635 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9636 9637 // Fast-math-flags propagate from the original induction instruction. 9638 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9639 if (IndDesc.getInductionBinOp() && 9640 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9641 State.Builder.setFastMathFlags( 9642 IndDesc.getInductionBinOp()->getFastMathFlags()); 9643 9644 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9645 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9646 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9647 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9648 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9649 ScalarIV = 9650 Ty->isIntegerTy() 9651 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9652 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9653 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9654 getStartValue()->getLiveInIRValue(), Step, 9655 IndDesc); 9656 ScalarIV->setName("offset.idx"); 9657 } 9658 if (TruncToTy) { 9659 assert(Step->getType()->isIntegerTy() && 9660 "Truncation requires an integer step"); 9661 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9662 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9663 } 9664 return ScalarIV; 9665 }; 9666 9667 Value *ScalarIV = CreateScalarIV(Step); 9668 if (State.VF.isVector()) { 9669 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9670 return; 9671 } 9672 9673 for (unsigned Part = 0; Part < State.UF; ++Part) { 9674 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9675 Value *EntryPart; 9676 if (Step->getType()->isFloatingPointTy()) { 9677 Value *StartIdx = 9678 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9679 // Floating-point operations inherit FMF via the builder's flags. 9680 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9681 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9682 ScalarIV, MulOp); 9683 } else { 9684 Value *StartIdx = 9685 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9686 EntryPart = State.Builder.CreateAdd( 9687 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9688 } 9689 State.set(this, EntryPart, Part); 9690 } 9691 } 9692 9693 void VPBlendRecipe::execute(VPTransformState &State) { 9694 State.ILV->setDebugLocFromInst(Phi); 9695 // We know that all PHIs in non-header blocks are converted into 9696 // selects, so we don't have to worry about the insertion order and we 9697 // can just use the builder. 9698 // At this point we generate the predication tree. There may be 9699 // duplications since this is a simple recursive scan, but future 9700 // optimizations will clean it up. 9701 9702 unsigned NumIncoming = getNumIncomingValues(); 9703 9704 // Generate a sequence of selects of the form: 9705 // SELECT(Mask3, In3, 9706 // SELECT(Mask2, In2, 9707 // SELECT(Mask1, In1, 9708 // In0))) 9709 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9710 // are essentially undef are taken from In0. 9711 InnerLoopVectorizer::VectorParts Entry(State.UF); 9712 for (unsigned In = 0; In < NumIncoming; ++In) { 9713 for (unsigned Part = 0; Part < State.UF; ++Part) { 9714 // We might have single edge PHIs (blocks) - use an identity 9715 // 'select' for the first PHI operand. 9716 Value *In0 = State.get(getIncomingValue(In), Part); 9717 if (In == 0) 9718 Entry[Part] = In0; // Initialize with the first incoming value. 9719 else { 9720 // Select between the current value and the previous incoming edge 9721 // based on the incoming mask. 9722 Value *Cond = State.get(getMask(In), Part); 9723 Entry[Part] = 9724 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9725 } 9726 } 9727 } 9728 for (unsigned Part = 0; Part < State.UF; ++Part) 9729 State.set(this, Entry[Part], Part); 9730 } 9731 9732 void VPInterleaveRecipe::execute(VPTransformState &State) { 9733 assert(!State.Instance && "Interleave group being replicated."); 9734 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9735 getStoredValues(), getMask()); 9736 } 9737 9738 void VPReductionRecipe::execute(VPTransformState &State) { 9739 assert(!State.Instance && "Reduction being replicated."); 9740 Value *PrevInChain = State.get(getChainOp(), 0); 9741 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9742 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9743 // Propagate the fast-math flags carried by the underlying instruction. 9744 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9745 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9746 for (unsigned Part = 0; Part < State.UF; ++Part) { 9747 Value *NewVecOp = State.get(getVecOp(), Part); 9748 if (VPValue *Cond = getCondOp()) { 9749 Value *NewCond = State.get(Cond, Part); 9750 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9751 Value *Iden = RdxDesc->getRecurrenceIdentity( 9752 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9753 Value *IdenVec = 9754 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9755 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9756 NewVecOp = Select; 9757 } 9758 Value *NewRed; 9759 Value *NextInChain; 9760 if (IsOrdered) { 9761 if (State.VF.isVector()) 9762 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9763 PrevInChain); 9764 else 9765 NewRed = State.Builder.CreateBinOp( 9766 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9767 NewVecOp); 9768 PrevInChain = NewRed; 9769 } else { 9770 PrevInChain = State.get(getChainOp(), Part); 9771 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9772 } 9773 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9774 NextInChain = 9775 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9776 NewRed, PrevInChain); 9777 } else if (IsOrdered) 9778 NextInChain = NewRed; 9779 else 9780 NextInChain = State.Builder.CreateBinOp( 9781 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9782 PrevInChain); 9783 State.set(this, NextInChain, Part); 9784 } 9785 } 9786 9787 void VPReplicateRecipe::execute(VPTransformState &State) { 9788 if (State.Instance) { // Generate a single instance. 