1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 202 // that predication is preferred, and this lists all options. I.e., the 203 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 204 // and predicate the instructions accordingly. If tail-folding fails, there are 205 // different fallback strategies depending on these values: 206 namespace PreferPredicateTy { 207 enum Option { 208 ScalarEpilogue = 0, 209 PredicateElseScalarEpilogue, 210 PredicateOrDontVectorize 211 }; 212 } // namespace PreferPredicateTy 213 214 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 215 "prefer-predicate-over-epilogue", 216 cl::init(PreferPredicateTy::ScalarEpilogue), 217 cl::Hidden, 218 cl::desc("Tail-folding and predication preferences over creating a scalar " 219 "epilogue loop."), 220 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 221 "scalar-epilogue", 222 "Don't tail-predicate loops, create scalar epilogue"), 223 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 224 "predicate-else-scalar-epilogue", 225 "prefer tail-folding, create scalar epilogue if tail " 226 "folding fails."), 227 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 228 "predicate-dont-vectorize", 229 "prefers tail-folding, don't attempt vectorization if " 230 "tail-folding fails."))); 231 232 static cl::opt<bool> MaximizeBandwidth( 233 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 234 cl::desc("Maximize bandwidth when selecting vectorization factor which " 235 "will be determined by the smallest type in loop.")); 236 237 static cl::opt<bool> EnableInterleavedMemAccesses( 238 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 239 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 240 241 /// An interleave-group may need masking if it resides in a block that needs 242 /// predication, or in order to mask away gaps. 243 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 244 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 246 247 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 248 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 249 cl::desc("We don't interleave loops with a estimated constant trip count " 250 "below this number")); 251 252 static cl::opt<unsigned> ForceTargetNumScalarRegs( 253 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 254 cl::desc("A flag that overrides the target's number of scalar registers.")); 255 256 static cl::opt<unsigned> ForceTargetNumVectorRegs( 257 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of vector registers.")); 259 260 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 261 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's max interleave factor for " 263 "scalar loops.")); 264 265 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 266 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "vectorized loops.")); 269 270 static cl::opt<unsigned> ForceTargetInstructionCost( 271 "force-target-instruction-cost", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's expected cost for " 273 "an instruction to a single constant value. Mostly " 274 "useful for getting consistent testing.")); 275 276 static cl::opt<bool> ForceTargetSupportsScalableVectors( 277 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 278 cl::desc( 279 "Pretend that scalable vectors are supported, even if the target does " 280 "not support them. This flag should only be used for testing.")); 281 282 static cl::opt<unsigned> SmallLoopCost( 283 "small-loop-cost", cl::init(20), cl::Hidden, 284 cl::desc( 285 "The cost of a loop that is considered 'small' by the interleaver.")); 286 287 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 288 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 289 cl::desc("Enable the use of the block frequency analysis to access PGO " 290 "heuristics minimizing code growth in cold regions and being more " 291 "aggressive in hot regions.")); 292 293 // Runtime interleave loops for load/store throughput. 294 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 295 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 296 cl::desc( 297 "Enable runtime interleaving until load/store ports are saturated")); 298 299 /// Interleave small loops with scalar reductions. 300 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 301 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 302 cl::desc("Enable interleaving for loops with small iteration counts that " 303 "contain scalar reductions to expose ILP.")); 304 305 /// The number of stores in a loop that are allowed to need predication. 306 static cl::opt<unsigned> NumberOfStoresToPredicate( 307 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 308 cl::desc("Max number of stores to be predicated behind an if.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> PreferPredicatedReductionSelect( 330 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 331 cl::desc( 332 "Prefer predicating a reduction operation over an after loop select.")); 333 334 cl::opt<bool> EnableVPlanNativePath( 335 "enable-vplan-native-path", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path with " 337 "support for outer loop vectorization.")); 338 339 // FIXME: Remove this switch once we have divergence analysis. Currently we 340 // assume divergent non-backedge branches when this switch is true. 341 cl::opt<bool> EnableVPlanPredication( 342 "enable-vplan-predication", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path predicator with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 /// A helper function that returns the type of loaded or stored value. 365 static Type *getMemInstValueType(Value *I) { 366 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 367 "Expected Load or Store instruction"); 368 if (auto *LI = dyn_cast<LoadInst>(I)) 369 return LI->getType(); 370 return cast<StoreInst>(I)->getValueOperand()->getType(); 371 } 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type at the given vectorization factor. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 377 // Determine if an array of VF elements of type Ty is "bitcast compatible" 378 // with a <VF x Ty> vector. 379 if (VF.isVector()) { 380 auto *VectorTy = VectorType::get(Ty, VF); 381 return TypeSize::get(VF.getKnownMinValue() * 382 DL.getTypeAllocSize(Ty).getFixedValue(), 383 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 384 } 385 386 // If the vectorization factor is one, we just check if an array of type Ty 387 // requires padding between elements. 388 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 389 } 390 391 /// A helper function that returns the reciprocal of the block probability of 392 /// predicated blocks. If we return X, we are assuming the predicated block 393 /// will execute once for every X iterations of the loop header. 394 /// 395 /// TODO: We should use actual block probability here, if available. Currently, 396 /// we always assume predicated blocks have a 50% chance of executing. 397 static unsigned getReciprocalPredBlockProb() { return 2; } 398 399 /// A helper function that adds a 'fast' flag to floating-point operations. 400 static Value *addFastMathFlag(Value *V) { 401 if (isa<FPMathOperator>(V)) 402 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 403 return V; 404 } 405 406 /// A helper function that returns an integer or floating-point constant with 407 /// value C. 408 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 409 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 410 : ConstantFP::get(Ty, C); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if it is known. 418 /// 4) Returns None if all of the above failed. 419 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 420 // Check if exact trip count is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 422 return ExpectedTC; 423 424 // Check if there is an expected trip count available from profile data. 425 if (LoopVectorizeWithBlockFrequency) 426 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 427 return EstimatedTC; 428 429 // Check if upper bound estimate is known. 430 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 431 return ExpectedTC; 432 433 return None; 434 } 435 436 namespace llvm { 437 438 /// InnerLoopVectorizer vectorizes loops which contain only one basic 439 /// block to a specified vectorization factor (VF). 440 /// This class performs the widening of scalars into vectors, or multiple 441 /// scalars. This class also implements the following features: 442 /// * It inserts an epilogue loop for handling loops that don't have iteration 443 /// counts that are known to be a multiple of the vectorization factor. 444 /// * It handles the code generation for reduction variables. 445 /// * Scalarization (implementation using scalars) of un-vectorizable 446 /// instructions. 447 /// InnerLoopVectorizer does not perform any vectorization-legality 448 /// checks, and relies on the caller to check for the different legality 449 /// aspects. The InnerLoopVectorizer relies on the 450 /// LoopVectorizationLegality class to provide information about the induction 451 /// and reduction variables that were found to a given vectorization factor. 452 class InnerLoopVectorizer { 453 public: 454 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 455 LoopInfo *LI, DominatorTree *DT, 456 const TargetLibraryInfo *TLI, 457 const TargetTransformInfo *TTI, AssumptionCache *AC, 458 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 459 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 460 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 461 ProfileSummaryInfo *PSI) 462 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 463 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 464 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 465 PSI(PSI) { 466 // Query this against the original loop and save it here because the profile 467 // of the original loop header may change as the transformation happens. 468 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 469 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 470 } 471 472 virtual ~InnerLoopVectorizer() = default; 473 474 /// Create a new empty loop that will contain vectorized instructions later 475 /// on, while the old loop will be used as the scalar remainder. Control flow 476 /// is generated around the vectorized (and scalar epilogue) loops consisting 477 /// of various checks and bypasses. Return the pre-header block of the new 478 /// loop. 479 /// In the case of epilogue vectorization, this function is overriden to 480 /// handle the more complex control flow around the loops. 481 virtual BasicBlock *createVectorizedLoopSkeleton(); 482 483 /// Widen a single instruction within the innermost loop. 484 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 485 VPTransformState &State); 486 487 /// Widen a single call instruction within the innermost loop. 488 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 489 VPTransformState &State); 490 491 /// Widen a single select instruction within the innermost loop. 492 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 493 bool InvariantCond, VPTransformState &State); 494 495 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 496 void fixVectorizedLoop(VPTransformState &State); 497 498 // Return true if any runtime check is added. 499 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 500 501 /// A type for vectorized values in the new loop. Each value from the 502 /// original loop, when vectorized, is represented by UF vector values in the 503 /// new unrolled loop, where UF is the unroll factor. 504 using VectorParts = SmallVector<Value *, 2>; 505 506 /// Vectorize a single GetElementPtrInst based on information gathered and 507 /// decisions taken during planning. 508 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 509 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 510 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 511 512 /// Vectorize a single PHINode in a block. This method handles the induction 513 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 514 /// arbitrary length vectors. 515 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 516 Value *StartV, VPValue *Def, 517 VPTransformState &State); 518 519 /// A helper function to scalarize a single Instruction in the innermost loop. 520 /// Generates a sequence of scalar instances for each lane between \p MinLane 521 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 522 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 523 /// Instr's operands. 524 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 525 const VPIteration &Instance, bool IfPredicateInstr, 526 VPTransformState &State); 527 528 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 529 /// is provided, the integer induction variable will first be truncated to 530 /// the corresponding type. 531 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 532 VPValue *Def, VPValue *CastDef, 533 VPTransformState &State); 534 535 /// Construct the vector value of a scalarized value \p V one lane at a time. 536 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 537 VPTransformState &State); 538 539 /// Try to vectorize interleaved access group \p Group with the base address 540 /// given in \p Addr, optionally masking the vector operations if \p 541 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 542 /// values in the vectorized loop. 543 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 544 ArrayRef<VPValue *> VPDefs, 545 VPTransformState &State, VPValue *Addr, 546 ArrayRef<VPValue *> StoredValues, 547 VPValue *BlockInMask = nullptr); 548 549 /// Vectorize Load and Store instructions with the base address given in \p 550 /// Addr, optionally masking the vector operations if \p BlockInMask is 551 /// non-null. Use \p State to translate given VPValues to IR values in the 552 /// vectorized loop. 553 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 554 VPValue *Def, VPValue *Addr, 555 VPValue *StoredValue, VPValue *BlockInMask); 556 557 /// Set the debug location in the builder using the debug location in 558 /// the instruction. 559 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 560 561 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 562 void fixNonInductionPHIs(VPTransformState &State); 563 564 /// Create a broadcast instruction. This method generates a broadcast 565 /// instruction (shuffle) for loop invariant values and for the induction 566 /// value. If this is the induction variable then we extend it to N, N+1, ... 567 /// this is needed because each iteration in the loop corresponds to a SIMD 568 /// element. 569 virtual Value *getBroadcastInstrs(Value *V); 570 571 protected: 572 friend class LoopVectorizationPlanner; 573 574 /// A small list of PHINodes. 575 using PhiVector = SmallVector<PHINode *, 4>; 576 577 /// A type for scalarized values in the new loop. Each value from the 578 /// original loop, when scalarized, is represented by UF x VF scalar values 579 /// in the new unrolled loop, where UF is the unroll factor and VF is the 580 /// vectorization factor. 581 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 582 583 /// Set up the values of the IVs correctly when exiting the vector loop. 584 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 585 Value *CountRoundDown, Value *EndValue, 586 BasicBlock *MiddleBlock); 587 588 /// Create a new induction variable inside L. 589 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 590 Value *Step, Instruction *DL); 591 592 /// Handle all cross-iteration phis in the header. 593 void fixCrossIterationPHIs(VPTransformState &State); 594 595 /// Fix a first-order recurrence. This is the second phase of vectorizing 596 /// this phi node. 597 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 598 599 /// Fix a reduction cross-iteration phi. This is the second phase of 600 /// vectorizing this phi node. 601 void fixReduction(PHINode *Phi, VPTransformState &State); 602 603 /// Clear NSW/NUW flags from reduction instructions if necessary. 604 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 605 VPTransformState &State); 606 607 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 608 /// means we need to add the appropriate incoming value from the middle 609 /// block as exiting edges from the scalar epilogue loop (if present) are 610 /// already in place, and we exit the vector loop exclusively to the middle 611 /// block. 612 void fixLCSSAPHIs(VPTransformState &State); 613 614 /// Iteratively sink the scalarized operands of a predicated instruction into 615 /// the block that was created for it. 616 void sinkScalarOperands(Instruction *PredInst); 617 618 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 619 /// represented as. 620 void truncateToMinimalBitwidths(VPTransformState &State); 621 622 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 623 /// to each vector element of Val. The sequence starts at StartIndex. 624 /// \p Opcode is relevant for FP induction variable. 625 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 626 Instruction::BinaryOps Opcode = 627 Instruction::BinaryOpsEnd); 628 629 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 630 /// variable on which to base the steps, \p Step is the size of the step, and 631 /// \p EntryVal is the value from the original loop that maps to the steps. 632 /// Note that \p EntryVal doesn't have to be an induction variable - it 633 /// can also be a truncate instruction. 634 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 635 const InductionDescriptor &ID, VPValue *Def, 636 VPValue *CastDef, VPTransformState &State); 637 638 /// Create a vector induction phi node based on an existing scalar one. \p 639 /// EntryVal is the value from the original loop that maps to the vector phi 640 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 641 /// truncate instruction, instead of widening the original IV, we widen a 642 /// version of the IV truncated to \p EntryVal's type. 643 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 644 Value *Step, Value *Start, 645 Instruction *EntryVal, VPValue *Def, 646 VPValue *CastDef, 647 VPTransformState &State); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast( 675 const InductionDescriptor &ID, const Instruction *EntryVal, 676 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 677 unsigned Part, unsigned Lane = UINT_MAX); 678 679 /// Generate a shuffle sequence that will reverse the vector Vec. 680 virtual Value *reverseVector(Value *Vec); 681 682 /// Returns (and creates if needed) the original loop trip count. 683 Value *getOrCreateTripCount(Loop *NewLoop); 684 685 /// Returns (and creates if needed) the trip count of the widened loop. 686 Value *getOrCreateVectorTripCount(Loop *NewLoop); 687 688 /// Returns a bitcasted value to the requested vector type. 689 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 690 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 691 const DataLayout &DL); 692 693 /// Emit a bypass check to see if the vector trip count is zero, including if 694 /// it overflows. 695 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 696 697 /// Emit a bypass check to see if all of the SCEV assumptions we've 698 /// had to make are correct. 699 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 700 701 /// Emit bypass checks to check any memory assumptions we may have made. 702 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The (unique) ExitBlock of the scalar loop. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 }; 870 871 class InnerLoopUnroller : public InnerLoopVectorizer { 872 public: 873 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 874 LoopInfo *LI, DominatorTree *DT, 875 const TargetLibraryInfo *TLI, 876 const TargetTransformInfo *TTI, AssumptionCache *AC, 877 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 878 LoopVectorizationLegality *LVL, 879 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 880 ProfileSummaryInfo *PSI) 881 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 882 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 883 BFI, PSI) {} 884 885 private: 886 Value *getBroadcastInstrs(Value *V) override; 887 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 888 Instruction::BinaryOps Opcode = 889 Instruction::BinaryOpsEnd) override; 890 Value *reverseVector(Value *Vec) override; 891 }; 892 893 /// Encapsulate information regarding vectorization of a loop and its epilogue. 894 /// This information is meant to be updated and used across two stages of 895 /// epilogue vectorization. 896 struct EpilogueLoopVectorizationInfo { 897 ElementCount MainLoopVF = ElementCount::getFixed(0); 898 unsigned MainLoopUF = 0; 899 ElementCount EpilogueVF = ElementCount::getFixed(0); 900 unsigned EpilogueUF = 0; 901 BasicBlock *MainLoopIterationCountCheck = nullptr; 902 BasicBlock *EpilogueIterationCountCheck = nullptr; 903 BasicBlock *SCEVSafetyCheck = nullptr; 904 BasicBlock *MemSafetyCheck = nullptr; 905 Value *TripCount = nullptr; 906 Value *VectorTripCount = nullptr; 907 908 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 909 unsigned EUF) 910 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 911 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 912 assert(EUF == 1 && 913 "A high UF for the epilogue loop is likely not beneficial."); 914 } 915 }; 916 917 /// An extension of the inner loop vectorizer that creates a skeleton for a 918 /// vectorized loop that has its epilogue (residual) also vectorized. 919 /// The idea is to run the vplan on a given loop twice, firstly to setup the 920 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 921 /// from the first step and vectorize the epilogue. This is achieved by 922 /// deriving two concrete strategy classes from this base class and invoking 923 /// them in succession from the loop vectorizer planner. 924 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 925 public: 926 InnerLoopAndEpilogueVectorizer( 927 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 928 DominatorTree *DT, const TargetLibraryInfo *TLI, 929 const TargetTransformInfo *TTI, AssumptionCache *AC, 930 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 931 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 932 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 933 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 934 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 935 EPI(EPI) {} 936 937 // Override this function to handle the more complex control flow around the 938 // three loops. 939 BasicBlock *createVectorizedLoopSkeleton() final override { 940 return createEpilogueVectorizedLoopSkeleton(); 941 } 942 943 /// The interface for creating a vectorized skeleton using one of two 944 /// different strategies, each corresponding to one execution of the vplan 945 /// as described above. 946 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 947 948 /// Holds and updates state information required to vectorize the main loop 949 /// and its epilogue in two separate passes. This setup helps us avoid 950 /// regenerating and recomputing runtime safety checks. It also helps us to 951 /// shorten the iteration-count-check path length for the cases where the 952 /// iteration count of the loop is so small that the main vector loop is 953 /// completely skipped. 954 EpilogueLoopVectorizationInfo &EPI; 955 }; 956 957 /// A specialized derived class of inner loop vectorizer that performs 958 /// vectorization of *main* loops in the process of vectorizing loops and their 959 /// epilogues. 960 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 961 public: 962 EpilogueVectorizerMainLoop( 963 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 964 DominatorTree *DT, const TargetLibraryInfo *TLI, 965 const TargetTransformInfo *TTI, AssumptionCache *AC, 966 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 967 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 968 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 969 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 970 EPI, LVL, CM, BFI, PSI) {} 971 /// Implements the interface for creating a vectorized skeleton using the 972 /// *main loop* strategy (ie the first pass of vplan execution). 973 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 974 975 protected: 976 /// Emits an iteration count bypass check once for the main loop (when \p 977 /// ForEpilogue is false) and once for the epilogue loop (when \p 978 /// ForEpilogue is true). 979 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 980 bool ForEpilogue); 981 void printDebugTracesAtStart() override; 982 void printDebugTracesAtEnd() override; 983 }; 984 985 // A specialized derived class of inner loop vectorizer that performs 986 // vectorization of *epilogue* loops in the process of vectorizing loops and 987 // their epilogues. 988 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 989 public: 990 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 991 LoopInfo *LI, DominatorTree *DT, 992 const TargetLibraryInfo *TLI, 993 const TargetTransformInfo *TTI, AssumptionCache *AC, 994 OptimizationRemarkEmitter *ORE, 995 EpilogueLoopVectorizationInfo &EPI, 996 LoopVectorizationLegality *LVL, 997 llvm::LoopVectorizationCostModel *CM, 998 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 999 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1000 EPI, LVL, CM, BFI, PSI) {} 1001 /// Implements the interface for creating a vectorized skeleton using the 1002 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1003 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1004 1005 protected: 1006 /// Emits an iteration count bypass check after the main vector loop has 1007 /// finished to see if there are any iterations left to execute by either 1008 /// the vector epilogue or the scalar epilogue. 1009 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1010 BasicBlock *Bypass, 1011 BasicBlock *Insert); 1012 void printDebugTracesAtStart() override; 1013 void printDebugTracesAtEnd() override; 1014 }; 1015 } // end namespace llvm 1016 1017 /// Look for a meaningful debug location on the instruction or it's 1018 /// operands. 1019 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1020 if (!I) 1021 return I; 1022 1023 DebugLoc Empty; 1024 if (I->getDebugLoc() != Empty) 1025 return I; 1026 1027 for (Use &Op : I->operands()) { 1028 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1029 if (OpInst->getDebugLoc() != Empty) 1030 return OpInst; 1031 } 1032 1033 return I; 1034 } 1035 1036 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1037 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1038 const DILocation *DIL = Inst->getDebugLoc(); 1039 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1040 !isa<DbgInfoIntrinsic>(Inst)) { 1041 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1042 auto NewDIL = 1043 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1044 if (NewDIL) 1045 B.SetCurrentDebugLocation(NewDIL.getValue()); 1046 else 1047 LLVM_DEBUG(dbgs() 1048 << "Failed to create new discriminator: " 1049 << DIL->getFilename() << " Line: " << DIL->getLine()); 1050 } 1051 else 1052 B.SetCurrentDebugLocation(DIL); 1053 } else 1054 B.SetCurrentDebugLocation(DebugLoc()); 1055 } 1056 1057 /// Write a record \p DebugMsg about vectorization failure to the debug 1058 /// output stream. If \p I is passed, it is an instruction that prevents 1059 /// vectorization. 1060 #ifndef NDEBUG 1061 static void debugVectorizationFailure(const StringRef DebugMsg, 1062 Instruction *I) { 1063 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1064 if (I != nullptr) 1065 dbgs() << " " << *I; 1066 else 1067 dbgs() << '.'; 1068 dbgs() << '\n'; 1069 } 1070 #endif 1071 1072 /// Create an analysis remark that explains why vectorization failed 1073 /// 1074 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1075 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1076 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1077 /// the location of the remark. \return the remark object that can be 1078 /// streamed to. 1079 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1080 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1081 Value *CodeRegion = TheLoop->getHeader(); 1082 DebugLoc DL = TheLoop->getStartLoc(); 1083 1084 if (I) { 1085 CodeRegion = I->getParent(); 1086 // If there is no debug location attached to the instruction, revert back to 1087 // using the loop's. 1088 if (I->getDebugLoc()) 1089 DL = I->getDebugLoc(); 1090 } 1091 1092 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1093 R << "loop not vectorized: "; 1094 return R; 1095 } 1096 1097 /// Return a value for Step multiplied by VF. 1098 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1099 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1100 Constant *StepVal = ConstantInt::get( 1101 Step->getType(), 1102 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1103 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1104 } 1105 1106 namespace llvm { 1107 1108 void reportVectorizationFailure(const StringRef DebugMsg, 1109 const StringRef OREMsg, const StringRef ORETag, 1110 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1111 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1112 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1113 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1114 ORETag, TheLoop, I) << OREMsg); 1115 } 1116 1117 } // end namespace llvm 1118 1119 #ifndef NDEBUG 1120 /// \return string containing a file name and a line # for the given loop. 1121 static std::string getDebugLocString(const Loop *L) { 1122 std::string Result; 1123 if (L) { 1124 raw_string_ostream OS(Result); 1125 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1126 LoopDbgLoc.print(OS); 1127 else 1128 // Just print the module name. 1129 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1130 OS.flush(); 1131 } 1132 return Result; 1133 } 1134 #endif 1135 1136 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1137 const Instruction *Orig) { 1138 // If the loop was versioned with memchecks, add the corresponding no-alias 1139 // metadata. 1140 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1141 LVer->annotateInstWithNoAlias(To, Orig); 1142 } 1143 1144 void InnerLoopVectorizer::addMetadata(Instruction *To, 1145 Instruction *From) { 1146 propagateMetadata(To, From); 1147 addNewMetadata(To, From); 1148 } 1149 1150 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1151 Instruction *From) { 1152 for (Value *V : To) { 1153 if (Instruction *I = dyn_cast<Instruction>(V)) 1154 addMetadata(I, From); 1155 } 1156 } 1157 1158 namespace llvm { 1159 1160 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1161 // lowered. 1162 enum ScalarEpilogueLowering { 1163 1164 // The default: allowing scalar epilogues. 1165 CM_ScalarEpilogueAllowed, 1166 1167 // Vectorization with OptForSize: don't allow epilogues. 1168 CM_ScalarEpilogueNotAllowedOptSize, 1169 1170 // A special case of vectorisation with OptForSize: loops with a very small 1171 // trip count are considered for vectorization under OptForSize, thereby 1172 // making sure the cost of their loop body is dominant, free of runtime 1173 // guards and scalar iteration overheads. 1174 CM_ScalarEpilogueNotAllowedLowTripLoop, 1175 1176 // Loop hint predicate indicating an epilogue is undesired. 1177 CM_ScalarEpilogueNotNeededUsePredicate, 1178 1179 // Directive indicating we must either tail fold or not vectorize 1180 CM_ScalarEpilogueNotAllowedUsePredicate 1181 }; 1182 1183 /// LoopVectorizationCostModel - estimates the expected speedups due to 1184 /// vectorization. 1185 /// In many cases vectorization is not profitable. This can happen because of 1186 /// a number of reasons. In this class we mainly attempt to predict the 1187 /// expected speedup/slowdowns due to the supported instruction set. We use the 1188 /// TargetTransformInfo to query the different backends for the cost of 1189 /// different operations. 1190 class LoopVectorizationCostModel { 1191 public: 1192 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1193 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1194 LoopVectorizationLegality *Legal, 1195 const TargetTransformInfo &TTI, 1196 const TargetLibraryInfo *TLI, DemandedBits *DB, 1197 AssumptionCache *AC, 1198 OptimizationRemarkEmitter *ORE, const Function *F, 1199 const LoopVectorizeHints *Hints, 1200 InterleavedAccessInfo &IAI) 1201 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1202 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1203 Hints(Hints), InterleaveInfo(IAI) {} 1204 1205 /// \return An upper bound for the vectorization factor, or None if 1206 /// vectorization and interleaving should be avoided up front. 1207 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1208 1209 /// \return True if runtime checks are required for vectorization, and false 1210 /// otherwise. 1211 bool runtimeChecksRequired(); 1212 1213 /// \return The most profitable vectorization factor and the cost of that VF. 1214 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1215 /// then this vectorization factor will be selected if vectorization is 1216 /// possible. 1217 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1218 VectorizationFactor 1219 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1220 const LoopVectorizationPlanner &LVP); 1221 1222 /// Setup cost-based decisions for user vectorization factor. 1223 void selectUserVectorizationFactor(ElementCount UserVF) { 1224 collectUniformsAndScalars(UserVF); 1225 collectInstsToScalarize(UserVF); 1226 } 1227 1228 /// \return The size (in bits) of the smallest and widest types in the code 1229 /// that needs to be vectorized. We ignore values that remain scalar such as 1230 /// 64 bit loop indices. 1231 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1232 1233 /// \return The desired interleave count. 1234 /// If interleave count has been specified by metadata it will be returned. 1235 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1236 /// are the selected vectorization factor and the cost of the selected VF. 1237 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1238 1239 /// Memory access instruction may be vectorized in more than one way. 1240 /// Form of instruction after vectorization depends on cost. 1241 /// This function takes cost-based decisions for Load/Store instructions 1242 /// and collects them in a map. This decisions map is used for building 1243 /// the lists of loop-uniform and loop-scalar instructions. 1244 /// The calculated cost is saved with widening decision in order to 1245 /// avoid redundant calculations. 1246 void setCostBasedWideningDecision(ElementCount VF); 1247 1248 /// A struct that represents some properties of the register usage 1249 /// of a loop. 1250 struct RegisterUsage { 1251 /// Holds the number of loop invariant values that are used in the loop. 1252 /// The key is ClassID of target-provided register class. 1253 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1254 /// Holds the maximum number of concurrent live intervals in the loop. 1255 /// The key is ClassID of target-provided register class. 1256 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1257 }; 1258 1259 /// \return Returns information about the register usages of the loop for the 1260 /// given vectorization factors. 1261 SmallVector<RegisterUsage, 8> 1262 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1263 1264 /// Collect values we want to ignore in the cost model. 1265 void collectValuesToIgnore(); 1266 1267 /// Split reductions into those that happen in the loop, and those that happen 1268 /// outside. In loop reductions are collected into InLoopReductionChains. 1269 void collectInLoopReductions(); 1270 1271 /// \returns The smallest bitwidth each instruction can be represented with. 1272 /// The vector equivalents of these instructions should be truncated to this 1273 /// type. 1274 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1275 return MinBWs; 1276 } 1277 1278 /// \returns True if it is more profitable to scalarize instruction \p I for 1279 /// vectorization factor \p VF. 1280 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1281 assert(VF.isVector() && 1282 "Profitable to scalarize relevant only for VF > 1."); 1283 1284 // Cost model is not run in the VPlan-native path - return conservative 1285 // result until this changes. 1286 if (EnableVPlanNativePath) 1287 return false; 1288 1289 auto Scalars = InstsToScalarize.find(VF); 1290 assert(Scalars != InstsToScalarize.end() && 1291 "VF not yet analyzed for scalarization profitability"); 1292 return Scalars->second.find(I) != Scalars->second.end(); 1293 } 1294 1295 /// Returns true if \p I is known to be uniform after vectorization. 1296 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1297 if (VF.isScalar()) 1298 return true; 1299 1300 // Cost model is not run in the VPlan-native path - return conservative 1301 // result until this changes. 1302 if (EnableVPlanNativePath) 1303 return false; 1304 1305 auto UniformsPerVF = Uniforms.find(VF); 1306 assert(UniformsPerVF != Uniforms.end() && 1307 "VF not yet analyzed for uniformity"); 1308 return UniformsPerVF->second.count(I); 1309 } 1310 1311 /// Returns true if \p I is known to be scalar after vectorization. 1312 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1313 if (VF.isScalar()) 1314 return true; 1315 1316 // Cost model is not run in the VPlan-native path - return conservative 1317 // result until this changes. 1318 if (EnableVPlanNativePath) 1319 return false; 1320 1321 auto ScalarsPerVF = Scalars.find(VF); 1322 assert(ScalarsPerVF != Scalars.end() && 1323 "Scalar values are not calculated for VF"); 1324 return ScalarsPerVF->second.count(I); 1325 } 1326 1327 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1328 /// for vectorization factor \p VF. 1329 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1330 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1331 !isProfitableToScalarize(I, VF) && 1332 !isScalarAfterVectorization(I, VF); 1333 } 1334 1335 /// Decision that was taken during cost calculation for memory instruction. 1336 enum InstWidening { 1337 CM_Unknown, 1338 CM_Widen, // For consecutive accesses with stride +1. 1339 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1340 CM_Interleave, 1341 CM_GatherScatter, 1342 CM_Scalarize 1343 }; 1344 1345 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1346 /// instruction \p I and vector width \p VF. 1347 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1348 InstructionCost Cost) { 1349 assert(VF.isVector() && "Expected VF >=2"); 1350 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1351 } 1352 1353 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1354 /// interleaving group \p Grp and vector width \p VF. 1355 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1356 ElementCount VF, InstWidening W, 1357 InstructionCost Cost) { 1358 assert(VF.isVector() && "Expected VF >=2"); 1359 /// Broadcast this decicion to all instructions inside the group. 1360 /// But the cost will be assigned to one instruction only. 1361 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1362 if (auto *I = Grp->getMember(i)) { 1363 if (Grp->getInsertPos() == I) 1364 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1365 else 1366 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1367 } 1368 } 1369 } 1370 1371 /// Return the cost model decision for the given instruction \p I and vector 1372 /// width \p VF. Return CM_Unknown if this instruction did not pass 1373 /// through the cost modeling. 1374 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1375 assert(VF.isVector() && "Expected VF to be a vector VF"); 1376 // Cost model is not run in the VPlan-native path - return conservative 1377 // result until this changes. 1378 if (EnableVPlanNativePath) 1379 return CM_GatherScatter; 1380 1381 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1382 auto Itr = WideningDecisions.find(InstOnVF); 1383 if (Itr == WideningDecisions.end()) 1384 return CM_Unknown; 1385 return Itr->second.first; 1386 } 1387 1388 /// Return the vectorization cost for the given instruction \p I and vector 1389 /// width \p VF. 1390 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1391 assert(VF.isVector() && "Expected VF >=2"); 1392 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1393 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1394 "The cost is not calculated"); 1395 return WideningDecisions[InstOnVF].second; 1396 } 1397 1398 /// Return True if instruction \p I is an optimizable truncate whose operand 1399 /// is an induction variable. Such a truncate will be removed by adding a new 1400 /// induction variable with the destination type. 1401 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1402 // If the instruction is not a truncate, return false. 1403 auto *Trunc = dyn_cast<TruncInst>(I); 1404 if (!Trunc) 1405 return false; 1406 1407 // Get the source and destination types of the truncate. 1408 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1409 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1410 1411 // If the truncate is free for the given types, return false. Replacing a 1412 // free truncate with an induction variable would add an induction variable 1413 // update instruction to each iteration of the loop. We exclude from this 1414 // check the primary induction variable since it will need an update 1415 // instruction regardless. 1416 Value *Op = Trunc->getOperand(0); 1417 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1418 return false; 1419 1420 // If the truncated value is not an induction variable, return false. 1421 return Legal->isInductionPhi(Op); 1422 } 1423 1424 /// Collects the instructions to scalarize for each predicated instruction in 1425 /// the loop. 1426 void collectInstsToScalarize(ElementCount VF); 1427 1428 /// Collect Uniform and Scalar values for the given \p VF. 1429 /// The sets depend on CM decision for Load/Store instructions 1430 /// that may be vectorized as interleave, gather-scatter or scalarized. 1431 void collectUniformsAndScalars(ElementCount VF) { 1432 // Do the analysis once. 1433 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1434 return; 1435 setCostBasedWideningDecision(VF); 1436 collectLoopUniforms(VF); 1437 collectLoopScalars(VF); 1438 } 1439 1440 /// Returns true if the target machine supports masked store operation 1441 /// for the given \p DataType and kind of access to \p Ptr. 1442 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1443 return Legal->isConsecutivePtr(Ptr) && 1444 TTI.isLegalMaskedStore(DataType, Alignment); 1445 } 1446 1447 /// Returns true if the target machine supports masked load operation 1448 /// for the given \p DataType and kind of access to \p Ptr. 1449 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1450 return Legal->isConsecutivePtr(Ptr) && 1451 TTI.isLegalMaskedLoad(DataType, Alignment); 1452 } 1453 1454 /// Returns true if the target machine supports masked scatter operation 1455 /// for the given \p DataType. 1456 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1457 return TTI.isLegalMaskedScatter(DataType, Alignment); 1458 } 1459 1460 /// Returns true if the target machine supports masked gather operation 1461 /// for the given \p DataType. 1462 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1463 return TTI.isLegalMaskedGather(DataType, Alignment); 1464 } 1465 1466 /// Returns true if the target machine can represent \p V as a masked gather 1467 /// or scatter operation. 1468 bool isLegalGatherOrScatter(Value *V) { 1469 bool LI = isa<LoadInst>(V); 1470 bool SI = isa<StoreInst>(V); 1471 if (!LI && !SI) 1472 return false; 1473 auto *Ty = getMemInstValueType(V); 1474 Align Align = getLoadStoreAlignment(V); 1475 return (LI && isLegalMaskedGather(Ty, Align)) || 1476 (SI && isLegalMaskedScatter(Ty, Align)); 1477 } 1478 1479 /// Returns true if the target machine supports all of the reduction 1480 /// variables found for the given VF. 1481 bool canVectorizeReductions(ElementCount VF) { 1482 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1483 RecurrenceDescriptor RdxDesc = Reduction.second; 1484 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1485 })); 1486 } 1487 1488 /// Returns true if \p I is an instruction that will be scalarized with 1489 /// predication. Such instructions include conditional stores and 1490 /// instructions that may divide by zero. 1491 /// If a non-zero VF has been calculated, we check if I will be scalarized 1492 /// predication for that VF. 1493 bool isScalarWithPredication(Instruction *I, 1494 ElementCount VF = ElementCount::getFixed(1)); 1495 1496 // Returns true if \p I is an instruction that will be predicated either 1497 // through scalar predication or masked load/store or masked gather/scatter. 1498 // Superset of instructions that return true for isScalarWithPredication. 1499 bool isPredicatedInst(Instruction *I) { 1500 if (!blockNeedsPredication(I->getParent())) 1501 return false; 1502 // Loads and stores that need some form of masked operation are predicated 1503 // instructions. 1504 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1505 return Legal->isMaskRequired(I); 1506 return isScalarWithPredication(I); 1507 } 1508 1509 /// Returns true if \p I is a memory instruction with consecutive memory 1510 /// access that can be widened. 1511 bool 1512 memoryInstructionCanBeWidened(Instruction *I, 1513 ElementCount VF = ElementCount::getFixed(1)); 1514 1515 /// Returns true if \p I is a memory instruction in an interleaved-group 1516 /// of memory accesses that can be vectorized with wide vector loads/stores 1517 /// and shuffles. 1518 bool 1519 interleavedAccessCanBeWidened(Instruction *I, 1520 ElementCount VF = ElementCount::getFixed(1)); 1521 1522 /// Check if \p Instr belongs to any interleaved access group. 1523 bool isAccessInterleaved(Instruction *Instr) { 1524 return InterleaveInfo.isInterleaved(Instr); 1525 } 1526 1527 /// Get the interleaved access group that \p Instr belongs to. 1528 const InterleaveGroup<Instruction> * 1529 getInterleavedAccessGroup(Instruction *Instr) { 1530 return InterleaveInfo.getInterleaveGroup(Instr); 1531 } 1532 1533 /// Returns true if we're required to use a scalar epilogue for at least 1534 /// the final iteration of the original loop. 1535 bool requiresScalarEpilogue() const { 1536 if (!isScalarEpilogueAllowed()) 1537 return false; 1538 // If we might exit from anywhere but the latch, must run the exiting 1539 // iteration in scalar form. 1540 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1541 return true; 1542 return InterleaveInfo.requiresScalarEpilogue(); 1543 } 1544 1545 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1546 /// loop hint annotation. 