1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 /// This enables versioning on the strides of symbolically striding memory 134 /// accesses in code like the following. 135 /// for (i = 0; i < N; ++i) 136 /// A[i * Stride1] += B[i * Stride2] ... 137 /// 138 /// Will be roughly translated to 139 /// if (Stride1 == 1 && Stride2 == 1) { 140 /// for (i = 0; i < N; i+=4) 141 /// A[i:i+3] += ... 142 /// } else 143 /// ... 144 static cl::opt<bool> EnableMemAccessVersioning( 145 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 146 cl::desc("Enable symbolic stride memory access versioning")); 147 148 static cl::opt<bool> EnableInterleavedMemAccesses( 149 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 150 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 151 152 /// Maximum factor for an interleaved memory access. 153 static cl::opt<unsigned> MaxInterleaveGroupFactor( 154 "max-interleave-group-factor", cl::Hidden, 155 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 156 cl::init(8)); 157 158 /// We don't interleave loops with a known constant trip count below this 159 /// number. 160 static const unsigned TinyTripCountInterleaveThreshold = 128; 161 162 static cl::opt<unsigned> ForceTargetNumScalarRegs( 163 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's number of scalar registers.")); 165 166 static cl::opt<unsigned> ForceTargetNumVectorRegs( 167 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's number of vector registers.")); 169 170 /// Maximum vectorization interleave count. 171 static const unsigned MaxInterleaveFactor = 16; 172 173 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 174 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's max interleave factor for " 176 "scalar loops.")); 177 178 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 179 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's max interleave factor for " 181 "vectorized loops.")); 182 183 static cl::opt<unsigned> ForceTargetInstructionCost( 184 "force-target-instruction-cost", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's expected cost for " 186 "an instruction to a single constant value. Mostly " 187 "useful for getting consistent testing.")); 188 189 static cl::opt<unsigned> SmallLoopCost( 190 "small-loop-cost", cl::init(20), cl::Hidden, 191 cl::desc( 192 "The cost of a loop that is considered 'small' by the interleaver.")); 193 194 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 195 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 196 cl::desc("Enable the use of the block frequency analysis to access PGO " 197 "heuristics minimizing code growth in cold regions and being more " 198 "aggressive in hot regions.")); 199 200 // Runtime interleave loops for load/store throughput. 201 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 202 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 203 cl::desc( 204 "Enable runtime interleaving until load/store ports are saturated")); 205 206 /// The number of stores in a loop that are allowed to need predication. 207 static cl::opt<unsigned> NumberOfStoresToPredicate( 208 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 209 cl::desc("Max number of stores to be predicated behind an if.")); 210 211 static cl::opt<bool> EnableIndVarRegisterHeur( 212 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 213 cl::desc("Count the induction variable only once when interleaving")); 214 215 static cl::opt<bool> EnableCondStoresVectorization( 216 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 217 cl::desc("Enable if predication of stores during vectorization.")); 218 219 static cl::opt<unsigned> MaxNestedScalarReductionIC( 220 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 221 cl::desc("The maximum interleave count to use when interleaving a scalar " 222 "reduction in a nested loop.")); 223 224 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 225 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 226 cl::desc("The maximum allowed number of runtime memory checks with a " 227 "vectorize(enable) pragma.")); 228 229 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 230 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 231 cl::desc("The maximum number of SCEV checks allowed.")); 232 233 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 234 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 235 cl::desc("The maximum number of SCEV checks allowed with a " 236 "vectorize(enable) pragma")); 237 238 namespace { 239 240 // Forward declarations. 241 class LoopVectorizeHints; 242 class LoopVectorizationLegality; 243 class LoopVectorizationCostModel; 244 class LoopVectorizationRequirements; 245 246 /// \brief This modifies LoopAccessReport to initialize message with 247 /// loop-vectorizer-specific part. 248 class VectorizationReport : public LoopAccessReport { 249 public: 250 VectorizationReport(Instruction *I = nullptr) 251 : LoopAccessReport("loop not vectorized: ", I) {} 252 253 /// \brief This allows promotion of the loop-access analysis report into the 254 /// loop-vectorizer report. It modifies the message to add the 255 /// loop-vectorizer-specific part of the message. 256 explicit VectorizationReport(const LoopAccessReport &R) 257 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 258 R.getInstr()) {} 259 }; 260 261 /// A helper function for converting Scalar types to vector types. 262 /// If the incoming type is void, we return void. If the VF is 1, we return 263 /// the scalar type. 264 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 265 if (Scalar->isVoidTy() || VF == 1) 266 return Scalar; 267 return VectorType::get(Scalar, VF); 268 } 269 270 /// A helper function that returns GEP instruction and knows to skip a 271 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 272 /// pointee types of the 'bitcast' have the same size. 273 /// For example: 274 /// bitcast double** %var to i64* - can be skipped 275 /// bitcast double** %var to i8* - can not 276 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 277 278 if (isa<GetElementPtrInst>(Ptr)) 279 return cast<GetElementPtrInst>(Ptr); 280 281 if (isa<BitCastInst>(Ptr) && 282 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 283 Type *BitcastTy = Ptr->getType(); 284 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 285 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 286 return nullptr; 287 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 288 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 289 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 290 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 291 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 292 } 293 return nullptr; 294 } 295 296 /// InnerLoopVectorizer vectorizes loops which contain only one basic 297 /// block to a specified vectorization factor (VF). 298 /// This class performs the widening of scalars into vectors, or multiple 299 /// scalars. This class also implements the following features: 300 /// * It inserts an epilogue loop for handling loops that don't have iteration 301 /// counts that are known to be a multiple of the vectorization factor. 302 /// * It handles the code generation for reduction variables. 303 /// * Scalarization (implementation using scalars) of un-vectorizable 304 /// instructions. 305 /// InnerLoopVectorizer does not perform any vectorization-legality 306 /// checks, and relies on the caller to check for the different legality 307 /// aspects. The InnerLoopVectorizer relies on the 308 /// LoopVectorizationLegality class to provide information about the induction 309 /// and reduction variables that were found to a given vectorization factor. 310 class InnerLoopVectorizer { 311 public: 312 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 313 LoopInfo *LI, DominatorTree *DT, 314 const TargetLibraryInfo *TLI, 315 const TargetTransformInfo *TTI, AssumptionCache *AC, 316 unsigned VecWidth, unsigned UnrollFactor) 317 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 318 AC(AC), VF(VecWidth), UF(UnrollFactor), 319 Builder(PSE.getSE()->getContext()), Induction(nullptr), 320 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 321 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 322 323 // Perform the actual loop widening (vectorization). 324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 325 // can be validly truncated to. The cost model has assumed this truncation 326 // will happen when vectorizing. 327 void vectorize(LoopVectorizationLegality *L, 328 MapVector<Instruction *, uint64_t> MinimumBitWidths) { 329 MinBWs = MinimumBitWidths; 330 Legal = L; 331 // Create a new empty loop. Unlink the old loop and connect the new one. 332 createEmptyLoop(); 333 // Widen each instruction in the old loop to a new one in the new loop. 334 // Use the Legality module to find the induction and reduction variables. 335 vectorizeLoop(); 336 } 337 338 // Return true if any runtime check is added. 339 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 340 341 virtual ~InnerLoopVectorizer() {} 342 343 protected: 344 /// A small list of PHINodes. 345 typedef SmallVector<PHINode *, 4> PhiVector; 346 /// When we unroll loops we have multiple vector values for each scalar. 347 /// This data structure holds the unrolled and vectorized values that 348 /// originated from one scalar instruction. 349 typedef SmallVector<Value *, 2> VectorParts; 350 351 // When we if-convert we need to create edge masks. We have to cache values 352 // so that we don't end up with exponential recursion/IR. 353 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 354 EdgeMaskCache; 355 356 /// Create an empty loop, based on the loop ranges of the old loop. 357 void createEmptyLoop(); 358 359 /// Set up the values of the IVs correctly when exiting the vector loop. 360 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 361 Value *CountRoundDown, Value *EndValue, 362 BasicBlock *MiddleBlock); 363 364 /// Create a new induction variable inside L. 365 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 366 Value *Step, Instruction *DL); 367 /// Copy and widen the instructions from the old loop. 368 virtual void vectorizeLoop(); 369 370 /// Fix a first-order recurrence. This is the second phase of vectorizing 371 /// this phi node. 372 void fixFirstOrderRecurrence(PHINode *Phi); 373 374 /// \brief The Loop exit block may have single value PHI nodes where the 375 /// incoming value is 'Undef'. While vectorizing we only handled real values 376 /// that were defined inside the loop. Here we fix the 'undef case'. 377 /// See PR14725. 378 void fixLCSSAPHIs(); 379 380 /// Shrinks vector element sizes based on information in "MinBWs". 381 void truncateToMinimalBitwidths(); 382 383 /// A helper function that computes the predicate of the block BB, assuming 384 /// that the header block of the loop is set to True. It returns the *entry* 385 /// mask for the block BB. 386 VectorParts createBlockInMask(BasicBlock *BB); 387 /// A helper function that computes the predicate of the edge between SRC 388 /// and DST. 389 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 390 391 /// A helper function to vectorize a single BB within the innermost loop. 392 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 393 394 /// Vectorize a single PHINode in a block. This method handles the induction 395 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 396 /// arbitrary length vectors. 397 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 398 unsigned VF, PhiVector *PV); 399 400 /// Insert the new loop to the loop hierarchy and pass manager 401 /// and update the analysis passes. 402 void updateAnalysis(); 403 404 /// This instruction is un-vectorizable. Implement it as a sequence 405 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 406 /// scalarized instruction behind an if block predicated on the control 407 /// dependence of the instruction. 408 virtual void scalarizeInstruction(Instruction *Instr, 409 bool IfPredicateStore = false); 410 411 /// Vectorize Load and Store instructions, 412 virtual void vectorizeMemoryInstruction(Instruction *Instr); 413 414 /// Create a broadcast instruction. This method generates a broadcast 415 /// instruction (shuffle) for loop invariant values and for the induction 416 /// value. If this is the induction variable then we extend it to N, N+1, ... 417 /// this is needed because each iteration in the loop corresponds to a SIMD 418 /// element. 419 virtual Value *getBroadcastInstrs(Value *V); 420 421 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 422 /// to each vector element of Val. The sequence starts at StartIndex. 423 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 424 425 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 426 /// to each vector element of Val. The sequence starts at StartIndex. 427 /// Step is a SCEV. In order to get StepValue it takes the existing value 428 /// from SCEV or creates a new using SCEVExpander. 429 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 430 431 /// Create a vector induction variable based on an existing scalar one. 432 /// Currently only works for integer induction variables with a constant 433 /// step. 434 /// If TruncType is provided, instead of widening the original IV, we 435 /// widen a version of the IV truncated to TruncType. 436 void widenInductionVariable(const InductionDescriptor &II, VectorParts &Entry, 437 IntegerType *TruncType = nullptr); 438 439 /// When we go over instructions in the basic block we rely on previous 440 /// values within the current basic block or on loop invariant values. 441 /// When we widen (vectorize) values we place them in the map. If the values 442 /// are not within the map, they have to be loop invariant, so we simply 443 /// broadcast them into a vector. 444 VectorParts &getVectorValue(Value *V); 445 446 /// Try to vectorize the interleaved access group that \p Instr belongs to. 447 void vectorizeInterleaveGroup(Instruction *Instr); 448 449 /// Generate a shuffle sequence that will reverse the vector Vec. 450 virtual Value *reverseVector(Value *Vec); 451 452 /// Returns (and creates if needed) the original loop trip count. 453 Value *getOrCreateTripCount(Loop *NewLoop); 454 455 /// Returns (and creates if needed) the trip count of the widened loop. 456 Value *getOrCreateVectorTripCount(Loop *NewLoop); 457 458 /// Emit a bypass check to see if the trip count would overflow, or we 459 /// wouldn't have enough iterations to execute one vector loop. 460 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 461 /// Emit a bypass check to see if the vector trip count is nonzero. 