1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
200     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks with a "
202              "vectorize(enable) pragma."));
203 
204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
205 // that predication is preferred, and this lists all options. I.e., the
206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
207 // and predicate the instructions accordingly. If tail-folding fails, there are
208 // different fallback strategies depending on these values:
209 namespace PreferPredicateTy {
210   enum Option {
211     ScalarEpilogue = 0,
212     PredicateElseScalarEpilogue,
213     PredicateOrDontVectorize
214   };
215 } // namespace PreferPredicateTy
216 
217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
218     "prefer-predicate-over-epilogue",
219     cl::init(PreferPredicateTy::ScalarEpilogue),
220     cl::Hidden,
221     cl::desc("Tail-folding and predication preferences over creating a scalar "
222              "epilogue loop."),
223     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
224                          "scalar-epilogue",
225                          "Don't tail-predicate loops, create scalar epilogue"),
226               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
227                          "predicate-else-scalar-epilogue",
228                          "prefer tail-folding, create scalar epilogue if tail "
229                          "folding fails."),
230               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
231                          "predicate-dont-vectorize",
232                          "prefers tail-folding, don't attempt vectorization if "
233                          "tail-folding fails.")));
234 
235 static cl::opt<bool> MaximizeBandwidth(
236     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
237     cl::desc("Maximize bandwidth when selecting vectorization factor which "
238              "will be determined by the smallest type in loop."));
239 
240 static cl::opt<bool> EnableInterleavedMemAccesses(
241     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
242     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
243 
244 /// An interleave-group may need masking if it resides in a block that needs
245 /// predication, or in order to mask away gaps.
246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
247     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
248     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
249 
250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
251     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
252     cl::desc("We don't interleave loops with a estimated constant trip count "
253              "below this number"));
254 
255 static cl::opt<unsigned> ForceTargetNumScalarRegs(
256     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
257     cl::desc("A flag that overrides the target's number of scalar registers."));
258 
259 static cl::opt<unsigned> ForceTargetNumVectorRegs(
260     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
261     cl::desc("A flag that overrides the target's number of vector registers."));
262 
263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
264     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
265     cl::desc("A flag that overrides the target's max interleave factor for "
266              "scalar loops."));
267 
268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
269     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
270     cl::desc("A flag that overrides the target's max interleave factor for "
271              "vectorized loops."));
272 
273 static cl::opt<unsigned> ForceTargetInstructionCost(
274     "force-target-instruction-cost", cl::init(0), cl::Hidden,
275     cl::desc("A flag that overrides the target's expected cost for "
276              "an instruction to a single constant value. Mostly "
277              "useful for getting consistent testing."));
278 
279 static cl::opt<bool> ForceTargetSupportsScalableVectors(
280     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
281     cl::desc(
282         "Pretend that scalable vectors are supported, even if the target does "
283         "not support them. This flag should only be used for testing."));
284 
285 static cl::opt<unsigned> SmallLoopCost(
286     "small-loop-cost", cl::init(20), cl::Hidden,
287     cl::desc(
288         "The cost of a loop that is considered 'small' by the interleaver."));
289 
290 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
291     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
292     cl::desc("Enable the use of the block frequency analysis to access PGO "
293              "heuristics minimizing code growth in cold regions and being more "
294              "aggressive in hot regions."));
295 
296 // Runtime interleave loops for load/store throughput.
297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
298     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
299     cl::desc(
300         "Enable runtime interleaving until load/store ports are saturated"));
301 
302 /// Interleave small loops with scalar reductions.
303 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
304     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
305     cl::desc("Enable interleaving for loops with small iteration counts that "
306              "contain scalar reductions to expose ILP."));
307 
308 /// The number of stores in a loop that are allowed to need predication.
309 static cl::opt<unsigned> NumberOfStoresToPredicate(
310     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
311     cl::desc("Max number of stores to be predicated behind an if."));
312 
313 static cl::opt<bool> EnableIndVarRegisterHeur(
314     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
315     cl::desc("Count the induction variable only once when interleaving"));
316 
317 static cl::opt<bool> EnableCondStoresVectorization(
318     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
319     cl::desc("Enable if predication of stores during vectorization."));
320 
321 static cl::opt<unsigned> MaxNestedScalarReductionIC(
322     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
323     cl::desc("The maximum interleave count to use when interleaving a scalar "
324              "reduction in a nested loop."));
325 
326 static cl::opt<bool>
327     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
328                            cl::Hidden,
329                            cl::desc("Prefer in-loop vector reductions, "
330                                     "overriding the targets preference."));
331 
332 static cl::opt<bool> ForceOrderedReductions(
333     "force-ordered-reductions", cl::init(false), cl::Hidden,
334     cl::desc("Enable the vectorisation of loops with in-order (strict) "
335              "FP reductions"));
336 
337 static cl::opt<bool> PreferPredicatedReductionSelect(
338     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
339     cl::desc(
340         "Prefer predicating a reduction operation over an after loop select."));
341 
342 cl::opt<bool> EnableVPlanNativePath(
343     "enable-vplan-native-path", cl::init(false), cl::Hidden,
344     cl::desc("Enable VPlan-native vectorization path with "
345              "support for outer loop vectorization."));
346 
347 // This flag enables the stress testing of the VPlan H-CFG construction in the
348 // VPlan-native vectorization path. It must be used in conjuction with
349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
350 // verification of the H-CFGs built.
351 static cl::opt<bool> VPlanBuildStressTest(
352     "vplan-build-stress-test", cl::init(false), cl::Hidden,
353     cl::desc(
354         "Build VPlan for every supported loop nest in the function and bail "
355         "out right after the build (stress test the VPlan H-CFG construction "
356         "in the VPlan-native vectorization path)."));
357 
358 cl::opt<bool> llvm::EnableLoopInterleaving(
359     "interleave-loops", cl::init(true), cl::Hidden,
360     cl::desc("Enable loop interleaving in Loop vectorization passes"));
361 cl::opt<bool> llvm::EnableLoopVectorization(
362     "vectorize-loops", cl::init(true), cl::Hidden,
363     cl::desc("Run the Loop vectorization passes"));
364 
365 cl::opt<bool> PrintVPlansInDotFormat(
366     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
367     cl::desc("Use dot format instead of plain text when dumping VPlans"));
368 
369 /// A helper function that returns true if the given type is irregular. The
370 /// type is irregular if its allocated size doesn't equal the store size of an
371 /// element of the corresponding vector type.
372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
373   // Determine if an array of N elements of type Ty is "bitcast compatible"
374   // with a <N x Ty> vector.
375   // This is only true if there is no padding between the array elements.
376   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
377 }
378 
379 /// A helper function that returns the reciprocal of the block probability of
380 /// predicated blocks. If we return X, we are assuming the predicated block
381 /// will execute once for every X iterations of the loop header.
382 ///
383 /// TODO: We should use actual block probability here, if available. Currently,
384 ///       we always assume predicated blocks have a 50% chance of executing.
385 static unsigned getReciprocalPredBlockProb() { return 2; }
386 
387 /// A helper function that returns an integer or floating-point constant with
388 /// value C.
389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
390   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
391                            : ConstantFP::get(Ty, C);
392 }
393 
394 /// Returns "best known" trip count for the specified loop \p L as defined by
395 /// the following procedure:
396 ///   1) Returns exact trip count if it is known.
397 ///   2) Returns expected trip count according to profile data if any.
398 ///   3) Returns upper bound estimate if it is known.
399 ///   4) Returns None if all of the above failed.
400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
401   // Check if exact trip count is known.
402   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
403     return ExpectedTC;
404 
405   // Check if there is an expected trip count available from profile data.
406   if (LoopVectorizeWithBlockFrequency)
407     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
408       return EstimatedTC;
409 
410   // Check if upper bound estimate is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
412     return ExpectedTC;
413 
414   return None;
415 }
416 
417 // Forward declare GeneratedRTChecks.
418 class GeneratedRTChecks;
419 
420 namespace llvm {
421 
422 AnalysisKey ShouldRunExtraVectorPasses::Key;
423 
424 /// InnerLoopVectorizer vectorizes loops which contain only one basic
425 /// block to a specified vectorization factor (VF).
426 /// This class performs the widening of scalars into vectors, or multiple
427 /// scalars. This class also implements the following features:
428 /// * It inserts an epilogue loop for handling loops that don't have iteration
429 ///   counts that are known to be a multiple of the vectorization factor.
430 /// * It handles the code generation for reduction variables.
431 /// * Scalarization (implementation using scalars) of un-vectorizable
432 ///   instructions.
433 /// InnerLoopVectorizer does not perform any vectorization-legality
434 /// checks, and relies on the caller to check for the different legality
435 /// aspects. The InnerLoopVectorizer relies on the
436 /// LoopVectorizationLegality class to provide information about the induction
437 /// and reduction variables that were found to a given vectorization factor.
438 class InnerLoopVectorizer {
439 public:
440   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
441                       LoopInfo *LI, DominatorTree *DT,
442                       const TargetLibraryInfo *TLI,
443                       const TargetTransformInfo *TTI, AssumptionCache *AC,
444                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456   }
457 
458   virtual ~InnerLoopVectorizer() = default;
459 
460   /// Create a new empty loop that will contain vectorized instructions later
461   /// on, while the old loop will be used as the scalar remainder. Control flow
462   /// is generated around the vectorized (and scalar epilogue) loops consisting
463   /// of various checks and bypasses. Return the pre-header block of the new
464   /// loop and the start value for the canonical induction, if it is != 0. The
465   /// latter is the case when vectorizing the epilogue loop. In the case of
466   /// epilogue vectorization, this function is overriden to handle the more
467   /// complex control flow around the loops.
468   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
469 
470   /// Widen a single call instruction within the innermost loop.
471   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
472                             VPTransformState &State);
473 
474   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
475   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
476 
477   // Return true if any runtime check is added.
478   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
479 
480   /// A type for vectorized values in the new loop. Each value from the
481   /// original loop, when vectorized, is represented by UF vector values in the
482   /// new unrolled loop, where UF is the unroll factor.
483   using VectorParts = SmallVector<Value *, 2>;
484 
485   /// A helper function to scalarize a single Instruction in the innermost loop.
486   /// Generates a sequence of scalar instances for each lane between \p MinLane
487   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
488   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
489   /// Instr's operands.
490   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
491                             const VPIteration &Instance, bool IfPredicateInstr,
492                             VPTransformState &State);
493 
494   /// Construct the vector value of a scalarized value \p V one lane at a time.
495   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
496                                  VPTransformState &State);
497 
498   /// Try to vectorize interleaved access group \p Group with the base address
499   /// given in \p Addr, optionally masking the vector operations if \p
500   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
501   /// values in the vectorized loop.
502   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
503                                 ArrayRef<VPValue *> VPDefs,
504                                 VPTransformState &State, VPValue *Addr,
505                                 ArrayRef<VPValue *> StoredValues,
506                                 VPValue *BlockInMask = nullptr);
507 
508   /// Set the debug location in the builder \p Ptr using the debug location in
509   /// \p V. If \p Ptr is None then it uses the class member's Builder.
510   void setDebugLocFromInst(const Value *V);
511 
512   /// Fix the non-induction PHIs in \p Plan.
513   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
514 
515   /// Returns true if the reordering of FP operations is not allowed, but we are
516   /// able to vectorize with strict in-order reductions for the given RdxDesc.
517   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
518 
519   /// Create a broadcast instruction. This method generates a broadcast
520   /// instruction (shuffle) for loop invariant values and for the induction
521   /// value. If this is the induction variable then we extend it to N, N+1, ...
522   /// this is needed because each iteration in the loop corresponds to a SIMD
523   /// element.
524   virtual Value *getBroadcastInstrs(Value *V);
525 
526   /// Add metadata from one instruction to another.
527   ///
528   /// This includes both the original MDs from \p From and additional ones (\see
529   /// addNewMetadata).  Use this for *newly created* instructions in the vector
530   /// loop.
531   void addMetadata(Instruction *To, Instruction *From);
532 
533   /// Similar to the previous function but it adds the metadata to a
534   /// vector of instructions.
535   void addMetadata(ArrayRef<Value *> To, Instruction *From);
536 
537   // Returns the resume value (bc.merge.rdx) for a reduction as
538   // generated by fixReduction.
539   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
540 
541 protected:
542   friend class LoopVectorizationPlanner;
543 
544   /// A small list of PHINodes.
545   using PhiVector = SmallVector<PHINode *, 4>;
546 
547   /// A type for scalarized values in the new loop. Each value from the
548   /// original loop, when scalarized, is represented by UF x VF scalar values
549   /// in the new unrolled loop, where UF is the unroll factor and VF is the
550   /// vectorization factor.
551   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
552 
553   /// Set up the values of the IVs correctly when exiting the vector loop.
554   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
555                     Value *VectorTripCount, Value *EndValue,
556                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
557                     VPlan &Plan);
558 
559   /// Handle all cross-iteration phis in the header.
560   void fixCrossIterationPHIs(VPTransformState &State);
561 
562   /// Create the exit value of first order recurrences in the middle block and
563   /// update their users.
564   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
565                                VPTransformState &State);
566 
567   /// Create code for the loop exit value of the reduction.
568   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
569 
570   /// Clear NSW/NUW flags from reduction instructions if necessary.
571   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
572                                VPTransformState &State);
573 
574   /// Iteratively sink the scalarized operands of a predicated instruction into
575   /// the block that was created for it.
576   void sinkScalarOperands(Instruction *PredInst);
577 
578   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
579   /// represented as.
580   void truncateToMinimalBitwidths(VPTransformState &State);
581 
582   /// Returns (and creates if needed) the original loop trip count.
583   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
584 
585   /// Returns (and creates if needed) the trip count of the widened loop.
586   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
587 
588   /// Returns a bitcasted value to the requested vector type.
589   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
590   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
591                                 const DataLayout &DL);
592 
593   /// Emit a bypass check to see if the vector trip count is zero, including if
594   /// it overflows.
595   void emitIterationCountCheck(BasicBlock *Bypass);
596 
597   /// Emit a bypass check to see if all of the SCEV assumptions we've
598   /// had to make are correct. Returns the block containing the checks or
599   /// nullptr if no checks have been added.
600   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
601 
602   /// Emit bypass checks to check any memory assumptions we may have made.
603   /// Returns the block containing the checks or nullptr if no checks have been
604   /// added.
605   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
606 
607   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
608   /// vector loop preheader, middle block and scalar preheader.
609   void createVectorLoopSkeleton(StringRef Prefix);
610 
611   /// Create new phi nodes for the induction variables to resume iteration count
612   /// in the scalar epilogue, from where the vectorized loop left off.
613   /// In cases where the loop skeleton is more complicated (eg. epilogue
614   /// vectorization) and the resume values can come from an additional bypass
615   /// block, the \p AdditionalBypass pair provides information about the bypass
616   /// block and the end value on the edge from bypass to this loop.
617   void createInductionResumeValues(
618       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
619 
620   /// Complete the loop skeleton by adding debug MDs, creating appropriate
621   /// conditional branches in the middle block, preparing the builder and
622   /// running the verifier. Return the preheader of the completed vector loop.
623   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
624 
625   /// Add additional metadata to \p To that was not present on \p Orig.
626   ///
627   /// Currently this is used to add the noalias annotations based on the
628   /// inserted memchecks.  Use this for instructions that are *cloned* into the
629   /// vector loop.
630   void addNewMetadata(Instruction *To, const Instruction *Orig);
631 
632   /// Collect poison-generating recipes that may generate a poison value that is
633   /// used after vectorization, even when their operands are not poison. Those
634   /// recipes meet the following conditions:
635   ///  * Contribute to the address computation of a recipe generating a widen
636   ///    memory load/store (VPWidenMemoryInstructionRecipe or
637   ///    VPInterleaveRecipe).
638   ///  * Such a widen memory load/store has at least one underlying Instruction
639   ///    that is in a basic block that needs predication and after vectorization
640   ///    the generated instruction won't be predicated.
641   void collectPoisonGeneratingRecipes(VPTransformState &State);
642 
643   /// Allow subclasses to override and print debug traces before/after vplan
644   /// execution, when trace information is requested.
645   virtual void printDebugTracesAtStart(){};
646   virtual void printDebugTracesAtEnd(){};
647 
648   /// The original loop.
649   Loop *OrigLoop;
650 
651   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
652   /// dynamic knowledge to simplify SCEV expressions and converts them to a
653   /// more usable form.
654   PredicatedScalarEvolution &PSE;
655 
656   /// Loop Info.
657   LoopInfo *LI;
658 
659   /// Dominator Tree.
660   DominatorTree *DT;
661 
662   /// Alias Analysis.
663   AAResults *AA;
664 
665   /// Target Library Info.
666   const TargetLibraryInfo *TLI;
667 
668   /// Target Transform Info.
669   const TargetTransformInfo *TTI;
670 
671   /// Assumption Cache.
672   AssumptionCache *AC;
673 
674   /// Interface to emit optimization remarks.
675   OptimizationRemarkEmitter *ORE;
676 
677   /// LoopVersioning.  It's only set up (non-null) if memchecks were
678   /// used.
679   ///
680   /// This is currently only used to add no-alias metadata based on the
681   /// memchecks.  The actually versioning is performed manually.
682   std::unique_ptr<LoopVersioning> LVer;
683 
684   /// The vectorization SIMD factor to use. Each vector will have this many
685   /// vector elements.
686   ElementCount VF;
687 
688   /// The vectorization unroll factor to use. Each scalar is vectorized to this
689   /// many different vector instructions.
690   unsigned UF;
691 
692   /// The builder that we use
693   IRBuilder<> Builder;
694 
695   // --- Vectorization state ---
696 
697   /// The vector-loop preheader.
698   BasicBlock *LoopVectorPreHeader;
699 
700   /// The scalar-loop preheader.
701   BasicBlock *LoopScalarPreHeader;
702 
703   /// Middle Block between the vector and the scalar.
704   BasicBlock *LoopMiddleBlock;
705 
706   /// The unique ExitBlock of the scalar loop if one exists.  Note that
707   /// there can be multiple exiting edges reaching this block.
708   BasicBlock *LoopExitBlock;
709 
710   /// The scalar loop body.
711   BasicBlock *LoopScalarBody;
712 
713   /// A list of all bypass blocks. The first block is the entry of the loop.
714   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
715 
716   /// Store instructions that were predicated.
717   SmallVector<Instruction *, 4> PredicatedInstructions;
718 
719   /// Trip count of the original loop.
720   Value *TripCount = nullptr;
721 
722   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
723   Value *VectorTripCount = nullptr;
724 
725   /// The legality analysis.
726   LoopVectorizationLegality *Legal;
727 
728   /// The profitablity analysis.
729   LoopVectorizationCostModel *Cost;
730 
731   // Record whether runtime checks are added.
732   bool AddedSafetyChecks = false;
733 
734   // Holds the end values for each induction variable. We save the end values
735   // so we can later fix-up the external users of the induction variables.
736   DenseMap<PHINode *, Value *> IVEndValues;
737 
738   /// BFI and PSI are used to check for profile guided size optimizations.
739   BlockFrequencyInfo *BFI;
740   ProfileSummaryInfo *PSI;
741 
742   // Whether this loop should be optimized for size based on profile guided size
743   // optimizatios.
744   bool OptForSizeBasedOnProfile;
745 
746   /// Structure to hold information about generated runtime checks, responsible
747   /// for cleaning the checks, if vectorization turns out unprofitable.
748   GeneratedRTChecks &RTChecks;
749 
750   // Holds the resume values for reductions in the loops, used to set the
751   // correct start value of reduction PHIs when vectorizing the epilogue.
752   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
753       ReductionResumeValues;
754 };
755 
756 class InnerLoopUnroller : public InnerLoopVectorizer {
757 public:
758   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
759                     LoopInfo *LI, DominatorTree *DT,
760                     const TargetLibraryInfo *TLI,
761                     const TargetTransformInfo *TTI, AssumptionCache *AC,
762                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
763                     LoopVectorizationLegality *LVL,
764                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
765                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
766       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
767                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
768                             BFI, PSI, Check) {}
769 
770 private:
771   Value *getBroadcastInstrs(Value *V) override;
772 };
773 
774 /// Encapsulate information regarding vectorization of a loop and its epilogue.
775 /// This information is meant to be updated and used across two stages of
776 /// epilogue vectorization.
777 struct EpilogueLoopVectorizationInfo {
778   ElementCount MainLoopVF = ElementCount::getFixed(0);
779   unsigned MainLoopUF = 0;
780   ElementCount EpilogueVF = ElementCount::getFixed(0);
781   unsigned EpilogueUF = 0;
782   BasicBlock *MainLoopIterationCountCheck = nullptr;
783   BasicBlock *EpilogueIterationCountCheck = nullptr;
784   BasicBlock *SCEVSafetyCheck = nullptr;
785   BasicBlock *MemSafetyCheck = nullptr;
786   Value *TripCount = nullptr;
787   Value *VectorTripCount = nullptr;
788 
789   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
790                                 ElementCount EVF, unsigned EUF)
791       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
792     assert(EUF == 1 &&
793            "A high UF for the epilogue loop is likely not beneficial.");
794   }
795 };
796 
797 /// An extension of the inner loop vectorizer that creates a skeleton for a
798 /// vectorized loop that has its epilogue (residual) also vectorized.
799 /// The idea is to run the vplan on a given loop twice, firstly to setup the
800 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
801 /// from the first step and vectorize the epilogue.  This is achieved by
802 /// deriving two concrete strategy classes from this base class and invoking
803 /// them in succession from the loop vectorizer planner.
804 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
805 public:
806   InnerLoopAndEpilogueVectorizer(
807       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
808       DominatorTree *DT, const TargetLibraryInfo *TLI,
809       const TargetTransformInfo *TTI, AssumptionCache *AC,
810       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
811       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
812       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
813       GeneratedRTChecks &Checks)
814       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
815                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
816                             Checks),
817         EPI(EPI) {}
818 
819   // Override this function to handle the more complex control flow around the
820   // three loops.
821   std::pair<BasicBlock *, Value *>
822   createVectorizedLoopSkeleton() final override {
823     return createEpilogueVectorizedLoopSkeleton();
824   }
825 
826   /// The interface for creating a vectorized skeleton using one of two
827   /// different strategies, each corresponding to one execution of the vplan
828   /// as described above.
829   virtual std::pair<BasicBlock *, Value *>
830   createEpilogueVectorizedLoopSkeleton() = 0;
831 
832   /// Holds and updates state information required to vectorize the main loop
833   /// and its epilogue in two separate passes. This setup helps us avoid
834   /// regenerating and recomputing runtime safety checks. It also helps us to
835   /// shorten the iteration-count-check path length for the cases where the
836   /// iteration count of the loop is so small that the main vector loop is
837   /// completely skipped.
838   EpilogueLoopVectorizationInfo &EPI;
839 };
840 
841 /// A specialized derived class of inner loop vectorizer that performs
842 /// vectorization of *main* loops in the process of vectorizing loops and their
843 /// epilogues.
844 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
845 public:
846   EpilogueVectorizerMainLoop(
847       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
848       DominatorTree *DT, const TargetLibraryInfo *TLI,
849       const TargetTransformInfo *TTI, AssumptionCache *AC,
850       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
851       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
852       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
853       GeneratedRTChecks &Check)
854       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
855                                        EPI, LVL, CM, BFI, PSI, Check) {}
856   /// Implements the interface for creating a vectorized skeleton using the
857   /// *main loop* strategy (ie the first pass of vplan execution).
858   std::pair<BasicBlock *, Value *>
859   createEpilogueVectorizedLoopSkeleton() final override;
860 
861 protected:
862   /// Emits an iteration count bypass check once for the main loop (when \p
863   /// ForEpilogue is false) and once for the epilogue loop (when \p
864   /// ForEpilogue is true).
865   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
866   void printDebugTracesAtStart() override;
867   void printDebugTracesAtEnd() override;
868 };
869 
870 // A specialized derived class of inner loop vectorizer that performs
871 // vectorization of *epilogue* loops in the process of vectorizing loops and
872 // their epilogues.
873 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
874 public:
875   EpilogueVectorizerEpilogueLoop(
876       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
877       DominatorTree *DT, const TargetLibraryInfo *TLI,
878       const TargetTransformInfo *TTI, AssumptionCache *AC,
879       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
880       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
881       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
882       GeneratedRTChecks &Checks)
883       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
884                                        EPI, LVL, CM, BFI, PSI, Checks) {
885     TripCount = EPI.TripCount;
886   }
887   /// Implements the interface for creating a vectorized skeleton using the
888   /// *epilogue loop* strategy (ie the second pass of vplan execution).
889   std::pair<BasicBlock *, Value *>
890   createEpilogueVectorizedLoopSkeleton() final override;
891 
892 protected:
893   /// Emits an iteration count bypass check after the main vector loop has
894   /// finished to see if there are any iterations left to execute by either
895   /// the vector epilogue or the scalar epilogue.
896   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
897                                                       BasicBlock *Bypass,
898                                                       BasicBlock *Insert);
899   void printDebugTracesAtStart() override;
900   void printDebugTracesAtEnd() override;
901 };
902 } // end namespace llvm
903 
904 /// Look for a meaningful debug location on the instruction or it's
905 /// operands.
906 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
907   if (!I)
908     return I;
909 
910   DebugLoc Empty;
911   if (I->getDebugLoc() != Empty)
912     return I;
913 
914   for (Use &Op : I->operands()) {
915     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
916       if (OpInst->getDebugLoc() != Empty)
917         return OpInst;
918   }
919 
920   return I;
921 }
922 
923 void InnerLoopVectorizer::setDebugLocFromInst(
924     const Value *V) {
925   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
926     const DILocation *DIL = Inst->getDebugLoc();
927 
928     // When a FSDiscriminator is enabled, we don't need to add the multiply
929     // factors to the discriminators.
930     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
931         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
932       // FIXME: For scalable vectors, assume vscale=1.
933       auto NewDIL =
934           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
935       if (NewDIL)
936         Builder.SetCurrentDebugLocation(*NewDIL);
937       else
938         LLVM_DEBUG(dbgs()
939                    << "Failed to create new discriminator: "
940                    << DIL->getFilename() << " Line: " << DIL->getLine());
941     } else
942       Builder.SetCurrentDebugLocation(DIL);
943   } else
944     Builder.SetCurrentDebugLocation(DebugLoc());
945 }
946 
947 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
948 /// is passed, the message relates to that particular instruction.
949 #ifndef NDEBUG
950 static void debugVectorizationMessage(const StringRef Prefix,
951                                       const StringRef DebugMsg,
952                                       Instruction *I) {
953   dbgs() << "LV: " << Prefix << DebugMsg;
954   if (I != nullptr)
955     dbgs() << " " << *I;
956   else
957     dbgs() << '.';
958   dbgs() << '\n';
959 }
960 #endif
961 
962 /// Create an analysis remark that explains why vectorization failed
963 ///
964 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
965 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
966 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
967 /// the location of the remark.  \return the remark object that can be
968 /// streamed to.
969 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
970     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
971   Value *CodeRegion = TheLoop->getHeader();
972   DebugLoc DL = TheLoop->getStartLoc();
973 
974   if (I) {
975     CodeRegion = I->getParent();
976     // If there is no debug location attached to the instruction, revert back to
977     // using the loop's.
978     if (I->getDebugLoc())
979       DL = I->getDebugLoc();
980   }
981 
982   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
983 }
984 
985 namespace llvm {
986 
987 /// Return a value for Step multiplied by VF.
988 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
989                        int64_t Step) {
990   assert(Ty->isIntegerTy() && "Expected an integer step");
991   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
992   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
993 }
994 
995 /// Return the runtime value for VF.
996 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
997   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
998   return VF.isScalable() ? B.CreateVScale(EC) : EC;
999 }
1000 
1001 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
1002                                   ElementCount VF) {
1003   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1004   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1005   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1006   return B.CreateUIToFP(RuntimeVF, FTy);
1007 }
1008 
1009 void reportVectorizationFailure(const StringRef DebugMsg,
1010                                 const StringRef OREMsg, const StringRef ORETag,
1011                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1012                                 Instruction *I) {
1013   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1014   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1015   ORE->emit(
1016       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1017       << "loop not vectorized: " << OREMsg);
1018 }
1019 
1020 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1021                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1022                              Instruction *I) {
1023   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1024   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1025   ORE->emit(
1026       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1027       << Msg);
1028 }
1029 
1030 } // end namespace llvm
1031 
1032 #ifndef NDEBUG
1033 /// \return string containing a file name and a line # for the given loop.
1034 static std::string getDebugLocString(const Loop *L) {
1035   std::string Result;
1036   if (L) {
1037     raw_string_ostream OS(Result);
1038     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1039       LoopDbgLoc.print(OS);
1040     else
1041       // Just print the module name.
1042       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1043     OS.flush();
1044   }
1045   return Result;
1046 }
1047 #endif
1048 
1049 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1050                                          const Instruction *Orig) {
1051   // If the loop was versioned with memchecks, add the corresponding no-alias
1052   // metadata.
1053   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1054     LVer->annotateInstWithNoAlias(To, Orig);
1055 }
1056 
1057 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1058     VPTransformState &State) {
1059 
1060   // Collect recipes in the backward slice of `Root` that may generate a poison
1061   // value that is used after vectorization.
1062   SmallPtrSet<VPRecipeBase *, 16> Visited;
1063   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1064     SmallVector<VPRecipeBase *, 16> Worklist;
1065     Worklist.push_back(Root);
1066 
1067     // Traverse the backward slice of Root through its use-def chain.
1068     while (!Worklist.empty()) {
1069       VPRecipeBase *CurRec = Worklist.back();
1070       Worklist.pop_back();
1071 
1072       if (!Visited.insert(CurRec).second)
1073         continue;
1074 
1075       // Prune search if we find another recipe generating a widen memory
1076       // instruction. Widen memory instructions involved in address computation
1077       // will lead to gather/scatter instructions, which don't need to be
1078       // handled.
1079       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1080           isa<VPInterleaveRecipe>(CurRec) ||
1081           isa<VPScalarIVStepsRecipe>(CurRec) ||
1082           isa<VPCanonicalIVPHIRecipe>(CurRec))
1083         continue;
1084 
1085       // This recipe contributes to the address computation of a widen
1086       // load/store. Collect recipe if its underlying instruction has
1087       // poison-generating flags.
1088       Instruction *Instr = CurRec->getUnderlyingInstr();
1089       if (Instr && Instr->hasPoisonGeneratingFlags())
1090         State.MayGeneratePoisonRecipes.insert(CurRec);
1091 
1092       // Add new definitions to the worklist.
1093       for (VPValue *operand : CurRec->operands())
1094         if (VPDef *OpDef = operand->getDef())
1095           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1096     }
1097   });
1098 
1099   // Traverse all the recipes in the VPlan and collect the poison-generating
1100   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1101   // VPInterleaveRecipe.
1102   auto Iter = depth_first(
1103       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1104   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1105     for (VPRecipeBase &Recipe : *VPBB) {
1106       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1107         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1108         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1109         if (AddrDef && WidenRec->isConsecutive() &&
1110             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1111           collectPoisonGeneratingInstrsInBackwardSlice(
1112               cast<VPRecipeBase>(AddrDef));
1113       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1114         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1115         if (AddrDef) {
1116           // Check if any member of the interleave group needs predication.
1117           const InterleaveGroup<Instruction> *InterGroup =
1118               InterleaveRec->getInterleaveGroup();
1119           bool NeedPredication = false;
1120           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1121                I < NumMembers; ++I) {
1122             Instruction *Member = InterGroup->getMember(I);
1123             if (Member)
1124               NeedPredication |=
1125                   Legal->blockNeedsPredication(Member->getParent());
1126           }
1127 
1128           if (NeedPredication)
1129             collectPoisonGeneratingInstrsInBackwardSlice(
1130                 cast<VPRecipeBase>(AddrDef));
1131         }
1132       }
1133     }
1134   }
1135 }
1136 
1137 void InnerLoopVectorizer::addMetadata(Instruction *To,
1138                                       Instruction *From) {
1139   propagateMetadata(To, From);
1140   addNewMetadata(To, From);
1141 }
1142 
1143 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1144                                       Instruction *From) {
1145   for (Value *V : To) {
1146     if (Instruction *I = dyn_cast<Instruction>(V))
1147       addMetadata(I, From);
1148   }
1149 }
1150 
1151 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1152     const RecurrenceDescriptor &RdxDesc) {
1153   auto It = ReductionResumeValues.find(&RdxDesc);
1154   assert(It != ReductionResumeValues.end() &&
1155          "Expected to find a resume value for the reduction.");
1156   return It->second;
1157 }
1158 
1159 namespace llvm {
1160 
1161 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1162 // lowered.
1163 enum ScalarEpilogueLowering {
1164 
1165   // The default: allowing scalar epilogues.
1166   CM_ScalarEpilogueAllowed,
1167 
1168   // Vectorization with OptForSize: don't allow epilogues.
1169   CM_ScalarEpilogueNotAllowedOptSize,
1170 
1171   // A special case of vectorisation with OptForSize: loops with a very small
1172   // trip count are considered for vectorization under OptForSize, thereby
1173   // making sure the cost of their loop body is dominant, free of runtime
1174   // guards and scalar iteration overheads.
1175   CM_ScalarEpilogueNotAllowedLowTripLoop,
1176 
1177   // Loop hint predicate indicating an epilogue is undesired.
1178   CM_ScalarEpilogueNotNeededUsePredicate,
1179 
1180   // Directive indicating we must either tail fold or not vectorize
1181   CM_ScalarEpilogueNotAllowedUsePredicate
1182 };
1183 
1184 /// ElementCountComparator creates a total ordering for ElementCount
1185 /// for the purposes of using it in a set structure.
1186 struct ElementCountComparator {
1187   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1188     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1189            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1190   }
1191 };
1192 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1193 
1194 /// LoopVectorizationCostModel - estimates the expected speedups due to
1195 /// vectorization.
1196 /// In many cases vectorization is not profitable. This can happen because of
1197 /// a number of reasons. In this class we mainly attempt to predict the
1198 /// expected speedup/slowdowns due to the supported instruction set. We use the
1199 /// TargetTransformInfo to query the different backends for the cost of
1200 /// different operations.
1201 class LoopVectorizationCostModel {
1202 public:
1203   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1204                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1205                              LoopVectorizationLegality *Legal,
1206                              const TargetTransformInfo &TTI,
1207                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1208                              AssumptionCache *AC,
1209                              OptimizationRemarkEmitter *ORE, const Function *F,
1210                              const LoopVectorizeHints *Hints,
1211                              InterleavedAccessInfo &IAI)
1212       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1213         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1214         Hints(Hints), InterleaveInfo(IAI) {}
1215 
1216   /// \return An upper bound for the vectorization factors (both fixed and
1217   /// scalable). If the factors are 0, vectorization and interleaving should be
1218   /// avoided up front.
1219   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1220 
1221   /// \return True if runtime checks are required for vectorization, and false
1222   /// otherwise.
1223   bool runtimeChecksRequired();
1224 
1225   /// \return The most profitable vectorization factor and the cost of that VF.
1226   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1227   /// then this vectorization factor will be selected if vectorization is
1228   /// possible.
1229   VectorizationFactor
1230   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1231 
1232   VectorizationFactor
1233   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1234                                     const LoopVectorizationPlanner &LVP);
1235 
1236   /// Setup cost-based decisions for user vectorization factor.
1237   /// \return true if the UserVF is a feasible VF to be chosen.
1238   bool selectUserVectorizationFactor(ElementCount UserVF) {
1239     collectUniformsAndScalars(UserVF);
1240     collectInstsToScalarize(UserVF);
1241     return expectedCost(UserVF).first.isValid();
1242   }
1243 
1244   /// \return The size (in bits) of the smallest and widest types in the code
1245   /// that needs to be vectorized. We ignore values that remain scalar such as
1246   /// 64 bit loop indices.
1247   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1248 
1249   /// \return The desired interleave count.
1250   /// If interleave count has been specified by metadata it will be returned.
1251   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1252   /// are the selected vectorization factor and the cost of the selected VF.
1253   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1254 
1255   /// Memory access instruction may be vectorized in more than one way.
1256   /// Form of instruction after vectorization depends on cost.
1257   /// This function takes cost-based decisions for Load/Store instructions
1258   /// and collects them in a map. This decisions map is used for building
1259   /// the lists of loop-uniform and loop-scalar instructions.
1260   /// The calculated cost is saved with widening decision in order to
1261   /// avoid redundant calculations.
1262   void setCostBasedWideningDecision(ElementCount VF);
1263 
1264   /// A struct that represents some properties of the register usage
1265   /// of a loop.
1266   struct RegisterUsage {
1267     /// Holds the number of loop invariant values that are used in the loop.
1268     /// The key is ClassID of target-provided register class.
1269     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1270     /// Holds the maximum number of concurrent live intervals in the loop.
1271     /// The key is ClassID of target-provided register class.
1272     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1273   };
1274 
1275   /// \return Returns information about the register usages of the loop for the
1276   /// given vectorization factors.
1277   SmallVector<RegisterUsage, 8>
1278   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1279 
1280   /// Collect values we want to ignore in the cost model.
1281   void collectValuesToIgnore();
1282 
1283   /// Collect all element types in the loop for which widening is needed.
1284   void collectElementTypesForWidening();
1285 
1286   /// Split reductions into those that happen in the loop, and those that happen
1287   /// outside. In loop reductions are collected into InLoopReductionChains.
1288   void collectInLoopReductions();
1289 
1290   /// Returns true if we should use strict in-order reductions for the given
1291   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1292   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1293   /// of FP operations.
1294   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1295     return !Hints->allowReordering() && RdxDesc.isOrdered();
1296   }
1297 
1298   /// \returns The smallest bitwidth each instruction can be represented with.
1299   /// The vector equivalents of these instructions should be truncated to this
1300   /// type.
1301   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1302     return MinBWs;
1303   }
1304 
1305   /// \returns True if it is more profitable to scalarize instruction \p I for
1306   /// vectorization factor \p VF.
1307   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1308     assert(VF.isVector() &&
1309            "Profitable to scalarize relevant only for VF > 1.");
1310 
1311     // Cost model is not run in the VPlan-native path - return conservative
1312     // result until this changes.
1313     if (EnableVPlanNativePath)
1314       return false;
1315 
1316     auto Scalars = InstsToScalarize.find(VF);
1317     assert(Scalars != InstsToScalarize.end() &&
1318            "VF not yet analyzed for scalarization profitability");
1319     return Scalars->second.find(I) != Scalars->second.end();
1320   }
1321 
1322   /// Returns true if \p I is known to be uniform after vectorization.
1323   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1324     if (VF.isScalar())
1325       return true;
1326 
1327     // Cost model is not run in the VPlan-native path - return conservative
1328     // result until this changes.
1329     if (EnableVPlanNativePath)
1330       return false;
1331 
1332     auto UniformsPerVF = Uniforms.find(VF);
1333     assert(UniformsPerVF != Uniforms.end() &&
1334            "VF not yet analyzed for uniformity");
1335     return UniformsPerVF->second.count(I);
1336   }
1337 
1338   /// Returns true if \p I is known to be scalar after vectorization.
1339   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1340     if (VF.isScalar())
1341       return true;
1342 
1343     // Cost model is not run in the VPlan-native path - return conservative
1344     // result until this changes.
1345     if (EnableVPlanNativePath)
1346       return false;
1347 
1348     auto ScalarsPerVF = Scalars.find(VF);
1349     assert(ScalarsPerVF != Scalars.end() &&
1350            "Scalar values are not calculated for VF");
1351     return ScalarsPerVF->second.count(I);
1352   }
1353 
1354   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1355   /// for vectorization factor \p VF.
1356   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1357     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1358            !isProfitableToScalarize(I, VF) &&
1359            !isScalarAfterVectorization(I, VF);
1360   }
1361 
1362   /// Decision that was taken during cost calculation for memory instruction.
1363   enum InstWidening {
1364     CM_Unknown,
1365     CM_Widen,         // For consecutive accesses with stride +1.
1366     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1367     CM_Interleave,
1368     CM_GatherScatter,
1369     CM_Scalarize
1370   };
1371 
1372   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1373   /// instruction \p I and vector width \p VF.
1374   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1375                            InstructionCost Cost) {
1376     assert(VF.isVector() && "Expected VF >=2");
1377     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1378   }
1379 
1380   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1381   /// interleaving group \p Grp and vector width \p VF.
1382   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1383                            ElementCount VF, InstWidening W,
1384                            InstructionCost Cost) {
1385     assert(VF.isVector() && "Expected VF >=2");
1386     /// Broadcast this decicion to all instructions inside the group.
1387     /// But the cost will be assigned to one instruction only.
1388     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1389       if (auto *I = Grp->getMember(i)) {
1390         if (Grp->getInsertPos() == I)
1391           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1392         else
1393           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1394       }
1395     }
1396   }
1397 
1398   /// Return the cost model decision for the given instruction \p I and vector
1399   /// width \p VF. Return CM_Unknown if this instruction did not pass
1400   /// through the cost modeling.
1401   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1402     assert(VF.isVector() && "Expected VF to be a vector VF");
1403     // Cost model is not run in the VPlan-native path - return conservative
1404     // result until this changes.
1405     if (EnableVPlanNativePath)
1406       return CM_GatherScatter;
1407 
1408     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1409     auto Itr = WideningDecisions.find(InstOnVF);
1410     if (Itr == WideningDecisions.end())
1411       return CM_Unknown;
1412     return Itr->second.first;
1413   }
1414 
1415   /// Return the vectorization cost for the given instruction \p I and vector
1416   /// width \p VF.
1417   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1418     assert(VF.isVector() && "Expected VF >=2");
1419     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1420     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1421            "The cost is not calculated");
1422     return WideningDecisions[InstOnVF].second;
1423   }
1424 
1425   /// Return True if instruction \p I is an optimizable truncate whose operand
1426   /// is an induction variable. Such a truncate will be removed by adding a new
1427   /// induction variable with the destination type.
1428   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1429     // If the instruction is not a truncate, return false.
1430     auto *Trunc = dyn_cast<TruncInst>(I);
1431     if (!Trunc)
1432       return false;
1433 
1434     // Get the source and destination types of the truncate.
1435     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1436     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1437 
1438     // If the truncate is free for the given types, return false. Replacing a
1439     // free truncate with an induction variable would add an induction variable
1440     // update instruction to each iteration of the loop. We exclude from this
1441     // check the primary induction variable since it will need an update
1442     // instruction regardless.
1443     Value *Op = Trunc->getOperand(0);
1444     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1445       return false;
1446 
1447     // If the truncated value is not an induction variable, return false.
1448     return Legal->isInductionPhi(Op);
1449   }
1450 
1451   /// Collects the instructions to scalarize for each predicated instruction in
1452   /// the loop.
1453   void collectInstsToScalarize(ElementCount VF);
1454 
1455   /// Collect Uniform and Scalar values for the given \p VF.
1456   /// The sets depend on CM decision for Load/Store instructions
1457   /// that may be vectorized as interleave, gather-scatter or scalarized.
1458   void collectUniformsAndScalars(ElementCount VF) {
1459     // Do the analysis once.
1460     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1461       return;
1462     setCostBasedWideningDecision(VF);
1463     collectLoopUniforms(VF);
1464     collectLoopScalars(VF);
1465   }
1466 
1467   /// Returns true if the target machine supports masked store operation
1468   /// for the given \p DataType and kind of access to \p Ptr.
1469   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1470     return Legal->isConsecutivePtr(DataType, Ptr) &&
1471            TTI.isLegalMaskedStore(DataType, Alignment);
1472   }
1473 
1474   /// Returns true if the target machine supports masked load operation
1475   /// for the given \p DataType and kind of access to \p Ptr.
1476   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1477     return Legal->isConsecutivePtr(DataType, Ptr) &&
1478            TTI.isLegalMaskedLoad(DataType, Alignment);
1479   }
1480 
1481   /// Returns true if the target machine can represent \p V as a masked gather
1482   /// or scatter operation.