9789 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9790 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9791 IsPredicated, State); 9792 // Insert scalar instance packing it into a vector. 9793 if (AlsoPack && State.VF.isVector()) { 9794 // If we're constructing lane 0, initialize to start from poison. 9795 if (State.Instance->Lane.isFirstLane()) { 9796 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9797 Value *Poison = PoisonValue::get( 9798 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9799 State.set(this, Poison, State.Instance->Part); 9800 } 9801 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9802 } 9803 return; 9804 } 9805 9806 // Generate scalar instances for all VF lanes of all UF parts, unless the 9807 // instruction is uniform inwhich case generate only the first lane for each 9808 // of the UF parts. 9809 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9810 assert((!State.VF.isScalable() || IsUniform) && 9811 "Can't scalarize a scalable vector"); 9812 for (unsigned Part = 0; Part < State.UF; ++Part) 9813 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9814 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9815 VPIteration(Part, Lane), IsPredicated, 9816 State); 9817 } 9818 9819 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9820 assert(State.Instance && "Branch on Mask works only on single instance."); 9821 9822 unsigned Part = State.Instance->Part; 9823 unsigned Lane = State.Instance->Lane.getKnownLane(); 9824 9825 Value *ConditionBit = nullptr; 9826 VPValue *BlockInMask = getMask(); 9827 if (BlockInMask) { 9828 ConditionBit = State.get(BlockInMask, Part); 9829 if (ConditionBit->getType()->isVectorTy()) 9830 ConditionBit = State.Builder.CreateExtractElement( 9831 ConditionBit, State.Builder.getInt32(Lane)); 9832 } else // Block in mask is all-one. 9833 ConditionBit = State.Builder.getTrue(); 9834 9835 // Replace the temporary unreachable terminator with a new conditional branch, 9836 // whose two destinations will be set later when they are created. 9837 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9838 assert(isa<UnreachableInst>(CurrentTerminator) && 9839 "Expected to replace unreachable terminator with conditional branch."); 9840 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9841 CondBr->setSuccessor(0, nullptr); 9842 ReplaceInstWithInst(CurrentTerminator, CondBr); 9843 } 9844 9845 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9846 assert(State.Instance && "Predicated instruction PHI works per instance."); 9847 Instruction *ScalarPredInst = 9848 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9849 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9850 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9851 assert(PredicatingBB && "Predicated block has no single predecessor."); 9852 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9853 "operand must be VPReplicateRecipe"); 9854 9855 // By current pack/unpack logic we need to generate only a single phi node: if 9856 // a vector value for the predicated instruction exists at this point it means 9857 // the instruction has vector users only, and a phi for the vector value is 9858 // needed. In this case the recipe of the predicated instruction is marked to 9859 // also do that packing, thereby "hoisting" the insert-element sequence. 9860 // Otherwise, a phi node for the scalar value is needed. 9861 unsigned Part = State.Instance->Part; 9862 if (State.hasVectorValue(getOperand(0), Part)) { 9863 Value *VectorValue = State.get(getOperand(0), Part); 9864 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9865 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9866 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9867 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9868 if (State.hasVectorValue(this, Part)) 9869 State.reset(this, VPhi, Part); 9870 else 9871 State.set(this, VPhi, Part); 9872 // NOTE: Currently we need to update the value of the operand, so the next 9873 // predicated iteration inserts its generated value in the correct vector. 9874 State.reset(getOperand(0), VPhi, Part); 9875 } else { 9876 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9877 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9878 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9879 PredicatingBB); 9880 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9881 if (State.hasScalarValue(this, *State.Instance)) 9882 State.reset(this, Phi, *State.Instance); 9883 else 9884 State.set(this, Phi, *State.Instance); 9885 // NOTE: Currently we need to update the value of the operand, so the next 9886 // predicated iteration inserts its generated value in the correct vector. 9887 State.reset(getOperand(0), Phi, *State.Instance); 9888 } 9889 } 9890 9891 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9892 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9893 9894 // Attempt to issue a wide load. 9895 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9896 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9897 9898 assert((LI || SI) && "Invalid Load/Store instruction"); 9899 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9900 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9901 9902 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9903 9904 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9905 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9906 bool CreateGatherScatter = !Consecutive; 9907 9908 auto &Builder = State.Builder; 9909 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9910 bool isMaskRequired = getMask(); 9911 if (isMaskRequired) 9912 for (unsigned Part = 0; Part < State.UF; ++Part) 9913 BlockInMaskParts[Part] = State.get(getMask(), Part); 9914 9915 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9916 // Calculate the pointer for the specific unroll-part. 9917 GetElementPtrInst *PartPtr = nullptr; 9918 9919 bool InBounds = false; 9920 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9921 InBounds = gep->isInBounds(); 9922 if (Reverse) { 9923 // If the address is consecutive but reversed, then the 9924 // wide store needs to start at the last vector element. 