462 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 463 /// Emit a bypass check to see if all of the SCEV assumptions we've 464 /// had to make are correct. 465 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 466 /// Emit bypass checks to check any memory assumptions we may have made. 467 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 468 469 /// Add additional metadata to \p To that was not present on \p Orig. 470 /// 471 /// Currently this is used to add the noalias annotations based on the 472 /// inserted memchecks. Use this for instructions that are *cloned* into the 473 /// vector loop. 474 void addNewMetadata(Instruction *To, const Instruction *Orig); 475 476 /// Add metadata from one instruction to another. 477 /// 478 /// This includes both the original MDs from \p From and additional ones (\see 479 /// addNewMetadata). Use this for *newly created* instructions in the vector 480 /// loop. 481 void addMetadata(Instruction *To, const Instruction *From); 482 483 /// \brief Similar to the previous function but it adds the metadata to a 484 /// vector of instructions. 485 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 486 487 /// This is a helper class that holds the vectorizer state. It maps scalar 488 /// instructions to vector instructions. When the code is 'unrolled' then 489 /// then a single scalar value is mapped to multiple vector parts. The parts 490 /// are stored in the VectorPart type. 491 struct ValueMap { 492 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 493 /// are mapped. 494 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 495 496 /// \return True if 'Key' is saved in the Value Map. 497 bool has(Value *Key) const { return MapStorage.count(Key); } 498 499 /// Initializes a new entry in the map. Sets all of the vector parts to the 500 /// save value in 'Val'. 501 /// \return A reference to a vector with splat values. 502 VectorParts &splat(Value *Key, Value *Val) { 503 VectorParts &Entry = MapStorage[Key]; 504 Entry.assign(UF, Val); 505 return Entry; 506 } 507 508 ///\return A reference to the value that is stored at 'Key'. 509 VectorParts &get(Value *Key) { 510 VectorParts &Entry = MapStorage[Key]; 511 if (Entry.empty()) 512 Entry.resize(UF); 513 assert(Entry.size() == UF); 514 return Entry; 515 } 516 517 private: 518 /// The unroll factor. Each entry in the map stores this number of vector 519 /// elements. 520 unsigned UF; 521 522 /// Map storage. We use std::map and not DenseMap because insertions to a 523 /// dense map invalidates its iterators. 524 std::map<Value *, VectorParts> MapStorage; 525 }; 526 527 /// The original loop. 528 Loop *OrigLoop; 529 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 530 /// dynamic knowledge to simplify SCEV expressions and converts them to a 531 /// more usable form. 532 PredicatedScalarEvolution &PSE; 533 /// Loop Info. 534 LoopInfo *LI; 535 /// Dominator Tree. 536 DominatorTree *DT; 537 /// Alias Analysis. 538 AliasAnalysis *AA; 539 /// Target Library Info. 540 const TargetLibraryInfo *TLI; 541 /// Target Transform Info. 542 const TargetTransformInfo *TTI; 543 /// Assumption Cache. 544 AssumptionCache *AC; 545 546 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 547 /// used. 548 /// 549 /// This is currently only used to add no-alias metadata based on the 550 /// memchecks. The actually versioning is performed manually. 551 std::unique_ptr<LoopVersioning> LVer; 552 553 /// The vectorization SIMD factor to use. Each vector will have this many 554 /// vector elements. 555 unsigned VF; 556 557 protected: 558 /// The vectorization unroll factor to use. Each scalar is vectorized to this 559 /// many different vector instructions. 560 unsigned UF; 561 562 /// The builder that we use 563 IRBuilder<> Builder; 564 565 // --- Vectorization state --- 566 567 /// The vector-loop preheader. 568 BasicBlock *LoopVectorPreHeader; 569 /// The scalar-loop preheader. 570 BasicBlock *LoopScalarPreHeader; 571 /// Middle Block between the vector and the scalar. 572 BasicBlock *LoopMiddleBlock; 573 /// The ExitBlock of the scalar loop. 574 BasicBlock *LoopExitBlock; 575 /// The vector loop body. 576 BasicBlock *LoopVectorBody; 577 /// The scalar loop body. 578 BasicBlock *LoopScalarBody; 579 /// A list of all bypass blocks. The first block is the entry of the loop. 580 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 581 582 /// The new Induction variable which was added to the new block. 583 PHINode *Induction; 584 /// The induction variable of the old basic block. 585 PHINode *OldInduction; 586 /// Maps scalars to widened vectors. 587 ValueMap WidenMap; 588 /// Store instructions that should be predicated, as a pair 589 /// <StoreInst, Predicate> 590 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 591 EdgeMaskCache MaskCache; 592 /// Trip count of the original loop. 593 Value *TripCount; 594 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 595 Value *VectorTripCount; 596 597 /// Map of scalar integer values to the smallest bitwidth they can be legally 598 /// represented as. The vector equivalents of these values should be truncated 599 /// to this type. 600 MapVector<Instruction *, uint64_t> MinBWs; 601 LoopVectorizationLegality *Legal; 602 603 // Record whether runtime checks are added. 604 bool AddedSafetyChecks; 605 }; 606 607 class InnerLoopUnroller : public InnerLoopVectorizer { 608 public: 609 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 610 LoopInfo *LI, DominatorTree *DT, 611 const TargetLibraryInfo *TLI, 612 const TargetTransformInfo *TTI, AssumptionCache *AC, 613 unsigned UnrollFactor) 614 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 615 UnrollFactor) {} 616 617 private: 618 void scalarizeInstruction(Instruction *Instr, 619 bool IfPredicateStore = false) override; 620 void vectorizeMemoryInstruction(Instruction *Instr) override; 621 Value *getBroadcastInstrs(Value *V) override; 622 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 623 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 624 Value *reverseVector(Value *Vec) override; 625 }; 626 627 /// \brief Look for a meaningful debug location on the instruction or it's 628 /// operands. 629 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 630 if (!I) 631 return I; 632 633 DebugLoc Empty; 634 if (I->getDebugLoc() != Empty) 635 return I; 636 637 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 638 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 639 if (OpInst->getDebugLoc() != Empty) 640 return OpInst; 641 } 642 643 return I; 644 } 645 646 /// \brief Set the debug location in the builder using the debug location in the 647 /// instruction. 648 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 649 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 650 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 651 else 652 B.SetCurrentDebugLocation(DebugLoc()); 653 } 654 655 #ifndef NDEBUG 656 /// \return string containing a file name and a line # for the given loop. 657 static std::string getDebugLocString(const Loop *L) { 658 std::string Result; 659 if (L) { 660 raw_string_ostream OS(Result); 661 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 662 LoopDbgLoc.print(OS); 663 else 664 // Just print the module name. 665 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 666 OS.flush(); 667 } 668 return Result; 669 } 670 #endif 671 672 /// \brief Propagate known metadata from one instruction to another. 673 static void propagateMetadata(Instruction *To, const Instruction *From) { 674 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 675 From->getAllMetadataOtherThanDebugLoc(Metadata); 676 677 for (auto M : Metadata) { 678 unsigned Kind = M.first; 679 680 // These are safe to transfer (this is safe for TBAA, even when we 681 // if-convert, because should that metadata have had a control dependency 682 // on the condition, and thus actually aliased with some other 683 // non-speculated memory access when the condition was false, this would be 684 // caught by the runtime overlap checks). 685 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 686 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 687 Kind != LLVMContext::MD_nontemporal) 688 continue; 689 690 To->setMetadata(Kind, M.second); 691 } 692 } 693 694 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 695 const Instruction *Orig) { 696 // If the loop was versioned with memchecks, add the corresponding no-alias 697 // metadata. 698 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 699 LVer->annotateInstWithNoAlias(To, Orig); 700 } 701 702 void InnerLoopVectorizer::addMetadata(Instruction *To, 703 const Instruction *From) { 704 propagateMetadata(To, From); 705 addNewMetadata(To, From); 706 } 707 708 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 709 const Instruction *From) { 710 for (Value *V : To) 711 if (Instruction *I = dyn_cast<Instruction>(V)) 712 addMetadata(I, From); 713 } 714 715 /// \brief The group of interleaved loads/stores sharing the same stride and 716 /// close to each other. 717 /// 718 /// Each member in this group has an index starting from 0, and the largest 719 /// index should be less than interleaved factor, which is equal to the absolute 720 /// value of the access's stride. 721 /// 722 /// E.g. An interleaved load group of factor 4: 723 /// for (unsigned i = 0; i < 1024; i+=4) { 724 /// a = A[i]; // Member of index 0 725 /// b = A[i+1]; // Member of index 1 726 /// d = A[i+3]; // Member of index 3 727 /// ... 728 /// } 729 /// 730 /// An interleaved store group of factor 4: 731 /// for (unsigned i = 0; i < 1024; i+=4) { 732 /// ... 733 /// A[i] = a; // Member of index 0 734 /// A[i+1] = b; // Member of index 1 735 /// A[i+2] = c; // Member of index 2 736 /// A[i+3] = d; // Member of index 3 737 /// } 738 /// 739 /// Note: the interleaved load group could have gaps (missing members), but 740 /// the interleaved store group doesn't allow gaps. 741 class InterleaveGroup { 742 public: 743 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 744 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 745 assert(Align && "The alignment should be non-zero"); 746 747 Factor = std::abs(Stride); 748 assert(Factor > 1 && "Invalid interleave factor"); 749 750 Reverse = Stride < 0; 751 Members[0] = Instr; 752 } 753 754 bool isReverse() const { return Reverse; } 755 unsigned getFactor() const { return Factor; } 756 unsigned getAlignment() const { return Align; } 757 unsigned getNumMembers() const { return Members.size(); } 758 759 /// \brief Try to insert a new member \p Instr with index \p Index and 760 /// alignment \p NewAlign. The index is related to the leader and it could be 761 /// negative if it is the new leader. 762 /// 763 /// \returns false if the instruction doesn't belong to the group. 764 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 765 assert(NewAlign && "The new member's alignment should be non-zero"); 766 767 int Key = Index + SmallestKey; 768 769 // Skip if there is already a member with the same index. 770 if (Members.count(Key)) 771 return false; 772 773 if (Key > LargestKey) { 774 // The largest index is always less than the interleave factor. 775 if (Index >= static_cast<int>(Factor)) 776 return false; 777 778 LargestKey = Key; 779 } else if (Key < SmallestKey) { 780 // The largest index is always less than the interleave factor. 781 if (LargestKey - Key >= static_cast<int>(Factor)) 782 return false; 783 784 SmallestKey = Key; 785 } 786 787 // It's always safe to select the minimum alignment. 788 Align = std::min(Align, NewAlign); 789 Members[Key] = Instr; 790 return true; 791 } 792 793 /// \brief Get the member with the given index \p Index 794 /// 795 /// \returns nullptr if contains no such member. 796 Instruction *getMember(unsigned Index) const { 797 int Key = SmallestKey + Index; 798 if (!Members.count(Key)) 799 return nullptr; 800 801 return Members.find(Key)->second; 802 } 803 804 /// \brief Get the index for the given member. Unlike the key in the member 805 /// map, the index starts from 0. 806 unsigned getIndex(Instruction *Instr) const { 807 for (auto I : Members) 808 if (I.second == Instr) 809 return I.first - SmallestKey; 810 811 llvm_unreachable("InterleaveGroup contains no such member"); 812 } 813 814 Instruction *getInsertPos() const { return InsertPos; } 815 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 816 817 private: 818 unsigned Factor; // Interleave Factor. 819 bool Reverse; 820 unsigned Align; 821 DenseMap<int, Instruction *> Members; 822 int SmallestKey; 823 int LargestKey; 824 825 // To avoid breaking dependences, vectorized instructions of an interleave 826 // group should be inserted at either the first load or the last store in 827 // program order. 828 // 829 // E.g. %even = load i32 // Insert Position 830 // %add = add i32 %even // Use of %even 831 // %odd = load i32 832 // 833 // store i32 %even 834 // %odd = add i32 // Def of %odd 835 // store i32 %odd // Insert Position 836 Instruction *InsertPos; 837 }; 838 839 /// \brief Drive the analysis of interleaved memory accesses in the loop. 840 /// 841 /// Use this class to analyze interleaved accesses only when we can vectorize 842 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 843 /// on interleaved accesses is unsafe. 844 /// 845 /// The analysis collects interleave groups and records the relationships 846 /// between the member and the group in a map. 847 class InterleavedAccessInfo { 848 public: 849 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 850 DominatorTree *DT) 851 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 852 853 ~InterleavedAccessInfo() { 854 SmallSet<InterleaveGroup *, 4> DelSet; 855 // Avoid releasing a pointer twice. 856 for (auto &I : InterleaveGroupMap) 857 DelSet.insert(I.second); 858 for (auto *Ptr : DelSet) 859 delete Ptr; 860 } 861 862 /// \brief Analyze the interleaved accesses and collect them in interleave 863 /// groups. Substitute symbolic strides using \p Strides. 864 void analyzeInterleaving(const ValueToValueMap &Strides); 865 866 /// \brief Check if \p Instr belongs to any interleave group. 867 bool isInterleaved(Instruction *Instr) const { 868 return InterleaveGroupMap.count(Instr); 869 } 870 871 /// \brief Return the maximum interleave factor of all interleaved groups. 872 unsigned getMaxInterleaveFactor() const { 873 unsigned MaxFactor = 1; 874 for (auto &Entry : InterleaveGroupMap) 875 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 876 return MaxFactor; 877 } 878 879 /// \brief Get the interleave group that \p Instr belongs to. 880 /// 881 /// \returns nullptr if doesn't have such group. 