1483   bool isLegalGatherOrScatter(Value *V,
1484                               ElementCount VF = ElementCount::getFixed(1)) {
1485     bool LI = isa<LoadInst>(V);
1486     bool SI = isa<StoreInst>(V);
1487     if (!LI && !SI)
1488       return false;
1489     auto *Ty = getLoadStoreType(V);
1490     Align Align = getLoadStoreAlignment(V);
1491     if (VF.isVector())
1492       Ty = VectorType::get(Ty, VF);
1493     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1494            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1495   }
1496 
1497   /// Returns true if the target machine supports all of the reduction
1498   /// variables found for the given VF.
1499   bool canVectorizeReductions(ElementCount VF) const {
1500     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1501       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1502       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1503     }));
1504   }
1505 
1506   /// Returns true if \p I is an instruction that will be scalarized with
1507   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1508   /// instructions include conditional stores and instructions that may divide
1509   /// by zero.
1510   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1511 
1512   // Returns true if \p I is an instruction that will be predicated either
1513   // through scalar predication or masked load/store or masked gather/scatter.
1514   // \p VF is the vectorization factor that will be used to vectorize \p I.
1515   // Superset of instructions that return true for isScalarWithPredication.
1516   bool isPredicatedInst(Instruction *I, ElementCount VF,
1517                         bool IsKnownUniform = false) {
1518     // When we know the load is uniform and the original scalar loop was not
1519     // predicated we don't need to mark it as a predicated instruction. Any
1520     // vectorised blocks created when tail-folding are something artificial we
1521     // have introduced and we know there is always at least one active lane.
1522     // That's why we call Legal->blockNeedsPredication here because it doesn't
1523     // query tail-folding.
1524     if (IsKnownUniform && isa<LoadInst>(I) &&
1525         !Legal->blockNeedsPredication(I->getParent()))
1526       return false;
1527     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1528       return false;
1529     // Loads and stores that need some form of masked operation are predicated
1530     // instructions.
1531     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1532       return Legal->isMaskRequired(I);
1533     return isScalarWithPredication(I, VF);
1534   }
1535 
1536   /// Returns true if \p I is a memory instruction with consecutive memory
1537   /// access that can be widened.
1538   bool
1539   memoryInstructionCanBeWidened(Instruction *I,
1540                                 ElementCount VF = ElementCount::getFixed(1));
1541 
1542   /// Returns true if \p I is a memory instruction in an interleaved-group
1543   /// of memory accesses that can be vectorized with wide vector loads/stores
1544   /// and shuffles.
1545   bool
1546   interleavedAccessCanBeWidened(Instruction *I,
1547                                 ElementCount VF = ElementCount::getFixed(1));
1548 
1549   /// Check if \p Instr belongs to any interleaved access group.
1550   bool isAccessInterleaved(Instruction *Instr) {
1551     return InterleaveInfo.isInterleaved(Instr);
1552   }
1553 
1554   /// Get the interleaved access group that \p Instr belongs to.
1555   const InterleaveGroup<Instruction> *
1556   getInterleavedAccessGroup(Instruction *Instr) {
1557     return InterleaveInfo.getInterleaveGroup(Instr);
1558   }
1559 
1560   /// Returns true if we're required to use a scalar epilogue for at least
1561   /// the final iteration of the original loop.
1562   bool requiresScalarEpilogue(ElementCount VF) const {
1563     if (!isScalarEpilogueAllowed())
1564       return false;
1565     // If we might exit from anywhere but the latch, must run the exiting
1566     // iteration in scalar form.
1567     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1568       return true;
1569     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1570   }
1571 
1572   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1573   /// loop hint annotation.
1574   bool isScalarEpilogueAllowed() const {
1575     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1576   }
1577 
1578   /// Returns true if all loop blocks should be masked to fold tail loop.
1579   bool foldTailByMasking() const { return FoldTailByMasking; }
1580 
1581   /// Returns true if the instructions in this block requires predication
1582   /// for any reason, e.g. because tail folding now requires a predicate
1583   /// or because the block in the original loop was predicated.
1584   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1585     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1586   }
1587 
1588   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1589   /// nodes to the chain of instructions representing the reductions. Uses a
1590   /// MapVector to ensure deterministic iteration order.
1591   using ReductionChainMap =
1592       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1593 
1594   /// Return the chain of instructions representing an inloop reduction.
1595   const ReductionChainMap &getInLoopReductionChains() const {
1596     return InLoopReductionChains;
1597   }
1598 
1599   /// Returns true if the Phi is part of an inloop reduction.
1600   bool isInLoopReduction(PHINode *Phi) const {
1601     return InLoopReductionChains.count(Phi);
1602   }
1603 
1604   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1605   /// with factor VF.  Return the cost of the instruction, including
1606   /// scalarization overhead if it's needed.
1607   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1608 
1609   /// Estimate cost of a call instruction CI if it were vectorized with factor
1610   /// VF. Return the cost of the instruction, including scalarization overhead
1611   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1612   /// scalarized -
1613   /// i.e. either vector version isn't available, or is too expensive.
1614   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1615                                     bool &NeedToScalarize) const;
1616 
1617   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1618   /// that of B.
1619   bool isMoreProfitable(const VectorizationFactor &A,
1620                         const VectorizationFactor &B) const;
1621 
1622   /// Invalidates decisions already taken by the cost model.
1623   void invalidateCostModelingDecisions() {
1624     WideningDecisions.clear();
1625     Uniforms.clear();
1626     Scalars.clear();
1627   }
1628 
1629 private:
1630   unsigned NumPredStores = 0;
1631 
1632   /// Convenience function that returns the value of vscale_range iff
1633   /// vscale_range.min == vscale_range.max or otherwise returns the value
1634   /// returned by the corresponding TLI method.
1635   Optional<unsigned> getVScaleForTuning() const;
1636 
1637   /// \return An upper bound for the vectorization factors for both
1638   /// fixed and scalable vectorization, where the minimum-known number of
1639   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1640   /// disabled or unsupported, then the scalable part will be equal to
1641   /// ElementCount::getScalable(0).
1642   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1643                                            ElementCount UserVF,
1644                                            bool FoldTailByMasking);
1645 
1646   /// \return the maximized element count based on the targets vector
1647   /// registers and the loop trip-count, but limited to a maximum safe VF.
1648   /// This is a helper function of computeFeasibleMaxVF.
1649   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1650                                        unsigned SmallestType,
1651                                        unsigned WidestType,
1652                                        ElementCount MaxSafeVF,
1653                                        bool FoldTailByMasking);
1654 
1655   /// \return the maximum legal scalable VF, based on the safe max number
1656   /// of elements.
1657   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1658 
1659   /// The vectorization cost is a combination of the cost itself and a boolean
1660   /// indicating whether any of the contributing operations will actually
1661   /// operate on vector values after type legalization in the backend. If this
1662   /// latter value is false, then all operations will be scalarized (i.e. no
1663   /// vectorization has actually taken place).
1664   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1665 
1666   /// Returns the expected execution cost. The unit of the cost does
1667   /// not matter because we use the 'cost' units to compare different
1668   /// vector widths. The cost that is returned is *not* normalized by
1669   /// the factor width. If \p Invalid is not nullptr, this function
1670   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1671   /// each instruction that has an Invalid cost for the given VF.
1672   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1673   VectorizationCostTy
1674   expectedCost(ElementCount VF,
1675                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1676 
1677   /// Returns the execution time cost of an instruction for a given vector
1678   /// width. Vector width of one means scalar.
1679   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1680 
1681   /// The cost-computation logic from getInstructionCost which provides
1682   /// the vector type as an output parameter.
1683   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1684                                      Type *&VectorTy);
1685 
1686   /// Return the cost of instructions in an inloop reduction pattern, if I is
1687   /// part of that pattern.
1688   Optional<InstructionCost>
1689   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1690                           TTI::TargetCostKind CostKind);
1691 
1692   /// Calculate vectorization cost of memory instruction \p I.
1693   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1694 
1695   /// The cost computation for scalarized memory instruction.
1696   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1697 
1698   /// The cost computation for interleaving group of memory instructions.
1699   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1700 
1701   /// The cost computation for Gather/Scatter instruction.
1702   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1703 
1704   /// The cost computation for widening instruction \p I with consecutive
1705   /// memory access.
1706   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1709   /// Load: scalar load + broadcast.
1710   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1711   /// element)
1712   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1713 
1714   /// Estimate the overhead of scalarizing an instruction. This is a
1715   /// convenience wrapper for the type-based getScalarizationOverhead API.
1716   InstructionCost getScalarizationOverhead(Instruction *I,
1717                                            ElementCount VF) const;
1718 
1719   /// Returns whether the instruction is a load or store and will be a emitted
1720   /// as a vector operation.
1721   bool isConsecutiveLoadOrStore(Instruction *I);
1722 
1723   /// Returns true if an artificially high cost for emulated masked memrefs
1724   /// should be used.
1725   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1726 
1727   /// Map of scalar integer values to the smallest bitwidth they can be legally
1728   /// represented as. The vector equivalents of these values should be truncated
1729   /// to this type.
1730   MapVector<Instruction *, uint64_t> MinBWs;
1731 
1732   /// A type representing the costs for instructions if they were to be
1733   /// scalarized rather than vectorized. The entries are Instruction-Cost
1734   /// pairs.
1735   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1736 
1737   /// A set containing all BasicBlocks that are known to present after
1738   /// vectorization as a predicated block.
1739   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1740 
1741   /// Records whether it is allowed to have the original scalar loop execute at
1742   /// least once. This may be needed as a fallback loop in case runtime
1743   /// aliasing/dependence checks fail, or to handle the tail/remainder
1744   /// iterations when the trip count is unknown or doesn't divide by the VF,
1745   /// or as a peel-loop to handle gaps in interleave-groups.
1746   /// Under optsize and when the trip count is very small we don't allow any
1747   /// iterations to execute in the scalar loop.
1748   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1749 
1750   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1751   bool FoldTailByMasking = false;
1752 
1753   /// A map holding scalar costs for different vectorization factors. The
1754   /// presence of a cost for an instruction in the mapping indicates that the
1755   /// instruction will be scalarized when vectorizing with the associated
1756   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1757   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1758 
1759   /// Holds the instructions known to be uniform after vectorization.
1760   /// The data is collected per VF.
1761   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1762 
1763   /// Holds the instructions known to be scalar after vectorization.
1764   /// The data is collected per VF.
1765   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1766 
1767   /// Holds the instructions (address computations) that are forced to be
1768   /// scalarized.
1769   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1770 
1771   /// PHINodes of the reductions that should be expanded in-loop along with
1772   /// their associated chains of reduction operations, in program order from top
1773   /// (PHI) to bottom
1774   ReductionChainMap InLoopReductionChains;
1775 
1776   /// A Map of inloop reduction operations and their immediate chain operand.
1777   /// FIXME: This can be removed once reductions can be costed correctly in
1778   /// vplan. This was added to allow quick lookup to the inloop operations,
1779   /// without having to loop through InLoopReductionChains.
1780   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1781 
1782   /// Returns the expected difference in cost from scalarizing the expression
1783   /// feeding a predicated instruction \p PredInst. The instructions to
1784   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1785   /// non-negative return value implies the expression will be scalarized.
1786   /// Currently, only single-use chains are considered for scalarization.
1787   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1788                               ElementCount VF);
1789 
1790   /// Collect the instructions that are uniform after vectorization. An
1791   /// instruction is uniform if we represent it with a single scalar value in
1792   /// the vectorized loop corresponding to each vector iteration. Examples of
1793   /// uniform instructions include pointer operands of consecutive or
1794   /// interleaved memory accesses. Note that although uniformity implies an
1795   /// instruction will be scalar, the reverse is not true. In general, a
1796   /// scalarized instruction will be represented by VF scalar values in the
1797   /// vectorized loop, each corresponding to an iteration of the original
1798   /// scalar loop.
1799   void collectLoopUniforms(ElementCount VF);
1800 
1801   /// Collect the instructions that are scalar after vectorization. An
1802   /// instruction is scalar if it is known to be uniform or will be scalarized
1803   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1804   /// to the list if they are used by a load/store instruction that is marked as
1805   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1806   /// VF values in the vectorized loop, each corresponding to an iteration of
1807   /// the original scalar loop.
1808   void collectLoopScalars(ElementCount VF);
1809 
1810   /// Keeps cost model vectorization decision and cost for instructions.
1811   /// Right now it is used for memory instructions only.
1812   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1813                                 std::pair<InstWidening, InstructionCost>>;
1814 
1815   DecisionList WideningDecisions;
1816 
1817   /// Returns true if \p V is expected to be vectorized and it needs to be
1818   /// extracted.
1819   bool needsExtract(Value *V, ElementCount VF) const {
1820     Instruction *I = dyn_cast<Instruction>(V);
1821     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1822         TheLoop->isLoopInvariant(I))
1823       return false;
1824 
1825     // Assume we can vectorize V (and hence we need extraction) if the
1826     // scalars are not computed yet. This can happen, because it is called
1827     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1828     // the scalars are collected. That should be a safe assumption in most
1829     // cases, because we check if the operands have vectorizable types
1830     // beforehand in LoopVectorizationLegality.
1831     return Scalars.find(VF) == Scalars.end() ||
1832            !isScalarAfterVectorization(I, VF);
1833   };
1834 
1835   /// Returns a range containing only operands needing to be extracted.
1836   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1837                                                    ElementCount VF) const {
1838     return SmallVector<Value *, 4>(make_filter_range(
1839         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1840   }
1841 
1842   /// Determines if we have the infrastructure to vectorize loop \p L and its
1843   /// epilogue, assuming the main loop is vectorized by \p VF.
1844   bool isCandidateForEpilogueVectorization(const Loop &L,
1845                                            const ElementCount VF) const;
1846 
1847   /// Returns true if epilogue vectorization is considered profitable, and
1848   /// false otherwise.
1849   /// \p VF is the vectorization factor chosen for the original loop.
1850   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1851 
1852 public:
1853   /// The loop that we evaluate.
1854   Loop *TheLoop;
1855 
1856   /// Predicated scalar evolution analysis.
1857   PredicatedScalarEvolution &PSE;
1858 
1859   /// Loop Info analysis.
1860   LoopInfo *LI;
1861 
1862   /// Vectorization legality.
1863   LoopVectorizationLegality *Legal;
1864 
1865   /// Vector target information.
1866   const TargetTransformInfo &TTI;
1867 
1868   /// Target Library Info.
1869   const TargetLibraryInfo *TLI;
1870 
1871   /// Demanded bits analysis.
1872   DemandedBits *DB;
1873 
1874   /// Assumption cache.
1875   AssumptionCache *AC;
1876 
1877   /// Interface to emit optimization remarks.
1878   OptimizationRemarkEmitter *ORE;
1879 
1880   const Function *TheFunction;
1881 
1882   /// Loop Vectorize Hint.
1883   const LoopVectorizeHints *Hints;
1884 
1885   /// The interleave access information contains groups of interleaved accesses
1886   /// with the same stride and close to each other.
1887   InterleavedAccessInfo &InterleaveInfo;
1888 
1889   /// Values to ignore in the cost model.
1890   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1891 
1892   /// Values to ignore in the cost model when VF > 1.
1893   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1894 
1895   /// All element types found in the loop.
1896   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1897 
1898   /// Profitable vector factors.
1899   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1900 };
1901 } // end namespace llvm
1902 
1903 /// Helper struct to manage generating runtime checks for vectorization.
1904 ///
1905 /// The runtime checks are created up-front in temporary blocks to allow better
1906 /// estimating the cost and un-linked from the existing IR. After deciding to
1907 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1908 /// temporary blocks are completely removed.
1909 class GeneratedRTChecks {
1910   /// Basic block which contains the generated SCEV checks, if any.
1911   BasicBlock *SCEVCheckBlock = nullptr;
1912 
1913   /// The value representing the result of the generated SCEV checks. If it is
1914   /// nullptr, either no SCEV checks have been generated or they have been used.
1915   Value *SCEVCheckCond = nullptr;
1916 
1917   /// Basic block which contains the generated memory runtime checks, if any.
1918   BasicBlock *MemCheckBlock = nullptr;
1919 
1920   /// The value representing the result of the generated memory runtime checks.
1921   /// If it is nullptr, either no memory runtime checks have been generated or
1922   /// they have been used.
1923   Value *MemRuntimeCheckCond = nullptr;
1924 
1925   DominatorTree *DT;
1926   LoopInfo *LI;
1927 
1928   SCEVExpander SCEVExp;
1929   SCEVExpander MemCheckExp;
1930 
1931 public:
1932   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1933                     const DataLayout &DL)
1934       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1935         MemCheckExp(SE, DL, "scev.check") {}
1936 
1937   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1938   /// accurately estimate the cost of the runtime checks. The blocks are
1939   /// un-linked from the IR and is added back during vector code generation. If
1940   /// there is no vector code generation, the check blocks are removed
1941   /// completely.
1942   void Create(Loop *L, const LoopAccessInfo &LAI,
1943               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1944 
1945     BasicBlock *LoopHeader = L->getHeader();
1946     BasicBlock *Preheader = L->getLoopPreheader();
1947 
1948     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1949     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1950     // may be used by SCEVExpander. The blocks will be un-linked from their
1951     // predecessors and removed from LI & DT at the end of the function.
1952     if (!UnionPred.isAlwaysTrue()) {
1953       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1954                                   nullptr, "vector.scevcheck");
1955 
1956       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1957           &UnionPred, SCEVCheckBlock->getTerminator());
1958     }
1959 
1960     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1961     if (RtPtrChecking.Need) {
1962       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1963       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1964                                  "vector.memcheck");
1965 
1966       auto DiffChecks = RtPtrChecking.getDiffChecks();
1967       if (DiffChecks) {
1968         MemRuntimeCheckCond = addDiffRuntimeChecks(
1969             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1970             [VF](IRBuilderBase &B, unsigned Bits) {
1971               return getRuntimeVF(B, B.getIntNTy(Bits), VF);
1972             },
1973             IC);
1974       } else {
1975         MemRuntimeCheckCond =
1976             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1977                              RtPtrChecking.getChecks(), MemCheckExp);
1978       }
1979       assert(MemRuntimeCheckCond &&
1980              "no RT checks generated although RtPtrChecking "
1981              "claimed checks are required");
1982     }
1983 
1984     if (!MemCheckBlock && !SCEVCheckBlock)
1985       return;
1986 
1987     // Unhook the temporary block with the checks, update various places
1988     // accordingly.
1989     if (SCEVCheckBlock)
1990       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1991     if (MemCheckBlock)
1992       MemCheckBlock->replaceAllUsesWith(Preheader);
1993 
1994     if (SCEVCheckBlock) {
1995       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999     if (MemCheckBlock) {
2000       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2001       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2002       Preheader->getTerminator()->eraseFromParent();
2003     }
2004 
2005     DT->changeImmediateDominator(LoopHeader, Preheader);
2006     if (MemCheckBlock) {
2007       DT->eraseNode(MemCheckBlock);
2008       LI->removeBlock(MemCheckBlock);
2009     }
2010     if (SCEVCheckBlock) {
2011       DT->eraseNode(SCEVCheckBlock);
2012       LI->removeBlock(SCEVCheckBlock);
2013     }
2014   }
2015 
2016   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2017   /// unused.
2018   ~GeneratedRTChecks() {
2019     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2020     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2021     if (!SCEVCheckCond)
2022       SCEVCleaner.markResultUsed();
2023 
2024     if (!MemRuntimeCheckCond)
2025       MemCheckCleaner.markResultUsed();
2026 
2027     if (MemRuntimeCheckCond) {
2028       auto &SE = *MemCheckExp.getSE();
2029       // Memory runtime check generation creates compares that use expanded
2030       // values. Remove them before running the SCEVExpanderCleaners.
2031       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2032         if (MemCheckExp.isInsertedInstruction(&I))
2033           continue;
2034         SE.forgetValue(&I);
2035         I.eraseFromParent();
2036       }
2037     }
2038     MemCheckCleaner.cleanup();
2039     SCEVCleaner.cleanup();
2040 
2041     if (SCEVCheckCond)
2042       SCEVCheckBlock->eraseFromParent();
2043     if (MemRuntimeCheckCond)
2044       MemCheckBlock->eraseFromParent();
2045   }
2046 
2047   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2048   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2049   /// depending on the generated condition.
2050   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2051                              BasicBlock *LoopVectorPreHeader,
2052                              BasicBlock *LoopExitBlock) {
2053     if (!SCEVCheckCond)
2054       return nullptr;
2055 
2056     Value *Cond = SCEVCheckCond;
2057     // Mark the check as used, to prevent it from being removed during cleanup.
2058     SCEVCheckCond = nullptr;
2059     if (auto *C = dyn_cast<ConstantInt>(Cond))
2060       if (C->isZero())
2061         return nullptr;
2062 
2063     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2064 
2065     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2066     // Create new preheader for vector loop.
2067     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2068       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2069 
2070     SCEVCheckBlock->getTerminator()->eraseFromParent();
2071     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2072     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2073                                                 SCEVCheckBlock);
2074 
2075     DT->addNewBlock(SCEVCheckBlock, Pred);
2076     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2077 
2078     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2079                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2080     return SCEVCheckBlock;
2081   }
2082 
2083   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2084   /// the branches to branch to the vector preheader or \p Bypass, depending on
2085   /// the generated condition.
2086   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2087                                    BasicBlock *LoopVectorPreHeader) {
2088     // Check if we generated code that checks in runtime if arrays overlap.
2089     if (!MemRuntimeCheckCond)
2090       return nullptr;
2091 
2092     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2093     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2094                                                 MemCheckBlock);
2095 
2096     DT->addNewBlock(MemCheckBlock, Pred);
2097     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2098     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2099 
2100     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2101       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2102 
2103     ReplaceInstWithInst(
2104         MemCheckBlock->getTerminator(),
2105         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2106     MemCheckBlock->getTerminator()->setDebugLoc(
2107         Pred->getTerminator()->getDebugLoc());
2108 
2109     // Mark the check as used, to prevent it from being removed during cleanup.
2110     MemRuntimeCheckCond = nullptr;
2111     return MemCheckBlock;
2112   }
2113 };
2114 
2115 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2116 // vectorization. The loop needs to be annotated with #pragma omp simd
2117 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2118 // vector length information is not provided, vectorization is not considered
2119 // explicit. Interleave hints are not allowed either. These limitations will be
2120 // relaxed in the future.
2121 // Please, note that we are currently forced to abuse the pragma 'clang
2122 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2123 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2124 // provides *explicit vectorization hints* (LV can bypass legal checks and
2125 // assume that vectorization is legal). However, both hints are implemented
2126 // using the same metadata (llvm.loop.vectorize, processed by
2127 // LoopVectorizeHints). This will be fixed in the future when the native IR
2128 // representation for pragma 'omp simd' is introduced.
2129 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2130                                    OptimizationRemarkEmitter *ORE) {
2131   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2132   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2133 
2134   // Only outer loops with an explicit vectorization hint are supported.
2135   // Unannotated outer loops are ignored.
2136   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2137     return false;
2138 
2139   Function *Fn = OuterLp->getHeader()->getParent();
2140   if (!Hints.allowVectorization(Fn, OuterLp,
2141                                 true /*VectorizeOnlyWhenForced*/)) {
2142     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2143     return false;
2144   }
2145 
2146   if (Hints.getInterleave() > 1) {
2147     // TODO: Interleave support is future work.
2148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2149                          "outer loops.\n");
2150     Hints.emitRemarkWithHints();
2151     return false;
2152   }
2153 
2154   return true;
2155 }
2156 
2157 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2158                                   OptimizationRemarkEmitter *ORE,
2159                                   SmallVectorImpl<Loop *> &V) {
2160   // Collect inner loops and outer loops without irreducible control flow. For
2161   // now, only collect outer loops that have explicit vectorization hints. If we
2162   // are stress testing the VPlan H-CFG construction, we collect the outermost
2163   // loop of every loop nest.
2164   if (L.isInnermost() || VPlanBuildStressTest ||
2165       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2166     LoopBlocksRPO RPOT(&L);
2167     RPOT.perform(LI);
2168     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2169       V.push_back(&L);
2170       // TODO: Collect inner loops inside marked outer loops in case
2171       // vectorization fails for the outer loop. Do not invoke
2172       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2173       // already known to be reducible. We can use an inherited attribute for
2174       // that.
2175       return;
2176     }
2177   }
2178   for (Loop *InnerL : L)
2179     collectSupportedLoops(*InnerL, LI, ORE, V);
2180 }
2181 
2182 namespace {
2183 
2184 /// The LoopVectorize Pass.
2185 struct LoopVectorize : public FunctionPass {
2186   /// Pass identification, replacement for typeid
2187   static char ID;
2188 
2189   LoopVectorizePass Impl;
2190 
2191   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2192                          bool VectorizeOnlyWhenForced = false)
2193       : FunctionPass(ID),
2194         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2195     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2196   }
2197 
2198   bool runOnFunction(Function &F) override {
2199     if (skipFunction(F))
2200       return false;
2201 
2202     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2203     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2204     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2205     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2206     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2207     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2208     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2209     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2210     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2211     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2212     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2213     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2214     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2215 
2216     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2217         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2218 
2219     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2220                         GetLAA, *ORE, PSI).MadeAnyChange;
2221   }
2222 
2223   void getAnalysisUsage(AnalysisUsage &AU) const override {
2224     AU.addRequired<AssumptionCacheTracker>();
2225     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2226     AU.addRequired<DominatorTreeWrapperPass>();
2227     AU.addRequired<LoopInfoWrapperPass>();
2228     AU.addRequired<ScalarEvolutionWrapperPass>();
2229     AU.addRequired<TargetTransformInfoWrapperPass>();
2230     AU.addRequired<AAResultsWrapperPass>();
2231     AU.addRequired<LoopAccessLegacyAnalysis>();
2232     AU.addRequired<DemandedBitsWrapperPass>();
2233     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2234     AU.addRequired<InjectTLIMappingsLegacy>();
2235 
2236     // We currently do not preserve loopinfo/dominator analyses with outer loop
2237     // vectorization. Until this is addressed, mark these analyses as preserved
2238     // only for non-VPlan-native path.
2239     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2240     if (!EnableVPlanNativePath) {
2241       AU.addPreserved<LoopInfoWrapperPass>();
2242       AU.addPreserved<DominatorTreeWrapperPass>();
2243     }
2244 
2245     AU.addPreserved<BasicAAWrapperPass>();
2246     AU.addPreserved<GlobalsAAWrapperPass>();
2247     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2248   }
2249 };
2250 
2251 } // end anonymous namespace
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2255 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2256 //===----------------------------------------------------------------------===//
2257 
2258 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2259   // We need to place the broadcast of invariant variables outside the loop,
2260   // but only if it's proven safe to do so. Else, broadcast will be inside
2261   // vector loop body.
2262   Instruction *Instr = dyn_cast<Instruction>(V);
2263   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2264                      (!Instr ||
2265                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2266   // Place the code for broadcasting invariant variables in the new preheader.
2267   IRBuilder<>::InsertPointGuard Guard(Builder);
2268   if (SafeToHoist)
2269     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2270 
2271   // Broadcast the scalar into all locations in the vector.
2272   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2273 
2274   return Shuf;
2275 }
2276 
2277 /// This function adds
2278 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2279 /// to each vector element of Val. The sequence starts at StartIndex.
2280 /// \p Opcode is relevant for FP induction variable.
2281 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2282                             Instruction::BinaryOps BinOp, ElementCount VF,
2283                             IRBuilderBase &Builder) {
2284   assert(VF.isVector() && "only vector VFs are supported");
2285 
2286   // Create and check the types.
2287   auto *ValVTy = cast<VectorType>(Val->getType());
2288   ElementCount VLen = ValVTy->getElementCount();
2289 
2290   Type *STy = Val->getType()->getScalarType();
2291   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2292          "Induction Step must be an integer or FP");
2293   assert(Step->getType() == STy && "Step has wrong type");
2294 
2295   SmallVector<Constant *, 8> Indices;
2296 
2297   // Create a vector of consecutive numbers from zero to VF.
2298   VectorType *InitVecValVTy = ValVTy;
2299   if (STy->isFloatingPointTy()) {
2300     Type *InitVecValSTy =
2301         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2302     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2303   }
2304   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2305 
2306   // Splat the StartIdx
2307   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2308 
2309   if (STy->isIntegerTy()) {
2310     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2311     Step = Builder.CreateVectorSplat(VLen, Step);
2312     assert(Step->getType() == Val->getType() && "Invalid step vec");
2313     // FIXME: The newly created binary instructions should contain nsw/nuw
2314     // flags, which can be found from the original scalar operations.
2315     Step = Builder.CreateMul(InitVec, Step);
2316     return Builder.CreateAdd(Val, Step, "induction");
2317   }
2318 
2319   // Floating point induction.
2320   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2321          "Binary Opcode should be specified for FP induction");
2322   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2323   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2324 
2325   Step = Builder.CreateVectorSplat(VLen, Step);
2326   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2327   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2328 }
2329 
2330 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2331 /// variable on which to base the steps, \p Step is the size of the step.
2332 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2333                              const InductionDescriptor &ID, VPValue *Def,
2334                              VPTransformState &State) {
2335   IRBuilderBase &Builder = State.Builder;
2336   // We shouldn't have to build scalar steps if we aren't vectorizing.
2337   assert(State.VF.isVector() && "VF should be greater than one");
2338   // Get the value type and ensure it and the step have the same integer type.
2339   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2340   assert(ScalarIVTy == Step->getType() &&
2341          "Val and Step should have the same type");
2342 
2343   // We build scalar steps for both integer and floating-point induction
2344   // variables. Here, we determine the kind of arithmetic we will perform.
2345   Instruction::BinaryOps AddOp;
2346   Instruction::BinaryOps MulOp;
2347   if (ScalarIVTy->isIntegerTy()) {
2348     AddOp = Instruction::Add;
2349     MulOp = Instruction::Mul;
2350   } else {
2351     AddOp = ID.getInductionOpcode();
2352     MulOp = Instruction::FMul;
2353   }
2354 
2355   // Determine the number of scalars we need to generate for each unroll
2356   // iteration.
2357   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2358   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2359   // Compute the scalar steps and save the results in State.
2360   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2361                                      ScalarIVTy->getScalarSizeInBits());
2362   Type *VecIVTy = nullptr;
2363   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2364   if (!FirstLaneOnly && State.VF.isScalable()) {
2365     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2366     UnitStepVec =
2367         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2368     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2369     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2370   }
2371 
2372   for (unsigned Part = 0; Part < State.UF; ++Part) {
2373     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2374 
2375     if (!FirstLaneOnly && State.VF.isScalable()) {
2376       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2377       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2378       if (ScalarIVTy->isFloatingPointTy())
2379         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2380       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2381       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2382       State.set(Def, Add, Part);
2383       // It's useful to record the lane values too for the known minimum number
2384       // of elements so we do those below. This improves the code quality when
2385       // trying to extract the first element, for example.
2386     }
2387 
2388     if (ScalarIVTy->isFloatingPointTy())
2389       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2390 
2391     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2392       Value *StartIdx = Builder.CreateBinOp(
2393           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2394       // The step returned by `createStepForVF` is a runtime-evaluated value
2395       // when VF is scalable. Otherwise, it should be folded into a Constant.
2396       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2397              "Expected StartIdx to be folded to a constant when VF is not "
2398              "scalable");
2399       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2400       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2401       State.set(Def, Add, VPIteration(Part, Lane));
2402     }
2403   }
2404 }
2405 
2406 // Generate code for the induction step. Note that induction steps are
2407 // required to be loop-invariant
2408 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2409                               Instruction *InsertBefore,
2410                               Loop *OrigLoop = nullptr) {
2411   const DataLayout &DL = SE.getDataLayout();
2412   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2413          "Induction step should be loop invariant");
2414   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2415     return E->getValue();
2416 
2417   SCEVExpander Exp(SE, DL, "induction");
2418   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2419 }
2420 
2421 /// Compute the transformed value of Index at offset StartValue using step
2422 /// StepValue.
2423 /// For integer induction, returns StartValue + Index * StepValue.
2424 /// For pointer induction, returns StartValue[Index * StepValue].
2425 /// FIXME: The newly created binary instructions should contain nsw/nuw
2426 /// flags, which can be found from the original scalar operations.
2427 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2428                                    Value *StartValue, Value *Step,
2429                                    const InductionDescriptor &ID) {
2430   assert(Index->getType()->getScalarType() == Step->getType() &&
2431          "Index scalar type does not match StepValue type");
2432 
2433   // Note: the IR at this point is broken. We cannot use SE to create any new
2434   // SCEV and then expand it, hoping that SCEV's simplification will give us
2435   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2436   // lead to various SCEV crashes. So all we can do is to use builder and rely
2437   // on InstCombine for future simplifications. Here we handle some trivial
2438   // cases only.
2439   auto CreateAdd = [&B](Value *X, Value *Y) {
2440     assert(X->getType() == Y->getType() && "Types don't match!");
2441     if (auto *CX = dyn_cast<ConstantInt>(X))
2442       if (CX->isZero())
2443         return Y;
2444     if (auto *CY = dyn_cast<ConstantInt>(Y))
2445       if (CY->isZero())
2446         return X;
2447     return B.CreateAdd(X, Y);
2448   };
2449 
2450   // We allow X to be a vector type, in which case Y will potentially be
2451   // splatted into a vector with the same element count.
2452   auto CreateMul = [&B](Value *X, Value *Y) {
2453     assert(X->getType()->getScalarType() == Y->getType() &&
2454            "Types don't match!");
2455     if (auto *CX = dyn_cast<ConstantInt>(X))
2456       if (CX->isOne())
2457         return Y;
2458     if (auto *CY = dyn_cast<ConstantInt>(Y))
2459       if (CY->isOne())
2460         return X;
2461     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2462     if (XVTy && !isa<VectorType>(Y->getType()))
2463       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2464     return B.CreateMul(X, Y);
2465   };
2466 
2467   switch (ID.getKind()) {
2468   case InductionDescriptor::IK_IntInduction: {
2469     assert(!isa<VectorType>(Index->getType()) &&
2470            "Vector indices not supported for integer inductions yet");
2471     assert(Index->getType() == StartValue->getType() &&
2472            "Index type does not match StartValue type");
2473     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2474       return B.CreateSub(StartValue, Index);
2475     auto *Offset = CreateMul(Index, Step);
2476     return CreateAdd(StartValue, Offset);
2477   }
2478   case InductionDescriptor::IK_PtrInduction: {
2479     assert(isa<Constant>(Step) &&
2480            "Expected constant step for pointer induction");
2481     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2482   }
2483   case InductionDescriptor::IK_FpInduction: {
2484     assert(!isa<VectorType>(Index->getType()) &&
2485            "Vector indices not supported for FP inductions yet");
2486     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2487     auto InductionBinOp = ID.getInductionBinOp();
2488     assert(InductionBinOp &&
2489            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2490             InductionBinOp->getOpcode() == Instruction::FSub) &&
2491            "Original bin op should be defined for FP induction");
2492 
2493     Value *MulExp = B.CreateFMul(Step, Index);
2494     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2495                          "induction");
2496   }
2497   case InductionDescriptor::IK_NoInduction:
2498     return nullptr;
2499   }
2500   llvm_unreachable("invalid enum");
2501 }
2502 
2503 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2504                                                     const VPIteration &Instance,
2505                                                     VPTransformState &State) {
2506   Value *ScalarInst = State.get(Def, Instance);
2507   Value *VectorValue = State.get(Def, Instance.Part);
2508   VectorValue = Builder.CreateInsertElement(
2509       VectorValue, ScalarInst,
2510       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2511   State.set(Def, VectorValue, Instance.Part);
2512 }
2513 
2514 // Return whether we allow using masked interleave-groups (for dealing with
2515 // strided loads/stores that reside in predicated blocks, or for dealing
2516 // with gaps).
2517 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2518   // If an override option has been passed in for interleaved accesses, use it.
2519   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2520     return EnableMaskedInterleavedMemAccesses;
2521 
2522   return TTI.enableMaskedInterleavedAccessVectorization();
2523 }
2524 
2525 // Try to vectorize the interleave group that \p Instr belongs to.
2526 //
2527 // E.g. Translate following interleaved load group (factor = 3):
2528 //   for (i = 0; i < N; i+=3) {
2529 //     R = Pic[i];             // Member of index 0
2530 //     G = Pic[i+1];           // Member of index 1
2531 //     B = Pic[i+2];           // Member of index 2
2532 //     ... // do something to R, G, B
2533 //   }
2534 // To:
2535 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2536 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2537 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2538 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2539 //
2540 // Or translate following interleaved store group (factor = 3):
2541 //   for (i = 0; i < N; i+=3) {
2542 //     ... do something to R, G, B
2543 //     Pic[i]   = R;           // Member of index 0
2544 //     Pic[i+1] = G;           // Member of index 1
2545 //     Pic[i+2] = B;           // Member of index 2
2546 //   }
2547 // To:
2548 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2549 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2550 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2551 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2552 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2553 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2554     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2555     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2556     VPValue *BlockInMask) {
2557   Instruction *Instr = Group->getInsertPos();
2558   const DataLayout &DL = Instr->getModule()->getDataLayout();
2559 
2560   // Prepare for the vector type of the interleaved load/store.
2561   Type *ScalarTy = getLoadStoreType(Instr);
2562   unsigned InterleaveFactor = Group->getFactor();
2563   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2564   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2565 
2566   // Prepare for the new pointers.
2567   SmallVector<Value *, 2> AddrParts;
2568   unsigned Index = Group->getIndex(Instr);
2569 
2570   // TODO: extend the masked interleaved-group support to reversed access.
2571   assert((!BlockInMask || !Group->isReverse()) &&
2572          "Reversed masked interleave-group not supported.");
2573 
2574   // If the group is reverse, adjust the index to refer to the last vector lane
2575   // instead of the first. We adjust the index from the first vector lane,
2576   // rather than directly getting the pointer for lane VF - 1, because the
2577   // pointer operand of the interleaved access is supposed to be uniform. For
2578   // uniform instructions, we're only required to generate a value for the
2579   // first vector lane in each unroll iteration.
2580   if (Group->isReverse())
2581     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2582 
2583   for (unsigned Part = 0; Part < UF; Part++) {
2584     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2585     setDebugLocFromInst(AddrPart);
2586 
2587     // Notice current instruction could be any index. Need to adjust the address
2588     // to the member of index 0.
2589     //
2590     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2591     //       b = A[i];       // Member of index 0
2592     // Current pointer is pointed to A[i+1], adjust it to A[i].
2593     //
2594     // E.g.  A[i+1] = a;     // Member of index 1
2595     //       A[i]   = b;     // Member of index 0
2596     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2597     // Current pointer is pointed to A[i+2], adjust it to A[i].
2598 
2599     bool InBounds = false;
2600     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2601       InBounds = gep->isInBounds();
2602     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2603     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2604 
2605     // Cast to the vector pointer type.
2606     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2607     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2608     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2609   }
2610 
2611   setDebugLocFromInst(Instr);
2612   Value *PoisonVec = PoisonValue::get(VecTy);
2613 
2614   Value *MaskForGaps = nullptr;
2615   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2616     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2617     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2618   }
2619 
2620   // Vectorize the interleaved load group.
2621   if (isa<LoadInst>(Instr)) {
2622     // For each unroll part, create a wide load for the group.
2623     SmallVector<Value *, 2> NewLoads;
2624     for (unsigned Part = 0; Part < UF; Part++) {
2625       Instruction *NewLoad;
2626       if (BlockInMask || MaskForGaps) {
2627         assert(useMaskedInterleavedAccesses(*TTI) &&
2628                "masked interleaved groups are not allowed.");
2629         Value *GroupMask = MaskForGaps;
2630         if (BlockInMask) {
2631           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2632           Value *ShuffledMask = Builder.CreateShuffleVector(
2633               BlockInMaskPart,
2634               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2635               "interleaved.mask");
2636           GroupMask = MaskForGaps
2637                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2638                                                 MaskForGaps)
2639                           : ShuffledMask;
2640         }
2641         NewLoad =
2642             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2643                                      GroupMask, PoisonVec, "wide.masked.vec");
2644       }
2645       else
2646         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2647                                             Group->getAlign(), "wide.vec");
2648       Group->addMetadata(NewLoad);
2649       NewLoads.push_back(NewLoad);
2650     }
2651 
2652     // For each member in the group, shuffle out the appropriate data from the
2653     // wide loads.
2654     unsigned J = 0;
2655     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2656       Instruction *Member = Group->getMember(I);
2657 
2658       // Skip the gaps in the group.
2659       if (!Member)
2660         continue;
2661 
2662       auto StrideMask =
2663           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2664       for (unsigned Part = 0; Part < UF; Part++) {
2665         Value *StridedVec = Builder.CreateShuffleVector(
2666             NewLoads[Part], StrideMask, "strided.vec");
2667 
2668         // If this member has different type, cast the result type.
2669         if (Member->getType() != ScalarTy) {
2670           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2671           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2672           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2673         }
2674 
2675         if (Group->isReverse())
2676           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2677 
2678         State.set(VPDefs[J], StridedVec, Part);
2679       }
2680       ++J;
2681     }
2682     return;
2683   }
2684 
2685   // The sub vector type for current instruction.
2686   auto *SubVT = VectorType::get(ScalarTy, VF);
2687 
2688   // Vectorize the interleaved store group.
2689   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2690   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2691          "masked interleaved groups are not allowed.");
2692   assert((!MaskForGaps || !VF.isScalable()) &&
2693          "masking gaps for scalable vectors is not yet supported.");
2694   for (unsigned Part = 0; Part < UF; Part++) {
2695     // Collect the stored vector from each member.
2696     SmallVector<Value *, 4> StoredVecs;
2697     for (unsigned i = 0; i < InterleaveFactor; i++) {
2698       assert((Group->getMember(i) || MaskForGaps) &&
2699              "Fail to get a member from an interleaved store group");
2700       Instruction *Member = Group->getMember(i);
2701 
2702       // Skip the gaps in the group.
2703       if (!Member) {
2704         Value *Undef = PoisonValue::get(SubVT);
2705         StoredVecs.push_back(Undef);
2706         continue;
2707       }
2708 
2709       Value *StoredVec = State.get(StoredValues[i], Part);
2710 
2711       if (Group->isReverse())
2712         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2713 
2714       // If this member has different type, cast it to a unified type.
2715 
2716       if (StoredVec->getType() != SubVT)
2717         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2718 
2719       StoredVecs.push_back(StoredVec);
2720     }
2721 
2722     // Concatenate all vectors into a wide vector.
2723     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2724 
2725     // Interleave the elements in the wide vector.
2726     Value *IVec = Builder.CreateShuffleVector(
2727         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2728         "interleaved.vec");
2729 
2730     Instruction *NewStoreInstr;
2731     if (BlockInMask || MaskForGaps) {
2732       Value *GroupMask = MaskForGaps;
2733       if (BlockInMask) {
2734         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2735         Value *ShuffledMask = Builder.CreateShuffleVector(
2736             BlockInMaskPart,
2737             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2738             "interleaved.mask");
2739         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2740                                                       ShuffledMask, MaskForGaps)
2741                                 : ShuffledMask;
2742       }
2743       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2744                                                 Group->getAlign(), GroupMask);
2745     } else
2746       NewStoreInstr =
2747           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2748 
2749     Group->addMetadata(NewStoreInstr);
2750   }
2751 }
2752 
2753 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2754                                                VPReplicateRecipe *RepRecipe,
2755                                                const VPIteration &Instance,
2756                                                bool IfPredicateInstr,
2757                                                VPTransformState &State) {
2758   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2759 
2760   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2761   // the first lane and part.
2762   if (isa<NoAliasScopeDeclInst>(Instr))
2763     if (!Instance.isFirstIteration())
2764       return;
2765 
2766   // Does this instruction return a value ?