9925 // RunTimeVF = VScale * VF.getKnownMinValue() 9926 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9927 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9928 // NumElt = -Part * RunTimeVF 9929 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9930 // LastLane = 1 - RunTimeVF 9931 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9932 PartPtr = 9933 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9934 PartPtr->setIsInBounds(InBounds); 9935 PartPtr = cast<GetElementPtrInst>( 9936 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9937 PartPtr->setIsInBounds(InBounds); 9938 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9939 BlockInMaskParts[Part] = 9940 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9941 } else { 9942 Value *Increment = 9943 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9944 PartPtr = cast<GetElementPtrInst>( 9945 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9946 PartPtr->setIsInBounds(InBounds); 9947 } 9948 9949 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9950 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9951 }; 9952 9953 // Handle Stores: 9954 if (SI) { 9955 State.ILV->setDebugLocFromInst(SI); 9956 9957 for (unsigned Part = 0; Part < State.UF; ++Part) { 9958 Instruction *NewSI = nullptr; 9959 Value *StoredVal = State.get(StoredValue, Part); 9960 if (CreateGatherScatter) { 9961 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9962 Value *VectorGep = State.get(getAddr(), Part); 9963 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9964 MaskPart); 9965 } else { 9966 if (Reverse) { 9967 // If we store to reverse consecutive memory locations, then we need 9968 // to reverse the order of elements in the stored value. 9969 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9970 // We don't want to update the value in the map as it might be used in 9971 // another expression. So don't call resetVectorValue(StoredVal). 9972 } 9973 auto *VecPtr = 9974 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9975 if (isMaskRequired) 9976 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9977 BlockInMaskParts[Part]); 9978 else 9979 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9980 } 9981 State.ILV->addMetadata(NewSI, SI); 9982 } 9983 return; 9984 } 9985 9986 // Handle loads. 9987 assert(LI && "Must have a load instruction"); 9988 State.ILV->setDebugLocFromInst(LI); 9989 for (unsigned Part = 0; Part < State.UF; ++Part) { 9990 Value *NewLI; 9991 if (CreateGatherScatter) { 9992 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9993 Value *VectorGep = State.get(getAddr(), Part); 9994 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9995 nullptr, "wide.masked.gather"); 9996 State.ILV->addMetadata(NewLI, LI); 9997 } else { 9998 auto *VecPtr = 9999 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10000 if (isMaskRequired) 10001 NewLI = Builder.CreateMaskedLoad( 10002 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10003 PoisonValue::get(DataTy), "wide.masked.load"); 10004 else 10005 NewLI = 10006 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10007 10008 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10009 State.ILV->addMetadata(NewLI, LI); 10010 if (Reverse) 10011 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10012 } 10013 10014 State.set(getVPSingleValue(), NewLI, Part); 10015 } 10016 } 10017 10018 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10019 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10020 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10021 // for predication. 10022 static ScalarEpilogueLowering getScalarEpilogueLowering( 10023 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10024 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10025 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10026 LoopVectorizationLegality &LVL) { 10027 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10028 // don't look at hints or options, and don't request a scalar epilogue. 10029 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10030 // LoopAccessInfo (due to code dependency and not being able to reliably get 10031 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10032 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10033 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10034 // back to the old way and vectorize with versioning when forced. See D81345.) 10035 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10036 PGSOQueryType::IRPass) && 10037 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10038 return CM_ScalarEpilogueNotAllowedOptSize; 10039 10040 // 2) If set, obey the directives 10041 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10042 switch (PreferPredicateOverEpilogue) { 10043 case PreferPredicateTy::ScalarEpilogue: 10044 return CM_ScalarEpilogueAllowed; 10045 case PreferPredicateTy::PredicateElseScalarEpilogue: 10046 return CM_ScalarEpilogueNotNeededUsePredicate; 10047 case PreferPredicateTy::PredicateOrDontVectorize: 10048 return CM_ScalarEpilogueNotAllowedUsePredicate; 10049 }; 10050 } 10051 10052 // 3) If set, obey the hints 10053 switch (Hints.getPredicate()) { 10054 case LoopVectorizeHints::FK_Enabled: 10055 return CM_ScalarEpilogueNotNeededUsePredicate; 10056 case LoopVectorizeHints::FK_Disabled: 10057 return CM_ScalarEpilogueAllowed; 10058 }; 10059 10060 // 4) if the TTI hook indicates this is profitable, request predication. 