882 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 883 if (InterleaveGroupMap.count(Instr)) 884 return InterleaveGroupMap.find(Instr)->second; 885 return nullptr; 886 } 887 888 /// \brief Returns true if an interleaved group that may access memory 889 /// out-of-bounds requires a scalar epilogue iteration for correctness. 890 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 891 892 private: 893 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 894 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 895 /// The interleaved access analysis can also add new predicates (for example 896 /// by versioning strides of pointers). 897 PredicatedScalarEvolution &PSE; 898 Loop *TheLoop; 899 DominatorTree *DT; 900 901 /// True if the loop may contain non-reversed interleaved groups with 902 /// out-of-bounds accesses. We ensure we don't speculatively access memory 903 /// out-of-bounds by executing at least one scalar epilogue iteration. 904 bool RequiresScalarEpilogue; 905 906 /// Holds the relationships between the members and the interleave group. 907 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 908 909 /// \brief The descriptor for a strided memory access. 910 struct StrideDescriptor { 911 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 912 unsigned Align) 913 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 914 915 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 916 917 int Stride; // The access's stride. It is negative for a reverse access. 918 const SCEV *Scev; // The scalar expression of this access 919 unsigned Size; // The size of the memory object. 920 unsigned Align; // The alignment of this access. 921 }; 922 923 /// \brief Create a new interleave group with the given instruction \p Instr, 924 /// stride \p Stride and alignment \p Align. 925 /// 926 /// \returns the newly created interleave group. 927 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 928 unsigned Align) { 929 assert(!InterleaveGroupMap.count(Instr) && 930 "Already in an interleaved access group"); 931 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 932 return InterleaveGroupMap[Instr]; 933 } 934 935 /// \brief Release the group and remove all the relationships. 936 void releaseGroup(InterleaveGroup *Group) { 937 for (unsigned i = 0; i < Group->getFactor(); i++) 938 if (Instruction *Member = Group->getMember(i)) 939 InterleaveGroupMap.erase(Member); 940 941 delete Group; 942 } 943 944 /// \brief Collect all the accesses with a constant stride in program order. 945 void collectConstStridedAccesses( 946 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 947 const ValueToValueMap &Strides); 948 }; 949 950 /// Utility class for getting and setting loop vectorizer hints in the form 951 /// of loop metadata. 952 /// This class keeps a number of loop annotations locally (as member variables) 953 /// and can, upon request, write them back as metadata on the loop. It will 954 /// initially scan the loop for existing metadata, and will update the local 955 /// values based on information in the loop. 956 /// We cannot write all values to metadata, as the mere presence of some info, 957 /// for example 'force', means a decision has been made. So, we need to be 958 /// careful NOT to add them if the user hasn't specifically asked so. 959 class LoopVectorizeHints { 960 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 961 962 /// Hint - associates name and validation with the hint value. 963 struct Hint { 964 const char *Name; 965 unsigned Value; // This may have to change for non-numeric values. 966 HintKind Kind; 967 968 Hint(const char *Name, unsigned Value, HintKind Kind) 969 : Name(Name), Value(Value), Kind(Kind) {} 970 971 bool validate(unsigned Val) { 972 switch (Kind) { 973 case HK_WIDTH: 974 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 975 case HK_UNROLL: 976 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 977 case HK_FORCE: 978 return (Val <= 1); 979 } 980 return false; 981 } 982 }; 983 984 /// Vectorization width. 985 Hint Width; 986 /// Vectorization interleave factor. 987 Hint Interleave; 988 /// Vectorization forced 989 Hint Force; 990 991 /// Return the loop metadata prefix. 992 static StringRef Prefix() { return "llvm.loop."; } 993 994 /// True if there is any unsafe math in the loop. 995 bool PotentiallyUnsafe; 996 997 public: 998 enum ForceKind { 999 FK_Undefined = -1, ///< Not selected. 1000 FK_Disabled = 0, ///< Forcing disabled. 1001 FK_Enabled = 1, ///< Forcing enabled. 1002 }; 1003 1004 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1005 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1006 HK_WIDTH), 1007 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1008 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1009 PotentiallyUnsafe(false), TheLoop(L) { 1010 // Populate values with existing loop metadata. 1011 getHintsFromMetadata(); 1012 1013 // force-vector-interleave overrides DisableInterleaving. 1014 if (VectorizerParams::isInterleaveForced()) 1015 Interleave.Value = VectorizerParams::VectorizationInterleave; 1016 1017 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1018 << "LV: Interleaving disabled by the pass manager\n"); 1019 } 1020 1021 /// Mark the loop L as already vectorized by setting the width to 1. 1022 void setAlreadyVectorized() { 1023 Width.Value = Interleave.Value = 1; 1024 Hint Hints[] = {Width, Interleave}; 1025 writeHintsToMetadata(Hints); 1026 } 1027 1028 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1029 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1030 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1031 emitOptimizationRemarkAnalysis(F->getContext(), 1032 vectorizeAnalysisPassName(), *F, 1033 L->getStartLoc(), emitRemark()); 1034 return false; 1035 } 1036 1037 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1038 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1039 emitOptimizationRemarkAnalysis(F->getContext(), 1040 vectorizeAnalysisPassName(), *F, 1041 L->getStartLoc(), emitRemark()); 1042 return false; 1043 } 1044 1045 if (getWidth() == 1 && getInterleave() == 1) { 1046 // FIXME: Add a separate metadata to indicate when the loop has already 1047 // been vectorized instead of setting width and count to 1. 1048 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1049 // FIXME: Add interleave.disable metadata. This will allow 1050 // vectorize.disable to be used without disabling the pass and errors 1051 // to differentiate between disabled vectorization and a width of 1. 1052 emitOptimizationRemarkAnalysis( 1053 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1054 "loop not vectorized: vectorization and interleaving are explicitly " 1055 "disabled, or vectorize width and interleave count are both set to " 1056 "1"); 1057 return false; 1058 } 1059 1060 return true; 1061 } 1062 1063 /// Dumps all the hint information. 1064 std::string emitRemark() const { 1065 VectorizationReport R; 1066 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1067 R << "vectorization is explicitly disabled"; 1068 else { 1069 R << "use -Rpass-analysis=loop-vectorize for more info"; 1070 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1071 R << " (Force=true"; 1072 if (Width.Value != 0) 1073 R << ", Vector Width=" << Width.Value; 1074 if (Interleave.Value != 0) 1075 R << ", Interleave Count=" << Interleave.Value; 1076 R << ")"; 1077 } 1078 } 1079 1080 return R.str(); 1081 } 1082 1083 unsigned getWidth() const { return Width.Value; } 1084 unsigned getInterleave() const { return Interleave.Value; } 1085 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1086 const char *vectorizeAnalysisPassName() const { 1087 // If hints are provided that don't disable vectorization use the 1088 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1089 if (getWidth() == 1) 1090 return LV_NAME; 1091 if (getForce() == LoopVectorizeHints::FK_Disabled) 1092 return LV_NAME; 1093 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1094 return LV_NAME; 1095 return DiagnosticInfo::AlwaysPrint; 1096 } 1097 1098 bool allowReordering() const { 1099 // When enabling loop hints are provided we allow the vectorizer to change 1100 // the order of operations that is given by the scalar loop. This is not 1101 // enabled by default because can be unsafe or inefficient. For example, 1102 // reordering floating-point operations will change the way round-off 1103 // error accumulates in the loop. 1104 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1105 } 1106 1107 bool isPotentiallyUnsafe() const { 1108 // Avoid FP vectorization if the target is unsure about proper support. 1109 // This may be related to the SIMD unit in the target not handling 1110 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1111 // Otherwise, a sequence of vectorized loops, even without reduction, 1112 // could lead to different end results on the destination vectors. 1113 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1114 } 1115 1116 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1117 1118 private: 1119 /// Find hints specified in the loop metadata and update local values. 1120 void getHintsFromMetadata() { 1121 MDNode *LoopID = TheLoop->getLoopID(); 1122 if (!LoopID) 1123 return; 1124 1125 // First operand should refer to the loop id itself. 1126 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1127 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1128 1129 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1130 const MDString *S = nullptr; 1131 SmallVector<Metadata *, 4> Args; 1132 1133 // The expected hint is either a MDString or a MDNode with the first 1134 // operand a MDString. 1135 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1136 if (!MD || MD->getNumOperands() == 0) 1137 continue; 1138 S = dyn_cast<MDString>(MD->getOperand(0)); 1139 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1140 Args.push_back(MD->getOperand(i)); 1141 } else { 1142 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1143 assert(Args.size() == 0 && "too many arguments for MDString"); 1144 } 1145 1146 if (!S) 1147 continue; 1148 1149 // Check if the hint starts with the loop metadata prefix. 1150 StringRef Name = S->getString(); 1151 if (Args.size() == 1) 1152 setHint(Name, Args[0]); 1153 } 1154 } 1155 1156 /// Checks string hint with one operand and set value if valid. 1157 void setHint(StringRef Name, Metadata *Arg) { 1158 if (!Name.startswith(Prefix())) 1159 return; 1160 Name = Name.substr(Prefix().size(), StringRef::npos); 1161 1162 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1163 if (!C) 1164 return; 1165 unsigned Val = C->getZExtValue(); 1166 1167 Hint *Hints[] = {&Width, &Interleave, &Force}; 1168 for (auto H : Hints) { 1169 if (Name == H->Name) { 1170 if (H->validate(Val)) 1171 H->Value = Val; 1172 else 1173 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1174 break; 1175 } 1176 } 1177 } 1178 1179 /// Create a new hint from name / value pair. 1180 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1181 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1182 Metadata *MDs[] = {MDString::get(Context, Name), 1183 ConstantAsMetadata::get( 1184 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1185 return MDNode::get(Context, MDs); 1186 } 1187 1188 /// Matches metadata with hint name. 1189 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1190 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1191 if (!Name) 1192 return false; 1193 1194 for (auto H : HintTypes) 1195 if (Name->getString().endswith(H.Name)) 1196 return true; 1197 return false; 1198 } 1199 1200 /// Sets current hints into loop metadata, keeping other values intact. 1201 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1202 if (HintTypes.size() == 0) 1203 return; 1204 1205 // Reserve the first element to LoopID (see below). 1206 SmallVector<Metadata *, 4> MDs(1); 1207 // If the loop already has metadata, then ignore the existing operands. 1208 MDNode *LoopID = TheLoop->getLoopID(); 1209 if (LoopID) { 1210 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1211 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1212 // If node in update list, ignore old value. 1213 if (!matchesHintMetadataName(Node, HintTypes)) 1214 MDs.push_back(Node); 1215 } 1216 } 1217 1218 // Now, add the missing hints. 1219 for (auto H : HintTypes) 1220 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1221 1222 // Replace current metadata node with new one. 1223 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1224 MDNode *NewLoopID = MDNode::get(Context, MDs); 1225 // Set operand 0 to refer to the loop id itself. 1226 NewLoopID->replaceOperandWith(0, NewLoopID); 1227 1228 TheLoop->setLoopID(NewLoopID); 1229 } 1230 1231 /// The loop these hints belong to. 1232 const Loop *TheLoop; 1233 }; 1234 1235 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1236 const LoopVectorizeHints &Hints, 1237 const LoopAccessReport &Message) { 1238 const char *Name = Hints.vectorizeAnalysisPassName(); 1239 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1240 } 1241 1242 static void emitMissedWarning(Function *F, Loop *L, 1243 const LoopVectorizeHints &LH) { 1244 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1245 LH.emitRemark()); 1246 1247 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1248 if (LH.getWidth() != 1) 1249 emitLoopVectorizeWarning( 1250 F->getContext(), *F, L->getStartLoc(), 1251 "failed explicitly specified loop vectorization"); 1252 else if (LH.getInterleave() != 1) 1253 emitLoopInterleaveWarning( 1254 F->getContext(), *F, L->getStartLoc(), 1255 "failed explicitly specified loop interleaving"); 1256 } 1257 } 1258 1259 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1260 /// to what vectorization factor. 1261 /// This class does not look at the profitability of vectorization, only the 1262 /// legality. This class has two main kinds of checks: 1263 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1264 /// will change the order of memory accesses in a way that will change the 1265 /// correctness of the program. 1266 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1267 /// checks for a number of different conditions, such as the availability of a 1268 /// single induction variable, that all types are supported and vectorize-able, 1269 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1270 /// This class is also used by InnerLoopVectorizer for identifying 1271 /// induction variable and the different reduction variables. 