2767   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2768 
2769   Instruction *Cloned = Instr->clone();
2770   if (!IsVoidRetTy)
2771     Cloned->setName(Instr->getName() + ".cloned");
2772 
2773   // If the scalarized instruction contributes to the address computation of a
2774   // widen masked load/store which was in a basic block that needed predication
2775   // and is not predicated after vectorization, we can't propagate
2776   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2777   // instruction could feed a poison value to the base address of the widen
2778   // load/store.
2779   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2780     Cloned->dropPoisonGeneratingFlags();
2781 
2782   if (Instr->getDebugLoc())
2783     setDebugLocFromInst(Instr);
2784 
2785   // Replace the operands of the cloned instructions with their scalar
2786   // equivalents in the new loop.
2787   for (auto &I : enumerate(RepRecipe->operands())) {
2788     auto InputInstance = Instance;
2789     VPValue *Operand = I.value();
2790     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2791     if (OperandR && OperandR->isUniform())
2792       InputInstance.Lane = VPLane::getFirstLane();
2793     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2794   }
2795   addNewMetadata(Cloned, Instr);
2796 
2797   // Place the cloned scalar in the new loop.
2798   State.Builder.Insert(Cloned);
2799 
2800   State.set(RepRecipe, Cloned, Instance);
2801 
2802   // If we just cloned a new assumption, add it the assumption cache.
2803   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2804     AC->registerAssumption(II);
2805 
2806   // End if-block.
2807   if (IfPredicateInstr)
2808     PredicatedInstructions.push_back(Cloned);
2809 }
2810 
2811 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2812   if (TripCount)
2813     return TripCount;
2814 
2815   assert(InsertBlock);
2816   IRBuilder<> Builder(InsertBlock->getTerminator());
2817   // Find the loop boundaries.
2818   ScalarEvolution *SE = PSE.getSE();
2819   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2820   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2821          "Invalid loop count");
2822 
2823   Type *IdxTy = Legal->getWidestInductionType();
2824   assert(IdxTy && "No type for induction");
2825 
2826   // The exit count might have the type of i64 while the phi is i32. This can
2827   // happen if we have an induction variable that is sign extended before the
2828   // compare. The only way that we get a backedge taken count is that the
2829   // induction variable was signed and as such will not overflow. In such a case
2830   // truncation is legal.
2831   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2832       IdxTy->getPrimitiveSizeInBits())
2833     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2834   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2835 
2836   // Get the total trip count from the count by adding 1.
2837   const SCEV *ExitCount = SE->getAddExpr(
2838       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2839 
2840   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2841 
2842   // Expand the trip count and place the new instructions in the preheader.
2843   // Notice that the pre-header does not change, only the loop body.
2844   SCEVExpander Exp(*SE, DL, "induction");
2845 
2846   // Count holds the overall loop count (N).
2847   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2848                                 InsertBlock->getTerminator());
2849 
2850   if (TripCount->getType()->isPointerTy())
2851     TripCount =
2852         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2853                                     InsertBlock->getTerminator());
2854 
2855   return TripCount;
2856 }
2857 
2858 Value *
2859 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2860   if (VectorTripCount)
2861     return VectorTripCount;
2862 
2863   Value *TC = getOrCreateTripCount(InsertBlock);
2864   IRBuilder<> Builder(InsertBlock->getTerminator());
2865 
2866   Type *Ty = TC->getType();
2867   // This is where we can make the step a runtime constant.
2868   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2869 
2870   // If the tail is to be folded by masking, round the number of iterations N
2871   // up to a multiple of Step instead of rounding down. This is done by first
2872   // adding Step-1 and then rounding down. Note that it's ok if this addition
2873   // overflows: the vector induction variable will eventually wrap to zero given
2874   // that it starts at zero and its Step is a power of two; the loop will then
2875   // exit, with the last early-exit vector comparison also producing all-true.
2876   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2877   // is accounted for in emitIterationCountCheck that adds an overflow check.
2878   if (Cost->foldTailByMasking()) {
2879     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2880            "VF*UF must be a power of 2 when folding tail by masking");
2881     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2882     TC = Builder.CreateAdd(
2883         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2884   }
2885 
2886   // Now we need to generate the expression for the part of the loop that the
2887   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2888   // iterations are not required for correctness, or N - Step, otherwise. Step
2889   // is equal to the vectorization factor (number of SIMD elements) times the
2890   // unroll factor (number of SIMD instructions).
2891   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2892 
2893   // There are cases where we *must* run at least one iteration in the remainder
2894   // loop.  See the cost model for when this can happen.  If the step evenly
2895   // divides the trip count, we set the remainder to be equal to the step. If
2896   // the step does not evenly divide the trip count, no adjustment is necessary
2897   // since there will already be scalar iterations. Note that the minimum
2898   // iterations check ensures that N >= Step.
2899   if (Cost->requiresScalarEpilogue(VF)) {
2900     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2901     R = Builder.CreateSelect(IsZero, Step, R);
2902   }
2903 
2904   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2905 
2906   return VectorTripCount;
2907 }
2908 
2909 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2910                                                    const DataLayout &DL) {
2911   // Verify that V is a vector type with same number of elements as DstVTy.
2912   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2913   unsigned VF = DstFVTy->getNumElements();
2914   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2915   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2916   Type *SrcElemTy = SrcVecTy->getElementType();
2917   Type *DstElemTy = DstFVTy->getElementType();
2918   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2919          "Vector elements must have same size");
2920 
2921   // Do a direct cast if element types are castable.
2922   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2923     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2924   }
2925   // V cannot be directly casted to desired vector type.
2926   // May happen when V is a floating point vector but DstVTy is a vector of
2927   // pointers or vice-versa. Handle this using a two-step bitcast using an
2928   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2929   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2930          "Only one type should be a pointer type");
2931   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2932          "Only one type should be a floating point type");
2933   Type *IntTy =
2934       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2935   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2936   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2937   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2938 }
2939 
2940 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2941   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2942   // Reuse existing vector loop preheader for TC checks.
2943   // Note that new preheader block is generated for vector loop.
2944   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2945   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2946 
2947   // Generate code to check if the loop's trip count is less than VF * UF, or
2948   // equal to it in case a scalar epilogue is required; this implies that the
2949   // vector trip count is zero. This check also covers the case where adding one
2950   // to the backedge-taken count overflowed leading to an incorrect trip count
2951   // of zero. In this case we will also jump to the scalar loop.
2952   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2953                                             : ICmpInst::ICMP_ULT;
2954 
2955   // If tail is to be folded, vector loop takes care of all iterations.
2956   Type *CountTy = Count->getType();
2957   Value *CheckMinIters = Builder.getFalse();
2958   Value *Step = createStepForVF(Builder, CountTy, VF, UF);
2959   if (!Cost->foldTailByMasking())
2960     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
2961   else if (VF.isScalable()) {
2962     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2963     // an overflow to zero when updating induction variables and so an
2964     // additional overflow check is required before entering the vector loop.
2965 
2966     // Get the maximum unsigned value for the type.
2967     Value *MaxUIntTripCount =
2968         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2969     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2970 
2971     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2972     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step);
2973   }
2974   // Create new preheader for vector loop.
2975   LoopVectorPreHeader =
2976       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2977                  "vector.ph");
2978 
2979   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2980                                DT->getNode(Bypass)->getIDom()) &&
2981          "TC check is expected to dominate Bypass");
2982 
2983   // Update dominator for Bypass & LoopExit (if needed).
2984   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2985   if (!Cost->requiresScalarEpilogue(VF))
2986     // If there is an epilogue which must run, there's no edge from the
2987     // middle block to exit blocks  and thus no need to update the immediate
2988     // dominator of the exit blocks.
2989     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2990 
2991   ReplaceInstWithInst(
2992       TCCheckBlock->getTerminator(),
2993       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2994   LoopBypassBlocks.push_back(TCCheckBlock);
2995 }
2996 
2997 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
2998 
2999   BasicBlock *const SCEVCheckBlock =
3000       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3001   if (!SCEVCheckBlock)
3002     return nullptr;
3003 
3004   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3005            (OptForSizeBasedOnProfile &&
3006             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3007          "Cannot SCEV check stride or overflow when optimizing for size");
3008 
3009 
3010   // Update dominator only if this is first RT check.
3011   if (LoopBypassBlocks.empty()) {
3012     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3013     if (!Cost->requiresScalarEpilogue(VF))
3014       // If there is an epilogue which must run, there's no edge from the
3015       // middle block to exit blocks  and thus no need to update the immediate
3016       // dominator of the exit blocks.
3017       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3018   }
3019 
3020   LoopBypassBlocks.push_back(SCEVCheckBlock);
3021   AddedSafetyChecks = true;
3022   return SCEVCheckBlock;
3023 }
3024 
3025 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3026   // VPlan-native path does not do any analysis for runtime checks currently.
3027   if (EnableVPlanNativePath)
3028     return nullptr;
3029 
3030   BasicBlock *const MemCheckBlock =
3031       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3032 
3033   // Check if we generated code that checks in runtime if arrays overlap. We put
3034   // the checks into a separate block to make the more common case of few
3035   // elements faster.
3036   if (!MemCheckBlock)
3037     return nullptr;
3038 
3039   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3040     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3041            "Cannot emit memory checks when optimizing for size, unless forced "
3042            "to vectorize.");
3043     ORE->emit([&]() {
3044       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3045                                         OrigLoop->getStartLoc(),
3046                                         OrigLoop->getHeader())
3047              << "Code-size may be reduced by not forcing "
3048                 "vectorization, or by source-code modifications "
3049                 "eliminating the need for runtime checks "
3050                 "(e.g., adding 'restrict').";
3051     });
3052   }
3053 
3054   LoopBypassBlocks.push_back(MemCheckBlock);
3055 
3056   AddedSafetyChecks = true;
3057 
3058   // Only use noalias metadata when using memory checks guaranteeing no overlap
3059   // across all iterations.
3060   if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) {
3061     //  We currently don't use LoopVersioning for the actual loop cloning but we
3062     //  still use it to add the noalias metadata.
3063     LVer = std::make_unique<LoopVersioning>(
3064         *Legal->getLAI(),
3065         Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3066         DT, PSE.getSE());
3067     LVer->prepareNoAliasMetadata();
3068   }
3069   return MemCheckBlock;
3070 }
3071 
3072 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3073   LoopScalarBody = OrigLoop->getHeader();
3074   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3075   assert(LoopVectorPreHeader && "Invalid loop structure");
3076   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3077   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3078          "multiple exit loop without required epilogue?");
3079 
3080   LoopMiddleBlock =
3081       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3082                  LI, nullptr, Twine(Prefix) + "middle.block");
3083   LoopScalarPreHeader =
3084       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3085                  nullptr, Twine(Prefix) + "scalar.ph");
3086 
3087   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3088 
3089   // Set up the middle block terminator.  Two cases:
3090   // 1) If we know that we must execute the scalar epilogue, emit an
3091   //    unconditional branch.
3092   // 2) Otherwise, we must have a single unique exit block (due to how we
3093   //    implement the multiple exit case).  In this case, set up a conditonal
3094   //    branch from the middle block to the loop scalar preheader, and the
3095   //    exit block.  completeLoopSkeleton will update the condition to use an
3096   //    iteration check, if required to decide whether to execute the remainder.
3097   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3098     BranchInst::Create(LoopScalarPreHeader) :
3099     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3100                        Builder.getTrue());
3101   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3102   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3103 
3104   // Update dominator for loop exit. During skeleton creation, only the vector
3105   // pre-header and the middle block are created. The vector loop is entirely
3106   // created during VPlan exection.
3107   if (!Cost->requiresScalarEpilogue(VF))
3108     // If there is an epilogue which must run, there's no edge from the
3109     // middle block to exit blocks  and thus no need to update the immediate
3110     // dominator of the exit blocks.
3111     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3112 }
3113 
3114 void InnerLoopVectorizer::createInductionResumeValues(
3115     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3116   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3117           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3118          "Inconsistent information about additional bypass.");
3119 
3120   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3121   assert(VectorTripCount && "Expected valid arguments");
3122   // We are going to resume the execution of the scalar loop.
3123   // Go over all of the induction variables that we found and fix the
3124   // PHIs that are left in the scalar version of the loop.
3125   // The starting values of PHI nodes depend on the counter of the last
3126   // iteration in the vectorized loop.
3127   // If we come from a bypass edge then we need to start from the original
3128   // start value.
3129   Instruction *OldInduction = Legal->getPrimaryInduction();
3130   for (auto &InductionEntry : Legal->getInductionVars()) {
3131     PHINode *OrigPhi = InductionEntry.first;
3132     InductionDescriptor II = InductionEntry.second;
3133 
3134     Value *&EndValue = IVEndValues[OrigPhi];
3135     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3136     if (OrigPhi == OldInduction) {
3137       // We know what the end value is.
3138       EndValue = VectorTripCount;
3139     } else {
3140       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3141 
3142       // Fast-math-flags propagate from the original induction instruction.
3143       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3144         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3145 
3146       Type *StepType = II.getStep()->getType();
3147       Instruction::CastOps CastOp =
3148           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3149       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3150       Value *Step =
3151           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3152       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3153       EndValue->setName("ind.end");
3154 
3155       // Compute the end value for the additional bypass (if applicable).
3156       if (AdditionalBypass.first) {
3157         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3158         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3159                                          StepType, true);
3160         Value *Step =
3161             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3162         VTC =
3163             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3164         EndValueFromAdditionalBypass =
3165             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3166         EndValueFromAdditionalBypass->setName("ind.end");
3167       }
3168     }
3169 
3170     // Create phi nodes to merge from the  backedge-taken check block.
3171     PHINode *BCResumeVal =
3172         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3173                         LoopScalarPreHeader->getTerminator());
3174     // Copy original phi DL over to the new one.
3175     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3176 
3177     // The new PHI merges the original incoming value, in case of a bypass,
3178     // or the value at the end of the vectorized loop.
3179     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3180 
3181     // Fix the scalar body counter (PHI node).
3182     // The old induction's phi node in the scalar body needs the truncated
3183     // value.
3184     for (BasicBlock *BB : LoopBypassBlocks)
3185       BCResumeVal->addIncoming(II.getStartValue(), BB);
3186 
3187     if (AdditionalBypass.first)
3188       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3189                                             EndValueFromAdditionalBypass);
3190 
3191     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3192   }
3193 }
3194 
3195 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3196   // The trip counts should be cached by now.
3197   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3198   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3199 
3200   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3201 
3202   // Add a check in the middle block to see if we have completed
3203   // all of the iterations in the first vector loop.  Three cases:
3204   // 1) If we require a scalar epilogue, there is no conditional branch as
3205   //    we unconditionally branch to the scalar preheader.  Do nothing.
3206   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3207   //    Thus if tail is to be folded, we know we don't need to run the
3208   //    remainder and we can use the previous value for the condition (true).
3209   // 3) Otherwise, construct a runtime check.
3210   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3211     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3212                                         Count, VectorTripCount, "cmp.n",
3213                                         LoopMiddleBlock->getTerminator());
3214 
3215     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3216     // of the corresponding compare because they may have ended up with
3217     // different line numbers and we want to avoid awkward line stepping while
3218     // debugging. Eg. if the compare has got a line number inside the loop.
3219     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3220     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3221   }
3222 
3223 #ifdef EXPENSIVE_CHECKS
3224   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3225 #endif
3226 
3227   return LoopVectorPreHeader;
3228 }
3229 
3230 std::pair<BasicBlock *, Value *>
3231 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3232   /*
3233    In this function we generate a new loop. The new loop will contain
3234    the vectorized instructions while the old loop will continue to run the
3235    scalar remainder.
3236 
3237        [ ] <-- loop iteration number check.
3238     /   |
3239    /    v
3240   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3241   |  /  |
3242   | /   v
3243   ||   [ ]     <-- vector pre header.
3244   |/    |
3245   |     v
3246   |    [  ] \
3247   |    [  ]_|   <-- vector loop (created during VPlan execution).
3248   |     |
3249   |     v
3250   \   -[ ]   <--- middle-block.
3251    \/   |
3252    /\   v
3253    | ->[ ]     <--- new preheader.
3254    |    |
3255  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3256    |   [ ] \
3257    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3258     \   |
3259      \  v
3260       >[ ]     <-- exit block(s).
3261    ...
3262    */
3263 
3264   // Get the metadata of the original loop before it gets modified.
3265   MDNode *OrigLoopID = OrigLoop->getLoopID();
3266 
3267   // Workaround!  Compute the trip count of the original loop and cache it
3268   // before we start modifying the CFG.  This code has a systemic problem
3269   // wherein it tries to run analysis over partially constructed IR; this is
3270   // wrong, and not simply for SCEV.  The trip count of the original loop
3271   // simply happens to be prone to hitting this in practice.  In theory, we
3272   // can hit the same issue for any SCEV, or ValueTracking query done during
3273   // mutation.  See PR49900.
3274   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3275 
3276   // Create an empty vector loop, and prepare basic blocks for the runtime
3277   // checks.
3278   createVectorLoopSkeleton("");
3279 
3280   // Now, compare the new count to zero. If it is zero skip the vector loop and
3281   // jump to the scalar loop. This check also covers the case where the
3282   // backedge-taken count is uint##_max: adding one to it will overflow leading
3283   // to an incorrect trip count of zero. In this (rare) case we will also jump
3284   // to the scalar loop.
3285   emitIterationCountCheck(LoopScalarPreHeader);
3286 
3287   // Generate the code to check any assumptions that we've made for SCEV
3288   // expressions.
3289   emitSCEVChecks(LoopScalarPreHeader);
3290 
3291   // Generate the code that checks in runtime if arrays overlap. We put the
3292   // checks into a separate block to make the more common case of few elements
3293   // faster.
3294   emitMemRuntimeChecks(LoopScalarPreHeader);
3295 
3296   // Emit phis for the new starting index of the scalar loop.
3297   createInductionResumeValues();
3298 
3299   return {completeLoopSkeleton(OrigLoopID), nullptr};
3300 }
3301 
3302 // Fix up external users of the induction variable. At this point, we are
3303 // in LCSSA form, with all external PHIs that use the IV having one input value,
3304 // coming from the remainder loop. We need those PHIs to also have a correct
3305 // value for the IV when arriving directly from the middle block.
3306 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3307                                        const InductionDescriptor &II,
3308                                        Value *VectorTripCount, Value *EndValue,
3309                                        BasicBlock *MiddleBlock,
3310                                        BasicBlock *VectorHeader, VPlan &Plan) {
3311   // There are two kinds of external IV usages - those that use the value
3312   // computed in the last iteration (the PHI) and those that use the penultimate
3313   // value (the value that feeds into the phi from the loop latch).
3314   // We allow both, but they, obviously, have different values.
3315 
3316   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3317 
3318   DenseMap<Value *, Value *> MissingVals;
3319 
3320   // An external user of the last iteration's value should see the value that
3321   // the remainder loop uses to initialize its own IV.
3322   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3323   for (User *U : PostInc->users()) {
3324     Instruction *UI = cast<Instruction>(U);
3325     if (!OrigLoop->contains(UI)) {
3326       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3327       MissingVals[UI] = EndValue;
3328     }
3329   }
3330 
3331   // An external user of the penultimate value need to see EndValue - Step.
3332   // The simplest way to get this is to recompute it from the constituent SCEVs,
3333   // that is Start + (Step * (CRD - 1)).
3334   for (User *U : OrigPhi->users()) {
3335     auto *UI = cast<Instruction>(U);
3336     if (!OrigLoop->contains(UI)) {
3337       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3338 
3339       IRBuilder<> B(MiddleBlock->getTerminator());
3340 
3341       // Fast-math-flags propagate from the original induction instruction.
3342       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3343         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3344 
3345       Value *CountMinusOne = B.CreateSub(
3346           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3347       Value *CMO =
3348           !II.getStep()->getType()->isIntegerTy()
3349               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3350                              II.getStep()->getType())
3351               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3352       CMO->setName("cast.cmo");
3353 
3354       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3355                                     VectorHeader->getTerminator());
3356       Value *Escape =
3357           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3358       Escape->setName("ind.escape");
3359       MissingVals[UI] = Escape;
3360     }
3361   }
3362 
3363   for (auto &I : MissingVals) {
3364     PHINode *PHI = cast<PHINode>(I.first);
3365     // One corner case we have to handle is two IVs "chasing" each-other,
3366     // that is %IV2 = phi [...], [ %IV1, %latch ]
3367     // In this case, if IV1 has an external use, we need to avoid adding both
3368     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3369     // don't already have an incoming value for the middle block.
3370     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3371       PHI->addIncoming(I.second, MiddleBlock);
3372       Plan.removeLiveOut(PHI);
3373     }
3374   }
3375 }
3376 
3377 namespace {
3378 
3379 struct CSEDenseMapInfo {
3380   static bool canHandle(const Instruction *I) {
3381     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3382            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3383   }
3384 
3385   static inline Instruction *getEmptyKey() {
3386     return DenseMapInfo<Instruction *>::getEmptyKey();
3387   }
3388 
3389   static inline Instruction *getTombstoneKey() {
3390     return DenseMapInfo<Instruction *>::getTombstoneKey();
3391   }
3392 
3393   static unsigned getHashValue(const Instruction *I) {
3394     assert(canHandle(I) && "Unknown instruction!");
3395     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3396                                                            I->value_op_end()));
3397   }
3398 
3399   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3400     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3401         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3402       return LHS == RHS;
3403     return LHS->isIdenticalTo(RHS);
3404   }
3405 };
3406 
3407 } // end anonymous namespace
3408 
3409 ///Perform cse of induction variable instructions.
3410 static void cse(BasicBlock *BB) {
3411   // Perform simple cse.
3412   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3413   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3414     if (!CSEDenseMapInfo::canHandle(&In))
3415       continue;
3416 
3417     // Check if we can replace this instruction with any of the
3418     // visited instructions.
3419     if (Instruction *V = CSEMap.lookup(&In)) {
3420       In.replaceAllUsesWith(V);
3421       In.eraseFromParent();
3422       continue;
3423     }
3424 
3425     CSEMap[&In] = &In;
3426   }
3427 }
3428 
3429 InstructionCost
3430 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3431                                               bool &NeedToScalarize) const {
3432   Function *F = CI->getCalledFunction();
3433   Type *ScalarRetTy = CI->getType();
3434   SmallVector<Type *, 4> Tys, ScalarTys;
3435   for (auto &ArgOp : CI->args())
3436     ScalarTys.push_back(ArgOp->getType());
3437 
3438   // Estimate cost of scalarized vector call. The source operands are assumed
3439   // to be vectors, so we need to extract individual elements from there,
3440   // execute VF scalar calls, and then gather the result into the vector return
3441   // value.
3442   InstructionCost ScalarCallCost =
3443       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3444   if (VF.isScalar())
3445     return ScalarCallCost;
3446 
3447   // Compute corresponding vector type for return value and arguments.
3448   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3449   for (Type *ScalarTy : ScalarTys)
3450     Tys.push_back(ToVectorTy(ScalarTy, VF));
3451 
3452   // Compute costs of unpacking argument values for the scalar calls and
3453   // packing the return values to a vector.
3454   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3455 
3456   InstructionCost Cost =
3457       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3458 
3459   // If we can't emit a vector call for this function, then the currently found
3460   // cost is the cost we need to return.
3461   NeedToScalarize = true;
3462   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3463   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3464 
3465   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3466     return Cost;
3467 
3468   // If the corresponding vector cost is cheaper, return its cost.
3469   InstructionCost VectorCallCost =
3470       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3471   if (VectorCallCost < Cost) {
3472     NeedToScalarize = false;
3473     Cost = VectorCallCost;
3474   }
3475   return Cost;
3476 }
3477 
3478 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3479   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3480     return Elt;
3481   return VectorType::get(Elt, VF);
3482 }
3483 
3484 InstructionCost
3485 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3486                                                    ElementCount VF) const {
3487   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3488   assert(ID && "Expected intrinsic call!");
3489   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3490   FastMathFlags FMF;
3491   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3492     FMF = FPMO->getFastMathFlags();
3493 
3494   SmallVector<const Value *> Arguments(CI->args());
3495   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3496   SmallVector<Type *> ParamTys;
3497   std::transform(FTy->param_begin(), FTy->param_end(),
3498                  std::back_inserter(ParamTys),
3499                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3500 
3501   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3502                                     dyn_cast<IntrinsicInst>(CI));
3503   return TTI.getIntrinsicInstrCost(CostAttrs,
3504                                    TargetTransformInfo::TCK_RecipThroughput);
3505 }
3506 
3507 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3508   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3509   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3510   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3511 }
3512 
3513 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3514   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3515   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3516   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3517 }
3518 
3519 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3520   // For every instruction `I` in MinBWs, truncate the operands, create a
3521   // truncated version of `I` and reextend its result. InstCombine runs
3522   // later and will remove any ext/trunc pairs.
3523   SmallPtrSet<Value *, 4> Erased;
3524   for (const auto &KV : Cost->getMinimalBitwidths()) {
3525     // If the value wasn't vectorized, we must maintain the original scalar
3526     // type. The absence of the value from State indicates that it
3527     // wasn't vectorized.
3528     // FIXME: Should not rely on getVPValue at this point.
3529     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3530     if (!State.hasAnyVectorValue(Def))
3531       continue;
3532     for (unsigned Part = 0; Part < UF; ++Part) {
3533       Value *I = State.get(Def, Part);
3534       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3535         continue;
3536       Type *OriginalTy = I->getType();
3537       Type *ScalarTruncatedTy =
3538           IntegerType::get(OriginalTy->getContext(), KV.second);
3539       auto *TruncatedTy = VectorType::get(
3540           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3541       if (TruncatedTy == OriginalTy)
3542         continue;
3543 
3544       IRBuilder<> B(cast<Instruction>(I));
3545       auto ShrinkOperand = [&](Value *V) -> Value * {
3546         if (auto *ZI = dyn_cast<ZExtInst>(V))
3547           if (ZI->getSrcTy() == TruncatedTy)
3548             return ZI->getOperand(0);
3549         return B.CreateZExtOrTrunc(V, TruncatedTy);
3550       };
3551 
3552       // The actual instruction modification depends on the instruction type,
3553       // unfortunately.
3554       Value *NewI = nullptr;
3555       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3556         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3557                              ShrinkOperand(BO->getOperand(1)));
3558 
3559         // Any wrapping introduced by shrinking this operation shouldn't be
3560         // considered undefined behavior. So, we can't unconditionally copy
3561         // arithmetic wrapping flags to NewI.
3562         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3563       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3564         NewI =
3565             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3566                          ShrinkOperand(CI->getOperand(1)));
3567       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3568         NewI = B.CreateSelect(SI->getCondition(),
3569                               ShrinkOperand(SI->getTrueValue()),
3570                               ShrinkOperand(SI->getFalseValue()));
3571       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3572         switch (CI->getOpcode()) {
3573         default:
3574           llvm_unreachable("Unhandled cast!");
3575         case Instruction::Trunc:
3576           NewI = ShrinkOperand(CI->getOperand(0));
3577           break;
3578         case Instruction::SExt:
3579           NewI = B.CreateSExtOrTrunc(
3580               CI->getOperand(0),
3581               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3582           break;
3583         case Instruction::ZExt:
3584           NewI = B.CreateZExtOrTrunc(
3585               CI->getOperand(0),
3586               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3587           break;
3588         }
3589       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3590         auto Elements0 =
3591             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3592         auto *O0 = B.CreateZExtOrTrunc(
3593             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3594         auto Elements1 =
3595             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3596         auto *O1 = B.CreateZExtOrTrunc(
3597             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3598 
3599         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3600       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3601         // Don't do anything with the operands, just extend the result.
3602         continue;
3603       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3604         auto Elements =
3605             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3606         auto *O0 = B.CreateZExtOrTrunc(
3607             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3608         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3609         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3610       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3611         auto Elements =
3612             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3613         auto *O0 = B.CreateZExtOrTrunc(
3614             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3615         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3616       } else {
3617         // If we don't know what to do, be conservative and don't do anything.
3618         continue;
3619       }
3620 
3621       // Lastly, extend the result.
3622       NewI->takeName(cast<Instruction>(I));
3623       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3624       I->replaceAllUsesWith(Res);
3625       cast<Instruction>(I)->eraseFromParent();
3626       Erased.insert(I);
3627       State.reset(Def, Res, Part);
3628     }
3629   }
3630 
3631   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3632   for (const auto &KV : Cost->getMinimalBitwidths()) {
3633     // If the value wasn't vectorized, we must maintain the original scalar
3634     // type. The absence of the value from State indicates that it
3635     // wasn't vectorized.
3636     // FIXME: Should not rely on getVPValue at this point.
3637     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3638     if (!State.hasAnyVectorValue(Def))
3639       continue;
3640     for (unsigned Part = 0; Part < UF; ++Part) {
3641       Value *I = State.get(Def, Part);
3642       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3643       if (Inst && Inst->use_empty()) {
3644         Value *NewI = Inst->getOperand(0);
3645         Inst->eraseFromParent();
3646         State.reset(Def, NewI, Part);
3647       }
3648     }
3649   }
3650 }
3651 
3652 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3653                                             VPlan &Plan) {
3654   // Insert truncates and extends for any truncated instructions as hints to
3655   // InstCombine.
3656   if (VF.isVector())
3657     truncateToMinimalBitwidths(State);
3658 
3659   // Fix widened non-induction PHIs by setting up the PHI operands.
3660   if (EnableVPlanNativePath)
3661     fixNonInductionPHIs(Plan, State);
3662 
3663   // At this point every instruction in the original loop is widened to a
3664   // vector form. Now we need to fix the recurrences in the loop. These PHI
3665   // nodes are currently empty because we did not want to introduce cycles.
3666   // This is the second stage of vectorizing recurrences.
3667   fixCrossIterationPHIs(State);
3668 
3669   // Forget the original basic block.
3670   PSE.getSE()->forgetLoop(OrigLoop);
3671 
3672   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3673   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3674   if (Cost->requiresScalarEpilogue(VF)) {
3675     // No edge from the middle block to the unique exit block has been inserted
3676     // and there is nothing to fix from vector loop; phis should have incoming
3677     // from scalar loop only.
3678     Plan.clearLiveOuts();
3679   } else {
3680     // If we inserted an edge from the middle block to the unique exit block,
3681     // update uses outside the loop (phis) to account for the newly inserted
3682     // edge.
3683 
3684     // Fix-up external users of the induction variables.
3685     for (auto &Entry : Legal->getInductionVars())
3686       fixupIVUsers(Entry.first, Entry.second,
3687                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3688                    IVEndValues[Entry.first], LoopMiddleBlock,
3689                    VectorLoop->getHeader(), Plan);
3690   }
3691 
3692   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3693   // in the exit block, so update the builder.
3694   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3695   for (auto &KV : Plan.getLiveOuts())
3696     KV.second->fixPhi(Plan, State);
3697 
3698   for (Instruction *PI : PredicatedInstructions)
3699     sinkScalarOperands(&*PI);
3700 
3701   // Remove redundant induction instructions.
3702   cse(VectorLoop->getHeader());
3703 
3704   // Set/update profile weights for the vector and remainder loops as original
3705   // loop iterations are now distributed among them. Note that original loop
3706   // represented by LoopScalarBody becomes remainder loop after vectorization.
3707   //
3708   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3709   // end up getting slightly roughened result but that should be OK since
3710   // profile is not inherently precise anyway. Note also possible bypass of
3711   // vector code caused by legality checks is ignored, assigning all the weight
3712   // to the vector loop, optimistically.
3713   //
3714   // For scalable vectorization we can't know at compile time how many iterations
3715   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3716   // vscale of '1'.
3717   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3718                                LI->getLoopFor(LoopScalarBody),
3719                                VF.getKnownMinValue() * UF);
3720 }
3721 
3722 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3723   // In order to support recurrences we need to be able to vectorize Phi nodes.
3724   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3725   // stage #2: We now need to fix the recurrences by adding incoming edges to
3726   // the currently empty PHI nodes. At this point every instruction in the
3727   // original loop is widened to a vector form so we can use them to construct
3728   // the incoming edges.
3729   VPBasicBlock *Header =
3730       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3731   for (VPRecipeBase &R : Header->phis()) {
3732     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3733       fixReduction(ReductionPhi, State);
3734     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3735       fixFirstOrderRecurrence(FOR, State);
3736   }
3737 }
3738 
3739 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3740     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3741   // This is the second phase of vectorizing first-order recurrences. An
3742   // overview of the transformation is described below. Suppose we have the
3743   // following loop.
3744   //
3745   //   for (int i = 0; i < n; ++i)
3746   //     b[i] = a[i] - a[i - 1];
3747   //
3748   // There is a first-order recurrence on "a". For this loop, the shorthand
3749   // scalar IR looks like:
3750   //
3751   //   scalar.ph:
3752   //     s_init = a[-1]
3753   //     br scalar.body
3754   //
3755   //   scalar.body:
3756   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3757   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3758   //     s2 = a[i]
3759   //     b[i] = s2 - s1
3760   //     br cond, scalar.body, ...
3761   //
3762   // In this example, s1 is a recurrence because it's value depends on the
3763   // previous iteration. In the first phase of vectorization, we created a
3764   // vector phi v1 for s1. We now complete the vectorization and produce the
3765   // shorthand vector IR shown below (for VF = 4, UF = 1).
3766   //
3767   //   vector.ph:
3768   //     v_init = vector(..., ..., ..., a[-1])
3769   //     br vector.body
3770   //
3771   //   vector.body
3772   //     i = phi [0, vector.ph], [i+4, vector.body]
3773   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3774   //     v2 = a[i, i+1, i+2, i+3];
3775   //     v3 = vector(v1(3), v2(0, 1, 2))
3776   //     b[i, i+1, i+2, i+3] = v2 - v3
3777   //     br cond, vector.body, middle.block
3778   //
3779   //   middle.block:
3780   //     x = v2(3)
3781   //     br scalar.ph
3782   //
3783   //   scalar.ph:
3784   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3785   //     br scalar.body
3786   //
3787   // After execution completes the vector loop, we extract the next value of
3788   // the recurrence (x) to use as the initial value in the scalar loop.
3789 
3790   // Extract the last vector element in the middle block. This will be the
3791   // initial value for the recurrence when jumping to the scalar loop.
3792   VPValue *PreviousDef = PhiR->getBackedgeValue();
3793   Value *Incoming = State.get(PreviousDef, UF - 1);
3794   auto *ExtractForScalar = Incoming;
3795   auto *IdxTy = Builder.getInt32Ty();
3796   if (VF.isVector()) {
3797     auto *One = ConstantInt::get(IdxTy, 1);
3798     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3799     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3800     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3801     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3802                                                     "vector.recur.extract");
3803   }
3804   // Extract the second last element in the middle block if the
3805   // Phi is used outside the loop. We need to extract the phi itself
3806   // and not the last element (the phi update in the current iteration). This
3807   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3808   // when the scalar loop is not run at all.
3809   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3810   if (VF.isVector()) {
3811     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3812     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3813     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3814         Incoming, Idx, "vector.recur.extract.for.phi");
3815   } else if (UF > 1)
3816     // When loop is unrolled without vectorizing, initialize
3817     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3818     // of `Incoming`. This is analogous to the vectorized case above: extracting
3819     // the second last element when VF > 1.
3820     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3821 
3822   // Fix the initial value of the original recurrence in the scalar loop.
3823   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3824   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3825   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3826   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3827   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3828     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3829     Start->addIncoming(Incoming, BB);
3830   }
3831 
3832   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3833   Phi->setName("scalar.recur");
3834 
3835   // Finally, fix users of the recurrence outside the loop. The users will need
3836   // either the last value of the scalar recurrence or the last value of the
3837   // vector recurrence we extracted in the middle block. Since the loop is in
3838   // LCSSA form, we just need to find all the phi nodes for the original scalar
3839   // recurrence in the exit block, and then add an edge for the middle block.
3840   // Note that LCSSA does not imply single entry when the original scalar loop
3841   // had multiple exiting edges (as we always run the last iteration in the
3842   // scalar epilogue); in that case, there is no edge from middle to exit and
3843   // and thus no phis which needed updated.
3844   if (!Cost->requiresScalarEpilogue(VF))
3845     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3846       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3847         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3848         State.Plan->removeLiveOut(&LCSSAPhi);
3849       }
3850 }
3851 
3852 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3853                                        VPTransformState &State) {
3854   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3855   // Get it's reduction variable descriptor.
3856   assert(Legal->isReductionVariable(OrigPhi) &&
3857          "Unable to find the reduction variable");
3858   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3859 
3860   RecurKind RK = RdxDesc.getRecurrenceKind();
3861   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3862   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3863   setDebugLocFromInst(ReductionStartValue);
3864 
3865   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3866   // This is the vector-clone of the value that leaves the loop.
3867   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3868 
3869   // Wrap flags are in general invalid after vectorization, clear them.
3870   clearReductionWrapFlags(PhiR, State);
3871 
3872   // Before each round, move the insertion point right between
3873   // the PHIs and the values we are going to write.
3874   // This allows us to write both PHINodes and the extractelement
3875   // instructions.
3876   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3877 
3878   setDebugLocFromInst(LoopExitInst);
3879 
3880   Type *PhiTy = OrigPhi->getType();
3881 
3882   VPBasicBlock *LatchVPBB =
3883       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3884   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3885   // If tail is folded by masking, the vector value to leave the loop should be
3886   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3887   // instead of the former. For an inloop reduction the reduction will already
3888   // be predicated, and does not need to be handled here.
3889   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3890     for (unsigned Part = 0; Part < UF; ++Part) {
3891       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3892       SelectInst *Sel = nullptr;
3893       for (User *U : VecLoopExitInst->users()) {
3894         if (isa<SelectInst>(U)) {
3895           assert(!Sel && "Reduction exit feeding two selects");
3896           Sel = cast<SelectInst>(U);
3897         } else
3898           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3899       }
3900       assert(Sel && "Reduction exit feeds no select");
3901       State.reset(LoopExitInstDef, Sel, Part);
3902 
3903       if (isa<FPMathOperator>(Sel))
3904         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3905 
3906       // If the target can create a predicated operator for the reduction at no
3907       // extra cost in the loop (for example a predicated vadd), it can be
3908       // cheaper for the select to remain in the loop than be sunk out of it,
3909       // and so use the select value for the phi instead of the old
3910       // LoopExitValue.
3911       if (PreferPredicatedReductionSelect ||
3912           TTI->preferPredicatedReductionSelect(
3913               RdxDesc.getOpcode(), PhiTy,
3914               TargetTransformInfo::ReductionFlags())) {
3915         auto *VecRdxPhi =
3916             cast<PHINode>(State.get(PhiR, Part));
3917         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3918       }
3919     }
3920   }
3921 
3922   // If the vector reduction can be performed in a smaller type, we truncate
3923   // then extend the loop exit value to enable InstCombine to evaluate the
3924   // entire expression in the smaller type.
3925   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3926     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3927     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3928     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3929     VectorParts RdxParts(UF);
3930     for (unsigned Part = 0; Part < UF; ++Part) {
3931       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3932       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3933       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3934                                         : Builder.CreateZExt(Trunc, VecTy);
3935       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3936         if (U != Trunc) {
3937           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3938           RdxParts[Part] = Extnd;
3939         }
3940     }
3941     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3942     for (unsigned Part = 0; Part < UF; ++Part) {
3943       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3944       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3945     }
3946   }
3947 
3948   // Reduce all of the unrolled parts into a single vector.
3949   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3950   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3951 
3952   // The middle block terminator has already been assigned a DebugLoc here (the
3953   // OrigLoop's single latch terminator). We want the whole middle block to
3954   // appear to execute on this line because: (a) it is all compiler generated,
3955   // (b) these instructions are always executed after evaluating the latch
3956   // conditional branch, and (c) other passes may add new predecessors which
3957   // terminate on this line. This is the easiest way to ensure we don't
3958   // accidentally cause an extra step back into the loop while debugging.
3959   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3960   if (PhiR->isOrdered())
3961     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3962   else {
3963     // Floating-point operations should have some FMF to enable the reduction.
3964     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3965     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3966     for (unsigned Part = 1; Part < UF; ++Part) {
3967       Value *RdxPart = State.get(LoopExitInstDef, Part);
3968       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3969         ReducedPartRdx = Builder.CreateBinOp(
3970             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3971       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3972         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3973                                            ReducedPartRdx, RdxPart);
3974       else
3975         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3976     }
3977   }
3978 
3979   // Create the reduction after the loop. Note that inloop reductions create the
3980   // target reduction in the loop using a Reduction recipe.
3981   if (VF.isVector() && !PhiR->isInLoop()) {
3982     ReducedPartRdx =
3983         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3984     // If the reduction can be performed in a smaller type, we need to extend
3985     // the reduction to the wider type before we branch to the original loop.
3986     if (PhiTy != RdxDesc.getRecurrenceType())
3987       ReducedPartRdx = RdxDesc.isSigned()
3988                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3989                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3990   }
3991 
3992   PHINode *ResumePhi =
3993       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3994 
3995   // Create a phi node that merges control-flow from the backedge-taken check
3996   // block and the middle block.
3997   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3998                                         LoopScalarPreHeader->getTerminator());
3999 
4000   // If we are fixing reductions in the epilogue loop then we should already
4001   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4002   // we carry over the incoming values correctly.
4003   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4004     if (Incoming == LoopMiddleBlock)
4005       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4006     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4007       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4008                               Incoming);
4009     else
4010       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4011   }
4012 
4013   // Set the resume value for this reduction
4014   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4015 
4016   // If there were stores of the reduction value to a uniform memory address
4017   // inside the loop, create the final store here.
4018   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4019     StoreInst *NewSI =
4020         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4021     propagateMetadata(NewSI, SI);
4022 
4023     // If the reduction value is used in other places,
4024     // then let the code below create PHI's for that.
4025   }
4026 
4027   // Now, we need to fix the users of the reduction variable
4028   // inside and outside of the scalar remainder loop.
4029 
4030   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4031   // in the exit blocks.  See comment on analogous loop in
4032   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4033   if (!Cost->requiresScalarEpilogue(VF))
4034     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4035       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4036         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4037         State.Plan->removeLiveOut(&LCSSAPhi);
4038       }
4039 
4040   // Fix the scalar loop reduction variable with the incoming reduction sum
4041   // from the vector body and from the backedge value.
4042   int IncomingEdgeBlockIdx =
4043       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4044   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4045   // Pick the other block.
4046   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4047   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4048   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4049 }
4050 
4051 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4052                                                   VPTransformState &State) {
4053   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4054   RecurKind RK = RdxDesc.getRecurrenceKind();
4055   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4056     return;
4057 
4058   SmallVector<VPValue *, 8> Worklist;
4059   SmallPtrSet<VPValue *, 8> Visited;
4060   Worklist.push_back(PhiR);
4061   Visited.insert(PhiR);
4062 
4063   while (!Worklist.empty()) {
4064     VPValue *Cur = Worklist.pop_back_val();
4065     for (unsigned Part = 0; Part < UF; ++Part) {
4066       Value *V = State.get(Cur, Part);
4067       if (!isa<OverflowingBinaryOperator>(V))
4068         break;
4069       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4070       }
4071 
4072       for (VPUser *U : Cur->users()) {
4073         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4074         if (!UserRecipe)
4075           continue;
4076         for (VPValue *V : UserRecipe->definedValues())
4077           if (Visited.insert(V).second)
4078             Worklist.push_back(V);
4079       }
4080   }
4081 }
4082 
4083 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4084   // The basic block and loop containing the predicated instruction.
4085   auto *PredBB = PredInst->getParent();
4086   auto *VectorLoop = LI->getLoopFor(PredBB);
4087 
4088   // Initialize a worklist with the operands of the predicated instruction.
4089   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4090 
4091   // Holds instructions that we need to analyze again. An instruction may be
4092   // reanalyzed if we don't yet know if we can sink it or not.
4093   SmallVector<Instruction *, 8> InstsToReanalyze;
4094 
4095   // Returns true if a given use occurs in the predicated block. Phi nodes use
4096   // their operands in their corresponding predecessor blocks.