10061 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10062 LVL.getLAI())) 10063 return CM_ScalarEpilogueNotNeededUsePredicate; 10064 10065 return CM_ScalarEpilogueAllowed; 10066 } 10067 10068 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10069 // If Values have been set for this Def return the one relevant for \p Part. 10070 if (hasVectorValue(Def, Part)) 10071 return Data.PerPartOutput[Def][Part]; 10072 10073 if (!hasScalarValue(Def, {Part, 0})) { 10074 Value *IRV = Def->getLiveInIRValue(); 10075 Value *B = ILV->getBroadcastInstrs(IRV); 10076 set(Def, B, Part); 10077 return B; 10078 } 10079 10080 Value *ScalarValue = get(Def, {Part, 0}); 10081 // If we aren't vectorizing, we can just copy the scalar map values over 10082 // to the vector map. 10083 if (VF.isScalar()) { 10084 set(Def, ScalarValue, Part); 10085 return ScalarValue; 10086 } 10087 10088 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10089 bool IsUniform = RepR && RepR->isUniform(); 10090 10091 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10092 // Check if there is a scalar value for the selected lane. 10093 if (!hasScalarValue(Def, {Part, LastLane})) { 10094 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10095 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10096 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10097 "unexpected recipe found to be invariant"); 10098 IsUniform = true; 10099 LastLane = 0; 10100 } 10101 10102 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10103 // Set the insert point after the last scalarized instruction or after the 10104 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10105 // will directly follow the scalar definitions. 10106 auto OldIP = Builder.saveIP(); 10107 auto NewIP = 10108 isa<PHINode>(LastInst) 10109 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10110 : std::next(BasicBlock::iterator(LastInst)); 10111 Builder.SetInsertPoint(&*NewIP); 10112 10113 // However, if we are vectorizing, we need to construct the vector values. 10114 // If the value is known to be uniform after vectorization, we can just 10115 // broadcast the scalar value corresponding to lane zero for each unroll 10116 // iteration. Otherwise, we construct the vector values using 10117 // insertelement instructions. Since the resulting vectors are stored in 10118 // State, we will only generate the insertelements once. 10119 Value *VectorValue = nullptr; 10120 if (IsUniform) { 10121 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10122 set(Def, VectorValue, Part); 10123 } else { 10124 // Initialize packing with insertelements to start from undef. 10125 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10126 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10127 set(Def, Undef, Part); 10128 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10129 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10130 VectorValue = get(Def, Part); 10131 } 10132 Builder.restoreIP(OldIP); 10133 return VectorValue; 10134 } 10135 10136 // Process the loop in the VPlan-native vectorization path. This path builds 10137 // VPlan upfront in the vectorization pipeline, which allows to apply 10138 // VPlan-to-VPlan transformations from the very beginning without modifying the 10139 // input LLVM IR. 10140 static bool processLoopInVPlanNativePath( 10141 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10142 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10143 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10144 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10145 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10146 LoopVectorizationRequirements &Requirements) { 10147 10148 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10149 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10150 return false; 10151 } 10152 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10153 Function *F = L->getHeader()->getParent(); 10154 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10155 10156 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10157 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10158 10159 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10160 &Hints, IAI); 10161 // Use the planner for outer loop vectorization. 10162 // TODO: CM is not used at this point inside the planner. Turn CM into an 10163 // optional argument if we don't need it in the future. 10164 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10165 Requirements, ORE); 10166 10167 // Get user vectorization factor. 10168 ElementCount UserVF = Hints.getWidth(); 10169 10170 CM.collectElementTypesForWidening(); 10171 10172 // Plan how to best vectorize, return the best VF and its cost. 10173 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10174 10175 // If we are stress testing VPlan builds, do not attempt to generate vector 10176 // code. Masked vector code generation support will follow soon. 10177 // Also, do not attempt to vectorize if no vector code will be produced. 10178 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 10179 return false; 10180 10181 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10182 10183 { 10184 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10185 F->getParent()->getDataLayout()); 10186 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10187 &CM, BFI, PSI, Checks); 10188 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10189 << L->getHeader()->getParent()->getName() << "\"\n"); 10190 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10191 } 10192 10193 // Mark the loop as already vectorized to avoid vectorizing again. 