1272 class LoopVectorizationLegality { 1273 public: 1274 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1275 DominatorTree *DT, TargetLibraryInfo *TLI, 1276 AliasAnalysis *AA, Function *F, 1277 const TargetTransformInfo *TTI, 1278 LoopAccessAnalysis *LAA, 1279 LoopVectorizationRequirements *R, 1280 LoopVectorizeHints *H) 1281 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1282 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1283 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1284 Requirements(R), Hints(H) {} 1285 1286 /// ReductionList contains the reduction descriptors for all 1287 /// of the reductions that were found in the loop. 1288 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1289 1290 /// InductionList saves induction variables and maps them to the 1291 /// induction descriptor. 1292 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1293 1294 /// RecurrenceSet contains the phi nodes that are recurrences other than 1295 /// inductions and reductions. 1296 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1297 1298 /// Returns true if it is legal to vectorize this loop. 1299 /// This does not mean that it is profitable to vectorize this 1300 /// loop, only that it is legal to do so. 1301 bool canVectorize(); 1302 1303 /// Returns the Induction variable. 1304 PHINode *getInduction() { return Induction; } 1305 1306 /// Returns the reduction variables found in the loop. 1307 ReductionList *getReductionVars() { return &Reductions; } 1308 1309 /// Returns the induction variables found in the loop. 1310 InductionList *getInductionVars() { return &Inductions; } 1311 1312 /// Return the first-order recurrences found in the loop. 1313 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1314 1315 /// Returns the widest induction type. 1316 Type *getWidestInductionType() { return WidestIndTy; } 1317 1318 /// Returns True if V is an induction variable in this loop. 1319 bool isInductionVariable(const Value *V); 1320 1321 /// Returns True if PN is a reduction variable in this loop. 1322 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1323 1324 /// Returns True if Phi is a first-order recurrence in this loop. 1325 bool isFirstOrderRecurrence(const PHINode *Phi); 1326 1327 /// Return true if the block BB needs to be predicated in order for the loop 1328 /// to be vectorized. 1329 bool blockNeedsPredication(BasicBlock *BB); 1330 1331 /// Check if this pointer is consecutive when vectorizing. This happens 1332 /// when the last index of the GEP is the induction variable, or that the 1333 /// pointer itself is an induction variable. 1334 /// This check allows us to vectorize A[idx] into a wide load/store. 1335 /// Returns: 1336 /// 0 - Stride is unknown or non-consecutive. 1337 /// 1 - Address is consecutive. 1338 /// -1 - Address is consecutive, and decreasing. 1339 int isConsecutivePtr(Value *Ptr); 1340 1341 /// Returns true if the value V is uniform within the loop. 1342 bool isUniform(Value *V); 1343 1344 /// Returns true if this instruction will remain scalar after vectorization. 1345 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1346 1347 /// Returns the information that we collected about runtime memory check. 1348 const RuntimePointerChecking *getRuntimePointerChecking() const { 1349 return LAI->getRuntimePointerChecking(); 1350 } 1351 1352 const LoopAccessInfo *getLAI() const { return LAI; } 1353 1354 /// \brief Check if \p Instr belongs to any interleaved access group. 1355 bool isAccessInterleaved(Instruction *Instr) { 1356 return InterleaveInfo.isInterleaved(Instr); 1357 } 1358 1359 /// \brief Return the maximum interleave factor of all interleaved groups. 1360 unsigned getMaxInterleaveFactor() const { 1361 return InterleaveInfo.getMaxInterleaveFactor(); 1362 } 1363 1364 /// \brief Get the interleaved access group that \p Instr belongs to. 1365 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1366 return InterleaveInfo.getInterleaveGroup(Instr); 1367 } 1368 1369 /// \brief Returns true if an interleaved group requires a scalar iteration 1370 /// to handle accesses with gaps. 1371 bool requiresScalarEpilogue() const { 1372 return InterleaveInfo.requiresScalarEpilogue(); 1373 } 1374 1375 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1376 1377 bool hasStride(Value *V) { return StrideSet.count(V); } 1378 bool mustCheckStrides() { return !StrideSet.empty(); } 1379 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1380 return StrideSet.begin(); 1381 } 1382 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1383 1384 /// Returns true if the target machine supports masked store operation 1385 /// for the given \p DataType and kind of access to \p Ptr. 1386 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1387 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1388 } 1389 /// Returns true if the target machine supports masked load operation 1390 /// for the given \p DataType and kind of access to \p Ptr. 1391 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1392 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1393 } 1394 /// Returns true if the target machine supports masked scatter operation 1395 /// for the given \p DataType. 1396 bool isLegalMaskedScatter(Type *DataType) { 1397 return TTI->isLegalMaskedScatter(DataType); 1398 } 1399 /// Returns true if the target machine supports masked gather operation 1400 /// for the given \p DataType. 1401 bool isLegalMaskedGather(Type *DataType) { 1402 return TTI->isLegalMaskedGather(DataType); 1403 } 1404 1405 /// Returns true if vector representation of the instruction \p I 1406 /// requires mask. 1407 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1408 unsigned getNumStores() const { return LAI->getNumStores(); } 1409 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1410 unsigned getNumPredStores() const { return NumPredStores; } 1411 1412 private: 1413 /// Check if a single basic block loop is vectorizable. 1414 /// At this point we know that this is a loop with a constant trip count 1415 /// and we only need to check individual instructions. 1416 bool canVectorizeInstrs(); 1417 1418 /// When we vectorize loops we may change the order in which 1419 /// we read and write from memory. This method checks if it is 1420 /// legal to vectorize the code, considering only memory constrains. 1421 /// Returns true if the loop is vectorizable 1422 bool canVectorizeMemory(); 1423 1424 /// Return true if we can vectorize this loop using the IF-conversion 1425 /// transformation. 1426 bool canVectorizeWithIfConvert(); 1427 1428 /// Collect the variables that need to stay uniform after vectorization. 1429 void collectLoopUniforms(); 1430 1431 /// Return true if all of the instructions in the block can be speculatively 1432 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1433 /// and we know that we can read from them without segfault. 1434 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1435 1436 /// \brief Collect memory access with loop invariant strides. 1437 /// 1438 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1439 /// invariant. 1440 void collectStridedAccess(Value *LoadOrStoreInst); 1441 1442 /// Updates the vectorization state by adding \p Phi to the inductions list. 1443 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1444 /// better choice for the main induction than the existing one. 1445 void addInductionPhi(PHINode *Phi, InductionDescriptor ID, 1446 SmallPtrSetImpl<Value *> &AllowedExit); 1447 1448 /// Report an analysis message to assist the user in diagnosing loops that are 1449 /// not vectorized. These are handled as LoopAccessReport rather than 1450 /// VectorizationReport because the << operator of VectorizationReport returns 1451 /// LoopAccessReport. 1452 void emitAnalysis(const LoopAccessReport &Message) const { 1453 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1454 } 1455 1456 unsigned NumPredStores; 1457 1458 /// The loop that we evaluate. 1459 Loop *TheLoop; 1460 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1461 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1462 /// of existing SCEV assumptions. The analysis will also add a minimal set 1463 /// of new predicates if this is required to enable vectorization and 1464 /// unrolling. 1465 PredicatedScalarEvolution &PSE; 1466 /// Target Library Info. 1467 TargetLibraryInfo *TLI; 1468 /// Parent function 1469 Function *TheFunction; 1470 /// Target Transform Info 1471 const TargetTransformInfo *TTI; 1472 /// Dominator Tree. 1473 DominatorTree *DT; 1474 // LoopAccess analysis. 1475 LoopAccessAnalysis *LAA; 1476 // And the loop-accesses info corresponding to this loop. This pointer is 1477 // null until canVectorizeMemory sets it up. 1478 const LoopAccessInfo *LAI; 1479 1480 /// The interleave access information contains groups of interleaved accesses 1481 /// with the same stride and close to each other. 1482 InterleavedAccessInfo InterleaveInfo; 1483 1484 // --- vectorization state --- // 1485 1486 /// Holds the integer induction variable. This is the counter of the 1487 /// loop. 1488 PHINode *Induction; 1489 /// Holds the reduction variables. 1490 ReductionList Reductions; 1491 /// Holds all of the induction variables that we found in the loop. 1492 /// Notice that inductions don't need to start at zero and that induction 1493 /// variables can be pointers. 1494 InductionList Inductions; 1495 /// Holds the phi nodes that are first-order recurrences. 1496 RecurrenceSet FirstOrderRecurrences; 1497 /// Holds the widest induction type encountered. 1498 Type *WidestIndTy; 1499 1500 /// Allowed outside users. This holds the induction and reduction 1501 /// vars which can be accessed from outside the loop. 1502 SmallPtrSet<Value *, 4> AllowedExit; 1503 /// This set holds the variables which are known to be uniform after 1504 /// vectorization. 1505 SmallPtrSet<Instruction *, 4> Uniforms; 1506 1507 /// Can we assume the absence of NaNs. 1508 bool HasFunNoNaNAttr; 1509 1510 /// Vectorization requirements that will go through late-evaluation. 1511 LoopVectorizationRequirements *Requirements; 1512 1513 /// Used to emit an analysis of any legality issues. 1514 LoopVectorizeHints *Hints; 1515 1516 ValueToValueMap Strides; 1517 SmallPtrSet<Value *, 8> StrideSet; 1518 1519 /// While vectorizing these instructions we have to generate a 1520 /// call to the appropriate masked intrinsic 1521 SmallPtrSet<const Instruction *, 8> MaskedOp; 1522 }; 1523 1524 /// LoopVectorizationCostModel - estimates the expected speedups due to 1525 /// vectorization. 1526 /// In many cases vectorization is not profitable. This can happen because of 1527 /// a number of reasons. In this class we mainly attempt to predict the 1528 /// expected speedup/slowdowns due to the supported instruction set. We use the 1529 /// TargetTransformInfo to query the different backends for the cost of 1530 /// different operations. 1531 class LoopVectorizationCostModel { 1532 public: 1533 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1534 LoopInfo *LI, LoopVectorizationLegality *Legal, 1535 const TargetTransformInfo &TTI, 1536 const TargetLibraryInfo *TLI, DemandedBits *DB, 1537 AssumptionCache *AC, const Function *F, 1538 const LoopVectorizeHints *Hints) 1539 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1540 AC(AC), TheFunction(F), Hints(Hints) {} 1541 1542 /// Information about vectorization costs 1543 struct VectorizationFactor { 1544 unsigned Width; // Vector width with best cost 1545 unsigned Cost; // Cost of the loop with that width 1546 }; 1547 /// \return The most profitable vectorization factor and the cost of that VF. 1548 /// This method checks every power of two up to VF. If UserVF is not ZERO 1549 /// then this vectorization factor will be selected if vectorization is 1550 /// possible. 1551 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1552 1553 /// \return The size (in bits) of the smallest and widest types in the code 1554 /// that needs to be vectorized. We ignore values that remain scalar such as 1555 /// 64 bit loop indices. 1556 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1557 1558 /// \return The desired interleave count. 1559 /// If interleave count has been specified by metadata it will be returned. 1560 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1561 /// are the selected vectorization factor and the cost of the selected VF. 1562 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1563 unsigned LoopCost); 1564 1565 /// \return The most profitable unroll factor. 1566 /// This method finds the best unroll-factor based on register pressure and 1567 /// other parameters. VF and LoopCost are the selected vectorization factor 1568 /// and the cost of the selected VF. 1569 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1570 unsigned LoopCost); 1571 1572 /// \brief A struct that represents some properties of the register usage 1573 /// of a loop. 1574 struct RegisterUsage { 1575 /// Holds the number of loop invariant values that are used in the loop. 1576 unsigned LoopInvariantRegs; 1577 /// Holds the maximum number of concurrent live intervals in the loop. 1578 unsigned MaxLocalUsers; 1579 /// Holds the number of instructions in the loop. 1580 unsigned NumInstructions; 1581 }; 1582 1583 /// \return Returns information about the register usages of the loop for the 1584 /// given vectorization factors. 1585 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1586 1587 /// Collect values we want to ignore in the cost model. 1588 void collectValuesToIgnore(); 1589 1590 private: 1591 /// The vectorization cost is a combination of the cost itself and a boolean 1592 /// indicating whether any of the contributing operations will actually 1593 /// operate on 1594 /// vector values after type legalization in the backend. If this latter value 1595 /// is 1596 /// false, then all operations will be scalarized (i.e. no vectorization has 1597 /// actually taken place). 1598 typedef std::pair<unsigned, bool> VectorizationCostTy; 1599 1600 /// Returns the expected execution cost. The unit of the cost does 1601 /// not matter because we use the 'cost' units to compare different 1602 /// vector widths. The cost that is returned is *not* normalized by 1603 /// the factor width. 1604 VectorizationCostTy expectedCost(unsigned VF); 1605 1606 /// Returns the execution time cost of an instruction for a given vector 1607 /// width. Vector width of one means scalar. 1608 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1609 1610 /// The cost-computation logic from getInstructionCost which provides 1611 /// the vector type as an output parameter. 1612 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1613 1614 /// Returns whether the instruction is a load or store and will be a emitted 1615 /// as a vector operation. 1616 bool isConsecutiveLoadOrStore(Instruction *I); 1617 1618 /// Report an analysis message to assist the user in diagnosing loops that are 1619 /// not vectorized. These are handled as LoopAccessReport rather than 1620 /// VectorizationReport because the << operator of VectorizationReport returns 1621 /// LoopAccessReport. 