1547 bool isScalarEpilogueAllowed() const { 1548 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1549 } 1550 1551 /// Returns true if all loop blocks should be masked to fold tail loop. 1552 bool foldTailByMasking() const { return FoldTailByMasking; } 1553 1554 bool blockNeedsPredication(BasicBlock *BB) { 1555 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1556 } 1557 1558 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1559 /// nodes to the chain of instructions representing the reductions. Uses a 1560 /// MapVector to ensure deterministic iteration order. 1561 using ReductionChainMap = 1562 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1563 1564 /// Return the chain of instructions representing an inloop reduction. 1565 const ReductionChainMap &getInLoopReductionChains() const { 1566 return InLoopReductionChains; 1567 } 1568 1569 /// Returns true if the Phi is part of an inloop reduction. 1570 bool isInLoopReduction(PHINode *Phi) const { 1571 return InLoopReductionChains.count(Phi); 1572 } 1573 1574 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1575 /// with factor VF. Return the cost of the instruction, including 1576 /// scalarization overhead if it's needed. 1577 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1578 1579 /// Estimate cost of a call instruction CI if it were vectorized with factor 1580 /// VF. Return the cost of the instruction, including scalarization overhead 1581 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1582 /// scalarized - 1583 /// i.e. either vector version isn't available, or is too expensive. 1584 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1585 bool &NeedToScalarize); 1586 1587 /// Invalidates decisions already taken by the cost model. 1588 void invalidateCostModelingDecisions() { 1589 WideningDecisions.clear(); 1590 Uniforms.clear(); 1591 Scalars.clear(); 1592 } 1593 1594 private: 1595 unsigned NumPredStores = 0; 1596 1597 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1598 /// than zero. One is returned if vectorization should best be avoided due 1599 /// to cost. 1600 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1601 ElementCount UserVF); 1602 1603 /// The vectorization cost is a combination of the cost itself and a boolean 1604 /// indicating whether any of the contributing operations will actually 1605 /// operate on 1606 /// vector values after type legalization in the backend. If this latter value 1607 /// is 1608 /// false, then all operations will be scalarized (i.e. no vectorization has 1609 /// actually taken place). 1610 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1611 1612 /// Returns the expected execution cost. The unit of the cost does 1613 /// not matter because we use the 'cost' units to compare different 1614 /// vector widths. The cost that is returned is *not* normalized by 1615 /// the factor width. 1616 VectorizationCostTy expectedCost(ElementCount VF); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1630 Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1658 1659 /// Returns whether the instruction is a load or store and will be a emitted 1660 /// as a vector operation. 1661 bool isConsecutiveLoadOrStore(Instruction *I); 1662 1663 /// Returns true if an artificially high cost for emulated masked memrefs 1664 /// should be used. 1665 bool useEmulatedMaskMemRefHack(Instruction *I); 1666 1667 /// Map of scalar integer values to the smallest bitwidth they can be legally 1668 /// represented as. The vector equivalents of these values should be truncated 1669 /// to this type. 1670 MapVector<Instruction *, uint64_t> MinBWs; 1671 1672 /// A type representing the costs for instructions if they were to be 1673 /// scalarized rather than vectorized. The entries are Instruction-Cost 1674 /// pairs. 1675 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1676 1677 /// A set containing all BasicBlocks that are known to present after 1678 /// vectorization as a predicated block. 1679 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1680 1681 /// Records whether it is allowed to have the original scalar loop execute at 1682 /// least once. This may be needed as a fallback loop in case runtime 1683 /// aliasing/dependence checks fail, or to handle the tail/remainder 1684 /// iterations when the trip count is unknown or doesn't divide by the VF, 1685 /// or as a peel-loop to handle gaps in interleave-groups. 1686 /// Under optsize and when the trip count is very small we don't allow any 1687 /// iterations to execute in the scalar loop. 1688 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1689 1690 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1691 bool FoldTailByMasking = false; 1692 1693 /// A map holding scalar costs for different vectorization factors. The 1694 /// presence of a cost for an instruction in the mapping indicates that the 1695 /// instruction will be scalarized when vectorizing with the associated 1696 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1697 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1698 1699 /// Holds the instructions known to be uniform after vectorization. 1700 /// The data is collected per VF. 1701 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1702 1703 /// Holds the instructions known to be scalar after vectorization. 1704 /// The data is collected per VF. 1705 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1706 1707 /// Holds the instructions (address computations) that are forced to be 1708 /// scalarized. 1709 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1710 1711 /// PHINodes of the reductions that should be expanded in-loop along with 1712 /// their associated chains of reduction operations, in program order from top 1713 /// (PHI) to bottom 1714 ReductionChainMap InLoopReductionChains; 1715 1716 /// A Map of inloop reduction operations and their immediate chain operand. 1717 /// FIXME: This can be removed once reductions can be costed correctly in 1718 /// vplan. This was added to allow quick lookup to the inloop operations, 1719 /// without having to loop through InLoopReductionChains. 1720 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1721 1722 /// Returns the expected difference in cost from scalarizing the expression 1723 /// feeding a predicated instruction \p PredInst. The instructions to 1724 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1725 /// non-negative return value implies the expression will be scalarized. 1726 /// Currently, only single-use chains are considered for scalarization. 1727 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1728 ElementCount VF); 1729 1730 /// Collect the instructions that are uniform after vectorization. An 1731 /// instruction is uniform if we represent it with a single scalar value in 1732 /// the vectorized loop corresponding to each vector iteration. Examples of 1733 /// uniform instructions include pointer operands of consecutive or 1734 /// interleaved memory accesses. Note that although uniformity implies an 1735 /// instruction will be scalar, the reverse is not true. In general, a 1736 /// scalarized instruction will be represented by VF scalar values in the 1737 /// vectorized loop, each corresponding to an iteration of the original 1738 /// scalar loop. 1739 void collectLoopUniforms(ElementCount VF); 1740 1741 /// Collect the instructions that are scalar after vectorization. An 1742 /// instruction is scalar if it is known to be uniform or will be scalarized 1743 /// during vectorization. Non-uniform scalarized instructions will be 1744 /// represented by VF values in the vectorized loop, each corresponding to an 1745 /// iteration of the original scalar loop. 1746 void collectLoopScalars(ElementCount VF); 1747 1748 /// Keeps cost model vectorization decision and cost for instructions. 1749 /// Right now it is used for memory instructions only. 1750 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1751 std::pair<InstWidening, InstructionCost>>; 1752 1753 DecisionList WideningDecisions; 1754 1755 /// Returns true if \p V is expected to be vectorized and it needs to be 1756 /// extracted. 1757 bool needsExtract(Value *V, ElementCount VF) const { 1758 Instruction *I = dyn_cast<Instruction>(V); 1759 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1760 TheLoop->isLoopInvariant(I)) 1761 return false; 1762 1763 // Assume we can vectorize V (and hence we need extraction) if the 1764 // scalars are not computed yet. This can happen, because it is called 1765 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1766 // the scalars are collected. That should be a safe assumption in most 1767 // cases, because we check if the operands have vectorizable types 1768 // beforehand in LoopVectorizationLegality. 1769 return Scalars.find(VF) == Scalars.end() || 1770 !isScalarAfterVectorization(I, VF); 1771 }; 1772 1773 /// Returns a range containing only operands needing to be extracted. 1774 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1775 ElementCount VF) { 1776 return SmallVector<Value *, 4>(make_filter_range( 1777 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1778 } 1779 1780 /// Determines if we have the infrastructure to vectorize loop \p L and its 1781 /// epilogue, assuming the main loop is vectorized by \p VF. 1782 bool isCandidateForEpilogueVectorization(const Loop &L, 1783 const ElementCount VF) const; 1784 1785 /// Returns true if epilogue vectorization is considered profitable, and 1786 /// false otherwise. 1787 /// \p VF is the vectorization factor chosen for the original loop. 1788 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1789 1790 public: 1791 /// The loop that we evaluate. 1792 Loop *TheLoop; 1793 1794 /// Predicated scalar evolution analysis. 1795 PredicatedScalarEvolution &PSE; 1796 1797 /// Loop Info analysis. 1798 LoopInfo *LI; 1799 1800 /// Vectorization legality. 1801 LoopVectorizationLegality *Legal; 1802 1803 /// Vector target information. 1804 const TargetTransformInfo &TTI; 1805 1806 /// Target Library Info. 1807 const TargetLibraryInfo *TLI; 1808 1809 /// Demanded bits analysis. 1810 DemandedBits *DB; 1811 1812 /// Assumption cache. 1813 AssumptionCache *AC; 1814 1815 /// Interface to emit optimization remarks. 1816 OptimizationRemarkEmitter *ORE; 1817 1818 const Function *TheFunction; 1819 1820 /// Loop Vectorize Hint. 1821 const LoopVectorizeHints *Hints; 1822 1823 /// The interleave access information contains groups of interleaved accesses 1824 /// with the same stride and close to each other. 1825 InterleavedAccessInfo &InterleaveInfo; 1826 1827 /// Values to ignore in the cost model. 1828 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1829 1830 /// Values to ignore in the cost model when VF > 1. 1831 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1832 1833 /// Profitable vector factors. 1834 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1835 }; 1836 1837 } // end namespace llvm 1838 1839 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1840 // vectorization. The loop needs to be annotated with #pragma omp simd 1841 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1842 // vector length information is not provided, vectorization is not considered 1843 // explicit. Interleave hints are not allowed either. These limitations will be 1844 // relaxed in the future. 1845 // Please, note that we are currently forced to abuse the pragma 'clang 1846 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1847 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1848 // provides *explicit vectorization hints* (LV can bypass legal checks and 1849 // assume that vectorization is legal). However, both hints are implemented 1850 // using the same metadata (llvm.loop.vectorize, processed by 1851 // LoopVectorizeHints). This will be fixed in the future when the native IR 1852 // representation for pragma 'omp simd' is introduced. 1853 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1854 OptimizationRemarkEmitter *ORE) { 1855 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1856 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1857 1858 // Only outer loops with an explicit vectorization hint are supported. 1859 // Unannotated outer loops are ignored. 1860 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1861 return false; 1862 1863 Function *Fn = OuterLp->getHeader()->getParent(); 1864 if (!Hints.allowVectorization(Fn, OuterLp, 1865 true /*VectorizeOnlyWhenForced*/)) { 1866 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1867 return false; 1868 } 1869 1870 if (Hints.getInterleave() > 1) { 1871 // TODO: Interleave support is future work. 1872 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1873 "outer loops.\n"); 1874 Hints.emitRemarkWithHints(); 1875 return false; 1876 } 1877 1878 return true; 1879 } 1880 1881 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1882 OptimizationRemarkEmitter *ORE, 1883 SmallVectorImpl<Loop *> &V) { 1884 // Collect inner loops and outer loops without irreducible control flow. For 1885 // now, only collect outer loops that have explicit vectorization hints. If we 1886 // are stress testing the VPlan H-CFG construction, we collect the outermost 1887 // loop of every loop nest. 1888 if (L.isInnermost() || VPlanBuildStressTest || 1889 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1890 LoopBlocksRPO RPOT(&L); 1891 RPOT.perform(LI); 1892 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1893 V.push_back(&L); 1894 // TODO: Collect inner loops inside marked outer loops in case 1895 // vectorization fails for the outer loop. Do not invoke 1896 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1897 // already known to be reducible. We can use an inherited attribute for 1898 // that. 1899 return; 1900 } 1901 } 1902 for (Loop *InnerL : L) 1903 collectSupportedLoops(*InnerL, LI, ORE, V); 1904 } 1905 1906 namespace { 1907 1908 /// The LoopVectorize Pass. 1909 struct LoopVectorize : public FunctionPass { 1910 /// Pass identification, replacement for typeid 1911 static char ID; 1912 1913 LoopVectorizePass Impl; 1914 1915 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1916 bool VectorizeOnlyWhenForced = false) 1917 : FunctionPass(ID), 1918 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1919 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1920 } 1921 1922 bool runOnFunction(Function &F) override { 1923 if (skipFunction(F)) 1924 return false; 1925 1926 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1927 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1928 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1929 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1930 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1931 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1932 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1933 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1934 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1935 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1936 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1937 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1938 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1939 1940 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1941 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1942 1943 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1944 GetLAA, *ORE, PSI).MadeAnyChange; 1945 } 1946 1947 void getAnalysisUsage(AnalysisUsage &AU) const override { 1948 AU.addRequired<AssumptionCacheTracker>(); 1949 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1950 AU.addRequired<DominatorTreeWrapperPass>(); 1951 AU.addRequired<LoopInfoWrapperPass>(); 1952 AU.addRequired<ScalarEvolutionWrapperPass>(); 1953 AU.addRequired<TargetTransformInfoWrapperPass>(); 1954 AU.addRequired<AAResultsWrapperPass>(); 1955 AU.addRequired<LoopAccessLegacyAnalysis>(); 1956 AU.addRequired<DemandedBitsWrapperPass>(); 1957 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1958 AU.addRequired<InjectTLIMappingsLegacy>(); 1959 1960 // We currently do not preserve loopinfo/dominator analyses with outer loop 1961 // vectorization. Until this is addressed, mark these analyses as preserved 1962 // only for non-VPlan-native path. 1963 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1964 if (!EnableVPlanNativePath) { 1965 AU.addPreserved<LoopInfoWrapperPass>(); 1966 AU.addPreserved<DominatorTreeWrapperPass>(); 1967 } 1968 1969 AU.addPreserved<BasicAAWrapperPass>(); 1970 AU.addPreserved<GlobalsAAWrapperPass>(); 1971 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1972 } 1973 }; 1974 1975 } // end anonymous namespace 1976 1977 //===----------------------------------------------------------------------===// 1978 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1979 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1980 //===----------------------------------------------------------------------===// 1981 1982 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1983 // We need to place the broadcast of invariant variables outside the loop, 1984 // but only if it's proven safe to do so. Else, broadcast will be inside 1985 // vector loop body. 1986 Instruction *Instr = dyn_cast<Instruction>(V); 1987 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1988 (!Instr || 1989 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1990 // Place the code for broadcasting invariant variables in the new preheader. 1991 IRBuilder<>::InsertPointGuard Guard(Builder); 1992 if (SafeToHoist) 1993 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1994 1995 // Broadcast the scalar into all locations in the vector. 1996 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1997 1998 return Shuf; 1999 } 2000 2001 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2002 const InductionDescriptor &II, Value *Step, Value *Start, 2003 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2004 VPTransformState &State) { 2005 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2006 "Expected either an induction phi-node or a truncate of it!"); 2007 2008 // Construct the initial value of the vector IV in the vector loop preheader 2009 auto CurrIP = Builder.saveIP(); 2010 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2011 if (isa<TruncInst>(EntryVal)) { 2012 assert(Start->getType()->isIntegerTy() && 2013 "Truncation requires an integer type"); 2014 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2015 Step = Builder.CreateTrunc(Step, TruncType); 2016 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2017 } 2018 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2019 Value *SteppedStart = 2020 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2021 2022 // We create vector phi nodes for both integer and floating-point induction 2023 // variables. Here, we determine the kind of arithmetic we will perform. 2024 Instruction::BinaryOps AddOp; 2025 Instruction::BinaryOps MulOp; 2026 if (Step->getType()->isIntegerTy()) { 2027 AddOp = Instruction::Add; 2028 MulOp = Instruction::Mul; 2029 } else { 2030 AddOp = II.getInductionOpcode(); 2031 MulOp = Instruction::FMul; 2032 } 2033 2034 // Multiply the vectorization factor by the step using integer or 2035 // floating-point arithmetic as appropriate. 2036 Value *ConstVF = 2037 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2038 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2039 2040 // Create a vector splat to use in the induction update. 2041 // 2042 // FIXME: If the step is non-constant, we create the vector splat with 2043 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2044 // handle a constant vector splat. 2045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2046 Value *SplatVF = isa<Constant>(Mul) 2047 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2048 : Builder.CreateVectorSplat(VF, Mul); 2049 Builder.restoreIP(CurrIP); 2050 2051 // We may need to add the step a number of times, depending on the unroll 2052 // factor. The last of those goes into the PHI. 2053 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2054 &*LoopVectorBody->getFirstInsertionPt()); 2055 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2056 Instruction *LastInduction = VecInd; 2057 for (unsigned Part = 0; Part < UF; ++Part) { 2058 State.set(Def, LastInduction, Part); 2059 2060 if (isa<TruncInst>(EntryVal)) 2061 addMetadata(LastInduction, EntryVal); 2062 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2063 State, Part); 2064 2065 LastInduction = cast<Instruction>(addFastMathFlag( 2066 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2067 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2068 } 2069 2070 // Move the last step to the end of the latch block. This ensures consistent 2071 // placement of all induction updates. 2072 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2073 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2074 auto *ICmp = cast<Instruction>(Br->getCondition()); 2075 LastInduction->moveBefore(ICmp); 2076 LastInduction->setName("vec.ind.next"); 2077 2078 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2079 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2080 } 2081 2082 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2083 return Cost->isScalarAfterVectorization(I, VF) || 2084 Cost->isProfitableToScalarize(I, VF); 2085 } 2086 2087 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2088 if (shouldScalarizeInstruction(IV)) 2089 return true; 2090 auto isScalarInst = [&](User *U) -> bool { 2091 auto *I = cast<Instruction>(U); 2092 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2093 }; 2094 return llvm::any_of(IV->users(), isScalarInst); 2095 } 2096 2097 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2098 const InductionDescriptor &ID, const Instruction *EntryVal, 2099 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2100 unsigned Part, unsigned Lane) { 2101 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2102 "Expected either an induction phi-node or a truncate of it!"); 2103 2104 // This induction variable is not the phi from the original loop but the 2105 // newly-created IV based on the proof that casted Phi is equal to the 2106 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2107 // re-uses the same InductionDescriptor that original IV uses but we don't 2108 // have to do any recording in this case - that is done when original IV is 2109 // processed. 2110 if (isa<TruncInst>(EntryVal)) 2111 return; 2112 2113 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2114 if (Casts.empty()) 2115 return; 2116 // Only the first Cast instruction in the Casts vector is of interest. 2117 // The rest of the Casts (if exist) have no uses outside the 2118 // induction update chain itself. 2119 if (Lane < UINT_MAX) 2120 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2121 else 2122 State.set(CastDef, VectorLoopVal, Part); 2123 } 2124 2125 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2126 TruncInst *Trunc, VPValue *Def, 2127 VPValue *CastDef, 2128 VPTransformState &State) { 2129 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2130 "Primary induction variable must have an integer type"); 2131 2132 auto II = Legal->getInductionVars().find(IV); 2133 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2134 2135 auto ID = II->second; 2136 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2137 2138 // The value from the original loop to which we are mapping the new induction 2139 // variable. 2140 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2141 2142 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2143 2144 // Generate code for the induction step. Note that induction steps are 2145 // required to be loop-invariant 2146 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2147 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2148 "Induction step should be loop invariant"); 2149 if (PSE.getSE()->isSCEVable(IV->getType())) { 2150 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2151 return Exp.expandCodeFor(Step, Step->getType(), 2152 LoopVectorPreHeader->getTerminator()); 2153 } 2154 return cast<SCEVUnknown>(Step)->getValue(); 2155 }; 2156 2157 // The scalar value to broadcast. This is derived from the canonical 2158 // induction variable. If a truncation type is given, truncate the canonical 2159 // induction variable and step. Otherwise, derive these values from the 2160 // induction descriptor. 2161 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2162 Value *ScalarIV = Induction; 2163 if (IV != OldInduction) { 2164 ScalarIV = IV->getType()->isIntegerTy() 2165 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2166 : Builder.CreateCast(Instruction::SIToFP, Induction, 2167 IV->getType()); 2168 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2169 ScalarIV->setName("offset.idx"); 2170 } 2171 if (Trunc) { 2172 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2173 assert(Step->getType()->isIntegerTy() && 2174 "Truncation requires an integer step"); 2175 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2176 Step = Builder.CreateTrunc(Step, TruncType); 2177 } 2178 return ScalarIV; 2179 }; 2180 2181 // Create the vector values from the scalar IV, in the absence of creating a 2182 // vector IV. 2183 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2184 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2185 for (unsigned Part = 0; Part < UF; ++Part) { 2186 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2187 Value *EntryPart = 2188 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2189 ID.getInductionOpcode()); 2190 State.set(Def, EntryPart, Part); 2191 if (Trunc) 2192 addMetadata(EntryPart, Trunc); 2193 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2194 State, Part); 2195 } 2196 }; 2197 2198 // Now do the actual transformations, and start with creating the step value. 2199 Value *Step = CreateStepValue(ID.getStep()); 2200 if (VF.isZero() || VF.isScalar()) { 2201 Value *ScalarIV = CreateScalarIV(Step); 2202 CreateSplatIV(ScalarIV, Step); 2203 return; 2204 } 2205 2206 // Determine if we want a scalar version of the induction variable. This is 2207 // true if the induction variable itself is not widened, or if it has at 2208 // least one user in the loop that is not widened. 2209 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2210 if (!NeedsScalarIV) { 2211 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2212 State); 2213 return; 2214 } 2215 2216 // Try to create a new independent vector induction variable. If we can't 2217 // create the phi node, we will splat the scalar induction variable in each 2218 // loop iteration. 2219 if (!shouldScalarizeInstruction(EntryVal)) { 2220 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2221 State); 2222 Value *ScalarIV = CreateScalarIV(Step); 2223 // Create scalar steps that can be used by instructions we will later 2224 // scalarize. Note that the addition of the scalar steps will not increase 2225 // the number of instructions in the loop in the common case prior to 2226 // InstCombine. We will be trading one vector extract for each scalar step. 2227 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2228 return; 2229 } 2230 2231 // All IV users are scalar instructions, so only emit a scalar IV, not a 2232 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2233 // predicate used by the masked loads/stores. 2234 Value *ScalarIV = CreateScalarIV(Step); 2235 if (!Cost->isScalarEpilogueAllowed()) 2236 CreateSplatIV(ScalarIV, Step); 2237 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2238 } 2239 2240 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2241 Instruction::BinaryOps BinOp) { 2242 // Create and check the types. 2243 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2244 int VLen = ValVTy->getNumElements(); 2245 2246 Type *STy = Val->getType()->getScalarType(); 2247 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2248 "Induction Step must be an integer or FP"); 2249 assert(Step->getType() == STy && "Step has wrong type"); 2250 2251 SmallVector<Constant *, 8> Indices; 2252 2253 if (STy->isIntegerTy()) { 2254 // Create a vector of consecutive numbers from zero to VF. 2255 for (int i = 0; i < VLen; ++i) 2256 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2257 2258 // Add the consecutive indices to the vector value. 2259 Constant *Cv = ConstantVector::get(Indices); 2260 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2261 Step = Builder.CreateVectorSplat(VLen, Step); 2262 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2263 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2264 // which can be found from the original scalar operations. 2265 Step = Builder.CreateMul(Cv, Step); 2266 return Builder.CreateAdd(Val, Step, "induction"); 2267 } 2268 2269 // Floating point induction. 2270 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2271 "Binary Opcode should be specified for FP induction"); 2272 // Create a vector of consecutive numbers from zero to VF. 2273 for (int i = 0; i < VLen; ++i) 2274 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2275 2276 // Add the consecutive indices to the vector value. 2277 Constant *Cv = ConstantVector::get(Indices); 2278 2279 Step = Builder.CreateVectorSplat(VLen, Step); 2280 2281 // Floating point operations had to be 'fast' to enable the induction. 2282 FastMathFlags Flags; 2283 Flags.setFast(); 2284 2285 Value *MulOp = Builder.CreateFMul(Cv, Step); 2286 if (isa<Instruction>(MulOp)) 2287 // Have to check, MulOp may be a constant 2288 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2289 2290 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2291 if (isa<Instruction>(BOp)) 2292 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2293 return BOp; 2294 } 2295 2296 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2297 Instruction *EntryVal, 2298 const InductionDescriptor &ID, 2299 VPValue *Def, VPValue *CastDef, 2300 VPTransformState &State) { 2301 // We shouldn't have to build scalar steps if we aren't vectorizing. 2302 assert(VF.isVector() && "VF should be greater than one"); 2303 // Get the value type and ensure it and the step have the same integer type. 2304 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2305 assert(ScalarIVTy == Step->getType() && 2306 "Val and Step should have the same type"); 2307 2308 // We build scalar steps for both integer and floating-point induction 2309 // variables. Here, we determine the kind of arithmetic we will perform. 2310 Instruction::BinaryOps AddOp; 2311 Instruction::BinaryOps MulOp; 2312 if (ScalarIVTy->isIntegerTy()) { 2313 AddOp = Instruction::Add; 2314 MulOp = Instruction::Mul; 2315 } else { 2316 AddOp = ID.getInductionOpcode(); 2317 MulOp = Instruction::FMul; 2318 } 2319 2320 // Determine the number of scalars we need to generate for each unroll 2321 // iteration. If EntryVal is uniform, we only need to generate the first 2322 // lane. Otherwise, we generate all VF values. 2323 unsigned Lanes = 2324 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2325 ? 1 2326 : VF.getKnownMinValue(); 2327 assert((!VF.isScalable() || Lanes == 1) && 2328 "Should never scalarize a scalable vector"); 2329 // Compute the scalar steps and save the results in State. 2330 for (unsigned Part = 0; Part < UF; ++Part) { 2331 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2332 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2333 ScalarIVTy->getScalarSizeInBits()); 2334 Value *StartIdx = 2335 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2336 if (ScalarIVTy->isFloatingPointTy()) 2337 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2338 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2339 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2340 // The step returned by `createStepForVF` is a runtime-evaluated value 2341 // when VF is scalable. Otherwise, it should be folded into a Constant. 2342 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2343 "Expected StartIdx to be folded to a constant when VF is not " 2344 "scalable"); 2345 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2346 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2347 State.set(Def, Add, VPIteration(Part, Lane)); 2348 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2349 Part, Lane); 2350 } 2351 } 2352 } 2353 2354 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2355 const VPIteration &Instance, 2356 VPTransformState &State) { 2357 Value *ScalarInst = State.get(Def, Instance); 2358 Value *VectorValue = State.get(Def, Instance.Part); 2359 VectorValue = Builder.CreateInsertElement( 2360 VectorValue, ScalarInst, State.Builder.getInt32(Instance.Lane)); 2361 State.set(Def, VectorValue, Instance.Part); 2362 } 2363 2364 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2365 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2366 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2367 SmallVector<int, 8> ShuffleMask; 2368 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2369 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2370 2371 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2372 } 2373 2374 // Return whether we allow using masked interleave-groups (for dealing with 2375 // strided loads/stores that reside in predicated blocks, or for dealing 2376 // with gaps). 2377 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2378 // If an override option has been passed in for interleaved accesses, use it. 2379 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2380 return EnableMaskedInterleavedMemAccesses; 2381 2382 return TTI.enableMaskedInterleavedAccessVectorization(); 2383 } 2384 2385 // Try to vectorize the interleave group that \p Instr belongs to. 2386 // 2387 // E.g. Translate following interleaved load group (factor = 3): 2388 // for (i = 0; i < N; i+=3) { 2389 // R = Pic[i]; // Member of index 0 2390 // G = Pic[i+1]; // Member of index 1 2391 // B = Pic[i+2]; // Member of index 2 2392 // ... // do something to R, G, B 2393 // } 2394 // To: 2395 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2396 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2397 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2398 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2399 // 2400 // Or translate following interleaved store group (factor = 3): 2401 // for (i = 0; i < N; i+=3) { 2402 // ... do something to R, G, B 2403 // Pic[i] = R; // Member of index 0 2404 // Pic[i+1] = G; // Member of index 1 2405 // Pic[i+2] = B; // Member of index 2 2406 // } 2407 // To: 2408 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2409 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2410 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2411 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2412 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2413 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2414 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2415 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2416 VPValue *BlockInMask) { 2417 Instruction *Instr = Group->getInsertPos(); 2418 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2419 2420 // Prepare for the vector type of the interleaved load/store. 2421 Type *ScalarTy = getMemInstValueType(Instr); 2422 unsigned InterleaveFactor = Group->getFactor(); 2423 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2424 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2425 2426 // Prepare for the new pointers. 2427 SmallVector<Value *, 2> AddrParts; 2428 unsigned Index = Group->getIndex(Instr); 2429 2430 // TODO: extend the masked interleaved-group support to reversed access. 2431 assert((!BlockInMask || !Group->isReverse()) && 2432 "Reversed masked interleave-group not supported."); 2433 2434 // If the group is reverse, adjust the index to refer to the last vector lane 2435 // instead of the first. We adjust the index from the first vector lane, 2436 // rather than directly getting the pointer for lane VF - 1, because the 2437 // pointer operand of the interleaved access is supposed to be uniform. For 2438 // uniform instructions, we're only required to generate a value for the 2439 // first vector lane in each unroll iteration. 2440 assert(!VF.isScalable() && 2441 "scalable vector reverse operation is not implemented"); 2442 if (Group->isReverse()) 2443 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2444 2445 for (unsigned Part = 0; Part < UF; Part++) { 2446 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2447 setDebugLocFromInst(Builder, AddrPart); 2448 2449 // Notice current instruction could be any index. Need to adjust the address 2450 // to the member of index 0. 2451 // 2452 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2453 // b = A[i]; // Member of index 0 2454 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2455 // 2456 // E.g. A[i+1] = a; // Member of index 1 2457 // A[i] = b; // Member of index 0 2458 // A[i+2] = c; // Member of index 2 (Current instruction) 2459 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2460 2461 bool InBounds = false; 2462 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2463 InBounds = gep->isInBounds(); 2464 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2465 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2466 2467 // Cast to the vector pointer type. 2468 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2469 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2470 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2471 } 2472 2473 setDebugLocFromInst(Builder, Instr); 2474 Value *PoisonVec = PoisonValue::get(VecTy); 2475 2476 Value *MaskForGaps = nullptr; 2477 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2478 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2479 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2480 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2481 } 2482 2483 // Vectorize the interleaved load group. 2484 if (isa<LoadInst>(Instr)) { 2485 // For each unroll part, create a wide load for the group. 2486 SmallVector<Value *, 2> NewLoads; 2487 for (unsigned Part = 0; Part < UF; Part++) { 2488 Instruction *NewLoad; 2489 if (BlockInMask || MaskForGaps) { 2490 assert(useMaskedInterleavedAccesses(*TTI) && 2491 "masked interleaved groups are not allowed."); 2492 Value *GroupMask = MaskForGaps; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2496 Value *ShuffledMask = Builder.CreateShuffleVector( 2497 BlockInMaskPart, 2498 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2499 "interleaved.mask"); 2500 GroupMask = MaskForGaps 2501 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2502 MaskForGaps) 2503 : ShuffledMask; 2504 } 2505 NewLoad = 2506 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2507 GroupMask, PoisonVec, "wide.masked.vec"); 2508 } 2509 else 2510 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2511 Group->getAlign(), "wide.vec"); 2512 Group->addMetadata(NewLoad); 2513 NewLoads.push_back(NewLoad); 2514 } 2515 2516 // For each member in the group, shuffle out the appropriate data from the 2517 // wide loads. 2518 unsigned J = 0; 2519 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2520 Instruction *Member = Group->getMember(I); 2521 2522 // Skip the gaps in the group. 2523 if (!Member) 2524 continue; 2525 2526 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2527 auto StrideMask = 2528 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2529 for (unsigned Part = 0; Part < UF; Part++) { 2530 Value *StridedVec = Builder.CreateShuffleVector( 2531 NewLoads[Part], StrideMask, "strided.vec"); 2532 2533 // If this member has different type, cast the result type. 2534 if (Member->getType() != ScalarTy) { 2535 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2536 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2537 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2538 } 2539 2540 if (Group->isReverse()) 2541 StridedVec = reverseVector(StridedVec); 2542 2543 State.set(VPDefs[J], StridedVec, Part); 2544 } 2545 ++J; 2546 } 2547 return; 2548 } 2549 2550 // The sub vector type for current instruction. 2551 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2552 auto *SubVT = VectorType::get(ScalarTy, VF); 2553 2554 // Vectorize the interleaved store group. 2555 for (unsigned Part = 0; Part < UF; Part++) { 2556 // Collect the stored vector from each member. 2557 SmallVector<Value *, 4> StoredVecs; 2558 for (unsigned i = 0; i < InterleaveFactor; i++) { 2559 // Interleaved store group doesn't allow a gap, so each index has a member 2560 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2561 2562 Value *StoredVec = State.get(StoredValues[i], Part); 2563 2564 if (Group->isReverse()) 2565 StoredVec = reverseVector(StoredVec); 2566 2567 // If this member has different type, cast it to a unified type. 2568 2569 if (StoredVec->getType() != SubVT) 2570 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2571 2572 StoredVecs.push_back(StoredVec); 2573 } 2574 2575 // Concatenate all vectors into a wide vector. 2576 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2577 2578 // Interleave the elements in the wide vector. 2579 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2580 Value *IVec = Builder.CreateShuffleVector( 2581 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2582 "interleaved.vec"); 2583 2584 Instruction *NewStoreInstr; 2585 if (BlockInMask) { 2586 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2587 Value *ShuffledMask = Builder.CreateShuffleVector( 2588 BlockInMaskPart, 2589 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2590 "interleaved.mask"); 2591 NewStoreInstr = Builder.CreateMaskedStore( 2592 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2593 } 2594 else 2595 NewStoreInstr = 2596 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2597 2598 Group->addMetadata(NewStoreInstr); 2599 } 2600 } 2601 2602 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2603 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2604 VPValue *StoredValue, VPValue *BlockInMask) { 2605 // Attempt to issue a wide load. 2606 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2607 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2608 2609 assert((LI || SI) && "Invalid Load/Store instruction"); 2610 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2611 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2612 2613 LoopVectorizationCostModel::InstWidening Decision = 2614 Cost->getWideningDecision(Instr, VF); 2615 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2616 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2617 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2618 "CM decision is not to widen the memory instruction"); 2619 2620 Type *ScalarDataTy = getMemInstValueType(Instr); 2621 2622 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2623 const Align Alignment = getLoadStoreAlignment(Instr); 2624 2625 // Determine if the pointer operand of the access is either consecutive or 2626 // reverse consecutive. 2627 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2628 bool ConsecutiveStride = 2629 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2630 bool CreateGatherScatter = 2631 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2632 2633 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2634 // gather/scatter. Otherwise Decision should have been to Scalarize. 2635 assert((ConsecutiveStride || CreateGatherScatter) && 2636 "The instruction should be scalarized"); 2637 (void)ConsecutiveStride; 2638 2639 VectorParts BlockInMaskParts(UF); 2640 bool isMaskRequired = BlockInMask; 2641 if (isMaskRequired) 2642 for (unsigned Part = 0; Part < UF; ++Part) 2643 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2644 2645 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2646 // Calculate the pointer for the specific unroll-part. 2647 GetElementPtrInst *PartPtr = nullptr; 2648 2649 bool InBounds = false; 2650 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2651 InBounds = gep->isInBounds(); 2652 2653 if (Reverse) { 2654 assert(!VF.isScalable() && 2655 "Reversing vectors is not yet supported for scalable vectors."); 2656 2657 // If the address is consecutive but reversed, then the 2658 // wide store needs to start at the last vector element. 2659 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2660 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2661 PartPtr->setIsInBounds(InBounds); 2662 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2663 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2664 PartPtr->setIsInBounds(InBounds); 2665 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2666 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2667 } else { 2668 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2669 PartPtr = cast<GetElementPtrInst>( 2670 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2671 PartPtr->setIsInBounds(InBounds); 2672 } 2673 2674 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2675 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2676 }; 2677 2678 // Handle Stores: 2679 if (SI) { 2680 setDebugLocFromInst(Builder, SI); 2681 2682 for (unsigned Part = 0; Part < UF; ++Part) { 2683 Instruction *NewSI = nullptr; 2684 Value *StoredVal = State.get(StoredValue, Part); 2685 if (CreateGatherScatter) { 2686 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2687 Value *VectorGep = State.get(Addr, Part); 2688 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2689 MaskPart); 2690 } else { 2691 if (Reverse) { 2692 // If we store to reverse consecutive memory locations, then we need 2693 // to reverse the order of elements in the stored value. 2694 StoredVal = reverseVector(StoredVal); 2695 // We don't want to update the value in the map as it might be used in 2696 // another expression. So don't call resetVectorValue(StoredVal). 2697 } 2698 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2699 if (isMaskRequired) 2700 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2701 BlockInMaskParts[Part]); 2702 else 2703 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2704 } 2705 addMetadata(NewSI, SI); 2706 } 2707 return; 2708 } 2709 2710 // Handle loads. 