10194 Hints.setAlreadyVectorized(); 10195 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10196 return true; 10197 } 10198 10199 // Emit a remark if there are stores to floats that required a floating point 10200 // extension. If the vectorized loop was generated with floating point there 10201 // will be a performance penalty from the conversion overhead and the change in 10202 // the vector width. 10203 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10204 SmallVector<Instruction *, 4> Worklist; 10205 for (BasicBlock *BB : L->getBlocks()) { 10206 for (Instruction &Inst : *BB) { 10207 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10208 if (S->getValueOperand()->getType()->isFloatTy()) 10209 Worklist.push_back(S); 10210 } 10211 } 10212 } 10213 10214 // Traverse the floating point stores upwards searching, for floating point 10215 // conversions. 10216 SmallPtrSet<const Instruction *, 4> Visited; 10217 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10218 while (!Worklist.empty()) { 10219 auto *I = Worklist.pop_back_val(); 10220 if (!L->contains(I)) 10221 continue; 10222 if (!Visited.insert(I).second) 10223 continue; 10224 10225 // Emit a remark if the floating point store required a floating 10226 // point conversion. 10227 // TODO: More work could be done to identify the root cause such as a 10228 // constant or a function return type and point the user to it. 10229 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10230 ORE->emit([&]() { 10231 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10232 I->getDebugLoc(), L->getHeader()) 10233 << "floating point conversion changes vector width. " 10234 << "Mixed floating point precision requires an up/down " 10235 << "cast that will negatively impact performance."; 10236 }); 10237 10238 for (Use &Op : I->operands()) 10239 if (auto *OpI = dyn_cast<Instruction>(Op)) 10240 Worklist.push_back(OpI); 10241 } 10242 } 10243 10244 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10245 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10246 !EnableLoopInterleaving), 10247 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10248 !EnableLoopVectorization) {} 10249 10250 bool LoopVectorizePass::processLoop(Loop *L) { 10251 assert((EnableVPlanNativePath || L->isInnermost()) && 10252 "VPlan-native path is not enabled. Only process inner loops."); 10253 10254 #ifndef NDEBUG 10255 const std::string DebugLocStr = getDebugLocString(L); 10256 #endif /* NDEBUG */ 10257 10258 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10259 << L->getHeader()->getParent()->getName() << "' from " 10260 << DebugLocStr << "\n"); 10261 10262 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10263 10264 LLVM_DEBUG( 10265 dbgs() << "LV: Loop hints:" 10266 << " force=" 10267 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10268 ? "disabled" 10269 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10270 ? "enabled" 10271 : "?")) 10272 << " width=" << Hints.getWidth() 10273 << " interleave=" << Hints.getInterleave() << "\n"); 10274 10275 // Function containing loop 10276 Function *F = L->getHeader()->getParent(); 10277 10278 // Looking at the diagnostic output is the only way to determine if a loop 10279 // was vectorized (other than looking at the IR or machine code), so it 10280 // is important to generate an optimization remark for each loop. Most of 10281 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10282 // generated as OptimizationRemark and OptimizationRemarkMissed are 10283 // less verbose reporting vectorized loops and unvectorized loops that may 10284 // benefit from vectorization, respectively. 10285 10286 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10287 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10288 return false; 10289 } 10290 10291 PredicatedScalarEvolution PSE(*SE, *L); 10292 10293 // Check if it is legal to vectorize the loop. 10294 LoopVectorizationRequirements Requirements; 10295 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10296 &Requirements, &Hints, DB, AC, BFI, PSI); 10297 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10298 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10299 Hints.emitRemarkWithHints(); 10300 return false; 10301 } 10302 10303 // Check the function attributes and profiles to find out if this function 10304 // should be optimized for size. 10305 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10306 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10307 10308 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10309 // here. They may require CFG and instruction level transformations before 10310 // even evaluating whether vectorization is profitable. Since we cannot modify 10311 // the incoming IR, we need to build VPlan upfront in the vectorization 10312 // pipeline. 10313 if (!L->isInnermost()) 10314 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10315 ORE, BFI, PSI, Hints, Requirements); 10316 10317 assert(L->isInnermost() && "Inner loop expected."); 10318 10319 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10320 // count by optimizing for size, to minimize overheads. 10321 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10322 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10323 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10324 << "This loop is worth vectorizing only if no scalar " 10325 << "iteration overheads are incurred."); 10326 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10327 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10328 else { 10329 LLVM_DEBUG(dbgs() << "\n"); 10330 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10331 } 10332 } 10333 10334 // Check the function attributes to see if implicit floats are allowed. 