1622 void emitAnalysis(const LoopAccessReport &Message) const { 1623 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1624 } 1625 1626 public: 1627 /// Map of scalar integer values to the smallest bitwidth they can be legally 1628 /// represented as. The vector equivalents of these values should be truncated 1629 /// to this type. 1630 MapVector<Instruction *, uint64_t> MinBWs; 1631 1632 /// The loop that we evaluate. 1633 Loop *TheLoop; 1634 /// Predicated scalar evolution analysis. 1635 PredicatedScalarEvolution &PSE; 1636 /// Loop Info analysis. 1637 LoopInfo *LI; 1638 /// Vectorization legality. 1639 LoopVectorizationLegality *Legal; 1640 /// Vector target information. 1641 const TargetTransformInfo &TTI; 1642 /// Target Library Info. 1643 const TargetLibraryInfo *TLI; 1644 /// Demanded bits analysis. 1645 DemandedBits *DB; 1646 /// Assumption cache. 1647 AssumptionCache *AC; 1648 const Function *TheFunction; 1649 /// Loop Vectorize Hint. 1650 const LoopVectorizeHints *Hints; 1651 /// Values to ignore in the cost model. 1652 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1653 /// Values to ignore in the cost model when VF > 1. 1654 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1655 }; 1656 1657 /// \brief This holds vectorization requirements that must be verified late in 1658 /// the process. The requirements are set by legalize and costmodel. Once 1659 /// vectorization has been determined to be possible and profitable the 1660 /// requirements can be verified by looking for metadata or compiler options. 1661 /// For example, some loops require FP commutativity which is only allowed if 1662 /// vectorization is explicitly specified or if the fast-math compiler option 1663 /// has been provided. 1664 /// Late evaluation of these requirements allows helpful diagnostics to be 1665 /// composed that tells the user what need to be done to vectorize the loop. For 1666 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1667 /// evaluation should be used only when diagnostics can generated that can be 1668 /// followed by a non-expert user. 1669 class LoopVectorizationRequirements { 1670 public: 1671 LoopVectorizationRequirements() 1672 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1673 1674 void addUnsafeAlgebraInst(Instruction *I) { 1675 // First unsafe algebra instruction. 1676 if (!UnsafeAlgebraInst) 1677 UnsafeAlgebraInst = I; 1678 } 1679 1680 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1681 1682 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1683 const char *Name = Hints.vectorizeAnalysisPassName(); 1684 bool Failed = false; 1685 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1686 emitOptimizationRemarkAnalysisFPCommute( 1687 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1688 VectorizationReport() << "cannot prove it is safe to reorder " 1689 "floating-point operations"); 1690 Failed = true; 1691 } 1692 1693 // Test if runtime memcheck thresholds are exceeded. 1694 bool PragmaThresholdReached = 1695 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1696 bool ThresholdReached = 1697 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1698 if ((ThresholdReached && !Hints.allowReordering()) || 1699 PragmaThresholdReached) { 1700 emitOptimizationRemarkAnalysisAliasing( 1701 F->getContext(), Name, *F, L->getStartLoc(), 1702 VectorizationReport() 1703 << "cannot prove it is safe to reorder memory operations"); 1704 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1705 Failed = true; 1706 } 1707 1708 return Failed; 1709 } 1710 1711 private: 1712 unsigned NumRuntimePointerChecks; 1713 Instruction *UnsafeAlgebraInst; 1714 }; 1715 1716 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1717 if (L.empty()) 1718 return V.push_back(&L); 1719 1720 for (Loop *InnerL : L) 1721 addInnerLoop(*InnerL, V); 1722 } 1723 1724 /// The LoopVectorize Pass. 1725 struct LoopVectorize : public FunctionPass { 1726 /// Pass identification, replacement for typeid 1727 static char ID; 1728 1729 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1730 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1731 AlwaysVectorize(AlwaysVectorize) { 1732 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1733 } 1734 1735 ScalarEvolution *SE; 1736 LoopInfo *LI; 1737 TargetTransformInfo *TTI; 1738 DominatorTree *DT; 1739 BlockFrequencyInfo *BFI; 1740 TargetLibraryInfo *TLI; 1741 DemandedBits *DB; 1742 AliasAnalysis *AA; 1743 AssumptionCache *AC; 1744 LoopAccessAnalysis *LAA; 1745 bool DisableUnrolling; 1746 bool AlwaysVectorize; 1747 1748 BlockFrequency ColdEntryFreq; 1749 1750 bool runOnFunction(Function &F) override { 1751 if (skipFunction(F)) 1752 return false; 1753 1754 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1755 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1756 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1757 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1758 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1759 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1760 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1761 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1762 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1763 LAA = &getAnalysis<LoopAccessAnalysis>(); 1764 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1765 1766 // Compute some weights outside of the loop over the loops. Compute this 1767 // using a BranchProbability to re-use its scaling math. 1768 const BranchProbability ColdProb(1, 5); // 20% 1769 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1770 1771 // Don't attempt if 1772 // 1. the target claims to have no vector registers, and 1773 // 2. interleaving won't help ILP. 1774 // 1775 // The second condition is necessary because, even if the target has no 1776 // vector registers, loop vectorization may still enable scalar 1777 // interleaving. 1778 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1779 return false; 1780 1781 // Build up a worklist of inner-loops to vectorize. This is necessary as 1782 // the act of vectorizing or partially unrolling a loop creates new loops 1783 // and can invalidate iterators across the loops. 1784 SmallVector<Loop *, 8> Worklist; 1785 1786 for (Loop *L : *LI) 1787 addInnerLoop(*L, Worklist); 1788 1789 LoopsAnalyzed += Worklist.size(); 1790 1791 // Now walk the identified inner loops. 1792 bool Changed = false; 1793 while (!Worklist.empty()) 1794 Changed |= processLoop(Worklist.pop_back_val()); 1795 1796 // Process each loop nest in the function. 1797 return Changed; 1798 } 1799 1800 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1801 SmallVector<Metadata *, 4> MDs; 1802 // Reserve first location for self reference to the LoopID metadata node. 1803 MDs.push_back(nullptr); 1804 bool IsUnrollMetadata = false; 1805 MDNode *LoopID = L->getLoopID(); 1806 if (LoopID) { 1807 // First find existing loop unrolling disable metadata. 1808 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1809 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1810 if (MD) { 1811 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1812 IsUnrollMetadata = 1813 S && S->getString().startswith("llvm.loop.unroll.disable"); 1814 } 1815 MDs.push_back(LoopID->getOperand(i)); 1816 } 1817 } 1818 1819 if (!IsUnrollMetadata) { 1820 // Add runtime unroll disable metadata. 1821 LLVMContext &Context = L->getHeader()->getContext(); 1822 SmallVector<Metadata *, 1> DisableOperands; 1823 DisableOperands.push_back( 1824 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1825 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1826 MDs.push_back(DisableNode); 1827 MDNode *NewLoopID = MDNode::get(Context, MDs); 1828 // Set operand 0 to refer to the loop id itself. 1829 NewLoopID->replaceOperandWith(0, NewLoopID); 1830 L->setLoopID(NewLoopID); 1831 } 1832 } 1833 1834 bool processLoop(Loop *L) { 1835 assert(L->empty() && "Only process inner loops."); 1836 1837 #ifndef NDEBUG 1838 const std::string DebugLocStr = getDebugLocString(L); 1839 #endif /* NDEBUG */ 1840 1841 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1842 << L->getHeader()->getParent()->getName() << "\" from " 1843 << DebugLocStr << "\n"); 1844 1845 LoopVectorizeHints Hints(L, DisableUnrolling); 1846 1847 DEBUG(dbgs() << "LV: Loop hints:" 1848 << " force=" 1849 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1850 ? "disabled" 1851 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1852 ? "enabled" 1853 : "?")) 1854 << " width=" << Hints.getWidth() 1855 << " unroll=" << Hints.getInterleave() << "\n"); 1856 1857 // Function containing loop 1858 Function *F = L->getHeader()->getParent(); 1859 1860 // Looking at the diagnostic output is the only way to determine if a loop 1861 // was vectorized (other than looking at the IR or machine code), so it 1862 // is important to generate an optimization remark for each loop. Most of 1863 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1864 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1865 // less verbose reporting vectorized loops and unvectorized loops that may 1866 // benefit from vectorization, respectively. 1867 1868 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1869 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1870 return false; 1871 } 1872 1873 // Check the loop for a trip count threshold: 1874 // do not vectorize loops with a tiny trip count. 1875 const unsigned TC = SE->getSmallConstantTripCount(L); 1876 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1877 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1878 << "This loop is not worth vectorizing."); 1879 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1880 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1881 else { 1882 DEBUG(dbgs() << "\n"); 1883 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1884 << "vectorization is not beneficial " 1885 "and is not explicitly forced"); 1886 return false; 1887 } 1888 } 1889 1890 PredicatedScalarEvolution PSE(*SE, *L); 1891 1892 // Check if it is legal to vectorize the loop. 1893 LoopVectorizationRequirements Requirements; 1894 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1895 &Requirements, &Hints); 1896 if (!LVL.canVectorize()) { 1897 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1898 emitMissedWarning(F, L, Hints); 1899 return false; 1900 } 1901 1902 // Use the cost model. 1903 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1904 &Hints); 1905 CM.collectValuesToIgnore(); 1906 1907 // Check the function attributes to find out if this function should be 1908 // optimized for size. 1909 bool OptForSize = 1910 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1911 1912 // Compute the weighted frequency of this loop being executed and see if it 1913 // is less than 20% of the function entry baseline frequency. Note that we 1914 // always have a canonical loop here because we think we *can* vectorize. 1915 // FIXME: This is hidden behind a flag due to pervasive problems with 1916 // exactly what block frequency models. 1917 if (LoopVectorizeWithBlockFrequency) { 1918 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1919 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1920 LoopEntryFreq < ColdEntryFreq) 1921 OptForSize = true; 1922 } 1923 1924 // Check the function attributes to see if implicit floats are allowed. 1925 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1926 // an integer loop and the vector instructions selected are purely integer 1927 // vector instructions? 1928 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1929 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1930 "attribute is used.\n"); 1931 emitAnalysisDiag( 1932 F, L, Hints, 1933 VectorizationReport() 1934 << "loop not vectorized due to NoImplicitFloat attribute"); 1935 emitMissedWarning(F, L, Hints); 1936 return false; 1937 } 1938 1939 // Check if the target supports potentially unsafe FP vectorization. 1940 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1941 // for the target we're vectorizing for, to make sure none of the 1942 // additional fp-math flags can help. 1943 if (Hints.isPotentiallyUnsafe() && 1944 TTI->isFPVectorizationPotentiallyUnsafe()) { 1945 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1946 emitAnalysisDiag(F, L, Hints, 1947 VectorizationReport() 1948 << "loop not vectorized due to unsafe FP support."); 1949 emitMissedWarning(F, L, Hints); 1950 return false; 1951 } 1952 1953 // Select the optimal vectorization factor. 1954 const LoopVectorizationCostModel::VectorizationFactor VF = 1955 CM.selectVectorizationFactor(OptForSize); 1956 1957 // Select the interleave count. 1958 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1959 1960 // Get user interleave count. 1961 unsigned UserIC = Hints.getInterleave(); 1962 1963 // Identify the diagnostic messages that should be produced. 1964 std::string VecDiagMsg, IntDiagMsg; 1965 bool VectorizeLoop = true, InterleaveLoop = true; 1966 1967 if (Requirements.doesNotMeet(F, L, Hints)) { 1968 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1969 "requirements.\n"); 1970 emitMissedWarning(F, L, Hints); 1971 return false; 1972 } 1973 1974 if (VF.Width == 1) { 1975 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1976 VecDiagMsg = 1977 "the cost-model indicates that vectorization is not beneficial"; 1978 VectorizeLoop = false; 1979 } 1980 1981 if (IC == 1 && UserIC <= 1) { 1982 // Tell the user interleaving is not beneficial. 1983 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1984 IntDiagMsg = 1985 "the cost-model indicates that interleaving is not beneficial"; 1986 InterleaveLoop = false; 1987 if (UserIC == 1) 1988 IntDiagMsg += 1989 " and is explicitly disabled or interleave count is set to 1"; 1990 } else if (IC > 1 && UserIC == 1) { 1991 // Tell the user interleaving is beneficial, but it explicitly disabled. 1992 DEBUG(dbgs() 1993 << "LV: Interleaving is beneficial but is explicitly disabled."); 1994 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1995 "but is explicitly disabled or interleave count is set to 1"; 1996 InterleaveLoop = false; 1997 } 1998 1999 // Override IC if user provided an interleave count. 