2711 assert(LI && "Must have a load instruction"); 2712 setDebugLocFromInst(Builder, LI); 2713 for (unsigned Part = 0; Part < UF; ++Part) { 2714 Value *NewLI; 2715 if (CreateGatherScatter) { 2716 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2717 Value *VectorGep = State.get(Addr, Part); 2718 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2719 nullptr, "wide.masked.gather"); 2720 addMetadata(NewLI, LI); 2721 } else { 2722 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2723 if (isMaskRequired) 2724 NewLI = Builder.CreateMaskedLoad( 2725 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2726 "wide.masked.load"); 2727 else 2728 NewLI = 2729 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2730 2731 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2732 addMetadata(NewLI, LI); 2733 if (Reverse) 2734 NewLI = reverseVector(NewLI); 2735 } 2736 2737 State.set(Def, NewLI, Part); 2738 } 2739 } 2740 2741 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2742 VPUser &User, 2743 const VPIteration &Instance, 2744 bool IfPredicateInstr, 2745 VPTransformState &State) { 2746 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2747 2748 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2749 // the first lane and part. 2750 if (isa<NoAliasScopeDeclInst>(Instr)) 2751 if (!Instance.isFirstIteration()) 2752 return; 2753 2754 setDebugLocFromInst(Builder, Instr); 2755 2756 // Does this instruction return a value ? 2757 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2758 2759 Instruction *Cloned = Instr->clone(); 2760 if (!IsVoidRetTy) 2761 Cloned->setName(Instr->getName() + ".cloned"); 2762 2763 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2764 Builder.GetInsertPoint()); 2765 // Replace the operands of the cloned instructions with their scalar 2766 // equivalents in the new loop. 2767 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2768 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2769 auto InputInstance = Instance; 2770 if (!Operand || !OrigLoop->contains(Operand) || 2771 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2772 InputInstance.Lane = 0; 2773 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2774 Cloned->setOperand(op, NewOp); 2775 } 2776 addNewMetadata(Cloned, Instr); 2777 2778 // Place the cloned scalar in the new loop. 2779 Builder.Insert(Cloned); 2780 2781 State.set(Def, Cloned, Instance); 2782 2783 // If we just cloned a new assumption, add it the assumption cache. 2784 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2785 if (II->getIntrinsicID() == Intrinsic::assume) 2786 AC->registerAssumption(II); 2787 2788 // End if-block. 2789 if (IfPredicateInstr) 2790 PredicatedInstructions.push_back(Cloned); 2791 } 2792 2793 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2794 Value *End, Value *Step, 2795 Instruction *DL) { 2796 BasicBlock *Header = L->getHeader(); 2797 BasicBlock *Latch = L->getLoopLatch(); 2798 // As we're just creating this loop, it's possible no latch exists 2799 // yet. If so, use the header as this will be a single block loop. 2800 if (!Latch) 2801 Latch = Header; 2802 2803 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2804 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2805 setDebugLocFromInst(Builder, OldInst); 2806 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2807 2808 Builder.SetInsertPoint(Latch->getTerminator()); 2809 setDebugLocFromInst(Builder, OldInst); 2810 2811 // Create i+1 and fill the PHINode. 2812 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2813 Induction->addIncoming(Start, L->getLoopPreheader()); 2814 Induction->addIncoming(Next, Latch); 2815 // Create the compare. 2816 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2817 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 2818 2819 // Now we have two terminators. Remove the old one from the block. 2820 Latch->getTerminator()->eraseFromParent(); 2821 2822 return Induction; 2823 } 2824 2825 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2826 if (TripCount) 2827 return TripCount; 2828 2829 assert(L && "Create Trip Count for null loop."); 2830 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2831 // Find the loop boundaries. 2832 ScalarEvolution *SE = PSE.getSE(); 2833 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2834 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2835 "Invalid loop count"); 2836 2837 Type *IdxTy = Legal->getWidestInductionType(); 2838 assert(IdxTy && "No type for induction"); 2839 2840 // The exit count might have the type of i64 while the phi is i32. This can 2841 // happen if we have an induction variable that is sign extended before the 2842 // compare. The only way that we get a backedge taken count is that the 2843 // induction variable was signed and as such will not overflow. In such a case 2844 // truncation is legal. 2845 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2846 IdxTy->getPrimitiveSizeInBits()) 2847 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2848 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2849 2850 // Get the total trip count from the count by adding 1. 2851 const SCEV *ExitCount = SE->getAddExpr( 2852 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2853 2854 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2855 2856 // Expand the trip count and place the new instructions in the preheader. 2857 // Notice that the pre-header does not change, only the loop body. 2858 SCEVExpander Exp(*SE, DL, "induction"); 2859 2860 // Count holds the overall loop count (N). 2861 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2862 L->getLoopPreheader()->getTerminator()); 2863 2864 if (TripCount->getType()->isPointerTy()) 2865 TripCount = 2866 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2867 L->getLoopPreheader()->getTerminator()); 2868 2869 return TripCount; 2870 } 2871 2872 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2873 if (VectorTripCount) 2874 return VectorTripCount; 2875 2876 Value *TC = getOrCreateTripCount(L); 2877 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2878 2879 Type *Ty = TC->getType(); 2880 // This is where we can make the step a runtime constant. 2881 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 2882 2883 // If the tail is to be folded by masking, round the number of iterations N 2884 // up to a multiple of Step instead of rounding down. This is done by first 2885 // adding Step-1 and then rounding down. Note that it's ok if this addition 2886 // overflows: the vector induction variable will eventually wrap to zero given 2887 // that it starts at zero and its Step is a power of two; the loop will then 2888 // exit, with the last early-exit vector comparison also producing all-true. 2889 if (Cost->foldTailByMasking()) { 2890 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2891 "VF*UF must be a power of 2 when folding tail by masking"); 2892 assert(!VF.isScalable() && 2893 "Tail folding not yet supported for scalable vectors"); 2894 TC = Builder.CreateAdd( 2895 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2896 } 2897 2898 // Now we need to generate the expression for the part of the loop that the 2899 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2900 // iterations are not required for correctness, or N - Step, otherwise. Step 2901 // is equal to the vectorization factor (number of SIMD elements) times the 2902 // unroll factor (number of SIMD instructions). 2903 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2904 2905 // There are two cases where we need to ensure (at least) the last iteration 2906 // runs in the scalar remainder loop. Thus, if the step evenly divides 2907 // the trip count, we set the remainder to be equal to the step. If the step 2908 // does not evenly divide the trip count, no adjustment is necessary since 2909 // there will already be scalar iterations. Note that the minimum iterations 2910 // check ensures that N >= Step. The cases are: 2911 // 1) If there is a non-reversed interleaved group that may speculatively 2912 // access memory out-of-bounds. 2913 // 2) If any instruction may follow a conditionally taken exit. That is, if 2914 // the loop contains multiple exiting blocks, or a single exiting block 2915 // which is not the latch. 2916 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2917 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2918 R = Builder.CreateSelect(IsZero, Step, R); 2919 } 2920 2921 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2922 2923 return VectorTripCount; 2924 } 2925 2926 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2927 const DataLayout &DL) { 2928 // Verify that V is a vector type with same number of elements as DstVTy. 2929 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2930 unsigned VF = DstFVTy->getNumElements(); 2931 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2932 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2933 Type *SrcElemTy = SrcVecTy->getElementType(); 2934 Type *DstElemTy = DstFVTy->getElementType(); 2935 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2936 "Vector elements must have same size"); 2937 2938 // Do a direct cast if element types are castable. 2939 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2940 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2941 } 2942 // V cannot be directly casted to desired vector type. 2943 // May happen when V is a floating point vector but DstVTy is a vector of 2944 // pointers or vice-versa. Handle this using a two-step bitcast using an 2945 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2946 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2947 "Only one type should be a pointer type"); 2948 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2949 "Only one type should be a floating point type"); 2950 Type *IntTy = 2951 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2952 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2953 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2954 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2955 } 2956 2957 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2958 BasicBlock *Bypass) { 2959 Value *Count = getOrCreateTripCount(L); 2960 // Reuse existing vector loop preheader for TC checks. 2961 // Note that new preheader block is generated for vector loop. 2962 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2963 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2964 2965 // Generate code to check if the loop's trip count is less than VF * UF, or 2966 // equal to it in case a scalar epilogue is required; this implies that the 2967 // vector trip count is zero. This check also covers the case where adding one 2968 // to the backedge-taken count overflowed leading to an incorrect trip count 2969 // of zero. In this case we will also jump to the scalar loop. 2970 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2971 : ICmpInst::ICMP_ULT; 2972 2973 // If tail is to be folded, vector loop takes care of all iterations. 2974 Value *CheckMinIters = Builder.getFalse(); 2975 if (!Cost->foldTailByMasking()) { 2976 Value *Step = 2977 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 2978 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2979 } 2980 // Create new preheader for vector loop. 2981 LoopVectorPreHeader = 2982 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2983 "vector.ph"); 2984 2985 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2986 DT->getNode(Bypass)->getIDom()) && 2987 "TC check is expected to dominate Bypass"); 2988 2989 // Update dominator for Bypass & LoopExit. 2990 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2991 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2992 2993 ReplaceInstWithInst( 2994 TCCheckBlock->getTerminator(), 2995 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2996 LoopBypassBlocks.push_back(TCCheckBlock); 2997 } 2998 2999 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3000 // Reuse existing vector loop preheader for SCEV checks. 3001 // Note that new preheader block is generated for vector loop. 3002 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3003 3004 // Generate the code to check that the SCEV assumptions that we made. 3005 // We want the new basic block to start at the first instruction in a 3006 // sequence of instructions that form a check. 3007 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3008 "scev.check"); 3009 Value *SCEVCheck = Exp.expandCodeForPredicate( 3010 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3011 3012 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3013 if (C->isZero()) 3014 return; 3015 3016 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3017 (OptForSizeBasedOnProfile && 3018 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3019 "Cannot SCEV check stride or overflow when optimizing for size"); 3020 3021 SCEVCheckBlock->setName("vector.scevcheck"); 3022 // Create new preheader for vector loop. 3023 LoopVectorPreHeader = 3024 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3025 nullptr, "vector.ph"); 3026 3027 // Update dominator only if this is first RT check. 3028 if (LoopBypassBlocks.empty()) { 3029 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3030 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3031 } 3032 3033 ReplaceInstWithInst( 3034 SCEVCheckBlock->getTerminator(), 3035 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3036 LoopBypassBlocks.push_back(SCEVCheckBlock); 3037 AddedSafetyChecks = true; 3038 } 3039 3040 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3041 // VPlan-native path does not do any analysis for runtime checks currently. 3042 if (EnableVPlanNativePath) 3043 return; 3044 3045 // Reuse existing vector loop preheader for runtime memory checks. 3046 // Note that new preheader block is generated for vector loop. 3047 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3048 3049 // Generate the code that checks in runtime if arrays overlap. We put the 3050 // checks into a separate block to make the more common case of few elements 3051 // faster. 3052 auto *LAI = Legal->getLAI(); 3053 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3054 if (!RtPtrChecking.Need) 3055 return; 3056 3057 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3058 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3059 "Cannot emit memory checks when optimizing for size, unless forced " 3060 "to vectorize."); 3061 ORE->emit([&]() { 3062 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3063 L->getStartLoc(), L->getHeader()) 3064 << "Code-size may be reduced by not forcing " 3065 "vectorization, or by source-code modifications " 3066 "eliminating the need for runtime checks " 3067 "(e.g., adding 'restrict')."; 3068 }); 3069 } 3070 3071 MemCheckBlock->setName("vector.memcheck"); 3072 // Create new preheader for vector loop. 3073 LoopVectorPreHeader = 3074 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3075 "vector.ph"); 3076 3077 auto *CondBranch = cast<BranchInst>( 3078 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3079 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3080 LoopBypassBlocks.push_back(MemCheckBlock); 3081 AddedSafetyChecks = true; 3082 3083 // Update dominator only if this is first RT check. 3084 if (LoopBypassBlocks.empty()) { 3085 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3086 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3087 } 3088 3089 Instruction *FirstCheckInst; 3090 Instruction *MemRuntimeCheck; 3091 SCEVExpander Exp(*PSE.getSE(), MemCheckBlock->getModule()->getDataLayout(), 3092 "induction"); 3093 std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks( 3094 MemCheckBlock->getTerminator(), OrigLoop, RtPtrChecking.getChecks(), Exp); 3095 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3096 "claimed checks are required"); 3097 CondBranch->setCondition(MemRuntimeCheck); 3098 3099 // We currently don't use LoopVersioning for the actual loop cloning but we 3100 // still use it to add the noalias metadata. 3101 LVer = std::make_unique<LoopVersioning>( 3102 *Legal->getLAI(), 3103 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3104 DT, PSE.getSE()); 3105 LVer->prepareNoAliasMetadata(); 3106 } 3107 3108 Value *InnerLoopVectorizer::emitTransformedIndex( 3109 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3110 const InductionDescriptor &ID) const { 3111 3112 SCEVExpander Exp(*SE, DL, "induction"); 3113 auto Step = ID.getStep(); 3114 auto StartValue = ID.getStartValue(); 3115 assert(Index->getType() == Step->getType() && 3116 "Index type does not match StepValue type"); 3117 3118 // Note: the IR at this point is broken. We cannot use SE to create any new 3119 // SCEV and then expand it, hoping that SCEV's simplification will give us 3120 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3121 // lead to various SCEV crashes. So all we can do is to use builder and rely 3122 // on InstCombine for future simplifications. Here we handle some trivial 3123 // cases only. 3124 auto CreateAdd = [&B](Value *X, Value *Y) { 3125 assert(X->getType() == Y->getType() && "Types don't match!"); 3126 if (auto *CX = dyn_cast<ConstantInt>(X)) 3127 if (CX->isZero()) 3128 return Y; 3129 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3130 if (CY->isZero()) 3131 return X; 3132 return B.CreateAdd(X, Y); 3133 }; 3134 3135 auto CreateMul = [&B](Value *X, Value *Y) { 3136 assert(X->getType() == Y->getType() && "Types don't match!"); 3137 if (auto *CX = dyn_cast<ConstantInt>(X)) 3138 if (CX->isOne()) 3139 return Y; 3140 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3141 if (CY->isOne()) 3142 return X; 3143 return B.CreateMul(X, Y); 3144 }; 3145 3146 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3147 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3148 // the DomTree is not kept up-to-date for additional blocks generated in the 3149 // vector loop. By using the header as insertion point, we guarantee that the 3150 // expanded instructions dominate all their uses. 3151 auto GetInsertPoint = [this, &B]() { 3152 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3153 if (InsertBB != LoopVectorBody && 3154 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3155 return LoopVectorBody->getTerminator(); 3156 return &*B.GetInsertPoint(); 3157 }; 3158 switch (ID.getKind()) { 3159 case InductionDescriptor::IK_IntInduction: { 3160 assert(Index->getType() == StartValue->getType() && 3161 "Index type does not match StartValue type"); 3162 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3163 return B.CreateSub(StartValue, Index); 3164 auto *Offset = CreateMul( 3165 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3166 return CreateAdd(StartValue, Offset); 3167 } 3168 case InductionDescriptor::IK_PtrInduction: { 3169 assert(isa<SCEVConstant>(Step) && 3170 "Expected constant step for pointer induction"); 3171 return B.CreateGEP( 3172 StartValue->getType()->getPointerElementType(), StartValue, 3173 CreateMul(Index, 3174 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3175 } 3176 case InductionDescriptor::IK_FpInduction: { 3177 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3178 auto InductionBinOp = ID.getInductionBinOp(); 3179 assert(InductionBinOp && 3180 (InductionBinOp->getOpcode() == Instruction::FAdd || 3181 InductionBinOp->getOpcode() == Instruction::FSub) && 3182 "Original bin op should be defined for FP induction"); 3183 3184 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3185 3186 // Floating point operations had to be 'fast' to enable the induction. 3187 FastMathFlags Flags; 3188 Flags.setFast(); 3189 3190 Value *MulExp = B.CreateFMul(StepValue, Index); 3191 if (isa<Instruction>(MulExp)) 3192 // We have to check, the MulExp may be a constant. 3193 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3194 3195 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3196 "induction"); 3197 if (isa<Instruction>(BOp)) 3198 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3199 3200 return BOp; 3201 } 3202 case InductionDescriptor::IK_NoInduction: 3203 return nullptr; 3204 } 3205 llvm_unreachable("invalid enum"); 3206 } 3207 3208 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3209 LoopScalarBody = OrigLoop->getHeader(); 3210 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3211 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3212 assert(LoopExitBlock && "Must have an exit block"); 3213 assert(LoopVectorPreHeader && "Invalid loop structure"); 3214 3215 LoopMiddleBlock = 3216 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3217 LI, nullptr, Twine(Prefix) + "middle.block"); 3218 LoopScalarPreHeader = 3219 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3220 nullptr, Twine(Prefix) + "scalar.ph"); 3221 3222 // Set up branch from middle block to the exit and scalar preheader blocks. 3223 // completeLoopSkeleton will update the condition to use an iteration check, 3224 // if required to decide whether to execute the remainder. 3225 BranchInst *BrInst = 3226 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3227 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3228 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3229 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3230 3231 // We intentionally don't let SplitBlock to update LoopInfo since 3232 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3233 // LoopVectorBody is explicitly added to the correct place few lines later. 3234 LoopVectorBody = 3235 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3236 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3237 3238 // Update dominator for loop exit. 3239 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3240 3241 // Create and register the new vector loop. 3242 Loop *Lp = LI->AllocateLoop(); 3243 Loop *ParentLoop = OrigLoop->getParentLoop(); 3244 3245 // Insert the new loop into the loop nest and register the new basic blocks 3246 // before calling any utilities such as SCEV that require valid LoopInfo. 3247 if (ParentLoop) { 3248 ParentLoop->addChildLoop(Lp); 3249 } else { 3250 LI->addTopLevelLoop(Lp); 3251 } 3252 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3253 return Lp; 3254 } 3255 3256 void InnerLoopVectorizer::createInductionResumeValues( 3257 Loop *L, Value *VectorTripCount, 3258 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3259 assert(VectorTripCount && L && "Expected valid arguments"); 3260 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3261 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3262 "Inconsistent information about additional bypass."); 3263 // We are going to resume the execution of the scalar loop. 3264 // Go over all of the induction variables that we found and fix the 3265 // PHIs that are left in the scalar version of the loop. 3266 // The starting values of PHI nodes depend on the counter of the last 3267 // iteration in the vectorized loop. 3268 // If we come from a bypass edge then we need to start from the original 3269 // start value. 3270 for (auto &InductionEntry : Legal->getInductionVars()) { 3271 PHINode *OrigPhi = InductionEntry.first; 3272 InductionDescriptor II = InductionEntry.second; 3273 3274 // Create phi nodes to merge from the backedge-taken check block. 3275 PHINode *BCResumeVal = 3276 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3277 LoopScalarPreHeader->getTerminator()); 3278 // Copy original phi DL over to the new one. 3279 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3280 Value *&EndValue = IVEndValues[OrigPhi]; 3281 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3282 if (OrigPhi == OldInduction) { 3283 // We know what the end value is. 3284 EndValue = VectorTripCount; 3285 } else { 3286 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3287 Type *StepType = II.getStep()->getType(); 3288 Instruction::CastOps CastOp = 3289 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3290 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3291 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3292 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3293 EndValue->setName("ind.end"); 3294 3295 // Compute the end value for the additional bypass (if applicable). 3296 if (AdditionalBypass.first) { 3297 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3298 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3299 StepType, true); 3300 CRD = 3301 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3302 EndValueFromAdditionalBypass = 3303 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3304 EndValueFromAdditionalBypass->setName("ind.end"); 3305 } 3306 } 3307 // The new PHI merges the original incoming value, in case of a bypass, 3308 // or the value at the end of the vectorized loop. 3309 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3310 3311 // Fix the scalar body counter (PHI node). 3312 // The old induction's phi node in the scalar body needs the truncated 3313 // value. 3314 for (BasicBlock *BB : LoopBypassBlocks) 3315 BCResumeVal->addIncoming(II.getStartValue(), BB); 3316 3317 if (AdditionalBypass.first) 3318 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3319 EndValueFromAdditionalBypass); 3320 3321 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3322 } 3323 } 3324 3325 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3326 MDNode *OrigLoopID) { 3327 assert(L && "Expected valid loop."); 3328 3329 // The trip counts should be cached by now. 3330 Value *Count = getOrCreateTripCount(L); 3331 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3332 3333 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3334 3335 // Add a check in the middle block to see if we have completed 3336 // all of the iterations in the first vector loop. 3337 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3338 // If tail is to be folded, we know we don't need to run the remainder. 3339 if (!Cost->foldTailByMasking()) { 3340 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3341 Count, VectorTripCount, "cmp.n", 3342 LoopMiddleBlock->getTerminator()); 3343 3344 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3345 // of the corresponding compare because they may have ended up with 3346 // different line numbers and we want to avoid awkward line stepping while 3347 // debugging. Eg. if the compare has got a line number inside the loop. 3348 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3349 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3350 } 3351 3352 // Get ready to start creating new instructions into the vectorized body. 3353 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3354 "Inconsistent vector loop preheader"); 3355 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3356 3357 Optional<MDNode *> VectorizedLoopID = 3358 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3359 LLVMLoopVectorizeFollowupVectorized}); 3360 if (VectorizedLoopID.hasValue()) { 3361 L->setLoopID(VectorizedLoopID.getValue()); 3362 3363 // Do not setAlreadyVectorized if loop attributes have been defined 3364 // explicitly. 3365 return LoopVectorPreHeader; 3366 } 3367 3368 // Keep all loop hints from the original loop on the vector loop (we'll 3369 // replace the vectorizer-specific hints below). 3370 if (MDNode *LID = OrigLoop->getLoopID()) 3371 L->setLoopID(LID); 3372 3373 LoopVectorizeHints Hints(L, true, *ORE); 3374 Hints.setAlreadyVectorized(); 3375 3376 #ifdef EXPENSIVE_CHECKS 3377 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3378 LI->verify(*DT); 3379 #endif 3380 3381 return LoopVectorPreHeader; 3382 } 3383 3384 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3385 /* 3386 In this function we generate a new loop. The new loop will contain 3387 the vectorized instructions while the old loop will continue to run the 3388 scalar remainder. 3389 3390 [ ] <-- loop iteration number check. 3391 / | 3392 / v 3393 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3394 | / | 3395 | / v 3396 || [ ] <-- vector pre header. 3397 |/ | 3398 | v 3399 | [ ] \ 3400 | [ ]_| <-- vector loop. 3401 | | 3402 | v 3403 | -[ ] <--- middle-block. 3404 | / | 3405 | / v 3406 -|- >[ ] <--- new preheader. 3407 | | 3408 | v 3409 | [ ] \ 3410 | [ ]_| <-- old scalar loop to handle remainder. 3411 \ | 3412 \ v 3413 >[ ] <-- exit block. 3414 ... 3415 */ 3416 3417 // Get the metadata of the original loop before it gets modified. 3418 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3419 3420 // Create an empty vector loop, and prepare basic blocks for the runtime 3421 // checks. 3422 Loop *Lp = createVectorLoopSkeleton(""); 3423 3424 // Now, compare the new count to zero. If it is zero skip the vector loop and 3425 // jump to the scalar loop. This check also covers the case where the 3426 // backedge-taken count is uint##_max: adding one to it will overflow leading 3427 // to an incorrect trip count of zero. In this (rare) case we will also jump 3428 // to the scalar loop. 3429 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3430 3431 // Generate the code to check any assumptions that we've made for SCEV 3432 // expressions. 3433 emitSCEVChecks(Lp, LoopScalarPreHeader); 3434 3435 // Generate the code that checks in runtime if arrays overlap. We put the 3436 // checks into a separate block to make the more common case of few elements 3437 // faster. 3438 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3439 3440 // Some loops have a single integer induction variable, while other loops 3441 // don't. One example is c++ iterators that often have multiple pointer 3442 // induction variables. In the code below we also support a case where we 3443 // don't have a single induction variable. 3444 // 3445 // We try to obtain an induction variable from the original loop as hard 3446 // as possible. However if we don't find one that: 3447 // - is an integer 3448 // - counts from zero, stepping by one 3449 // - is the size of the widest induction variable type 3450 // then we create a new one. 3451 OldInduction = Legal->getPrimaryInduction(); 3452 Type *IdxTy = Legal->getWidestInductionType(); 3453 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3454 // The loop step is equal to the vectorization factor (num of SIMD elements) 3455 // times the unroll factor (num of SIMD instructions). 3456 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3457 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3458 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3459 Induction = 3460 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3461 getDebugLocFromInstOrOperands(OldInduction)); 3462 3463 // Emit phis for the new starting index of the scalar loop. 3464 createInductionResumeValues(Lp, CountRoundDown); 3465 3466 return completeLoopSkeleton(Lp, OrigLoopID); 3467 } 3468 3469 // Fix up external users of the induction variable. At this point, we are 3470 // in LCSSA form, with all external PHIs that use the IV having one input value, 3471 // coming from the remainder loop. We need those PHIs to also have a correct 3472 // value for the IV when arriving directly from the middle block. 3473 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3474 const InductionDescriptor &II, 3475 Value *CountRoundDown, Value *EndValue, 3476 BasicBlock *MiddleBlock) { 3477 // There are two kinds of external IV usages - those that use the value 3478 // computed in the last iteration (the PHI) and those that use the penultimate 3479 // value (the value that feeds into the phi from the loop latch). 3480 // We allow both, but they, obviously, have different values. 3481 3482 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3483 3484 DenseMap<Value *, Value *> MissingVals; 3485 3486 // An external user of the last iteration's value should see the value that 3487 // the remainder loop uses to initialize its own IV. 3488 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3489 for (User *U : PostInc->users()) { 3490 Instruction *UI = cast<Instruction>(U); 3491 if (!OrigLoop->contains(UI)) { 3492 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3493 MissingVals[UI] = EndValue; 3494 } 3495 } 3496 3497 // An external user of the penultimate value need to see EndValue - Step. 3498 // The simplest way to get this is to recompute it from the constituent SCEVs, 3499 // that is Start + (Step * (CRD - 1)). 3500 for (User *U : OrigPhi->users()) { 3501 auto *UI = cast<Instruction>(U); 3502 if (!OrigLoop->contains(UI)) { 3503 const DataLayout &DL = 3504 OrigLoop->getHeader()->getModule()->getDataLayout(); 3505 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3506 3507 IRBuilder<> B(MiddleBlock->getTerminator()); 3508 Value *CountMinusOne = B.CreateSub( 3509 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3510 Value *CMO = 3511 !II.getStep()->getType()->isIntegerTy() 3512 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3513 II.getStep()->getType()) 3514 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3515 CMO->setName("cast.cmo"); 3516 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3517 Escape->setName("ind.escape"); 3518 MissingVals[UI] = Escape; 3519 } 3520 } 3521 3522 for (auto &I : MissingVals) { 3523 PHINode *PHI = cast<PHINode>(I.first); 3524 // One corner case we have to handle is two IVs "chasing" each-other, 3525 // that is %IV2 = phi [...], [ %IV1, %latch ] 3526 // In this case, if IV1 has an external use, we need to avoid adding both 3527 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3528 // don't already have an incoming value for the middle block. 3529 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3530 PHI->addIncoming(I.second, MiddleBlock); 3531 } 3532 } 3533 3534 namespace { 3535 3536 struct CSEDenseMapInfo { 3537 static bool canHandle(const Instruction *I) { 3538 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3539 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3540 } 3541 3542 static inline Instruction *getEmptyKey() { 3543 return DenseMapInfo<Instruction *>::getEmptyKey(); 3544 } 3545 3546 static inline Instruction *getTombstoneKey() { 3547 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3548 } 3549 3550 static unsigned getHashValue(const Instruction *I) { 3551 assert(canHandle(I) && "Unknown instruction!"); 3552 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3553 I->value_op_end())); 3554 } 3555 3556 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3557 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3558 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3559 return LHS == RHS; 3560 return LHS->isIdenticalTo(RHS); 3561 } 3562 }; 3563 3564 } // end anonymous namespace 3565 3566 ///Perform cse of induction variable instructions. 3567 static void cse(BasicBlock *BB) { 3568 // Perform simple cse. 3569 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3570 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3571 Instruction *In = &*I++; 3572 3573 if (!CSEDenseMapInfo::canHandle(In)) 3574 continue; 3575 3576 // Check if we can replace this instruction with any of the 3577 // visited instructions. 3578 if (Instruction *V = CSEMap.lookup(In)) { 3579 In->replaceAllUsesWith(V); 3580 In->eraseFromParent(); 3581 continue; 3582 } 3583 3584 CSEMap[In] = In; 3585 } 3586 } 3587 3588 InstructionCost 3589 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3590 bool &NeedToScalarize) { 3591 Function *F = CI->getCalledFunction(); 3592 Type *ScalarRetTy = CI->getType(); 3593 SmallVector<Type *, 4> Tys, ScalarTys; 3594 for (auto &ArgOp : CI->arg_operands()) 3595 ScalarTys.push_back(ArgOp->getType()); 3596 3597 // Estimate cost of scalarized vector call. The source operands are assumed 3598 // to be vectors, so we need to extract individual elements from there, 3599 // execute VF scalar calls, and then gather the result into the vector return 3600 // value. 3601 InstructionCost ScalarCallCost = 3602 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3603 if (VF.isScalar()) 3604 return ScalarCallCost; 3605 3606 // Compute corresponding vector type for return value and arguments. 3607 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3608 for (Type *ScalarTy : ScalarTys) 3609 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3610 3611 // Compute costs of unpacking argument values for the scalar calls and 3612 // packing the return values to a vector. 3613 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3614 3615 InstructionCost Cost = 3616 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3617 3618 // If we can't emit a vector call for this function, then the currently found 3619 // cost is the cost we need to return. 3620 NeedToScalarize = true; 3621 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3622 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3623 3624 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3625 return Cost; 3626 3627 // If the corresponding vector cost is cheaper, return its cost. 3628 InstructionCost VectorCallCost = 3629 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3630 if (VectorCallCost < Cost) { 3631 NeedToScalarize = false; 3632 Cost = VectorCallCost; 3633 } 3634 return Cost; 3635 } 3636 3637 InstructionCost 3638 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3639 ElementCount VF) { 3640 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3641 assert(ID && "Expected intrinsic call!"); 3642 3643 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3644 return TTI.getIntrinsicInstrCost(CostAttrs, 3645 TargetTransformInfo::TCK_RecipThroughput); 3646 } 3647 3648 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3649 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3650 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3651 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3652 } 3653 3654 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3655 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3656 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3657 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3658 } 3659 3660 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3661 // For every instruction `I` in MinBWs, truncate the operands, create a 3662 // truncated version of `I` and reextend its result. InstCombine runs 3663 // later and will remove any ext/trunc pairs. 3664 SmallPtrSet<Value *, 4> Erased; 3665 for (const auto &KV : Cost->getMinimalBitwidths()) { 3666 // If the value wasn't vectorized, we must maintain the original scalar 3667 // type. The absence of the value from State indicates that it 3668 // wasn't vectorized. 3669 VPValue *Def = State.Plan->getVPValue(KV.first); 3670 if (!State.hasAnyVectorValue(Def)) 3671 continue; 3672 for (unsigned Part = 0; Part < UF; ++Part) { 3673 Value *I = State.get(Def, Part); 3674 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3675 continue; 3676 Type *OriginalTy = I->getType(); 3677 Type *ScalarTruncatedTy = 3678 IntegerType::get(OriginalTy->getContext(), KV.second); 3679 auto *TruncatedTy = FixedVectorType::get( 3680 ScalarTruncatedTy, 3681 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3682 if (TruncatedTy == OriginalTy) 3683 continue; 3684 3685 IRBuilder<> B(cast<Instruction>(I)); 3686 auto ShrinkOperand = [&](Value *V) -> Value * { 3687 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3688 if (ZI->getSrcTy() == TruncatedTy) 3689 return ZI->getOperand(0); 3690 return B.CreateZExtOrTrunc(V, TruncatedTy); 3691 }; 3692 3693 // The actual instruction modification depends on the instruction type, 3694 // unfortunately. 3695 Value *NewI = nullptr; 3696 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3697 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3698 ShrinkOperand(BO->getOperand(1))); 3699 3700 // Any wrapping introduced by shrinking this operation shouldn't be 3701 // considered undefined behavior. So, we can't unconditionally copy 3702 // arithmetic wrapping flags to NewI. 3703 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3704 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3705 NewI = 3706 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3707 ShrinkOperand(CI->getOperand(1))); 3708 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3709 NewI = B.CreateSelect(SI->getCondition(), 3710 ShrinkOperand(SI->getTrueValue()), 3711 ShrinkOperand(SI->getFalseValue())); 3712 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3713 switch (CI->getOpcode()) { 3714 default: 3715 llvm_unreachable("Unhandled cast!"); 3716 case Instruction::Trunc: 3717 NewI = ShrinkOperand(CI->getOperand(0)); 3718 break; 3719 case Instruction::SExt: 3720 NewI = B.CreateSExtOrTrunc( 3721 CI->getOperand(0), 3722 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3723 break; 3724 case Instruction::ZExt: 3725 NewI = B.CreateZExtOrTrunc( 3726 CI->getOperand(0), 3727 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3728 break; 3729 } 3730 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3731 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3732 ->getNumElements(); 3733 auto *O0 = B.CreateZExtOrTrunc( 3734 SI->getOperand(0), 3735 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3736 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3737 ->getNumElements(); 3738 auto *O1 = B.CreateZExtOrTrunc( 3739 SI->getOperand(1), 3740 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3741 3742 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3743 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3744 // Don't do anything with the operands, just extend the result. 3745 continue; 3746 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3747 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3748 ->getNumElements(); 3749 auto *O0 = B.CreateZExtOrTrunc( 3750 IE->getOperand(0), 3751 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3752 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3753 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3754 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3755 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3756 ->getNumElements(); 3757 auto *O0 = B.CreateZExtOrTrunc( 3758 EE->getOperand(0), 3759 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3760 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3761 } else { 3762 // If we don't know what to do, be conservative and don't do anything. 3763 continue; 3764 } 3765 3766 // Lastly, extend the result. 3767 NewI->takeName(cast<Instruction>(I)); 3768 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3769 I->replaceAllUsesWith(Res); 3770 cast<Instruction>(I)->eraseFromParent(); 3771 Erased.insert(I); 3772 State.reset(Def, Res, Part); 3773 } 3774 } 3775 3776 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3777 for (const auto &KV : Cost->getMinimalBitwidths()) { 3778 // If the value wasn't vectorized, we must maintain the original scalar 3779 // type. The absence of the value from State indicates that it 3780 // wasn't vectorized. 3781 VPValue *Def = State.Plan->getVPValue(KV.first); 3782 if (!State.hasAnyVectorValue(Def)) 3783 continue; 3784 for (unsigned Part = 0; Part < UF; ++Part) { 3785 Value *I = State.get(Def, Part); 3786 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3787 if (Inst && Inst->use_empty()) { 3788 Value *NewI = Inst->getOperand(0); 3789 Inst->eraseFromParent(); 3790 State.reset(Def, NewI, Part); 3791 } 3792 } 3793 } 3794 } 3795 3796 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3797 // Insert truncates and extends for any truncated instructions as hints to 3798 // InstCombine. 3799 if (VF.isVector()) 3800 truncateToMinimalBitwidths(State); 3801 3802 // Fix widened non-induction PHIs by setting up the PHI operands. 3803 if (OrigPHIsToFix.size()) { 3804 assert(EnableVPlanNativePath && 3805 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3806 fixNonInductionPHIs(State); 3807 } 3808 3809 // At this point every instruction in the original loop is widened to a 3810 // vector form. Now we need to fix the recurrences in the loop. These PHI 3811 // nodes are currently empty because we did not want to introduce cycles. 3812 // This is the second stage of vectorizing recurrences. 3813 fixCrossIterationPHIs(State); 3814 3815 // Forget the original basic block. 3816 PSE.getSE()->forgetLoop(OrigLoop); 3817 3818 // Fix-up external users of the induction variables. 3819 for (auto &Entry : Legal->getInductionVars()) 3820 fixupIVUsers(Entry.first, Entry.second, 3821 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3822 IVEndValues[Entry.first], LoopMiddleBlock); 3823 3824 fixLCSSAPHIs(State); 3825 for (Instruction *PI : PredicatedInstructions) 3826 sinkScalarOperands(&*PI); 3827 3828 // Remove redundant induction instructions. 3829 cse(LoopVectorBody); 3830 3831 // Set/update profile weights for the vector and remainder loops as original 3832 // loop iterations are now distributed among them. Note that original loop 3833 // represented by LoopScalarBody becomes remainder loop after vectorization. 3834 // 3835 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3836 // end up getting slightly roughened result but that should be OK since 3837 // profile is not inherently precise anyway. Note also possible bypass of 3838 // vector code caused by legality checks is ignored, assigning all the weight 3839 // to the vector loop, optimistically. 3840 // 3841 // For scalable vectorization we can't know at compile time how many iterations 3842 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3843 // vscale of '1'. 3844 setProfileInfoAfterUnrolling( 3845 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3846 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3847 } 3848 3849 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3850 // In order to support recurrences we need to be able to vectorize Phi nodes. 3851 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3852 // stage #2: We now need to fix the recurrences by adding incoming edges to 3853 // the currently empty PHI nodes. At this point every instruction in the 3854 // original loop is widened to a vector form so we can use them to construct 3855 // the incoming edges. 3856 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3857 // Handle first-order recurrences and reductions that need to be fixed. 3858 if (Legal->isFirstOrderRecurrence(&Phi)) 3859 fixFirstOrderRecurrence(&Phi, State); 3860 else if (Legal->isReductionVariable(&Phi)) 3861 fixReduction(&Phi, State); 3862 } 3863 } 3864 3865 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 3866 VPTransformState &State) { 3867 // This is the second phase of vectorizing first-order recurrences. An 3868 // overview of the transformation is described below. Suppose we have the 3869 // following loop. 3870 // 3871 // for (int i = 0; i < n; ++i) 3872 // b[i] = a[i] - a[i - 1]; 3873 // 3874 // There is a first-order recurrence on "a". For this loop, the shorthand 3875 // scalar IR looks like: 3876 // 3877 // scalar.ph: 3878 // s_init = a[-1] 3879 // br scalar.body 3880 // 3881 // scalar.body: 3882 // i = phi [0, scalar.ph], [i+1, scalar.body] 3883 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3884 // s2 = a[i] 3885 // b[i] = s2 - s1 3886 // br cond, scalar.body, ... 