10335 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10336 // an integer loop and the vector instructions selected are purely integer 10337 // vector instructions? 10338 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10339 reportVectorizationFailure( 10340 "Can't vectorize when the NoImplicitFloat attribute is used", 10341 "loop not vectorized due to NoImplicitFloat attribute", 10342 "NoImplicitFloat", ORE, L); 10343 Hints.emitRemarkWithHints(); 10344 return false; 10345 } 10346 10347 // Check if the target supports potentially unsafe FP vectorization. 10348 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10349 // for the target we're vectorizing for, to make sure none of the 10350 // additional fp-math flags can help. 10351 if (Hints.isPotentiallyUnsafe() && 10352 TTI->isFPVectorizationPotentiallyUnsafe()) { 10353 reportVectorizationFailure( 10354 "Potentially unsafe FP op prevents vectorization", 10355 "loop not vectorized due to unsafe FP support.", 10356 "UnsafeFP", ORE, L); 10357 Hints.emitRemarkWithHints(); 10358 return false; 10359 } 10360 10361 bool AllowOrderedReductions; 10362 // If the flag is set, use that instead and override the TTI behaviour. 10363 if (ForceOrderedReductions.getNumOccurrences() > 0) 10364 AllowOrderedReductions = ForceOrderedReductions; 10365 else 10366 AllowOrderedReductions = TTI->enableOrderedReductions(); 10367 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10368 ORE->emit([&]() { 10369 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10370 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10371 ExactFPMathInst->getDebugLoc(), 10372 ExactFPMathInst->getParent()) 10373 << "loop not vectorized: cannot prove it is safe to reorder " 10374 "floating-point operations"; 10375 }); 10376 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10377 "reorder floating-point operations\n"); 10378 Hints.emitRemarkWithHints(); 10379 return false; 10380 } 10381 10382 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10383 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10384 10385 // If an override option has been passed in for interleaved accesses, use it. 10386 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10387 UseInterleaved = EnableInterleavedMemAccesses; 10388 10389 // Analyze interleaved memory accesses. 10390 if (UseInterleaved) { 10391 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10392 } 10393 10394 // Use the cost model. 10395 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10396 F, &Hints, IAI); 10397 CM.collectValuesToIgnore(); 10398 CM.collectElementTypesForWidening(); 10399 10400 // Use the planner for vectorization. 10401 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10402 Requirements, ORE); 10403 10404 // Get user vectorization factor and interleave count. 10405 ElementCount UserVF = Hints.getWidth(); 10406 unsigned UserIC = Hints.getInterleave(); 10407 10408 // Plan how to best vectorize, return the best VF and its cost. 10409 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10410 10411 VectorizationFactor VF = VectorizationFactor::Disabled(); 10412 unsigned IC = 1; 10413 10414 if (MaybeVF) { 10415 if (LVP.requiresTooManyRuntimeChecks()) { 10416 ORE->emit([&]() { 10417 return OptimizationRemarkAnalysisAliasing( 10418 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10419 L->getHeader()) 10420 << "loop not vectorized: cannot prove it is safe to reorder " 10421 "memory operations"; 10422 }); 10423 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10424 Hints.emitRemarkWithHints(); 10425 return false; 10426 } 10427 VF = *MaybeVF; 10428 // Select the interleave count. 10429 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10430 } 10431 10432 // Identify the diagnostic messages that should be produced. 10433 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10434 bool VectorizeLoop = true, InterleaveLoop = true; 10435 if (VF.Width.isScalar()) { 10436 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10437 VecDiagMsg = std::make_pair( 10438 "VectorizationNotBeneficial", 10439 "the cost-model indicates that vectorization is not beneficial"); 10440 VectorizeLoop = false; 10441 } 10442 10443 if (!MaybeVF && UserIC > 1) { 10444 // Tell the user interleaving was avoided up-front, despite being explicitly 10445 // requested. 10446 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10447 "interleaving should be avoided up front\n"); 10448 IntDiagMsg = std::make_pair( 10449 "InterleavingAvoided", 10450 "Ignoring UserIC, because interleaving was avoided up front"); 10451 InterleaveLoop = false; 10452 } else if (IC == 1 && UserIC <= 1) { 10453 // Tell the user interleaving is not beneficial. 10454 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10455 IntDiagMsg = std::make_pair( 10456 "InterleavingNotBeneficial", 10457 "the cost-model indicates that interleaving is not beneficial"); 10458 InterleaveLoop = false; 10459 if (UserIC == 1) { 10460 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10461 IntDiagMsg.second += 10462 " and is explicitly disabled or interleave count is set to 1"; 10463 } 10464 } else if (IC > 1 && UserIC == 1) { 10465 // Tell the user interleaving is beneficial, but it explicitly disabled. 