4097   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4098     auto *I = cast<Instruction>(U.getUser());
4099     BasicBlock *BB = I->getParent();
4100     if (auto *Phi = dyn_cast<PHINode>(I))
4101       BB = Phi->getIncomingBlock(
4102           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4103     return BB == PredBB;
4104   };
4105 
4106   // Iteratively sink the scalarized operands of the predicated instruction
4107   // into the block we created for it. When an instruction is sunk, it's
4108   // operands are then added to the worklist. The algorithm ends after one pass
4109   // through the worklist doesn't sink a single instruction.
4110   bool Changed;
4111   do {
4112     // Add the instructions that need to be reanalyzed to the worklist, and
4113     // reset the changed indicator.
4114     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4115     InstsToReanalyze.clear();
4116     Changed = false;
4117 
4118     while (!Worklist.empty()) {
4119       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4120 
4121       // We can't sink an instruction if it is a phi node, is not in the loop,
4122       // or may have side effects.
4123       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4124           I->mayHaveSideEffects())
4125         continue;
4126 
4127       // If the instruction is already in PredBB, check if we can sink its
4128       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4129       // sinking the scalar instruction I, hence it appears in PredBB; but it
4130       // may have failed to sink I's operands (recursively), which we try
4131       // (again) here.
4132       if (I->getParent() == PredBB) {
4133         Worklist.insert(I->op_begin(), I->op_end());
4134         continue;
4135       }
4136 
4137       // It's legal to sink the instruction if all its uses occur in the
4138       // predicated block. Otherwise, there's nothing to do yet, and we may
4139       // need to reanalyze the instruction.
4140       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4141         InstsToReanalyze.push_back(I);
4142         continue;
4143       }
4144 
4145       // Move the instruction to the beginning of the predicated block, and add
4146       // it's operands to the worklist.
4147       I->moveBefore(&*PredBB->getFirstInsertionPt());
4148       Worklist.insert(I->op_begin(), I->op_end());
4149 
4150       // The sinking may have enabled other instructions to be sunk, so we will
4151       // need to iterate.
4152       Changed = true;
4153     }
4154   } while (Changed);
4155 }
4156 
4157 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4158                                               VPTransformState &State) {
4159   auto Iter = depth_first(
4160       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4161   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4162     for (VPRecipeBase &P : VPBB->phis()) {
4163       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4164       if (!VPPhi)
4165         continue;
4166       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4167       // Make sure the builder has a valid insert point.
4168       Builder.SetInsertPoint(NewPhi);
4169       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4170         VPValue *Inc = VPPhi->getIncomingValue(i);
4171         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4172         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4173       }
4174     }
4175   }
4176 }
4177 
4178 bool InnerLoopVectorizer::useOrderedReductions(
4179     const RecurrenceDescriptor &RdxDesc) {
4180   return Cost->useOrderedReductions(RdxDesc);
4181 }
4182 
4183 /// A helper function for checking whether an integer division-related
4184 /// instruction may divide by zero (in which case it must be predicated if
4185 /// executed conditionally in the scalar code).
4186 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4187 /// Non-zero divisors that are non compile-time constants will not be
4188 /// converted into multiplication, so we will still end up scalarizing
4189 /// the division, but can do so w/o predication.
4190 static bool mayDivideByZero(Instruction &I) {
4191   assert((I.getOpcode() == Instruction::UDiv ||
4192           I.getOpcode() == Instruction::SDiv ||
4193           I.getOpcode() == Instruction::URem ||
4194           I.getOpcode() == Instruction::SRem) &&
4195          "Unexpected instruction");
4196   Value *Divisor = I.getOperand(1);
4197   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4198   return !CInt || CInt->isZero();
4199 }
4200 
4201 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4202                                                VPUser &ArgOperands,
4203                                                VPTransformState &State) {
4204   assert(!isa<DbgInfoIntrinsic>(I) &&
4205          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4206   setDebugLocFromInst(&I);
4207 
4208   Module *M = I.getParent()->getParent()->getParent();
4209   auto *CI = cast<CallInst>(&I);
4210 
4211   SmallVector<Type *, 4> Tys;
4212   for (Value *ArgOperand : CI->args())
4213     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4214 
4215   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4216 
4217   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4218   // version of the instruction.
4219   // Is it beneficial to perform intrinsic call compared to lib call?
4220   bool NeedToScalarize = false;
4221   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4222   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4223   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4224   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4225          "Instruction should be scalarized elsewhere.");
4226   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4227          "Either the intrinsic cost or vector call cost must be valid");
4228 
4229   for (unsigned Part = 0; Part < UF; ++Part) {
4230     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4231     SmallVector<Value *, 4> Args;
4232     for (auto &I : enumerate(ArgOperands.operands())) {
4233       // Some intrinsics have a scalar argument - don't replace it with a
4234       // vector.
4235       Value *Arg;
4236       if (!UseVectorIntrinsic ||
4237           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4238         Arg = State.get(I.value(), Part);
4239       else
4240         Arg = State.get(I.value(), VPIteration(0, 0));
4241       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4242         TysForDecl.push_back(Arg->getType());
4243       Args.push_back(Arg);
4244     }
4245 
4246     Function *VectorF;
4247     if (UseVectorIntrinsic) {
4248       // Use vector version of the intrinsic.
4249       if (VF.isVector())
4250         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4251       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4252       assert(VectorF && "Can't retrieve vector intrinsic.");
4253     } else {
4254       // Use vector version of the function call.
4255       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4256 #ifndef NDEBUG
4257       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4258              "Can't create vector function.");
4259 #endif
4260         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4261     }
4262       SmallVector<OperandBundleDef, 1> OpBundles;
4263       CI->getOperandBundlesAsDefs(OpBundles);
4264       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4265 
4266       if (isa<FPMathOperator>(V))
4267         V->copyFastMathFlags(CI);
4268 
4269       State.set(Def, V, Part);
4270       addMetadata(V, &I);
4271   }
4272 }
4273 
4274 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4275   // We should not collect Scalars more than once per VF. Right now, this
4276   // function is called from collectUniformsAndScalars(), which already does
4277   // this check. Collecting Scalars for VF=1 does not make any sense.
4278   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4279          "This function should not be visited twice for the same VF");
4280 
4281   // This avoids any chances of creating a REPLICATE recipe during planning
4282   // since that would result in generation of scalarized code during execution,
4283   // which is not supported for scalable vectors.
4284   if (VF.isScalable()) {
4285     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4286     return;
4287   }
4288 
4289   SmallSetVector<Instruction *, 8> Worklist;
4290 
4291   // These sets are used to seed the analysis with pointers used by memory
4292   // accesses that will remain scalar.
4293   SmallSetVector<Instruction *, 8> ScalarPtrs;
4294   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4295   auto *Latch = TheLoop->getLoopLatch();
4296 
4297   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4298   // The pointer operands of loads and stores will be scalar as long as the
4299   // memory access is not a gather or scatter operation. The value operand of a
4300   // store will remain scalar if the store is scalarized.
4301   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4302     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4303     assert(WideningDecision != CM_Unknown &&
4304            "Widening decision should be ready at this moment");
4305     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4306       if (Ptr == Store->getValueOperand())
4307         return WideningDecision == CM_Scalarize;
4308     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4309            "Ptr is neither a value or pointer operand");
4310     return WideningDecision != CM_GatherScatter;
4311   };
4312 
4313   // A helper that returns true if the given value is a bitcast or
4314   // getelementptr instruction contained in the loop.
4315   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4316     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4317             isa<GetElementPtrInst>(V)) &&
4318            !TheLoop->isLoopInvariant(V);
4319   };
4320 
4321   // A helper that evaluates a memory access's use of a pointer. If the use will
4322   // be a scalar use and the pointer is only used by memory accesses, we place
4323   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4324   // PossibleNonScalarPtrs.
4325   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4326     // We only care about bitcast and getelementptr instructions contained in
4327     // the loop.
4328     if (!isLoopVaryingBitCastOrGEP(Ptr))
4329       return;
4330 
4331     // If the pointer has already been identified as scalar (e.g., if it was
4332     // also identified as uniform), there's nothing to do.
4333     auto *I = cast<Instruction>(Ptr);
4334     if (Worklist.count(I))
4335       return;
4336 
4337     // If the use of the pointer will be a scalar use, and all users of the
4338     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4339     // place the pointer in PossibleNonScalarPtrs.
4340     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4341           return isa<LoadInst>(U) || isa<StoreInst>(U);
4342         }))
4343       ScalarPtrs.insert(I);
4344     else
4345       PossibleNonScalarPtrs.insert(I);
4346   };
4347 
4348   // We seed the scalars analysis with three classes of instructions: (1)
4349   // instructions marked uniform-after-vectorization and (2) bitcast,
4350   // getelementptr and (pointer) phi instructions used by memory accesses
4351   // requiring a scalar use.
4352   //
4353   // (1) Add to the worklist all instructions that have been identified as
4354   // uniform-after-vectorization.
4355   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4356 
4357   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4358   // memory accesses requiring a scalar use. The pointer operands of loads and
4359   // stores will be scalar as long as the memory accesses is not a gather or
4360   // scatter operation. The value operand of a store will remain scalar if the
4361   // store is scalarized.
4362   for (auto *BB : TheLoop->blocks())
4363     for (auto &I : *BB) {
4364       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4365         evaluatePtrUse(Load, Load->getPointerOperand());
4366       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4367         evaluatePtrUse(Store, Store->getPointerOperand());
4368         evaluatePtrUse(Store, Store->getValueOperand());
4369       }
4370     }
4371   for (auto *I : ScalarPtrs)
4372     if (!PossibleNonScalarPtrs.count(I)) {
4373       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4374       Worklist.insert(I);
4375     }
4376 
4377   // Insert the forced scalars.
4378   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4379   // induction variable when the PHI user is scalarized.
4380   auto ForcedScalar = ForcedScalars.find(VF);
4381   if (ForcedScalar != ForcedScalars.end())
4382     for (auto *I : ForcedScalar->second)
4383       Worklist.insert(I);
4384 
4385   // Expand the worklist by looking through any bitcasts and getelementptr
4386   // instructions we've already identified as scalar. This is similar to the
4387   // expansion step in collectLoopUniforms(); however, here we're only
4388   // expanding to include additional bitcasts and getelementptr instructions.
4389   unsigned Idx = 0;
4390   while (Idx != Worklist.size()) {
4391     Instruction *Dst = Worklist[Idx++];
4392     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4393       continue;
4394     auto *Src = cast<Instruction>(Dst->getOperand(0));
4395     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4396           auto *J = cast<Instruction>(U);
4397           return !TheLoop->contains(J) || Worklist.count(J) ||
4398                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4399                   isScalarUse(J, Src));
4400         })) {
4401       Worklist.insert(Src);
4402       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4403     }
4404   }
4405 
4406   // An induction variable will remain scalar if all users of the induction
4407   // variable and induction variable update remain scalar.
4408   for (auto &Induction : Legal->getInductionVars()) {
4409     auto *Ind = Induction.first;
4410     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4411 
4412     // If tail-folding is applied, the primary induction variable will be used
4413     // to feed a vector compare.
4414     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4415       continue;
4416 
4417     // Returns true if \p Indvar is a pointer induction that is used directly by
4418     // load/store instruction \p I.
4419     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4420                                               Instruction *I) {
4421       return Induction.second.getKind() ==
4422                  InductionDescriptor::IK_PtrInduction &&
4423              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4424              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4425     };
4426 
4427     // Determine if all users of the induction variable are scalar after
4428     // vectorization.
4429     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4430       auto *I = cast<Instruction>(U);
4431       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4432              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4433     });
4434     if (!ScalarInd)
4435       continue;
4436 
4437     // Determine if all users of the induction variable update instruction are
4438     // scalar after vectorization.
4439     auto ScalarIndUpdate =
4440         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4441           auto *I = cast<Instruction>(U);
4442           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4443                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4444         });
4445     if (!ScalarIndUpdate)
4446       continue;
4447 
4448     // The induction variable and its update instruction will remain scalar.
4449     Worklist.insert(Ind);
4450     Worklist.insert(IndUpdate);
4451     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4452     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4453                       << "\n");
4454   }
4455 
4456   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4457 }
4458 
4459 bool LoopVectorizationCostModel::isScalarWithPredication(
4460     Instruction *I, ElementCount VF) const {
4461   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4462     return false;
4463   switch(I->getOpcode()) {
4464   default:
4465     break;
4466   case Instruction::Load:
4467   case Instruction::Store: {
4468     if (!Legal->isMaskRequired(I))
4469       return false;
4470     auto *Ptr = getLoadStorePointerOperand(I);
4471     auto *Ty = getLoadStoreType(I);
4472     Type *VTy = Ty;
4473     if (VF.isVector())
4474       VTy = VectorType::get(Ty, VF);
4475     const Align Alignment = getLoadStoreAlignment(I);
4476     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4477                                 TTI.isLegalMaskedGather(VTy, Alignment))
4478                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4479                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4480   }
4481   case Instruction::UDiv:
4482   case Instruction::SDiv:
4483   case Instruction::SRem:
4484   case Instruction::URem:
4485     return mayDivideByZero(*I);
4486   }
4487   return false;
4488 }
4489 
4490 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4491     Instruction *I, ElementCount VF) {
4492   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4493   assert(getWideningDecision(I, VF) == CM_Unknown &&
4494          "Decision should not be set yet.");
4495   auto *Group = getInterleavedAccessGroup(I);
4496   assert(Group && "Must have a group.");
4497 
4498   // If the instruction's allocated size doesn't equal it's type size, it
4499   // requires padding and will be scalarized.
4500   auto &DL = I->getModule()->getDataLayout();
4501   auto *ScalarTy = getLoadStoreType(I);
4502   if (hasIrregularType(ScalarTy, DL))
4503     return false;
4504 
4505   // If the group involves a non-integral pointer, we may not be able to
4506   // losslessly cast all values to a common type.
4507   unsigned InterleaveFactor = Group->getFactor();
4508   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4509   for (unsigned i = 0; i < InterleaveFactor; i++) {
4510     Instruction *Member = Group->getMember(i);
4511     if (!Member)
4512       continue;
4513     auto *MemberTy = getLoadStoreType(Member);
4514     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4515     // Don't coerce non-integral pointers to integers or vice versa.
4516     if (MemberNI != ScalarNI) {
4517       // TODO: Consider adding special nullptr value case here
4518       return false;
4519     } else if (MemberNI && ScalarNI &&
4520                ScalarTy->getPointerAddressSpace() !=
4521                MemberTy->getPointerAddressSpace()) {
4522       return false;
4523     }
4524   }
4525 
4526   // Check if masking is required.
4527   // A Group may need masking for one of two reasons: it resides in a block that
4528   // needs predication, or it was decided to use masking to deal with gaps
4529   // (either a gap at the end of a load-access that may result in a speculative
4530   // load, or any gaps in a store-access).
4531   bool PredicatedAccessRequiresMasking =
4532       blockNeedsPredicationForAnyReason(I->getParent()) &&
4533       Legal->isMaskRequired(I);
4534   bool LoadAccessWithGapsRequiresEpilogMasking =
4535       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4536       !isScalarEpilogueAllowed();
4537   bool StoreAccessWithGapsRequiresMasking =
4538       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4539   if (!PredicatedAccessRequiresMasking &&
4540       !LoadAccessWithGapsRequiresEpilogMasking &&
4541       !StoreAccessWithGapsRequiresMasking)
4542     return true;
4543 
4544   // If masked interleaving is required, we expect that the user/target had
4545   // enabled it, because otherwise it either wouldn't have been created or
4546   // it should have been invalidated by the CostModel.
4547   assert(useMaskedInterleavedAccesses(TTI) &&
4548          "Masked interleave-groups for predicated accesses are not enabled.");
4549 
4550   if (Group->isReverse())
4551     return false;
4552 
4553   auto *Ty = getLoadStoreType(I);
4554   const Align Alignment = getLoadStoreAlignment(I);
4555   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4556                           : TTI.isLegalMaskedStore(Ty, Alignment);
4557 }
4558 
4559 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4560     Instruction *I, ElementCount VF) {
4561   // Get and ensure we have a valid memory instruction.
4562   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4563 
4564   auto *Ptr = getLoadStorePointerOperand(I);
4565   auto *ScalarTy = getLoadStoreType(I);
4566 
4567   // In order to be widened, the pointer should be consecutive, first of all.
4568   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4569     return false;
4570 
4571   // If the instruction is a store located in a predicated block, it will be
4572   // scalarized.
4573   if (isScalarWithPredication(I, VF))
4574     return false;
4575 
4576   // If the instruction's allocated size doesn't equal it's type size, it
4577   // requires padding and will be scalarized.
4578   auto &DL = I->getModule()->getDataLayout();
4579   if (hasIrregularType(ScalarTy, DL))
4580     return false;
4581 
4582   return true;
4583 }
4584 
4585 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4586   // We should not collect Uniforms more than once per VF. Right now,
4587   // this function is called from collectUniformsAndScalars(), which
4588   // already does this check. Collecting Uniforms for VF=1 does not make any
4589   // sense.
4590 
4591   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4592          "This function should not be visited twice for the same VF");
4593 
4594   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4595   // not analyze again.  Uniforms.count(VF) will return 1.
4596   Uniforms[VF].clear();
4597 
4598   // We now know that the loop is vectorizable!
4599   // Collect instructions inside the loop that will remain uniform after
4600   // vectorization.
4601 
4602   // Global values, params and instructions outside of current loop are out of
4603   // scope.
4604   auto isOutOfScope = [&](Value *V) -> bool {
4605     Instruction *I = dyn_cast<Instruction>(V);
4606     return (!I || !TheLoop->contains(I));
4607   };
4608 
4609   // Worklist containing uniform instructions demanding lane 0.
4610   SetVector<Instruction *> Worklist;
4611   BasicBlock *Latch = TheLoop->getLoopLatch();
4612 
4613   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4614   // that are scalar with predication must not be considered uniform after
4615   // vectorization, because that would create an erroneous replicating region
4616   // where only a single instance out of VF should be formed.
4617   // TODO: optimize such seldom cases if found important, see PR40816.
4618   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4619     if (isOutOfScope(I)) {
4620       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4621                         << *I << "\n");
4622       return;
4623     }
4624     if (isScalarWithPredication(I, VF)) {
4625       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4626                         << *I << "\n");
4627       return;
4628     }
4629     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4630     Worklist.insert(I);
4631   };
4632 
4633   // Start with the conditional branch. If the branch condition is an
4634   // instruction contained in the loop that is only used by the branch, it is
4635   // uniform.
4636   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4637   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4638     addToWorklistIfAllowed(Cmp);
4639 
4640   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4641     InstWidening WideningDecision = getWideningDecision(I, VF);
4642     assert(WideningDecision != CM_Unknown &&
4643            "Widening decision should be ready at this moment");
4644 
4645     // A uniform memory op is itself uniform.  We exclude uniform stores
4646     // here as they demand the last lane, not the first one.
4647     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4648       assert(WideningDecision == CM_Scalarize);
4649       return true;
4650     }
4651 
4652     return (WideningDecision == CM_Widen ||
4653             WideningDecision == CM_Widen_Reverse ||
4654             WideningDecision == CM_Interleave);
4655   };
4656 
4657 
4658   // Returns true if Ptr is the pointer operand of a memory access instruction
4659   // I, and I is known to not require scalarization.
4660   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4661     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4662   };
4663 
4664   // Holds a list of values which are known to have at least one uniform use.
4665   // Note that there may be other uses which aren't uniform.  A "uniform use"
4666   // here is something which only demands lane 0 of the unrolled iterations;
4667   // it does not imply that all lanes produce the same value (e.g. this is not
4668   // the usual meaning of uniform)
4669   SetVector<Value *> HasUniformUse;
4670 
4671   // Scan the loop for instructions which are either a) known to have only
4672   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4673   for (auto *BB : TheLoop->blocks())
4674     for (auto &I : *BB) {
4675       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4676         switch (II->getIntrinsicID()) {
4677         case Intrinsic::sideeffect:
4678         case Intrinsic::experimental_noalias_scope_decl:
4679         case Intrinsic::assume:
4680         case Intrinsic::lifetime_start:
4681         case Intrinsic::lifetime_end:
4682           if (TheLoop->hasLoopInvariantOperands(&I))
4683             addToWorklistIfAllowed(&I);
4684           break;
4685         default:
4686           break;
4687         }
4688       }
4689 
4690       // ExtractValue instructions must be uniform, because the operands are
4691       // known to be loop-invariant.
4692       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4693         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4694                "Expected aggregate value to be loop invariant");
4695         addToWorklistIfAllowed(EVI);
4696         continue;
4697       }
4698 
4699       // If there's no pointer operand, there's nothing to do.
4700       auto *Ptr = getLoadStorePointerOperand(&I);
4701       if (!Ptr)
4702         continue;
4703 
4704       // A uniform memory op is itself uniform.  We exclude uniform stores
4705       // here as they demand the last lane, not the first one.
4706       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4707         addToWorklistIfAllowed(&I);
4708 
4709       if (isUniformDecision(&I, VF)) {
4710         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4711         HasUniformUse.insert(Ptr);
4712       }
4713     }
4714 
4715   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4716   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4717   // disallows uses outside the loop as well.
4718   for (auto *V : HasUniformUse) {
4719     if (isOutOfScope(V))
4720       continue;
4721     auto *I = cast<Instruction>(V);
4722     auto UsersAreMemAccesses =
4723       llvm::all_of(I->users(), [&](User *U) -> bool {
4724         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4725       });
4726     if (UsersAreMemAccesses)
4727       addToWorklistIfAllowed(I);
4728   }
4729 
4730   // Expand Worklist in topological order: whenever a new instruction
4731   // is added , its users should be already inside Worklist.  It ensures
4732   // a uniform instruction will only be used by uniform instructions.
4733   unsigned idx = 0;
4734   while (idx != Worklist.size()) {
4735     Instruction *I = Worklist[idx++];
4736 
4737     for (auto OV : I->operand_values()) {
4738       // isOutOfScope operands cannot be uniform instructions.
4739       if (isOutOfScope(OV))
4740         continue;
4741       // First order recurrence Phi's should typically be considered
4742       // non-uniform.
4743       auto *OP = dyn_cast<PHINode>(OV);
4744       if (OP && Legal->isFirstOrderRecurrence(OP))
4745         continue;
4746       // If all the users of the operand are uniform, then add the
4747       // operand into the uniform worklist.
4748       auto *OI = cast<Instruction>(OV);
4749       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4750             auto *J = cast<Instruction>(U);
4751             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4752           }))
4753         addToWorklistIfAllowed(OI);
4754     }
4755   }
4756 
4757   // For an instruction to be added into Worklist above, all its users inside
4758   // the loop should also be in Worklist. However, this condition cannot be
4759   // true for phi nodes that form a cyclic dependence. We must process phi
4760   // nodes separately. An induction variable will remain uniform if all users
4761   // of the induction variable and induction variable update remain uniform.
4762   // The code below handles both pointer and non-pointer induction variables.
4763   for (auto &Induction : Legal->getInductionVars()) {
4764     auto *Ind = Induction.first;
4765     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4766 
4767     // Determine if all users of the induction variable are uniform after
4768     // vectorization.
4769     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4770       auto *I = cast<Instruction>(U);
4771       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4772              isVectorizedMemAccessUse(I, Ind);
4773     });
4774     if (!UniformInd)
4775       continue;
4776 
4777     // Determine if all users of the induction variable update instruction are
4778     // uniform after vectorization.
4779     auto UniformIndUpdate =
4780         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4781           auto *I = cast<Instruction>(U);
4782           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4783                  isVectorizedMemAccessUse(I, IndUpdate);
4784         });
4785     if (!UniformIndUpdate)
4786       continue;
4787 
4788     // The induction variable and its update instruction will remain uniform.
4789     addToWorklistIfAllowed(Ind);
4790     addToWorklistIfAllowed(IndUpdate);
4791   }
4792 
4793   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4794 }
4795 
4796 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4797   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4798 
4799   if (Legal->getRuntimePointerChecking()->Need) {
4800     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4801         "runtime pointer checks needed. Enable vectorization of this "
4802         "loop with '#pragma clang loop vectorize(enable)' when "
4803         "compiling with -Os/-Oz",
4804         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4805     return true;
4806   }
4807 
4808   if (!PSE.getPredicate().isAlwaysTrue()) {
4809     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4810         "runtime SCEV checks needed. Enable vectorization of this "
4811         "loop with '#pragma clang loop vectorize(enable)' when "
4812         "compiling with -Os/-Oz",
4813         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4814     return true;
4815   }
4816 
4817   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4818   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4819     reportVectorizationFailure("Runtime stride check for small trip count",
4820         "runtime stride == 1 checks needed. Enable vectorization of "
4821         "this loop without such check by compiling with -Os/-Oz",
4822         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4823     return true;
4824   }
4825 
4826   return false;
4827 }
4828 
4829 ElementCount
4830 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4831   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4832     return ElementCount::getScalable(0);
4833 
4834   if (Hints->isScalableVectorizationDisabled()) {
4835     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4836                             "ScalableVectorizationDisabled", ORE, TheLoop);
4837     return ElementCount::getScalable(0);
4838   }
4839 
4840   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4841 
4842   auto MaxScalableVF = ElementCount::getScalable(
4843       std::numeric_limits<ElementCount::ScalarTy>::max());
4844 
4845   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4846   // FIXME: While for scalable vectors this is currently sufficient, this should
4847   // be replaced by a more detailed mechanism that filters out specific VFs,
4848   // instead of invalidating vectorization for a whole set of VFs based on the
4849   // MaxVF.
4850 
4851   // Disable scalable vectorization if the loop contains unsupported reductions.
4852   if (!canVectorizeReductions(MaxScalableVF)) {
4853     reportVectorizationInfo(
4854         "Scalable vectorization not supported for the reduction "
4855         "operations found in this loop.",
4856         "ScalableVFUnfeasible", ORE, TheLoop);
4857     return ElementCount::getScalable(0);
4858   }
4859 
4860   // Disable scalable vectorization if the loop contains any instructions
4861   // with element types not supported for scalable vectors.
4862   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4863         return !Ty->isVoidTy() &&
4864                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4865       })) {
4866     reportVectorizationInfo("Scalable vectorization is not supported "
4867                             "for all element types found in this loop.",
4868                             "ScalableVFUnfeasible", ORE, TheLoop);
4869     return ElementCount::getScalable(0);
4870   }
4871 
4872   if (Legal->isSafeForAnyVectorWidth())
4873     return MaxScalableVF;
4874 
4875   // Limit MaxScalableVF by the maximum safe dependence distance.
4876   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4877   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4878     MaxVScale =
4879         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4880   MaxScalableVF = ElementCount::getScalable(
4881       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
4882   if (!MaxScalableVF)
4883     reportVectorizationInfo(
4884         "Max legal vector width too small, scalable vectorization "
4885         "unfeasible.",
4886         "ScalableVFUnfeasible", ORE, TheLoop);
4887 
4888   return MaxScalableVF;
4889 }
4890 
4891 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4892     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4893   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4894   unsigned SmallestType, WidestType;
4895   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4896 
4897   // Get the maximum safe dependence distance in bits computed by LAA.
4898   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4899   // the memory accesses that is most restrictive (involved in the smallest
4900   // dependence distance).
4901   unsigned MaxSafeElements =
4902       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4903 
4904   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4905   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4906 
4907   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4908                     << ".\n");
4909   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4910                     << ".\n");
4911 
4912   // First analyze the UserVF, fall back if the UserVF should be ignored.
4913   if (UserVF) {
4914     auto MaxSafeUserVF =
4915         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4916 
4917     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4918       // If `VF=vscale x N` is safe, then so is `VF=N`
4919       if (UserVF.isScalable())
4920         return FixedScalableVFPair(
4921             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4922       else
4923         return UserVF;
4924     }
4925 
4926     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4927 
4928     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4929     // is better to ignore the hint and let the compiler choose a suitable VF.
4930     if (!UserVF.isScalable()) {
4931       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4932                         << " is unsafe, clamping to max safe VF="
4933                         << MaxSafeFixedVF << ".\n");
4934       ORE->emit([&]() {
4935         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4936                                           TheLoop->getStartLoc(),
4937                                           TheLoop->getHeader())
4938                << "User-specified vectorization factor "
4939                << ore::NV("UserVectorizationFactor", UserVF)
4940                << " is unsafe, clamping to maximum safe vectorization factor "
4941                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4942       });
4943       return MaxSafeFixedVF;
4944     }
4945 
4946     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4947       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4948                         << " is ignored because scalable vectors are not "
4949                            "available.\n");
4950       ORE->emit([&]() {
4951         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4952                                           TheLoop->getStartLoc(),
4953                                           TheLoop->getHeader())
4954                << "User-specified vectorization factor "
4955                << ore::NV("UserVectorizationFactor", UserVF)
4956                << " is ignored because the target does not support scalable "
4957                   "vectors. The compiler will pick a more suitable value.";
4958       });
4959     } else {
4960       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4961                         << " is unsafe. Ignoring scalable UserVF.\n");
4962       ORE->emit([&]() {
4963         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4964                                           TheLoop->getStartLoc(),
4965                                           TheLoop->getHeader())
4966                << "User-specified vectorization factor "
4967                << ore::NV("UserVectorizationFactor", UserVF)
4968                << " is unsafe. Ignoring the hint to let the compiler pick a "
4969                   "more suitable value.";
4970       });
4971     }
4972   }
4973 
4974   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4975                     << " / " << WidestType << " bits.\n");
4976 
4977   FixedScalableVFPair Result(ElementCount::getFixed(1),
4978                              ElementCount::getScalable(0));
4979   if (auto MaxVF =
4980           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4981                                   MaxSafeFixedVF, FoldTailByMasking))
4982     Result.FixedVF = MaxVF;
4983 
4984   if (auto MaxVF =
4985           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4986                                   MaxSafeScalableVF, FoldTailByMasking))
4987     if (MaxVF.isScalable()) {
4988       Result.ScalableVF = MaxVF;
4989       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4990                         << "\n");
4991     }
4992 
4993   return Result;
4994 }
4995 
4996 FixedScalableVFPair
4997 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4998   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4999     // TODO: It may by useful to do since it's still likely to be dynamically
5000     // uniform if the target can skip.
5001     reportVectorizationFailure(
5002         "Not inserting runtime ptr check for divergent target",
5003         "runtime pointer checks needed. Not enabled for divergent target",
5004         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5005     return FixedScalableVFPair::getNone();
5006   }
5007 
5008   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5009   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5010   if (TC == 1) {
5011     reportVectorizationFailure("Single iteration (non) loop",
5012         "loop trip count is one, irrelevant for vectorization",
5013         "SingleIterationLoop", ORE, TheLoop);
5014     return FixedScalableVFPair::getNone();
5015   }
5016 
5017   switch (ScalarEpilogueStatus) {
5018   case CM_ScalarEpilogueAllowed:
5019     return computeFeasibleMaxVF(TC, UserVF, false);
5020   case CM_ScalarEpilogueNotAllowedUsePredicate:
5021     LLVM_FALLTHROUGH;
5022   case CM_ScalarEpilogueNotNeededUsePredicate:
5023     LLVM_DEBUG(
5024         dbgs() << "LV: vector predicate hint/switch found.\n"
5025                << "LV: Not allowing scalar epilogue, creating predicated "
5026                << "vector loop.\n");
5027     break;
5028   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5029     // fallthrough as a special case of OptForSize
5030   case CM_ScalarEpilogueNotAllowedOptSize:
5031     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5032       LLVM_DEBUG(
5033           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5034     else
5035       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5036                         << "count.\n");
5037 
5038     // Bail if runtime checks are required, which are not good when optimising
5039     // for size.
5040     if (runtimeChecksRequired())
5041       return FixedScalableVFPair::getNone();
5042 
5043     break;
5044   }
5045 
5046   // The only loops we can vectorize without a scalar epilogue, are loops with
5047   // a bottom-test and a single exiting block. We'd have to handle the fact
5048   // that not every instruction executes on the last iteration.  This will
5049   // require a lane mask which varies through the vector loop body.  (TODO)
5050   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5051     // If there was a tail-folding hint/switch, but we can't fold the tail by
5052     // masking, fallback to a vectorization with a scalar epilogue.
5053     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5054       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5055                            "scalar epilogue instead.\n");
5056       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5057       return computeFeasibleMaxVF(TC, UserVF, false);
5058     }
5059     return FixedScalableVFPair::getNone();
5060   }
5061 
5062   // Now try the tail folding
5063 
5064   // Invalidate interleave groups that require an epilogue if we can't mask
5065   // the interleave-group.
5066   if (!useMaskedInterleavedAccesses(TTI)) {
5067     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5068            "No decisions should have been taken at this point");
5069     // Note: There is no need to invalidate any cost modeling decisions here, as
5070     // non where taken so far.
5071     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5072   }
5073 
5074   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5075   // Avoid tail folding if the trip count is known to be a multiple of any VF
5076   // we chose.
5077   // FIXME: The condition below pessimises the case for fixed-width vectors,
5078   // when scalable VFs are also candidates for vectorization.
5079   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5080     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5081     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5082            "MaxFixedVF must be a power of 2");
5083     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5084                                    : MaxFixedVF.getFixedValue();
5085     ScalarEvolution *SE = PSE.getSE();
5086     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5087     const SCEV *ExitCount = SE->getAddExpr(
5088         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5089     const SCEV *Rem = SE->getURemExpr(
5090         SE->applyLoopGuards(ExitCount, TheLoop),
5091         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5092     if (Rem->isZero()) {
5093       // Accept MaxFixedVF if we do not have a tail.
5094       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5095       return MaxFactors;
5096     }
5097   }
5098 
5099   // If we don't know the precise trip count, or if the trip count that we
5100   // found modulo the vectorization factor is not zero, try to fold the tail
5101   // by masking.
5102   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5103   if (Legal->prepareToFoldTailByMasking()) {
5104     FoldTailByMasking = true;
5105     return MaxFactors;
5106   }
5107 
5108   // If there was a tail-folding hint/switch, but we can't fold the tail by
5109   // masking, fallback to a vectorization with a scalar epilogue.
5110   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5111     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5112                          "scalar epilogue instead.\n");
5113     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5114     return MaxFactors;
5115   }
5116 
5117   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5118     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5119     return FixedScalableVFPair::getNone();
5120   }
5121 
5122   if (TC == 0) {
5123     reportVectorizationFailure(
5124         "Unable to calculate the loop count due to complex control flow",
5125         "unable to calculate the loop count due to complex control flow",
5126         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5127     return FixedScalableVFPair::getNone();
5128   }
5129 
5130   reportVectorizationFailure(
5131       "Cannot optimize for size and vectorize at the same time.",
5132       "cannot optimize for size and vectorize at the same time. "
5133       "Enable vectorization of this loop with '#pragma clang loop "
5134       "vectorize(enable)' when compiling with -Os/-Oz",
5135       "NoTailLoopWithOptForSize", ORE, TheLoop);
5136   return FixedScalableVFPair::getNone();
5137 }
5138 
5139 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5140     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5141     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5142   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5143   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5144       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5145                            : TargetTransformInfo::RGK_FixedWidthVector);
5146 
5147   // Convenience function to return the minimum of two ElementCounts.
5148   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5149     assert((LHS.isScalable() == RHS.isScalable()) &&
5150            "Scalable flags must match");
5151     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5152   };
5153 
5154   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5155   // Note that both WidestRegister and WidestType may not be a powers of 2.
5156   auto MaxVectorElementCount = ElementCount::get(
5157       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5158       ComputeScalableMaxVF);
5159   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5160   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5161                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5162 
5163   if (!MaxVectorElementCount) {
5164     LLVM_DEBUG(dbgs() << "LV: The target has no "
5165                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5166                       << " vector registers.\n");
5167     return ElementCount::getFixed(1);
5168   }
5169 
5170   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5171   if (ConstTripCount &&
5172       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5173       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5174     // If loop trip count (TC) is known at compile time there is no point in
5175     // choosing VF greater than TC (as done in the loop below). Select maximum
5176     // power of two which doesn't exceed TC.
5177     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5178     // when the TC is less than or equal to the known number of lanes.
5179     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5180     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5181                          "exceeding the constant trip count: "
5182                       << ClampedConstTripCount << "\n");
5183     return ElementCount::getFixed(ClampedConstTripCount);
5184   }
5185 
5186   TargetTransformInfo::RegisterKind RegKind =
5187       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5188                            : TargetTransformInfo::RGK_FixedWidthVector;
5189   ElementCount MaxVF = MaxVectorElementCount;
5190   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5191                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5192     auto MaxVectorElementCountMaxBW = ElementCount::get(
5193         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5194         ComputeScalableMaxVF);
5195     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5196 
5197     // Collect all viable vectorization factors larger than the default MaxVF
5198     // (i.e. MaxVectorElementCount).
5199     SmallVector<ElementCount, 8> VFs;
5200     for (ElementCount VS = MaxVectorElementCount * 2;
5201          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5202       VFs.push_back(VS);
5203 
5204     // For each VF calculate its register usage.
5205     auto RUs = calculateRegisterUsage(VFs);
5206 
5207     // Select the largest VF which doesn't require more registers than existing
5208     // ones.
5209     for (int i = RUs.size() - 1; i >= 0; --i) {
5210       bool Selected = true;
5211       for (auto &pair : RUs[i].MaxLocalUsers) {
5212         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5213         if (pair.second > TargetNumRegisters)
5214           Selected = false;
5215       }
5216       if (Selected) {
5217         MaxVF = VFs[i];
5218         break;
5219       }
5220     }
5221     if (ElementCount MinVF =
5222             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5223       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5224         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5225                           << ") with target's minimum: " << MinVF << '\n');
5226         MaxVF = MinVF;
5227       }
5228     }
5229 
5230     // Invalidate any widening decisions we might have made, in case the loop
5231     // requires prediction (decided later), but we have already made some
5232     // load/store widening decisions.
5233     invalidateCostModelingDecisions();
5234   }
5235   return MaxVF;
5236 }
5237 
5238 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5239   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5240     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5241     auto Min = Attr.getVScaleRangeMin();
5242     auto Max = Attr.getVScaleRangeMax();
5243     if (Max && Min == Max)
5244       return Max;
5245   }
5246 
5247   return TTI.getVScaleForTuning();
5248 }
5249 
5250 bool LoopVectorizationCostModel::isMoreProfitable(
5251     const VectorizationFactor &A, const VectorizationFactor &B) const {
5252   InstructionCost CostA = A.Cost;
5253   InstructionCost CostB = B.Cost;
5254 
5255   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5256 
5257   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5258       MaxTripCount) {
5259     // If we are folding the tail and the trip count is a known (possibly small)
5260     // constant, the trip count will be rounded up to an integer number of
5261     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5262     // which we compare directly. When not folding the tail, the total cost will
5263     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5264     // approximated with the per-lane cost below instead of using the tripcount
5265     // as here.
5266     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5267     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5268     return RTCostA < RTCostB;
5269   }
5270 
5271   // Improve estimate for the vector width if it is scalable.
5272   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5273   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5274   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5275     if (A.Width.isScalable())
5276       EstimatedWidthA *= VScale.getValue();
5277     if (B.Width.isScalable())
5278       EstimatedWidthB *= VScale.getValue();
5279   }
5280 
5281   // Assume vscale may be larger than 1 (or the value being tuned for),
5282   // so that scalable vectorization is slightly favorable over fixed-width
5283   // vectorization.
5284   if (A.Width.isScalable() && !B.Width.isScalable())
5285     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5286 
5287   // To avoid the need for FP division:
5288   //      (CostA / A.Width) < (CostB / B.Width)
5289   // <=>  (CostA * B.Width) < (CostB * A.Width)
5290   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5291 }
5292 
5293 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5294     const ElementCountSet &VFCandidates) {
5295   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5296   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5297   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5298   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5299          "Expected Scalar VF to be a candidate");
5300 
5301   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5302   VectorizationFactor ChosenFactor = ScalarCost;
5303 
5304   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5305   if (ForceVectorization && VFCandidates.size() > 1) {
5306     // Ignore scalar width, because the user explicitly wants vectorization.
5307     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5308     // evaluation.
5309     ChosenFactor.Cost = InstructionCost::getMax();
5310   }
5311 
5312   SmallVector<InstructionVFPair> InvalidCosts;
5313   for (const auto &i : VFCandidates) {
5314     // The cost for scalar VF=1 is already calculated, so ignore it.
5315     if (i.isScalar())
5316       continue;
5317 
5318     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5319     VectorizationFactor Candidate(i, C.first);
5320 
5321 #ifndef NDEBUG
5322     unsigned AssumedMinimumVscale = 1;
5323     if (Optional<unsigned> VScale = getVScaleForTuning())
5324       AssumedMinimumVscale = *VScale;
5325     unsigned Width =
5326         Candidate.Width.isScalable()
5327             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5328             : Candidate.Width.getFixedValue();
5329     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5330                       << " costs: " << (Candidate.Cost / Width));
5331     if (i.isScalable())
5332       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5333                         << AssumedMinimumVscale << ")");
5334     LLVM_DEBUG(dbgs() << ".\n");
5335 #endif
5336 
5337     if (!C.second && !ForceVectorization) {
5338       LLVM_DEBUG(
5339           dbgs() << "LV: Not considering vector loop of width " << i
5340                  << " because it will not generate any vector instructions.\n");
5341       continue;
5342     }
5343 
5344     // If profitable add it to ProfitableVF list.
5345     if (isMoreProfitable(Candidate, ScalarCost))
5346       ProfitableVFs.push_back(Candidate);
5347 
5348     if (isMoreProfitable(Candidate, ChosenFactor))
5349       ChosenFactor = Candidate;
5350   }
5351 
5352   // Emit a report of VFs with invalid costs in the loop.
5353   if (!InvalidCosts.empty()) {
5354     // Group the remarks per instruction, keeping the instruction order from
5355     // InvalidCosts.
5356     std::map<Instruction *, unsigned> Numbering;
5357     unsigned I = 0;
5358     for (auto &Pair : InvalidCosts)
5359       if (!Numbering.count(Pair.first))
5360         Numbering[Pair.first] = I++;
5361 
5362     // Sort the list, first on instruction(number) then on VF.
5363     llvm::sort(InvalidCosts,
5364                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5365                  if (Numbering[A.first] != Numbering[B.first])
5366                    return Numbering[A.first] < Numbering[B.first];
5367                  ElementCountComparator ECC;
5368                  return ECC(A.second, B.second);
5369                });
5370 
5371     // For a list of ordered instruction-vf pairs:
5372     //   [(load, vf1), (load, vf2), (store, vf1)]
5373     // Group the instructions together to emit separate remarks for:
5374     //   load  (vf1, vf2)
5375     //   store (vf1)
5376     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5377     auto Subset = ArrayRef<InstructionVFPair>();
5378     do {
5379       if (Subset.empty())
5380         Subset = Tail.take_front(1);
5381 
5382       Instruction *I = Subset.front().first;
5383 
5384       // If the next instruction is different, or if there are no other pairs,
5385       // emit a remark for the collated subset. e.g.
5386       //   [(load, vf1), (load, vf2))]
5387       // to emit:
5388       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5389       if (Subset == Tail || Tail[Subset.size()].first != I) {
5390         std::string OutString;
5391         raw_string_ostream OS(OutString);
5392         assert(!Subset.empty() && "Unexpected empty range");
5393         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5394         for (auto &Pair : Subset)
5395           OS << (Pair.second == Subset.front().second ? "" : ", ")
5396              << Pair.second;
5397         OS << "):";
5398         if (auto *CI = dyn_cast<CallInst>(I))
5399           OS << " call to " << CI->getCalledFunction()->getName();
5400         else
5401           OS << " " << I->getOpcodeName();
5402         OS.flush();
5403         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5404         Tail = Tail.drop_front(Subset.size());
5405         Subset = {};
5406       } else
5407         // Grow the subset by one element
5408         Subset = Tail.take_front(Subset.size() + 1);
5409     } while (!Tail.empty());
5410   }
5411 
5412   if (!EnableCondStoresVectorization && NumPredStores) {
5413     reportVectorizationFailure("There are conditional stores.",
5414         "store that is conditionally executed prevents vectorization",
5415         "ConditionalStore", ORE, TheLoop);
5416     ChosenFactor = ScalarCost;
5417   }
5418 
5419   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5420                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5421              << "LV: Vectorization seems to be not beneficial, "
5422              << "but was forced by a user.\n");
5423   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5424   return ChosenFactor;
5425 }
5426 
5427 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5428     const Loop &L, ElementCount VF) const {
5429   // Cross iteration phis such as reductions need special handling and are
5430   // currently unsupported.