2000 IC = UserIC > 0 ? UserIC : IC; 2001 2002 // Emit diagnostic messages, if any. 2003 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 2004 if (!VectorizeLoop && !InterleaveLoop) { 2005 // Do not vectorize or interleaving the loop. 2006 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2007 L->getStartLoc(), VecDiagMsg); 2008 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2009 L->getStartLoc(), IntDiagMsg); 2010 return false; 2011 } else if (!VectorizeLoop && InterleaveLoop) { 2012 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2013 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2014 L->getStartLoc(), VecDiagMsg); 2015 } else if (VectorizeLoop && !InterleaveLoop) { 2016 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2017 << DebugLocStr << '\n'); 2018 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2019 L->getStartLoc(), IntDiagMsg); 2020 } else if (VectorizeLoop && InterleaveLoop) { 2021 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2022 << DebugLocStr << '\n'); 2023 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2024 } 2025 2026 if (!VectorizeLoop) { 2027 assert(IC > 1 && "interleave count should not be 1 or 0"); 2028 // If we decided that it is not legal to vectorize the loop, then 2029 // interleave it. 2030 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2031 Unroller.vectorize(&LVL, CM.MinBWs); 2032 2033 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2034 Twine("interleaved loop (interleaved count: ") + 2035 Twine(IC) + ")"); 2036 } else { 2037 // If we decided that it is *legal* to vectorize the loop, then do it. 2038 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2039 LB.vectorize(&LVL, CM.MinBWs); 2040 ++LoopsVectorized; 2041 2042 // Add metadata to disable runtime unrolling a scalar loop when there are 2043 // no runtime checks about strides and memory. A scalar loop that is 2044 // rarely used is not worth unrolling. 2045 if (!LB.areSafetyChecksAdded()) 2046 AddRuntimeUnrollDisableMetaData(L); 2047 2048 // Report the vectorization decision. 2049 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2050 Twine("vectorized loop (vectorization width: ") + 2051 Twine(VF.Width) + ", interleaved count: " + 2052 Twine(IC) + ")"); 2053 } 2054 2055 // Mark the loop as already vectorized to avoid vectorizing again. 2056 Hints.setAlreadyVectorized(); 2057 2058 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2059 return true; 2060 } 2061 2062 void getAnalysisUsage(AnalysisUsage &AU) const override { 2063 AU.addRequired<AssumptionCacheTracker>(); 2064 AU.addRequiredID(LoopSimplifyID); 2065 AU.addRequiredID(LCSSAID); 2066 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2067 AU.addRequired<DominatorTreeWrapperPass>(); 2068 AU.addRequired<LoopInfoWrapperPass>(); 2069 AU.addRequired<ScalarEvolutionWrapperPass>(); 2070 AU.addRequired<TargetTransformInfoWrapperPass>(); 2071 AU.addRequired<AAResultsWrapperPass>(); 2072 AU.addRequired<LoopAccessAnalysis>(); 2073 AU.addRequired<DemandedBitsWrapperPass>(); 2074 AU.addPreserved<LoopInfoWrapperPass>(); 2075 AU.addPreserved<DominatorTreeWrapperPass>(); 2076 AU.addPreserved<BasicAAWrapperPass>(); 2077 AU.addPreserved<GlobalsAAWrapperPass>(); 2078 } 2079 }; 2080 2081 } // end anonymous namespace 2082 2083 //===----------------------------------------------------------------------===// 2084 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2085 // LoopVectorizationCostModel. 2086 //===----------------------------------------------------------------------===// 2087 2088 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2089 // We need to place the broadcast of invariant variables outside the loop. 2090 Instruction *Instr = dyn_cast<Instruction>(V); 2091 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2092 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2093 2094 // Place the code for broadcasting invariant variables in the new preheader. 2095 IRBuilder<>::InsertPointGuard Guard(Builder); 2096 if (Invariant) 2097 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2098 2099 // Broadcast the scalar into all locations in the vector. 2100 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2101 2102 return Shuf; 2103 } 2104 2105 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2106 const SCEV *StepSCEV) { 2107 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2108 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2109 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2110 &*Builder.GetInsertPoint()); 2111 return getStepVector(Val, StartIdx, StepValue); 2112 } 2113 2114 void InnerLoopVectorizer::widenInductionVariable(const InductionDescriptor &II, 2115 VectorParts &Entry, 2116 IntegerType *TruncType) { 2117 Value *Start = II.getStartValue(); 2118 ConstantInt *Step = II.getConstIntStepValue(); 2119 assert(Step && "Can not widen an IV with a non-constant step"); 2120 2121 // Construct the initial value of the vector IV in the vector loop preheader 2122 auto CurrIP = Builder.saveIP(); 2123 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2124 if (TruncType) { 2125 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2126 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2127 } 2128 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2129 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2130 Builder.restoreIP(CurrIP); 2131 2132 Value *SplatVF = 2133 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2134 VF * Step->getSExtValue())); 2135 // We may need to add the step a number of times, depending on the unroll 2136 // factor. The last of those goes into the PHI. 2137 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2138 &*LoopVectorBody->getFirstInsertionPt()); 2139 Value *LastInduction = VecInd; 2140 for (unsigned Part = 0; Part < UF; ++Part) { 2141 Entry[Part] = LastInduction; 2142 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 2143 } 2144 2145 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2146 VecInd->addIncoming(LastInduction, LoopVectorBody); 2147 } 2148 2149 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2150 Value *Step) { 2151 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2152 assert(Val->getType()->getScalarType()->isIntegerTy() && 2153 "Elem must be an integer"); 2154 assert(Step->getType() == Val->getType()->getScalarType() && 2155 "Step has wrong type"); 2156 // Create the types. 2157 Type *ITy = Val->getType()->getScalarType(); 2158 VectorType *Ty = cast<VectorType>(Val->getType()); 2159 int VLen = Ty->getNumElements(); 2160 SmallVector<Constant *, 8> Indices; 2161 2162 // Create a vector of consecutive numbers from zero to VF. 2163 for (int i = 0; i < VLen; ++i) 2164 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2165 2166 // Add the consecutive indices to the vector value. 2167 Constant *Cv = ConstantVector::get(Indices); 2168 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2169 Step = Builder.CreateVectorSplat(VLen, Step); 2170 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2171 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2172 // which can be found from the original scalar operations. 2173 Step = Builder.CreateMul(Cv, Step); 2174 return Builder.CreateAdd(Val, Step, "induction"); 2175 } 2176 2177 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2178 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2179 auto *SE = PSE.getSE(); 2180 // Make sure that the pointer does not point to structs. 2181 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2182 return 0; 2183 2184 // If this value is a pointer induction variable, we know it is consecutive. 2185 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2186 if (Phi && Inductions.count(Phi)) { 2187 InductionDescriptor II = Inductions[Phi]; 2188 return II.getConsecutiveDirection(); 2189 } 2190 2191 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2192 if (!Gep) 2193 return 0; 2194 2195 unsigned NumOperands = Gep->getNumOperands(); 2196 Value *GpPtr = Gep->getPointerOperand(); 2197 // If this GEP value is a consecutive pointer induction variable and all of 2198 // the indices are constant, then we know it is consecutive. 2199 Phi = dyn_cast<PHINode>(GpPtr); 2200 if (Phi && Inductions.count(Phi)) { 2201 2202 // Make sure that the pointer does not point to structs. 2203 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2204 if (GepPtrType->getElementType()->isAggregateType()) 2205 return 0; 2206 2207 // Make sure that all of the index operands are loop invariant. 2208 for (unsigned i = 1; i < NumOperands; ++i) 2209 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2210 return 0; 2211 2212 InductionDescriptor II = Inductions[Phi]; 2213 return II.getConsecutiveDirection(); 2214 } 2215 2216 unsigned InductionOperand = getGEPInductionOperand(Gep); 2217 2218 // Check that all of the gep indices are uniform except for our induction 2219 // operand. 2220 for (unsigned i = 0; i != NumOperands; ++i) 2221 if (i != InductionOperand && 2222 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2223 return 0; 2224 2225 // We can emit wide load/stores only if the last non-zero index is the 2226 // induction variable. 2227 const SCEV *Last = nullptr; 2228 if (!Strides.count(Gep)) 2229 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2230 else { 2231 // Because of the multiplication by a stride we can have a s/zext cast. 2232 // We are going to replace this stride by 1 so the cast is safe to ignore. 2233 // 2234 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2235 // %0 = trunc i64 %indvars.iv to i32 2236 // %mul = mul i32 %0, %Stride1 2237 // %idxprom = zext i32 %mul to i64 << Safe cast. 2238 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2239 // 2240 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2241 Gep->getOperand(InductionOperand), Gep); 2242 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2243 Last = 2244 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2245 ? C->getOperand() 2246 : Last; 2247 } 2248 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2249 const SCEV *Step = AR->getStepRecurrence(*SE); 2250 2251 // The memory is consecutive because the last index is consecutive 2252 // and all other indices are loop invariant. 2253 if (Step->isOne()) 2254 return 1; 2255 if (Step->isAllOnesValue()) 2256 return -1; 2257 } 2258 2259 return 0; 2260 } 2261 2262 bool LoopVectorizationLegality::isUniform(Value *V) { 2263 return LAI->isUniform(V); 2264 } 2265 2266 InnerLoopVectorizer::VectorParts & 2267 InnerLoopVectorizer::getVectorValue(Value *V) { 2268 assert(V != Induction && "The new induction variable should not be used."); 2269 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2270 2271 // If we have a stride that is replaced by one, do it here. 2272 if (Legal->hasStride(V)) 2273 V = ConstantInt::get(V->getType(), 1); 2274 2275 // If we have this scalar in the map, return it. 2276 if (WidenMap.has(V)) 2277 return WidenMap.get(V); 2278 2279 // If this scalar is unknown, assume that it is a constant or that it is 2280 // loop invariant. Broadcast V and save the value for future uses. 2281 Value *B = getBroadcastInstrs(V); 2282 return WidenMap.splat(V, B); 2283 } 2284 2285 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2286 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2287 SmallVector<Constant *, 8> ShuffleMask; 2288 for (unsigned i = 0; i < VF; ++i) 2289 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2290 2291 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2292 ConstantVector::get(ShuffleMask), 2293 "reverse"); 2294 } 2295 2296 // Get a mask to interleave \p NumVec vectors into a wide vector. 2297 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2298 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2299 // <0, 4, 1, 5, 2, 6, 3, 7> 2300 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2301 unsigned NumVec) { 2302 SmallVector<Constant *, 16> Mask; 2303 for (unsigned i = 0; i < VF; i++) 2304 for (unsigned j = 0; j < NumVec; j++) 2305 Mask.push_back(Builder.getInt32(j * VF + i)); 2306 2307 return ConstantVector::get(Mask); 2308 } 2309 2310 // Get the strided mask starting from index \p Start. 2311 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2312 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2313 unsigned Stride, unsigned VF) { 2314 SmallVector<Constant *, 16> Mask; 2315 for (unsigned i = 0; i < VF; i++) 2316 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2317 2318 return ConstantVector::get(Mask); 2319 } 2320 2321 // Get a mask of two parts: The first part consists of sequential integers 2322 // starting from 0, The second part consists of UNDEFs. 2323 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2324 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2325 unsigned NumUndef) { 2326 SmallVector<Constant *, 16> Mask; 2327 for (unsigned i = 0; i < NumInt; i++) 2328 Mask.push_back(Builder.getInt32(i)); 2329 2330 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2331 for (unsigned i = 0; i < NumUndef; i++) 2332 Mask.push_back(Undef); 2333 2334 return ConstantVector::get(Mask); 2335 } 2336 2337 // Concatenate two vectors with the same element type. The 2nd vector should 2338 // not have more elements than the 1st vector. If the 2nd vector has less 2339 // elements, extend it with UNDEFs. 2340 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2341 Value *V2) { 2342 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2343 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2344 assert(VecTy1 && VecTy2 && 2345 VecTy1->getScalarType() == VecTy2->getScalarType() && 2346 "Expect two vectors with the same element type"); 2347 2348 unsigned NumElts1 = VecTy1->getNumElements(); 2349 unsigned NumElts2 = VecTy2->getNumElements(); 2350 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2351 2352 if (NumElts1 > NumElts2) { 2353 // Extend with UNDEFs. 2354 Constant *ExtMask = 2355 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2356 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2357 } 2358 2359 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2360 return Builder.CreateShuffleVector(V1, V2, Mask); 2361 } 2362 2363 // Concatenate vectors in the given list. All vectors have the same type. 2364 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2365 ArrayRef<Value *> InputList) { 2366 unsigned NumVec = InputList.size(); 2367 assert(NumVec > 1 && "Should be at least two vectors"); 2368 2369 SmallVector<Value *, 8> ResList; 2370 ResList.append(InputList.begin(), InputList.end()); 2371 do { 2372 SmallVector<Value *, 8> TmpList; 2373 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2374 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2375 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2376 "Only the last vector may have a different type"); 2377 2378 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2379 } 2380 2381 // Push the last vector if the total number of vectors is odd. 2382 if (NumVec % 2 != 0) 2383 TmpList.push_back(ResList[NumVec - 1]); 2384 2385 ResList = TmpList; 2386 NumVec = ResList.size(); 2387 } while (NumVec > 1); 2388 2389 return ResList[0]; 2390 } 2391 2392 // Try to vectorize the interleave group that \p Instr belongs to. 2393 // 2394 // E.g. Translate following interleaved load group (factor = 3): 2395 // for (i = 0; i < N; i+=3) { 2396 // R = Pic[i]; // Member of index 0 2397 // G = Pic[i+1]; // Member of index 1 2398 // B = Pic[i+2]; // Member of index 2 2399 // ... // do something to R, G, B 2400 // } 2401 // To: 2402 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2403 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2404 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2405 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2406 // 2407 // Or translate following interleaved store group (factor = 3): 2408 // for (i = 0; i < N; i+=3) { 2409 // ... do something to R, G, B 2410 // Pic[i] = R; // Member of index 0 2411 // Pic[i+1] = G; // Member of index 1 2412 // Pic[i+2] = B; // Member of index 2 2413 // } 2414 // To: 2415 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2416 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2417 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2418 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2419 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2420 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2421 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2422 assert(Group && "Fail to get an interleaved access group."); 2423 2424 // Skip if current instruction is not the insert position. 