3887 // 3888 // In this example, s1 is a recurrence because it's value depends on the 3889 // previous iteration. In the first phase of vectorization, we created a 3890 // temporary value for s1. We now complete the vectorization and produce the 3891 // shorthand vector IR shown below (for VF = 4, UF = 1). 3892 // 3893 // vector.ph: 3894 // v_init = vector(..., ..., ..., a[-1]) 3895 // br vector.body 3896 // 3897 // vector.body 3898 // i = phi [0, vector.ph], [i+4, vector.body] 3899 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3900 // v2 = a[i, i+1, i+2, i+3]; 3901 // v3 = vector(v1(3), v2(0, 1, 2)) 3902 // b[i, i+1, i+2, i+3] = v2 - v3 3903 // br cond, vector.body, middle.block 3904 // 3905 // middle.block: 3906 // x = v2(3) 3907 // br scalar.ph 3908 // 3909 // scalar.ph: 3910 // s_init = phi [x, middle.block], [a[-1], otherwise] 3911 // br scalar.body 3912 // 3913 // After execution completes the vector loop, we extract the next value of 3914 // the recurrence (x) to use as the initial value in the scalar loop. 3915 3916 // Get the original loop preheader and single loop latch. 3917 auto *Preheader = OrigLoop->getLoopPreheader(); 3918 auto *Latch = OrigLoop->getLoopLatch(); 3919 3920 // Get the initial and previous values of the scalar recurrence. 3921 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3922 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3923 3924 // Create a vector from the initial value. 3925 auto *VectorInit = ScalarInit; 3926 if (VF.isVector()) { 3927 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3928 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3929 VectorInit = Builder.CreateInsertElement( 3930 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3931 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3932 } 3933 3934 VPValue *PhiDef = State.Plan->getVPValue(Phi); 3935 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 3936 // We constructed a temporary phi node in the first phase of vectorization. 3937 // This phi node will eventually be deleted. 3938 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 3939 3940 // Create a phi node for the new recurrence. The current value will either be 3941 // the initial value inserted into a vector or loop-varying vector value. 3942 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3943 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3944 3945 // Get the vectorized previous value of the last part UF - 1. It appears last 3946 // among all unrolled iterations, due to the order of their construction. 3947 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 3948 3949 // Find and set the insertion point after the previous value if it is an 3950 // instruction. 3951 BasicBlock::iterator InsertPt; 3952 // Note that the previous value may have been constant-folded so it is not 3953 // guaranteed to be an instruction in the vector loop. 3954 // FIXME: Loop invariant values do not form recurrences. We should deal with 3955 // them earlier. 3956 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3957 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3958 else { 3959 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3960 if (isa<PHINode>(PreviousLastPart)) 3961 // If the previous value is a phi node, we should insert after all the phi 3962 // nodes in the block containing the PHI to avoid breaking basic block 3963 // verification. Note that the basic block may be different to 3964 // LoopVectorBody, in case we predicate the loop. 3965 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3966 else 3967 InsertPt = ++PreviousInst->getIterator(); 3968 } 3969 Builder.SetInsertPoint(&*InsertPt); 3970 3971 // We will construct a vector for the recurrence by combining the values for 3972 // the current and previous iterations. This is the required shuffle mask. 3973 assert(!VF.isScalable()); 3974 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3975 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3976 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3977 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3978 3979 // The vector from which to take the initial value for the current iteration 3980 // (actual or unrolled). Initially, this is the vector phi node. 3981 Value *Incoming = VecPhi; 3982 3983 // Shuffle the current and previous vector and update the vector parts. 3984 for (unsigned Part = 0; Part < UF; ++Part) { 3985 Value *PreviousPart = State.get(PreviousDef, Part); 3986 Value *PhiPart = State.get(PhiDef, Part); 3987 auto *Shuffle = 3988 VF.isVector() 3989 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3990 : Incoming; 3991 PhiPart->replaceAllUsesWith(Shuffle); 3992 cast<Instruction>(PhiPart)->eraseFromParent(); 3993 State.reset(PhiDef, Shuffle, Part); 3994 Incoming = PreviousPart; 3995 } 3996 3997 // Fix the latch value of the new recurrence in the vector loop. 3998 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3999 4000 // Extract the last vector element in the middle block. This will be the 4001 // initial value for the recurrence when jumping to the scalar loop. 4002 auto *ExtractForScalar = Incoming; 4003 if (VF.isVector()) { 4004 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4005 ExtractForScalar = Builder.CreateExtractElement( 4006 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4007 "vector.recur.extract"); 4008 } 4009 // Extract the second last element in the middle block if the 4010 // Phi is used outside the loop. We need to extract the phi itself 4011 // and not the last element (the phi update in the current iteration). This 4012 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4013 // when the scalar loop is not run at all. 4014 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4015 if (VF.isVector()) 4016 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4017 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4018 "vector.recur.extract.for.phi"); 4019 // When loop is unrolled without vectorizing, initialize 4020 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4021 // `Incoming`. This is analogous to the vectorized case above: extracting the 4022 // second last element when VF > 1. 4023 else if (UF > 1) 4024 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4025 4026 // Fix the initial value of the original recurrence in the scalar loop. 4027 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4028 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4029 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4030 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4031 Start->addIncoming(Incoming, BB); 4032 } 4033 4034 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4035 Phi->setName("scalar.recur"); 4036 4037 // Finally, fix users of the recurrence outside the loop. The users will need 4038 // either the last value of the scalar recurrence or the last value of the 4039 // vector recurrence we extracted in the middle block. Since the loop is in 4040 // LCSSA form, we just need to find all the phi nodes for the original scalar 4041 // recurrence in the exit block, and then add an edge for the middle block. 4042 // Note that LCSSA does not imply single entry when the original scalar loop 4043 // had multiple exiting edges (as we always run the last iteration in the 4044 // scalar epilogue); in that case, the exiting path through middle will be 4045 // dynamically dead and the value picked for the phi doesn't matter. 4046 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4047 if (any_of(LCSSAPhi.incoming_values(), 4048 [Phi](Value *V) { return V == Phi; })) 4049 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4050 } 4051 4052 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4053 // Get it's reduction variable descriptor. 4054 assert(Legal->isReductionVariable(Phi) && 4055 "Unable to find the reduction variable"); 4056 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4057 4058 RecurKind RK = RdxDesc.getRecurrenceKind(); 4059 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4060 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4061 setDebugLocFromInst(Builder, ReductionStartValue); 4062 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4063 4064 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4065 // This is the vector-clone of the value that leaves the loop. 4066 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4067 4068 // Wrap flags are in general invalid after vectorization, clear them. 4069 clearReductionWrapFlags(RdxDesc, State); 4070 4071 // Fix the vector-loop phi. 4072 4073 // Reductions do not have to start at zero. They can start with 4074 // any loop invariant values. 4075 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4076 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4077 4078 for (unsigned Part = 0; Part < UF; ++Part) { 4079 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4080 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4081 cast<PHINode>(VecRdxPhi) 4082 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4083 } 4084 4085 // Before each round, move the insertion point right between 4086 // the PHIs and the values we are going to write. 4087 // This allows us to write both PHINodes and the extractelement 4088 // instructions. 4089 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4090 4091 setDebugLocFromInst(Builder, LoopExitInst); 4092 4093 // If tail is folded by masking, the vector value to leave the loop should be 4094 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4095 // instead of the former. For an inloop reduction the reduction will already 4096 // be predicated, and does not need to be handled here. 4097 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4098 for (unsigned Part = 0; Part < UF; ++Part) { 4099 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4100 Value *Sel = nullptr; 4101 for (User *U : VecLoopExitInst->users()) { 4102 if (isa<SelectInst>(U)) { 4103 assert(!Sel && "Reduction exit feeding two selects"); 4104 Sel = U; 4105 } else 4106 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4107 } 4108 assert(Sel && "Reduction exit feeds no select"); 4109 State.reset(LoopExitInstDef, Sel, Part); 4110 4111 // If the target can create a predicated operator for the reduction at no 4112 // extra cost in the loop (for example a predicated vadd), it can be 4113 // cheaper for the select to remain in the loop than be sunk out of it, 4114 // and so use the select value for the phi instead of the old 4115 // LoopExitValue. 4116 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4117 if (PreferPredicatedReductionSelect || 4118 TTI->preferPredicatedReductionSelect( 4119 RdxDesc.getOpcode(), Phi->getType(), 4120 TargetTransformInfo::ReductionFlags())) { 4121 auto *VecRdxPhi = 4122 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4123 VecRdxPhi->setIncomingValueForBlock( 4124 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4125 } 4126 } 4127 } 4128 4129 // If the vector reduction can be performed in a smaller type, we truncate 4130 // then extend the loop exit value to enable InstCombine to evaluate the 4131 // entire expression in the smaller type. 4132 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4133 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4134 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4135 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4136 Builder.SetInsertPoint( 4137 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4138 VectorParts RdxParts(UF); 4139 for (unsigned Part = 0; Part < UF; ++Part) { 4140 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4141 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4142 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4143 : Builder.CreateZExt(Trunc, VecTy); 4144 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4145 UI != RdxParts[Part]->user_end();) 4146 if (*UI != Trunc) { 4147 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4148 RdxParts[Part] = Extnd; 4149 } else { 4150 ++UI; 4151 } 4152 } 4153 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4154 for (unsigned Part = 0; Part < UF; ++Part) { 4155 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4156 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4157 } 4158 } 4159 4160 // Reduce all of the unrolled parts into a single vector. 4161 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4162 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4163 4164 // The middle block terminator has already been assigned a DebugLoc here (the 4165 // OrigLoop's single latch terminator). We want the whole middle block to 4166 // appear to execute on this line because: (a) it is all compiler generated, 4167 // (b) these instructions are always executed after evaluating the latch 4168 // conditional branch, and (c) other passes may add new predecessors which 4169 // terminate on this line. This is the easiest way to ensure we don't 4170 // accidentally cause an extra step back into the loop while debugging. 4171 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4172 { 4173 // Floating-point operations should have some FMF to enable the reduction. 4174 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4175 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4176 for (unsigned Part = 1; Part < UF; ++Part) { 4177 Value *RdxPart = State.get(LoopExitInstDef, Part); 4178 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4179 ReducedPartRdx = Builder.CreateBinOp( 4180 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4181 } else { 4182 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4183 } 4184 } 4185 } 4186 4187 // Create the reduction after the loop. Note that inloop reductions create the 4188 // target reduction in the loop using a Reduction recipe. 4189 if (VF.isVector() && !IsInLoopReductionPhi) { 4190 ReducedPartRdx = 4191 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4192 // If the reduction can be performed in a smaller type, we need to extend 4193 // the reduction to the wider type before we branch to the original loop. 4194 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4195 ReducedPartRdx = 4196 RdxDesc.isSigned() 4197 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4198 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4199 } 4200 4201 // Create a phi node that merges control-flow from the backedge-taken check 4202 // block and the middle block. 4203 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4204 LoopScalarPreHeader->getTerminator()); 4205 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4206 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4207 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4208 4209 // Now, we need to fix the users of the reduction variable 4210 // inside and outside of the scalar remainder loop. 4211 4212 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4213 // in the exit blocks. See comment on analogous loop in 4214 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4215 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4216 if (any_of(LCSSAPhi.incoming_values(), 4217 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4218 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4219 4220 // Fix the scalar loop reduction variable with the incoming reduction sum 4221 // from the vector body and from the backedge value. 4222 int IncomingEdgeBlockIdx = 4223 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4224 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4225 // Pick the other block. 4226 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4227 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4228 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4229 } 4230 4231 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4232 VPTransformState &State) { 4233 RecurKind RK = RdxDesc.getRecurrenceKind(); 4234 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4235 return; 4236 4237 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4238 assert(LoopExitInstr && "null loop exit instruction"); 4239 SmallVector<Instruction *, 8> Worklist; 4240 SmallPtrSet<Instruction *, 8> Visited; 4241 Worklist.push_back(LoopExitInstr); 4242 Visited.insert(LoopExitInstr); 4243 4244 while (!Worklist.empty()) { 4245 Instruction *Cur = Worklist.pop_back_val(); 4246 if (isa<OverflowingBinaryOperator>(Cur)) 4247 for (unsigned Part = 0; Part < UF; ++Part) { 4248 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4249 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4250 } 4251 4252 for (User *U : Cur->users()) { 4253 Instruction *UI = cast<Instruction>(U); 4254 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4255 Visited.insert(UI).second) 4256 Worklist.push_back(UI); 4257 } 4258 } 4259 } 4260 4261 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4262 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4263 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4264 // Some phis were already hand updated by the reduction and recurrence 4265 // code above, leave them alone. 4266 continue; 4267 4268 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4269 // Non-instruction incoming values will have only one value. 4270 unsigned LastLane = 0; 4271 if (isa<Instruction>(IncomingValue)) 4272 LastLane = Cost->isUniformAfterVectorization( 4273 cast<Instruction>(IncomingValue), VF) 4274 ? 0 4275 : VF.getKnownMinValue() - 1; 4276 assert((!VF.isScalable() || LastLane == 0) && 4277 "scalable vectors dont support non-uniform scalars yet"); 4278 // Can be a loop invariant incoming value or the last scalar value to be 4279 // extracted from the vectorized loop. 4280 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4281 Value *lastIncomingValue = 4282 OrigLoop->isLoopInvariant(IncomingValue) 4283 ? IncomingValue 4284 : State.get(State.Plan->getVPValue(IncomingValue), 4285 VPIteration(UF - 1, LastLane)); 4286 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4287 } 4288 } 4289 4290 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4291 // The basic block and loop containing the predicated instruction. 4292 auto *PredBB = PredInst->getParent(); 4293 auto *VectorLoop = LI->getLoopFor(PredBB); 4294 4295 // Initialize a worklist with the operands of the predicated instruction. 4296 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4297 4298 // Holds instructions that we need to analyze again. An instruction may be 4299 // reanalyzed if we don't yet know if we can sink it or not. 4300 SmallVector<Instruction *, 8> InstsToReanalyze; 4301 4302 // Returns true if a given use occurs in the predicated block. Phi nodes use 4303 // their operands in their corresponding predecessor blocks. 4304 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4305 auto *I = cast<Instruction>(U.getUser()); 4306 BasicBlock *BB = I->getParent(); 4307 if (auto *Phi = dyn_cast<PHINode>(I)) 4308 BB = Phi->getIncomingBlock( 4309 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4310 return BB == PredBB; 4311 }; 4312 4313 // Iteratively sink the scalarized operands of the predicated instruction 4314 // into the block we created for it. When an instruction is sunk, it's 4315 // operands are then added to the worklist. The algorithm ends after one pass 4316 // through the worklist doesn't sink a single instruction. 4317 bool Changed; 4318 do { 4319 // Add the instructions that need to be reanalyzed to the worklist, and 4320 // reset the changed indicator. 4321 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4322 InstsToReanalyze.clear(); 4323 Changed = false; 4324 4325 while (!Worklist.empty()) { 4326 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4327 4328 // We can't sink an instruction if it is a phi node, is already in the 4329 // predicated block, is not in the loop, or may have side effects. 4330 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4331 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4332 continue; 4333 4334 // It's legal to sink the instruction if all its uses occur in the 4335 // predicated block. Otherwise, there's nothing to do yet, and we may 4336 // need to reanalyze the instruction. 4337 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4338 InstsToReanalyze.push_back(I); 4339 continue; 4340 } 4341 4342 // Move the instruction to the beginning of the predicated block, and add 4343 // it's operands to the worklist. 4344 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4345 Worklist.insert(I->op_begin(), I->op_end()); 4346 4347 // The sinking may have enabled other instructions to be sunk, so we will 4348 // need to iterate. 4349 Changed = true; 4350 } 4351 } while (Changed); 4352 } 4353 4354 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4355 for (PHINode *OrigPhi : OrigPHIsToFix) { 4356 PHINode *NewPhi = 4357 cast<PHINode>(State.get(State.Plan->getVPValue(OrigPhi), 0)); 4358 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4359 4360 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4361 predecessors(OrigPhi->getParent())); 4362 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4363 predecessors(NewPhi->getParent())); 4364 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4365 "Scalar and Vector BB should have the same number of predecessors"); 4366 4367 // The insertion point in Builder may be invalidated by the time we get 4368 // here. Force the Builder insertion point to something valid so that we do 4369 // not run into issues during insertion point restore in 4370 // State::get() calls below. 4371 Builder.SetInsertPoint(NewPhi); 4372 4373 // The predecessor order is preserved and we can rely on mapping between 4374 // scalar and vector block predecessors. 4375 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4376 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4377 4378 // When looking up the new scalar/vector values to fix up, use incoming 4379 // values from original phi. 4380 Value *ScIncV = 4381 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4382 4383 // Scalar incoming value may need a broadcast 4384 Value *NewIncV = State.get(State.Plan->getOrAddVPValue(ScIncV), 0); 4385 NewPhi->addIncoming(NewIncV, NewPredBB); 4386 } 4387 } 4388 } 4389 4390 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4391 VPUser &Operands, unsigned UF, 4392 ElementCount VF, bool IsPtrLoopInvariant, 4393 SmallBitVector &IsIndexLoopInvariant, 4394 VPTransformState &State) { 4395 // Construct a vector GEP by widening the operands of the scalar GEP as 4396 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4397 // results in a vector of pointers when at least one operand of the GEP 4398 // is vector-typed. Thus, to keep the representation compact, we only use 4399 // vector-typed operands for loop-varying values. 4400 4401 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4402 // If we are vectorizing, but the GEP has only loop-invariant operands, 4403 // the GEP we build (by only using vector-typed operands for 4404 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4405 // produce a vector of pointers, we need to either arbitrarily pick an 4406 // operand to broadcast, or broadcast a clone of the original GEP. 4407 // Here, we broadcast a clone of the original. 4408 // 4409 // TODO: If at some point we decide to scalarize instructions having 4410 // loop-invariant operands, this special case will no longer be 4411 // required. We would add the scalarization decision to 4412 // collectLoopScalars() and teach getVectorValue() to broadcast 4413 // the lane-zero scalar value. 4414 auto *Clone = Builder.Insert(GEP->clone()); 4415 for (unsigned Part = 0; Part < UF; ++Part) { 4416 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4417 State.set(VPDef, EntryPart, Part); 4418 addMetadata(EntryPart, GEP); 4419 } 4420 } else { 4421 // If the GEP has at least one loop-varying operand, we are sure to 4422 // produce a vector of pointers. But if we are only unrolling, we want 4423 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4424 // produce with the code below will be scalar (if VF == 1) or vector 4425 // (otherwise). Note that for the unroll-only case, we still maintain 4426 // values in the vector mapping with initVector, as we do for other 4427 // instructions. 4428 for (unsigned Part = 0; Part < UF; ++Part) { 4429 // The pointer operand of the new GEP. If it's loop-invariant, we 4430 // won't broadcast it. 4431 auto *Ptr = IsPtrLoopInvariant 4432 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4433 : State.get(Operands.getOperand(0), Part); 4434 4435 // Collect all the indices for the new GEP. If any index is 4436 // loop-invariant, we won't broadcast it. 4437 SmallVector<Value *, 4> Indices; 4438 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4439 VPValue *Operand = Operands.getOperand(I); 4440 if (IsIndexLoopInvariant[I - 1]) 4441 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4442 else 4443 Indices.push_back(State.get(Operand, Part)); 4444 } 4445 4446 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4447 // but it should be a vector, otherwise. 4448 auto *NewGEP = 4449 GEP->isInBounds() 4450 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4451 Indices) 4452 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4453 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4454 "NewGEP is not a pointer vector"); 4455 State.set(VPDef, NewGEP, Part); 4456 addMetadata(NewGEP, GEP); 4457 } 4458 } 4459 } 4460 4461 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4462 RecurrenceDescriptor *RdxDesc, 4463 Value *StartV, VPValue *Def, 4464 VPTransformState &State) { 4465 PHINode *P = cast<PHINode>(PN); 4466 if (EnableVPlanNativePath) { 4467 // Currently we enter here in the VPlan-native path for non-induction 4468 // PHIs where all control flow is uniform. We simply widen these PHIs. 4469 // Create a vector phi with no operands - the vector phi operands will be 4470 // set at the end of vector code generation. 4471 Type *VecTy = (State.VF.isScalar()) 4472 ? PN->getType() 4473 : VectorType::get(PN->getType(), State.VF); 4474 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4475 State.set(Def, VecPhi, 0); 4476 OrigPHIsToFix.push_back(P); 4477 4478 return; 4479 } 4480 4481 assert(PN->getParent() == OrigLoop->getHeader() && 4482 "Non-header phis should have been handled elsewhere"); 4483 4484 // In order to support recurrences we need to be able to vectorize Phi nodes. 4485 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4486 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4487 // this value when we vectorize all of the instructions that use the PHI. 4488 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4489 Value *Iden = nullptr; 4490 bool ScalarPHI = 4491 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4492 Type *VecTy = 4493 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4494 4495 if (RdxDesc) { 4496 assert(Legal->isReductionVariable(P) && StartV && 4497 "RdxDesc should only be set for reduction variables; in that case " 4498 "a StartV is also required"); 4499 RecurKind RK = RdxDesc->getRecurrenceKind(); 4500 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4501 // MinMax reduction have the start value as their identify. 4502 if (ScalarPHI) { 4503 Iden = StartV; 4504 } else { 4505 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4506 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4507 StartV = Iden = 4508 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4509 } 4510 } else { 4511 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4512 RK, VecTy->getScalarType()); 4513 Iden = IdenC; 4514 4515 if (!ScalarPHI) { 4516 Iden = ConstantVector::getSplat(State.VF, IdenC); 4517 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4518 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4519 Constant *Zero = Builder.getInt32(0); 4520 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4521 } 4522 } 4523 } 4524 4525 for (unsigned Part = 0; Part < State.UF; ++Part) { 4526 // This is phase one of vectorizing PHIs. 4527 Value *EntryPart = PHINode::Create( 4528 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4529 State.set(Def, EntryPart, Part); 4530 if (StartV) { 4531 // Make sure to add the reduction start value only to the 4532 // first unroll part. 4533 Value *StartVal = (Part == 0) ? StartV : Iden; 4534 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4535 } 4536 } 4537 return; 4538 } 4539 4540 assert(!Legal->isReductionVariable(P) && 4541 "reductions should be handled above"); 4542 4543 setDebugLocFromInst(Builder, P); 4544 4545 // This PHINode must be an induction variable. 4546 // Make sure that we know about it. 4547 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4548 4549 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4550 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4551 4552 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4553 // which can be found from the original scalar operations. 4554 switch (II.getKind()) { 4555 case InductionDescriptor::IK_NoInduction: 4556 llvm_unreachable("Unknown induction"); 4557 case InductionDescriptor::IK_IntInduction: 4558 case InductionDescriptor::IK_FpInduction: 4559 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4560 case InductionDescriptor::IK_PtrInduction: { 4561 // Handle the pointer induction variable case. 4562 assert(P->getType()->isPointerTy() && "Unexpected type."); 4563 4564 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4565 // This is the normalized GEP that starts counting at zero. 4566 Value *PtrInd = 4567 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4568 // Determine the number of scalars we need to generate for each unroll 4569 // iteration. If the instruction is uniform, we only need to generate the 4570 // first lane. Otherwise, we generate all VF values. 4571 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4572 ? 1 4573 : State.VF.getKnownMinValue(); 4574 for (unsigned Part = 0; Part < UF; ++Part) { 4575 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4576 Constant *Idx = ConstantInt::get( 4577 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4578 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4579 Value *SclrGep = 4580 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4581 SclrGep->setName("next.gep"); 4582 State.set(Def, SclrGep, VPIteration(Part, Lane)); 4583 } 4584 } 4585 return; 4586 } 4587 assert(isa<SCEVConstant>(II.getStep()) && 4588 "Induction step not a SCEV constant!"); 4589 Type *PhiType = II.getStep()->getType(); 4590 4591 // Build a pointer phi 4592 Value *ScalarStartValue = II.getStartValue(); 4593 Type *ScStValueType = ScalarStartValue->getType(); 4594 PHINode *NewPointerPhi = 4595 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4596 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4597 4598 // A pointer induction, performed by using a gep 4599 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4600 Instruction *InductionLoc = LoopLatch->getTerminator(); 4601 const SCEV *ScalarStep = II.getStep(); 4602 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4603 Value *ScalarStepValue = 4604 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4605 Value *InductionGEP = GetElementPtrInst::Create( 4606 ScStValueType->getPointerElementType(), NewPointerPhi, 4607 Builder.CreateMul( 4608 ScalarStepValue, 4609 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4610 "ptr.ind", InductionLoc); 4611 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4612 4613 // Create UF many actual address geps that use the pointer 4614 // phi as base and a vectorized version of the step value 4615 // (<step*0, ..., step*N>) as offset. 4616 for (unsigned Part = 0; Part < State.UF; ++Part) { 4617 SmallVector<Constant *, 8> Indices; 4618 // Create a vector of consecutive numbers from zero to VF. 4619 for (unsigned i = 0; i < State.VF.getKnownMinValue(); ++i) 4620 Indices.push_back( 4621 ConstantInt::get(PhiType, i + Part * State.VF.getKnownMinValue())); 4622 Constant *StartOffset = ConstantVector::get(Indices); 4623 4624 Value *GEP = Builder.CreateGEP( 4625 ScStValueType->getPointerElementType(), NewPointerPhi, 4626 Builder.CreateMul(StartOffset, 4627 Builder.CreateVectorSplat( 4628 State.VF.getKnownMinValue(), ScalarStepValue), 4629 "vector.gep")); 4630 State.set(Def, GEP, Part); 4631 } 4632 } 4633 } 4634 } 4635 4636 /// A helper function for checking whether an integer division-related 4637 /// instruction may divide by zero (in which case it must be predicated if 4638 /// executed conditionally in the scalar code). 4639 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4640 /// Non-zero divisors that are non compile-time constants will not be 4641 /// converted into multiplication, so we will still end up scalarizing 4642 /// the division, but can do so w/o predication. 4643 static bool mayDivideByZero(Instruction &I) { 4644 assert((I.getOpcode() == Instruction::UDiv || 4645 I.getOpcode() == Instruction::SDiv || 4646 I.getOpcode() == Instruction::URem || 4647 I.getOpcode() == Instruction::SRem) && 4648 "Unexpected instruction"); 4649 Value *Divisor = I.getOperand(1); 4650 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4651 return !CInt || CInt->isZero(); 4652 } 4653 4654 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4655 VPUser &User, 4656 VPTransformState &State) { 4657 switch (I.getOpcode()) { 4658 case Instruction::Call: 4659 case Instruction::Br: 4660 case Instruction::PHI: 4661 case Instruction::GetElementPtr: 4662 case Instruction::Select: 4663 llvm_unreachable("This instruction is handled by a different recipe."); 4664 case Instruction::UDiv: 4665 case Instruction::SDiv: 4666 case Instruction::SRem: 4667 case Instruction::URem: 4668 case Instruction::Add: 4669 case Instruction::FAdd: 4670 case Instruction::Sub: 4671 case Instruction::FSub: 4672 case Instruction::FNeg: 4673 case Instruction::Mul: 4674 case Instruction::FMul: 4675 case Instruction::FDiv: 4676 case Instruction::FRem: 4677 case Instruction::Shl: 4678 case Instruction::LShr: 4679 case Instruction::AShr: 4680 case Instruction::And: 4681 case Instruction::Or: 4682 case Instruction::Xor: { 4683 // Just widen unops and binops. 4684 setDebugLocFromInst(Builder, &I); 4685 4686 for (unsigned Part = 0; Part < UF; ++Part) { 4687 SmallVector<Value *, 2> Ops; 4688 for (VPValue *VPOp : User.operands()) 4689 Ops.push_back(State.get(VPOp, Part)); 4690 4691 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4692 4693 if (auto *VecOp = dyn_cast<Instruction>(V)) 4694 VecOp->copyIRFlags(&I); 4695 4696 // Use this vector value for all users of the original instruction. 4697 State.set(Def, V, Part); 4698 addMetadata(V, &I); 4699 } 4700 4701 break; 4702 } 4703 case Instruction::ICmp: 4704 case Instruction::FCmp: { 4705 // Widen compares. Generate vector compares. 4706 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4707 auto *Cmp = cast<CmpInst>(&I); 4708 setDebugLocFromInst(Builder, Cmp); 4709 for (unsigned Part = 0; Part < UF; ++Part) { 4710 Value *A = State.get(User.getOperand(0), Part); 4711 Value *B = State.get(User.getOperand(1), Part); 4712 Value *C = nullptr; 4713 if (FCmp) { 4714 // Propagate fast math flags. 4715 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4716 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4717 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4718 } else { 4719 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4720 } 4721 State.set(Def, C, Part); 4722 addMetadata(C, &I); 4723 } 4724 4725 break; 4726 } 4727 4728 case Instruction::ZExt: 4729 case Instruction::SExt: 4730 case Instruction::FPToUI: 4731 case Instruction::FPToSI: 4732 case Instruction::FPExt: 4733 case Instruction::PtrToInt: 4734 case Instruction::IntToPtr: 4735 case Instruction::SIToFP: 4736 case Instruction::UIToFP: 4737 case Instruction::Trunc: 4738 case Instruction::FPTrunc: 4739 case Instruction::BitCast: { 4740 auto *CI = cast<CastInst>(&I); 4741 setDebugLocFromInst(Builder, CI); 4742 4743 /// Vectorize casts. 4744 Type *DestTy = 4745 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4746 4747 for (unsigned Part = 0; Part < UF; ++Part) { 4748 Value *A = State.get(User.getOperand(0), Part); 4749 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4750 State.set(Def, Cast, Part); 4751 addMetadata(Cast, &I); 4752 } 4753 break; 4754 } 4755 default: 4756 // This instruction is not vectorized by simple widening. 4757 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4758 llvm_unreachable("Unhandled instruction!"); 4759 } // end of switch. 4760 } 4761 4762 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4763 VPUser &ArgOperands, 4764 VPTransformState &State) { 4765 assert(!isa<DbgInfoIntrinsic>(I) && 4766 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4767 setDebugLocFromInst(Builder, &I); 4768 4769 Module *M = I.getParent()->getParent()->getParent(); 4770 auto *CI = cast<CallInst>(&I); 4771 4772 SmallVector<Type *, 4> Tys; 4773 for (Value *ArgOperand : CI->arg_operands()) 4774 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4775 4776 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4777 4778 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4779 // version of the instruction. 4780 // Is it beneficial to perform intrinsic call compared to lib call? 4781 bool NeedToScalarize = false; 4782 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4783 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4784 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4785 assert((UseVectorIntrinsic || !NeedToScalarize) && 4786 "Instruction should be scalarized elsewhere."); 4787 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4788 "Cannot have invalid costs while widening"); 4789 4790 for (unsigned Part = 0; Part < UF; ++Part) { 4791 SmallVector<Value *, 4> Args; 4792 for (auto &I : enumerate(ArgOperands.operands())) { 4793 // Some intrinsics have a scalar argument - don't replace it with a 4794 // vector. 4795 Value *Arg; 4796 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4797 Arg = State.get(I.value(), Part); 4798 else 4799 Arg = State.get(I.value(), VPIteration(0, 0)); 4800 Args.push_back(Arg); 4801 } 4802 4803 Function *VectorF; 4804 if (UseVectorIntrinsic) { 4805 // Use vector version of the intrinsic. 4806 Type *TysForDecl[] = {CI->getType()}; 4807 if (VF.isVector()) 4808 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4809 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4810 assert(VectorF && "Can't retrieve vector intrinsic."); 4811 } else { 4812 // Use vector version of the function call. 4813 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4814 #ifndef NDEBUG 4815 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4816 "Can't create vector function."); 4817 #endif 4818 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4819 } 4820 SmallVector<OperandBundleDef, 1> OpBundles; 4821 CI->getOperandBundlesAsDefs(OpBundles); 4822 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4823 4824 if (isa<FPMathOperator>(V)) 4825 V->copyFastMathFlags(CI); 4826 4827 State.set(Def, V, Part); 4828 addMetadata(V, &I); 4829 } 4830 } 4831 4832 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4833 VPUser &Operands, 4834 bool InvariantCond, 4835 VPTransformState &State) { 4836 setDebugLocFromInst(Builder, &I); 4837 4838 // The condition can be loop invariant but still defined inside the 4839 // loop. This means that we can't just use the original 'cond' value. 4840 // We have to take the 'vectorized' value and pick the first lane. 4841 // Instcombine will make this a no-op. 4842 auto *InvarCond = InvariantCond 4843 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4844 : nullptr; 4845 4846 for (unsigned Part = 0; Part < UF; ++Part) { 4847 Value *Cond = 4848 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4849 Value *Op0 = State.get(Operands.getOperand(1), Part); 4850 Value *Op1 = State.get(Operands.getOperand(2), Part); 4851 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4852 State.set(VPDef, Sel, Part); 4853 addMetadata(Sel, &I); 4854 } 4855 } 4856 4857 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4858 // We should not collect Scalars more than once per VF. Right now, this 4859 // function is called from collectUniformsAndScalars(), which already does 4860 // this check. Collecting Scalars for VF=1 does not make any sense. 4861 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4862 "This function should not be visited twice for the same VF"); 4863 4864 SmallSetVector<Instruction *, 8> Worklist; 4865 4866 // These sets are used to seed the analysis with pointers used by memory 4867 // accesses that will remain scalar. 4868 SmallSetVector<Instruction *, 8> ScalarPtrs; 4869 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4870 auto *Latch = TheLoop->getLoopLatch(); 4871 4872 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4873 // The pointer operands of loads and stores will be scalar as long as the 4874 // memory access is not a gather or scatter operation. The value operand of a 4875 // store will remain scalar if the store is scalarized. 4876 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4877 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4878 assert(WideningDecision != CM_Unknown && 4879 "Widening decision should be ready at this moment"); 4880 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4881 if (Ptr == Store->getValueOperand()) 4882 return WideningDecision == CM_Scalarize; 4883 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4884 "Ptr is neither a value or pointer operand"); 4885 return WideningDecision != CM_GatherScatter; 4886 }; 4887 4888 // A helper that returns true if the given value is a bitcast or 4889 // getelementptr instruction contained in the loop. 4890 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4891 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4892 isa<GetElementPtrInst>(V)) && 4893 !TheLoop->isLoopInvariant(V); 4894 }; 4895 4896 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4897 if (!isa<PHINode>(Ptr) || 4898 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4899 return false; 4900 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4901 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4902 return false; 4903 return isScalarUse(MemAccess, Ptr); 4904 }; 4905 4906 // A helper that evaluates a memory access's use of a pointer. If the 4907 // pointer is actually the pointer induction of a loop, it is being 4908 // inserted into Worklist. If the use will be a scalar use, and the 4909 // pointer is only used by memory accesses, we place the pointer in 4910 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4911 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4912 if (isScalarPtrInduction(MemAccess, Ptr)) { 4913 Worklist.insert(cast<Instruction>(Ptr)); 4914 Instruction *Update = cast<Instruction>( 4915 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4916 Worklist.insert(Update); 4917 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4918 << "\n"); 4919 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4920 << "\n"); 4921 return; 4922 } 4923 // We only care about bitcast and getelementptr instructions contained in 4924 // the loop. 4925 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4926 return; 4927 4928 // If the pointer has already been identified as scalar (e.g., if it was 4929 // also identified as uniform), there's nothing to do. 4930 auto *I = cast<Instruction>(Ptr); 4931 if (Worklist.count(I)) 4932 return; 4933 4934 // If the use of the pointer will be a scalar use, and all users of the 4935 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4936 // place the pointer in PossibleNonScalarPtrs. 4937 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4938 return isa<LoadInst>(U) || isa<StoreInst>(U); 4939 })) 4940 ScalarPtrs.insert(I); 4941 else 4942 PossibleNonScalarPtrs.insert(I); 4943 }; 4944 4945 // We seed the scalars analysis with three classes of instructions: (1) 4946 // instructions marked uniform-after-vectorization and (2) bitcast, 4947 // getelementptr and (pointer) phi instructions used by memory accesses 4948 // requiring a scalar use. 4949 // 4950 // (1) Add to the worklist all instructions that have been identified as 4951 // uniform-after-vectorization. 4952 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4953 4954 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4955 // memory accesses requiring a scalar use. The pointer operands of loads and 4956 // stores will be scalar as long as the memory accesses is not a gather or 4957 // scatter operation. The value operand of a store will remain scalar if the 4958 // store is scalarized. 4959 for (auto *BB : TheLoop->blocks()) 4960 for (auto &I : *BB) { 4961 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4962 evaluatePtrUse(Load, Load->getPointerOperand()); 4963 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4964 evaluatePtrUse(Store, Store->getPointerOperand()); 4965 evaluatePtrUse(Store, Store->getValueOperand()); 4966 } 4967 } 4968 for (auto *I : ScalarPtrs) 4969 if (!PossibleNonScalarPtrs.count(I)) { 4970 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4971 Worklist.insert(I); 4972 } 4973 4974 // Insert the forced scalars. 4975 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4976 // induction variable when the PHI user is scalarized. 4977 auto ForcedScalar = ForcedScalars.find(VF); 4978 if (ForcedScalar != ForcedScalars.end()) 4979 for (auto *I : ForcedScalar->second) 4980 Worklist.insert(I); 4981 4982 // Expand the worklist by looking through any bitcasts and getelementptr 4983 // instructions we've already identified as scalar. This is similar to the 4984 // expansion step in collectLoopUniforms(); however, here we're only 4985 // expanding to include additional bitcasts and getelementptr instructions. 4986 unsigned Idx = 0; 4987 while (Idx != Worklist.size()) { 4988 Instruction *Dst = Worklist[Idx++]; 4989 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4990 continue; 4991 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4992 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4993 auto *J = cast<Instruction>(U); 4994 return !TheLoop->contains(J) || Worklist.count(J) || 4995 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4996 isScalarUse(J, Src)); 4997 })) { 4998 Worklist.insert(Src); 4999 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5000 } 5001 } 5002 5003 // An induction variable will remain scalar if all users of the induction 5004 // variable and induction variable update remain scalar. 5005 for (auto &Induction : Legal->getInductionVars()) { 5006 auto *Ind = Induction.first; 5007 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5008 5009 // If tail-folding is applied, the primary induction variable will be used 5010 // to feed a vector compare. 