10466 LLVM_DEBUG( 10467 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10468 IntDiagMsg = std::make_pair( 10469 "InterleavingBeneficialButDisabled", 10470 "the cost-model indicates that interleaving is beneficial " 10471 "but is explicitly disabled or interleave count is set to 1"); 10472 InterleaveLoop = false; 10473 } 10474 10475 // Override IC if user provided an interleave count. 10476 IC = UserIC > 0 ? UserIC : IC; 10477 10478 // Emit diagnostic messages, if any. 10479 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10480 if (!VectorizeLoop && !InterleaveLoop) { 10481 // Do not vectorize or interleaving the loop. 10482 ORE->emit([&]() { 10483 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10484 L->getStartLoc(), L->getHeader()) 10485 << VecDiagMsg.second; 10486 }); 10487 ORE->emit([&]() { 10488 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10489 L->getStartLoc(), L->getHeader()) 10490 << IntDiagMsg.second; 10491 }); 10492 return false; 10493 } else if (!VectorizeLoop && InterleaveLoop) { 10494 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10495 ORE->emit([&]() { 10496 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10497 L->getStartLoc(), L->getHeader()) 10498 << VecDiagMsg.second; 10499 }); 10500 } else if (VectorizeLoop && !InterleaveLoop) { 10501 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10502 << ") in " << DebugLocStr << '\n'); 10503 ORE->emit([&]() { 10504 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10505 L->getStartLoc(), L->getHeader()) 10506 << IntDiagMsg.second; 10507 }); 10508 } else if (VectorizeLoop && InterleaveLoop) { 10509 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10510 << ") in " << DebugLocStr << '\n'); 10511 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10512 } 10513 10514 bool DisableRuntimeUnroll = false; 10515 MDNode *OrigLoopID = L->getLoopID(); 10516 { 10517 // Optimistically generate runtime checks. Drop them if they turn out to not 10518 // be profitable. Limit the scope of Checks, so the cleanup happens 10519 // immediately after vector codegeneration is done. 10520 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10521 F->getParent()->getDataLayout()); 10522 if (!VF.Width.isScalar() || IC > 1) 10523 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC); 10524 10525 using namespace ore; 10526 if (!VectorizeLoop) { 10527 assert(IC > 1 && "interleave count should not be 1 or 0"); 10528 // If we decided that it is not legal to vectorize the loop, then 10529 // interleave it. 10530 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10531 &CM, BFI, PSI, Checks); 10532 10533 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10534 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10535 10536 ORE->emit([&]() { 10537 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10538 L->getHeader()) 10539 << "interleaved loop (interleaved count: " 10540 << NV("InterleaveCount", IC) << ")"; 10541 }); 10542 } else { 10543 // If we decided that it is *legal* to vectorize the loop, then do it. 10544 10545 // Consider vectorizing the epilogue too if it's profitable. 10546 VectorizationFactor EpilogueVF = 10547 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10548 if (EpilogueVF.Width.isVector()) { 10549 10550 // The first pass vectorizes the main loop and creates a scalar epilogue 10551 // to be vectorized by executing the plan (potentially with a different 10552 // factor) again shortly afterwards. 10553 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10554 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10555 EPI, &LVL, &CM, BFI, PSI, Checks); 10556 10557 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10558 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10559 DT); 10560 ++LoopsVectorized; 10561 10562 // Second pass vectorizes the epilogue and adjusts the control flow 10563 // edges from the first pass. 10564 EPI.MainLoopVF = EPI.EpilogueVF; 10565 EPI.MainLoopUF = EPI.EpilogueUF; 10566 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10567 ORE, EPI, &LVL, &CM, BFI, PSI, 10568 Checks); 10569 10570 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10571 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10572 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10573 Header->setName("vec.epilog.vector.body"); 10574 10575 // Ensure that the start values for any VPReductionPHIRecipes are 10576 // updated before vectorising the epilogue loop. 10577 for (VPRecipeBase &R : Header->phis()) { 10578 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10579 if (auto *Resume = MainILV.getReductionResumeValue( 10580 ReductionPhi->getRecurrenceDescriptor())) { 10581 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10582 ReductionPhi->setOperand(0, StartVal); 10583 } 10584 } 10585 } 10586 10587 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10588 DT); 10589 ++LoopsEpilogueVectorized; 10590 10591 if (!MainILV.areSafetyChecksAdded()) 10592 DisableRuntimeUnroll = true; 10593 } else { 10594 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10595 &LVL, &CM, BFI, PSI, Checks); 10596 10597 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10598 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10599 ++LoopsVectorized; 10600 10601 // Add metadata to disable runtime unrolling a scalar loop when there 10602 // are no runtime checks about strides and memory. A scalar loop that is 10603 // rarely used is not worth unrolling. 10604 if (!LB.areSafetyChecksAdded()) 10605 DisableRuntimeUnroll = true; 10606 } 10607 // Report the vectorization decision. 