2425 if (Instr != Group->getInsertPos()) 2426 return; 2427 2428 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2429 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2430 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2431 2432 // Prepare for the vector type of the interleaved load/store. 2433 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2434 unsigned InterleaveFactor = Group->getFactor(); 2435 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2436 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2437 2438 // Prepare for the new pointers. 2439 setDebugLocFromInst(Builder, Ptr); 2440 VectorParts &PtrParts = getVectorValue(Ptr); 2441 SmallVector<Value *, 2> NewPtrs; 2442 unsigned Index = Group->getIndex(Instr); 2443 for (unsigned Part = 0; Part < UF; Part++) { 2444 // Extract the pointer for current instruction from the pointer vector. A 2445 // reverse access uses the pointer in the last lane. 2446 Value *NewPtr = Builder.CreateExtractElement( 2447 PtrParts[Part], 2448 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2449 2450 // Notice current instruction could be any index. Need to adjust the address 2451 // to the member of index 0. 2452 // 2453 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2454 // b = A[i]; // Member of index 0 2455 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2456 // 2457 // E.g. A[i+1] = a; // Member of index 1 2458 // A[i] = b; // Member of index 0 2459 // A[i+2] = c; // Member of index 2 (Current instruction) 2460 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2461 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2462 2463 // Cast to the vector pointer type. 2464 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2465 } 2466 2467 setDebugLocFromInst(Builder, Instr); 2468 Value *UndefVec = UndefValue::get(VecTy); 2469 2470 // Vectorize the interleaved load group. 2471 if (LI) { 2472 for (unsigned Part = 0; Part < UF; Part++) { 2473 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2474 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2475 2476 for (unsigned i = 0; i < InterleaveFactor; i++) { 2477 Instruction *Member = Group->getMember(i); 2478 2479 // Skip the gaps in the group. 2480 if (!Member) 2481 continue; 2482 2483 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2484 Value *StridedVec = Builder.CreateShuffleVector( 2485 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2486 2487 // If this member has different type, cast the result type. 2488 if (Member->getType() != ScalarTy) { 2489 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2490 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2491 } 2492 2493 VectorParts &Entry = WidenMap.get(Member); 2494 Entry[Part] = 2495 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2496 } 2497 2498 addMetadata(NewLoadInstr, Instr); 2499 } 2500 return; 2501 } 2502 2503 // The sub vector type for current instruction. 2504 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2505 2506 // Vectorize the interleaved store group. 2507 for (unsigned Part = 0; Part < UF; Part++) { 2508 // Collect the stored vector from each member. 2509 SmallVector<Value *, 4> StoredVecs; 2510 for (unsigned i = 0; i < InterleaveFactor; i++) { 2511 // Interleaved store group doesn't allow a gap, so each index has a member 2512 Instruction *Member = Group->getMember(i); 2513 assert(Member && "Fail to get a member from an interleaved store group"); 2514 2515 Value *StoredVec = 2516 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2517 if (Group->isReverse()) 2518 StoredVec = reverseVector(StoredVec); 2519 2520 // If this member has different type, cast it to an unified type. 2521 if (StoredVec->getType() != SubVT) 2522 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2523 2524 StoredVecs.push_back(StoredVec); 2525 } 2526 2527 // Concatenate all vectors into a wide vector. 2528 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2529 2530 // Interleave the elements in the wide vector. 2531 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2532 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2533 "interleaved.vec"); 2534 2535 Instruction *NewStoreInstr = 2536 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2537 addMetadata(NewStoreInstr, Instr); 2538 } 2539 } 2540 2541 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2542 // Attempt to issue a wide load. 2543 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2544 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2545 2546 assert((LI || SI) && "Invalid Load/Store instruction"); 2547 2548 // Try to vectorize the interleave group if this access is interleaved. 2549 if (Legal->isAccessInterleaved(Instr)) 2550 return vectorizeInterleaveGroup(Instr); 2551 2552 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2553 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2554 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2555 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2556 // An alignment of 0 means target abi alignment. We need to use the scalar's 2557 // target abi alignment in such a case. 2558 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2559 if (!Alignment) 2560 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2561 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2562 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2563 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2564 2565 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2566 !Legal->isMaskRequired(SI)) 2567 return scalarizeInstruction(Instr, true); 2568 2569 if (ScalarAllocatedSize != VectorElementSize) 2570 return scalarizeInstruction(Instr); 2571 2572 // If the pointer is loop invariant scalarize the load. 2573 if (LI && Legal->isUniform(Ptr)) 2574 return scalarizeInstruction(Instr); 2575 2576 // If the pointer is non-consecutive and gather/scatter is not supported 2577 // scalarize the instruction. 2578 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2579 bool Reverse = ConsecutiveStride < 0; 2580 bool CreateGatherScatter = 2581 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2582 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2583 2584 if (!ConsecutiveStride && !CreateGatherScatter) 2585 return scalarizeInstruction(Instr); 2586 2587 Constant *Zero = Builder.getInt32(0); 2588 VectorParts &Entry = WidenMap.get(Instr); 2589 VectorParts VectorGep; 2590 2591 // Handle consecutive loads/stores. 2592 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2593 if (ConsecutiveStride) { 2594 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2595 setDebugLocFromInst(Builder, Gep); 2596 Value *PtrOperand = Gep->getPointerOperand(); 2597 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2598 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2599 2600 // Create the new GEP with the new induction variable. 2601 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2602 Gep2->setOperand(0, FirstBasePtr); 2603 Gep2->setName("gep.indvar.base"); 2604 Ptr = Builder.Insert(Gep2); 2605 } else if (Gep) { 2606 setDebugLocFromInst(Builder, Gep); 2607 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2608 OrigLoop) && 2609 "Base ptr must be invariant"); 2610 // The last index does not have to be the induction. It can be 2611 // consecutive and be a function of the index. For example A[I+1]; 2612 unsigned NumOperands = Gep->getNumOperands(); 2613 unsigned InductionOperand = getGEPInductionOperand(Gep); 2614 // Create the new GEP with the new induction variable. 2615 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2616 2617 for (unsigned i = 0; i < NumOperands; ++i) { 2618 Value *GepOperand = Gep->getOperand(i); 2619 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2620 2621 // Update last index or loop invariant instruction anchored in loop. 2622 if (i == InductionOperand || 2623 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2624 assert((i == InductionOperand || 2625 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2626 OrigLoop)) && 2627 "Must be last index or loop invariant"); 2628 2629 VectorParts &GEPParts = getVectorValue(GepOperand); 2630 Value *Index = GEPParts[0]; 2631 Index = Builder.CreateExtractElement(Index, Zero); 2632 Gep2->setOperand(i, Index); 2633 Gep2->setName("gep.indvar.idx"); 2634 } 2635 } 2636 Ptr = Builder.Insert(Gep2); 2637 } else { // No GEP 2638 // Use the induction element ptr. 2639 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2640 setDebugLocFromInst(Builder, Ptr); 2641 VectorParts &PtrVal = getVectorValue(Ptr); 2642 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2643 } 2644 } else { 2645 // At this point we should vector version of GEP for Gather or Scatter 2646 assert(CreateGatherScatter && "The instruction should be scalarized"); 2647 if (Gep) { 2648 SmallVector<VectorParts, 4> OpsV; 2649 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2650 // base or index of GEP scalar 2651 for (Value *Op : Gep->operands()) { 2652 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2653 OpsV.push_back(VectorParts(UF, Op)); 2654 else 2655 OpsV.push_back(getVectorValue(Op)); 2656 } 2657 2658 for (unsigned Part = 0; Part < UF; ++Part) { 2659 SmallVector<Value *, 4> Ops; 2660 Value *GEPBasePtr = OpsV[0][Part]; 2661 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2662 Ops.push_back(OpsV[i][Part]); 2663 Value *NewGep = 2664 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2665 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2666 NewGep = 2667 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2668 VectorGep.push_back(NewGep); 2669 } 2670 } else 2671 VectorGep = getVectorValue(Ptr); 2672 } 2673 2674 VectorParts Mask = createBlockInMask(Instr->getParent()); 2675 // Handle Stores: 2676 if (SI) { 2677 assert(!Legal->isUniform(SI->getPointerOperand()) && 2678 "We do not allow storing to uniform addresses"); 2679 setDebugLocFromInst(Builder, SI); 2680 // We don't want to update the value in the map as it might be used in 2681 // another expression. So don't use a reference type for "StoredVal". 2682 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2683 2684 for (unsigned Part = 0; Part < UF; ++Part) { 2685 Instruction *NewSI = nullptr; 2686 if (CreateGatherScatter) { 2687 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2688 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2689 Alignment, MaskPart); 2690 } else { 2691 // Calculate the pointer for the specific unroll-part. 2692 Value *PartPtr = 2693 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2694 2695 if (Reverse) { 2696 // If we store to reverse consecutive memory locations, then we need 2697 // to reverse the order of elements in the stored value. 2698 StoredVal[Part] = reverseVector(StoredVal[Part]); 2699 // If the address is consecutive but reversed, then the 2700 // wide store needs to start at the last vector element. 2701 PartPtr = 2702 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2703 PartPtr = 2704 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2705 Mask[Part] = reverseVector(Mask[Part]); 2706 } 2707 2708 Value *VecPtr = 2709 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2710 2711 if (Legal->isMaskRequired(SI)) 2712 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2713 Mask[Part]); 2714 else 2715 NewSI = 2716 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2717 } 2718 addMetadata(NewSI, SI); 2719 } 2720 return; 2721 } 2722 2723 // Handle loads. 2724 assert(LI && "Must have a load instruction"); 2725 setDebugLocFromInst(Builder, LI); 2726 for (unsigned Part = 0; Part < UF; ++Part) { 2727 Instruction *NewLI; 2728 if (CreateGatherScatter) { 2729 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2730 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2731 0, "wide.masked.gather"); 2732 Entry[Part] = NewLI; 2733 } else { 2734 // Calculate the pointer for the specific unroll-part. 2735 Value *PartPtr = 2736 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2737 2738 if (Reverse) { 2739 // If the address is consecutive but reversed, then the 2740 // wide load needs to start at the last vector element. 2741 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2742 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2743 Mask[Part] = reverseVector(Mask[Part]); 2744 } 2745 2746 Value *VecPtr = 2747 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2748 if (Legal->isMaskRequired(LI)) 2749 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2750 UndefValue::get(DataTy), 2751 "wide.masked.load"); 2752 else 2753 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2754 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2755 } 2756 addMetadata(NewLI, LI); 2757 } 2758 } 2759 2760 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2761 bool IfPredicateStore) { 2762 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2763 // Holds vector parameters or scalars, in case of uniform vals. 2764 SmallVector<VectorParts, 4> Params; 2765 2766 setDebugLocFromInst(Builder, Instr); 2767 2768 // Find all of the vectorized parameters. 2769 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2770 Value *SrcOp = Instr->getOperand(op); 2771 2772 // If we are accessing the old induction variable, use the new one. 2773 if (SrcOp == OldInduction) { 2774 Params.push_back(getVectorValue(SrcOp)); 2775 continue; 2776 } 2777 2778 // Try using previously calculated values. 