5011 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5012 continue; 5013 5014 // Determine if all users of the induction variable are scalar after 5015 // vectorization. 5016 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5017 auto *I = cast<Instruction>(U); 5018 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5019 }); 5020 if (!ScalarInd) 5021 continue; 5022 5023 // Determine if all users of the induction variable update instruction are 5024 // scalar after vectorization. 5025 auto ScalarIndUpdate = 5026 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5027 auto *I = cast<Instruction>(U); 5028 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5029 }); 5030 if (!ScalarIndUpdate) 5031 continue; 5032 5033 // The induction variable and its update instruction will remain scalar. 5034 Worklist.insert(Ind); 5035 Worklist.insert(IndUpdate); 5036 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5037 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5038 << "\n"); 5039 } 5040 5041 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5042 } 5043 5044 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5045 ElementCount VF) { 5046 if (!blockNeedsPredication(I->getParent())) 5047 return false; 5048 switch(I->getOpcode()) { 5049 default: 5050 break; 5051 case Instruction::Load: 5052 case Instruction::Store: { 5053 if (!Legal->isMaskRequired(I)) 5054 return false; 5055 auto *Ptr = getLoadStorePointerOperand(I); 5056 auto *Ty = getMemInstValueType(I); 5057 // We have already decided how to vectorize this instruction, get that 5058 // result. 5059 if (VF.isVector()) { 5060 InstWidening WideningDecision = getWideningDecision(I, VF); 5061 assert(WideningDecision != CM_Unknown && 5062 "Widening decision should be ready at this moment"); 5063 return WideningDecision == CM_Scalarize; 5064 } 5065 const Align Alignment = getLoadStoreAlignment(I); 5066 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5067 isLegalMaskedGather(Ty, Alignment)) 5068 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5069 isLegalMaskedScatter(Ty, Alignment)); 5070 } 5071 case Instruction::UDiv: 5072 case Instruction::SDiv: 5073 case Instruction::SRem: 5074 case Instruction::URem: 5075 return mayDivideByZero(*I); 5076 } 5077 return false; 5078 } 5079 5080 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5081 Instruction *I, ElementCount VF) { 5082 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5083 assert(getWideningDecision(I, VF) == CM_Unknown && 5084 "Decision should not be set yet."); 5085 auto *Group = getInterleavedAccessGroup(I); 5086 assert(Group && "Must have a group."); 5087 5088 // If the instruction's allocated size doesn't equal it's type size, it 5089 // requires padding and will be scalarized. 5090 auto &DL = I->getModule()->getDataLayout(); 5091 auto *ScalarTy = getMemInstValueType(I); 5092 if (hasIrregularType(ScalarTy, DL, VF)) 5093 return false; 5094 5095 // Check if masking is required. 5096 // A Group may need masking for one of two reasons: it resides in a block that 5097 // needs predication, or it was decided to use masking to deal with gaps. 5098 bool PredicatedAccessRequiresMasking = 5099 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5100 bool AccessWithGapsRequiresMasking = 5101 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5102 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5103 return true; 5104 5105 // If masked interleaving is required, we expect that the user/target had 5106 // enabled it, because otherwise it either wouldn't have been created or 5107 // it should have been invalidated by the CostModel. 5108 assert(useMaskedInterleavedAccesses(TTI) && 5109 "Masked interleave-groups for predicated accesses are not enabled."); 5110 5111 auto *Ty = getMemInstValueType(I); 5112 const Align Alignment = getLoadStoreAlignment(I); 5113 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5114 : TTI.isLegalMaskedStore(Ty, Alignment); 5115 } 5116 5117 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5118 Instruction *I, ElementCount VF) { 5119 // Get and ensure we have a valid memory instruction. 5120 LoadInst *LI = dyn_cast<LoadInst>(I); 5121 StoreInst *SI = dyn_cast<StoreInst>(I); 5122 assert((LI || SI) && "Invalid memory instruction"); 5123 5124 auto *Ptr = getLoadStorePointerOperand(I); 5125 5126 // In order to be widened, the pointer should be consecutive, first of all. 5127 if (!Legal->isConsecutivePtr(Ptr)) 5128 return false; 5129 5130 // If the instruction is a store located in a predicated block, it will be 5131 // scalarized. 5132 if (isScalarWithPredication(I)) 5133 return false; 5134 5135 // If the instruction's allocated size doesn't equal it's type size, it 5136 // requires padding and will be scalarized. 5137 auto &DL = I->getModule()->getDataLayout(); 5138 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5139 if (hasIrregularType(ScalarTy, DL, VF)) 5140 return false; 5141 5142 return true; 5143 } 5144 5145 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5146 // We should not collect Uniforms more than once per VF. Right now, 5147 // this function is called from collectUniformsAndScalars(), which 5148 // already does this check. Collecting Uniforms for VF=1 does not make any 5149 // sense. 5150 5151 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5152 "This function should not be visited twice for the same VF"); 5153 5154 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5155 // not analyze again. Uniforms.count(VF) will return 1. 5156 Uniforms[VF].clear(); 5157 5158 // We now know that the loop is vectorizable! 5159 // Collect instructions inside the loop that will remain uniform after 5160 // vectorization. 5161 5162 // Global values, params and instructions outside of current loop are out of 5163 // scope. 5164 auto isOutOfScope = [&](Value *V) -> bool { 5165 Instruction *I = dyn_cast<Instruction>(V); 5166 return (!I || !TheLoop->contains(I)); 5167 }; 5168 5169 SetVector<Instruction *> Worklist; 5170 BasicBlock *Latch = TheLoop->getLoopLatch(); 5171 5172 // Instructions that are scalar with predication must not be considered 5173 // uniform after vectorization, because that would create an erroneous 5174 // replicating region where only a single instance out of VF should be formed. 5175 // TODO: optimize such seldom cases if found important, see PR40816. 5176 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5177 if (isOutOfScope(I)) { 5178 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5179 << *I << "\n"); 5180 return; 5181 } 5182 if (isScalarWithPredication(I, VF)) { 5183 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5184 << *I << "\n"); 5185 return; 5186 } 5187 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5188 Worklist.insert(I); 5189 }; 5190 5191 // Start with the conditional branch. If the branch condition is an 5192 // instruction contained in the loop that is only used by the branch, it is 5193 // uniform. 5194 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5195 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5196 addToWorklistIfAllowed(Cmp); 5197 5198 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5199 InstWidening WideningDecision = getWideningDecision(I, VF); 5200 assert(WideningDecision != CM_Unknown && 5201 "Widening decision should be ready at this moment"); 5202 5203 // A uniform memory op is itself uniform. We exclude uniform stores 5204 // here as they demand the last lane, not the first one. 5205 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5206 assert(WideningDecision == CM_Scalarize); 5207 return true; 5208 } 5209 5210 return (WideningDecision == CM_Widen || 5211 WideningDecision == CM_Widen_Reverse || 5212 WideningDecision == CM_Interleave); 5213 }; 5214 5215 5216 // Returns true if Ptr is the pointer operand of a memory access instruction 5217 // I, and I is known to not require scalarization. 5218 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5219 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5220 }; 5221 5222 // Holds a list of values which are known to have at least one uniform use. 5223 // Note that there may be other uses which aren't uniform. A "uniform use" 5224 // here is something which only demands lane 0 of the unrolled iterations; 5225 // it does not imply that all lanes produce the same value (e.g. this is not 5226 // the usual meaning of uniform) 5227 SmallPtrSet<Value *, 8> HasUniformUse; 5228 5229 // Scan the loop for instructions which are either a) known to have only 5230 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5231 for (auto *BB : TheLoop->blocks()) 5232 for (auto &I : *BB) { 5233 // If there's no pointer operand, there's nothing to do. 5234 auto *Ptr = getLoadStorePointerOperand(&I); 5235 if (!Ptr) 5236 continue; 5237 5238 // A uniform memory op is itself uniform. We exclude uniform stores 5239 // here as they demand the last lane, not the first one. 5240 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5241 addToWorklistIfAllowed(&I); 5242 5243 if (isUniformDecision(&I, VF)) { 5244 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5245 HasUniformUse.insert(Ptr); 5246 } 5247 } 5248 5249 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5250 // demanding) users. Since loops are assumed to be in LCSSA form, this 5251 // disallows uses outside the loop as well. 5252 for (auto *V : HasUniformUse) { 5253 if (isOutOfScope(V)) 5254 continue; 5255 auto *I = cast<Instruction>(V); 5256 auto UsersAreMemAccesses = 5257 llvm::all_of(I->users(), [&](User *U) -> bool { 5258 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5259 }); 5260 if (UsersAreMemAccesses) 5261 addToWorklistIfAllowed(I); 5262 } 5263 5264 // Expand Worklist in topological order: whenever a new instruction 5265 // is added , its users should be already inside Worklist. It ensures 5266 // a uniform instruction will only be used by uniform instructions. 5267 unsigned idx = 0; 5268 while (idx != Worklist.size()) { 5269 Instruction *I = Worklist[idx++]; 5270 5271 for (auto OV : I->operand_values()) { 5272 // isOutOfScope operands cannot be uniform instructions. 5273 if (isOutOfScope(OV)) 5274 continue; 5275 // First order recurrence Phi's should typically be considered 5276 // non-uniform. 5277 auto *OP = dyn_cast<PHINode>(OV); 5278 if (OP && Legal->isFirstOrderRecurrence(OP)) 5279 continue; 5280 // If all the users of the operand are uniform, then add the 5281 // operand into the uniform worklist. 5282 auto *OI = cast<Instruction>(OV); 5283 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5284 auto *J = cast<Instruction>(U); 5285 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5286 })) 5287 addToWorklistIfAllowed(OI); 5288 } 5289 } 5290 5291 // For an instruction to be added into Worklist above, all its users inside 5292 // the loop should also be in Worklist. However, this condition cannot be 5293 // true for phi nodes that form a cyclic dependence. We must process phi 5294 // nodes separately. An induction variable will remain uniform if all users 5295 // of the induction variable and induction variable update remain uniform. 5296 // The code below handles both pointer and non-pointer induction variables. 5297 for (auto &Induction : Legal->getInductionVars()) { 5298 auto *Ind = Induction.first; 5299 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5300 5301 // Determine if all users of the induction variable are uniform after 5302 // vectorization. 5303 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5304 auto *I = cast<Instruction>(U); 5305 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5306 isVectorizedMemAccessUse(I, Ind); 5307 }); 5308 if (!UniformInd) 5309 continue; 5310 5311 // Determine if all users of the induction variable update instruction are 5312 // uniform after vectorization. 5313 auto UniformIndUpdate = 5314 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5315 auto *I = cast<Instruction>(U); 5316 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5317 isVectorizedMemAccessUse(I, IndUpdate); 5318 }); 5319 if (!UniformIndUpdate) 5320 continue; 5321 5322 // The induction variable and its update instruction will remain uniform. 5323 addToWorklistIfAllowed(Ind); 5324 addToWorklistIfAllowed(IndUpdate); 5325 } 5326 5327 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5328 } 5329 5330 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5331 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5332 5333 if (Legal->getRuntimePointerChecking()->Need) { 5334 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5335 "runtime pointer checks needed. Enable vectorization of this " 5336 "loop with '#pragma clang loop vectorize(enable)' when " 5337 "compiling with -Os/-Oz", 5338 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5339 return true; 5340 } 5341 5342 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5343 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5344 "runtime SCEV checks needed. Enable vectorization of this " 5345 "loop with '#pragma clang loop vectorize(enable)' when " 5346 "compiling with -Os/-Oz", 5347 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5348 return true; 5349 } 5350 5351 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5352 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5353 reportVectorizationFailure("Runtime stride check for small trip count", 5354 "runtime stride == 1 checks needed. Enable vectorization of " 5355 "this loop without such check by compiling with -Os/-Oz", 5356 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5357 return true; 5358 } 5359 5360 return false; 5361 } 5362 5363 Optional<ElementCount> 5364 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5365 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5366 // TODO: It may by useful to do since it's still likely to be dynamically 5367 // uniform if the target can skip. 5368 reportVectorizationFailure( 5369 "Not inserting runtime ptr check for divergent target", 5370 "runtime pointer checks needed. Not enabled for divergent target", 5371 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5372 return None; 5373 } 5374 5375 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5376 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5377 if (TC == 1) { 5378 reportVectorizationFailure("Single iteration (non) loop", 5379 "loop trip count is one, irrelevant for vectorization", 5380 "SingleIterationLoop", ORE, TheLoop); 5381 return None; 5382 } 5383 5384 switch (ScalarEpilogueStatus) { 5385 case CM_ScalarEpilogueAllowed: 5386 return computeFeasibleMaxVF(TC, UserVF); 5387 case CM_ScalarEpilogueNotAllowedUsePredicate: 5388 LLVM_FALLTHROUGH; 5389 case CM_ScalarEpilogueNotNeededUsePredicate: 5390 LLVM_DEBUG( 5391 dbgs() << "LV: vector predicate hint/switch found.\n" 5392 << "LV: Not allowing scalar epilogue, creating predicated " 5393 << "vector loop.\n"); 5394 break; 5395 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5396 // fallthrough as a special case of OptForSize 5397 case CM_ScalarEpilogueNotAllowedOptSize: 5398 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5399 LLVM_DEBUG( 5400 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5401 else 5402 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5403 << "count.\n"); 5404 5405 // Bail if runtime checks are required, which are not good when optimising 5406 // for size. 5407 if (runtimeChecksRequired()) 5408 return None; 5409 5410 break; 5411 } 5412 5413 // The only loops we can vectorize without a scalar epilogue, are loops with 5414 // a bottom-test and a single exiting block. We'd have to handle the fact 5415 // that not every instruction executes on the last iteration. This will 5416 // require a lane mask which varies through the vector loop body. (TODO) 5417 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5418 // If there was a tail-folding hint/switch, but we can't fold the tail by 5419 // masking, fallback to a vectorization with a scalar epilogue. 5420 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5421 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5422 "scalar epilogue instead.\n"); 5423 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5424 return computeFeasibleMaxVF(TC, UserVF); 5425 } 5426 return None; 5427 } 5428 5429 // Now try the tail folding 5430 5431 // Invalidate interleave groups that require an epilogue if we can't mask 5432 // the interleave-group. 5433 if (!useMaskedInterleavedAccesses(TTI)) { 5434 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5435 "No decisions should have been taken at this point"); 5436 // Note: There is no need to invalidate any cost modeling decisions here, as 5437 // non where taken so far. 5438 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5439 } 5440 5441 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5442 assert(!MaxVF.isScalable() && 5443 "Scalable vectors do not yet support tail folding"); 5444 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5445 "MaxVF must be a power of 2"); 5446 unsigned MaxVFtimesIC = 5447 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5448 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5449 // chose. 5450 ScalarEvolution *SE = PSE.getSE(); 5451 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5452 const SCEV *ExitCount = SE->getAddExpr( 5453 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5454 const SCEV *Rem = SE->getURemExpr( 5455 SE->applyLoopGuards(ExitCount, TheLoop), 5456 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5457 if (Rem->isZero()) { 5458 // Accept MaxVF if we do not have a tail. 5459 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5460 return MaxVF; 5461 } 5462 5463 // If we don't know the precise trip count, or if the trip count that we 5464 // found modulo the vectorization factor is not zero, try to fold the tail 5465 // by masking. 5466 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5467 if (Legal->prepareToFoldTailByMasking()) { 5468 FoldTailByMasking = true; 5469 return MaxVF; 5470 } 5471 5472 // If there was a tail-folding hint/switch, but we can't fold the tail by 5473 // masking, fallback to a vectorization with a scalar epilogue. 5474 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5475 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5476 "scalar epilogue instead.\n"); 5477 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5478 return MaxVF; 5479 } 5480 5481 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5482 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5483 return None; 5484 } 5485 5486 if (TC == 0) { 5487 reportVectorizationFailure( 5488 "Unable to calculate the loop count due to complex control flow", 5489 "unable to calculate the loop count due to complex control flow", 5490 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5491 return None; 5492 } 5493 5494 reportVectorizationFailure( 5495 "Cannot optimize for size and vectorize at the same time.", 5496 "cannot optimize for size and vectorize at the same time. " 5497 "Enable vectorization of this loop with '#pragma clang loop " 5498 "vectorize(enable)' when compiling with -Os/-Oz", 5499 "NoTailLoopWithOptForSize", ORE, TheLoop); 5500 return None; 5501 } 5502 5503 ElementCount 5504 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5505 ElementCount UserVF) { 5506 bool IgnoreScalableUserVF = UserVF.isScalable() && 5507 !TTI.supportsScalableVectors() && 5508 !ForceTargetSupportsScalableVectors; 5509 if (IgnoreScalableUserVF) { 5510 LLVM_DEBUG( 5511 dbgs() << "LV: Ignoring VF=" << UserVF 5512 << " because target does not support scalable vectors.\n"); 5513 ORE->emit([&]() { 5514 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5515 TheLoop->getStartLoc(), 5516 TheLoop->getHeader()) 5517 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5518 << " because target does not support scalable vectors."; 5519 }); 5520 } 5521 5522 // Beyond this point two scenarios are handled. If UserVF isn't specified 5523 // then a suitable VF is chosen. If UserVF is specified and there are 5524 // dependencies, check if it's legal. However, if a UserVF is specified and 5525 // there are no dependencies, then there's nothing to do. 5526 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5527 if (!canVectorizeReductions(UserVF)) { 5528 reportVectorizationFailure( 5529 "LV: Scalable vectorization not supported for the reduction " 5530 "operations found in this loop. Using fixed-width " 5531 "vectorization instead.", 5532 "Scalable vectorization not supported for the reduction operations " 5533 "found in this loop. Using fixed-width vectorization instead.", 5534 "ScalableVFUnfeasible", ORE, TheLoop); 5535 return computeFeasibleMaxVF( 5536 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5537 } 5538 5539 if (Legal->isSafeForAnyVectorWidth()) 5540 return UserVF; 5541 } 5542 5543 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5544 unsigned SmallestType, WidestType; 5545 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5546 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5547 5548 // Get the maximum safe dependence distance in bits computed by LAA. 5549 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5550 // the memory accesses that is most restrictive (involved in the smallest 5551 // dependence distance). 5552 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5553 5554 // If the user vectorization factor is legally unsafe, clamp it to a safe 5555 // value. Otherwise, return as is. 5556 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5557 unsigned MaxSafeElements = 5558 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5559 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5560 5561 if (UserVF.isScalable()) { 5562 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5563 5564 // Scale VF by vscale before checking if it's safe. 5565 MaxSafeVF = ElementCount::getScalable( 5566 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5567 5568 if (MaxSafeVF.isZero()) { 5569 // The dependence distance is too small to use scalable vectors, 5570 // fallback on fixed. 5571 LLVM_DEBUG( 5572 dbgs() 5573 << "LV: Max legal vector width too small, scalable vectorization " 5574 "unfeasible. Using fixed-width vectorization instead.\n"); 5575 ORE->emit([&]() { 5576 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5577 TheLoop->getStartLoc(), 5578 TheLoop->getHeader()) 5579 << "Max legal vector width too small, scalable vectorization " 5580 << "unfeasible. Using fixed-width vectorization instead."; 5581 }); 5582 return computeFeasibleMaxVF( 5583 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5584 } 5585 } 5586 5587 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5588 5589 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5590 return UserVF; 5591 5592 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5593 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5594 << ".\n"); 5595 ORE->emit([&]() { 5596 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5597 TheLoop->getStartLoc(), 5598 TheLoop->getHeader()) 5599 << "User-specified vectorization factor " 5600 << ore::NV("UserVectorizationFactor", UserVF) 5601 << " is unsafe, clamping to maximum safe vectorization factor " 5602 << ore::NV("VectorizationFactor", MaxSafeVF); 5603 }); 5604 return MaxSafeVF; 5605 } 5606 5607 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5608 5609 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5610 // Note that both WidestRegister and WidestType may not be a powers of 2. 5611 auto MaxVectorSize = 5612 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5613 5614 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5615 << " / " << WidestType << " bits.\n"); 5616 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5617 << WidestRegister << " bits.\n"); 5618 5619 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5620 "Did not expect to pack so many elements" 5621 " into one vector!"); 5622 if (MaxVectorSize.getFixedValue() == 0) { 5623 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5624 return ElementCount::getFixed(1); 5625 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5626 isPowerOf2_32(ConstTripCount)) { 5627 // We need to clamp the VF to be the ConstTripCount. There is no point in 5628 // choosing a higher viable VF as done in the loop below. 5629 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5630 << ConstTripCount << "\n"); 5631 return ElementCount::getFixed(ConstTripCount); 5632 } 5633 5634 ElementCount MaxVF = MaxVectorSize; 5635 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5636 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5637 // Collect all viable vectorization factors larger than the default MaxVF 5638 // (i.e. MaxVectorSize). 5639 SmallVector<ElementCount, 8> VFs; 5640 auto MaxVectorSizeMaxBW = 5641 ElementCount::getFixed(WidestRegister / SmallestType); 5642 for (ElementCount VS = MaxVectorSize * 2; 5643 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5644 VFs.push_back(VS); 5645 5646 // For each VF calculate its register usage. 5647 auto RUs = calculateRegisterUsage(VFs); 5648 5649 // Select the largest VF which doesn't require more registers than existing 5650 // ones. 5651 for (int i = RUs.size() - 1; i >= 0; --i) { 5652 bool Selected = true; 5653 for (auto &pair : RUs[i].MaxLocalUsers) { 5654 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5655 if (pair.second > TargetNumRegisters) 5656 Selected = false; 5657 } 5658 if (Selected) { 5659 MaxVF = VFs[i]; 5660 break; 5661 } 5662 } 5663 if (ElementCount MinVF = 5664 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5665 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5666 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5667 << ") with target's minimum: " << MinVF << '\n'); 5668 MaxVF = MinVF; 5669 } 5670 } 5671 } 5672 return MaxVF; 5673 } 5674 5675 VectorizationFactor 5676 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5677 // FIXME: This can be fixed for scalable vectors later, because at this stage 5678 // the LoopVectorizer will only consider vectorizing a loop with scalable 5679 // vectors when the loop has a hint to enable vectorization for a given VF. 5680 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5681 5682 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5683 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5684 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5685 5686 auto Width = ElementCount::getFixed(1); 5687 const float ScalarCost = *ExpectedCost.getValue(); 5688 float Cost = ScalarCost; 5689 5690 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5691 if (ForceVectorization && MaxVF.isVector()) { 5692 // Ignore scalar width, because the user explicitly wants vectorization. 5693 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5694 // evaluation. 5695 Cost = std::numeric_limits<float>::max(); 5696 } 5697 5698 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5699 i *= 2) { 5700 // Notice that the vector loop needs to be executed less times, so 5701 // we need to divide the cost of the vector loops by the width of 5702 // the vector elements. 5703 VectorizationCostTy C = expectedCost(i); 5704 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5705 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5706 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5707 << " costs: " << (int)VectorCost << ".\n"); 5708 if (!C.second && !ForceVectorization) { 5709 LLVM_DEBUG( 5710 dbgs() << "LV: Not considering vector loop of width " << i 5711 << " because it will not generate any vector instructions.\n"); 5712 continue; 5713 } 5714 5715 // If profitable add it to ProfitableVF list. 5716 if (VectorCost < ScalarCost) { 5717 ProfitableVFs.push_back(VectorizationFactor( 5718 {i, (unsigned)VectorCost})); 5719 } 5720 5721 if (VectorCost < Cost) { 5722 Cost = VectorCost; 5723 Width = i; 5724 } 5725 } 5726 5727 if (!EnableCondStoresVectorization && NumPredStores) { 5728 reportVectorizationFailure("There are conditional stores.", 5729 "store that is conditionally executed prevents vectorization", 5730 "ConditionalStore", ORE, TheLoop); 5731 Width = ElementCount::getFixed(1); 5732 Cost = ScalarCost; 5733 } 5734 5735 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5736 << "LV: Vectorization seems to be not beneficial, " 5737 << "but was forced by a user.\n"); 5738 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5739 VectorizationFactor Factor = {Width, 5740 (unsigned)(Width.getKnownMinValue() * Cost)}; 5741 return Factor; 5742 } 5743 5744 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5745 const Loop &L, ElementCount VF) const { 5746 // Cross iteration phis such as reductions need special handling and are 5747 // currently unsupported. 5748 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5749 return Legal->isFirstOrderRecurrence(&Phi) || 5750 Legal->isReductionVariable(&Phi); 5751 })) 5752 return false; 5753 5754 // Phis with uses outside of the loop require special handling and are 5755 // currently unsupported. 5756 for (auto &Entry : Legal->getInductionVars()) { 5757 // Look for uses of the value of the induction at the last iteration. 5758 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5759 for (User *U : PostInc->users()) 5760 if (!L.contains(cast<Instruction>(U))) 5761 return false; 5762 // Look for uses of penultimate value of the induction. 5763 for (User *U : Entry.first->users()) 5764 if (!L.contains(cast<Instruction>(U))) 5765 return false; 5766 } 5767 5768 // Induction variables that are widened require special handling that is 5769 // currently not supported. 5770 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5771 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5772 this->isProfitableToScalarize(Entry.first, VF)); 5773 })) 5774 return false; 5775 5776 return true; 5777 } 5778 5779 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5780 const ElementCount VF) const { 5781 // FIXME: We need a much better cost-model to take different parameters such 5782 // as register pressure, code size increase and cost of extra branches into 5783 // account. For now we apply a very crude heuristic and only consider loops 5784 // with vectorization factors larger than a certain value. 5785 // We also consider epilogue vectorization unprofitable for targets that don't 5786 // consider interleaving beneficial (eg. MVE). 5787 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5788 return false; 5789 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5790 return true; 5791 return false; 5792 } 5793 5794 VectorizationFactor 5795 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5796 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5797 VectorizationFactor Result = VectorizationFactor::Disabled(); 5798 if (!EnableEpilogueVectorization) { 5799 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5800 return Result; 5801 } 5802 5803 if (!isScalarEpilogueAllowed()) { 5804 LLVM_DEBUG( 5805 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5806 "allowed.\n";); 5807 return Result; 5808 } 5809 5810 // FIXME: This can be fixed for scalable vectors later, because at this stage 5811 // the LoopVectorizer will only consider vectorizing a loop with scalable 5812 // vectors when the loop has a hint to enable vectorization for a given VF. 5813 if (MainLoopVF.isScalable()) { 5814 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5815 "yet supported.\n"); 5816 return Result; 5817 } 5818 5819 // Not really a cost consideration, but check for unsupported cases here to 5820 // simplify the logic. 5821 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5822 LLVM_DEBUG( 5823 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5824 "not a supported candidate.\n";); 5825 return Result; 5826 } 5827 5828 if (EpilogueVectorizationForceVF > 1) { 5829 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5830 if (LVP.hasPlanWithVFs( 5831 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5832 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5833 else { 5834 LLVM_DEBUG( 5835 dbgs() 5836 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5837 return Result; 5838 } 5839 } 5840 5841 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5842 TheLoop->getHeader()->getParent()->hasMinSize()) { 5843 LLVM_DEBUG( 5844 dbgs() 5845 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5846 return Result; 5847 } 5848 5849 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 5850 return Result; 5851 5852 for (auto &NextVF : ProfitableVFs) 5853 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 5854 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 5855 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 5856 Result = NextVF; 5857 5858 if (Result != VectorizationFactor::Disabled()) 5859 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5860 << Result.Width.getFixedValue() << "\n";); 5861 return Result; 5862 } 5863 5864 std::pair<unsigned, unsigned> 5865 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5866 unsigned MinWidth = -1U; 5867 unsigned MaxWidth = 8; 5868 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5869 5870 // For each block. 5871 for (BasicBlock *BB : TheLoop->blocks()) { 5872 // For each instruction in the loop. 5873 for (Instruction &I : BB->instructionsWithoutDebug()) { 5874 Type *T = I.getType(); 5875 5876 // Skip ignored values. 5877 if (ValuesToIgnore.count(&I)) 5878 continue; 5879 5880 // Only examine Loads, Stores and PHINodes. 5881 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5882 continue; 5883 5884 // Examine PHI nodes that are reduction variables. Update the type to 5885 // account for the recurrence type. 5886 if (auto *PN = dyn_cast<PHINode>(&I)) { 5887 if (!Legal->isReductionVariable(PN)) 5888 continue; 5889 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5890 if (PreferInLoopReductions || 5891 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5892 RdxDesc.getRecurrenceType(), 5893 TargetTransformInfo::ReductionFlags())) 5894 continue; 5895 T = RdxDesc.getRecurrenceType(); 5896 } 5897 5898 // Examine the stored values. 5899 if (auto *ST = dyn_cast<StoreInst>(&I)) 5900 T = ST->getValueOperand()->getType(); 5901 5902 // Ignore loaded pointer types and stored pointer types that are not 5903 // vectorizable. 5904 // 5905 // FIXME: The check here attempts to predict whether a load or store will 5906 // be vectorized. We only know this for certain after a VF has 5907 // been selected. Here, we assume that if an access can be 5908 // vectorized, it will be. We should also look at extending this 5909 // optimization to non-pointer types. 5910 // 5911 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5912 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5913 continue; 5914 5915 MinWidth = std::min(MinWidth, 5916 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5917 MaxWidth = std::max(MaxWidth, 5918 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5919 } 5920 } 5921 5922 return {MinWidth, MaxWidth}; 5923 } 5924 5925 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5926 unsigned LoopCost) { 5927 // -- The interleave heuristics -- 5928 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5929 // There are many micro-architectural considerations that we can't predict 5930 // at this level. For example, frontend pressure (on decode or fetch) due to 5931 // code size, or the number and capabilities of the execution ports. 5932 // 5933 // We use the following heuristics to select the interleave count: 5934 // 1. If the code has reductions, then we interleave to break the cross 5935 // iteration dependency. 5936 // 2. If the loop is really small, then we interleave to reduce the loop 5937 // overhead. 5938 // 3. We don't interleave if we think that we will spill registers to memory 5939 // due to the increased register pressure. 5940 5941 if (!isScalarEpilogueAllowed()) 5942 return 1; 5943 5944 // We used the distance for the interleave count. 5945 if (Legal->getMaxSafeDepDistBytes() != -1U) 5946 return 1; 5947 5948 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5949 const bool HasReductions = !Legal->getReductionVars().empty(); 5950 // Do not interleave loops with a relatively small known or estimated trip 5951 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5952 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5953 // because with the above conditions interleaving can expose ILP and break 5954 // cross iteration dependences for reductions. 5955 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5956 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5957 return 1; 5958 5959 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5960 // We divide by these constants so assume that we have at least one 5961 // instruction that uses at least one register. 5962 for (auto& pair : R.MaxLocalUsers) { 5963 pair.second = std::max(pair.second, 1U); 5964 } 5965 5966 // We calculate the interleave count using the following formula. 5967 // Subtract the number of loop invariants from the number of available 5968 // registers. These registers are used by all of the interleaved instances. 5969 // Next, divide the remaining registers by the number of registers that is 5970 // required by the loop, in order to estimate how many parallel instances 5971 // fit without causing spills. All of this is rounded down if necessary to be 5972 // a power of two. We want power of two interleave count to simplify any 5973 // addressing operations or alignment considerations. 5974 // We also want power of two interleave counts to ensure that the induction 5975 // variable of the vector loop wraps to zero, when tail is folded by masking; 5976 // this currently happens when OptForSize, in which case IC is set to 1 above. 5977 unsigned IC = UINT_MAX; 5978 5979 for (auto& pair : R.MaxLocalUsers) { 5980 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5981 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5982 << " registers of " 5983 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5984 if (VF.isScalar()) { 5985 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5986 TargetNumRegisters = ForceTargetNumScalarRegs; 5987 } else { 5988 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5989 TargetNumRegisters = ForceTargetNumVectorRegs; 5990 } 5991 unsigned MaxLocalUsers = pair.second; 5992 unsigned LoopInvariantRegs = 0; 5993 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5994 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5995 5996 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5997 // Don't count the induction variable as interleaved. 5998 if (EnableIndVarRegisterHeur) { 5999 TmpIC = 6000 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6001 std::max(1U, (MaxLocalUsers - 1))); 6002 } 6003 6004 IC = std::min(IC, TmpIC); 6005 } 6006 6007 // Clamp the interleave ranges to reasonable counts. 6008 unsigned MaxInterleaveCount = 6009 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6010 6011 // Check if the user has overridden the max. 6012 if (VF.isScalar()) { 6013 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6014 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6015 } else { 6016 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6017 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6018 } 6019 6020 // If trip count is known or estimated compile time constant, limit the 6021 // interleave count to be less than the trip count divided by VF, provided it 6022 // is at least 1. 6023 // 6024 // For scalable vectors we can't know if interleaving is beneficial. It may 6025 // not be beneficial for small loops if none of the lanes in the second vector 6026 // iterations is enabled. However, for larger loops, there is likely to be a 6027 // similar benefit as for fixed-width vectors. For now, we choose to leave 6028 // the InterleaveCount as if vscale is '1', although if some information about 6029 // the vector is known (e.g. min vector size), we can make a better decision. 6030 if (BestKnownTC) { 6031 MaxInterleaveCount = 6032 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6033 // Make sure MaxInterleaveCount is greater than 0. 6034 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6035 } 6036 6037 assert(MaxInterleaveCount > 0 && 6038 "Maximum interleave count must be greater than 0"); 6039 6040 // Clamp the calculated IC to be between the 1 and the max interleave count 6041 // that the target and trip count allows. 6042 if (IC > MaxInterleaveCount) 6043 IC = MaxInterleaveCount; 6044 else 6045 // Make sure IC is greater than 0. 6046 IC = std::max(1u, IC); 6047 6048 assert(IC > 0 && "Interleave count must be greater than 0."); 6049 6050 // If we did not calculate the cost for VF (because the user selected the VF) 6051 // then we calculate the cost of VF here. 6052 if (LoopCost == 0) { 6053 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6054 LoopCost = *expectedCost(VF).first.getValue(); 6055 } 6056 6057 assert(LoopCost && "Non-zero loop cost expected"); 6058 6059 // Interleave if we vectorized this loop and there is a reduction that could 6060 // benefit from interleaving. 6061 if (VF.isVector() && HasReductions) { 6062 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6063 return IC; 6064 } 6065 6066 // Note that if we've already vectorized the loop we will have done the 6067 // runtime check and so interleaving won't require further checks. 6068 bool InterleavingRequiresRuntimePointerCheck = 6069 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6070 6071 // We want to interleave small loops in order to reduce the loop overhead and 6072 // potentially expose ILP opportunities. 6073 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6074 << "LV: IC is " << IC << '\n' 6075 << "LV: VF is " << VF << '\n'); 6076 const bool AggressivelyInterleaveReductions = 6077 TTI.enableAggressiveInterleaving(HasReductions); 6078 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6079 // We assume that the cost overhead is 1 and we use the cost model 6080 // to estimate the cost of the loop and interleave until the cost of the 6081 // loop overhead is about 5% of the cost of the loop. 6082 unsigned SmallIC = 6083 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6084 6085 // Interleave until store/load ports (estimated by max interleave count) are 6086 // saturated. 6087 unsigned NumStores = Legal->getNumStores(); 6088 unsigned NumLoads = Legal->getNumLoads(); 6089 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6090 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6091 6092 // If we have a scalar reduction (vector reductions are already dealt with 6093 // by this point), we can increase the critical path length if the loop 6094 // we're interleaving is inside another loop. Limit, by default to 2, so the 6095 // critical path only gets increased by one reduction operation. 6096 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6097 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6098 SmallIC = std::min(SmallIC, F); 6099 StoresIC = std::min(StoresIC, F); 6100 LoadsIC = std::min(LoadsIC, F); 6101 } 6102 6103 if (EnableLoadStoreRuntimeInterleave && 6104 std::max(StoresIC, LoadsIC) > SmallIC) { 6105 LLVM_DEBUG( 6106 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6107 return std::max(StoresIC, LoadsIC); 6108 } 6109 6110 // If there are scalar reductions and TTI has enabled aggressive 6111 // interleaving for reductions, we will interleave to expose ILP. 6112 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6113 AggressivelyInterleaveReductions) { 6114 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6115 // Interleave no less than SmallIC but not as aggressive as the normal IC 6116 // to satisfy the rare situation when resources are too limited. 6117 return std::max(IC / 2, SmallIC); 6118 } else { 6119 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6120 return SmallIC; 6121 } 6122 } 6123 6124 // Interleave if this is a large loop (small loops are already dealt with by 6125 // this point) that could benefit from interleaving. 6126 if (AggressivelyInterleaveReductions) { 6127 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6128 return IC; 6129 } 6130 6131 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6132 return 1; 6133 } 6134 6135 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6136 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6137 // This function calculates the register usage by measuring the highest number 6138 // of values that are alive at a single location. Obviously, this is a very 6139 // rough estimation. We scan the loop in a topological order in order and 6140 // assign a number to each instruction. We use RPO to ensure that defs are 6141 // met before their users. We assume that each instruction that has in-loop 6142 // users starts an interval. We record every time that an in-loop value is 6143 // used, so we have a list of the first and last occurrences of each 6144 // instruction. Next, we transpose this data structure into a multi map that 6145 // holds the list of intervals that *end* at a specific location. This multi 6146 // map allows us to perform a linear search. We scan the instructions linearly 6147 // and record each time that a new interval starts, by placing it in a set. 6148 // If we find this value in the multi-map then we remove it from the set. 6149 // The max register usage is the maximum size of the set. 6150 // We also search for instructions that are defined outside the loop, but are 6151 // used inside the loop. We need this number separately from the max-interval 6152 // usage number because when we unroll, loop-invariant values do not take 6153 // more register. 6154 LoopBlocksDFS DFS(TheLoop); 6155 DFS.perform(LI); 6156 6157 RegisterUsage RU; 6158 6159 // Each 'key' in the map opens a new interval. The values 6160 // of the map are the index of the 'last seen' usage of the 6161 // instruction that is the key. 6162 using IntervalMap = DenseMap<Instruction *, unsigned>; 6163 6164 // Maps instruction to its index. 6165 SmallVector<Instruction *, 64> IdxToInstr; 6166 // Marks the end of each interval. 6167 IntervalMap EndPoint; 6168 // Saves the list of instruction indices that are used in the loop. 6169 SmallPtrSet<Instruction *, 8> Ends; 6170 // Saves the list of values that are used in the loop but are 6171 // defined outside the loop, such as arguments and constants. 6172 SmallPtrSet<Value *, 8> LoopInvariants; 6173 6174 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6175 for (Instruction &I : BB->instructionsWithoutDebug()) { 6176 IdxToInstr.push_back(&I); 6177 6178 // Save the end location of each USE. 6179 for (Value *U : I.operands()) { 6180 auto *Instr = dyn_cast<Instruction>(U); 6181 6182 // Ignore non-instruction values such as arguments, constants, etc. 6183 if (!Instr) 6184 continue; 6185 6186 // If this instruction is outside the loop then record it and continue. 