5431   if (any_of(L.getHeader()->phis(),
5432              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5433     return false;
5434 
5435   // Phis with uses outside of the loop require special handling and are
5436   // currently unsupported.
5437   for (auto &Entry : Legal->getInductionVars()) {
5438     // Look for uses of the value of the induction at the last iteration.
5439     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5440     for (User *U : PostInc->users())
5441       if (!L.contains(cast<Instruction>(U)))
5442         return false;
5443     // Look for uses of penultimate value of the induction.
5444     for (User *U : Entry.first->users())
5445       if (!L.contains(cast<Instruction>(U)))
5446         return false;
5447   }
5448 
5449   // Induction variables that are widened require special handling that is
5450   // currently not supported.
5451   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5452         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5453                  this->isProfitableToScalarize(Entry.first, VF));
5454       }))
5455     return false;
5456 
5457   // Epilogue vectorization code has not been auditted to ensure it handles
5458   // non-latch exits properly.  It may be fine, but it needs auditted and
5459   // tested.
5460   if (L.getExitingBlock() != L.getLoopLatch())
5461     return false;
5462 
5463   return true;
5464 }
5465 
5466 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5467     const ElementCount VF) const {
5468   // FIXME: We need a much better cost-model to take different parameters such
5469   // as register pressure, code size increase and cost of extra branches into
5470   // account. For now we apply a very crude heuristic and only consider loops
5471   // with vectorization factors larger than a certain value.
5472   // We also consider epilogue vectorization unprofitable for targets that don't
5473   // consider interleaving beneficial (eg. MVE).
5474   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5475     return false;
5476   // FIXME: We should consider changing the threshold for scalable
5477   // vectors to take VScaleForTuning into account.
5478   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5479     return true;
5480   return false;
5481 }
5482 
5483 VectorizationFactor
5484 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5485     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5486   VectorizationFactor Result = VectorizationFactor::Disabled();
5487   if (!EnableEpilogueVectorization) {
5488     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5489     return Result;
5490   }
5491 
5492   if (!isScalarEpilogueAllowed()) {
5493     LLVM_DEBUG(
5494         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5495                   "allowed.\n";);
5496     return Result;
5497   }
5498 
5499   // Not really a cost consideration, but check for unsupported cases here to
5500   // simplify the logic.
5501   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5502     LLVM_DEBUG(
5503         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5504                   "not a supported candidate.\n";);
5505     return Result;
5506   }
5507 
5508   if (EpilogueVectorizationForceVF > 1) {
5509     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5510     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5511     if (LVP.hasPlanWithVF(ForcedEC))
5512       return {ForcedEC, 0};
5513     else {
5514       LLVM_DEBUG(
5515           dbgs()
5516               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5517       return Result;
5518     }
5519   }
5520 
5521   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5522       TheLoop->getHeader()->getParent()->hasMinSize()) {
5523     LLVM_DEBUG(
5524         dbgs()
5525             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5526     return Result;
5527   }
5528 
5529   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5530     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5531                          "this loop\n");
5532     return Result;
5533   }
5534 
5535   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5536   // the main loop handles 8 lanes per iteration. We could still benefit from
5537   // vectorizing the epilogue loop with VF=4.
5538   ElementCount EstimatedRuntimeVF = MainLoopVF;
5539   if (MainLoopVF.isScalable()) {
5540     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5541     if (Optional<unsigned> VScale = getVScaleForTuning())
5542       EstimatedRuntimeVF *= *VScale;
5543   }
5544 
5545   for (auto &NextVF : ProfitableVFs)
5546     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5547           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5548          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5549         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5550         LVP.hasPlanWithVF(NextVF.Width))
5551       Result = NextVF;
5552 
5553   if (Result != VectorizationFactor::Disabled())
5554     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5555                       << Result.Width << "\n";);
5556   return Result;
5557 }
5558 
5559 std::pair<unsigned, unsigned>
5560 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5561   unsigned MinWidth = -1U;
5562   unsigned MaxWidth = 8;
5563   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5564   // For in-loop reductions, no element types are added to ElementTypesInLoop
5565   // if there are no loads/stores in the loop. In this case, check through the
5566   // reduction variables to determine the maximum width.
5567   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5568     // Reset MaxWidth so that we can find the smallest type used by recurrences
5569     // in the loop.
5570     MaxWidth = -1U;
5571     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5572       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5573       // When finding the min width used by the recurrence we need to account
5574       // for casts on the input operands of the recurrence.
5575       MaxWidth = std::min<unsigned>(
5576           MaxWidth, std::min<unsigned>(
5577                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5578                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5579     }
5580   } else {
5581     for (Type *T : ElementTypesInLoop) {
5582       MinWidth = std::min<unsigned>(
5583           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5584       MaxWidth = std::max<unsigned>(
5585           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5586     }
5587   }
5588   return {MinWidth, MaxWidth};
5589 }
5590 
5591 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5592   ElementTypesInLoop.clear();
5593   // For each block.
5594   for (BasicBlock *BB : TheLoop->blocks()) {
5595     // For each instruction in the loop.
5596     for (Instruction &I : BB->instructionsWithoutDebug()) {
5597       Type *T = I.getType();
5598 
5599       // Skip ignored values.
5600       if (ValuesToIgnore.count(&I))
5601         continue;
5602 
5603       // Only examine Loads, Stores and PHINodes.
5604       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5605         continue;
5606 
5607       // Examine PHI nodes that are reduction variables. Update the type to
5608       // account for the recurrence type.
5609       if (auto *PN = dyn_cast<PHINode>(&I)) {
5610         if (!Legal->isReductionVariable(PN))
5611           continue;
5612         const RecurrenceDescriptor &RdxDesc =
5613             Legal->getReductionVars().find(PN)->second;
5614         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5615             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5616                                       RdxDesc.getRecurrenceType(),
5617                                       TargetTransformInfo::ReductionFlags()))
5618           continue;
5619         T = RdxDesc.getRecurrenceType();
5620       }
5621 
5622       // Examine the stored values.
5623       if (auto *ST = dyn_cast<StoreInst>(&I))
5624         T = ST->getValueOperand()->getType();
5625 
5626       assert(T->isSized() &&
5627              "Expected the load/store/recurrence type to be sized");
5628 
5629       ElementTypesInLoop.insert(T);
5630     }
5631   }
5632 }
5633 
5634 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5635                                                            unsigned LoopCost) {
5636   // -- The interleave heuristics --
5637   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5638   // There are many micro-architectural considerations that we can't predict
5639   // at this level. For example, frontend pressure (on decode or fetch) due to
5640   // code size, or the number and capabilities of the execution ports.
5641   //
5642   // We use the following heuristics to select the interleave count:
5643   // 1. If the code has reductions, then we interleave to break the cross
5644   // iteration dependency.
5645   // 2. If the loop is really small, then we interleave to reduce the loop
5646   // overhead.
5647   // 3. We don't interleave if we think that we will spill registers to memory
5648   // due to the increased register pressure.
5649 
5650   if (!isScalarEpilogueAllowed())
5651     return 1;
5652 
5653   // We used the distance for the interleave count.
5654   if (Legal->getMaxSafeDepDistBytes() != -1U)
5655     return 1;
5656 
5657   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5658   const bool HasReductions = !Legal->getReductionVars().empty();
5659   // Do not interleave loops with a relatively small known or estimated trip
5660   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5661   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5662   // because with the above conditions interleaving can expose ILP and break
5663   // cross iteration dependences for reductions.
5664   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5665       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5666     return 1;
5667 
5668   // If we did not calculate the cost for VF (because the user selected the VF)
5669   // then we calculate the cost of VF here.
5670   if (LoopCost == 0) {
5671     InstructionCost C = expectedCost(VF).first;
5672     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5673     LoopCost = *C.getValue();
5674 
5675     // Loop body is free and there is no need for interleaving.
5676     if (LoopCost == 0)
5677       return 1;
5678   }
5679 
5680   RegisterUsage R = calculateRegisterUsage({VF})[0];
5681   // We divide by these constants so assume that we have at least one
5682   // instruction that uses at least one register.
5683   for (auto& pair : R.MaxLocalUsers) {
5684     pair.second = std::max(pair.second, 1U);
5685   }
5686 
5687   // We calculate the interleave count using the following formula.
5688   // Subtract the number of loop invariants from the number of available
5689   // registers. These registers are used by all of the interleaved instances.
5690   // Next, divide the remaining registers by the number of registers that is
5691   // required by the loop, in order to estimate how many parallel instances
5692   // fit without causing spills. All of this is rounded down if necessary to be
5693   // a power of two. We want power of two interleave count to simplify any
5694   // addressing operations or alignment considerations.
5695   // We also want power of two interleave counts to ensure that the induction
5696   // variable of the vector loop wraps to zero, when tail is folded by masking;
5697   // this currently happens when OptForSize, in which case IC is set to 1 above.
5698   unsigned IC = UINT_MAX;
5699 
5700   for (auto& pair : R.MaxLocalUsers) {
5701     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5702     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5703                       << " registers of "
5704                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5705     if (VF.isScalar()) {
5706       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5707         TargetNumRegisters = ForceTargetNumScalarRegs;
5708     } else {
5709       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5710         TargetNumRegisters = ForceTargetNumVectorRegs;
5711     }
5712     unsigned MaxLocalUsers = pair.second;
5713     unsigned LoopInvariantRegs = 0;
5714     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5715       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5716 
5717     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5718     // Don't count the induction variable as interleaved.
5719     if (EnableIndVarRegisterHeur) {
5720       TmpIC =
5721           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5722                         std::max(1U, (MaxLocalUsers - 1)));
5723     }
5724 
5725     IC = std::min(IC, TmpIC);
5726   }
5727 
5728   // Clamp the interleave ranges to reasonable counts.
5729   unsigned MaxInterleaveCount =
5730       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5731 
5732   // Check if the user has overridden the max.
5733   if (VF.isScalar()) {
5734     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5735       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5736   } else {
5737     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5738       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5739   }
5740 
5741   // If trip count is known or estimated compile time constant, limit the
5742   // interleave count to be less than the trip count divided by VF, provided it
5743   // is at least 1.
5744   //
5745   // For scalable vectors we can't know if interleaving is beneficial. It may
5746   // not be beneficial for small loops if none of the lanes in the second vector
5747   // iterations is enabled. However, for larger loops, there is likely to be a
5748   // similar benefit as for fixed-width vectors. For now, we choose to leave
5749   // the InterleaveCount as if vscale is '1', although if some information about
5750   // the vector is known (e.g. min vector size), we can make a better decision.
5751   if (BestKnownTC) {
5752     MaxInterleaveCount =
5753         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5754     // Make sure MaxInterleaveCount is greater than 0.
5755     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5756   }
5757 
5758   assert(MaxInterleaveCount > 0 &&
5759          "Maximum interleave count must be greater than 0");
5760 
5761   // Clamp the calculated IC to be between the 1 and the max interleave count
5762   // that the target and trip count allows.
5763   if (IC > MaxInterleaveCount)
5764     IC = MaxInterleaveCount;
5765   else
5766     // Make sure IC is greater than 0.
5767     IC = std::max(1u, IC);
5768 
5769   assert(IC > 0 && "Interleave count must be greater than 0.");
5770 
5771   // Interleave if we vectorized this loop and there is a reduction that could
5772   // benefit from interleaving.
5773   if (VF.isVector() && HasReductions) {
5774     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5775     return IC;
5776   }
5777 
5778   // For any scalar loop that either requires runtime checks or predication we
5779   // are better off leaving this to the unroller. Note that if we've already
5780   // vectorized the loop we will have done the runtime check and so interleaving
5781   // won't require further checks.
5782   bool ScalarInterleavingRequiresPredication =
5783       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5784          return Legal->blockNeedsPredication(BB);
5785        }));
5786   bool ScalarInterleavingRequiresRuntimePointerCheck =
5787       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5788 
5789   // We want to interleave small loops in order to reduce the loop overhead and
5790   // potentially expose ILP opportunities.
5791   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5792                     << "LV: IC is " << IC << '\n'
5793                     << "LV: VF is " << VF << '\n');
5794   const bool AggressivelyInterleaveReductions =
5795       TTI.enableAggressiveInterleaving(HasReductions);
5796   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5797       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5798     // We assume that the cost overhead is 1 and we use the cost model
5799     // to estimate the cost of the loop and interleave until the cost of the
5800     // loop overhead is about 5% of the cost of the loop.
5801     unsigned SmallIC =
5802         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5803 
5804     // Interleave until store/load ports (estimated by max interleave count) are
5805     // saturated.
5806     unsigned NumStores = Legal->getNumStores();
5807     unsigned NumLoads = Legal->getNumLoads();
5808     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5809     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5810 
5811     // There is little point in interleaving for reductions containing selects
5812     // and compares when VF=1 since it may just create more overhead than it's
5813     // worth for loops with small trip counts. This is because we still have to
5814     // do the final reduction after the loop.
5815     bool HasSelectCmpReductions =
5816         HasReductions &&
5817         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5818           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5819           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5820               RdxDesc.getRecurrenceKind());
5821         });
5822     if (HasSelectCmpReductions) {
5823       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5824       return 1;
5825     }
5826 
5827     // If we have a scalar reduction (vector reductions are already dealt with
5828     // by this point), we can increase the critical path length if the loop
5829     // we're interleaving is inside another loop. For tree-wise reductions
5830     // set the limit to 2, and for ordered reductions it's best to disable
5831     // interleaving entirely.
5832     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5833       bool HasOrderedReductions =
5834           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5835             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5836             return RdxDesc.isOrdered();
5837           });
5838       if (HasOrderedReductions) {
5839         LLVM_DEBUG(
5840             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5841         return 1;
5842       }
5843 
5844       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5845       SmallIC = std::min(SmallIC, F);
5846       StoresIC = std::min(StoresIC, F);
5847       LoadsIC = std::min(LoadsIC, F);
5848     }
5849 
5850     if (EnableLoadStoreRuntimeInterleave &&
5851         std::max(StoresIC, LoadsIC) > SmallIC) {
5852       LLVM_DEBUG(
5853           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5854       return std::max(StoresIC, LoadsIC);
5855     }
5856 
5857     // If there are scalar reductions and TTI has enabled aggressive
5858     // interleaving for reductions, we will interleave to expose ILP.
5859     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5860         AggressivelyInterleaveReductions) {
5861       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5862       // Interleave no less than SmallIC but not as aggressive as the normal IC
5863       // to satisfy the rare situation when resources are too limited.
5864       return std::max(IC / 2, SmallIC);
5865     } else {
5866       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5867       return SmallIC;
5868     }
5869   }
5870 
5871   // Interleave if this is a large loop (small loops are already dealt with by
5872   // this point) that could benefit from interleaving.
5873   if (AggressivelyInterleaveReductions) {
5874     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5875     return IC;
5876   }
5877 
5878   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5879   return 1;
5880 }
5881 
5882 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5883 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5884   // This function calculates the register usage by measuring the highest number
5885   // of values that are alive at a single location. Obviously, this is a very
5886   // rough estimation. We scan the loop in a topological order in order and
5887   // assign a number to each instruction. We use RPO to ensure that defs are
5888   // met before their users. We assume that each instruction that has in-loop
5889   // users starts an interval. We record every time that an in-loop value is
5890   // used, so we have a list of the first and last occurrences of each
5891   // instruction. Next, we transpose this data structure into a multi map that
5892   // holds the list of intervals that *end* at a specific location. This multi
5893   // map allows us to perform a linear search. We scan the instructions linearly
5894   // and record each time that a new interval starts, by placing it in a set.
5895   // If we find this value in the multi-map then we remove it from the set.
5896   // The max register usage is the maximum size of the set.
5897   // We also search for instructions that are defined outside the loop, but are
5898   // used inside the loop. We need this number separately from the max-interval
5899   // usage number because when we unroll, loop-invariant values do not take
5900   // more register.
5901   LoopBlocksDFS DFS(TheLoop);
5902   DFS.perform(LI);
5903 
5904   RegisterUsage RU;
5905 
5906   // Each 'key' in the map opens a new interval. The values
5907   // of the map are the index of the 'last seen' usage of the
5908   // instruction that is the key.
5909   using IntervalMap = DenseMap<Instruction *, unsigned>;
5910 
5911   // Maps instruction to its index.
5912   SmallVector<Instruction *, 64> IdxToInstr;
5913   // Marks the end of each interval.
5914   IntervalMap EndPoint;
5915   // Saves the list of instruction indices that are used in the loop.
5916   SmallPtrSet<Instruction *, 8> Ends;
5917   // Saves the list of values that are used in the loop but are
5918   // defined outside the loop, such as arguments and constants.
5919   SmallPtrSet<Value *, 8> LoopInvariants;
5920 
5921   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5922     for (Instruction &I : BB->instructionsWithoutDebug()) {
5923       IdxToInstr.push_back(&I);
5924 
5925       // Save the end location of each USE.
5926       for (Value *U : I.operands()) {
5927         auto *Instr = dyn_cast<Instruction>(U);
5928 
5929         // Ignore non-instruction values such as arguments, constants, etc.
5930         if (!Instr)
5931           continue;
5932 
5933         // If this instruction is outside the loop then record it and continue.
5934         if (!TheLoop->contains(Instr)) {
5935           LoopInvariants.insert(Instr);
5936           continue;
5937         }
5938 
5939         // Overwrite previous end points.
5940         EndPoint[Instr] = IdxToInstr.size();
5941         Ends.insert(Instr);
5942       }
5943     }
5944   }
5945 
5946   // Saves the list of intervals that end with the index in 'key'.
5947   using InstrList = SmallVector<Instruction *, 2>;
5948   DenseMap<unsigned, InstrList> TransposeEnds;
5949 
5950   // Transpose the EndPoints to a list of values that end at each index.
5951   for (auto &Interval : EndPoint)
5952     TransposeEnds[Interval.second].push_back(Interval.first);
5953 
5954   SmallPtrSet<Instruction *, 8> OpenIntervals;
5955   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5956   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5957 
5958   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5959 
5960   auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned {
5961     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5962       return 0;
5963     return TTI.getRegUsageForType(VectorType::get(Ty, VF));
5964   };
5965 
5966   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5967     Instruction *I = IdxToInstr[i];
5968 
5969     // Remove all of the instructions that end at this location.
5970     InstrList &List = TransposeEnds[i];
5971     for (Instruction *ToRemove : List)
5972       OpenIntervals.erase(ToRemove);
5973 
5974     // Ignore instructions that are never used within the loop.
5975     if (!Ends.count(I))
5976       continue;
5977 
5978     // Skip ignored values.
5979     if (ValuesToIgnore.count(I))
5980       continue;
5981 
5982     // For each VF find the maximum usage of registers.
5983     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5984       // Count the number of live intervals.
5985       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5986 
5987       if (VFs[j].isScalar()) {
5988         for (auto Inst : OpenIntervals) {
5989           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5990           if (RegUsage.find(ClassID) == RegUsage.end())
5991             RegUsage[ClassID] = 1;
5992           else
5993             RegUsage[ClassID] += 1;
5994         }
5995       } else {
5996         collectUniformsAndScalars(VFs[j]);
5997         for (auto Inst : OpenIntervals) {
5998           // Skip ignored values for VF > 1.
5999           if (VecValuesToIgnore.count(Inst))
6000             continue;
6001           if (isScalarAfterVectorization(Inst, VFs[j])) {
6002             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6003             if (RegUsage.find(ClassID) == RegUsage.end())
6004               RegUsage[ClassID] = 1;
6005             else
6006               RegUsage[ClassID] += 1;
6007           } else {
6008             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6009             if (RegUsage.find(ClassID) == RegUsage.end())
6010               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6011             else
6012               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6013           }
6014         }
6015       }
6016 
6017       for (auto& pair : RegUsage) {
6018         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6019           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6020         else
6021           MaxUsages[j][pair.first] = pair.second;
6022       }
6023     }
6024 
6025     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6026                       << OpenIntervals.size() << '\n');
6027 
6028     // Add the current instruction to the list of open intervals.
6029     OpenIntervals.insert(I);
6030   }
6031 
6032   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6033     SmallMapVector<unsigned, unsigned, 4> Invariant;
6034 
6035     for (auto Inst : LoopInvariants) {
6036       unsigned Usage =
6037           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6038       unsigned ClassID =
6039           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6040       if (Invariant.find(ClassID) == Invariant.end())
6041         Invariant[ClassID] = Usage;
6042       else
6043         Invariant[ClassID] += Usage;
6044     }
6045 
6046     LLVM_DEBUG({
6047       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6048       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6049              << " item\n";
6050       for (const auto &pair : MaxUsages[i]) {
6051         dbgs() << "LV(REG): RegisterClass: "
6052                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6053                << " registers\n";
6054       }
6055       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6056              << " item\n";
6057       for (const auto &pair : Invariant) {
6058         dbgs() << "LV(REG): RegisterClass: "
6059                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6060                << " registers\n";
6061       }
6062     });
6063 
6064     RU.LoopInvariantRegs = Invariant;
6065     RU.MaxLocalUsers = MaxUsages[i];
6066     RUs[i] = RU;
6067   }
6068 
6069   return RUs;
6070 }
6071 
6072 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6073                                                            ElementCount VF) {
6074   // TODO: Cost model for emulated masked load/store is completely
6075   // broken. This hack guides the cost model to use an artificially
6076   // high enough value to practically disable vectorization with such
6077   // operations, except where previously deployed legality hack allowed
6078   // using very low cost values. This is to avoid regressions coming simply
6079   // from moving "masked load/store" check from legality to cost model.
6080   // Masked Load/Gather emulation was previously never allowed.
6081   // Limited number of Masked Store/Scatter emulation was allowed.
6082   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6083   return isa<LoadInst>(I) ||
6084          (isa<StoreInst>(I) &&
6085           NumPredStores > NumberOfStoresToPredicate);
6086 }
6087 
6088 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6089   // If we aren't vectorizing the loop, or if we've already collected the
6090   // instructions to scalarize, there's nothing to do. Collection may already
6091   // have occurred if we have a user-selected VF and are now computing the
6092   // expected cost for interleaving.
6093   if (VF.isScalar() || VF.isZero() ||
6094       InstsToScalarize.find(VF) != InstsToScalarize.end())
6095     return;
6096 
6097   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6098   // not profitable to scalarize any instructions, the presence of VF in the
6099   // map will indicate that we've analyzed it already.
6100   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6101 
6102   // Find all the instructions that are scalar with predication in the loop and
6103   // determine if it would be better to not if-convert the blocks they are in.
6104   // If so, we also record the instructions to scalarize.
6105   for (BasicBlock *BB : TheLoop->blocks()) {
6106     if (!blockNeedsPredicationForAnyReason(BB))
6107       continue;
6108     for (Instruction &I : *BB)
6109       if (isScalarWithPredication(&I, VF)) {
6110         ScalarCostsTy ScalarCosts;
6111         // Do not apply discount if scalable, because that would lead to
6112         // invalid scalarization costs.
6113         // Do not apply discount logic if hacked cost is needed
6114         // for emulated masked memrefs.
6115         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6116             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6117           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6118         // Remember that BB will remain after vectorization.
6119         PredicatedBBsAfterVectorization.insert(BB);
6120       }
6121   }
6122 }
6123 
6124 int LoopVectorizationCostModel::computePredInstDiscount(
6125     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6126   assert(!isUniformAfterVectorization(PredInst, VF) &&
6127          "Instruction marked uniform-after-vectorization will be predicated");
6128 
6129   // Initialize the discount to zero, meaning that the scalar version and the
6130   // vector version cost the same.
6131   InstructionCost Discount = 0;
6132 
6133   // Holds instructions to analyze. The instructions we visit are mapped in
6134   // ScalarCosts. Those instructions are the ones that would be scalarized if
6135   // we find that the scalar version costs less.
6136   SmallVector<Instruction *, 8> Worklist;
6137 
6138   // Returns true if the given instruction can be scalarized.
6139   auto canBeScalarized = [&](Instruction *I) -> bool {
6140     // We only attempt to scalarize instructions forming a single-use chain
6141     // from the original predicated block that would otherwise be vectorized.
6142     // Although not strictly necessary, we give up on instructions we know will
6143     // already be scalar to avoid traversing chains that are unlikely to be
6144     // beneficial.
6145     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6146         isScalarAfterVectorization(I, VF))
6147       return false;
6148 
6149     // If the instruction is scalar with predication, it will be analyzed
6150     // separately. We ignore it within the context of PredInst.
6151     if (isScalarWithPredication(I, VF))
6152       return false;
6153 
6154     // If any of the instruction's operands are uniform after vectorization,
6155     // the instruction cannot be scalarized. This prevents, for example, a
6156     // masked load from being scalarized.
6157     //
6158     // We assume we will only emit a value for lane zero of an instruction
6159     // marked uniform after vectorization, rather than VF identical values.
6160     // Thus, if we scalarize an instruction that uses a uniform, we would
6161     // create uses of values corresponding to the lanes we aren't emitting code
6162     // for. This behavior can be changed by allowing getScalarValue to clone
6163     // the lane zero values for uniforms rather than asserting.
6164     for (Use &U : I->operands())
6165       if (auto *J = dyn_cast<Instruction>(U.get()))
6166         if (isUniformAfterVectorization(J, VF))
6167           return false;
6168 
6169     // Otherwise, we can scalarize the instruction.
6170     return true;
6171   };
6172 
6173   // Compute the expected cost discount from scalarizing the entire expression
6174   // feeding the predicated instruction. We currently only consider expressions
6175   // that are single-use instruction chains.
6176   Worklist.push_back(PredInst);
6177   while (!Worklist.empty()) {
6178     Instruction *I = Worklist.pop_back_val();
6179 
6180     // If we've already analyzed the instruction, there's nothing to do.
6181     if (ScalarCosts.find(I) != ScalarCosts.end())
6182       continue;
6183 
6184     // Compute the cost of the vector instruction. Note that this cost already
6185     // includes the scalarization overhead of the predicated instruction.
6186     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6187 
6188     // Compute the cost of the scalarized instruction. This cost is the cost of
6189     // the instruction as if it wasn't if-converted and instead remained in the
6190     // predicated block. We will scale this cost by block probability after
6191     // computing the scalarization overhead.
6192     InstructionCost ScalarCost =
6193         VF.getFixedValue() *
6194         getInstructionCost(I, ElementCount::getFixed(1)).first;
6195 
6196     // Compute the scalarization overhead of needed insertelement instructions
6197     // and phi nodes.
6198     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6199       ScalarCost += TTI.getScalarizationOverhead(
6200           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6201           APInt::getAllOnes(VF.getFixedValue()), true, false);
6202       ScalarCost +=
6203           VF.getFixedValue() *
6204           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6205     }
6206 
6207     // Compute the scalarization overhead of needed extractelement
6208     // instructions. For each of the instruction's operands, if the operand can
6209     // be scalarized, add it to the worklist; otherwise, account for the
6210     // overhead.
6211     for (Use &U : I->operands())
6212       if (auto *J = dyn_cast<Instruction>(U.get())) {
6213         assert(VectorType::isValidElementType(J->getType()) &&
6214                "Instruction has non-scalar type");
6215         if (canBeScalarized(J))
6216           Worklist.push_back(J);
6217         else if (needsExtract(J, VF)) {
6218           ScalarCost += TTI.getScalarizationOverhead(
6219               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6220               APInt::getAllOnes(VF.getFixedValue()), false, true);
6221         }
6222       }
6223 
6224     // Scale the total scalar cost by block probability.
6225     ScalarCost /= getReciprocalPredBlockProb();
6226 
6227     // Compute the discount. A non-negative discount means the vector version
6228     // of the instruction costs more, and scalarizing would be beneficial.
6229     Discount += VectorCost - ScalarCost;
6230     ScalarCosts[I] = ScalarCost;
6231   }
6232 
6233   return *Discount.getValue();
6234 }
6235 
6236 LoopVectorizationCostModel::VectorizationCostTy
6237 LoopVectorizationCostModel::expectedCost(
6238     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6239   VectorizationCostTy Cost;
6240 
6241   // For each block.
6242   for (BasicBlock *BB : TheLoop->blocks()) {
6243     VectorizationCostTy BlockCost;
6244 
6245     // For each instruction in the old loop.
6246     for (Instruction &I : BB->instructionsWithoutDebug()) {
6247       // Skip ignored values.
6248       if (ValuesToIgnore.count(&I) ||
6249           (VF.isVector() && VecValuesToIgnore.count(&I)))
6250         continue;
6251 
6252       VectorizationCostTy C = getInstructionCost(&I, VF);
6253 
6254       // Check if we should override the cost.
6255       if (C.first.isValid() &&
6256           ForceTargetInstructionCost.getNumOccurrences() > 0)
6257         C.first = InstructionCost(ForceTargetInstructionCost);
6258 
6259       // Keep a list of instructions with invalid costs.
6260       if (Invalid && !C.first.isValid())
6261         Invalid->emplace_back(&I, VF);
6262 
6263       BlockCost.first += C.first;
6264       BlockCost.second |= C.second;
6265       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6266                         << " for VF " << VF << " For instruction: " << I
6267                         << '\n');
6268     }
6269 
6270     // If we are vectorizing a predicated block, it will have been
6271     // if-converted. This means that the block's instructions (aside from
6272     // stores and instructions that may divide by zero) will now be
6273     // unconditionally executed. For the scalar case, we may not always execute
6274     // the predicated block, if it is an if-else block. Thus, scale the block's
6275     // cost by the probability of executing it. blockNeedsPredication from
6276     // Legal is used so as to not include all blocks in tail folded loops.
6277     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6278       BlockCost.first /= getReciprocalPredBlockProb();
6279 
6280     Cost.first += BlockCost.first;
6281     Cost.second |= BlockCost.second;
6282   }
6283 
6284   return Cost;
6285 }
6286 
6287 /// Gets Address Access SCEV after verifying that the access pattern
6288 /// is loop invariant except the induction variable dependence.
6289 ///
6290 /// This SCEV can be sent to the Target in order to estimate the address
6291 /// calculation cost.
6292 static const SCEV *getAddressAccessSCEV(
6293               Value *Ptr,
6294               LoopVectorizationLegality *Legal,
6295               PredicatedScalarEvolution &PSE,
6296               const Loop *TheLoop) {
6297 
6298   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6299   if (!Gep)
6300     return nullptr;
6301 
6302   // We are looking for a gep with all loop invariant indices except for one
6303   // which should be an induction variable.
6304   auto SE = PSE.getSE();
6305   unsigned NumOperands = Gep->getNumOperands();
6306   for (unsigned i = 1; i < NumOperands; ++i) {
6307     Value *Opd = Gep->getOperand(i);
6308     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6309         !Legal->isInductionVariable(Opd))
6310       return nullptr;
6311   }
6312 
6313   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6314   return PSE.getSCEV(Ptr);
6315 }
6316 
6317 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6318   return Legal->hasStride(I->getOperand(0)) ||
6319          Legal->hasStride(I->getOperand(1));
6320 }
6321 
6322 InstructionCost
6323 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6324                                                         ElementCount VF) {
6325   assert(VF.isVector() &&
6326          "Scalarization cost of instruction implies vectorization.");
6327   if (VF.isScalable())
6328     return InstructionCost::getInvalid();
6329 
6330   Type *ValTy = getLoadStoreType(I);
6331   auto SE = PSE.getSE();
6332 
6333   unsigned AS = getLoadStoreAddressSpace(I);
6334   Value *Ptr = getLoadStorePointerOperand(I);
6335   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6336   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6337   //       that it is being called from this specific place.
6338 
6339   // Figure out whether the access is strided and get the stride value
6340   // if it's known in compile time
6341   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6342 
6343   // Get the cost of the scalar memory instruction and address computation.
6344   InstructionCost Cost =
6345       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6346 
6347   // Don't pass *I here, since it is scalar but will actually be part of a
6348   // vectorized loop where the user of it is a vectorized instruction.
6349   const Align Alignment = getLoadStoreAlignment(I);
6350   Cost += VF.getKnownMinValue() *
6351           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6352                               AS, TTI::TCK_RecipThroughput);
6353 
6354   // Get the overhead of the extractelement and insertelement instructions
6355   // we might create due to scalarization.
6356   Cost += getScalarizationOverhead(I, VF);
6357 
6358   // If we have a predicated load/store, it will need extra i1 extracts and
6359   // conditional branches, but may not be executed for each vector lane. Scale
6360   // the cost by the probability of executing the predicated block.
6361   if (isPredicatedInst(I, VF)) {
6362     Cost /= getReciprocalPredBlockProb();
6363 
6364     // Add the cost of an i1 extract and a branch
6365     auto *Vec_i1Ty =
6366         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6367     Cost += TTI.getScalarizationOverhead(
6368         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6369         /*Insert=*/false, /*Extract=*/true);
6370     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6371 
6372     if (useEmulatedMaskMemRefHack(I, VF))
6373       // Artificially setting to a high enough value to practically disable
6374       // vectorization with such operations.
6375       Cost = 3000000;
6376   }
6377 
6378   return Cost;
6379 }
6380 
6381 InstructionCost
6382 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6383                                                     ElementCount VF) {
6384   Type *ValTy = getLoadStoreType(I);
6385   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6386   Value *Ptr = getLoadStorePointerOperand(I);
6387   unsigned AS = getLoadStoreAddressSpace(I);
6388   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6389   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6390 
6391   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6392          "Stride should be 1 or -1 for consecutive memory access");
6393   const Align Alignment = getLoadStoreAlignment(I);
6394   InstructionCost Cost = 0;
6395   if (Legal->isMaskRequired(I))
6396     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6397                                       CostKind);
6398   else
6399     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6400                                 CostKind, I);
6401 
6402   bool Reverse = ConsecutiveStride < 0;
6403   if (Reverse)
6404     Cost +=
6405         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6406   return Cost;
6407 }
6408 
6409 InstructionCost
6410 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6411                                                 ElementCount VF) {
6412   assert(Legal->isUniformMemOp(*I));
6413 
6414   Type *ValTy = getLoadStoreType(I);
6415   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6416   const Align Alignment = getLoadStoreAlignment(I);
6417   unsigned AS = getLoadStoreAddressSpace(I);
6418   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6419   if (isa<LoadInst>(I)) {
6420     return TTI.getAddressComputationCost(ValTy) +
6421            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6422                                CostKind) +
6423            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6424   }
6425   StoreInst *SI = cast<StoreInst>(I);
6426 
6427   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6428   return TTI.getAddressComputationCost(ValTy) +
6429          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6430                              CostKind) +
6431          (isLoopInvariantStoreValue
6432               ? 0
6433               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6434                                        VF.getKnownMinValue() - 1));
6435 }
6436 
6437 InstructionCost
6438 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6439                                                  ElementCount VF) {
6440   Type *ValTy = getLoadStoreType(I);
6441   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6442   const Align Alignment = getLoadStoreAlignment(I);
6443   const Value *Ptr = getLoadStorePointerOperand(I);
6444 
6445   return TTI.getAddressComputationCost(VectorTy) +
6446          TTI.getGatherScatterOpCost(
6447              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6448              TargetTransformInfo::TCK_RecipThroughput, I);
6449 }
6450 
6451 InstructionCost
6452 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6453                                                    ElementCount VF) {
6454   // TODO: Once we have support for interleaving with scalable vectors
6455   // we can calculate the cost properly here.
6456   if (VF.isScalable())
6457     return InstructionCost::getInvalid();
6458 
6459   Type *ValTy = getLoadStoreType(I);
6460   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6461   unsigned AS = getLoadStoreAddressSpace(I);
6462 
6463   auto Group = getInterleavedAccessGroup(I);
6464   assert(Group && "Fail to get an interleaved access group.");
6465 
6466   unsigned InterleaveFactor = Group->getFactor();
6467   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6468 
6469   // Holds the indices of existing members in the interleaved group.
6470   SmallVector<unsigned, 4> Indices;
6471   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6472     if (Group->getMember(IF))
6473       Indices.push_back(IF);
6474 
6475   // Calculate the cost of the whole interleaved group.
6476   bool UseMaskForGaps =
6477       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6478       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6479   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6480       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6481       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6482 
6483   if (Group->isReverse()) {
6484     // TODO: Add support for reversed masked interleaved access.
6485     assert(!Legal->isMaskRequired(I) &&
6486            "Reverse masked interleaved access not supported.");
6487     Cost +=
6488         Group->getNumMembers() *
6489         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6490   }
6491   return Cost;
6492 }
6493 
6494 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6495     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6496   using namespace llvm::PatternMatch;
6497   // Early exit for no inloop reductions
6498   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6499     return None;
6500   auto *VectorTy = cast<VectorType>(Ty);
6501 
6502   // We are looking for a pattern of, and finding the minimal acceptable cost:
6503   //  reduce(mul(ext(A), ext(B))) or
6504   //  reduce(mul(A, B)) or
6505   //  reduce(ext(A)) or
6506   //  reduce(A).
6507   // The basic idea is that we walk down the tree to do that, finding the root
6508   // reduction instruction in InLoopReductionImmediateChains. From there we find
6509   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6510   // of the components. If the reduction cost is lower then we return it for the
6511   // reduction instruction and 0 for the other instructions in the pattern. If
6512   // it is not we return an invalid cost specifying the orignal cost method
6513   // should be used.
6514   Instruction *RetI = I;
6515   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6516     if (!RetI->hasOneUser())
6517       return None;
6518     RetI = RetI->user_back();
6519   }
6520   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6521       RetI->user_back()->getOpcode() == Instruction::Add) {
6522     if (!RetI->hasOneUser())
6523       return None;
6524     RetI = RetI->user_back();
6525   }
6526 
6527   // Test if the found instruction is a reduction, and if not return an invalid
6528   // cost specifying the parent to use the original cost modelling.
6529   if (!InLoopReductionImmediateChains.count(RetI))
6530     return None;
6531 
6532   // Find the reduction this chain is a part of and calculate the basic cost of
6533   // the reduction on its own.
6534   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6535   Instruction *ReductionPhi = LastChain;
6536   while (!isa<PHINode>(ReductionPhi))
6537     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6538 
6539   const RecurrenceDescriptor &RdxDesc =
6540       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6541 
6542   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6543       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6544 
6545   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6546   // normal fmul instruction to the cost of the fadd reduction.
6547   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6548     BaseCost +=
6549         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6550 
6551   // If we're using ordered reductions then we can just return the base cost
6552   // here, since getArithmeticReductionCost calculates the full ordered
6553   // reduction cost when FP reassociation is not allowed.
6554   if (useOrderedReductions(RdxDesc))
6555     return BaseCost;
6556 
6557   // Get the operand that was not the reduction chain and match it to one of the
6558   // patterns, returning the better cost if it is found.
6559   Instruction *RedOp = RetI->getOperand(1) == LastChain
6560                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6561                            : dyn_cast<Instruction>(RetI->getOperand(1));
6562 
6563   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6564 
6565   Instruction *Op0, *Op1;
6566   if (RedOp &&
6567       match(RedOp,
6568             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6569       match(Op0, m_ZExtOrSExt(m_Value())) &&
6570       Op0->getOpcode() == Op1->getOpcode() &&
6571       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6572       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6573       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6574 
6575     // Matched reduce(ext(mul(ext(A), ext(B)))
6576     // Note that the extend opcodes need to all match, or if A==B they will have
6577     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6578     // which is equally fine.
6579     bool IsUnsigned = isa<ZExtInst>(Op0);
6580     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6581     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6582 
6583     InstructionCost ExtCost =
6584         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6585                              TTI::CastContextHint::None, CostKind, Op0);
6586     InstructionCost MulCost =
6587         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6588     InstructionCost Ext2Cost =
6589         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6590                              TTI::CastContextHint::None, CostKind, RedOp);
6591 
6592     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6593         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6594         CostKind);
6595 
6596     if (RedCost.isValid() &&
6597         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6598       return I == RetI ? RedCost : 0;
6599   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6600              !TheLoop->isLoopInvariant(RedOp)) {
6601     // Matched reduce(ext(A))
6602     bool IsUnsigned = isa<ZExtInst>(RedOp);
6603     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6604     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6605         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6606         CostKind);
6607 
6608     InstructionCost ExtCost =
6609         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6610                              TTI::CastContextHint::None, CostKind, RedOp);
6611     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6612       return I == RetI ? RedCost : 0;
6613   } else if (RedOp &&
6614              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6615     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6616         Op0->getOpcode() == Op1->getOpcode() &&
6617         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6618       bool IsUnsigned = isa<ZExtInst>(Op0);
6619       Type *Op0Ty = Op0->getOperand(0)->getType();
6620       Type *Op1Ty = Op1->getOperand(0)->getType();
6621       Type *LargestOpTy =
6622           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6623                                                                     : Op0Ty;
6624       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6625 
6626       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6627       // different sizes. We take the largest type as the ext to reduce, and add
6628       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6629       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6630           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6631           TTI::CastContextHint::None, CostKind, Op0);
6632       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6633           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6634           TTI::CastContextHint::None, CostKind, Op1);
6635       InstructionCost MulCost =
6636           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6637 
6638       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6639           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6640           CostKind);
6641       InstructionCost ExtraExtCost = 0;
6642       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6643         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6644         ExtraExtCost = TTI.getCastInstrCost(
6645             ExtraExtOp->getOpcode(), ExtType,
6646             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6647             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6648       }
6649 
6650       if (RedCost.isValid() &&
6651           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6652         return I == RetI ? RedCost : 0;
6653     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6654       // Matched reduce(mul())
6655       InstructionCost MulCost =
6656           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6657 
6658       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6659           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6660           CostKind);
6661 
6662       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6663         return I == RetI ? RedCost : 0;
6664     }
6665   }
6666 
6667   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6668 }
6669 
6670 InstructionCost
6671 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6672                                                      ElementCount VF) {
6673   // Calculate scalar cost only. Vectorization cost should be ready at this
6674   // moment.
6675   if (VF.isScalar()) {
6676     Type *ValTy = getLoadStoreType(I);
6677     const Align Alignment = getLoadStoreAlignment(I);
6678     unsigned AS = getLoadStoreAddressSpace(I);
6679 
6680     return TTI.getAddressComputationCost(ValTy) +
6681            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6682                                TTI::TCK_RecipThroughput, I);
6683   }
6684   return getWideningCost(I, VF);
6685 }
6686 
6687 LoopVectorizationCostModel::VectorizationCostTy
6688 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6689                                                ElementCount VF) {
6690   // If we know that this instruction will remain uniform, check the cost of
6691   // the scalar version.
6692   if (isUniformAfterVectorization(I, VF))
6693     VF = ElementCount::getFixed(1);
6694 
6695   if (VF.isVector() && isProfitableToScalarize(I, VF))
6696     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6697 
6698   // Forced scalars do not have any scalarization overhead.
6699   auto ForcedScalar = ForcedScalars.find(VF);
6700   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6701     auto InstSet = ForcedScalar->second;
6702     if (InstSet.count(I))
6703       return VectorizationCostTy(
6704           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6705            VF.getKnownMinValue()),
6706           false);
6707   }
6708 
6709   Type *VectorTy;
6710   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6711 
6712   bool TypeNotScalarized = false;
6713   if (VF.isVector() && VectorTy->isVectorTy()) {
6714     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
6715     if (NumParts)
6716       TypeNotScalarized = NumParts < VF.getKnownMinValue();
6717     else
6718       C = InstructionCost::getInvalid();
6719   }
6720   return VectorizationCostTy(C, TypeNotScalarized);
6721 }
6722 
6723 InstructionCost
6724 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6725                                                      ElementCount VF) const {
6726 
6727   // There is no mechanism yet to create a scalable scalarization loop,
6728   // so this is currently Invalid.