10608 ORE->emit([&]() { 10609 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10610 L->getHeader()) 10611 << "vectorized loop (vectorization width: " 10612 << NV("VectorizationFactor", VF.Width) 10613 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10614 }); 10615 } 10616 10617 if (ORE->allowExtraAnalysis(LV_NAME)) 10618 checkMixedPrecision(L, ORE); 10619 } 10620 10621 Optional<MDNode *> RemainderLoopID = 10622 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10623 LLVMLoopVectorizeFollowupEpilogue}); 10624 if (RemainderLoopID.hasValue()) { 10625 L->setLoopID(RemainderLoopID.getValue()); 10626 } else { 10627 if (DisableRuntimeUnroll) 10628 AddRuntimeUnrollDisableMetaData(L); 10629 10630 // Mark the loop as already vectorized to avoid vectorizing again. 10631 Hints.setAlreadyVectorized(); 10632 } 10633 10634 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10635 return true; 10636 } 10637 10638 LoopVectorizeResult LoopVectorizePass::runImpl( 10639 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10640 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10641 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10642 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10643 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10644 SE = &SE_; 10645 LI = &LI_; 10646 TTI = &TTI_; 10647 DT = &DT_; 10648 BFI = &BFI_; 10649 TLI = TLI_; 10650 AA = &AA_; 10651 AC = &AC_; 10652 GetLAA = &GetLAA_; 10653 DB = &DB_; 10654 ORE = &ORE_; 10655 PSI = PSI_; 10656 10657 // Don't attempt if 10658 // 1. the target claims to have no vector registers, and 10659 // 2. interleaving won't help ILP. 10660 // 10661 // The second condition is necessary because, even if the target has no 10662 // vector registers, loop vectorization may still enable scalar 10663 // interleaving. 10664 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10665 TTI->getMaxInterleaveFactor(1) < 2) 10666 return LoopVectorizeResult(false, false); 10667 10668 bool Changed = false, CFGChanged = false; 10669 10670 // The vectorizer requires loops to be in simplified form. 10671 // Since simplification may add new inner loops, it has to run before the 10672 // legality and profitability checks. This means running the loop vectorizer 10673 // will simplify all loops, regardless of whether anything end up being 10674 // vectorized. 10675 for (auto &L : *LI) 10676 Changed |= CFGChanged |= 10677 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10678 10679 // Build up a worklist of inner-loops to vectorize. This is necessary as 10680 // the act of vectorizing or partially unrolling a loop creates new loops 10681 // and can invalidate iterators across the loops. 10682 SmallVector<Loop *, 8> Worklist; 10683 10684 for (Loop *L : *LI) 10685 collectSupportedLoops(*L, LI, ORE, Worklist); 10686 10687 LoopsAnalyzed += Worklist.size(); 10688 10689 // Now walk the identified inner loops. 10690 while (!Worklist.empty()) { 10691 Loop *L = Worklist.pop_back_val(); 10692 10693 // For the inner loops we actually process, form LCSSA to simplify the 10694 // transform. 10695 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10696 10697 Changed |= CFGChanged |= processLoop(L); 10698 } 10699 10700 // Process each loop nest in the function. 10701 return LoopVectorizeResult(Changed, CFGChanged); 10702 } 10703 10704 PreservedAnalyses LoopVectorizePass::run(Function &F, 10705 FunctionAnalysisManager &AM) { 10706 auto &LI = AM.getResult<LoopAnalysis>(F); 10707 // There are no loops in the function. Return before computing other expensive 10708 // analyses. 10709 if (LI.empty()) 10710 return PreservedAnalyses::all(); 10711 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10712 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10713 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10714 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10715 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10716 auto &AA = AM.getResult<AAManager>(F); 10717 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10718 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10719 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10720 10721 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10722 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10723 [&](Loop &L) -> const LoopAccessInfo & { 10724 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10725 TLI, TTI, nullptr, nullptr, nullptr}; 10726 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10727 }; 10728 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10729 ProfileSummaryInfo *PSI = 10730 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10731 LoopVectorizeResult Result = 10732 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10733 if (!Result.MadeAnyChange) 10734 return PreservedAnalyses::all(); 10735 PreservedAnalyses PA; 10736 10737 // We currently do not preserve loopinfo/dominator analyses with outer loop 10738 // vectorization. Until this is addressed, mark these analyses as preserved 10739 // only for non-VPlan-native path. 10740 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10741 if (!EnableVPlanNativePath) { 10742 PA.preserve<LoopAnalysis>(); 10743 PA.preserve<DominatorTreeAnalysis>(); 10744 } 10745 10746 if (Result.MadeCFGChange) { 10747 // Making CFG changes likely means a loop got vectorized. Indicate that 10748 // extra simplification passes should be run. 10749 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10750 // be run if runtime checks have been added. 10751 AM.getResult<ShouldRunExtraVectorPasses>(F); 10752 PA.preserve<ShouldRunExtraVectorPasses>(); 10753 } else { 10754 PA.preserveSet<CFGAnalyses>(); 10755 } 10756 return PA; 10757 } 10758 10759 void LoopVectorizePass::printPipeline( 10760 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10761 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10762 OS, MapClassName2PassName); 10763 10764 OS << "<"; 10765 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10766 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10767 OS << ">"; 10768 } 10769