6187 if (!TheLoop->contains(Instr)) { 6188 LoopInvariants.insert(Instr); 6189 continue; 6190 } 6191 6192 // Overwrite previous end points. 6193 EndPoint[Instr] = IdxToInstr.size(); 6194 Ends.insert(Instr); 6195 } 6196 } 6197 } 6198 6199 // Saves the list of intervals that end with the index in 'key'. 6200 using InstrList = SmallVector<Instruction *, 2>; 6201 DenseMap<unsigned, InstrList> TransposeEnds; 6202 6203 // Transpose the EndPoints to a list of values that end at each index. 6204 for (auto &Interval : EndPoint) 6205 TransposeEnds[Interval.second].push_back(Interval.first); 6206 6207 SmallPtrSet<Instruction *, 8> OpenIntervals; 6208 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6209 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6210 6211 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6212 6213 // A lambda that gets the register usage for the given type and VF. 6214 const auto &TTICapture = TTI; 6215 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6216 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6217 return 0U; 6218 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6219 }; 6220 6221 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6222 Instruction *I = IdxToInstr[i]; 6223 6224 // Remove all of the instructions that end at this location. 6225 InstrList &List = TransposeEnds[i]; 6226 for (Instruction *ToRemove : List) 6227 OpenIntervals.erase(ToRemove); 6228 6229 // Ignore instructions that are never used within the loop. 6230 if (!Ends.count(I)) 6231 continue; 6232 6233 // Skip ignored values. 6234 if (ValuesToIgnore.count(I)) 6235 continue; 6236 6237 // For each VF find the maximum usage of registers. 6238 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6239 // Count the number of live intervals. 6240 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6241 6242 if (VFs[j].isScalar()) { 6243 for (auto Inst : OpenIntervals) { 6244 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6245 if (RegUsage.find(ClassID) == RegUsage.end()) 6246 RegUsage[ClassID] = 1; 6247 else 6248 RegUsage[ClassID] += 1; 6249 } 6250 } else { 6251 collectUniformsAndScalars(VFs[j]); 6252 for (auto Inst : OpenIntervals) { 6253 // Skip ignored values for VF > 1. 6254 if (VecValuesToIgnore.count(Inst)) 6255 continue; 6256 if (isScalarAfterVectorization(Inst, VFs[j])) { 6257 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6258 if (RegUsage.find(ClassID) == RegUsage.end()) 6259 RegUsage[ClassID] = 1; 6260 else 6261 RegUsage[ClassID] += 1; 6262 } else { 6263 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6264 if (RegUsage.find(ClassID) == RegUsage.end()) 6265 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6266 else 6267 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6268 } 6269 } 6270 } 6271 6272 for (auto& pair : RegUsage) { 6273 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6274 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6275 else 6276 MaxUsages[j][pair.first] = pair.second; 6277 } 6278 } 6279 6280 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6281 << OpenIntervals.size() << '\n'); 6282 6283 // Add the current instruction to the list of open intervals. 6284 OpenIntervals.insert(I); 6285 } 6286 6287 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6288 SmallMapVector<unsigned, unsigned, 4> Invariant; 6289 6290 for (auto Inst : LoopInvariants) { 6291 unsigned Usage = 6292 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6293 unsigned ClassID = 6294 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6295 if (Invariant.find(ClassID) == Invariant.end()) 6296 Invariant[ClassID] = Usage; 6297 else 6298 Invariant[ClassID] += Usage; 6299 } 6300 6301 LLVM_DEBUG({ 6302 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6303 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6304 << " item\n"; 6305 for (const auto &pair : MaxUsages[i]) { 6306 dbgs() << "LV(REG): RegisterClass: " 6307 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6308 << " registers\n"; 6309 } 6310 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6311 << " item\n"; 6312 for (const auto &pair : Invariant) { 6313 dbgs() << "LV(REG): RegisterClass: " 6314 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6315 << " registers\n"; 6316 } 6317 }); 6318 6319 RU.LoopInvariantRegs = Invariant; 6320 RU.MaxLocalUsers = MaxUsages[i]; 6321 RUs[i] = RU; 6322 } 6323 6324 return RUs; 6325 } 6326 6327 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6328 // TODO: Cost model for emulated masked load/store is completely 6329 // broken. This hack guides the cost model to use an artificially 6330 // high enough value to practically disable vectorization with such 6331 // operations, except where previously deployed legality hack allowed 6332 // using very low cost values. This is to avoid regressions coming simply 6333 // from moving "masked load/store" check from legality to cost model. 6334 // Masked Load/Gather emulation was previously never allowed. 6335 // Limited number of Masked Store/Scatter emulation was allowed. 6336 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6337 return isa<LoadInst>(I) || 6338 (isa<StoreInst>(I) && 6339 NumPredStores > NumberOfStoresToPredicate); 6340 } 6341 6342 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6343 // If we aren't vectorizing the loop, or if we've already collected the 6344 // instructions to scalarize, there's nothing to do. Collection may already 6345 // have occurred if we have a user-selected VF and are now computing the 6346 // expected cost for interleaving. 6347 if (VF.isScalar() || VF.isZero() || 6348 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6349 return; 6350 6351 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6352 // not profitable to scalarize any instructions, the presence of VF in the 6353 // map will indicate that we've analyzed it already. 6354 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6355 6356 // Find all the instructions that are scalar with predication in the loop and 6357 // determine if it would be better to not if-convert the blocks they are in. 6358 // If so, we also record the instructions to scalarize. 6359 for (BasicBlock *BB : TheLoop->blocks()) { 6360 if (!blockNeedsPredication(BB)) 6361 continue; 6362 for (Instruction &I : *BB) 6363 if (isScalarWithPredication(&I)) { 6364 ScalarCostsTy ScalarCosts; 6365 // Do not apply discount logic if hacked cost is needed 6366 // for emulated masked memrefs. 6367 if (!useEmulatedMaskMemRefHack(&I) && 6368 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6369 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6370 // Remember that BB will remain after vectorization. 6371 PredicatedBBsAfterVectorization.insert(BB); 6372 } 6373 } 6374 } 6375 6376 int LoopVectorizationCostModel::computePredInstDiscount( 6377 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6378 assert(!isUniformAfterVectorization(PredInst, VF) && 6379 "Instruction marked uniform-after-vectorization will be predicated"); 6380 6381 // Initialize the discount to zero, meaning that the scalar version and the 6382 // vector version cost the same. 6383 InstructionCost Discount = 0; 6384 6385 // Holds instructions to analyze. The instructions we visit are mapped in 6386 // ScalarCosts. Those instructions are the ones that would be scalarized if 6387 // we find that the scalar version costs less. 6388 SmallVector<Instruction *, 8> Worklist; 6389 6390 // Returns true if the given instruction can be scalarized. 6391 auto canBeScalarized = [&](Instruction *I) -> bool { 6392 // We only attempt to scalarize instructions forming a single-use chain 6393 // from the original predicated block that would otherwise be vectorized. 6394 // Although not strictly necessary, we give up on instructions we know will 6395 // already be scalar to avoid traversing chains that are unlikely to be 6396 // beneficial. 6397 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6398 isScalarAfterVectorization(I, VF)) 6399 return false; 6400 6401 // If the instruction is scalar with predication, it will be analyzed 6402 // separately. We ignore it within the context of PredInst. 6403 if (isScalarWithPredication(I)) 6404 return false; 6405 6406 // If any of the instruction's operands are uniform after vectorization, 6407 // the instruction cannot be scalarized. This prevents, for example, a 6408 // masked load from being scalarized. 6409 // 6410 // We assume we will only emit a value for lane zero of an instruction 6411 // marked uniform after vectorization, rather than VF identical values. 6412 // Thus, if we scalarize an instruction that uses a uniform, we would 6413 // create uses of values corresponding to the lanes we aren't emitting code 6414 // for. This behavior can be changed by allowing getScalarValue to clone 6415 // the lane zero values for uniforms rather than asserting. 6416 for (Use &U : I->operands()) 6417 if (auto *J = dyn_cast<Instruction>(U.get())) 6418 if (isUniformAfterVectorization(J, VF)) 6419 return false; 6420 6421 // Otherwise, we can scalarize the instruction. 6422 return true; 6423 }; 6424 6425 // Compute the expected cost discount from scalarizing the entire expression 6426 // feeding the predicated instruction. We currently only consider expressions 6427 // that are single-use instruction chains. 6428 Worklist.push_back(PredInst); 6429 while (!Worklist.empty()) { 6430 Instruction *I = Worklist.pop_back_val(); 6431 6432 // If we've already analyzed the instruction, there's nothing to do. 6433 if (ScalarCosts.find(I) != ScalarCosts.end()) 6434 continue; 6435 6436 // Compute the cost of the vector instruction. Note that this cost already 6437 // includes the scalarization overhead of the predicated instruction. 6438 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6439 6440 // Compute the cost of the scalarized instruction. This cost is the cost of 6441 // the instruction as if it wasn't if-converted and instead remained in the 6442 // predicated block. We will scale this cost by block probability after 6443 // computing the scalarization overhead. 6444 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6445 InstructionCost ScalarCost = 6446 VF.getKnownMinValue() * 6447 getInstructionCost(I, ElementCount::getFixed(1)).first; 6448 6449 // Compute the scalarization overhead of needed insertelement instructions 6450 // and phi nodes. 6451 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6452 ScalarCost += TTI.getScalarizationOverhead( 6453 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6454 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6455 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6456 ScalarCost += 6457 VF.getKnownMinValue() * 6458 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6459 } 6460 6461 // Compute the scalarization overhead of needed extractelement 6462 // instructions. For each of the instruction's operands, if the operand can 6463 // be scalarized, add it to the worklist; otherwise, account for the 6464 // overhead. 6465 for (Use &U : I->operands()) 6466 if (auto *J = dyn_cast<Instruction>(U.get())) { 6467 assert(VectorType::isValidElementType(J->getType()) && 6468 "Instruction has non-scalar type"); 6469 if (canBeScalarized(J)) 6470 Worklist.push_back(J); 6471 else if (needsExtract(J, VF)) { 6472 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6473 ScalarCost += TTI.getScalarizationOverhead( 6474 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6475 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6476 } 6477 } 6478 6479 // Scale the total scalar cost by block probability. 6480 ScalarCost /= getReciprocalPredBlockProb(); 6481 6482 // Compute the discount. A non-negative discount means the vector version 6483 // of the instruction costs more, and scalarizing would be beneficial. 6484 Discount += VectorCost - ScalarCost; 6485 ScalarCosts[I] = ScalarCost; 6486 } 6487 6488 return *Discount.getValue(); 6489 } 6490 6491 LoopVectorizationCostModel::VectorizationCostTy 6492 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6493 VectorizationCostTy Cost; 6494 6495 // For each block. 6496 for (BasicBlock *BB : TheLoop->blocks()) { 6497 VectorizationCostTy BlockCost; 6498 6499 // For each instruction in the old loop. 6500 for (Instruction &I : BB->instructionsWithoutDebug()) { 6501 // Skip ignored values. 6502 if (ValuesToIgnore.count(&I) || 6503 (VF.isVector() && VecValuesToIgnore.count(&I))) 6504 continue; 6505 6506 VectorizationCostTy C = getInstructionCost(&I, VF); 6507 6508 // Check if we should override the cost. 6509 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6510 C.first = InstructionCost(ForceTargetInstructionCost); 6511 6512 BlockCost.first += C.first; 6513 BlockCost.second |= C.second; 6514 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6515 << " for VF " << VF << " For instruction: " << I 6516 << '\n'); 6517 } 6518 6519 // If we are vectorizing a predicated block, it will have been 6520 // if-converted. This means that the block's instructions (aside from 6521 // stores and instructions that may divide by zero) will now be 6522 // unconditionally executed. For the scalar case, we may not always execute 6523 // the predicated block, if it is an if-else block. Thus, scale the block's 6524 // cost by the probability of executing it. blockNeedsPredication from 6525 // Legal is used so as to not include all blocks in tail folded loops. 6526 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6527 BlockCost.first /= getReciprocalPredBlockProb(); 6528 6529 Cost.first += BlockCost.first; 6530 Cost.second |= BlockCost.second; 6531 } 6532 6533 return Cost; 6534 } 6535 6536 /// Gets Address Access SCEV after verifying that the access pattern 6537 /// is loop invariant except the induction variable dependence. 6538 /// 6539 /// This SCEV can be sent to the Target in order to estimate the address 6540 /// calculation cost. 6541 static const SCEV *getAddressAccessSCEV( 6542 Value *Ptr, 6543 LoopVectorizationLegality *Legal, 6544 PredicatedScalarEvolution &PSE, 6545 const Loop *TheLoop) { 6546 6547 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6548 if (!Gep) 6549 return nullptr; 6550 6551 // We are looking for a gep with all loop invariant indices except for one 6552 // which should be an induction variable. 6553 auto SE = PSE.getSE(); 6554 unsigned NumOperands = Gep->getNumOperands(); 6555 for (unsigned i = 1; i < NumOperands; ++i) { 6556 Value *Opd = Gep->getOperand(i); 6557 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6558 !Legal->isInductionVariable(Opd)) 6559 return nullptr; 6560 } 6561 6562 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6563 return PSE.getSCEV(Ptr); 6564 } 6565 6566 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6567 return Legal->hasStride(I->getOperand(0)) || 6568 Legal->hasStride(I->getOperand(1)); 6569 } 6570 6571 InstructionCost 6572 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6573 ElementCount VF) { 6574 assert(VF.isVector() && 6575 "Scalarization cost of instruction implies vectorization."); 6576 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6577 Type *ValTy = getMemInstValueType(I); 6578 auto SE = PSE.getSE(); 6579 6580 unsigned AS = getLoadStoreAddressSpace(I); 6581 Value *Ptr = getLoadStorePointerOperand(I); 6582 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6583 6584 // Figure out whether the access is strided and get the stride value 6585 // if it's known in compile time 6586 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6587 6588 // Get the cost of the scalar memory instruction and address computation. 6589 InstructionCost Cost = 6590 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6591 6592 // Don't pass *I here, since it is scalar but will actually be part of a 6593 // vectorized loop where the user of it is a vectorized instruction. 6594 const Align Alignment = getLoadStoreAlignment(I); 6595 Cost += VF.getKnownMinValue() * 6596 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6597 AS, TTI::TCK_RecipThroughput); 6598 6599 // Get the overhead of the extractelement and insertelement instructions 6600 // we might create due to scalarization. 6601 Cost += getScalarizationOverhead(I, VF); 6602 6603 // If we have a predicated store, it may not be executed for each vector 6604 // lane. Scale the cost by the probability of executing the predicated 6605 // block. 6606 if (isPredicatedInst(I)) { 6607 Cost /= getReciprocalPredBlockProb(); 6608 6609 if (useEmulatedMaskMemRefHack(I)) 6610 // Artificially setting to a high enough value to practically disable 6611 // vectorization with such operations. 6612 Cost = 3000000; 6613 } 6614 6615 return Cost; 6616 } 6617 6618 InstructionCost 6619 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6620 ElementCount VF) { 6621 Type *ValTy = getMemInstValueType(I); 6622 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6623 Value *Ptr = getLoadStorePointerOperand(I); 6624 unsigned AS = getLoadStoreAddressSpace(I); 6625 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6626 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6627 6628 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6629 "Stride should be 1 or -1 for consecutive memory access"); 6630 const Align Alignment = getLoadStoreAlignment(I); 6631 InstructionCost Cost = 0; 6632 if (Legal->isMaskRequired(I)) 6633 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6634 CostKind); 6635 else 6636 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6637 CostKind, I); 6638 6639 bool Reverse = ConsecutiveStride < 0; 6640 if (Reverse) 6641 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6642 return Cost; 6643 } 6644 6645 InstructionCost 6646 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6647 ElementCount VF) { 6648 assert(Legal->isUniformMemOp(*I)); 6649 6650 Type *ValTy = getMemInstValueType(I); 6651 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6652 const Align Alignment = getLoadStoreAlignment(I); 6653 unsigned AS = getLoadStoreAddressSpace(I); 6654 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6655 if (isa<LoadInst>(I)) { 6656 return TTI.getAddressComputationCost(ValTy) + 6657 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6658 CostKind) + 6659 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6660 } 6661 StoreInst *SI = cast<StoreInst>(I); 6662 6663 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6664 return TTI.getAddressComputationCost(ValTy) + 6665 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6666 CostKind) + 6667 (isLoopInvariantStoreValue 6668 ? 0 6669 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6670 VF.getKnownMinValue() - 1)); 6671 } 6672 6673 InstructionCost 6674 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6675 ElementCount VF) { 6676 Type *ValTy = getMemInstValueType(I); 6677 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6678 const Align Alignment = getLoadStoreAlignment(I); 6679 const Value *Ptr = getLoadStorePointerOperand(I); 6680 6681 return TTI.getAddressComputationCost(VectorTy) + 6682 TTI.getGatherScatterOpCost( 6683 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6684 TargetTransformInfo::TCK_RecipThroughput, I); 6685 } 6686 6687 InstructionCost 6688 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6689 ElementCount VF) { 6690 // TODO: Once we have support for interleaving with scalable vectors 6691 // we can calculate the cost properly here. 6692 if (VF.isScalable()) 6693 return InstructionCost::getInvalid(); 6694 6695 Type *ValTy = getMemInstValueType(I); 6696 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6697 unsigned AS = getLoadStoreAddressSpace(I); 6698 6699 auto Group = getInterleavedAccessGroup(I); 6700 assert(Group && "Fail to get an interleaved access group."); 6701 6702 unsigned InterleaveFactor = Group->getFactor(); 6703 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6704 6705 // Holds the indices of existing members in an interleaved load group. 6706 // An interleaved store group doesn't need this as it doesn't allow gaps. 6707 SmallVector<unsigned, 4> Indices; 6708 if (isa<LoadInst>(I)) { 6709 for (unsigned i = 0; i < InterleaveFactor; i++) 6710 if (Group->getMember(i)) 6711 Indices.push_back(i); 6712 } 6713 6714 // Calculate the cost of the whole interleaved group. 6715 bool UseMaskForGaps = 6716 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6717 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6718 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6719 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6720 6721 if (Group->isReverse()) { 6722 // TODO: Add support for reversed masked interleaved access. 6723 assert(!Legal->isMaskRequired(I) && 6724 "Reverse masked interleaved access not supported."); 6725 Cost += Group->getNumMembers() * 6726 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6727 } 6728 return Cost; 6729 } 6730 6731 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6732 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6733 // Early exit for no inloop reductions 6734 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6735 return InstructionCost::getInvalid(); 6736 auto *VectorTy = cast<VectorType>(Ty); 6737 6738 // We are looking for a pattern of, and finding the minimal acceptable cost: 6739 // reduce(mul(ext(A), ext(B))) or 6740 // reduce(mul(A, B)) or 6741 // reduce(ext(A)) or 6742 // reduce(A). 6743 // The basic idea is that we walk down the tree to do that, finding the root 6744 // reduction instruction in InLoopReductionImmediateChains. From there we find 6745 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6746 // of the components. If the reduction cost is lower then we return it for the 6747 // reduction instruction and 0 for the other instructions in the pattern. If 6748 // it is not we return an invalid cost specifying the orignal cost method 6749 // should be used. 6750 Instruction *RetI = I; 6751 if ((RetI->getOpcode() == Instruction::SExt || 6752 RetI->getOpcode() == Instruction::ZExt)) { 6753 if (!RetI->hasOneUser()) 6754 return InstructionCost::getInvalid(); 6755 RetI = RetI->user_back(); 6756 } 6757 if (RetI->getOpcode() == Instruction::Mul && 6758 RetI->user_back()->getOpcode() == Instruction::Add) { 6759 if (!RetI->hasOneUser()) 6760 return InstructionCost::getInvalid(); 6761 RetI = RetI->user_back(); 6762 } 6763 6764 // Test if the found instruction is a reduction, and if not return an invalid 6765 // cost specifying the parent to use the original cost modelling. 6766 if (!InLoopReductionImmediateChains.count(RetI)) 6767 return InstructionCost::getInvalid(); 6768 6769 // Find the reduction this chain is a part of and calculate the basic cost of 6770 // the reduction on its own. 6771 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6772 Instruction *ReductionPhi = LastChain; 6773 while (!isa<PHINode>(ReductionPhi)) 6774 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6775 6776 RecurrenceDescriptor RdxDesc = 6777 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6778 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6779 VectorTy, false, CostKind); 6780 6781 // Get the operand that was not the reduction chain and match it to one of the 6782 // patterns, returning the better cost if it is found. 6783 Instruction *RedOp = RetI->getOperand(1) == LastChain 6784 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6785 : dyn_cast<Instruction>(RetI->getOperand(1)); 6786 6787 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6788 6789 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6790 !TheLoop->isLoopInvariant(RedOp)) { 6791 bool IsUnsigned = isa<ZExtInst>(RedOp); 6792 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6793 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6794 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6795 CostKind); 6796 6797 unsigned ExtCost = 6798 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6799 TTI::CastContextHint::None, CostKind, RedOp); 6800 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6801 return I == RetI ? *RedCost.getValue() : 0; 6802 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6803 Instruction *Mul = RedOp; 6804 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6805 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6806 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6807 Op0->getOpcode() == Op1->getOpcode() && 6808 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6809 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6810 bool IsUnsigned = isa<ZExtInst>(Op0); 6811 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6812 // reduce(mul(ext, ext)) 6813 unsigned ExtCost = 6814 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6815 TTI::CastContextHint::None, CostKind, Op0); 6816 unsigned MulCost = 6817 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6818 6819 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6820 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6821 CostKind); 6822 6823 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6824 return I == RetI ? *RedCost.getValue() : 0; 6825 } else { 6826 unsigned MulCost = 6827 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6828 6829 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6830 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6831 CostKind); 6832 6833 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6834 return I == RetI ? *RedCost.getValue() : 0; 6835 } 6836 } 6837 6838 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6839 } 6840 6841 InstructionCost 6842 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6843 ElementCount VF) { 6844 // Calculate scalar cost only. Vectorization cost should be ready at this 6845 // moment. 6846 if (VF.isScalar()) { 6847 Type *ValTy = getMemInstValueType(I); 6848 const Align Alignment = getLoadStoreAlignment(I); 6849 unsigned AS = getLoadStoreAddressSpace(I); 6850 6851 return TTI.getAddressComputationCost(ValTy) + 6852 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6853 TTI::TCK_RecipThroughput, I); 6854 } 6855 return getWideningCost(I, VF); 6856 } 6857 6858 LoopVectorizationCostModel::VectorizationCostTy 6859 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6860 ElementCount VF) { 6861 // If we know that this instruction will remain uniform, check the cost of 6862 // the scalar version. 6863 if (isUniformAfterVectorization(I, VF)) 6864 VF = ElementCount::getFixed(1); 6865 6866 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6867 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6868 6869 // Forced scalars do not have any scalarization overhead. 6870 auto ForcedScalar = ForcedScalars.find(VF); 6871 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6872 auto InstSet = ForcedScalar->second; 6873 if (InstSet.count(I)) 6874 return VectorizationCostTy( 6875 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6876 VF.getKnownMinValue()), 6877 false); 6878 } 6879 6880 Type *VectorTy; 6881 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6882 6883 bool TypeNotScalarized = 6884 VF.isVector() && VectorTy->isVectorTy() && 6885 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6886 return VectorizationCostTy(C, TypeNotScalarized); 6887 } 6888 6889 InstructionCost 6890 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6891 ElementCount VF) { 6892 6893 if (VF.isScalable()) 6894 return InstructionCost::getInvalid(); 6895 6896 if (VF.isScalar()) 6897 return 0; 6898 6899 InstructionCost Cost = 0; 6900 Type *RetTy = ToVectorTy(I->getType(), VF); 6901 if (!RetTy->isVoidTy() && 6902 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6903 Cost += TTI.getScalarizationOverhead( 6904 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6905 true, false); 6906 6907 // Some targets keep addresses scalar. 6908 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6909 return Cost; 6910 6911 // Some targets support efficient element stores. 6912 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6913 return Cost; 6914 6915 // Collect operands to consider. 6916 CallInst *CI = dyn_cast<CallInst>(I); 6917 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6918 6919 // Skip operands that do not require extraction/scalarization and do not incur 6920 // any overhead. 6921 return Cost + TTI.getOperandsScalarizationOverhead( 6922 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6923 } 6924 6925 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6926 if (VF.isScalar()) 6927 return; 6928 NumPredStores = 0; 6929 for (BasicBlock *BB : TheLoop->blocks()) { 6930 // For each instruction in the old loop. 6931 for (Instruction &I : *BB) { 6932 Value *Ptr = getLoadStorePointerOperand(&I); 6933 if (!Ptr) 6934 continue; 6935 6936 // TODO: We should generate better code and update the cost model for 6937 // predicated uniform stores. Today they are treated as any other 6938 // predicated store (see added test cases in 6939 // invariant-store-vectorization.ll). 6940 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6941 NumPredStores++; 6942 6943 if (Legal->isUniformMemOp(I)) { 6944 // TODO: Avoid replicating loads and stores instead of 6945 // relying on instcombine to remove them. 6946 // Load: Scalar load + broadcast 6947 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6948 InstructionCost Cost = getUniformMemOpCost(&I, VF); 6949 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6950 continue; 6951 } 6952 6953 // We assume that widening is the best solution when possible. 6954 if (memoryInstructionCanBeWidened(&I, VF)) { 6955 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6956 int ConsecutiveStride = 6957 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6958 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6959 "Expected consecutive stride."); 6960 InstWidening Decision = 6961 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6962 setWideningDecision(&I, VF, Decision, Cost); 6963 continue; 6964 } 6965 6966 // Choose between Interleaving, Gather/Scatter or Scalarization. 6967 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6968 unsigned NumAccesses = 1; 6969 if (isAccessInterleaved(&I)) { 6970 auto Group = getInterleavedAccessGroup(&I); 6971 assert(Group && "Fail to get an interleaved access group."); 6972 6973 // Make one decision for the whole group. 6974 if (getWideningDecision(&I, VF) != CM_Unknown) 6975 continue; 6976 6977 NumAccesses = Group->getNumMembers(); 6978 if (interleavedAccessCanBeWidened(&I, VF)) 6979 InterleaveCost = getInterleaveGroupCost(&I, VF); 6980 } 6981 6982 InstructionCost GatherScatterCost = 6983 isLegalGatherOrScatter(&I) 6984 ? getGatherScatterCost(&I, VF) * NumAccesses 6985 : InstructionCost::getInvalid(); 6986 6987 InstructionCost ScalarizationCost = 6988 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 6989 : InstructionCost::getInvalid(); 6990 6991 // Choose better solution for the current VF, 6992 // write down this decision and use it during vectorization. 6993 InstructionCost Cost; 6994 InstWidening Decision; 6995 if (InterleaveCost <= GatherScatterCost && 6996 InterleaveCost < ScalarizationCost) { 6997 Decision = CM_Interleave; 6998 Cost = InterleaveCost; 6999 } else if (GatherScatterCost < ScalarizationCost) { 7000 Decision = CM_GatherScatter; 7001 Cost = GatherScatterCost; 7002 } else { 7003 assert(!VF.isScalable() && 7004 "We cannot yet scalarise for scalable vectors"); 7005 Decision = CM_Scalarize; 7006 Cost = ScalarizationCost; 7007 } 7008 // If the instructions belongs to an interleave group, the whole group 7009 // receives the same decision. The whole group receives the cost, but 7010 // the cost will actually be assigned to one instruction. 7011 if (auto Group = getInterleavedAccessGroup(&I)) 7012 setWideningDecision(Group, VF, Decision, Cost); 7013 else 7014 setWideningDecision(&I, VF, Decision, Cost); 7015 } 7016 } 7017 7018 // Make sure that any load of address and any other address computation 7019 // remains scalar unless there is gather/scatter support. This avoids 7020 // inevitable extracts into address registers, and also has the benefit of 7021 // activating LSR more, since that pass can't optimize vectorized 7022 // addresses. 7023 if (TTI.prefersVectorizedAddressing()) 7024 return; 7025 7026 // Start with all scalar pointer uses. 7027 SmallPtrSet<Instruction *, 8> AddrDefs; 7028 for (BasicBlock *BB : TheLoop->blocks()) 7029 for (Instruction &I : *BB) { 7030 Instruction *PtrDef = 7031 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7032 if (PtrDef && TheLoop->contains(PtrDef) && 7033 getWideningDecision(&I, VF) != CM_GatherScatter) 7034 AddrDefs.insert(PtrDef); 7035 } 7036 7037 // Add all instructions used to generate the addresses. 7038 SmallVector<Instruction *, 4> Worklist; 7039 append_range(Worklist, AddrDefs); 7040 while (!Worklist.empty()) { 7041 Instruction *I = Worklist.pop_back_val(); 7042 for (auto &Op : I->operands()) 7043 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7044 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7045 AddrDefs.insert(InstOp).second) 7046 Worklist.push_back(InstOp); 7047 } 7048 7049 for (auto *I : AddrDefs) { 7050 if (isa<LoadInst>(I)) { 7051 // Setting the desired widening decision should ideally be handled in 7052 // by cost functions, but since this involves the task of finding out 7053 // if the loaded register is involved in an address computation, it is 7054 // instead changed here when we know this is the case. 7055 InstWidening Decision = getWideningDecision(I, VF); 7056 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7057 // Scalarize a widened load of address. 7058 setWideningDecision( 7059 I, VF, CM_Scalarize, 7060 (VF.getKnownMinValue() * 7061 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7062 else if (auto Group = getInterleavedAccessGroup(I)) { 7063 // Scalarize an interleave group of address loads. 7064 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7065 if (Instruction *Member = Group->getMember(I)) 7066 setWideningDecision( 7067 Member, VF, CM_Scalarize, 7068 (VF.getKnownMinValue() * 7069 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7070 } 7071 } 7072 } else 7073 // Make sure I gets scalarized and a cost estimate without 7074 // scalarization overhead. 7075 ForcedScalars[VF].insert(I); 7076 } 7077 } 7078 7079 InstructionCost 7080 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7081 Type *&VectorTy) { 7082 Type *RetTy = I->getType(); 7083 if (canTruncateToMinimalBitwidth(I, VF)) 7084 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7085 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7086 auto SE = PSE.getSE(); 7087 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7088 7089 // TODO: We need to estimate the cost of intrinsic calls. 7090 switch (I->getOpcode()) { 7091 case Instruction::GetElementPtr: 7092 // We mark this instruction as zero-cost because the cost of GEPs in 7093 // vectorized code depends on whether the corresponding memory instruction 7094 // is scalarized or not. Therefore, we handle GEPs with the memory 7095 // instruction cost. 7096 return 0; 7097 case Instruction::Br: { 7098 // In cases of scalarized and predicated instructions, there will be VF 7099 // predicated blocks in the vectorized loop. Each branch around these 7100 // blocks requires also an extract of its vector compare i1 element. 7101 bool ScalarPredicatedBB = false; 7102 BranchInst *BI = cast<BranchInst>(I); 7103 if (VF.isVector() && BI->isConditional() && 7104 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7105 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7106 ScalarPredicatedBB = true; 7107 7108 if (ScalarPredicatedBB) { 7109 // Return cost for branches around scalarized and predicated blocks. 7110 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7111 auto *Vec_i1Ty = 7112 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7113 return (TTI.getScalarizationOverhead( 7114 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7115 false, true) + 7116 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7117 VF.getKnownMinValue())); 7118 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7119 // The back-edge branch will remain, as will all scalar branches. 7120 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7121 else 7122 // This branch will be eliminated by if-conversion. 7123 return 0; 7124 // Note: We currently assume zero cost for an unconditional branch inside 7125 // a predicated block since it will become a fall-through, although we 7126 // may decide in the future to call TTI for all branches. 7127 } 7128 case Instruction::PHI: { 7129 auto *Phi = cast<PHINode>(I); 7130 7131 // First-order recurrences are replaced by vector shuffles inside the loop. 7132 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7133 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7134 return TTI.getShuffleCost( 7135 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7136 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7137 7138 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7139 // converted into select instructions. We require N - 1 selects per phi 7140 // node, where N is the number of incoming values. 7141 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7142 return (Phi->getNumIncomingValues() - 1) * 7143 TTI.getCmpSelInstrCost( 7144 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7145 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7146 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7147 7148 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7149 } 7150 case Instruction::UDiv: 7151 case Instruction::SDiv: 7152 case Instruction::URem: 7153 case Instruction::SRem: 7154 // If we have a predicated instruction, it may not be executed for each 7155 // vector lane. Get the scalarization cost and scale this amount by the 7156 // probability of executing the predicated block. If the instruction is not 7157 // predicated, we fall through to the next case. 7158 if (VF.isVector() && isScalarWithPredication(I)) { 7159 InstructionCost Cost = 0; 7160 7161 // These instructions have a non-void type, so account for the phi nodes 7162 // that we will create. This cost is likely to be zero. The phi node 7163 // cost, if any, should be scaled by the block probability because it 7164 // models a copy at the end of each predicated block. 7165 Cost += VF.getKnownMinValue() * 7166 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7167 7168 // The cost of the non-predicated instruction. 7169 Cost += VF.getKnownMinValue() * 7170 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7171 7172 // The cost of insertelement and extractelement instructions needed for 7173 // scalarization. 7174 Cost += getScalarizationOverhead(I, VF); 7175 7176 // Scale the cost by the probability of executing the predicated blocks. 7177 // This assumes the predicated block for each vector lane is equally 7178 // likely. 7179 return Cost / getReciprocalPredBlockProb(); 7180 } 7181 LLVM_FALLTHROUGH; 7182 case Instruction::Add: 7183 case Instruction::FAdd: 7184 case Instruction::Sub: 7185 case Instruction::FSub: 7186 case Instruction::Mul: 7187 case Instruction::FMul: 7188 case Instruction::FDiv: 7189 case Instruction::FRem: 7190 case Instruction::Shl: 7191 case Instruction::LShr: 7192 case Instruction::AShr: 7193 case Instruction::And: 7194 case Instruction::Or: 7195 case Instruction::Xor: { 7196 // Since we will replace the stride by 1 the multiplication should go away. 7197 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7198 return 0; 7199 7200 // Detect reduction patterns 7201 InstructionCost RedCost; 7202 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7203 .isValid()) 7204 return RedCost; 7205 7206 // Certain instructions can be cheaper to vectorize if they have a constant 7207 // second vector operand. One example of this are shifts on x86. 7208 Value *Op2 = I->getOperand(1); 7209 TargetTransformInfo::OperandValueProperties Op2VP; 7210 TargetTransformInfo::OperandValueKind Op2VK = 7211 TTI.getOperandInfo(Op2, Op2VP); 7212 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7213 Op2VK = TargetTransformInfo::OK_UniformValue; 7214 7215 SmallVector<const Value *, 4> Operands(I->operand_values()); 7216 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7217 return N * TTI.getArithmeticInstrCost( 7218 I->getOpcode(), VectorTy, CostKind, 7219 TargetTransformInfo::OK_AnyValue, 7220 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7221 } 7222 case Instruction::FNeg: { 7223 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7224 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7225 return N * TTI.getArithmeticInstrCost( 7226 I->getOpcode(), VectorTy, CostKind, 7227 TargetTransformInfo::OK_AnyValue, 7228 TargetTransformInfo::OK_AnyValue, 7229 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7230 I->getOperand(0), I); 7231 } 7232 case Instruction::Select: { 7233 SelectInst *SI = cast<SelectInst>(I); 7234 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7235 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7236 Type *CondTy = SI->getCondition()->getType(); 7237 if (!ScalarCond) 7238 CondTy = VectorType::get(CondTy, VF); 7239 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7240 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7241 } 7242 case Instruction::ICmp: 7243 case Instruction::FCmp: { 7244 Type *ValTy = I->getOperand(0)->getType(); 7245 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7246 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7247 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7248 VectorTy = ToVectorTy(ValTy, VF); 7249 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7250 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7251 } 7252 case Instruction::Store: 7253 case Instruction::Load: { 7254 ElementCount Width = VF; 7255 if (Width.isVector()) { 7256 InstWidening Decision = getWideningDecision(I, Width); 7257 assert(Decision != CM_Unknown && 7258 "CM decision should be taken at this point"); 7259 if (Decision == CM_Scalarize) 7260 Width = ElementCount::getFixed(1); 7261 } 7262 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7263 return getMemoryInstructionCost(I, VF); 7264 } 7265 case Instruction::ZExt: 7266 case Instruction::SExt: 7267 case Instruction::FPToUI: 7268 case Instruction::FPToSI: 7269 case Instruction::FPExt: 7270 case Instruction::PtrToInt: 7271 case Instruction::IntToPtr: 7272 case Instruction::SIToFP: 7273 case Instruction::UIToFP: 7274 case Instruction::Trunc: 7275 case Instruction::FPTrunc: 7276 case Instruction::BitCast: { 7277 // Computes the CastContextHint from a Load/Store instruction. 7278 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7279 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7280 "Expected a load or a store!"); 7281 7282 if (VF.isScalar() || !TheLoop->contains(I)) 7283 return TTI::CastContextHint::Normal; 7284 7285 switch (getWideningDecision(I, VF)) { 7286 case LoopVectorizationCostModel::CM_GatherScatter: 7287 return TTI::CastContextHint::GatherScatter; 7288 case LoopVectorizationCostModel::CM_Interleave: 7289 return TTI::CastContextHint::Interleave; 7290 case LoopVectorizationCostModel::CM_Scalarize: 7291 case LoopVectorizationCostModel::CM_Widen: 7292 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7293 : TTI::CastContextHint::Normal; 7294 case LoopVectorizationCostModel::CM_Widen_Reverse: 7295 return TTI::CastContextHint::Reversed; 7296 case LoopVectorizationCostModel::CM_Unknown: 7297 llvm_unreachable("Instr did not go through cost modelling?"); 7298 } 7299 7300 llvm_unreachable("Unhandled case!"); 7301 }; 7302 7303 unsigned Opcode = I->getOpcode(); 7304 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7305 // For Trunc, the context is the only user, which must be a StoreInst. 7306 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7307 if (I->hasOneUse()) 7308 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7309 CCH = ComputeCCH(Store); 7310 } 7311 // For Z/Sext, the context is the operand, which must be a LoadInst. 7312 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7313 Opcode == Instruction::FPExt) { 7314 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7315 CCH = ComputeCCH(Load); 7316 } 7317 7318 // We optimize the truncation of induction variables having constant 7319 // integer steps. The cost of these truncations is the same as the scalar 7320 // operation. 7321 if (isOptimizableIVTruncate(I, VF)) { 7322 auto *Trunc = cast<TruncInst>(I); 7323 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7324 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7325 } 7326 7327 // Detect reduction patterns 7328 InstructionCost RedCost; 7329 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7330 .isValid()) 7331 return RedCost; 7332 7333 Type *SrcScalarTy = I->getOperand(0)->getType(); 7334 Type *SrcVecTy = 7335 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7336 if (canTruncateToMinimalBitwidth(I, VF)) { 7337 // This cast is going to be shrunk. This may remove the cast or it might 7338 // turn it into slightly different cast. For example, if MinBW == 16, 7339 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7340 // 7341 // Calculate the modified src and dest types. 7342 Type *MinVecTy = VectorTy; 7343 if (Opcode == Instruction::Trunc) { 7344 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7345 VectorTy = 7346 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7347 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7348 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7349 VectorTy = 7350 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7351 } 7352 } 7353 7354 unsigned N; 7355 if (isScalarAfterVectorization(I, VF)) { 7356 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7357 N = VF.getKnownMinValue(); 7358 } else 7359 N = 1; 7360 return N * 7361 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7362 } 7363 case Instruction::Call: { 7364 bool NeedToScalarize; 7365 CallInst *CI = cast<CallInst>(I); 7366 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7367 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7368 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7369 return std::min(CallCost, IntrinsicCost); 7370 } 7371 return CallCost; 7372 } 7373 case Instruction::ExtractValue: 7374 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7375 default: 7376 // The cost of executing VF copies of the scalar instruction. This opcode 7377 // is unknown. Assume that it is the same as 'mul'. 