6729   if (VF.isScalable())
6730     return InstructionCost::getInvalid();
6731 
6732   if (VF.isScalar())
6733     return 0;
6734 
6735   InstructionCost Cost = 0;
6736   Type *RetTy = ToVectorTy(I->getType(), VF);
6737   if (!RetTy->isVoidTy() &&
6738       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6739     Cost += TTI.getScalarizationOverhead(
6740         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6741         false);
6742 
6743   // Some targets keep addresses scalar.
6744   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6745     return Cost;
6746 
6747   // Some targets support efficient element stores.
6748   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6749     return Cost;
6750 
6751   // Collect operands to consider.
6752   CallInst *CI = dyn_cast<CallInst>(I);
6753   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6754 
6755   // Skip operands that do not require extraction/scalarization and do not incur
6756   // any overhead.
6757   SmallVector<Type *> Tys;
6758   for (auto *V : filterExtractingOperands(Ops, VF))
6759     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6760   return Cost + TTI.getOperandsScalarizationOverhead(
6761                     filterExtractingOperands(Ops, VF), Tys);
6762 }
6763 
6764 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6765   if (VF.isScalar())
6766     return;
6767   NumPredStores = 0;
6768   for (BasicBlock *BB : TheLoop->blocks()) {
6769     // For each instruction in the old loop.
6770     for (Instruction &I : *BB) {
6771       Value *Ptr =  getLoadStorePointerOperand(&I);
6772       if (!Ptr)
6773         continue;
6774 
6775       // TODO: We should generate better code and update the cost model for
6776       // predicated uniform stores. Today they are treated as any other
6777       // predicated store (see added test cases in
6778       // invariant-store-vectorization.ll).
6779       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6780         NumPredStores++;
6781 
6782       if (Legal->isUniformMemOp(I)) {
6783         // TODO: Avoid replicating loads and stores instead of
6784         // relying on instcombine to remove them.
6785         // Load: Scalar load + broadcast
6786         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6787         InstructionCost Cost;
6788         if (isa<StoreInst>(&I) && VF.isScalable() &&
6789             isLegalGatherOrScatter(&I, VF)) {
6790           Cost = getGatherScatterCost(&I, VF);
6791           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6792         } else {
6793           Cost = getUniformMemOpCost(&I, VF);
6794           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6795         }
6796         continue;
6797       }
6798 
6799       // We assume that widening is the best solution when possible.
6800       if (memoryInstructionCanBeWidened(&I, VF)) {
6801         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6802         int ConsecutiveStride = Legal->isConsecutivePtr(
6803             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6804         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6805                "Expected consecutive stride.");
6806         InstWidening Decision =
6807             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6808         setWideningDecision(&I, VF, Decision, Cost);
6809         continue;
6810       }
6811 
6812       // Choose between Interleaving, Gather/Scatter or Scalarization.
6813       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6814       unsigned NumAccesses = 1;
6815       if (isAccessInterleaved(&I)) {
6816         auto Group = getInterleavedAccessGroup(&I);
6817         assert(Group && "Fail to get an interleaved access group.");
6818 
6819         // Make one decision for the whole group.
6820         if (getWideningDecision(&I, VF) != CM_Unknown)
6821           continue;
6822 
6823         NumAccesses = Group->getNumMembers();
6824         if (interleavedAccessCanBeWidened(&I, VF))
6825           InterleaveCost = getInterleaveGroupCost(&I, VF);
6826       }
6827 
6828       InstructionCost GatherScatterCost =
6829           isLegalGatherOrScatter(&I, VF)
6830               ? getGatherScatterCost(&I, VF) * NumAccesses
6831               : InstructionCost::getInvalid();
6832 
6833       InstructionCost ScalarizationCost =
6834           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6835 
6836       // Choose better solution for the current VF,
6837       // write down this decision and use it during vectorization.
6838       InstructionCost Cost;
6839       InstWidening Decision;
6840       if (InterleaveCost <= GatherScatterCost &&
6841           InterleaveCost < ScalarizationCost) {
6842         Decision = CM_Interleave;
6843         Cost = InterleaveCost;
6844       } else if (GatherScatterCost < ScalarizationCost) {
6845         Decision = CM_GatherScatter;
6846         Cost = GatherScatterCost;
6847       } else {
6848         Decision = CM_Scalarize;
6849         Cost = ScalarizationCost;
6850       }
6851       // If the instructions belongs to an interleave group, the whole group
6852       // receives the same decision. The whole group receives the cost, but
6853       // the cost will actually be assigned to one instruction.
6854       if (auto Group = getInterleavedAccessGroup(&I))
6855         setWideningDecision(Group, VF, Decision, Cost);
6856       else
6857         setWideningDecision(&I, VF, Decision, Cost);
6858     }
6859   }
6860 
6861   // Make sure that any load of address and any other address computation
6862   // remains scalar unless there is gather/scatter support. This avoids
6863   // inevitable extracts into address registers, and also has the benefit of
6864   // activating LSR more, since that pass can't optimize vectorized
6865   // addresses.
6866   if (TTI.prefersVectorizedAddressing())
6867     return;
6868 
6869   // Start with all scalar pointer uses.
6870   SmallPtrSet<Instruction *, 8> AddrDefs;
6871   for (BasicBlock *BB : TheLoop->blocks())
6872     for (Instruction &I : *BB) {
6873       Instruction *PtrDef =
6874         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6875       if (PtrDef && TheLoop->contains(PtrDef) &&
6876           getWideningDecision(&I, VF) != CM_GatherScatter)
6877         AddrDefs.insert(PtrDef);
6878     }
6879 
6880   // Add all instructions used to generate the addresses.
6881   SmallVector<Instruction *, 4> Worklist;
6882   append_range(Worklist, AddrDefs);
6883   while (!Worklist.empty()) {
6884     Instruction *I = Worklist.pop_back_val();
6885     for (auto &Op : I->operands())
6886       if (auto *InstOp = dyn_cast<Instruction>(Op))
6887         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6888             AddrDefs.insert(InstOp).second)
6889           Worklist.push_back(InstOp);
6890   }
6891 
6892   for (auto *I : AddrDefs) {
6893     if (isa<LoadInst>(I)) {
6894       // Setting the desired widening decision should ideally be handled in
6895       // by cost functions, but since this involves the task of finding out
6896       // if the loaded register is involved in an address computation, it is
6897       // instead changed here when we know this is the case.
6898       InstWidening Decision = getWideningDecision(I, VF);
6899       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6900         // Scalarize a widened load of address.
6901         setWideningDecision(
6902             I, VF, CM_Scalarize,
6903             (VF.getKnownMinValue() *
6904              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6905       else if (auto Group = getInterleavedAccessGroup(I)) {
6906         // Scalarize an interleave group of address loads.
6907         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6908           if (Instruction *Member = Group->getMember(I))
6909             setWideningDecision(
6910                 Member, VF, CM_Scalarize,
6911                 (VF.getKnownMinValue() *
6912                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6913         }
6914       }
6915     } else
6916       // Make sure I gets scalarized and a cost estimate without
6917       // scalarization overhead.
6918       ForcedScalars[VF].insert(I);
6919   }
6920 }
6921 
6922 InstructionCost
6923 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6924                                                Type *&VectorTy) {
6925   Type *RetTy = I->getType();
6926   if (canTruncateToMinimalBitwidth(I, VF))
6927     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6928   auto SE = PSE.getSE();
6929   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6930 
6931   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6932                                                 ElementCount VF) -> bool {
6933     if (VF.isScalar())
6934       return true;
6935 
6936     auto Scalarized = InstsToScalarize.find(VF);
6937     assert(Scalarized != InstsToScalarize.end() &&
6938            "VF not yet analyzed for scalarization profitability");
6939     return !Scalarized->second.count(I) &&
6940            llvm::all_of(I->users(), [&](User *U) {
6941              auto *UI = cast<Instruction>(U);
6942              return !Scalarized->second.count(UI);
6943            });
6944   };
6945   (void) hasSingleCopyAfterVectorization;
6946 
6947   if (isScalarAfterVectorization(I, VF)) {
6948     // With the exception of GEPs and PHIs, after scalarization there should
6949     // only be one copy of the instruction generated in the loop. This is
6950     // because the VF is either 1, or any instructions that need scalarizing
6951     // have already been dealt with by the the time we get here. As a result,
6952     // it means we don't have to multiply the instruction cost by VF.
6953     assert(I->getOpcode() == Instruction::GetElementPtr ||
6954            I->getOpcode() == Instruction::PHI ||
6955            (I->getOpcode() == Instruction::BitCast &&
6956             I->getType()->isPointerTy()) ||
6957            hasSingleCopyAfterVectorization(I, VF));
6958     VectorTy = RetTy;
6959   } else
6960     VectorTy = ToVectorTy(RetTy, VF);
6961 
6962   // TODO: We need to estimate the cost of intrinsic calls.
6963   switch (I->getOpcode()) {
6964   case Instruction::GetElementPtr:
6965     // We mark this instruction as zero-cost because the cost of GEPs in
6966     // vectorized code depends on whether the corresponding memory instruction
6967     // is scalarized or not. Therefore, we handle GEPs with the memory
6968     // instruction cost.
6969     return 0;
6970   case Instruction::Br: {
6971     // In cases of scalarized and predicated instructions, there will be VF
6972     // predicated blocks in the vectorized loop. Each branch around these
6973     // blocks requires also an extract of its vector compare i1 element.
6974     bool ScalarPredicatedBB = false;
6975     BranchInst *BI = cast<BranchInst>(I);
6976     if (VF.isVector() && BI->isConditional() &&
6977         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6978          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6979       ScalarPredicatedBB = true;
6980 
6981     if (ScalarPredicatedBB) {
6982       // Not possible to scalarize scalable vector with predicated instructions.
6983       if (VF.isScalable())
6984         return InstructionCost::getInvalid();
6985       // Return cost for branches around scalarized and predicated blocks.
6986       auto *Vec_i1Ty =
6987           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6988       return (
6989           TTI.getScalarizationOverhead(
6990               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6991           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
6992     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
6993       // The back-edge branch will remain, as will all scalar branches.
6994       return TTI.getCFInstrCost(Instruction::Br, CostKind);
6995     else
6996       // This branch will be eliminated by if-conversion.
6997       return 0;
6998     // Note: We currently assume zero cost for an unconditional branch inside
6999     // a predicated block since it will become a fall-through, although we
7000     // may decide in the future to call TTI for all branches.
7001   }
7002   case Instruction::PHI: {
7003     auto *Phi = cast<PHINode>(I);
7004 
7005     // First-order recurrences are replaced by vector shuffles inside the loop.
7006     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7007     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7008       return TTI.getShuffleCost(
7009           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7010           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7011 
7012     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7013     // converted into select instructions. We require N - 1 selects per phi
7014     // node, where N is the number of incoming values.
7015     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7016       return (Phi->getNumIncomingValues() - 1) *
7017              TTI.getCmpSelInstrCost(
7018                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7019                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7020                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7021 
7022     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7023   }
7024   case Instruction::UDiv:
7025   case Instruction::SDiv:
7026   case Instruction::URem:
7027   case Instruction::SRem:
7028     // If we have a predicated instruction, it may not be executed for each
7029     // vector lane. Get the scalarization cost and scale this amount by the
7030     // probability of executing the predicated block. If the instruction is not
7031     // predicated, we fall through to the next case.
7032     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7033       InstructionCost Cost = 0;
7034 
7035       // These instructions have a non-void type, so account for the phi nodes
7036       // that we will create. This cost is likely to be zero. The phi node
7037       // cost, if any, should be scaled by the block probability because it
7038       // models a copy at the end of each predicated block.
7039       Cost += VF.getKnownMinValue() *
7040               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7041 
7042       // The cost of the non-predicated instruction.
7043       Cost += VF.getKnownMinValue() *
7044               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7045 
7046       // The cost of insertelement and extractelement instructions needed for
7047       // scalarization.
7048       Cost += getScalarizationOverhead(I, VF);
7049 
7050       // Scale the cost by the probability of executing the predicated blocks.
7051       // This assumes the predicated block for each vector lane is equally
7052       // likely.
7053       return Cost / getReciprocalPredBlockProb();
7054     }
7055     LLVM_FALLTHROUGH;
7056   case Instruction::Add:
7057   case Instruction::FAdd:
7058   case Instruction::Sub:
7059   case Instruction::FSub:
7060   case Instruction::Mul:
7061   case Instruction::FMul:
7062   case Instruction::FDiv:
7063   case Instruction::FRem:
7064   case Instruction::Shl:
7065   case Instruction::LShr:
7066   case Instruction::AShr:
7067   case Instruction::And:
7068   case Instruction::Or:
7069   case Instruction::Xor: {
7070     // Since we will replace the stride by 1 the multiplication should go away.
7071     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7072       return 0;
7073 
7074     // Detect reduction patterns
7075     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7076       return *RedCost;
7077 
7078     // Certain instructions can be cheaper to vectorize if they have a constant
7079     // second vector operand. One example of this are shifts on x86.
7080     Value *Op2 = I->getOperand(1);
7081     TargetTransformInfo::OperandValueProperties Op2VP;
7082     TargetTransformInfo::OperandValueKind Op2VK =
7083         TTI.getOperandInfo(Op2, Op2VP);
7084     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7085       Op2VK = TargetTransformInfo::OK_UniformValue;
7086 
7087     SmallVector<const Value *, 4> Operands(I->operand_values());
7088     return TTI.getArithmeticInstrCost(
7089         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7090         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7091   }
7092   case Instruction::FNeg: {
7093     return TTI.getArithmeticInstrCost(
7094         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7095         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7096         TargetTransformInfo::OP_None, I->getOperand(0), I);
7097   }
7098   case Instruction::Select: {
7099     SelectInst *SI = cast<SelectInst>(I);
7100     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7101     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7102 
7103     const Value *Op0, *Op1;
7104     using namespace llvm::PatternMatch;
7105     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7106                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7107       // select x, y, false --> x & y
7108       // select x, true, y --> x | y
7109       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7110       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7111       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7112       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7113       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7114               Op1->getType()->getScalarSizeInBits() == 1);
7115 
7116       SmallVector<const Value *, 2> Operands{Op0, Op1};
7117       return TTI.getArithmeticInstrCost(
7118           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7119           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7120     }
7121 
7122     Type *CondTy = SI->getCondition()->getType();
7123     if (!ScalarCond)
7124       CondTy = VectorType::get(CondTy, VF);
7125 
7126     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7127     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7128       Pred = Cmp->getPredicate();
7129     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7130                                   CostKind, I);
7131   }
7132   case Instruction::ICmp:
7133   case Instruction::FCmp: {
7134     Type *ValTy = I->getOperand(0)->getType();
7135     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7136     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7137       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7138     VectorTy = ToVectorTy(ValTy, VF);
7139     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7140                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7141                                   I);
7142   }
7143   case Instruction::Store:
7144   case Instruction::Load: {
7145     ElementCount Width = VF;
7146     if (Width.isVector()) {
7147       InstWidening Decision = getWideningDecision(I, Width);
7148       assert(Decision != CM_Unknown &&
7149              "CM decision should be taken at this point");
7150       if (Decision == CM_Scalarize) {
7151         if (VF.isScalable() && isa<StoreInst>(I))
7152           // We can't scalarize a scalable vector store (even a uniform one
7153           // currently), return an invalid cost so as to prevent vectorization.
7154           return InstructionCost::getInvalid();
7155         Width = ElementCount::getFixed(1);
7156       }
7157     }
7158     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7159     return getMemoryInstructionCost(I, VF);
7160   }
7161   case Instruction::BitCast:
7162     if (I->getType()->isPointerTy())
7163       return 0;
7164     LLVM_FALLTHROUGH;
7165   case Instruction::ZExt:
7166   case Instruction::SExt:
7167   case Instruction::FPToUI:
7168   case Instruction::FPToSI:
7169   case Instruction::FPExt:
7170   case Instruction::PtrToInt:
7171   case Instruction::IntToPtr:
7172   case Instruction::SIToFP:
7173   case Instruction::UIToFP:
7174   case Instruction::Trunc:
7175   case Instruction::FPTrunc: {
7176     // Computes the CastContextHint from a Load/Store instruction.
7177     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7178       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7179              "Expected a load or a store!");
7180 
7181       if (VF.isScalar() || !TheLoop->contains(I))
7182         return TTI::CastContextHint::Normal;
7183 
7184       switch (getWideningDecision(I, VF)) {
7185       case LoopVectorizationCostModel::CM_GatherScatter:
7186         return TTI::CastContextHint::GatherScatter;
7187       case LoopVectorizationCostModel::CM_Interleave:
7188         return TTI::CastContextHint::Interleave;
7189       case LoopVectorizationCostModel::CM_Scalarize:
7190       case LoopVectorizationCostModel::CM_Widen:
7191         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7192                                         : TTI::CastContextHint::Normal;
7193       case LoopVectorizationCostModel::CM_Widen_Reverse:
7194         return TTI::CastContextHint::Reversed;
7195       case LoopVectorizationCostModel::CM_Unknown:
7196         llvm_unreachable("Instr did not go through cost modelling?");
7197       }
7198 
7199       llvm_unreachable("Unhandled case!");
7200     };
7201 
7202     unsigned Opcode = I->getOpcode();
7203     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7204     // For Trunc, the context is the only user, which must be a StoreInst.
7205     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7206       if (I->hasOneUse())
7207         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7208           CCH = ComputeCCH(Store);
7209     }
7210     // For Z/Sext, the context is the operand, which must be a LoadInst.
7211     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7212              Opcode == Instruction::FPExt) {
7213       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7214         CCH = ComputeCCH(Load);
7215     }
7216 
7217     // We optimize the truncation of induction variables having constant
7218     // integer steps. The cost of these truncations is the same as the scalar
7219     // operation.
7220     if (isOptimizableIVTruncate(I, VF)) {
7221       auto *Trunc = cast<TruncInst>(I);
7222       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7223                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7224     }
7225 
7226     // Detect reduction patterns
7227     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7228       return *RedCost;
7229 
7230     Type *SrcScalarTy = I->getOperand(0)->getType();
7231     Type *SrcVecTy =
7232         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7233     if (canTruncateToMinimalBitwidth(I, VF)) {
7234       // This cast is going to be shrunk. This may remove the cast or it might
7235       // turn it into slightly different cast. For example, if MinBW == 16,
7236       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7237       //
7238       // Calculate the modified src and dest types.
7239       Type *MinVecTy = VectorTy;
7240       if (Opcode == Instruction::Trunc) {
7241         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7242         VectorTy =
7243             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7244       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7245         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7246         VectorTy =
7247             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7248       }
7249     }
7250 
7251     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7252   }
7253   case Instruction::Call: {
7254     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7255       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7256         return *RedCost;
7257     bool NeedToScalarize;
7258     CallInst *CI = cast<CallInst>(I);
7259     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7260     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7261       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7262       return std::min(CallCost, IntrinsicCost);
7263     }
7264     return CallCost;
7265   }
7266   case Instruction::ExtractValue:
7267     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7268   case Instruction::Alloca:
7269     // We cannot easily widen alloca to a scalable alloca, as
7270     // the result would need to be a vector of pointers.
7271     if (VF.isScalable())
7272       return InstructionCost::getInvalid();
7273     LLVM_FALLTHROUGH;
7274   default:
7275     // This opcode is unknown. Assume that it is the same as 'mul'.
7276     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7277   } // end of switch.
7278 }
7279 
7280 char LoopVectorize::ID = 0;
7281 
7282 static const char lv_name[] = "Loop Vectorization";
7283 
7284 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7285 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7286 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7287 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7288 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7289 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7290 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7291 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7292 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7293 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7295 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7296 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7297 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7298 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7299 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7300 
7301 namespace llvm {
7302 
7303 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7304 
7305 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7306                               bool VectorizeOnlyWhenForced) {
7307   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7308 }
7309 
7310 } // end namespace llvm
7311 
7312 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7313   // Check if the pointer operand of a load or store instruction is
7314   // consecutive.
7315   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7316     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7317   return false;
7318 }
7319 
7320 void LoopVectorizationCostModel::collectValuesToIgnore() {
7321   // Ignore ephemeral values.
7322   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7323 
7324   // Find all stores to invariant variables. Since they are going to sink
7325   // outside the loop we do not need calculate cost for them.
7326   for (BasicBlock *BB : TheLoop->blocks())
7327     for (Instruction &I : *BB) {
7328       StoreInst *SI;
7329       if ((SI = dyn_cast<StoreInst>(&I)) &&
7330           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7331         ValuesToIgnore.insert(&I);
7332     }
7333 
7334   // Ignore type-promoting instructions we identified during reduction
7335   // detection.
7336   for (auto &Reduction : Legal->getReductionVars()) {
7337     const RecurrenceDescriptor &RedDes = Reduction.second;
7338     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7339     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7340   }
7341   // Ignore type-casting instructions we identified during induction
7342   // detection.
7343   for (auto &Induction : Legal->getInductionVars()) {
7344     const InductionDescriptor &IndDes = Induction.second;
7345     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7346     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7347   }
7348 }
7349 
7350 void LoopVectorizationCostModel::collectInLoopReductions() {
7351   for (auto &Reduction : Legal->getReductionVars()) {
7352     PHINode *Phi = Reduction.first;
7353     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7354 
7355     // We don't collect reductions that are type promoted (yet).
7356     if (RdxDesc.getRecurrenceType() != Phi->getType())
7357       continue;
7358 
7359     // If the target would prefer this reduction to happen "in-loop", then we
7360     // want to record it as such.
7361     unsigned Opcode = RdxDesc.getOpcode();
7362     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7363         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7364                                    TargetTransformInfo::ReductionFlags()))
7365       continue;
7366 
7367     // Check that we can correctly put the reductions into the loop, by
7368     // finding the chain of operations that leads from the phi to the loop
7369     // exit value.
7370     SmallVector<Instruction *, 4> ReductionOperations =
7371         RdxDesc.getReductionOpChain(Phi, TheLoop);
7372     bool InLoop = !ReductionOperations.empty();
7373     if (InLoop) {
7374       InLoopReductionChains[Phi] = ReductionOperations;
7375       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7376       Instruction *LastChain = Phi;
7377       for (auto *I : ReductionOperations) {
7378         InLoopReductionImmediateChains[I] = LastChain;
7379         LastChain = I;
7380       }
7381     }
7382     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7383                       << " reduction for phi: " << *Phi << "\n");
7384   }
7385 }
7386 
7387 // TODO: we could return a pair of values that specify the max VF and
7388 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7389 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7390 // doesn't have a cost model that can choose which plan to execute if
7391 // more than one is generated.
7392 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7393                                  LoopVectorizationCostModel &CM) {
7394   unsigned WidestType;
7395   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7396   return WidestVectorRegBits / WidestType;
7397 }
7398 
7399 VectorizationFactor
7400 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7401   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7402   ElementCount VF = UserVF;
7403   // Outer loop handling: They may require CFG and instruction level
7404   // transformations before even evaluating whether vectorization is profitable.
7405   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7406   // the vectorization pipeline.
7407   if (!OrigLoop->isInnermost()) {
7408     // If the user doesn't provide a vectorization factor, determine a
7409     // reasonable one.
7410     if (UserVF.isZero()) {
7411       VF = ElementCount::getFixed(determineVPlanVF(
7412           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7413               .getFixedSize(),
7414           CM));
7415       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7416 
7417       // Make sure we have a VF > 1 for stress testing.
7418       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7419         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7420                           << "overriding computed VF.\n");
7421         VF = ElementCount::getFixed(4);
7422       }
7423     }
7424     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7425     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7426            "VF needs to be a power of two");
7427     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7428                       << "VF " << VF << " to build VPlans.\n");
7429     buildVPlans(VF, VF);
7430 
7431     // For VPlan build stress testing, we bail out after VPlan construction.
7432     if (VPlanBuildStressTest)
7433       return VectorizationFactor::Disabled();
7434 
7435     return {VF, 0 /*Cost*/};
7436   }
7437 
7438   LLVM_DEBUG(
7439       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7440                 "VPlan-native path.\n");
7441   return VectorizationFactor::Disabled();
7442 }
7443 
7444 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const {
7445   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7446   return (NumRuntimePointerChecks >
7447               VectorizerParams::RuntimeMemoryCheckThreshold &&
7448           !Hints.allowReordering()) ||
7449          NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7450 }
7451 
7452 Optional<VectorizationFactor>
7453 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7454   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7455   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7456   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7457     return None;
7458 
7459   // Invalidate interleave groups if all blocks of loop will be predicated.
7460   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7461       !useMaskedInterleavedAccesses(*TTI)) {
7462     LLVM_DEBUG(
7463         dbgs()
7464         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7465            "which requires masked-interleaved support.\n");
7466     if (CM.InterleaveInfo.invalidateGroups())
7467       // Invalidating interleave groups also requires invalidating all decisions
7468       // based on them, which includes widening decisions and uniform and scalar
7469       // values.
7470       CM.invalidateCostModelingDecisions();
7471   }
7472 
7473   ElementCount MaxUserVF =
7474       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7475   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7476   if (!UserVF.isZero() && UserVFIsLegal) {
7477     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7478            "VF needs to be a power of two");
7479     // Collect the instructions (and their associated costs) that will be more
7480     // profitable to scalarize.
7481     if (CM.selectUserVectorizationFactor(UserVF)) {
7482       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7483       CM.collectInLoopReductions();
7484       buildVPlansWithVPRecipes(UserVF, UserVF);
7485       LLVM_DEBUG(printPlans(dbgs()));
7486       return {{UserVF, 0}};
7487     } else
7488       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7489                               "InvalidCost", ORE, OrigLoop);
7490   }
7491 
7492   // Populate the set of Vectorization Factor Candidates.
7493   ElementCountSet VFCandidates;
7494   for (auto VF = ElementCount::getFixed(1);
7495        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7496     VFCandidates.insert(VF);
7497   for (auto VF = ElementCount::getScalable(1);
7498        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7499     VFCandidates.insert(VF);
7500 
7501   for (const auto &VF : VFCandidates) {
7502     // Collect Uniform and Scalar instructions after vectorization with VF.
7503     CM.collectUniformsAndScalars(VF);
7504 
7505     // Collect the instructions (and their associated costs) that will be more
7506     // profitable to scalarize.
7507     if (VF.isVector())
7508       CM.collectInstsToScalarize(VF);
7509   }
7510 
7511   CM.collectInLoopReductions();
7512   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7513   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7514 
7515   LLVM_DEBUG(printPlans(dbgs()));
7516   if (!MaxFactors.hasVector())
7517     return VectorizationFactor::Disabled();
7518 
7519   // Select the optimal vectorization factor.
7520   return CM.selectVectorizationFactor(VFCandidates);
7521 }
7522 
7523 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7524   assert(count_if(VPlans,
7525                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7526              1 &&
7527          "Best VF has not a single VPlan.");
7528 
7529   for (const VPlanPtr &Plan : VPlans) {
7530     if (Plan->hasVF(VF))
7531       return *Plan.get();
7532   }
7533   llvm_unreachable("No plan found!");
7534 }
7535 
7536 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7537   SmallVector<Metadata *, 4> MDs;
7538   // Reserve first location for self reference to the LoopID metadata node.
7539   MDs.push_back(nullptr);
7540   bool IsUnrollMetadata = false;
7541   MDNode *LoopID = L->getLoopID();
7542   if (LoopID) {
7543     // First find existing loop unrolling disable metadata.
7544     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7545       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7546       if (MD) {
7547         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7548         IsUnrollMetadata =
7549             S && S->getString().startswith("llvm.loop.unroll.disable");
7550       }
7551       MDs.push_back(LoopID->getOperand(i));
7552     }
7553   }
7554 
7555   if (!IsUnrollMetadata) {
7556     // Add runtime unroll disable metadata.
7557     LLVMContext &Context = L->getHeader()->getContext();
7558     SmallVector<Metadata *, 1> DisableOperands;
7559     DisableOperands.push_back(
7560         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7561     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7562     MDs.push_back(DisableNode);
7563     MDNode *NewLoopID = MDNode::get(Context, MDs);
7564     // Set operand 0 to refer to the loop id itself.
7565     NewLoopID->replaceOperandWith(0, NewLoopID);
7566     L->setLoopID(NewLoopID);
7567   }
7568 }
7569 
7570 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7571                                            VPlan &BestVPlan,
7572                                            InnerLoopVectorizer &ILV,
7573                                            DominatorTree *DT) {
7574   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7575                     << '\n');
7576 
7577   // Perform the actual loop transformation.
7578 
7579   // 1. Set up the skeleton for vectorization, including vector pre-header and
7580   // middle block. The vector loop is created during VPlan execution.
7581   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7582   Value *CanonicalIVStartValue;
7583   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7584       ILV.createVectorizedLoopSkeleton();
7585   ILV.collectPoisonGeneratingRecipes(State);
7586 
7587   ILV.printDebugTracesAtStart();
7588 
7589   //===------------------------------------------------===//
7590   //
7591   // Notice: any optimization or new instruction that go
7592   // into the code below should also be implemented in
7593   // the cost-model.
7594   //
7595   //===------------------------------------------------===//
7596 
7597   // 2. Copy and widen instructions from the old loop into the new loop.
7598   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7599                              ILV.getOrCreateVectorTripCount(nullptr),
7600                              CanonicalIVStartValue, State);
7601   BestVPlan.execute(&State);
7602 
7603   // Keep all loop hints from the original loop on the vector loop (we'll
7604   // replace the vectorizer-specific hints below).
7605   MDNode *OrigLoopID = OrigLoop->getLoopID();
7606 
7607   Optional<MDNode *> VectorizedLoopID =
7608       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7609                                       LLVMLoopVectorizeFollowupVectorized});
7610 
7611   VPBasicBlock *HeaderVPBB =
7612       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7613   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7614   if (VectorizedLoopID.hasValue())
7615     L->setLoopID(VectorizedLoopID.getValue());
7616   else {
7617     // Keep all loop hints from the original loop on the vector loop (we'll
7618     // replace the vectorizer-specific hints below).
7619     if (MDNode *LID = OrigLoop->getLoopID())
7620       L->setLoopID(LID);
7621 
7622     LoopVectorizeHints Hints(L, true, *ORE);
7623     Hints.setAlreadyVectorized();
7624   }
7625   // Disable runtime unrolling when vectorizing the epilogue loop.
7626   if (CanonicalIVStartValue)
7627     AddRuntimeUnrollDisableMetaData(L);
7628 
7629   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7630   //    predication, updating analyses.
7631   ILV.fixVectorizedLoop(State, BestVPlan);
7632 
7633   ILV.printDebugTracesAtEnd();
7634 }
7635 
7636 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7637 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7638   for (const auto &Plan : VPlans)
7639     if (PrintVPlansInDotFormat)
7640       Plan->printDOT(O);
7641     else
7642       Plan->print(O);
7643 }
7644 #endif
7645 
7646 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7647     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7648 
7649   // We create new control-flow for the vectorized loop, so the original exit
7650   // conditions will be dead after vectorization if it's only used by the
7651   // terminator
7652   SmallVector<BasicBlock*> ExitingBlocks;
7653   OrigLoop->getExitingBlocks(ExitingBlocks);
7654   for (auto *BB : ExitingBlocks) {
7655     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7656     if (!Cmp || !Cmp->hasOneUse())
7657       continue;
7658 
7659     // TODO: we should introduce a getUniqueExitingBlocks on Loop
7660     if (!DeadInstructions.insert(Cmp).second)
7661       continue;
7662 
7663     // The operands of the icmp is often a dead trunc, used by IndUpdate.
7664     // TODO: can recurse through operands in general
7665     for (Value *Op : Cmp->operands()) {
7666       if (isa<TruncInst>(Op) && Op->hasOneUse())
7667           DeadInstructions.insert(cast<Instruction>(Op));
7668     }
7669   }
7670 
7671   // We create new "steps" for induction variable updates to which the original
7672   // induction variables map. An original update instruction will be dead if
7673   // all its users except the induction variable are dead.
7674   auto *Latch = OrigLoop->getLoopLatch();
7675   for (auto &Induction : Legal->getInductionVars()) {
7676     PHINode *Ind = Induction.first;
7677     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7678 
7679     // If the tail is to be folded by masking, the primary induction variable,
7680     // if exists, isn't dead: it will be used for masking. Don't kill it.
7681     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
7682       continue;
7683 
7684     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7685           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7686         }))
7687       DeadInstructions.insert(IndUpdate);
7688   }
7689 }
7690 
7691 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7692 
7693 //===--------------------------------------------------------------------===//
7694 // EpilogueVectorizerMainLoop
7695 //===--------------------------------------------------------------------===//
7696 
7697 /// This function is partially responsible for generating the control flow
7698 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7699 std::pair<BasicBlock *, Value *>
7700 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7701   MDNode *OrigLoopID = OrigLoop->getLoopID();
7702 
7703   // Workaround!  Compute the trip count of the original loop and cache it
7704   // before we start modifying the CFG.  This code has a systemic problem
7705   // wherein it tries to run analysis over partially constructed IR; this is
7706   // wrong, and not simply for SCEV.  The trip count of the original loop
7707   // simply happens to be prone to hitting this in practice.  In theory, we
7708   // can hit the same issue for any SCEV, or ValueTracking query done during
7709   // mutation.  See PR49900.
7710   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7711   createVectorLoopSkeleton("");
7712 
7713   // Generate the code to check the minimum iteration count of the vector
7714   // epilogue (see below).
7715   EPI.EpilogueIterationCountCheck =
7716       emitIterationCountCheck(LoopScalarPreHeader, true);
7717   EPI.EpilogueIterationCountCheck->setName("iter.check");
7718 
7719   // Generate the code to check any assumptions that we've made for SCEV
7720   // expressions.
7721   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7722 
7723   // Generate the code that checks at runtime if arrays overlap. We put the
7724   // checks into a separate block to make the more common case of few elements
7725   // faster.
7726   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7727 
7728   // Generate the iteration count check for the main loop, *after* the check
7729   // for the epilogue loop, so that the path-length is shorter for the case
7730   // that goes directly through the vector epilogue. The longer-path length for
7731   // the main loop is compensated for, by the gain from vectorizing the larger
7732   // trip count. Note: the branch will get updated later on when we vectorize
7733   // the epilogue.
7734   EPI.MainLoopIterationCountCheck =
7735       emitIterationCountCheck(LoopScalarPreHeader, false);
7736 
7737   // Generate the induction variable.
7738   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7739 
7740   // Skip induction resume value creation here because they will be created in
7741   // the second pass. If we created them here, they wouldn't be used anyway,
7742   // because the vplan in the second pass still contains the inductions from the
7743   // original loop.
7744 
7745   return {completeLoopSkeleton(OrigLoopID), nullptr};
7746 }
7747 
7748 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7749   LLVM_DEBUG({
7750     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7751            << "Main Loop VF:" << EPI.MainLoopVF
7752            << ", Main Loop UF:" << EPI.MainLoopUF
7753            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7754            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7755   });
7756 }
7757 
7758 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7759   DEBUG_WITH_TYPE(VerboseDebug, {
7760     dbgs() << "intermediate fn:\n"
7761            << *OrigLoop->getHeader()->getParent() << "\n";
7762   });
7763 }
7764 
7765 BasicBlock *
7766 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7767                                                     bool ForEpilogue) {
7768   assert(Bypass && "Expected valid bypass basic block.");
7769   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7770   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7771   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7772   // Reuse existing vector loop preheader for TC checks.
7773   // Note that new preheader block is generated for vector loop.
7774   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7775   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7776 
7777   // Generate code to check if the loop's trip count is less than VF * UF of the
7778   // main vector loop.
7779   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7780       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7781 
7782   Value *CheckMinIters = Builder.CreateICmp(
7783       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7784       "min.iters.check");
7785 
7786   if (!ForEpilogue)
7787     TCCheckBlock->setName("vector.main.loop.iter.check");
7788 
7789   // Create new preheader for vector loop.
7790   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7791                                    DT, LI, nullptr, "vector.ph");
7792 
7793   if (ForEpilogue) {
7794     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7795                                  DT->getNode(Bypass)->getIDom()) &&
7796            "TC check is expected to dominate Bypass");
7797 
7798     // Update dominator for Bypass & LoopExit.
7799     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7800     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7801       // For loops with multiple exits, there's no edge from the middle block
7802       // to exit blocks (as the epilogue must run) and thus no need to update
7803       // the immediate dominator of the exit blocks.
7804       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7805 
7806     LoopBypassBlocks.push_back(TCCheckBlock);
7807 
7808     // Save the trip count so we don't have to regenerate it in the
7809     // vec.epilog.iter.check. This is safe to do because the trip count
7810     // generated here dominates the vector epilog iter check.
7811     EPI.TripCount = Count;
7812   }
7813 
7814   ReplaceInstWithInst(
7815       TCCheckBlock->getTerminator(),
7816       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7817 
7818   return TCCheckBlock;
7819 }
7820 
7821 //===--------------------------------------------------------------------===//
7822 // EpilogueVectorizerEpilogueLoop
7823 //===--------------------------------------------------------------------===//
7824 
7825 /// This function is partially responsible for generating the control flow
7826 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7827 std::pair<BasicBlock *, Value *>
7828 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7829   MDNode *OrigLoopID = OrigLoop->getLoopID();
7830   createVectorLoopSkeleton("vec.epilog.");
7831 
7832   // Now, compare the remaining count and if there aren't enough iterations to
7833   // execute the vectorized epilogue skip to the scalar part.
7834   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7835   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7836   LoopVectorPreHeader =
7837       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7838                  LI, nullptr, "vec.epilog.ph");
7839   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7840                                           VecEpilogueIterationCountCheck);
7841 
7842   // Adjust the control flow taking the state info from the main loop
7843   // vectorization into account.
7844   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7845          "expected this to be saved from the previous pass.");
7846   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7847       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7848 
7849   DT->changeImmediateDominator(LoopVectorPreHeader,
7850                                EPI.MainLoopIterationCountCheck);
7851 
7852   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7853       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7854 
7855   if (EPI.SCEVSafetyCheck)
7856     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7857         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7858   if (EPI.MemSafetyCheck)
7859     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7860         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7861 
7862   DT->changeImmediateDominator(
7863       VecEpilogueIterationCountCheck,
7864       VecEpilogueIterationCountCheck->getSinglePredecessor());
7865 
7866   DT->changeImmediateDominator(LoopScalarPreHeader,
7867                                EPI.EpilogueIterationCountCheck);
7868   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7869     // If there is an epilogue which must run, there's no edge from the
7870     // middle block to exit blocks  and thus no need to update the immediate
7871     // dominator of the exit blocks.
7872     DT->changeImmediateDominator(LoopExitBlock,
7873                                  EPI.EpilogueIterationCountCheck);
7874 
7875   // Keep track of bypass blocks, as they feed start values to the induction
7876   // phis in the scalar loop preheader.
7877   if (EPI.SCEVSafetyCheck)
7878     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7879   if (EPI.MemSafetyCheck)
7880     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7881   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7882 
7883   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7884   // merge control-flow from the latch block and the middle block. Update the
7885   // incoming values here and move the Phi into the preheader.
7886   SmallVector<PHINode *, 4> PhisInBlock;
7887   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7888     PhisInBlock.push_back(&Phi);
7889 
7890   for (PHINode *Phi : PhisInBlock) {
7891     Phi->replaceIncomingBlockWith(
7892         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7893         VecEpilogueIterationCountCheck);
7894     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7895     if (EPI.SCEVSafetyCheck)
7896       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7897     if (EPI.MemSafetyCheck)
7898       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7899     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7900   }
7901 
7902   // Generate a resume induction for the vector epilogue and put it in the
7903   // vector epilogue preheader
7904   Type *IdxTy = Legal->getWidestInductionType();
7905   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7906                                          LoopVectorPreHeader->getFirstNonPHI());
7907   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7908   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7909                            EPI.MainLoopIterationCountCheck);
7910 
7911   // Generate induction resume values. These variables save the new starting
7912   // indexes for the scalar loop. They are used to test if there are any tail
7913   // iterations left once the vector loop has completed.
7914   // Note that when the vectorized epilogue is skipped due to iteration count
7915   // check, then the resume value for the induction variable comes from
7916   // the trip count of the main vector loop, hence passing the AdditionalBypass
7917   // argument.
7918   createInductionResumeValues({VecEpilogueIterationCountCheck,
7919                                EPI.VectorTripCount} /* AdditionalBypass */);
7920 
7921   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7922 }
7923 
7924 BasicBlock *
7925 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7926     BasicBlock *Bypass, BasicBlock *Insert) {
7927 
7928   assert(EPI.TripCount &&
7929          "Expected trip count to have been safed in the first pass.");
7930   assert(
7931       (!isa<Instruction>(EPI.TripCount) ||
7932        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7933       "saved trip count does not dominate insertion point.");
7934   Value *TC = EPI.TripCount;
7935   IRBuilder<> Builder(Insert->getTerminator());
7936   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7937 
7938   // Generate code to check if the loop's trip count is less than VF * UF of the
7939   // vector epilogue loop.
7940   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7941       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7942 
7943   Value *CheckMinIters =
7944       Builder.CreateICmp(P, Count,
7945                          createStepForVF(Builder, Count->getType(),
7946                                          EPI.EpilogueVF, EPI.EpilogueUF),
7947                          "min.epilog.iters.check");
7948 
7949   ReplaceInstWithInst(
7950       Insert->getTerminator(),
7951       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7952 
7953   LoopBypassBlocks.push_back(Insert);
7954   return Insert;
7955 }
7956 
7957 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7958   LLVM_DEBUG({
7959     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7960            << "Epilogue Loop VF:" << EPI.EpilogueVF
7961            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7962   });
7963 }
7964 
7965 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7966   DEBUG_WITH_TYPE(VerboseDebug, {
7967     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7968   });
7969 }
7970 
7971 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7972     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7973   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7974   bool PredicateAtRangeStart = Predicate(Range.Start);
7975 
7976   for (ElementCount TmpVF = Range.Start * 2;
7977        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7978     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7979       Range.End = TmpVF;
7980       break;
7981     }
7982 
7983   return PredicateAtRangeStart;
7984 }
7985 
7986 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7987 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7988 /// of VF's starting at a given VF and extending it as much as possible. Each
7989 /// vectorization decision can potentially shorten this sub-range during
7990 /// buildVPlan().
7991 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7992                                            ElementCount MaxVF) {
7993   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7994   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7995     VFRange SubRange = {VF, MaxVFPlusOne};
7996     VPlans.push_back(buildVPlan(SubRange));
7997     VF = SubRange.End;
7998   }
7999 }
8000 
8001 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8002                                          VPlanPtr &Plan) {
8003   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8004 
8005   // Look for cached value.
8006   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8007   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8008   if (ECEntryIt != EdgeMaskCache.end())
8009     return ECEntryIt->second;
8010 
8011   VPValue *SrcMask = createBlockInMask(Src, Plan);
8012 
8013   // The terminator has to be a branch inst!
8014   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8015   assert(BI && "Unexpected terminator found");
8016 
8017   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8018     return EdgeMaskCache[Edge] = SrcMask;
8019 
8020   // If source is an exiting block, we know the exit edge is dynamically dead
8021   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8022   // adding uses of an otherwise potentially dead instruction.
8023   if (OrigLoop->isLoopExiting(Src))
8024     return EdgeMaskCache[Edge] = SrcMask;
8025 
8026   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8027   assert(EdgeMask && "No Edge Mask found for condition");
8028 
8029   if (BI->getSuccessor(0) != Dst)
8030     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8031 
8032   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8033     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8034     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8035     // The select version does not introduce new UB if SrcMask is false and
8036     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8037     VPValue *False = Plan->getOrAddVPValue(
8038         ConstantInt::getFalse(BI->getCondition()->getType()));
8039     EdgeMask =
8040         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8041   }
8042 
8043   return EdgeMaskCache[Edge] = EdgeMask;
8044 }
8045 
8046 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8047   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8048 
8049   // Look for cached value.
8050   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8051   if (BCEntryIt != BlockMaskCache.end())
8052     return BCEntryIt->second;
8053 
8054   // All-one mask is modelled as no-mask following the convention for masked
8055   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8056   VPValue *BlockMask = nullptr;
8057 
8058   if (OrigLoop->getHeader() == BB) {
8059     if (!CM.blockNeedsPredicationForAnyReason(BB))
8060       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8061 
8062     // Introduce the early-exit compare IV <= BTC to form header block mask.
8063     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8064     // constructing the desired canonical IV in the header block as its first
8065     // non-phi instructions.
8066     assert(CM.foldTailByMasking() && "must fold the tail");
8067     VPBasicBlock *HeaderVPBB =
8068         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8069     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8070     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8071     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8072 
8073     VPBuilder::InsertPointGuard Guard(Builder);
8074     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8075     if (CM.TTI.emitGetActiveLaneMask()) {
8076       VPValue *TC = Plan->getOrCreateTripCount();
8077       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8078     } else {
8079       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8080       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8081     }
8082     return BlockMaskCache[BB] = BlockMask;
8083   }
8084 
8085   // This is the block mask. We OR all incoming edges.
8086   for (auto *Predecessor : predecessors(BB)) {
8087     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8088     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8089       return BlockMaskCache[BB] = EdgeMask;
8090 
8091     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8092       BlockMask = EdgeMask;
8093       continue;
8094     }
8095 
8096     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8097   }
8098 
8099   return BlockMaskCache[BB] = BlockMask;
8100 }
8101 
8102 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8103                                                 ArrayRef<VPValue *> Operands,
8104                                                 VFRange &Range,
8105                                                 VPlanPtr &Plan) {
8106   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8107          "Must be called with either a load or store");
8108 
8109   auto willWiden = [&](ElementCount VF) -> bool {
8110     LoopVectorizationCostModel::InstWidening Decision =
8111         CM.getWideningDecision(I, VF);
8112     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8113            "CM decision should be taken at this point.");
8114     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8115       return true;
8116     if (CM.isScalarAfterVectorization(I, VF) ||
8117         CM.isProfitableToScalarize(I, VF))
8118       return false;
8119     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8120   };
8121 
8122   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8123     return nullptr;
8124 
8125   VPValue *Mask = nullptr;
8126   if (Legal->isMaskRequired(I))
8127     Mask = createBlockInMask(I->getParent(), Plan);
8128 
8129   // Determine if the pointer operand of the access is either consecutive or
8130   // reverse consecutive.
8131   LoopVectorizationCostModel::InstWidening Decision =
8132       CM.getWideningDecision(I, Range.Start);
8133   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8134   bool Consecutive =
8135       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8136 
8137   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8138     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8139                                               Consecutive, Reverse);
8140 
8141   StoreInst *Store = cast<StoreInst>(I);
8142   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8143                                             Mask, Consecutive, Reverse);
8144 }
8145 
8146 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8147 /// insert a recipe to expand the step for the induction recipe.
8148 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8149     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8150     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8151     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8152   // Returns true if an instruction \p I should be scalarized instead of
8153   // vectorized for the chosen vectorization factor.
8154   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8155     return CM.isScalarAfterVectorization(I, VF) ||
8156            CM.isProfitableToScalarize(I, VF);
8157   };
8158 
8159   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8160       [&](ElementCount VF) {
8161         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8162       },
8163       Range);
8164   assert(IndDesc.getStartValue() ==
8165          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8166   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8167          "step must be loop invariant");
8168 
8169   VPValue *Step =
8170       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8171   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8172     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8173                                              !NeedsScalarIVOnly);
8174   }
8175   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8176   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8177                                            !NeedsScalarIVOnly);
8178 }
8179 
8180 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8181     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8182 
8183   // Check if this is an integer or fp induction. If so, build the recipe that
8184   // produces its scalar and vector values.
8185   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8186     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8187                                        *PSE.getSE(), *OrigLoop, Range);
8188 
8189   // Check if this is pointer induction. If so, build the recipe for it.
8190   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8191     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8192                                              *PSE.getSE());
8193   return nullptr;
8194 }
8195 
8196 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8197     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8198   // Optimize the special case where the source is a constant integer
8199   // induction variable. Notice that we can only optimize the 'trunc' case
8200   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8201   // (c) other casts depend on pointer size.
8202 
8203   // Determine whether \p K is a truncation based on an induction variable that
8204   // can be optimized.
8205   auto isOptimizableIVTruncate =
8206       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8207     return [=](ElementCount VF) -> bool {
8208       return CM.isOptimizableIVTruncate(K, VF);
8209     };
8210   };
8211 
8212   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8213           isOptimizableIVTruncate(I), Range)) {
8214 
8215     auto *Phi = cast<PHINode>(I->getOperand(0));
8216     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8217     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8218     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8219                                        *PSE.getSE(), *OrigLoop, Range);
8220   }
8221   return nullptr;
8222 }
8223 
8224 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8225                                                 ArrayRef<VPValue *> Operands,
8226                                                 VPlanPtr &Plan) {
8227   // If all incoming values are equal, the incoming VPValue can be used directly
8228   // instead of creating a new VPBlendRecipe.
8229   VPValue *FirstIncoming = Operands[0];
8230   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8231         return FirstIncoming == Inc;
8232       })) {
8233     return Operands[0];
8234   }
8235 
8236   unsigned NumIncoming = Phi->getNumIncomingValues();
8237   // For in-loop reductions, we do not need to create an additional select.
8238   VPValue *InLoopVal = nullptr;
8239   for (unsigned In = 0; In < NumIncoming; In++) {
8240     PHINode *PhiOp =
8241         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8242     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8243       assert(!InLoopVal && "Found more than one in-loop reduction!");
8244       InLoopVal = Operands[In];
8245     }
8246   }
8247 
8248   assert((!InLoopVal || NumIncoming == 2) &&
8249          "Found an in-loop reduction for PHI with unexpected number of "
8250          "incoming values");
8251   if (InLoopVal)
8252     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8253 
8254   // We know that all PHIs in non-header blocks are converted into selects, so
8255   // we don't have to worry about the insertion order and we can just use the
8256   // builder. At this point we generate the predication tree. There may be
8257   // duplications since this is a simple recursive scan, but future
8258   // optimizations will clean it up.
8259   SmallVector<VPValue *, 2> OperandsWithMask;
8260 
8261   for (unsigned In = 0; In < NumIncoming; In++) {
8262     VPValue *EdgeMask =
8263       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8264     assert((EdgeMask || NumIncoming == 1) &&
8265            "Multiple predecessors with one having a full mask");
8266     OperandsWithMask.push_back(Operands[In]);
8267     if (EdgeMask)
8268       OperandsWithMask.push_back(EdgeMask);
8269   }
8270   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8271 }
8272 
8273 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8274                                                    ArrayRef<VPValue *> Operands,
8275                                                    VFRange &Range) const {
8276 
8277   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8278       [this, CI](ElementCount VF) {
8279         return CM.isScalarWithPredication(CI, VF);
8280       },
8281       Range);
8282 
8283   if (IsPredicated)
8284     return nullptr;
8285 
8286   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8287   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8288              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8289              ID == Intrinsic::pseudoprobe ||
8290              ID == Intrinsic::experimental_noalias_scope_decl))
8291     return nullptr;
8292 
8293   auto willWiden = [&](ElementCount VF) -> bool {
8294     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8295     // The following case may be scalarized depending on the VF.
8296     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8297     // version of the instruction.
8298     // Is it beneficial to perform intrinsic call compared to lib call?
8299     bool NeedToScalarize = false;
8300     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8301     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8302     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8303     return UseVectorIntrinsic || !NeedToScalarize;
8304   };
8305 
8306   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8307     return nullptr;
8308 
8309   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8310   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8311 }
8312 
8313 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8314   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8315          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8316   // Instruction should be widened, unless it is scalar after vectorization,
8317   // scalarization is profitable or it is predicated.
8318   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8319     return CM.isScalarAfterVectorization(I, VF) ||
8320            CM.isProfitableToScalarize(I, VF) ||
8321            CM.isScalarWithPredication(I, VF);
8322   };
8323   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8324                                                              Range);
8325 }
8326 
8327 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8328                                            ArrayRef<VPValue *> Operands) const {
8329   auto IsVectorizableOpcode = [](unsigned Opcode) {
8330     switch (Opcode) {
8331     case Instruction::Add:
8332     case Instruction::And:
8333     case Instruction::AShr:
8334     case Instruction::BitCast:
8335     case Instruction::FAdd:
8336     case Instruction::FCmp:
8337     case Instruction::FDiv:
8338     case Instruction::FMul:
8339     case Instruction::FNeg:
8340     case Instruction::FPExt:
8341     case Instruction::FPToSI:
8342     case Instruction::FPToUI:
8343     case Instruction::FPTrunc:
8344     case Instruction::FRem:
8345     case Instruction::FSub:
8346     case Instruction::ICmp:
8347     case Instruction::IntToPtr:
8348     case Instruction::LShr:
8349     case Instruction::Mul:
8350     case Instruction::Or:
8351     case Instruction::PtrToInt:
8352     case Instruction::SDiv:
8353     case Instruction::Select:
8354     case Instruction::SExt:
8355     case Instruction::Shl:
8356     case Instruction::SIToFP:
8357     case Instruction::SRem:
8358     case Instruction::Sub:
8359     case Instruction::Trunc:
8360     case Instruction::UDiv:
8361     case Instruction::UIToFP:
8362     case Instruction::URem:
8363     case Instruction::Xor:
8364     case Instruction::ZExt:
8365     case Instruction::Freeze:
8366       return true;
8367     }
8368     return false;
8369   };
8370 
8371   if (!IsVectorizableOpcode(I->getOpcode()))
8372     return nullptr;
8373 
8374   // Success: widen this instruction.
8375   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8376 }
8377 
8378 void VPRecipeBuilder::fixHeaderPhis() {
8379   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8380   for (VPHeaderPHIRecipe *R : PhisToFix) {
8381     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8382     VPRecipeBase *IncR =
8383         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8384     R->addOperand(IncR->getVPSingleValue());
8385   }
8386 }
8387 
8388 VPBasicBlock *VPRecipeBuilder::handleReplication(
8389     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8390     VPlanPtr &Plan) {
8391   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8392       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8393       Range);
8394 
8395   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8396       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8397       Range);
8398 
8399   // Even if the instruction is not marked as uniform, there are certain
8400   // intrinsic calls that can be effectively treated as such, so we check for
8401   // them here. Conservatively, we only do this for scalable vectors, since
8402   // for fixed-width VFs we can always fall back on full scalarization.
8403   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8404     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8405     case Intrinsic::assume:
8406     case Intrinsic::lifetime_start:
8407     case Intrinsic::lifetime_end:
8408       // For scalable vectors if one of the operands is variant then we still
8409       // want to mark as uniform, which will generate one instruction for just
8410       // the first lane of the vector. We can't scalarize the call in the same
8411       // way as for fixed-width vectors because we don't know how many lanes
8412       // there are.
8413       //
8414       // The reasons for doing it this way for scalable vectors are:
8415       //   1. For the assume intrinsic generating the instruction for the first
8416       //      lane is still be better than not generating any at all. For
8417       //      example, the input may be a splat across all lanes.
8418       //   2. For the lifetime start/end intrinsics the pointer operand only
8419       //      does anything useful when the input comes from a stack object,
8420       //      which suggests it should always be uniform. For non-stack objects
8421       //      the effect is to poison the object, which still allows us to
8422       //      remove the call.
8423       IsUniform = true;
8424       break;
8425     default:
8426       break;
8427     }
8428   }
8429 
8430   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8431                                        IsUniform, IsPredicated);
8432   setRecipe(I, Recipe);
8433   Plan->addVPValue(I, Recipe);
8434 
8435   // Find if I uses a predicated instruction. If so, it will use its scalar
8436   // value. Avoid hoisting the insert-element which packs the scalar value into
8437   // a vector value, as that happens iff all users use the vector value.
8438   for (VPValue *Op : Recipe->operands()) {
8439     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8440     if (!PredR)
8441       continue;
8442     auto *RepR =
8443         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8444     assert(RepR->isPredicated() &&
8445            "expected Replicate recipe to be predicated");
8446     RepR->setAlsoPack(false);
8447   }
8448 
8449   // Finalize the recipe for Instr, first if it is not predicated.
8450   if (!IsPredicated) {
8451     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8452     VPBB->appendRecipe(Recipe);
8453     return VPBB;
8454   }
8455   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8456 
8457   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8458   assert(SingleSucc && "VPBB must have a single successor when handling "
8459                        "predicated replication.");
8460   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8461   // Record predicated instructions for above packing optimizations.
8462   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8463   VPBlockUtils::insertBlockAfter(Region, VPBB);
8464   auto *RegSucc = new VPBasicBlock();
8465   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8466   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8467   return RegSucc;
8468 }
8469 
8470 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8471                                                       VPRecipeBase *PredRecipe,
8472                                                       VPlanPtr &Plan) {
8473   // Instructions marked for predication are replicated and placed under an
8474   // if-then construct to prevent side-effects.
8475 
8476   // Generate recipes to compute the block mask for this region.
8477   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8478 
8479   // Build the triangular if-then region.
8480   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8481   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8482   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8483   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8484   auto *PHIRecipe = Instr->getType()->isVoidTy()
8485                         ? nullptr
8486                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8487   if (PHIRecipe) {
8488     Plan->removeVPValueFor(Instr);
8489     Plan->addVPValue(Instr, PHIRecipe);
8490   }
8491   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8492   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8493   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8494 
8495   // Note: first set Entry as region entry and then connect successors starting
8496   // from it in order, to propagate the "parent" of each VPBasicBlock.
8497   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8498   VPBlockUtils::connectBlocks(Pred, Exiting);
8499 
8500   return Region;
8501 }
8502 
8503 VPRecipeOrVPValueTy
8504 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8505                                         ArrayRef<VPValue *> Operands,
8506                                         VFRange &Range, VPlanPtr &Plan) {
8507   // First, check for specific widening recipes that deal with inductions, Phi
8508   // nodes, calls and memory operations.
8509   VPRecipeBase *Recipe;
8510   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8511     if (Phi->getParent() != OrigLoop->getHeader())
8512       return tryToBlend(Phi, Operands, Plan);
8513     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8514       return toVPRecipeResult(Recipe);
8515 
8516     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8517     assert((Legal->isReductionVariable(Phi) ||
8518             Legal->isFirstOrderRecurrence(Phi)) &&
8519            "can only widen reductions and first-order recurrences here");
8520     VPValue *StartV = Operands[0];
8521     if (Legal->isReductionVariable(Phi)) {
8522       const RecurrenceDescriptor &RdxDesc =
8523           Legal->getReductionVars().find(Phi)->second;
8524       assert(RdxDesc.getRecurrenceStartValue() ==
8525              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8526       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8527                                            CM.isInLoopReduction(Phi),
8528                                            CM.useOrderedReductions(RdxDesc));
8529     } else {
8530       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8531     }
8532 
8533     // Record the incoming value from the backedge, so we can add the incoming
8534     // value from the backedge after all recipes have been created.
8535     recordRecipeOf(cast<Instruction>(
8536         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8537     PhisToFix.push_back(PhiRecipe);
8538     return toVPRecipeResult(PhiRecipe);
8539   }
8540 
8541   if (isa<TruncInst>(Instr) &&
8542       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8543                                                Range, *Plan)))
8544     return toVPRecipeResult(Recipe);
8545 
8546   // All widen recipes below deal only with VF > 1.
8547   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8548           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8549     return nullptr;
8550 
8551   if (auto *CI = dyn_cast<CallInst>(Instr))
8552     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8553 
8554   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8555     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8556 
8557   if (!shouldWiden(Instr, Range))
8558     return nullptr;
8559 
8560   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8561     return toVPRecipeResult(new VPWidenGEPRecipe(
8562         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8563 
8564   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8565     bool InvariantCond =
8566         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8567     return toVPRecipeResult(new VPWidenSelectRecipe(
8568         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8569   }
8570 
8571   return toVPRecipeResult(tryToWiden(Instr, Operands));
8572 }
8573 
8574 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8575                                                         ElementCount MaxVF) {
8576   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8577 
8578   // Collect instructions from the original loop that will become trivially dead
8579   // in the vectorized loop. We don't need to vectorize these instructions. For
8580   // example, original induction update instructions can become dead because we
8581   // separately emit induction "steps" when generating code for the new loop.
8582   // Similarly, we create a new latch condition when setting up the structure
8583   // of the new loop, so the old one can become dead.
8584   SmallPtrSet<Instruction *, 4> DeadInstructions;
8585   collectTriviallyDeadInstructions(DeadInstructions);
8586 
8587   // Add assume instructions we need to drop to DeadInstructions, to prevent
8588   // them from being added to the VPlan.
8589   // TODO: We only need to drop assumes in blocks that get flattend. If the
8590   // control flow is preserved, we should keep them.
8591   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8592   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8593 
8594   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8595   // Dead instructions do not need sinking. Remove them from SinkAfter.
8596   for (Instruction *I : DeadInstructions)
8597     SinkAfter.erase(I);
8598 
8599   // Cannot sink instructions after dead instructions (there won't be any
8600   // recipes for them). Instead, find the first non-dead previous instruction.
8601   for (auto &P : Legal->getSinkAfter()) {
8602     Instruction *SinkTarget = P.second;
8603     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8604     (void)FirstInst;
8605     while (DeadInstructions.contains(SinkTarget)) {
8606       assert(
8607           SinkTarget != FirstInst &&
8608           "Must find a live instruction (at least the one feeding the "
8609           "first-order recurrence PHI) before reaching beginning of the block");
8610       SinkTarget = SinkTarget->getPrevNode();
8611       assert(SinkTarget != P.first &&
8612              "sink source equals target, no sinking required");
8613     }
8614     P.second = SinkTarget;
8615   }
8616 
8617   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8618   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8619     VFRange SubRange = {VF, MaxVFPlusOne};
8620     VPlans.push_back(
8621         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8622     VF = SubRange.End;
8623   }
8624 }
8625 
8626 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8627 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8628 // BranchOnCount VPInstruction to the latch.
8629 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8630                                   bool HasNUW) {
8631   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8632   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8633 
8634   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8635   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8636   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8637   Header->insert(CanonicalIVPHI, Header->begin());
8638 
8639   auto *CanonicalIVIncrement =
8640       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8641                                : VPInstruction::CanonicalIVIncrement,
8642                         {CanonicalIVPHI}, DL);
8643   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8644 
8645   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8646   EB->appendRecipe(CanonicalIVIncrement);
8647 
8648   auto *BranchOnCount =
8649       new VPInstruction(VPInstruction::BranchOnCount,
8650                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8651   EB->appendRecipe(BranchOnCount);
8652 }
8653 
8654 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8655 // original exit block.
8656 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8657                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8658                                 VPlan &Plan) {
8659   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8660   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8661   // Only handle single-exit loops with unique exit blocks for now.
8662   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8663     return;
8664 
8665   // Introduce VPUsers modeling the exit values.
8666   for (PHINode &ExitPhi : ExitBB->phis()) {
8667     Value *IncomingValue =
8668         ExitPhi.getIncomingValueForBlock(ExitingBB);
8669     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8670     Plan.addLiveOut(&ExitPhi, V);
8671   }
8672 }
8673 
8674 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8675     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8676     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8677 
8678   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8679 
8680   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8681 
8682   // ---------------------------------------------------------------------------
8683   // Pre-construction: record ingredients whose recipes we'll need to further
8684   // process after constructing the initial VPlan.
8685   // ---------------------------------------------------------------------------
8686 
8687   // Mark instructions we'll need to sink later and their targets as
8688   // ingredients whose recipe we'll need to record.
8689   for (auto &Entry : SinkAfter) {
8690     RecipeBuilder.recordRecipeOf(Entry.first);
8691     RecipeBuilder.recordRecipeOf(Entry.second);
8692   }
8693   for (auto &Reduction : CM.getInLoopReductionChains()) {
8694     PHINode *Phi = Reduction.first;
8695     RecurKind Kind =
8696         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8697     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8698 
8699     RecipeBuilder.recordRecipeOf(Phi);
8700     for (auto &R : ReductionOperations) {
8701       RecipeBuilder.recordRecipeOf(R);
8702       // For min/max reductions, where we have a pair of icmp/select, we also
8703       // need to record the ICmp recipe, so it can be removed later.
8704       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8705              "Only min/max recurrences allowed for inloop reductions");
8706       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8707         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8708     }
8709   }
8710 
8711   // For each interleave group which is relevant for this (possibly trimmed)
8712   // Range, add it to the set of groups to be later applied to the VPlan and add
8713   // placeholders for its members' Recipes which we'll be replacing with a
8714   // single VPInterleaveRecipe.
8715   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8716     auto applyIG = [IG, this](ElementCount VF) -> bool {
8717       return (VF.isVector() && // Query is illegal for VF == 1
8718               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8719                   LoopVectorizationCostModel::CM_Interleave);
8720     };
8721     if (!getDecisionAndClampRange(applyIG, Range))
8722       continue;
8723     InterleaveGroups.insert(IG);
8724     for (unsigned i = 0; i < IG->getFactor(); i++)
8725       if (Instruction *Member = IG->getMember(i))
8726         RecipeBuilder.recordRecipeOf(Member);
8727   };
8728 
8729   // ---------------------------------------------------------------------------
8730   // Build initial VPlan: Scan the body of the loop in a topological order to
8731   // visit each basic block after having visited its predecessor basic blocks.
8732   // ---------------------------------------------------------------------------
8733 
8734   // Create initial VPlan skeleton, starting with a block for the pre-header,
8735   // followed by a region for the vector loop, followed by the middle block. The
8736   // skeleton vector loop region contains a header and latch block.
8737   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8738   auto Plan = std::make_unique<VPlan>(Preheader);
8739 
8740   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8741   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8742   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8743   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8744   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8745   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8746   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8747 
8748   Instruction *DLInst =
8749       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8750   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8751                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8752                         !CM.foldTailByMasking());
8753 
8754   // Scan the body of the loop in a topological order to visit each basic block
8755   // after having visited its predecessor basic blocks.
8756   LoopBlocksDFS DFS(OrigLoop);
8757   DFS.perform(LI);
8758 
8759   VPBasicBlock *VPBB = HeaderVPBB;
8760   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8761   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8762     // Relevant instructions from basic block BB will be grouped into VPRecipe
8763     // ingredients and fill a new VPBasicBlock.
8764     unsigned VPBBsForBB = 0;
8765     if (VPBB != HeaderVPBB)
8766       VPBB->setName(BB->getName());
8767     Builder.setInsertPoint(VPBB);
8768 
8769     // Introduce each ingredient into VPlan.
8770     // TODO: Model and preserve debug intrinsics in VPlan.
8771     for (Instruction &I : BB->instructionsWithoutDebug()) {
8772       Instruction *Instr = &I;
8773 
8774       // First filter out irrelevant instructions, to ensure no recipes are
8775       // built for them.
8776       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8777         continue;
8778 
8779       SmallVector<VPValue *, 4> Operands;
8780       auto *Phi = dyn_cast<PHINode>(Instr);
8781       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8782         Operands.push_back(Plan->getOrAddVPValue(
8783             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8784       } else {
8785         auto OpRange = Plan->mapToVPValues(Instr->operands());
8786         Operands = {OpRange.begin(), OpRange.end()};
8787       }
8788 
8789       // Invariant stores inside loop will be deleted and a single store
8790       // with the final reduction value will be added to the exit block
8791       StoreInst *SI;
8792       if ((SI = dyn_cast<StoreInst>(&I)) &&
8793           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8794         continue;
8795 
8796       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8797               Instr, Operands, Range, Plan)) {
8798         // If Instr can be simplified to an existing VPValue, use it.
8799         if (RecipeOrValue.is<VPValue *>()) {
8800           auto *VPV = RecipeOrValue.get<VPValue *>();
8801           Plan->addVPValue(Instr, VPV);
8802           // If the re-used value is a recipe, register the recipe for the
8803           // instruction, in case the recipe for Instr needs to be recorded.
8804           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8805             RecipeBuilder.setRecipe(Instr, R);
8806           continue;
8807         }
8808         // Otherwise, add the new recipe.
8809         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8810         for (auto *Def : Recipe->definedValues()) {
8811           auto *UV = Def->getUnderlyingValue();
8812           Plan->addVPValue(UV, Def);
8813         }
8814 
8815         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8816             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8817           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8818           // of the header block. That can happen for truncates of induction
8819           // variables. Those recipes are moved to the phi section of the header
8820           // block after applying SinkAfter, which relies on the original
8821           // position of the trunc.
8822           assert(isa<TruncInst>(Instr));
8823           InductionsToMove.push_back(
8824               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8825         }
8826         RecipeBuilder.setRecipe(Instr, Recipe);
8827         VPBB->appendRecipe(Recipe);
8828         continue;
8829       }
8830 
8831       // Otherwise, if all widening options failed, Instruction is to be
8832       // replicated. This may create a successor for VPBB.
8833       VPBasicBlock *NextVPBB =
8834           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8835       if (NextVPBB != VPBB) {
8836         VPBB = NextVPBB;
8837         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8838                                     : "");
8839       }
8840     }
8841 
8842     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8843     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8844   }
8845 
8846   HeaderVPBB->setName("vector.body");
8847 
8848   // Fold the last, empty block into its predecessor.
8849   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8850   assert(VPBB && "expected to fold last (empty) block");
8851   // After here, VPBB should not be used.
8852   VPBB = nullptr;
8853 
8854   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8855 
8856   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8857          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8858          "entry block must be set to a VPRegionBlock having a non-empty entry "
8859          "VPBasicBlock");
8860   RecipeBuilder.fixHeaderPhis();
8861 
8862   // ---------------------------------------------------------------------------
8863   // Transform initial VPlan: Apply previously taken decisions, in order, to
8864   // bring the VPlan to its final state.
8865   // ---------------------------------------------------------------------------
8866 
8867   // Apply Sink-After legal constraints.
8868   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8869     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8870     if (Region && Region->isReplicator()) {
8871       assert(Region->getNumSuccessors() == 1 &&
8872              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8873       assert(R->getParent()->size() == 1 &&
8874              "A recipe in an original replicator region must be the only "
8875              "recipe in its block");
8876       return Region;
8877     }
8878     return nullptr;
8879   };
8880   for (auto &Entry : SinkAfter) {
8881     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8882     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8883 
8884     auto *TargetRegion = GetReplicateRegion(Target);
8885     auto *SinkRegion = GetReplicateRegion(Sink);
8886     if (!SinkRegion) {
8887       // If the sink source is not a replicate region, sink the recipe directly.
8888       if (TargetRegion) {
8889         // The target is in a replication region, make sure to move Sink to
8890         // the block after it, not into the replication region itself.
8891         VPBasicBlock *NextBlock =
8892             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8893         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8894       } else
8895         Sink->moveAfter(Target);
8896       continue;
8897     }
8898 
8899     // The sink source is in a replicate region. Unhook the region from the CFG.
8900     auto *SinkPred = SinkRegion->getSinglePredecessor();
8901     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8902     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8903     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8904     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8905 
8906     if (TargetRegion) {
8907       // The target recipe is also in a replicate region, move the sink region
8908       // after the target region.
8909       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8910       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8911       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8912       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8913     } else {
8914       // The sink source is in a replicate region, we need to move the whole
8915       // replicate region, which should only contain a single recipe in the
8916       // main block.
8917       auto *SplitBlock =
8918           Target->getParent()->splitAt(std::next(Target->getIterator()));
8919 
8920       auto *SplitPred = SplitBlock->getSinglePredecessor();
8921 
8922       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8923       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8924       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8925     }
8926   }
8927 
8928   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8929   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8930 
8931   // Now that sink-after is done, move induction recipes for optimized truncates
8932   // to the phi section of the header block.
8933   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8934     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8935 
8936   // Adjust the recipes for any inloop reductions.
8937   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8938                              RecipeBuilder, Range.Start);
8939 
8940   // Introduce a recipe to combine the incoming and previous values of a
8941   // first-order recurrence.
8942   for (VPRecipeBase &R :
8943        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8944     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8945     if (!RecurPhi)
8946       continue;
8947 
8948     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8949     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8950     auto *Region = GetReplicateRegion(PrevRecipe);
8951     if (Region)
8952       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8953     if (!InsertBlock) {
8954       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8955       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8956     }
8957     if (Region || PrevRecipe->isPhi())
8958       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8959     else
8960       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8961 
8962     auto *RecurSplice = cast<VPInstruction>(
8963         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8964                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8965 
8966     RecurPhi->replaceAllUsesWith(RecurSplice);
8967     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8968     // all users.
8969     RecurSplice->setOperand(0, RecurPhi);
8970   }
8971 
8972   // Interleave memory: for each Interleave Group we marked earlier as relevant
8973   // for this VPlan, replace the Recipes widening its memory instructions with a
8974   // single VPInterleaveRecipe at its insertion point.
8975   for (auto IG : InterleaveGroups) {
8976     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
8977         RecipeBuilder.getRecipe(IG->getInsertPos()));
8978     SmallVector<VPValue *, 4> StoredValues;
8979     for (unsigned i = 0; i < IG->getFactor(); ++i)
8980       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
8981         auto *StoreR =
8982             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
8983         StoredValues.push_back(StoreR->getStoredValue());
8984       }
8985 
8986     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
8987                                         Recipe->getMask());
8988     VPIG->insertBefore(Recipe);
8989     unsigned J = 0;
8990     for (unsigned i = 0; i < IG->getFactor(); ++i)
8991       if (Instruction *Member = IG->getMember(i)) {
8992         if (!Member->getType()->isVoidTy()) {
8993           VPValue *OriginalV = Plan->getVPValue(Member);
8994           Plan->removeVPValueFor(Member);
8995           Plan->addVPValue(Member, VPIG->getVPValue(J));
8996           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
8997           J++;
8998         }
8999         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9000       }
9001   }
9002 
9003   std::string PlanName;
9004   raw_string_ostream RSO(PlanName);
9005   ElementCount VF = Range.Start;
9006   Plan->addVF(VF);
9007   RSO << "Initial VPlan for VF={" << VF;
9008   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9009     Plan->addVF(VF);
9010     RSO << "," << VF;
9011   }
9012   RSO << "},UF>=1";
9013   RSO.flush();
9014   Plan->setName(PlanName);
9015 
9016   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9017   // in ways that accessing values using original IR values is incorrect.
9018   Plan->disableValue2VPValue();
9019 
9020   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9021   VPlanTransforms::sinkScalarOperands(*Plan);
9022   VPlanTransforms::mergeReplicateRegions(*Plan);
9023   VPlanTransforms::removeDeadRecipes(*Plan);
9024   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9025 
9026   // Fold Exit block into its predecessor if possible.
9027   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9028   // VPBasicBlock as exit.
9029   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9030 
9031   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9032   return Plan;
9033 }
9034 
9035 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9036   // Outer loop handling: They may require CFG and instruction level
9037   // transformations before even evaluating whether vectorization is profitable.
9038   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9039   // the vectorization pipeline.
9040   assert(!OrigLoop->isInnermost());
9041   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9042 
9043   // Create new empty VPlan
9044   auto Plan = std::make_unique<VPlan>();
9045 
9046   // Build hierarchical CFG
9047   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9048   HCFGBuilder.buildHierarchicalCFG();
9049 
9050   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9051        VF *= 2)
9052     Plan->addVF(VF);
9053 
9054   SmallPtrSet<Instruction *, 1> DeadInstructions;
9055   VPlanTransforms::VPInstructionsToVPRecipes(
9056       OrigLoop, Plan,
9057       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9058       DeadInstructions, *PSE.getSE());
9059 
9060   // Remove the existing terminator of the exiting block of the top-most region.
9061   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9062   auto *Term =
9063       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9064   Term->eraseFromParent();
9065 
9066   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9067                         true);
9068   return Plan;
9069 }
9070 
9071 // Adjust the recipes for reductions. For in-loop reductions the chain of
9072 // instructions leading from the loop exit instr to the phi need to be converted
9073 // to reductions, with one operand being vector and the other being the scalar
9074 // reduction chain. For other reductions, a select is introduced between the phi
9075 // and live-out recipes when folding the tail.
9076 void LoopVectorizationPlanner::adjustRecipesForReductions(
9077     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9078     ElementCount MinVF) {
9079   for (auto &Reduction : CM.getInLoopReductionChains()) {
9080     PHINode *Phi = Reduction.first;
9081     const RecurrenceDescriptor &RdxDesc =
9082         Legal->getReductionVars().find(Phi)->second;
9083     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9084 
9085     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9086       continue;
9087 
9088     // ReductionOperations are orders top-down from the phi's use to the
9089     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9090     // which of the two operands will remain scalar and which will be reduced.
9091     // For minmax the chain will be the select instructions.
9092     Instruction *Chain = Phi;
9093     for (Instruction *R : ReductionOperations) {
9094       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9095       RecurKind Kind = RdxDesc.getRecurrenceKind();
9096 
9097       VPValue *ChainOp = Plan->getVPValue(Chain);
9098       unsigned FirstOpId;
9099       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9100              "Only min/max recurrences allowed for inloop reductions");
9101       // Recognize a call to the llvm.fmuladd intrinsic.
9102       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9103       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9104              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9105       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9106         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9107                "Expected to replace a VPWidenSelectSC");
9108         FirstOpId = 1;
9109       } else {
9110         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9111                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9112                "Expected to replace a VPWidenSC");
9113         FirstOpId = 0;
9114       }
9115       unsigned VecOpId =
9116           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9117       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9118 
9119       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9120                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9121                          : nullptr;
9122 
9123       if (IsFMulAdd) {
9124         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9125         // need to create an fmul recipe to use as the vector operand for the
9126         // fadd reduction.
9127         VPInstruction *FMulRecipe = new VPInstruction(
9128             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9129         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9130         WidenRecipe->getParent()->insert(FMulRecipe,
9131                                          WidenRecipe->getIterator());
9132         VecOp = FMulRecipe;
9133       }
9134       VPReductionRecipe *RedRecipe =
9135           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9136       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9137       Plan->removeVPValueFor(R);
9138       Plan->addVPValue(R, RedRecipe);
9139       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9140       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9141       WidenRecipe->eraseFromParent();
9142 
9143       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9144         VPRecipeBase *CompareRecipe =
9145             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9146         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9147                "Expected to replace a VPWidenSC");
9148         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9149                "Expected no remaining users");
9150         CompareRecipe->eraseFromParent();
9151       }
9152       Chain = R;
9153     }
9154   }
9155 
9156   // If tail is folded by masking, introduce selects between the phi
9157   // and the live-out instruction of each reduction, at the beginning of the
9158   // dedicated latch block.
9159   if (CM.foldTailByMasking()) {
9160     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9161     for (VPRecipeBase &R :
9162          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9163       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9164       if (!PhiR || PhiR->isInLoop())
9165         continue;
9166       VPValue *Cond =
9167           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9168       VPValue *Red = PhiR->getBackedgeValue();
9169       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9170              "reduction recipe must be defined before latch");
9171       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9172     }
9173   }
9174 }
9175 
9176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9177 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9178                                VPSlotTracker &SlotTracker) const {
9179   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9180   IG->getInsertPos()->printAsOperand(O, false);
9181   O << ", ";
9182   getAddr()->printAsOperand(O, SlotTracker);
9183   VPValue *Mask = getMask();
9184   if (Mask) {
9185     O << ", ";
9186     Mask->printAsOperand(O, SlotTracker);
9187   }
9188 
9189   unsigned OpIdx = 0;
9190   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9191     if (!IG->getMember(i))
9192       continue;
9193     if (getNumStoreOperands() > 0) {
9194       O << "\n" << Indent << "  store ";
9195       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9196       O << " to index " << i;
9197     } else {
9198       O << "\n" << Indent << "  ";
9199       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9200       O << " = load from index " << i;
9201     }
9202     ++OpIdx;
9203   }
9204 }
9205 #endif
9206 
9207 void VPWidenCallRecipe::execute(VPTransformState &State) {
9208   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9209                                   *this, State);
9210 }
9211 
9212 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9213   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9214   State.ILV->setDebugLocFromInst(&I);
9215 
9216   // The condition can be loop invariant  but still defined inside the
9217   // loop. This means that we can't just use the original 'cond' value.
9218   // We have to take the 'vectorized' value and pick the first lane.
9219   // Instcombine will make this a no-op.
9220   auto *InvarCond =
9221       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9222 
9223   for (unsigned Part = 0; Part < State.UF; ++Part) {
9224     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9225     Value *Op0 = State.get(getOperand(1), Part);
9226     Value *Op1 = State.get(getOperand(2), Part);
9227     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9228     State.set(this, Sel, Part);
9229     State.ILV->addMetadata(Sel, &I);
9230   }
9231 }
9232 
9233 void VPWidenRecipe::execute(VPTransformState &State) {
9234   auto &I = *cast<Instruction>(getUnderlyingValue());
9235   auto &Builder = State.Builder;
9236   switch (I.getOpcode()) {
9237   case Instruction::Call:
9238   case Instruction::Br:
9239   case Instruction::PHI:
9240   case Instruction::GetElementPtr:
9241   case Instruction::Select:
9242     llvm_unreachable("This instruction is handled by a different recipe.");
9243   case Instruction::UDiv:
9244   case Instruction::SDiv:
9245   case Instruction::SRem:
9246   case Instruction::URem:
9247   case Instruction::Add:
9248   case Instruction::FAdd:
9249   case Instruction::Sub:
9250   case Instruction::FSub:
9251   case Instruction::FNeg:
9252   case Instruction::Mul:
9253   case Instruction::FMul:
9254   case Instruction::FDiv:
9255   case Instruction::FRem:
9256   case Instruction::Shl:
9257   case Instruction::LShr:
9258   case Instruction::AShr:
9259   case Instruction::And:
9260   case Instruction::Or:
9261   case Instruction::Xor: {
9262     // Just widen unops and binops.
9263     State.ILV->setDebugLocFromInst(&I);
9264 
9265     for (unsigned Part = 0; Part < State.UF; ++Part) {
9266       SmallVector<Value *, 2> Ops;
9267       for (VPValue *VPOp : operands())
9268         Ops.push_back(State.get(VPOp, Part));
9269 
9270       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9271 
9272       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9273         VecOp->copyIRFlags(&I);
9274 
9275         // If the instruction is vectorized and was in a basic block that needed
9276         // predication, we can't propagate poison-generating flags (nuw/nsw,
9277         // exact, etc.). The control flow has been linearized and the
9278         // instruction is no longer guarded by the predicate, which could make
9279         // the flag properties to no longer hold.
9280         if (State.MayGeneratePoisonRecipes.contains(this))
9281           VecOp->dropPoisonGeneratingFlags();
9282       }
9283 
9284       // Use this vector value for all users of the original instruction.
9285       State.set(this, V, Part);
9286       State.ILV->addMetadata(V, &I);
9287     }
9288 
9289     break;
9290   }
9291   case Instruction::Freeze: {
9292     State.ILV->setDebugLocFromInst(&I);
9293 
9294     for (unsigned Part = 0; Part < State.UF; ++Part) {
9295       Value *Op = State.get(getOperand(0), Part);
9296 
9297       Value *Freeze = Builder.CreateFreeze(Op);
9298       State.set(this, Freeze, Part);
9299     }
9300     break;
9301   }
9302   case Instruction::ICmp:
9303   case Instruction::FCmp: {
9304     // Widen compares. Generate vector compares.
9305     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9306     auto *Cmp = cast<CmpInst>(&I);
9307     State.ILV->setDebugLocFromInst(Cmp);
9308     for (unsigned Part = 0; Part < State.UF; ++Part) {
9309       Value *A = State.get(getOperand(0), Part);
9310       Value *B = State.get(getOperand(1), Part);
9311       Value *C = nullptr;
9312       if (FCmp) {
9313         // Propagate fast math flags.
9314         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9315         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9316         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9317       } else {
9318         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9319       }
9320       State.set(this, C, Part);
9321       State.ILV->addMetadata(C, &I);
9322     }
9323 
9324     break;
9325   }
9326 
9327   case Instruction::ZExt:
9328   case Instruction::SExt:
9329   case Instruction::FPToUI:
9330   case Instruction::FPToSI:
9331   case Instruction::FPExt:
9332   case Instruction::PtrToInt:
9333   case Instruction::IntToPtr:
9334   case Instruction::SIToFP:
9335   case Instruction::UIToFP:
9336   case Instruction::Trunc:
9337   case Instruction::FPTrunc:
9338   case Instruction::BitCast: {
9339     auto *CI = cast<CastInst>(&I);
9340     State.ILV->setDebugLocFromInst(CI);
9341 
9342     /// Vectorize casts.
9343     Type *DestTy = (State.VF.isScalar())
9344                        ? CI->getType()
9345                        : VectorType::get(CI->getType(), State.VF);
9346 
9347     for (unsigned Part = 0; Part < State.UF; ++Part) {
9348       Value *A = State.get(getOperand(0), Part);
9349       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9350       State.set(this, Cast, Part);
9351       State.ILV->addMetadata(Cast, &I);
9352     }
9353     break;
9354   }
9355   default:
9356     // This instruction is not vectorized by simple widening.
9357     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9358     llvm_unreachable("Unhandled instruction!");
9359   } // end of switch.
9360 }
9361 
9362 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9363   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9364   // Construct a vector GEP by widening the operands of the scalar GEP as
9365   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9366   // results in a vector of pointers when at least one operand of the GEP
9367   // is vector-typed. Thus, to keep the representation compact, we only use
9368   // vector-typed operands for loop-varying values.
9369 
9370   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9371     // If we are vectorizing, but the GEP has only loop-invariant operands,
9372     // the GEP we build (by only using vector-typed operands for
9373     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9374     // produce a vector of pointers, we need to either arbitrarily pick an
9375     // operand to broadcast, or broadcast a clone of the original GEP.
9376     // Here, we broadcast a clone of the original.
9377     //
9378     // TODO: If at some point we decide to scalarize instructions having
9379     //       loop-invariant operands, this special case will no longer be
9380     //       required. We would add the scalarization decision to
9381     //       collectLoopScalars() and teach getVectorValue() to broadcast
9382     //       the lane-zero scalar value.
9383     auto *Clone = State.Builder.Insert(GEP->clone());
9384     for (unsigned Part = 0; Part < State.UF; ++Part) {
9385       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9386       State.set(this, EntryPart, Part);
9387       State.ILV->addMetadata(EntryPart, GEP);
9388     }
9389   } else {
9390     // If the GEP has at least one loop-varying operand, we are sure to
9391     // produce a vector of pointers. But if we are only unrolling, we want
9392     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9393     // produce with the code below will be scalar (if VF == 1) or vector
9394     // (otherwise). Note that for the unroll-only case, we still maintain
9395     // values in the vector mapping with initVector, as we do for other
9396     // instructions.
9397     for (unsigned Part = 0; Part < State.UF; ++Part) {
9398       // The pointer operand of the new GEP. If it's loop-invariant, we
9399       // won't broadcast it.
9400       auto *Ptr = IsPtrLoopInvariant
9401                       ? State.get(getOperand(0), VPIteration(0, 0))
9402                       : State.get(getOperand(0), Part);
9403 
9404       // Collect all the indices for the new GEP. If any index is
9405       // loop-invariant, we won't broadcast it.
9406       SmallVector<Value *, 4> Indices;
9407       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9408         VPValue *Operand = getOperand(I);
9409         if (IsIndexLoopInvariant[I - 1])
9410           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9411         else
9412           Indices.push_back(State.get(Operand, Part));
9413       }
9414 
9415       // If the GEP instruction is vectorized and was in a basic block that
9416       // needed predication, we can't propagate the poison-generating 'inbounds'
9417       // flag. The control flow has been linearized and the GEP is no longer
9418       // guarded by the predicate, which could make the 'inbounds' properties to
9419       // no longer hold.