7378 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7379 Instruction::Mul, VectorTy, CostKind) + 7380 getScalarizationOverhead(I, VF); 7381 } // end of switch. 7382 } 7383 7384 char LoopVectorize::ID = 0; 7385 7386 static const char lv_name[] = "Loop Vectorization"; 7387 7388 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7389 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7390 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7391 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7392 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7393 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7394 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7395 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7396 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7397 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7398 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7399 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7400 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7401 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7402 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7403 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7404 7405 namespace llvm { 7406 7407 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7408 7409 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7410 bool VectorizeOnlyWhenForced) { 7411 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7412 } 7413 7414 } // end namespace llvm 7415 7416 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7417 // Check if the pointer operand of a load or store instruction is 7418 // consecutive. 7419 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7420 return Legal->isConsecutivePtr(Ptr); 7421 return false; 7422 } 7423 7424 void LoopVectorizationCostModel::collectValuesToIgnore() { 7425 // Ignore ephemeral values. 7426 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7427 7428 // Ignore type-promoting instructions we identified during reduction 7429 // detection. 7430 for (auto &Reduction : Legal->getReductionVars()) { 7431 RecurrenceDescriptor &RedDes = Reduction.second; 7432 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7433 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7434 } 7435 // Ignore type-casting instructions we identified during induction 7436 // detection. 7437 for (auto &Induction : Legal->getInductionVars()) { 7438 InductionDescriptor &IndDes = Induction.second; 7439 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7440 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7441 } 7442 } 7443 7444 void LoopVectorizationCostModel::collectInLoopReductions() { 7445 for (auto &Reduction : Legal->getReductionVars()) { 7446 PHINode *Phi = Reduction.first; 7447 RecurrenceDescriptor &RdxDesc = Reduction.second; 7448 7449 // We don't collect reductions that are type promoted (yet). 7450 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7451 continue; 7452 7453 // If the target would prefer this reduction to happen "in-loop", then we 7454 // want to record it as such. 7455 unsigned Opcode = RdxDesc.getOpcode(); 7456 if (!PreferInLoopReductions && 7457 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7458 TargetTransformInfo::ReductionFlags())) 7459 continue; 7460 7461 // Check that we can correctly put the reductions into the loop, by 7462 // finding the chain of operations that leads from the phi to the loop 7463 // exit value. 7464 SmallVector<Instruction *, 4> ReductionOperations = 7465 RdxDesc.getReductionOpChain(Phi, TheLoop); 7466 bool InLoop = !ReductionOperations.empty(); 7467 if (InLoop) { 7468 InLoopReductionChains[Phi] = ReductionOperations; 7469 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7470 Instruction *LastChain = Phi; 7471 for (auto *I : ReductionOperations) { 7472 InLoopReductionImmediateChains[I] = LastChain; 7473 LastChain = I; 7474 } 7475 } 7476 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7477 << " reduction for phi: " << *Phi << "\n"); 7478 } 7479 } 7480 7481 // TODO: we could return a pair of values that specify the max VF and 7482 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7483 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7484 // doesn't have a cost model that can choose which plan to execute if 7485 // more than one is generated. 7486 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7487 LoopVectorizationCostModel &CM) { 7488 unsigned WidestType; 7489 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7490 return WidestVectorRegBits / WidestType; 7491 } 7492 7493 VectorizationFactor 7494 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7495 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7496 ElementCount VF = UserVF; 7497 // Outer loop handling: They may require CFG and instruction level 7498 // transformations before even evaluating whether vectorization is profitable. 7499 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7500 // the vectorization pipeline. 7501 if (!OrigLoop->isInnermost()) { 7502 // If the user doesn't provide a vectorization factor, determine a 7503 // reasonable one. 7504 if (UserVF.isZero()) { 7505 VF = ElementCount::getFixed( 7506 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7507 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7508 7509 // Make sure we have a VF > 1 for stress testing. 7510 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7511 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7512 << "overriding computed VF.\n"); 7513 VF = ElementCount::getFixed(4); 7514 } 7515 } 7516 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7517 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7518 "VF needs to be a power of two"); 7519 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7520 << "VF " << VF << " to build VPlans.\n"); 7521 buildVPlans(VF, VF); 7522 7523 // For VPlan build stress testing, we bail out after VPlan construction. 7524 if (VPlanBuildStressTest) 7525 return VectorizationFactor::Disabled(); 7526 7527 return {VF, 0 /*Cost*/}; 7528 } 7529 7530 LLVM_DEBUG( 7531 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7532 "VPlan-native path.\n"); 7533 return VectorizationFactor::Disabled(); 7534 } 7535 7536 Optional<VectorizationFactor> 7537 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7538 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7539 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7540 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7541 return None; 7542 7543 // Invalidate interleave groups if all blocks of loop will be predicated. 7544 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7545 !useMaskedInterleavedAccesses(*TTI)) { 7546 LLVM_DEBUG( 7547 dbgs() 7548 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7549 "which requires masked-interleaved support.\n"); 7550 if (CM.InterleaveInfo.invalidateGroups()) 7551 // Invalidating interleave groups also requires invalidating all decisions 7552 // based on them, which includes widening decisions and uniform and scalar 7553 // values. 7554 CM.invalidateCostModelingDecisions(); 7555 } 7556 7557 ElementCount MaxVF = MaybeMaxVF.getValue(); 7558 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7559 7560 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7561 if (!UserVF.isZero() && 7562 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7563 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7564 // VFs here, this should be reverted to only use legal UserVFs once the 7565 // loop below supports scalable VFs. 7566 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7567 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7568 << " VF " << VF << ".\n"); 7569 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7570 "VF needs to be a power of two"); 7571 // Collect the instructions (and their associated costs) that will be more 7572 // profitable to scalarize. 7573 CM.selectUserVectorizationFactor(VF); 7574 CM.collectInLoopReductions(); 7575 buildVPlansWithVPRecipes(VF, VF); 7576 LLVM_DEBUG(printPlans(dbgs())); 7577 return {{VF, 0}}; 7578 } 7579 7580 assert(!MaxVF.isScalable() && 7581 "Scalable vectors not yet supported beyond this point"); 7582 7583 for (ElementCount VF = ElementCount::getFixed(1); 7584 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7585 // Collect Uniform and Scalar instructions after vectorization with VF. 7586 CM.collectUniformsAndScalars(VF); 7587 7588 // Collect the instructions (and their associated costs) that will be more 7589 // profitable to scalarize. 7590 if (VF.isVector()) 7591 CM.collectInstsToScalarize(VF); 7592 } 7593 7594 CM.collectInLoopReductions(); 7595 7596 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7597 LLVM_DEBUG(printPlans(dbgs())); 7598 if (MaxVF.isScalar()) 7599 return VectorizationFactor::Disabled(); 7600 7601 // Select the optimal vectorization factor. 7602 return CM.selectVectorizationFactor(MaxVF); 7603 } 7604 7605 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7606 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7607 << '\n'); 7608 BestVF = VF; 7609 BestUF = UF; 7610 7611 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7612 return !Plan->hasVF(VF); 7613 }); 7614 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7615 } 7616 7617 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7618 DominatorTree *DT) { 7619 // Perform the actual loop transformation. 7620 7621 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7622 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7623 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7624 7625 VPTransformState State{ 7626 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 7627 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7628 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7629 State.CanonicalIV = ILV.Induction; 7630 7631 ILV.printDebugTracesAtStart(); 7632 7633 //===------------------------------------------------===// 7634 // 7635 // Notice: any optimization or new instruction that go 7636 // into the code below should also be implemented in 7637 // the cost-model. 7638 // 7639 //===------------------------------------------------===// 7640 7641 // 2. Copy and widen instructions from the old loop into the new loop. 7642 VPlans.front()->execute(&State); 7643 7644 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7645 // predication, updating analyses. 7646 ILV.fixVectorizedLoop(State); 7647 7648 ILV.printDebugTracesAtEnd(); 7649 } 7650 7651 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7652 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7653 7654 // We create new control-flow for the vectorized loop, so the original exit 7655 // conditions will be dead after vectorization if it's only used by the 7656 // terminator 7657 SmallVector<BasicBlock*> ExitingBlocks; 7658 OrigLoop->getExitingBlocks(ExitingBlocks); 7659 for (auto *BB : ExitingBlocks) { 7660 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7661 if (!Cmp || !Cmp->hasOneUse()) 7662 continue; 7663 7664 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7665 if (!DeadInstructions.insert(Cmp).second) 7666 continue; 7667 7668 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7669 // TODO: can recurse through operands in general 7670 for (Value *Op : Cmp->operands()) { 7671 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7672 DeadInstructions.insert(cast<Instruction>(Op)); 7673 } 7674 } 7675 7676 // We create new "steps" for induction variable updates to which the original 7677 // induction variables map. An original update instruction will be dead if 7678 // all its users except the induction variable are dead. 7679 auto *Latch = OrigLoop->getLoopLatch(); 7680 for (auto &Induction : Legal->getInductionVars()) { 7681 PHINode *Ind = Induction.first; 7682 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7683 7684 // If the tail is to be folded by masking, the primary induction variable, 7685 // if exists, isn't dead: it will be used for masking. Don't kill it. 7686 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7687 continue; 7688 7689 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7690 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7691 })) 7692 DeadInstructions.insert(IndUpdate); 7693 7694 // We record as "Dead" also the type-casting instructions we had identified 7695 // during induction analysis. We don't need any handling for them in the 7696 // vectorized loop because we have proven that, under a proper runtime 7697 // test guarding the vectorized loop, the value of the phi, and the casted 7698 // value of the phi, are the same. The last instruction in this casting chain 7699 // will get its scalar/vector/widened def from the scalar/vector/widened def 7700 // of the respective phi node. Any other casts in the induction def-use chain 7701 // have no other uses outside the phi update chain, and will be ignored. 7702 InductionDescriptor &IndDes = Induction.second; 7703 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7704 DeadInstructions.insert(Casts.begin(), Casts.end()); 7705 } 7706 } 7707 7708 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7709 7710 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7711 7712 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7713 Instruction::BinaryOps BinOp) { 7714 // When unrolling and the VF is 1, we only need to add a simple scalar. 7715 Type *Ty = Val->getType(); 7716 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7717 7718 if (Ty->isFloatingPointTy()) { 7719 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7720 7721 // Floating point operations had to be 'fast' to enable the unrolling. 7722 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7723 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7724 } 7725 Constant *C = ConstantInt::get(Ty, StartIdx); 7726 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7727 } 7728 7729 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7730 SmallVector<Metadata *, 4> MDs; 7731 // Reserve first location for self reference to the LoopID metadata node. 7732 MDs.push_back(nullptr); 7733 bool IsUnrollMetadata = false; 7734 MDNode *LoopID = L->getLoopID(); 7735 if (LoopID) { 7736 // First find existing loop unrolling disable metadata. 7737 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7738 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7739 if (MD) { 7740 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7741 IsUnrollMetadata = 7742 S && S->getString().startswith("llvm.loop.unroll.disable"); 7743 } 7744 MDs.push_back(LoopID->getOperand(i)); 7745 } 7746 } 7747 7748 if (!IsUnrollMetadata) { 7749 // Add runtime unroll disable metadata. 7750 LLVMContext &Context = L->getHeader()->getContext(); 7751 SmallVector<Metadata *, 1> DisableOperands; 7752 DisableOperands.push_back( 7753 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7754 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7755 MDs.push_back(DisableNode); 7756 MDNode *NewLoopID = MDNode::get(Context, MDs); 7757 // Set operand 0 to refer to the loop id itself. 7758 NewLoopID->replaceOperandWith(0, NewLoopID); 7759 L->setLoopID(NewLoopID); 7760 } 7761 } 7762 7763 //===--------------------------------------------------------------------===// 7764 // EpilogueVectorizerMainLoop 7765 //===--------------------------------------------------------------------===// 7766 7767 /// This function is partially responsible for generating the control flow 7768 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7769 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7770 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7771 Loop *Lp = createVectorLoopSkeleton(""); 7772 7773 // Generate the code to check the minimum iteration count of the vector 7774 // epilogue (see below). 7775 EPI.EpilogueIterationCountCheck = 7776 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7777 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7778 7779 // Generate the code to check any assumptions that we've made for SCEV 7780 // expressions. 7781 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7782 emitSCEVChecks(Lp, LoopScalarPreHeader); 7783 7784 // If a safety check was generated save it. 7785 if (SavedPreHeader != LoopVectorPreHeader) 7786 EPI.SCEVSafetyCheck = SavedPreHeader; 7787 7788 // Generate the code that checks at runtime if arrays overlap. We put the 7789 // checks into a separate block to make the more common case of few elements 7790 // faster. 7791 SavedPreHeader = LoopVectorPreHeader; 7792 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7793 7794 // If a safety check was generated save/overwite it. 7795 if (SavedPreHeader != LoopVectorPreHeader) 7796 EPI.MemSafetyCheck = SavedPreHeader; 7797 7798 // Generate the iteration count check for the main loop, *after* the check 7799 // for the epilogue loop, so that the path-length is shorter for the case 7800 // that goes directly through the vector epilogue. The longer-path length for 7801 // the main loop is compensated for, by the gain from vectorizing the larger 7802 // trip count. Note: the branch will get updated later on when we vectorize 7803 // the epilogue. 7804 EPI.MainLoopIterationCountCheck = 7805 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7806 7807 // Generate the induction variable. 7808 OldInduction = Legal->getPrimaryInduction(); 7809 Type *IdxTy = Legal->getWidestInductionType(); 7810 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7811 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7812 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7813 EPI.VectorTripCount = CountRoundDown; 7814 Induction = 7815 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7816 getDebugLocFromInstOrOperands(OldInduction)); 7817 7818 // Skip induction resume value creation here because they will be created in 7819 // the second pass. If we created them here, they wouldn't be used anyway, 7820 // because the vplan in the second pass still contains the inductions from the 7821 // original loop. 7822 7823 return completeLoopSkeleton(Lp, OrigLoopID); 7824 } 7825 7826 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7827 LLVM_DEBUG({ 7828 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7829 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7830 << ", Main Loop UF:" << EPI.MainLoopUF 7831 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7832 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7833 }); 7834 } 7835 7836 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7837 DEBUG_WITH_TYPE(VerboseDebug, { 7838 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7839 }); 7840 } 7841 7842 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7843 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7844 assert(L && "Expected valid Loop."); 7845 assert(Bypass && "Expected valid bypass basic block."); 7846 unsigned VFactor = 7847 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7848 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7849 Value *Count = getOrCreateTripCount(L); 7850 // Reuse existing vector loop preheader for TC checks. 7851 // Note that new preheader block is generated for vector loop. 7852 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7853 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7854 7855 // Generate code to check if the loop's trip count is less than VF * UF of the 7856 // main vector loop. 7857 auto P = 7858 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7859 7860 Value *CheckMinIters = Builder.CreateICmp( 7861 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 7862 "min.iters.check"); 7863 7864 if (!ForEpilogue) 7865 TCCheckBlock->setName("vector.main.loop.iter.check"); 7866 7867 // Create new preheader for vector loop. 7868 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7869 DT, LI, nullptr, "vector.ph"); 7870 7871 if (ForEpilogue) { 7872 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7873 DT->getNode(Bypass)->getIDom()) && 7874 "TC check is expected to dominate Bypass"); 7875 7876 // Update dominator for Bypass & LoopExit. 7877 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7878 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7879 7880 LoopBypassBlocks.push_back(TCCheckBlock); 7881 7882 // Save the trip count so we don't have to regenerate it in the 7883 // vec.epilog.iter.check. This is safe to do because the trip count 7884 // generated here dominates the vector epilog iter check. 7885 EPI.TripCount = Count; 7886 } 7887 7888 ReplaceInstWithInst( 7889 TCCheckBlock->getTerminator(), 7890 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7891 7892 return TCCheckBlock; 7893 } 7894 7895 //===--------------------------------------------------------------------===// 7896 // EpilogueVectorizerEpilogueLoop 7897 //===--------------------------------------------------------------------===// 7898 7899 /// This function is partially responsible for generating the control flow 7900 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7901 BasicBlock * 7902 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7903 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7904 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 7905 7906 // Now, compare the remaining count and if there aren't enough iterations to 7907 // execute the vectorized epilogue skip to the scalar part. 7908 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7909 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7910 LoopVectorPreHeader = 7911 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7912 LI, nullptr, "vec.epilog.ph"); 7913 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 7914 VecEpilogueIterationCountCheck); 7915 7916 // Adjust the control flow taking the state info from the main loop 7917 // vectorization into account. 7918 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7919 "expected this to be saved from the previous pass."); 7920 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7921 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7922 7923 DT->changeImmediateDominator(LoopVectorPreHeader, 7924 EPI.MainLoopIterationCountCheck); 7925 7926 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7927 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7928 7929 if (EPI.SCEVSafetyCheck) 7930 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7931 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7932 if (EPI.MemSafetyCheck) 7933 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7934 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7935 7936 DT->changeImmediateDominator( 7937 VecEpilogueIterationCountCheck, 7938 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7939 7940 DT->changeImmediateDominator(LoopScalarPreHeader, 7941 EPI.EpilogueIterationCountCheck); 7942 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 7943 7944 // Keep track of bypass blocks, as they feed start values to the induction 7945 // phis in the scalar loop preheader. 7946 if (EPI.SCEVSafetyCheck) 7947 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7948 if (EPI.MemSafetyCheck) 7949 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7950 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7951 7952 // Generate a resume induction for the vector epilogue and put it in the 7953 // vector epilogue preheader 7954 Type *IdxTy = Legal->getWidestInductionType(); 7955 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7956 LoopVectorPreHeader->getFirstNonPHI()); 7957 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7958 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7959 EPI.MainLoopIterationCountCheck); 7960 7961 // Generate the induction variable. 7962 OldInduction = Legal->getPrimaryInduction(); 7963 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7964 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7965 Value *StartIdx = EPResumeVal; 7966 Induction = 7967 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7968 getDebugLocFromInstOrOperands(OldInduction)); 7969 7970 // Generate induction resume values. These variables save the new starting 7971 // indexes for the scalar loop. They are used to test if there are any tail 7972 // iterations left once the vector loop has completed. 7973 // Note that when the vectorized epilogue is skipped due to iteration count 7974 // check, then the resume value for the induction variable comes from 7975 // the trip count of the main vector loop, hence passing the AdditionalBypass 7976 // argument. 7977 createInductionResumeValues(Lp, CountRoundDown, 7978 {VecEpilogueIterationCountCheck, 7979 EPI.VectorTripCount} /* AdditionalBypass */); 7980 7981 AddRuntimeUnrollDisableMetaData(Lp); 7982 return completeLoopSkeleton(Lp, OrigLoopID); 7983 } 7984 7985 BasicBlock * 7986 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7987 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 7988 7989 assert(EPI.TripCount && 7990 "Expected trip count to have been safed in the first pass."); 7991 assert( 7992 (!isa<Instruction>(EPI.TripCount) || 7993 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7994 "saved trip count does not dominate insertion point."); 7995 Value *TC = EPI.TripCount; 7996 IRBuilder<> Builder(Insert->getTerminator()); 7997 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7998 7999 // Generate code to check if the loop's trip count is less than VF * UF of the 8000 // vector epilogue loop. 8001 auto P = 8002 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8003 8004 Value *CheckMinIters = Builder.CreateICmp( 8005 P, Count, 8006 ConstantInt::get(Count->getType(), 8007 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8008 "min.epilog.iters.check"); 8009 8010 ReplaceInstWithInst( 8011 Insert->getTerminator(), 8012 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8013 8014 LoopBypassBlocks.push_back(Insert); 8015 return Insert; 8016 } 8017 8018 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8019 LLVM_DEBUG({ 8020 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8021 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8022 << ", Main Loop UF:" << EPI.MainLoopUF 8023 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8024 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8025 }); 8026 } 8027 8028 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8029 DEBUG_WITH_TYPE(VerboseDebug, { 8030 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8031 }); 8032 } 8033 8034 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8035 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8036 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8037 bool PredicateAtRangeStart = Predicate(Range.Start); 8038 8039 for (ElementCount TmpVF = Range.Start * 2; 8040 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8041 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8042 Range.End = TmpVF; 8043 break; 8044 } 8045 8046 return PredicateAtRangeStart; 8047 } 8048 8049 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8050 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8051 /// of VF's starting at a given VF and extending it as much as possible. Each 8052 /// vectorization decision can potentially shorten this sub-range during 8053 /// buildVPlan(). 8054 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8055 ElementCount MaxVF) { 8056 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8057 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8058 VFRange SubRange = {VF, MaxVFPlusOne}; 8059 VPlans.push_back(buildVPlan(SubRange)); 8060 VF = SubRange.End; 8061 } 8062 } 8063 8064 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8065 VPlanPtr &Plan) { 8066 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8067 8068 // Look for cached value. 8069 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8070 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8071 if (ECEntryIt != EdgeMaskCache.end()) 8072 return ECEntryIt->second; 8073 8074 VPValue *SrcMask = createBlockInMask(Src, Plan); 8075 8076 // The terminator has to be a branch inst! 8077 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8078 assert(BI && "Unexpected terminator found"); 8079 8080 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8081 return EdgeMaskCache[Edge] = SrcMask; 8082 8083 // If source is an exiting block, we know the exit edge is dynamically dead 8084 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8085 // adding uses of an otherwise potentially dead instruction. 8086 if (OrigLoop->isLoopExiting(Src)) 8087 return EdgeMaskCache[Edge] = SrcMask; 8088 8089 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8090 assert(EdgeMask && "No Edge Mask found for condition"); 8091 8092 if (BI->getSuccessor(0) != Dst) 8093 EdgeMask = Builder.createNot(EdgeMask); 8094 8095 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8096 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8097 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8098 // The select version does not introduce new UB if SrcMask is false and 8099 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8100 VPValue *False = Plan->getOrAddVPValue( 8101 ConstantInt::getFalse(BI->getCondition()->getType())); 8102 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8103 } 8104 8105 return EdgeMaskCache[Edge] = EdgeMask; 8106 } 8107 8108 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8109 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8110 8111 // Look for cached value. 8112 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8113 if (BCEntryIt != BlockMaskCache.end()) 8114 return BCEntryIt->second; 8115 8116 // All-one mask is modelled as no-mask following the convention for masked 8117 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8118 VPValue *BlockMask = nullptr; 8119 8120 if (OrigLoop->getHeader() == BB) { 8121 if (!CM.blockNeedsPredication(BB)) 8122 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8123 8124 // Create the block in mask as the first non-phi instruction in the block. 8125 VPBuilder::InsertPointGuard Guard(Builder); 8126 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8127 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8128 8129 // Introduce the early-exit compare IV <= BTC to form header block mask. 8130 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8131 // Start by constructing the desired canonical IV. 8132 VPValue *IV = nullptr; 8133 if (Legal->getPrimaryInduction()) 8134 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8135 else { 8136 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8137 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8138 IV = IVRecipe->getVPValue(); 8139 } 8140 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8141 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8142 8143 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8144 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8145 // as a second argument, we only pass the IV here and extract the 8146 // tripcount from the transform state where codegen of the VP instructions 8147 // happen. 8148 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8149 } else { 8150 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8151 } 8152 return BlockMaskCache[BB] = BlockMask; 8153 } 8154 8155 // This is the block mask. We OR all incoming edges. 8156 for (auto *Predecessor : predecessors(BB)) { 8157 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8158 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8159 return BlockMaskCache[BB] = EdgeMask; 8160 8161 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8162 BlockMask = EdgeMask; 8163 continue; 8164 } 8165 8166 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8167 } 8168 8169 return BlockMaskCache[BB] = BlockMask; 8170 } 8171 8172 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8173 VPlanPtr &Plan) { 8174 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8175 "Must be called with either a load or store"); 8176 8177 auto willWiden = [&](ElementCount VF) -> bool { 8178 if (VF.isScalar()) 8179 return false; 8180 LoopVectorizationCostModel::InstWidening Decision = 8181 CM.getWideningDecision(I, VF); 8182 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8183 "CM decision should be taken at this point."); 8184 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8185 return true; 8186 if (CM.isScalarAfterVectorization(I, VF) || 8187 CM.isProfitableToScalarize(I, VF)) 8188 return false; 8189 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8190 }; 8191 8192 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8193 return nullptr; 8194 8195 VPValue *Mask = nullptr; 8196 if (Legal->isMaskRequired(I)) 8197 Mask = createBlockInMask(I->getParent(), Plan); 8198 8199 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8200 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8201 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8202 8203 StoreInst *Store = cast<StoreInst>(I); 8204 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8205 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8206 } 8207 8208 VPWidenIntOrFpInductionRecipe * 8209 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8210 // Check if this is an integer or fp induction. If so, build the recipe that 8211 // produces its scalar and vector values. 8212 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8213 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8214 II.getKind() == InductionDescriptor::IK_FpInduction) { 8215 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8216 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8217 return new VPWidenIntOrFpInductionRecipe( 8218 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8219 } 8220 8221 return nullptr; 8222 } 8223 8224 VPWidenIntOrFpInductionRecipe * 8225 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8226 VPlan &Plan) const { 8227 // Optimize the special case where the source is a constant integer 8228 // induction variable. Notice that we can only optimize the 'trunc' case 8229 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8230 // (c) other casts depend on pointer size. 8231 8232 // Determine whether \p K is a truncation based on an induction variable that 8233 // can be optimized. 8234 auto isOptimizableIVTruncate = 8235 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8236 return [=](ElementCount VF) -> bool { 8237 return CM.isOptimizableIVTruncate(K, VF); 8238 }; 8239 }; 8240 8241 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8242 isOptimizableIVTruncate(I), Range)) { 8243 8244 InductionDescriptor II = 8245 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8246 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8247 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8248 Start, nullptr, I); 8249 } 8250 return nullptr; 8251 } 8252 8253 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8254 // We know that all PHIs in non-header blocks are converted into selects, so 8255 // we don't have to worry about the insertion order and we can just use the 8256 // builder. At this point we generate the predication tree. There may be 8257 // duplications since this is a simple recursive scan, but future 8258 // optimizations will clean it up. 8259 8260 SmallVector<VPValue *, 2> Operands; 8261 unsigned NumIncoming = Phi->getNumIncomingValues(); 8262 for (unsigned In = 0; In < NumIncoming; In++) { 8263 VPValue *EdgeMask = 8264 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8265 assert((EdgeMask || NumIncoming == 1) && 8266 "Multiple predecessors with one having a full mask"); 8267 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8268 if (EdgeMask) 8269 Operands.push_back(EdgeMask); 8270 } 8271 return new VPBlendRecipe(Phi, Operands); 8272 } 8273 8274 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8275 VPlan &Plan) const { 8276 8277 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8278 [this, CI](ElementCount VF) { 8279 return CM.isScalarWithPredication(CI, VF); 8280 }, 8281 Range); 8282 8283 if (IsPredicated) 8284 return nullptr; 8285 8286 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8287 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8288 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8289 ID == Intrinsic::pseudoprobe || 8290 ID == Intrinsic::experimental_noalias_scope_decl)) 8291 return nullptr; 8292 8293 auto willWiden = [&](ElementCount VF) -> bool { 8294 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8295 // The following case may be scalarized depending on the VF. 8296 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8297 // version of the instruction. 8298 // Is it beneficial to perform intrinsic call compared to lib call? 8299 bool NeedToScalarize = false; 8300 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8301 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8302 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8303 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8304 "Cannot have invalid costs while widening"); 8305 return UseVectorIntrinsic || !NeedToScalarize; 8306 }; 8307 8308 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8309 return nullptr; 8310 8311 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8312 } 8313 8314 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8315 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8316 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8317 // Instruction should be widened, unless it is scalar after vectorization, 8318 // scalarization is profitable or it is predicated. 8319 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8320 return CM.isScalarAfterVectorization(I, VF) || 8321 CM.isProfitableToScalarize(I, VF) || 8322 CM.isScalarWithPredication(I, VF); 8323 }; 8324 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8325 Range); 8326 } 8327 8328 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8329 auto IsVectorizableOpcode = [](unsigned Opcode) { 8330 switch (Opcode) { 8331 case Instruction::Add: 8332 case Instruction::And: 8333 case Instruction::AShr: 8334 case Instruction::BitCast: 8335 case Instruction::FAdd: 8336 case Instruction::FCmp: 8337 case Instruction::FDiv: 8338 case Instruction::FMul: 8339 case Instruction::FNeg: 8340 case Instruction::FPExt: 8341 case Instruction::FPToSI: 8342 case Instruction::FPToUI: 8343 case Instruction::FPTrunc: 8344 case Instruction::FRem: 8345 case Instruction::FSub: 8346 case Instruction::ICmp: 8347 case Instruction::IntToPtr: 8348 case Instruction::LShr: 8349 case Instruction::Mul: 8350 case Instruction::Or: 8351 case Instruction::PtrToInt: 8352 case Instruction::SDiv: 8353 case Instruction::Select: 8354 case Instruction::SExt: 8355 case Instruction::Shl: 8356 case Instruction::SIToFP: 8357 case Instruction::SRem: 8358 case Instruction::Sub: 8359 case Instruction::Trunc: 8360 case Instruction::UDiv: 8361 case Instruction::UIToFP: 8362 case Instruction::URem: 8363 case Instruction::Xor: 8364 case Instruction::ZExt: 8365 return true; 8366 } 8367 return false; 8368 }; 8369 8370 if (!IsVectorizableOpcode(I->getOpcode())) 8371 return nullptr; 8372 8373 // Success: widen this instruction. 8374 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8375 } 8376 8377 VPBasicBlock *VPRecipeBuilder::handleReplication( 8378 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8379 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8380 VPlanPtr &Plan) { 8381 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8382 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8383 Range); 8384 8385 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8386 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8387 Range); 8388 8389 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8390 IsUniform, IsPredicated); 8391 setRecipe(I, Recipe); 8392 Plan->addVPValue(I, Recipe); 8393 8394 // Find if I uses a predicated instruction. If so, it will use its scalar 8395 // value. Avoid hoisting the insert-element which packs the scalar value into 8396 // a vector value, as that happens iff all users use the vector value. 8397 for (auto &Op : I->operands()) 8398 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8399 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8400 PredInst2Recipe[PredInst]->setAlsoPack(false); 8401 8402 // Finalize the recipe for Instr, first if it is not predicated. 8403 if (!IsPredicated) { 8404 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8405 VPBB->appendRecipe(Recipe); 8406 return VPBB; 8407 } 8408 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8409 assert(VPBB->getSuccessors().empty() && 8410 "VPBB has successors when handling predicated replication."); 8411 // Record predicated instructions for above packing optimizations. 8412 PredInst2Recipe[I] = Recipe; 8413 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8414 VPBlockUtils::insertBlockAfter(Region, VPBB); 8415 auto *RegSucc = new VPBasicBlock(); 8416 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8417 return RegSucc; 8418 } 8419 8420 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8421 VPRecipeBase *PredRecipe, 8422 VPlanPtr &Plan) { 8423 // Instructions marked for predication are replicated and placed under an 8424 // if-then construct to prevent side-effects. 8425 8426 // Generate recipes to compute the block mask for this region. 8427 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8428 8429 // Build the triangular if-then region. 8430 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8431 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8432 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8433 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8434 auto *PHIRecipe = Instr->getType()->isVoidTy() 8435 ? nullptr 8436 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8437 if (PHIRecipe) { 8438 Plan->removeVPValueFor(Instr); 8439 Plan->addVPValue(Instr, PHIRecipe); 8440 } 8441 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8442 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8443 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8444 8445 // Note: first set Entry as region entry and then connect successors starting 8446 // from it in order, to propagate the "parent" of each VPBasicBlock. 8447 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8448 VPBlockUtils::connectBlocks(Pred, Exit); 8449 8450 return Region; 8451 } 8452 8453 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8454 VFRange &Range, 8455 VPlanPtr &Plan) { 8456 // First, check for specific widening recipes that deal with calls, memory 8457 // operations, inductions and Phi nodes. 8458 if (auto *CI = dyn_cast<CallInst>(Instr)) 8459 return tryToWidenCall(CI, Range, *Plan); 8460 8461 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8462 return tryToWidenMemory(Instr, Range, Plan); 8463 8464 VPRecipeBase *Recipe; 8465 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8466 if (Phi->getParent() != OrigLoop->getHeader()) 8467 return tryToBlend(Phi, Plan); 8468 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8469 return Recipe; 8470 8471 if (Legal->isReductionVariable(Phi)) { 8472 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8473 VPValue *StartV = 8474 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8475 return new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8476 } 8477 8478 return new VPWidenPHIRecipe(Phi); 8479 } 8480 8481 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8482 cast<TruncInst>(Instr), Range, *Plan))) 8483 return Recipe; 8484 8485 if (!shouldWiden(Instr, Range)) 8486 return nullptr; 8487 8488 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8489 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8490 OrigLoop); 8491 8492 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8493 bool InvariantCond = 8494 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8495 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8496 InvariantCond); 8497 } 8498 8499 return tryToWiden(Instr, *Plan); 8500 } 8501 8502 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8503 ElementCount MaxVF) { 8504 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8505 8506 // Collect instructions from the original loop that will become trivially dead 8507 // in the vectorized loop. We don't need to vectorize these instructions. For 8508 // example, original induction update instructions can become dead because we 8509 // separately emit induction "steps" when generating code for the new loop. 8510 // Similarly, we create a new latch condition when setting up the structure 8511 // of the new loop, so the old one can become dead. 8512 SmallPtrSet<Instruction *, 4> DeadInstructions; 8513 collectTriviallyDeadInstructions(DeadInstructions); 8514 8515 // Add assume instructions we need to drop to DeadInstructions, to prevent 8516 // them from being added to the VPlan. 8517 // TODO: We only need to drop assumes in blocks that get flattend. If the 8518 // control flow is preserved, we should keep them. 8519 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8520 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8521 8522 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8523 // Dead instructions do not need sinking. Remove them from SinkAfter. 8524 for (Instruction *I : DeadInstructions) 8525 SinkAfter.erase(I); 8526 8527 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8528 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8529 VFRange SubRange = {VF, MaxVFPlusOne}; 8530 VPlans.push_back( 8531 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8532 VF = SubRange.End; 8533 } 8534 } 8535 8536 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8537 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8538 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8539 8540 // Hold a mapping from predicated instructions to their recipes, in order to 8541 // fix their AlsoPack behavior if a user is determined to replicate and use a 8542 // scalar instead of vector value. 8543 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8544 8545 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8546 8547 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8548 8549 // --------------------------------------------------------------------------- 8550 // Pre-construction: record ingredients whose recipes we'll need to further 8551 // process after constructing the initial VPlan. 8552 // --------------------------------------------------------------------------- 8553 8554 // Mark instructions we'll need to sink later and their targets as 8555 // ingredients whose recipe we'll need to record. 