9420       bool IsInBounds =
9421           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9422 
9423       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9424       // but it should be a vector, otherwise.
9425       auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr,
9426                                              Indices, "", IsInBounds);
9427       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9428              "NewGEP is not a pointer vector");
9429       State.set(this, NewGEP, Part);
9430       State.ILV->addMetadata(NewGEP, GEP);
9431     }
9432   }
9433 }
9434 
9435 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9436   assert(!State.Instance && "Int or FP induction being replicated.");
9437 
9438   Value *Start = getStartValue()->getLiveInIRValue();
9439   const InductionDescriptor &ID = getInductionDescriptor();
9440   TruncInst *Trunc = getTruncInst();
9441   IRBuilderBase &Builder = State.Builder;
9442   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9443   assert(State.VF.isVector() && "must have vector VF");
9444 
9445   // The value from the original loop to which we are mapping the new induction
9446   // variable.
9447   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9448 
9449   // Fast-math-flags propagate from the original induction instruction.
9450   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9451   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9452     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9453 
9454   // Now do the actual transformations, and start with fetching the step value.
9455   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9456 
9457   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9458          "Expected either an induction phi-node or a truncate of it!");
9459 
9460   // Construct the initial value of the vector IV in the vector loop preheader
9461   auto CurrIP = Builder.saveIP();
9462   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9463   Builder.SetInsertPoint(VectorPH->getTerminator());
9464   if (isa<TruncInst>(EntryVal)) {
9465     assert(Start->getType()->isIntegerTy() &&
9466            "Truncation requires an integer type");
9467     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9468     Step = Builder.CreateTrunc(Step, TruncType);
9469     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9470   }
9471 
9472   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9473   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9474   Value *SteppedStart = getStepVector(
9475       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9476 
9477   // We create vector phi nodes for both integer and floating-point induction
9478   // variables. Here, we determine the kind of arithmetic we will perform.
9479   Instruction::BinaryOps AddOp;
9480   Instruction::BinaryOps MulOp;
9481   if (Step->getType()->isIntegerTy()) {
9482     AddOp = Instruction::Add;
9483     MulOp = Instruction::Mul;
9484   } else {
9485     AddOp = ID.getInductionOpcode();
9486     MulOp = Instruction::FMul;
9487   }
9488 
9489   // Multiply the vectorization factor by the step using integer or
9490   // floating-point arithmetic as appropriate.
9491   Type *StepType = Step->getType();
9492   Value *RuntimeVF;
9493   if (Step->getType()->isFloatingPointTy())
9494     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9495   else
9496     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9497   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9498 
9499   // Create a vector splat to use in the induction update.
9500   //
9501   // FIXME: If the step is non-constant, we create the vector splat with
9502   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9503   //        handle a constant vector splat.
9504   Value *SplatVF = isa<Constant>(Mul)
9505                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9506                        : Builder.CreateVectorSplat(State.VF, Mul);
9507   Builder.restoreIP(CurrIP);
9508 
9509   // We may need to add the step a number of times, depending on the unroll
9510   // factor. The last of those goes into the PHI.
9511   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9512                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9513   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9514   Instruction *LastInduction = VecInd;
9515   for (unsigned Part = 0; Part < State.UF; ++Part) {
9516     State.set(this, LastInduction, Part);
9517 
9518     if (isa<TruncInst>(EntryVal))
9519       State.ILV->addMetadata(LastInduction, EntryVal);
9520 
9521     LastInduction = cast<Instruction>(
9522         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9523     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9524   }
9525 
9526   LastInduction->setName("vec.ind.next");
9527   VecInd->addIncoming(SteppedStart, VectorPH);
9528   // Add induction update using an incorrect block temporarily. The phi node
9529   // will be fixed after VPlan execution. Note that at this point the latch
9530   // block cannot be used, as it does not exist yet.
9531   // TODO: Model increment value in VPlan, by turning the recipe into a
9532   // multi-def and a subclass of VPHeaderPHIRecipe.
9533   VecInd->addIncoming(LastInduction, VectorPH);
9534 }
9535 
9536 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9537   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9538          "Not a pointer induction according to InductionDescriptor!");
9539   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9540          "Unexpected type.");
9541 
9542   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9543   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9544 
9545   if (onlyScalarsGenerated(State.VF)) {
9546     // This is the normalized GEP that starts counting at zero.
9547     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9548         CanonicalIV, IndDesc.getStep()->getType());
9549     // Determine the number of scalars we need to generate for each unroll
9550     // iteration. If the instruction is uniform, we only need to generate the
9551     // first lane. Otherwise, we generate all VF values.
9552     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9553     assert((IsUniform || !State.VF.isScalable()) &&
9554            "Cannot scalarize a scalable VF");
9555     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9556 
9557     for (unsigned Part = 0; Part < State.UF; ++Part) {
9558       Value *PartStart =
9559           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9560 
9561       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9562         Value *Idx = State.Builder.CreateAdd(
9563             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9564         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9565 
9566         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9567                                       State.CFG.PrevBB->getTerminator());
9568         Value *SclrGep = emitTransformedIndex(
9569             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9570         SclrGep->setName("next.gep");
9571         State.set(this, SclrGep, VPIteration(Part, Lane));
9572       }
9573     }
9574     return;
9575   }
9576 
9577   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9578          "Induction step not a SCEV constant!");
9579   Type *PhiType = IndDesc.getStep()->getType();
9580 
9581   // Build a pointer phi
9582   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9583   Type *ScStValueType = ScalarStartValue->getType();
9584   PHINode *NewPointerPhi =
9585       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9586 
9587   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9588   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9589 
9590   // A pointer induction, performed by using a gep
9591   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9592   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9593 
9594   const SCEV *ScalarStep = IndDesc.getStep();
9595   SCEVExpander Exp(SE, DL, "induction");
9596   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9597   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9598   Value *NumUnrolledElems =
9599       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9600   Value *InductionGEP = GetElementPtrInst::Create(
9601       IndDesc.getElementType(), NewPointerPhi,
9602       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9603       InductionLoc);
9604   // Add induction update using an incorrect block temporarily. The phi node
9605   // will be fixed after VPlan execution. Note that at this point the latch
9606   // block cannot be used, as it does not exist yet.
9607   // TODO: Model increment value in VPlan, by turning the recipe into a
9608   // multi-def and a subclass of VPHeaderPHIRecipe.
9609   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9610 
9611   // Create UF many actual address geps that use the pointer
9612   // phi as base and a vectorized version of the step value
9613   // (<step*0, ..., step*N>) as offset.
9614   for (unsigned Part = 0; Part < State.UF; ++Part) {
9615     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9616     Value *StartOffsetScalar =
9617         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9618     Value *StartOffset =
9619         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9620     // Create a vector of consecutive numbers from zero to VF.
9621     StartOffset = State.Builder.CreateAdd(
9622         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9623 
9624     Value *GEP = State.Builder.CreateGEP(
9625         IndDesc.getElementType(), NewPointerPhi,
9626         State.Builder.CreateMul(
9627             StartOffset,
9628             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9629             "vector.gep"));
9630     State.set(this, GEP, Part);
9631   }
9632 }
9633 
9634 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9635   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9636 
9637   // Fast-math-flags propagate from the original induction instruction.
9638   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9639   if (IndDesc.getInductionBinOp() &&
9640       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9641     State.Builder.setFastMathFlags(
9642         IndDesc.getInductionBinOp()->getFastMathFlags());
9643 
9644   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9645   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9646     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9647     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9648     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9649       ScalarIV =
9650           Ty->isIntegerTy()
9651               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9652               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9653       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9654                                       getStartValue()->getLiveInIRValue(), Step,
9655                                       IndDesc);
9656       ScalarIV->setName("offset.idx");
9657     }
9658     if (TruncToTy) {
9659       assert(Step->getType()->isIntegerTy() &&
9660              "Truncation requires an integer step");
9661       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9662       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9663     }
9664     return ScalarIV;
9665   };
9666 
9667   Value *ScalarIV = CreateScalarIV(Step);
9668   if (State.VF.isVector()) {
9669     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9670     return;
9671   }
9672 
9673   for (unsigned Part = 0; Part < State.UF; ++Part) {
9674     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9675     Value *EntryPart;
9676     if (Step->getType()->isFloatingPointTy()) {
9677       Value *StartIdx =
9678           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9679       // Floating-point operations inherit FMF via the builder's flags.
9680       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9681       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9682                                             ScalarIV, MulOp);
9683     } else {
9684       Value *StartIdx =
9685           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9686       EntryPart = State.Builder.CreateAdd(
9687           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9688     }
9689     State.set(this, EntryPart, Part);
9690   }
9691 }
9692 
9693 void VPBlendRecipe::execute(VPTransformState &State) {
9694   State.ILV->setDebugLocFromInst(Phi);
9695   // We know that all PHIs in non-header blocks are converted into
9696   // selects, so we don't have to worry about the insertion order and we
9697   // can just use the builder.
9698   // At this point we generate the predication tree. There may be
9699   // duplications since this is a simple recursive scan, but future
9700   // optimizations will clean it up.
9701 
9702   unsigned NumIncoming = getNumIncomingValues();
9703 
9704   // Generate a sequence of selects of the form:
9705   // SELECT(Mask3, In3,
9706   //        SELECT(Mask2, In2,
9707   //               SELECT(Mask1, In1,
9708   //                      In0)))
9709   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9710   // are essentially undef are taken from In0.
9711   InnerLoopVectorizer::VectorParts Entry(State.UF);
9712   for (unsigned In = 0; In < NumIncoming; ++In) {
9713     for (unsigned Part = 0; Part < State.UF; ++Part) {
9714       // We might have single edge PHIs (blocks) - use an identity
9715       // 'select' for the first PHI operand.
9716       Value *In0 = State.get(getIncomingValue(In), Part);
9717       if (In == 0)
9718         Entry[Part] = In0; // Initialize with the first incoming value.
9719       else {
9720         // Select between the current value and the previous incoming edge
9721         // based on the incoming mask.
9722         Value *Cond = State.get(getMask(In), Part);
9723         Entry[Part] =
9724             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9725       }
9726     }
9727   }
9728   for (unsigned Part = 0; Part < State.UF; ++Part)
9729     State.set(this, Entry[Part], Part);
9730 }
9731 
9732 void VPInterleaveRecipe::execute(VPTransformState &State) {
9733   assert(!State.Instance && "Interleave group being replicated.");
9734   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9735                                       getStoredValues(), getMask());
9736 }
9737 
9738 void VPReductionRecipe::execute(VPTransformState &State) {
9739   assert(!State.Instance && "Reduction being replicated.");
9740   Value *PrevInChain = State.get(getChainOp(), 0);
9741   RecurKind Kind = RdxDesc->getRecurrenceKind();
9742   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9743   // Propagate the fast-math flags carried by the underlying instruction.
9744   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9745   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9746   for (unsigned Part = 0; Part < State.UF; ++Part) {
9747     Value *NewVecOp = State.get(getVecOp(), Part);
9748     if (VPValue *Cond = getCondOp()) {
9749       Value *NewCond = State.get(Cond, Part);
9750       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9751       Value *Iden = RdxDesc->getRecurrenceIdentity(
9752           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9753       Value *IdenVec =
9754           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9755       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9756       NewVecOp = Select;
9757     }
9758     Value *NewRed;
9759     Value *NextInChain;
9760     if (IsOrdered) {
9761       if (State.VF.isVector())
9762         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9763                                         PrevInChain);
9764       else
9765         NewRed = State.Builder.CreateBinOp(
9766             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9767             NewVecOp);
9768       PrevInChain = NewRed;
9769     } else {
9770       PrevInChain = State.get(getChainOp(), Part);
9771       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9772     }
9773     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9774       NextInChain =
9775           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9776                          NewRed, PrevInChain);
9777     } else if (IsOrdered)
9778       NextInChain = NewRed;
9779     else
9780       NextInChain = State.Builder.CreateBinOp(
9781           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9782           PrevInChain);
9783     State.set(this, NextInChain, Part);
9784   }
9785 }
9786 
9787 void VPReplicateRecipe::execute(VPTransformState &State) {
9788   if (State.Instance) { // Generate a single instance.
9789     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9790     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9791                                     IsPredicated, State);
9792     // Insert scalar instance packing it into a vector.
9793     if (AlsoPack && State.VF.isVector()) {
9794       // If we're constructing lane 0, initialize to start from poison.
9795       if (State.Instance->Lane.isFirstLane()) {
9796         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9797         Value *Poison = PoisonValue::get(
9798             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9799         State.set(this, Poison, State.Instance->Part);
9800       }
9801       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9802     }
9803     return;
9804   }
9805 
9806   // Generate scalar instances for all VF lanes of all UF parts, unless the
9807   // instruction is uniform inwhich case generate only the first lane for each
9808   // of the UF parts.
9809   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9810   assert((!State.VF.isScalable() || IsUniform) &&
9811          "Can't scalarize a scalable vector");
9812   for (unsigned Part = 0; Part < State.UF; ++Part)
9813     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9814       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9815                                       VPIteration(Part, Lane), IsPredicated,
9816                                       State);
9817 }
9818 
9819 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9820   assert(State.Instance && "Branch on Mask works only on single instance.");
9821 
9822   unsigned Part = State.Instance->Part;
9823   unsigned Lane = State.Instance->Lane.getKnownLane();
9824 
9825   Value *ConditionBit = nullptr;
9826   VPValue *BlockInMask = getMask();
9827   if (BlockInMask) {
9828     ConditionBit = State.get(BlockInMask, Part);
9829     if (ConditionBit->getType()->isVectorTy())
9830       ConditionBit = State.Builder.CreateExtractElement(
9831           ConditionBit, State.Builder.getInt32(Lane));
9832   } else // Block in mask is all-one.
9833     ConditionBit = State.Builder.getTrue();
9834 
9835   // Replace the temporary unreachable terminator with a new conditional branch,
9836   // whose two destinations will be set later when they are created.
9837   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9838   assert(isa<UnreachableInst>(CurrentTerminator) &&
9839          "Expected to replace unreachable terminator with conditional branch.");
9840   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9841   CondBr->setSuccessor(0, nullptr);
9842   ReplaceInstWithInst(CurrentTerminator, CondBr);
9843 }
9844 
9845 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9846   assert(State.Instance && "Predicated instruction PHI works per instance.");
9847   Instruction *ScalarPredInst =
9848       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9849   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9850   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9851   assert(PredicatingBB && "Predicated block has no single predecessor.");
9852   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9853          "operand must be VPReplicateRecipe");
9854 
9855   // By current pack/unpack logic we need to generate only a single phi node: if
9856   // a vector value for the predicated instruction exists at this point it means
9857   // the instruction has vector users only, and a phi for the vector value is
9858   // needed. In this case the recipe of the predicated instruction is marked to
9859   // also do that packing, thereby "hoisting" the insert-element sequence.
9860   // Otherwise, a phi node for the scalar value is needed.
9861   unsigned Part = State.Instance->Part;
9862   if (State.hasVectorValue(getOperand(0), Part)) {
9863     Value *VectorValue = State.get(getOperand(0), Part);
9864     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9865     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9866     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9867     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9868     if (State.hasVectorValue(this, Part))
9869       State.reset(this, VPhi, Part);
9870     else
9871       State.set(this, VPhi, Part);
9872     // NOTE: Currently we need to update the value of the operand, so the next
9873     // predicated iteration inserts its generated value in the correct vector.
9874     State.reset(getOperand(0), VPhi, Part);
9875   } else {
9876     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9877     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9878     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9879                      PredicatingBB);
9880     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9881     if (State.hasScalarValue(this, *State.Instance))
9882       State.reset(this, Phi, *State.Instance);
9883     else
9884       State.set(this, Phi, *State.Instance);
9885     // NOTE: Currently we need to update the value of the operand, so the next
9886     // predicated iteration inserts its generated value in the correct vector.
9887     State.reset(getOperand(0), Phi, *State.Instance);
9888   }
9889 }
9890 
9891 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9892   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9893 
9894   // Attempt to issue a wide load.
9895   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9896   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9897 
9898   assert((LI || SI) && "Invalid Load/Store instruction");
9899   assert((!SI || StoredValue) && "No stored value provided for widened store");
9900   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9901 
9902   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9903 
9904   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9905   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9906   bool CreateGatherScatter = !Consecutive;
9907 
9908   auto &Builder = State.Builder;
9909   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9910   bool isMaskRequired = getMask();
9911   if (isMaskRequired)
9912     for (unsigned Part = 0; Part < State.UF; ++Part)
9913       BlockInMaskParts[Part] = State.get(getMask(), Part);
9914 
9915   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9916     // Calculate the pointer for the specific unroll-part.
9917     GetElementPtrInst *PartPtr = nullptr;
9918 
9919     bool InBounds = false;
9920     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9921       InBounds = gep->isInBounds();
9922     if (Reverse) {
9923       // If the address is consecutive but reversed, then the
9924       // wide store needs to start at the last vector element.
9925       // RunTimeVF =  VScale * VF.getKnownMinValue()
9926       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9927       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9928       // NumElt = -Part * RunTimeVF
9929       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9930       // LastLane = 1 - RunTimeVF
9931       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9932       PartPtr =
9933           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9934       PartPtr->setIsInBounds(InBounds);
9935       PartPtr = cast<GetElementPtrInst>(
9936           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9937       PartPtr->setIsInBounds(InBounds);
9938       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9939         BlockInMaskParts[Part] =
9940             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9941     } else {
9942       Value *Increment =
9943           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9944       PartPtr = cast<GetElementPtrInst>(
9945           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9946       PartPtr->setIsInBounds(InBounds);
9947     }
9948 
9949     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9950     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9951   };
9952 
9953   // Handle Stores:
9954   if (SI) {
9955     State.ILV->setDebugLocFromInst(SI);
9956 
9957     for (unsigned Part = 0; Part < State.UF; ++Part) {
9958       Instruction *NewSI = nullptr;
9959       Value *StoredVal = State.get(StoredValue, Part);
9960       if (CreateGatherScatter) {
9961         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9962         Value *VectorGep = State.get(getAddr(), Part);
9963         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9964                                             MaskPart);
9965       } else {
9966         if (Reverse) {
9967           // If we store to reverse consecutive memory locations, then we need
9968           // to reverse the order of elements in the stored value.
9969           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9970           // We don't want to update the value in the map as it might be used in
9971           // another expression. So don't call resetVectorValue(StoredVal).
9972         }
9973         auto *VecPtr =
9974             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9975         if (isMaskRequired)
9976           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9977                                             BlockInMaskParts[Part]);
9978         else
9979           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9980       }
9981       State.ILV->addMetadata(NewSI, SI);
9982     }
9983     return;
9984   }
9985 
9986   // Handle loads.
9987   assert(LI && "Must have a load instruction");
9988   State.ILV->setDebugLocFromInst(LI);
9989   for (unsigned Part = 0; Part < State.UF; ++Part) {
9990     Value *NewLI;
9991     if (CreateGatherScatter) {
9992       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9993       Value *VectorGep = State.get(getAddr(), Part);
9994       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9995                                          nullptr, "wide.masked.gather");
9996       State.ILV->addMetadata(NewLI, LI);
9997     } else {
9998       auto *VecPtr =
9999           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10000       if (isMaskRequired)
10001         NewLI = Builder.CreateMaskedLoad(
10002             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10003             PoisonValue::get(DataTy), "wide.masked.load");
10004       else
10005         NewLI =
10006             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10007 
10008       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10009       State.ILV->addMetadata(NewLI, LI);
10010       if (Reverse)
10011         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10012     }
10013 
10014     State.set(getVPSingleValue(), NewLI, Part);
10015   }
10016 }
10017 
10018 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10019 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10020 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10021 // for predication.
10022 static ScalarEpilogueLowering getScalarEpilogueLowering(
10023     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10024     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10025     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10026     LoopVectorizationLegality &LVL) {
10027   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10028   // don't look at hints or options, and don't request a scalar epilogue.
10029   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10030   // LoopAccessInfo (due to code dependency and not being able to reliably get
10031   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10032   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10033   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10034   // back to the old way and vectorize with versioning when forced. See D81345.)
10035   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10036                                                       PGSOQueryType::IRPass) &&
10037                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10038     return CM_ScalarEpilogueNotAllowedOptSize;
10039 
10040   // 2) If set, obey the directives
10041   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10042     switch (PreferPredicateOverEpilogue) {
10043     case PreferPredicateTy::ScalarEpilogue:
10044       return CM_ScalarEpilogueAllowed;
10045     case PreferPredicateTy::PredicateElseScalarEpilogue:
10046       return CM_ScalarEpilogueNotNeededUsePredicate;
10047     case PreferPredicateTy::PredicateOrDontVectorize:
10048       return CM_ScalarEpilogueNotAllowedUsePredicate;
10049     };
10050   }
10051 
10052   // 3) If set, obey the hints
10053   switch (Hints.getPredicate()) {
10054   case LoopVectorizeHints::FK_Enabled:
10055     return CM_ScalarEpilogueNotNeededUsePredicate;
10056   case LoopVectorizeHints::FK_Disabled:
10057     return CM_ScalarEpilogueAllowed;
10058   };
10059 
10060   // 4) if the TTI hook indicates this is profitable, request predication.
10061   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10062                                        LVL.getLAI()))
10063     return CM_ScalarEpilogueNotNeededUsePredicate;
10064 
10065   return CM_ScalarEpilogueAllowed;
10066 }
10067 
10068 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10069   // If Values have been set for this Def return the one relevant for \p Part.
10070   if (hasVectorValue(Def, Part))
10071     return Data.PerPartOutput[Def][Part];
10072 
10073   if (!hasScalarValue(Def, {Part, 0})) {
10074     Value *IRV = Def->getLiveInIRValue();
10075     Value *B = ILV->getBroadcastInstrs(IRV);
10076     set(Def, B, Part);
10077     return B;
10078   }
10079 
10080   Value *ScalarValue = get(Def, {Part, 0});
10081   // If we aren't vectorizing, we can just copy the scalar map values over
10082   // to the vector map.
10083   if (VF.isScalar()) {
10084     set(Def, ScalarValue, Part);
10085     return ScalarValue;
10086   }
10087 
10088   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10089   bool IsUniform = RepR && RepR->isUniform();
10090 
10091   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10092   // Check if there is a scalar value for the selected lane.
10093   if (!hasScalarValue(Def, {Part, LastLane})) {
10094     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10095     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
10096             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
10097            "unexpected recipe found to be invariant");
10098     IsUniform = true;
10099     LastLane = 0;
10100   }
10101 
10102   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10103   // Set the insert point after the last scalarized instruction or after the
10104   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10105   // will directly follow the scalar definitions.
10106   auto OldIP = Builder.saveIP();
10107   auto NewIP =
10108       isa<PHINode>(LastInst)
10109           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10110           : std::next(BasicBlock::iterator(LastInst));
10111   Builder.SetInsertPoint(&*NewIP);
10112 
10113   // However, if we are vectorizing, we need to construct the vector values.
10114   // If the value is known to be uniform after vectorization, we can just
10115   // broadcast the scalar value corresponding to lane zero for each unroll
10116   // iteration. Otherwise, we construct the vector values using
10117   // insertelement instructions. Since the resulting vectors are stored in
10118   // State, we will only generate the insertelements once.
10119   Value *VectorValue = nullptr;
10120   if (IsUniform) {
10121     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10122     set(Def, VectorValue, Part);
10123   } else {
10124     // Initialize packing with insertelements to start from undef.
10125     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10126     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10127     set(Def, Undef, Part);
10128     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10129       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10130     VectorValue = get(Def, Part);
10131   }
10132   Builder.restoreIP(OldIP);
10133   return VectorValue;
10134 }
10135 
10136 // Process the loop in the VPlan-native vectorization path. This path builds
10137 // VPlan upfront in the vectorization pipeline, which allows to apply
10138 // VPlan-to-VPlan transformations from the very beginning without modifying the
10139 // input LLVM IR.
10140 static bool processLoopInVPlanNativePath(
10141     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10142     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10143     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10144     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10145     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10146     LoopVectorizationRequirements &Requirements) {
10147 
10148   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10149     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10150     return false;
10151   }
10152   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10153   Function *F = L->getHeader()->getParent();
10154   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10155 
10156   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10157       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10158 
10159   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10160                                 &Hints, IAI);
10161   // Use the planner for outer loop vectorization.
10162   // TODO: CM is not used at this point inside the planner. Turn CM into an
10163   // optional argument if we don't need it in the future.
10164   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10165                                Requirements, ORE);
10166 
10167   // Get user vectorization factor.
10168   ElementCount UserVF = Hints.getWidth();
10169 
10170   CM.collectElementTypesForWidening();
10171 
10172   // Plan how to best vectorize, return the best VF and its cost.
10173   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10174 
10175   // If we are stress testing VPlan builds, do not attempt to generate vector
10176   // code. Masked vector code generation support will follow soon.
10177   // Also, do not attempt to vectorize if no vector code will be produced.
10178   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
10179     return false;
10180 
10181   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10182 
10183   {
10184     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10185                              F->getParent()->getDataLayout());
10186     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10187                            &CM, BFI, PSI, Checks);
10188     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10189                       << L->getHeader()->getParent()->getName() << "\"\n");
10190     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10191   }
10192 
10193   // Mark the loop as already vectorized to avoid vectorizing again.
10194   Hints.setAlreadyVectorized();
10195   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10196   return true;
10197 }
10198 
10199 // Emit a remark if there are stores to floats that required a floating point
10200 // extension. If the vectorized loop was generated with floating point there
10201 // will be a performance penalty from the conversion overhead and the change in
10202 // the vector width.
10203 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10204   SmallVector<Instruction *, 4> Worklist;
10205   for (BasicBlock *BB : L->getBlocks()) {
10206     for (Instruction &Inst : *BB) {
10207       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10208         if (S->getValueOperand()->getType()->isFloatTy())
10209           Worklist.push_back(S);
10210       }
10211     }
10212   }
10213 
10214   // Traverse the floating point stores upwards searching, for floating point
10215   // conversions.
10216   SmallPtrSet<const Instruction *, 4> Visited;
10217   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10218   while (!Worklist.empty()) {
10219     auto *I = Worklist.pop_back_val();
10220     if (!L->contains(I))
10221       continue;
10222     if (!Visited.insert(I).second)
10223       continue;
10224 
10225     // Emit a remark if the floating point store required a floating
10226     // point conversion.
10227     // TODO: More work could be done to identify the root cause such as a
10228     // constant or a function return type and point the user to it.
10229     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10230       ORE->emit([&]() {
10231         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10232                                           I->getDebugLoc(), L->getHeader())
10233                << "floating point conversion changes vector width. "
10234                << "Mixed floating point precision requires an up/down "
10235                << "cast that will negatively impact performance.";
10236       });
10237 
10238     for (Use &Op : I->operands())
10239       if (auto *OpI = dyn_cast<Instruction>(Op))
10240         Worklist.push_back(OpI);
10241   }
10242 }
10243 
10244 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10245     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10246                                !EnableLoopInterleaving),
10247       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10248                               !EnableLoopVectorization) {}
10249 
10250 bool LoopVectorizePass::processLoop(Loop *L) {
10251   assert((EnableVPlanNativePath || L->isInnermost()) &&
10252          "VPlan-native path is not enabled. Only process inner loops.");
10253 
10254 #ifndef NDEBUG
10255   const std::string DebugLocStr = getDebugLocString(L);
10256 #endif /* NDEBUG */
10257 
10258   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10259                     << L->getHeader()->getParent()->getName() << "' from "
10260                     << DebugLocStr << "\n");
10261 
10262   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10263 
10264   LLVM_DEBUG(
10265       dbgs() << "LV: Loop hints:"
10266              << " force="
10267              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10268                      ? "disabled"
10269                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10270                             ? "enabled"
10271                             : "?"))
10272              << " width=" << Hints.getWidth()
10273              << " interleave=" << Hints.getInterleave() << "\n");
10274 
10275   // Function containing loop
10276   Function *F = L->getHeader()->getParent();
10277 
10278   // Looking at the diagnostic output is the only way to determine if a loop
10279   // was vectorized (other than looking at the IR or machine code), so it
10280   // is important to generate an optimization remark for each loop. Most of
10281   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10282   // generated as OptimizationRemark and OptimizationRemarkMissed are
10283   // less verbose reporting vectorized loops and unvectorized loops that may
10284   // benefit from vectorization, respectively.
10285 
10286   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10287     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10288     return false;
10289   }
10290 
10291   PredicatedScalarEvolution PSE(*SE, *L);
10292 
10293   // Check if it is legal to vectorize the loop.
10294   LoopVectorizationRequirements Requirements;
10295   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10296                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10297   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10298     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10299     Hints.emitRemarkWithHints();
10300     return false;
10301   }
10302 
10303   // Check the function attributes and profiles to find out if this function
10304   // should be optimized for size.
10305   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10306       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10307 
10308   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10309   // here. They may require CFG and instruction level transformations before
10310   // even evaluating whether vectorization is profitable. Since we cannot modify
10311   // the incoming IR, we need to build VPlan upfront in the vectorization
10312   // pipeline.
10313   if (!L->isInnermost())
10314     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10315                                         ORE, BFI, PSI, Hints, Requirements);
10316 
10317   assert(L->isInnermost() && "Inner loop expected.");
10318 
10319   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10320   // count by optimizing for size, to minimize overheads.
10321   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10322   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10323     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10324                       << "This loop is worth vectorizing only if no scalar "
10325                       << "iteration overheads are incurred.");
10326     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10327       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10328     else {
10329       LLVM_DEBUG(dbgs() << "\n");
10330       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10331     }
10332   }
10333 
10334   // Check the function attributes to see if implicit floats are allowed.
10335   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10336   // an integer loop and the vector instructions selected are purely integer
10337   // vector instructions?
10338   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10339     reportVectorizationFailure(
10340         "Can't vectorize when the NoImplicitFloat attribute is used",
10341         "loop not vectorized due to NoImplicitFloat attribute",
10342         "NoImplicitFloat", ORE, L);
10343     Hints.emitRemarkWithHints();
10344     return false;
10345   }
10346 
10347   // Check if the target supports potentially unsafe FP vectorization.
10348   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10349   // for the target we're vectorizing for, to make sure none of the
10350   // additional fp-math flags can help.
10351   if (Hints.isPotentiallyUnsafe() &&
10352       TTI->isFPVectorizationPotentiallyUnsafe()) {
10353     reportVectorizationFailure(
10354         "Potentially unsafe FP op prevents vectorization",
10355         "loop not vectorized due to unsafe FP support.",
10356         "UnsafeFP", ORE, L);
10357     Hints.emitRemarkWithHints();
10358     return false;
10359   }
10360 
10361   bool AllowOrderedReductions;
10362   // If the flag is set, use that instead and override the TTI behaviour.
10363   if (ForceOrderedReductions.getNumOccurrences() > 0)
10364     AllowOrderedReductions = ForceOrderedReductions;
10365   else
10366     AllowOrderedReductions = TTI->enableOrderedReductions();
10367   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10368     ORE->emit([&]() {
10369       auto *ExactFPMathInst = Requirements.getExactFPInst();
10370       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10371                                                  ExactFPMathInst->getDebugLoc(),
10372                                                  ExactFPMathInst->getParent())
10373              << "loop not vectorized: cannot prove it is safe to reorder "
10374                 "floating-point operations";
10375     });
10376     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10377                          "reorder floating-point operations\n");
10378     Hints.emitRemarkWithHints();
10379     return false;
10380   }
10381 
10382   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10383   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10384 
10385   // If an override option has been passed in for interleaved accesses, use it.
10386   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10387     UseInterleaved = EnableInterleavedMemAccesses;
10388 
10389   // Analyze interleaved memory accesses.
10390   if (UseInterleaved) {
10391     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10392   }
10393 
10394   // Use the cost model.
10395   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10396                                 F, &Hints, IAI);
10397   CM.collectValuesToIgnore();
10398   CM.collectElementTypesForWidening();
10399 
10400   // Use the planner for vectorization.
10401   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10402                                Requirements, ORE);
10403 
10404   // Get user vectorization factor and interleave count.
10405   ElementCount UserVF = Hints.getWidth();
10406   unsigned UserIC = Hints.getInterleave();
10407 
10408   // Plan how to best vectorize, return the best VF and its cost.
10409   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10410 
10411   VectorizationFactor VF = VectorizationFactor::Disabled();
10412   unsigned IC = 1;
10413 
10414   if (MaybeVF) {
10415     if (LVP.requiresTooManyRuntimeChecks()) {
10416       ORE->emit([&]() {
10417         return OptimizationRemarkAnalysisAliasing(
10418                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10419                    L->getHeader())
10420                << "loop not vectorized: cannot prove it is safe to reorder "
10421                   "memory operations";
10422       });
10423       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10424       Hints.emitRemarkWithHints();
10425       return false;
10426     }
10427     VF = *MaybeVF;
10428     // Select the interleave count.
10429     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10430   }
10431 
10432   // Identify the diagnostic messages that should be produced.
10433   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10434   bool VectorizeLoop = true, InterleaveLoop = true;
10435   if (VF.Width.isScalar()) {
10436     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10437     VecDiagMsg = std::make_pair(
10438         "VectorizationNotBeneficial",
10439         "the cost-model indicates that vectorization is not beneficial");
10440     VectorizeLoop = false;
10441   }
10442 
10443   if (!MaybeVF && UserIC > 1) {
10444     // Tell the user interleaving was avoided up-front, despite being explicitly
10445     // requested.
10446     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10447                          "interleaving should be avoided up front\n");
10448     IntDiagMsg = std::make_pair(
10449         "InterleavingAvoided",
10450         "Ignoring UserIC, because interleaving was avoided up front");
10451     InterleaveLoop = false;
10452   } else if (IC == 1 && UserIC <= 1) {
10453     // Tell the user interleaving is not beneficial.
10454     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10455     IntDiagMsg = std::make_pair(
10456         "InterleavingNotBeneficial",
10457         "the cost-model indicates that interleaving is not beneficial");
10458     InterleaveLoop = false;
10459     if (UserIC == 1) {
10460       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10461       IntDiagMsg.second +=
10462           " and is explicitly disabled or interleave count is set to 1";
10463     }
10464   } else if (IC > 1 && UserIC == 1) {
10465     // Tell the user interleaving is beneficial, but it explicitly disabled.
10466     LLVM_DEBUG(
10467         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10468     IntDiagMsg = std::make_pair(
10469         "InterleavingBeneficialButDisabled",
10470         "the cost-model indicates that interleaving is beneficial "
10471         "but is explicitly disabled or interleave count is set to 1");
10472     InterleaveLoop = false;
10473   }
10474 
10475   // Override IC if user provided an interleave count.
10476   IC = UserIC > 0 ? UserIC : IC;
10477 
10478   // Emit diagnostic messages, if any.
10479   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10480   if (!VectorizeLoop && !InterleaveLoop) {
10481     // Do not vectorize or interleaving the loop.
10482     ORE->emit([&]() {
10483       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10484                                       L->getStartLoc(), L->getHeader())
10485              << VecDiagMsg.second;
10486     });
10487     ORE->emit([&]() {
10488       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10489                                       L->getStartLoc(), L->getHeader())
10490              << IntDiagMsg.second;
10491     });
10492     return false;
10493   } else if (!VectorizeLoop && InterleaveLoop) {
10494     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10495     ORE->emit([&]() {
10496       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10497                                         L->getStartLoc(), L->getHeader())
10498              << VecDiagMsg.second;
10499     });
10500   } else if (VectorizeLoop && !InterleaveLoop) {
10501     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10502                       << ") in " << DebugLocStr << '\n');
10503     ORE->emit([&]() {
10504       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10505                                         L->getStartLoc(), L->getHeader())
10506              << IntDiagMsg.second;
10507     });
10508   } else if (VectorizeLoop && InterleaveLoop) {
10509     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10510                       << ") in " << DebugLocStr << '\n');
10511     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10512   }
10513 
10514   bool DisableRuntimeUnroll = false;
10515   MDNode *OrigLoopID = L->getLoopID();
10516   {
10517     // Optimistically generate runtime checks. Drop them if they turn out to not
10518     // be profitable. Limit the scope of Checks, so the cleanup happens
10519     // immediately after vector codegeneration is done.
10520     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10521                              F->getParent()->getDataLayout());
10522     if (!VF.Width.isScalar() || IC > 1)
10523       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC);
10524 
10525     using namespace ore;
10526     if (!VectorizeLoop) {
10527       assert(IC > 1 && "interleave count should not be 1 or 0");
10528       // If we decided that it is not legal to vectorize the loop, then
10529       // interleave it.
10530       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10531                                  &CM, BFI, PSI, Checks);
10532 
10533       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10534       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10535 
10536       ORE->emit([&]() {
10537         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10538                                   L->getHeader())
10539                << "interleaved loop (interleaved count: "
10540                << NV("InterleaveCount", IC) << ")";
10541       });
10542     } else {
10543       // If we decided that it is *legal* to vectorize the loop, then do it.
10544 
10545       // Consider vectorizing the epilogue too if it's profitable.
10546       VectorizationFactor EpilogueVF =
10547           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10548       if (EpilogueVF.Width.isVector()) {
10549 
10550         // The first pass vectorizes the main loop and creates a scalar epilogue
10551         // to be vectorized by executing the plan (potentially with a different
10552         // factor) again shortly afterwards.
10553         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10554         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10555                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10556 
10557         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10558         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10559                         DT);
10560         ++LoopsVectorized;
10561 
10562         // Second pass vectorizes the epilogue and adjusts the control flow
10563         // edges from the first pass.
10564         EPI.MainLoopVF = EPI.EpilogueVF;
10565         EPI.MainLoopUF = EPI.EpilogueUF;
10566         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10567                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10568                                                  Checks);
10569 
10570         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10571         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10572         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10573         Header->setName("vec.epilog.vector.body");
10574 
10575         // Ensure that the start values for any VPReductionPHIRecipes are
10576         // updated before vectorising the epilogue loop.
10577         for (VPRecipeBase &R : Header->phis()) {
10578           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10579             if (auto *Resume = MainILV.getReductionResumeValue(
10580                     ReductionPhi->getRecurrenceDescriptor())) {
10581               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10582               ReductionPhi->setOperand(0, StartVal);
10583             }
10584           }
10585         }
10586 
10587         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10588                         DT);
10589         ++LoopsEpilogueVectorized;
10590 
10591         if (!MainILV.areSafetyChecksAdded())
10592           DisableRuntimeUnroll = true;
10593       } else {
10594         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10595                                &LVL, &CM, BFI, PSI, Checks);
10596 
10597         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10598         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10599         ++LoopsVectorized;
10600 
10601         // Add metadata to disable runtime unrolling a scalar loop when there
10602         // are no runtime checks about strides and memory. A scalar loop that is
10603         // rarely used is not worth unrolling.
10604         if (!LB.areSafetyChecksAdded())
10605           DisableRuntimeUnroll = true;
10606       }
10607       // Report the vectorization decision.
10608       ORE->emit([&]() {
10609         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10610                                   L->getHeader())
10611                << "vectorized loop (vectorization width: "
10612                << NV("VectorizationFactor", VF.Width)
10613                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10614       });
10615     }
10616 
10617     if (ORE->allowExtraAnalysis(LV_NAME))
10618       checkMixedPrecision(L, ORE);
10619   }
10620 
10621   Optional<MDNode *> RemainderLoopID =
10622       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10623                                       LLVMLoopVectorizeFollowupEpilogue});
10624   if (RemainderLoopID.hasValue()) {
10625     L->setLoopID(RemainderLoopID.getValue());
10626   } else {
10627     if (DisableRuntimeUnroll)
10628       AddRuntimeUnrollDisableMetaData(L);
10629 
10630     // Mark the loop as already vectorized to avoid vectorizing again.
10631     Hints.setAlreadyVectorized();
10632   }
10633 
10634   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10635   return true;
10636 }
10637 
10638 LoopVectorizeResult LoopVectorizePass::runImpl(
10639     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10640     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10641     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10642     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10643     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10644   SE = &SE_;
10645   LI = &LI_;
10646   TTI = &TTI_;
10647   DT = &DT_;
10648   BFI = &BFI_;
10649   TLI = TLI_;
10650   AA = &AA_;
10651   AC = &AC_;
10652   GetLAA = &GetLAA_;
10653   DB = &DB_;
10654   ORE = &ORE_;
10655   PSI = PSI_;
10656 
10657   // Don't attempt if
10658   // 1. the target claims to have no vector registers, and
10659   // 2. interleaving won't help ILP.
10660   //
10661   // The second condition is necessary because, even if the target has no
10662   // vector registers, loop vectorization may still enable scalar
10663   // interleaving.
10664   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10665       TTI->getMaxInterleaveFactor(1) < 2)
10666     return LoopVectorizeResult(false, false);
10667 
10668   bool Changed = false, CFGChanged = false;
10669 
10670   // The vectorizer requires loops to be in simplified form.
10671   // Since simplification may add new inner loops, it has to run before the
10672   // legality and profitability checks. This means running the loop vectorizer
10673   // will simplify all loops, regardless of whether anything end up being
10674   // vectorized.
10675   for (auto &L : *LI)
10676     Changed |= CFGChanged |=
10677         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10678 
10679   // Build up a worklist of inner-loops to vectorize. This is necessary as
10680   // the act of vectorizing or partially unrolling a loop creates new loops
10681   // and can invalidate iterators across the loops.
10682   SmallVector<Loop *, 8> Worklist;
10683 
10684   for (Loop *L : *LI)
10685     collectSupportedLoops(*L, LI, ORE, Worklist);
10686 
10687   LoopsAnalyzed += Worklist.size();
10688 
10689   // Now walk the identified inner loops.
10690   while (!Worklist.empty()) {
10691     Loop *L = Worklist.pop_back_val();
10692 
10693     // For the inner loops we actually process, form LCSSA to simplify the
10694     // transform.
10695     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10696 
10697     Changed |= CFGChanged |= processLoop(L);
10698   }
10699 
10700   // Process each loop nest in the function.
10701   return LoopVectorizeResult(Changed, CFGChanged);
10702 }
10703 
10704 PreservedAnalyses LoopVectorizePass::run(Function &F,
10705                                          FunctionAnalysisManager &AM) {
10706     auto &LI = AM.getResult<LoopAnalysis>(F);
10707     // There are no loops in the function. Return before computing other expensive
10708     // analyses.
10709     if (LI.empty())
10710       return PreservedAnalyses::all();
10711     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10712     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10713     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10714     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10715     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10716     auto &AA = AM.getResult<AAManager>(F);
10717     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10718     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10719     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10720 
10721     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10722     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10723         [&](Loop &L) -> const LoopAccessInfo & {
10724       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10725                                         TLI, TTI, nullptr, nullptr, nullptr};
10726       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10727     };
10728     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10729     ProfileSummaryInfo *PSI =
10730         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10731     LoopVectorizeResult Result =
10732         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10733     if (!Result.MadeAnyChange)
10734       return PreservedAnalyses::all();
10735     PreservedAnalyses PA;
10736 
10737     // We currently do not preserve loopinfo/dominator analyses with outer loop
10738     // vectorization. Until this is addressed, mark these analyses as preserved
10739     // only for non-VPlan-native path.
10740     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10741     if (!EnableVPlanNativePath) {
10742       PA.preserve<LoopAnalysis>();
10743       PA.preserve<DominatorTreeAnalysis>();
10744     }
10745 
10746     if (Result.MadeCFGChange) {
10747       // Making CFG changes likely means a loop got vectorized. Indicate that
10748       // extra simplification passes should be run.
10749       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10750       // be run if runtime checks have been added.
10751       AM.getResult<ShouldRunExtraVectorPasses>(F);
10752       PA.preserve<ShouldRunExtraVectorPasses>();
10753     } else {
10754       PA.preserveSet<CFGAnalyses>();
10755     }
10756     return PA;
10757 }
10758 
10759 void LoopVectorizePass::printPipeline(
10760     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10761   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10762       OS, MapClassName2PassName);
10763 
10764   OS << "<";
10765   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10766   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10767   OS << ">";
10768 }
10769