8556 for (auto &Entry : SinkAfter) { 8557 RecipeBuilder.recordRecipeOf(Entry.first); 8558 RecipeBuilder.recordRecipeOf(Entry.second); 8559 } 8560 for (auto &Reduction : CM.getInLoopReductionChains()) { 8561 PHINode *Phi = Reduction.first; 8562 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8563 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8564 8565 RecipeBuilder.recordRecipeOf(Phi); 8566 for (auto &R : ReductionOperations) { 8567 RecipeBuilder.recordRecipeOf(R); 8568 // For min/max reducitons, where we have a pair of icmp/select, we also 8569 // need to record the ICmp recipe, so it can be removed later. 8570 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8571 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8572 } 8573 } 8574 8575 // For each interleave group which is relevant for this (possibly trimmed) 8576 // Range, add it to the set of groups to be later applied to the VPlan and add 8577 // placeholders for its members' Recipes which we'll be replacing with a 8578 // single VPInterleaveRecipe. 8579 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8580 auto applyIG = [IG, this](ElementCount VF) -> bool { 8581 return (VF.isVector() && // Query is illegal for VF == 1 8582 CM.getWideningDecision(IG->getInsertPos(), VF) == 8583 LoopVectorizationCostModel::CM_Interleave); 8584 }; 8585 if (!getDecisionAndClampRange(applyIG, Range)) 8586 continue; 8587 InterleaveGroups.insert(IG); 8588 for (unsigned i = 0; i < IG->getFactor(); i++) 8589 if (Instruction *Member = IG->getMember(i)) 8590 RecipeBuilder.recordRecipeOf(Member); 8591 }; 8592 8593 // --------------------------------------------------------------------------- 8594 // Build initial VPlan: Scan the body of the loop in a topological order to 8595 // visit each basic block after having visited its predecessor basic blocks. 8596 // --------------------------------------------------------------------------- 8597 8598 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8599 auto Plan = std::make_unique<VPlan>(); 8600 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8601 Plan->setEntry(VPBB); 8602 8603 // Scan the body of the loop in a topological order to visit each basic block 8604 // after having visited its predecessor basic blocks. 8605 LoopBlocksDFS DFS(OrigLoop); 8606 DFS.perform(LI); 8607 8608 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8609 // Relevant instructions from basic block BB will be grouped into VPRecipe 8610 // ingredients and fill a new VPBasicBlock. 8611 unsigned VPBBsForBB = 0; 8612 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8613 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8614 VPBB = FirstVPBBForBB; 8615 Builder.setInsertPoint(VPBB); 8616 8617 // Introduce each ingredient into VPlan. 8618 // TODO: Model and preserve debug instrinsics in VPlan. 8619 for (Instruction &I : BB->instructionsWithoutDebug()) { 8620 Instruction *Instr = &I; 8621 8622 // First filter out irrelevant instructions, to ensure no recipes are 8623 // built for them. 8624 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8625 continue; 8626 8627 if (auto Recipe = 8628 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8629 for (auto *Def : Recipe->definedValues()) { 8630 auto *UV = Def->getUnderlyingValue(); 8631 Plan->addVPValue(UV, Def); 8632 } 8633 8634 RecipeBuilder.setRecipe(Instr, Recipe); 8635 VPBB->appendRecipe(Recipe); 8636 continue; 8637 } 8638 8639 // Otherwise, if all widening options failed, Instruction is to be 8640 // replicated. This may create a successor for VPBB. 8641 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8642 Instr, Range, VPBB, PredInst2Recipe, Plan); 8643 if (NextVPBB != VPBB) { 8644 VPBB = NextVPBB; 8645 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8646 : ""); 8647 } 8648 } 8649 } 8650 8651 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8652 // may also be empty, such as the last one VPBB, reflecting original 8653 // basic-blocks with no recipes. 8654 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8655 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8656 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8657 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8658 delete PreEntry; 8659 8660 // --------------------------------------------------------------------------- 8661 // Transform initial VPlan: Apply previously taken decisions, in order, to 8662 // bring the VPlan to its final state. 8663 // --------------------------------------------------------------------------- 8664 8665 // Apply Sink-After legal constraints. 8666 for (auto &Entry : SinkAfter) { 8667 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8668 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8669 // If the target is in a replication region, make sure to move Sink to the 8670 // block after it, not into the replication region itself. 8671 if (auto *Region = 8672 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8673 if (Region->isReplicator()) { 8674 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8675 VPBasicBlock *NextBlock = 8676 cast<VPBasicBlock>(Region->getSuccessors().front()); 8677 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8678 continue; 8679 } 8680 } 8681 Sink->moveAfter(Target); 8682 } 8683 8684 // Interleave memory: for each Interleave Group we marked earlier as relevant 8685 // for this VPlan, replace the Recipes widening its memory instructions with a 8686 // single VPInterleaveRecipe at its insertion point. 8687 for (auto IG : InterleaveGroups) { 8688 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8689 RecipeBuilder.getRecipe(IG->getInsertPos())); 8690 SmallVector<VPValue *, 4> StoredValues; 8691 for (unsigned i = 0; i < IG->getFactor(); ++i) 8692 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8693 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8694 8695 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8696 Recipe->getMask()); 8697 VPIG->insertBefore(Recipe); 8698 unsigned J = 0; 8699 for (unsigned i = 0; i < IG->getFactor(); ++i) 8700 if (Instruction *Member = IG->getMember(i)) { 8701 if (!Member->getType()->isVoidTy()) { 8702 VPValue *OriginalV = Plan->getVPValue(Member); 8703 Plan->removeVPValueFor(Member); 8704 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8705 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8706 J++; 8707 } 8708 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8709 } 8710 } 8711 8712 // Adjust the recipes for any inloop reductions. 8713 if (Range.Start.isVector()) 8714 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8715 8716 // Finally, if tail is folded by masking, introduce selects between the phi 8717 // and the live-out instruction of each reduction, at the end of the latch. 8718 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8719 Builder.setInsertPoint(VPBB); 8720 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8721 for (auto &Reduction : Legal->getReductionVars()) { 8722 if (CM.isInLoopReduction(Reduction.first)) 8723 continue; 8724 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8725 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8726 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8727 } 8728 } 8729 8730 std::string PlanName; 8731 raw_string_ostream RSO(PlanName); 8732 ElementCount VF = Range.Start; 8733 Plan->addVF(VF); 8734 RSO << "Initial VPlan for VF={" << VF; 8735 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8736 Plan->addVF(VF); 8737 RSO << "," << VF; 8738 } 8739 RSO << "},UF>=1"; 8740 RSO.flush(); 8741 Plan->setName(PlanName); 8742 8743 return Plan; 8744 } 8745 8746 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8747 // Outer loop handling: They may require CFG and instruction level 8748 // transformations before even evaluating whether vectorization is profitable. 8749 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8750 // the vectorization pipeline. 8751 assert(!OrigLoop->isInnermost()); 8752 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8753 8754 // Create new empty VPlan 8755 auto Plan = std::make_unique<VPlan>(); 8756 8757 // Build hierarchical CFG 8758 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8759 HCFGBuilder.buildHierarchicalCFG(); 8760 8761 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8762 VF *= 2) 8763 Plan->addVF(VF); 8764 8765 if (EnableVPlanPredication) { 8766 VPlanPredicator VPP(*Plan); 8767 VPP.predicate(); 8768 8769 // Avoid running transformation to recipes until masked code generation in 8770 // VPlan-native path is in place. 8771 return Plan; 8772 } 8773 8774 SmallPtrSet<Instruction *, 1> DeadInstructions; 8775 VPlanTransforms::VPInstructionsToVPRecipes( 8776 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8777 return Plan; 8778 } 8779 8780 // Adjust the recipes for any inloop reductions. The chain of instructions 8781 // leading from the loop exit instr to the phi need to be converted to 8782 // reductions, with one operand being vector and the other being the scalar 8783 // reduction chain. 8784 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8785 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8786 for (auto &Reduction : CM.getInLoopReductionChains()) { 8787 PHINode *Phi = Reduction.first; 8788 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8789 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8790 8791 // ReductionOperations are orders top-down from the phi's use to the 8792 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8793 // which of the two operands will remain scalar and which will be reduced. 8794 // For minmax the chain will be the select instructions. 8795 Instruction *Chain = Phi; 8796 for (Instruction *R : ReductionOperations) { 8797 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8798 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8799 8800 VPValue *ChainOp = Plan->getVPValue(Chain); 8801 unsigned FirstOpId; 8802 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8803 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8804 "Expected to replace a VPWidenSelectSC"); 8805 FirstOpId = 1; 8806 } else { 8807 assert(isa<VPWidenRecipe>(WidenRecipe) && 8808 "Expected to replace a VPWidenSC"); 8809 FirstOpId = 0; 8810 } 8811 unsigned VecOpId = 8812 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8813 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8814 8815 auto *CondOp = CM.foldTailByMasking() 8816 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8817 : nullptr; 8818 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8819 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8820 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8821 Plan->removeVPValueFor(R); 8822 Plan->addVPValue(R, RedRecipe); 8823 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8824 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8825 WidenRecipe->eraseFromParent(); 8826 8827 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8828 VPRecipeBase *CompareRecipe = 8829 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8830 assert(isa<VPWidenRecipe>(CompareRecipe) && 8831 "Expected to replace a VPWidenSC"); 8832 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8833 "Expected no remaining users"); 8834 CompareRecipe->eraseFromParent(); 8835 } 8836 Chain = R; 8837 } 8838 } 8839 } 8840 8841 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8842 VPSlotTracker &SlotTracker) const { 8843 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8844 IG->getInsertPos()->printAsOperand(O, false); 8845 O << ", "; 8846 getAddr()->printAsOperand(O, SlotTracker); 8847 VPValue *Mask = getMask(); 8848 if (Mask) { 8849 O << ", "; 8850 Mask->printAsOperand(O, SlotTracker); 8851 } 8852 for (unsigned i = 0; i < IG->getFactor(); ++i) 8853 if (Instruction *I = IG->getMember(i)) 8854 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8855 } 8856 8857 void VPWidenCallRecipe::execute(VPTransformState &State) { 8858 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8859 *this, State); 8860 } 8861 8862 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8863 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8864 this, *this, InvariantCond, State); 8865 } 8866 8867 void VPWidenRecipe::execute(VPTransformState &State) { 8868 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8869 } 8870 8871 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8872 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8873 *this, State.UF, State.VF, IsPtrLoopInvariant, 8874 IsIndexLoopInvariant, State); 8875 } 8876 8877 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8878 assert(!State.Instance && "Int or FP induction being replicated."); 8879 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 8880 getTruncInst(), getVPValue(0), 8881 getCastValue(), State); 8882 } 8883 8884 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8885 Value *StartV = 8886 getStartValue() ? getStartValue()->getLiveInIRValue() : nullptr; 8887 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 8888 StartV, this, State); 8889 } 8890 8891 void VPBlendRecipe::execute(VPTransformState &State) { 8892 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8893 // We know that all PHIs in non-header blocks are converted into 8894 // selects, so we don't have to worry about the insertion order and we 8895 // can just use the builder. 8896 // At this point we generate the predication tree. There may be 8897 // duplications since this is a simple recursive scan, but future 8898 // optimizations will clean it up. 8899 8900 unsigned NumIncoming = getNumIncomingValues(); 8901 8902 // Generate a sequence of selects of the form: 8903 // SELECT(Mask3, In3, 8904 // SELECT(Mask2, In2, 8905 // SELECT(Mask1, In1, 8906 // In0))) 8907 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8908 // are essentially undef are taken from In0. 8909 InnerLoopVectorizer::VectorParts Entry(State.UF); 8910 for (unsigned In = 0; In < NumIncoming; ++In) { 8911 for (unsigned Part = 0; Part < State.UF; ++Part) { 8912 // We might have single edge PHIs (blocks) - use an identity 8913 // 'select' for the first PHI operand. 8914 Value *In0 = State.get(getIncomingValue(In), Part); 8915 if (In == 0) 8916 Entry[Part] = In0; // Initialize with the first incoming value. 8917 else { 8918 // Select between the current value and the previous incoming edge 8919 // based on the incoming mask. 8920 Value *Cond = State.get(getMask(In), Part); 8921 Entry[Part] = 8922 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8923 } 8924 } 8925 } 8926 for (unsigned Part = 0; Part < State.UF; ++Part) 8927 State.set(this, Entry[Part], Part); 8928 } 8929 8930 void VPInterleaveRecipe::execute(VPTransformState &State) { 8931 assert(!State.Instance && "Interleave group being replicated."); 8932 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 8933 getStoredValues(), getMask()); 8934 } 8935 8936 void VPReductionRecipe::execute(VPTransformState &State) { 8937 assert(!State.Instance && "Reduction being replicated."); 8938 for (unsigned Part = 0; Part < State.UF; ++Part) { 8939 RecurKind Kind = RdxDesc->getRecurrenceKind(); 8940 Value *NewVecOp = State.get(getVecOp(), Part); 8941 if (VPValue *Cond = getCondOp()) { 8942 Value *NewCond = State.get(Cond, Part); 8943 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8944 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8945 Kind, VecTy->getElementType()); 8946 Constant *IdenVec = 8947 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8948 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8949 NewVecOp = Select; 8950 } 8951 Value *NewRed = 8952 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 8953 Value *PrevInChain = State.get(getChainOp(), Part); 8954 Value *NextInChain; 8955 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8956 NextInChain = 8957 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 8958 NewRed, PrevInChain); 8959 } else { 8960 NextInChain = State.Builder.CreateBinOp( 8961 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8962 PrevInChain); 8963 } 8964 State.set(this, NextInChain, Part); 8965 } 8966 } 8967 8968 void VPReplicateRecipe::execute(VPTransformState &State) { 8969 if (State.Instance) { // Generate a single instance. 8970 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 8971 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 8972 *State.Instance, IsPredicated, State); 8973 // Insert scalar instance packing it into a vector. 8974 if (AlsoPack && State.VF.isVector()) { 8975 // If we're constructing lane 0, initialize to start from poison. 8976 if (State.Instance->Lane == 0) { 8977 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8978 Value *Poison = PoisonValue::get( 8979 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8980 State.set(this, Poison, State.Instance->Part); 8981 } 8982 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 8983 } 8984 return; 8985 } 8986 8987 // Generate scalar instances for all VF lanes of all UF parts, unless the 8988 // instruction is uniform inwhich case generate only the first lane for each 8989 // of the UF parts. 8990 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8991 assert((!State.VF.isScalable() || IsUniform) && 8992 "Can't scalarize a scalable vector"); 8993 for (unsigned Part = 0; Part < State.UF; ++Part) 8994 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8995 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 8996 VPIteration(Part, Lane), IsPredicated, 8997 State); 8998 } 8999 9000 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9001 assert(State.Instance && "Branch on Mask works only on single instance."); 9002 9003 unsigned Part = State.Instance->Part; 9004 unsigned Lane = State.Instance->Lane; 9005 9006 Value *ConditionBit = nullptr; 9007 VPValue *BlockInMask = getMask(); 9008 if (BlockInMask) { 9009 ConditionBit = State.get(BlockInMask, Part); 9010 if (ConditionBit->getType()->isVectorTy()) 9011 ConditionBit = State.Builder.CreateExtractElement( 9012 ConditionBit, State.Builder.getInt32(Lane)); 9013 } else // Block in mask is all-one. 9014 ConditionBit = State.Builder.getTrue(); 9015 9016 // Replace the temporary unreachable terminator with a new conditional branch, 9017 // whose two destinations will be set later when they are created. 9018 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9019 assert(isa<UnreachableInst>(CurrentTerminator) && 9020 "Expected to replace unreachable terminator with conditional branch."); 9021 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9022 CondBr->setSuccessor(0, nullptr); 9023 ReplaceInstWithInst(CurrentTerminator, CondBr); 9024 } 9025 9026 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9027 assert(State.Instance && "Predicated instruction PHI works per instance."); 9028 Instruction *ScalarPredInst = 9029 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9030 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9031 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9032 assert(PredicatingBB && "Predicated block has no single predecessor."); 9033 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9034 "operand must be VPReplicateRecipe"); 9035 9036 // By current pack/unpack logic we need to generate only a single phi node: if 9037 // a vector value for the predicated instruction exists at this point it means 9038 // the instruction has vector users only, and a phi for the vector value is 9039 // needed. In this case the recipe of the predicated instruction is marked to 9040 // also do that packing, thereby "hoisting" the insert-element sequence. 9041 // Otherwise, a phi node for the scalar value is needed. 9042 unsigned Part = State.Instance->Part; 9043 if (State.hasVectorValue(getOperand(0), Part)) { 9044 Value *VectorValue = State.get(getOperand(0), Part); 9045 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9046 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9047 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9048 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9049 if (State.hasVectorValue(this, Part)) 9050 State.reset(this, VPhi, Part); 9051 else 9052 State.set(this, VPhi, Part); 9053 // NOTE: Currently we need to update the value of the operand, so the next 9054 // predicated iteration inserts its generated value in the correct vector. 9055 State.reset(getOperand(0), VPhi, Part); 9056 } else { 9057 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9058 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9059 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9060 PredicatingBB); 9061 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9062 if (State.hasScalarValue(this, *State.Instance)) 9063 State.reset(this, Phi, *State.Instance); 9064 else 9065 State.set(this, Phi, *State.Instance); 9066 // NOTE: Currently we need to update the value of the operand, so the next 9067 // predicated iteration inserts its generated value in the correct vector. 9068 State.reset(getOperand(0), Phi, *State.Instance); 9069 } 9070 } 9071 9072 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9073 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9074 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9075 StoredValue ? nullptr : getVPValue(), 9076 getAddr(), StoredValue, getMask()); 9077 } 9078 9079 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9080 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9081 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9082 // for predication. 9083 static ScalarEpilogueLowering getScalarEpilogueLowering( 9084 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9085 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9086 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9087 LoopVectorizationLegality &LVL) { 9088 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9089 // don't look at hints or options, and don't request a scalar epilogue. 9090 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9091 // LoopAccessInfo (due to code dependency and not being able to reliably get 9092 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9093 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9094 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9095 // back to the old way and vectorize with versioning when forced. See D81345.) 9096 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9097 PGSOQueryType::IRPass) && 9098 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9099 return CM_ScalarEpilogueNotAllowedOptSize; 9100 9101 // 2) If set, obey the directives 9102 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9103 switch (PreferPredicateOverEpilogue) { 9104 case PreferPredicateTy::ScalarEpilogue: 9105 return CM_ScalarEpilogueAllowed; 9106 case PreferPredicateTy::PredicateElseScalarEpilogue: 9107 return CM_ScalarEpilogueNotNeededUsePredicate; 9108 case PreferPredicateTy::PredicateOrDontVectorize: 9109 return CM_ScalarEpilogueNotAllowedUsePredicate; 9110 }; 9111 } 9112 9113 // 3) If set, obey the hints 9114 switch (Hints.getPredicate()) { 9115 case LoopVectorizeHints::FK_Enabled: 9116 return CM_ScalarEpilogueNotNeededUsePredicate; 9117 case LoopVectorizeHints::FK_Disabled: 9118 return CM_ScalarEpilogueAllowed; 9119 }; 9120 9121 // 4) if the TTI hook indicates this is profitable, request predication. 9122 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9123 LVL.getLAI())) 9124 return CM_ScalarEpilogueNotNeededUsePredicate; 9125 9126 return CM_ScalarEpilogueAllowed; 9127 } 9128 9129 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9130 // If Values have been set for this Def return the one relevant for \p Part. 9131 if (hasVectorValue(Def, Part)) 9132 return Data.PerPartOutput[Def][Part]; 9133 9134 if (!hasScalarValue(Def, {Part, 0})) { 9135 Value *IRV = Def->getLiveInIRValue(); 9136 Value *B = ILV->getBroadcastInstrs(IRV); 9137 set(Def, B, Part); 9138 return B; 9139 } 9140 9141 Value *ScalarValue = get(Def, {Part, 0}); 9142 // If we aren't vectorizing, we can just copy the scalar map values over 9143 // to the vector map. 9144 if (VF.isScalar()) { 9145 set(Def, ScalarValue, Part); 9146 return ScalarValue; 9147 } 9148 9149 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9150 bool IsUniform = RepR && RepR->isUniform(); 9151 9152 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9153 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9154 9155 // Set the insert point after the last scalarized instruction. This 9156 // ensures the insertelement sequence will directly follow the scalar 9157 // definitions. 9158 auto OldIP = Builder.saveIP(); 9159 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9160 Builder.SetInsertPoint(&*NewIP); 9161 9162 // However, if we are vectorizing, we need to construct the vector values. 9163 // If the value is known to be uniform after vectorization, we can just 9164 // broadcast the scalar value corresponding to lane zero for each unroll 9165 // iteration. Otherwise, we construct the vector values using 9166 // insertelement instructions. Since the resulting vectors are stored in 9167 // State, we will only generate the insertelements once. 9168 Value *VectorValue = nullptr; 9169 if (IsUniform) { 9170 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9171 set(Def, VectorValue, Part); 9172 } else { 9173 // Initialize packing with insertelements to start from undef. 9174 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9175 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9176 set(Def, Undef, Part); 9177 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9178 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9179 VectorValue = get(Def, Part); 9180 } 9181 Builder.restoreIP(OldIP); 9182 return VectorValue; 9183 } 9184 9185 // Process the loop in the VPlan-native vectorization path. This path builds 9186 // VPlan upfront in the vectorization pipeline, which allows to apply 9187 // VPlan-to-VPlan transformations from the very beginning without modifying the 9188 // input LLVM IR. 9189 static bool processLoopInVPlanNativePath( 9190 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9191 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9192 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9193 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9194 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9195 9196 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9197 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9198 return false; 9199 } 9200 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9201 Function *F = L->getHeader()->getParent(); 9202 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9203 9204 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9205 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9206 9207 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9208 &Hints, IAI); 9209 // Use the planner for outer loop vectorization. 9210 // TODO: CM is not used at this point inside the planner. Turn CM into an 9211 // optional argument if we don't need it in the future. 9212 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9213 9214 // Get user vectorization factor. 9215 ElementCount UserVF = Hints.getWidth(); 9216 9217 // Plan how to best vectorize, return the best VF and its cost. 9218 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9219 9220 // If we are stress testing VPlan builds, do not attempt to generate vector 9221 // code. Masked vector code generation support will follow soon. 9222 // Also, do not attempt to vectorize if no vector code will be produced. 9223 if (VPlanBuildStressTest || EnableVPlanPredication || 9224 VectorizationFactor::Disabled() == VF) 9225 return false; 9226 9227 LVP.setBestPlan(VF.Width, 1); 9228 9229 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9230 &CM, BFI, PSI); 9231 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9232 << L->getHeader()->getParent()->getName() << "\"\n"); 9233 LVP.executePlan(LB, DT); 9234 9235 // Mark the loop as already vectorized to avoid vectorizing again. 9236 Hints.setAlreadyVectorized(); 9237 9238 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9239 return true; 9240 } 9241 9242 // Emit a remark if there are stores to floats that required a floating point 9243 // extension. If the vectorized loop was generated with floating point there 9244 // will be a performance penalty from the conversion overhead and the change in 9245 // the vector width. 9246 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9247 SmallVector<Instruction *, 4> Worklist; 9248 for (BasicBlock *BB : L->getBlocks()) { 9249 for (Instruction &Inst : *BB) { 9250 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9251 if (S->getValueOperand()->getType()->isFloatTy()) 9252 Worklist.push_back(S); 9253 } 9254 } 9255 } 9256 9257 // Traverse the floating point stores upwards searching, for floating point 9258 // conversions. 9259 SmallPtrSet<const Instruction *, 4> Visited; 9260 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9261 while (!Worklist.empty()) { 9262 auto *I = Worklist.pop_back_val(); 9263 if (!L->contains(I)) 9264 continue; 9265 if (!Visited.insert(I).second) 9266 continue; 9267 9268 // Emit a remark if the floating point store required a floating 9269 // point conversion. 9270 // TODO: More work could be done to identify the root cause such as a 9271 // constant or a function return type and point the user to it. 9272 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9273 ORE->emit([&]() { 9274 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9275 I->getDebugLoc(), L->getHeader()) 9276 << "floating point conversion changes vector width. " 9277 << "Mixed floating point precision requires an up/down " 9278 << "cast that will negatively impact performance."; 9279 }); 9280 9281 for (Use &Op : I->operands()) 9282 if (auto *OpI = dyn_cast<Instruction>(Op)) 9283 Worklist.push_back(OpI); 9284 } 9285 } 9286 9287 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9288 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9289 !EnableLoopInterleaving), 9290 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9291 !EnableLoopVectorization) {} 9292 9293 bool LoopVectorizePass::processLoop(Loop *L) { 9294 assert((EnableVPlanNativePath || L->isInnermost()) && 9295 "VPlan-native path is not enabled. Only process inner loops."); 9296 9297 #ifndef NDEBUG 9298 const std::string DebugLocStr = getDebugLocString(L); 9299 #endif /* NDEBUG */ 9300 9301 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9302 << L->getHeader()->getParent()->getName() << "\" from " 9303 << DebugLocStr << "\n"); 9304 9305 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9306 9307 LLVM_DEBUG( 9308 dbgs() << "LV: Loop hints:" 9309 << " force=" 9310 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9311 ? "disabled" 9312 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9313 ? "enabled" 9314 : "?")) 9315 << " width=" << Hints.getWidth() 9316 << " unroll=" << Hints.getInterleave() << "\n"); 9317 9318 // Function containing loop 9319 Function *F = L->getHeader()->getParent(); 9320 9321 // Looking at the diagnostic output is the only way to determine if a loop 9322 // was vectorized (other than looking at the IR or machine code), so it 9323 // is important to generate an optimization remark for each loop. Most of 9324 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9325 // generated as OptimizationRemark and OptimizationRemarkMissed are 9326 // less verbose reporting vectorized loops and unvectorized loops that may 9327 // benefit from vectorization, respectively. 9328 9329 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9330 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9331 return false; 9332 } 9333 9334 PredicatedScalarEvolution PSE(*SE, *L); 9335 9336 // Check if it is legal to vectorize the loop. 9337 LoopVectorizationRequirements Requirements(*ORE); 9338 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9339 &Requirements, &Hints, DB, AC, BFI, PSI); 9340 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9341 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9342 Hints.emitRemarkWithHints(); 9343 return false; 9344 } 9345 9346 // Check the function attributes and profiles to find out if this function 9347 // should be optimized for size. 9348 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9349 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9350 9351 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9352 // here. They may require CFG and instruction level transformations before 9353 // even evaluating whether vectorization is profitable. Since we cannot modify 9354 // the incoming IR, we need to build VPlan upfront in the vectorization 9355 // pipeline. 9356 if (!L->isInnermost()) 9357 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9358 ORE, BFI, PSI, Hints); 9359 9360 assert(L->isInnermost() && "Inner loop expected."); 9361 9362 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9363 // count by optimizing for size, to minimize overheads. 9364 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9365 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9366 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9367 << "This loop is worth vectorizing only if no scalar " 9368 << "iteration overheads are incurred."); 9369 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9370 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9371 else { 9372 LLVM_DEBUG(dbgs() << "\n"); 9373 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9374 } 9375 } 9376 9377 // Check the function attributes to see if implicit floats are allowed. 9378 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9379 // an integer loop and the vector instructions selected are purely integer 9380 // vector instructions? 9381 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9382 reportVectorizationFailure( 9383 "Can't vectorize when the NoImplicitFloat attribute is used", 9384 "loop not vectorized due to NoImplicitFloat attribute", 9385 "NoImplicitFloat", ORE, L); 9386 Hints.emitRemarkWithHints(); 9387 return false; 9388 } 9389 9390 // Check if the target supports potentially unsafe FP vectorization. 9391 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9392 // for the target we're vectorizing for, to make sure none of the 9393 // additional fp-math flags can help. 9394 if (Hints.isPotentiallyUnsafe() && 9395 TTI->isFPVectorizationPotentiallyUnsafe()) { 9396 reportVectorizationFailure( 9397 "Potentially unsafe FP op prevents vectorization", 9398 "loop not vectorized due to unsafe FP support.", 9399 "UnsafeFP", ORE, L); 9400 Hints.emitRemarkWithHints(); 9401 return false; 9402 } 9403 9404 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9405 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9406 9407 // If an override option has been passed in for interleaved accesses, use it. 9408 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9409 UseInterleaved = EnableInterleavedMemAccesses; 9410 9411 // Analyze interleaved memory accesses. 9412 if (UseInterleaved) { 9413 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9414 } 9415 9416 // Use the cost model. 9417 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9418 F, &Hints, IAI); 9419 CM.collectValuesToIgnore(); 9420 9421 // Use the planner for vectorization. 9422 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9423 9424 // Get user vectorization factor and interleave count. 9425 ElementCount UserVF = Hints.getWidth(); 9426 unsigned UserIC = Hints.getInterleave(); 9427 9428 // Plan how to best vectorize, return the best VF and its cost. 9429 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9430 9431 VectorizationFactor VF = VectorizationFactor::Disabled(); 9432 unsigned IC = 1; 9433 9434 if (MaybeVF) { 9435 VF = *MaybeVF; 9436 // Select the interleave count. 9437 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9438 } 9439 9440 // Identify the diagnostic messages that should be produced. 9441 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9442 bool VectorizeLoop = true, InterleaveLoop = true; 9443 if (Requirements.doesNotMeet(F, L, Hints)) { 9444 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9445 "requirements.\n"); 9446 Hints.emitRemarkWithHints(); 9447 return false; 9448 } 9449 9450 if (VF.Width.isScalar()) { 9451 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9452 VecDiagMsg = std::make_pair( 9453 "VectorizationNotBeneficial", 9454 "the cost-model indicates that vectorization is not beneficial"); 9455 VectorizeLoop = false; 9456 } 9457 9458 if (!MaybeVF && UserIC > 1) { 9459 // Tell the user interleaving was avoided up-front, despite being explicitly 9460 // requested. 9461 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9462 "interleaving should be avoided up front\n"); 9463 IntDiagMsg = std::make_pair( 9464 "InterleavingAvoided", 9465 "Ignoring UserIC, because interleaving was avoided up front"); 9466 InterleaveLoop = false; 9467 } else if (IC == 1 && UserIC <= 1) { 9468 // Tell the user interleaving is not beneficial. 9469 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9470 IntDiagMsg = std::make_pair( 9471 "InterleavingNotBeneficial", 9472 "the cost-model indicates that interleaving is not beneficial"); 9473 InterleaveLoop = false; 9474 if (UserIC == 1) { 9475 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9476 IntDiagMsg.second += 9477 " and is explicitly disabled or interleave count is set to 1"; 9478 } 9479 } else if (IC > 1 && UserIC == 1) { 9480 // Tell the user interleaving is beneficial, but it explicitly disabled. 9481 LLVM_DEBUG( 9482 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9483 IntDiagMsg = std::make_pair( 9484 "InterleavingBeneficialButDisabled", 9485 "the cost-model indicates that interleaving is beneficial " 9486 "but is explicitly disabled or interleave count is set to 1"); 9487 InterleaveLoop = false; 9488 } 9489 9490 // Override IC if user provided an interleave count. 9491 IC = UserIC > 0 ? UserIC : IC; 9492 9493 // Emit diagnostic messages, if any. 9494 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9495 if (!VectorizeLoop && !InterleaveLoop) { 9496 // Do not vectorize or interleaving the loop. 9497 ORE->emit([&]() { 9498 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9499 L->getStartLoc(), L->getHeader()) 9500 << VecDiagMsg.second; 9501 }); 9502 ORE->emit([&]() { 9503 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9504 L->getStartLoc(), L->getHeader()) 9505 << IntDiagMsg.second; 9506 }); 9507 return false; 9508 } else if (!VectorizeLoop && InterleaveLoop) { 9509 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9510 ORE->emit([&]() { 9511 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9512 L->getStartLoc(), L->getHeader()) 9513 << VecDiagMsg.second; 9514 }); 9515 } else if (VectorizeLoop && !InterleaveLoop) { 9516 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9517 << ") in " << DebugLocStr << '\n'); 9518 ORE->emit([&]() { 9519 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9520 L->getStartLoc(), L->getHeader()) 9521 << IntDiagMsg.second; 9522 }); 9523 } else if (VectorizeLoop && InterleaveLoop) { 9524 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9525 << ") in " << DebugLocStr << '\n'); 9526 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9527 } 9528 9529 LVP.setBestPlan(VF.Width, IC); 9530 9531 using namespace ore; 9532 bool DisableRuntimeUnroll = false; 9533 MDNode *OrigLoopID = L->getLoopID(); 9534 9535 if (!VectorizeLoop) { 9536 assert(IC > 1 && "interleave count should not be 1 or 0"); 9537 // If we decided that it is not legal to vectorize the loop, then 9538 // interleave it. 9539 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9540 BFI, PSI); 9541 LVP.executePlan(Unroller, DT); 9542 9543 ORE->emit([&]() { 9544 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9545 L->getHeader()) 9546 << "interleaved loop (interleaved count: " 9547 << NV("InterleaveCount", IC) << ")"; 9548 }); 9549 } else { 9550 // If we decided that it is *legal* to vectorize the loop, then do it. 9551 9552 // Consider vectorizing the epilogue too if it's profitable. 9553 VectorizationFactor EpilogueVF = 9554 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9555 if (EpilogueVF.Width.isVector()) { 9556 9557 // The first pass vectorizes the main loop and creates a scalar epilogue 9558 // to be vectorized by executing the plan (potentially with a different 9559 // factor) again shortly afterwards. 9560 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9561 EpilogueVF.Width.getKnownMinValue(), 1); 9562 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9563 &LVL, &CM, BFI, PSI); 9564 9565 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9566 LVP.executePlan(MainILV, DT); 9567 ++LoopsVectorized; 9568 9569 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9570 formLCSSARecursively(*L, *DT, LI, SE); 9571 9572 // Second pass vectorizes the epilogue and adjusts the control flow 9573 // edges from the first pass. 9574 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9575 EPI.MainLoopVF = EPI.EpilogueVF; 9576 EPI.MainLoopUF = EPI.EpilogueUF; 9577 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9578 ORE, EPI, &LVL, &CM, BFI, PSI); 9579 LVP.executePlan(EpilogILV, DT); 9580 ++LoopsEpilogueVectorized; 9581 9582 if (!MainILV.areSafetyChecksAdded()) 9583 DisableRuntimeUnroll = true; 9584 } else { 9585 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9586 &LVL, &CM, BFI, PSI); 9587 LVP.executePlan(LB, DT); 9588 ++LoopsVectorized; 9589 9590 // Add metadata to disable runtime unrolling a scalar loop when there are 9591 // no runtime checks about strides and memory. A scalar loop that is 9592 // rarely used is not worth unrolling. 9593 if (!LB.areSafetyChecksAdded()) 9594 DisableRuntimeUnroll = true; 9595 } 9596 9597 // Report the vectorization decision. 9598 ORE->emit([&]() { 9599 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9600 L->getHeader()) 9601 << "vectorized loop (vectorization width: " 9602 << NV("VectorizationFactor", VF.Width) 9603 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9604 }); 9605 9606 if (ORE->allowExtraAnalysis(LV_NAME)) 9607 checkMixedPrecision(L, ORE); 9608 } 9609 9610 Optional<MDNode *> RemainderLoopID = 9611 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9612 LLVMLoopVectorizeFollowupEpilogue}); 9613 if (RemainderLoopID.hasValue()) { 9614 L->setLoopID(RemainderLoopID.getValue()); 9615 } else { 9616 if (DisableRuntimeUnroll) 9617 AddRuntimeUnrollDisableMetaData(L); 9618 9619 // Mark the loop as already vectorized to avoid vectorizing again. 9620 Hints.setAlreadyVectorized(); 9621 } 9622 9623 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9624 return true; 9625 } 9626 9627 LoopVectorizeResult LoopVectorizePass::runImpl( 9628 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9629 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9630 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9631 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9632 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9633 SE = &SE_; 9634 LI = &LI_; 9635 TTI = &TTI_; 9636 DT = &DT_; 9637 BFI = &BFI_; 9638 TLI = TLI_; 9639 AA = &AA_; 9640 AC = &AC_; 9641 GetLAA = &GetLAA_; 9642 DB = &DB_; 9643 ORE = &ORE_; 9644 PSI = PSI_; 9645 9646 // Don't attempt if 9647 // 1. the target claims to have no vector registers, and 9648 // 2. interleaving won't help ILP. 9649 // 9650 // The second condition is necessary because, even if the target has no 9651 // vector registers, loop vectorization may still enable scalar 9652 // interleaving. 9653 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9654 TTI->getMaxInterleaveFactor(1) < 2) 9655 return LoopVectorizeResult(false, false); 9656 9657 bool Changed = false, CFGChanged = false; 9658 9659 // The vectorizer requires loops to be in simplified form. 9660 // Since simplification may add new inner loops, it has to run before the 9661 // legality and profitability checks. This means running the loop vectorizer 9662 // will simplify all loops, regardless of whether anything end up being 9663 // vectorized. 9664 for (auto &L : *LI) 9665 Changed |= CFGChanged |= 9666 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9667 9668 // Build up a worklist of inner-loops to vectorize. This is necessary as 9669 // the act of vectorizing or partially unrolling a loop creates new loops 9670 // and can invalidate iterators across the loops. 9671 SmallVector<Loop *, 8> Worklist; 9672 9673 for (Loop *L : *LI) 9674 collectSupportedLoops(*L, LI, ORE, Worklist); 9675 9676 LoopsAnalyzed += Worklist.size(); 9677 9678 // Now walk the identified inner loops. 9679 while (!Worklist.empty()) { 9680 Loop *L = Worklist.pop_back_val(); 9681 9682 // For the inner loops we actually process, form LCSSA to simplify the 9683 // transform. 9684 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9685 9686 Changed |= CFGChanged |= processLoop(L); 9687 } 9688 9689 // Process each loop nest in the function. 9690 return LoopVectorizeResult(Changed, CFGChanged); 9691 } 9692 9693 PreservedAnalyses LoopVectorizePass::run(Function &F, 9694 FunctionAnalysisManager &AM) { 9695 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9696 auto &LI = AM.getResult<LoopAnalysis>(F); 9697 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9698 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9699 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9700 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9701 auto &AA = AM.getResult<AAManager>(F); 9702 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9703 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9704 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9705 MemorySSA *MSSA = EnableMSSALoopDependency 9706 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9707 : nullptr; 9708 9709 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9710 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9711 [&](Loop &L) -> const LoopAccessInfo & { 9712 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9713 TLI, TTI, nullptr, MSSA}; 9714 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9715 }; 9716 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9717 ProfileSummaryInfo *PSI = 9718 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9719 LoopVectorizeResult Result = 9720 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9721 if (!Result.MadeAnyChange) 9722 return PreservedAnalyses::all(); 9723 PreservedAnalyses PA; 9724 9725 // We currently do not preserve loopinfo/dominator analyses with outer loop 9726 // vectorization. Until this is addressed, mark these analyses as preserved 9727 // only for non-VPlan-native path. 9728 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9729 if (!EnableVPlanNativePath) { 9730 PA.preserve<LoopAnalysis>(); 9731 PA.preserve<DominatorTreeAnalysis>(); 9732 } 9733 PA.preserve<BasicAA>(); 9734 PA.preserve<GlobalsAA>(); 9735 if (!Result.MadeCFGChange) 9736 PA.preserveSet<CFGAnalyses>(); 9737 return PA; 9738 } 9739