2779 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2780 2781 // If the src is an instruction that appeared earlier in the basic block, 2782 // then it should already be vectorized. 2783 if (SrcInst && OrigLoop->contains(SrcInst)) { 2784 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2785 // The parameter is a vector value from earlier. 2786 Params.push_back(WidenMap.get(SrcInst)); 2787 } else { 2788 // The parameter is a scalar from outside the loop. Maybe even a constant. 2789 VectorParts Scalars; 2790 Scalars.append(UF, SrcOp); 2791 Params.push_back(Scalars); 2792 } 2793 } 2794 2795 assert(Params.size() == Instr->getNumOperands() && 2796 "Invalid number of operands"); 2797 2798 // Does this instruction return a value ? 2799 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2800 2801 Value *UndefVec = 2802 IsVoidRetTy ? nullptr 2803 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2804 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2805 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2806 2807 VectorParts Cond; 2808 if (IfPredicateStore) { 2809 assert(Instr->getParent()->getSinglePredecessor() && 2810 "Only support single predecessor blocks"); 2811 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2812 Instr->getParent()); 2813 } 2814 2815 // For each vector unroll 'part': 2816 for (unsigned Part = 0; Part < UF; ++Part) { 2817 // For each scalar that we create: 2818 for (unsigned Width = 0; Width < VF; ++Width) { 2819 2820 // Start if-block. 2821 Value *Cmp = nullptr; 2822 if (IfPredicateStore) { 2823 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2824 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2825 ConstantInt::get(Cmp->getType(), 1)); 2826 } 2827 2828 Instruction *Cloned = Instr->clone(); 2829 if (!IsVoidRetTy) 2830 Cloned->setName(Instr->getName() + ".cloned"); 2831 // Replace the operands of the cloned instructions with extracted scalars. 2832 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2833 Value *Op = Params[op][Part]; 2834 // Param is a vector. Need to extract the right lane. 2835 if (Op->getType()->isVectorTy()) 2836 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2837 Cloned->setOperand(op, Op); 2838 } 2839 addNewMetadata(Cloned, Instr); 2840 2841 // Place the cloned scalar in the new loop. 2842 Builder.Insert(Cloned); 2843 2844 // If we just cloned a new assumption, add it the assumption cache. 2845 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2846 if (II->getIntrinsicID() == Intrinsic::assume) 2847 AC->registerAssumption(II); 2848 2849 // If the original scalar returns a value we need to place it in a vector 2850 // so that future users will be able to use it. 2851 if (!IsVoidRetTy) 2852 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2853 Builder.getInt32(Width)); 2854 // End if-block. 2855 if (IfPredicateStore) 2856 PredicatedStores.push_back( 2857 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2858 } 2859 } 2860 } 2861 2862 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2863 Value *End, Value *Step, 2864 Instruction *DL) { 2865 BasicBlock *Header = L->getHeader(); 2866 BasicBlock *Latch = L->getLoopLatch(); 2867 // As we're just creating this loop, it's possible no latch exists 2868 // yet. If so, use the header as this will be a single block loop. 2869 if (!Latch) 2870 Latch = Header; 2871 2872 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2873 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2874 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2875 2876 Builder.SetInsertPoint(Latch->getTerminator()); 2877 2878 // Create i+1 and fill the PHINode. 2879 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2880 Induction->addIncoming(Start, L->getLoopPreheader()); 2881 Induction->addIncoming(Next, Latch); 2882 // Create the compare. 2883 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2884 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2885 2886 // Now we have two terminators. Remove the old one from the block. 2887 Latch->getTerminator()->eraseFromParent(); 2888 2889 return Induction; 2890 } 2891 2892 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2893 if (TripCount) 2894 return TripCount; 2895 2896 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2897 // Find the loop boundaries. 2898 ScalarEvolution *SE = PSE.getSE(); 2899 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2900 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2901 "Invalid loop count"); 2902 2903 Type *IdxTy = Legal->getWidestInductionType(); 2904 2905 // The exit count might have the type of i64 while the phi is i32. This can 2906 // happen if we have an induction variable that is sign extended before the 2907 // compare. The only way that we get a backedge taken count is that the 2908 // induction variable was signed and as such will not overflow. In such a case 2909 // truncation is legal. 2910 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2911 IdxTy->getPrimitiveSizeInBits()) 2912 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2913 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2914 2915 // Get the total trip count from the count by adding 1. 2916 const SCEV *ExitCount = SE->getAddExpr( 2917 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2918 2919 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2920 2921 // Expand the trip count and place the new instructions in the preheader. 2922 // Notice that the pre-header does not change, only the loop body. 2923 SCEVExpander Exp(*SE, DL, "induction"); 2924 2925 // Count holds the overall loop count (N). 2926 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2927 L->getLoopPreheader()->getTerminator()); 2928 2929 if (TripCount->getType()->isPointerTy()) 2930 TripCount = 2931 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2932 L->getLoopPreheader()->getTerminator()); 2933 2934 return TripCount; 2935 } 2936 2937 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2938 if (VectorTripCount) 2939 return VectorTripCount; 2940 2941 Value *TC = getOrCreateTripCount(L); 2942 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2943 2944 // Now we need to generate the expression for the part of the loop that the 2945 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2946 // iterations are not required for correctness, or N - Step, otherwise. Step 2947 // is equal to the vectorization factor (number of SIMD elements) times the 2948 // unroll factor (number of SIMD instructions). 2949 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2950 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2951 2952 // If there is a non-reversed interleaved group that may speculatively access 2953 // memory out-of-bounds, we need to ensure that there will be at least one 2954 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2955 // the trip count, we set the remainder to be equal to the step. If the step 2956 // does not evenly divide the trip count, no adjustment is necessary since 2957 // there will already be scalar iterations. Note that the minimum iterations 2958 // check ensures that N >= Step. 2959 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2960 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2961 R = Builder.CreateSelect(IsZero, Step, R); 2962 } 2963 2964 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2965 2966 return VectorTripCount; 2967 } 2968 2969 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2970 BasicBlock *Bypass) { 2971 Value *Count = getOrCreateTripCount(L); 2972 BasicBlock *BB = L->getLoopPreheader(); 2973 IRBuilder<> Builder(BB->getTerminator()); 2974 2975 // Generate code to check that the loop's trip count that we computed by 2976 // adding one to the backedge-taken count will not overflow. 2977 Value *CheckMinIters = Builder.CreateICmpULT( 2978 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2979 2980 BasicBlock *NewBB = 2981 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2982 // Update dominator tree immediately if the generated block is a 2983 // LoopBypassBlock because SCEV expansions to generate loop bypass 2984 // checks may query it before the current function is finished. 2985 DT->addNewBlock(NewBB, BB); 2986 if (L->getParentLoop()) 2987 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2988 ReplaceInstWithInst(BB->getTerminator(), 2989 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2990 LoopBypassBlocks.push_back(BB); 2991 } 2992 2993 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2994 BasicBlock *Bypass) { 2995 Value *TC = getOrCreateVectorTripCount(L); 2996 BasicBlock *BB = L->getLoopPreheader(); 2997 IRBuilder<> Builder(BB->getTerminator()); 2998 2999 // Now, compare the new count to zero. If it is zero skip the vector loop and 3000 // jump to the scalar loop. 3001 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3002 "cmp.zero"); 3003 3004 // Generate code to check that the loop's trip count that we computed by 3005 // adding one to the backedge-taken count will not overflow. 3006 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3007 // Update dominator tree immediately if the generated block is a 3008 // LoopBypassBlock because SCEV expansions to generate loop bypass 3009 // checks may query it before the current function is finished. 3010 DT->addNewBlock(NewBB, BB); 3011 if (L->getParentLoop()) 3012 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3013 ReplaceInstWithInst(BB->getTerminator(), 3014 BranchInst::Create(Bypass, NewBB, Cmp)); 3015 LoopBypassBlocks.push_back(BB); 3016 } 3017 3018 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3019 BasicBlock *BB = L->getLoopPreheader(); 3020 3021 // Generate the code to check that the SCEV assumptions that we made. 3022 // We want the new basic block to start at the first instruction in a 3023 // sequence of instructions that form a check. 3024 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3025 "scev.check"); 3026 Value *SCEVCheck = 3027 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3028 3029 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3030 if (C->isZero()) 3031 return; 3032 3033 // Create a new block containing the stride check. 3034 BB->setName("vector.scevcheck"); 3035 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3036 // Update dominator tree immediately if the generated block is a 3037 // LoopBypassBlock because SCEV expansions to generate loop bypass 3038 // checks may query it before the current function is finished. 3039 DT->addNewBlock(NewBB, BB); 3040 if (L->getParentLoop()) 3041 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3042 ReplaceInstWithInst(BB->getTerminator(), 3043 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3044 LoopBypassBlocks.push_back(BB); 3045 AddedSafetyChecks = true; 3046 } 3047 3048 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3049 BasicBlock *BB = L->getLoopPreheader(); 3050 3051 // Generate the code that checks in runtime if arrays overlap. We put the 3052 // checks into a separate block to make the more common case of few elements 3053 // faster. 3054 Instruction *FirstCheckInst; 3055 Instruction *MemRuntimeCheck; 3056 std::tie(FirstCheckInst, MemRuntimeCheck) = 3057 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3058 if (!MemRuntimeCheck) 3059 return; 3060 3061 // Create a new block containing the memory check. 3062 BB->setName("vector.memcheck"); 3063 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3064 // Update dominator tree immediately if the generated block is a 3065 // LoopBypassBlock because SCEV expansions to generate loop bypass 3066 // checks may query it before the current function is finished. 3067 DT->addNewBlock(NewBB, BB); 3068 if (L->getParentLoop()) 3069 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3070 ReplaceInstWithInst(BB->getTerminator(), 3071 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3072 LoopBypassBlocks.push_back(BB); 3073 AddedSafetyChecks = true; 3074 3075 // We currently don't use LoopVersioning for the actual loop cloning but we 3076 // still use it to add the noalias metadata. 3077 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3078 PSE.getSE()); 3079 LVer->prepareNoAliasMetadata(); 3080 } 3081 3082 void InnerLoopVectorizer::createEmptyLoop() { 3083 /* 3084 In this function we generate a new loop. The new loop will contain 3085 the vectorized instructions while the old loop will continue to run the 3086 scalar remainder. 3087 3088 [ ] <-- loop iteration number check. 3089 / | 3090 / v 3091 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3092 | / | 3093 | / v 3094 || [ ] <-- vector pre header. 3095 |/ | 3096 | v 3097 | [ ] \ 3098 | [ ]_| <-- vector loop. 3099 | | 3100 | v 3101 | -[ ] <--- middle-block. 3102 | / | 3103 | / v 3104 -|- >[ ] <--- new preheader. 3105 | | 3106 | v 3107 | [ ] \ 3108 | [ ]_| <-- old scalar loop to handle remainder. 3109 \ | 3110 \ v 3111 >[ ] <-- exit block. 3112 ... 3113 */ 3114 3115 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3116 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3117 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3118 assert(VectorPH && "Invalid loop structure"); 3119 assert(ExitBlock && "Must have an exit block"); 3120 3121 // Some loops have a single integer induction variable, while other loops 3122 // don't. One example is c++ iterators that often have multiple pointer 3123 // induction variables. In the code below we also support a case where we 3124 // don't have a single induction variable. 3125 // 3126 // We try to obtain an induction variable from the original loop as hard 3127 // as possible. However if we don't find one that: 3128 // - is an integer 3129 // - counts from zero, stepping by one 3130 // - is the size of the widest induction variable type 3131 // then we create a new one. 3132 OldInduction = Legal->getInduction(); 3133 Type *IdxTy = Legal->getWidestInductionType(); 3134 3135 // Split the single block loop into the two loop structure described above. 3136 BasicBlock *VecBody = 3137 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3138 BasicBlock *MiddleBlock = 3139 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3140 BasicBlock *ScalarPH = 3141 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3142 3143 // Create and register the new vector loop. 3144 Loop *Lp = new Loop(); 3145 Loop *ParentLoop = OrigLoop->getParentLoop(); 3146 3147 // Insert the new loop into the loop nest and register the new basic blocks 3148 // before calling any utilities such as SCEV that require valid LoopInfo. 3149 if (ParentLoop) { 3150 ParentLoop->addChildLoop(Lp); 3151 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3152 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3153 } else { 3154 LI->addTopLevelLoop(Lp); 3155 } 3156 Lp->addBasicBlockToLoop(VecBody, *LI); 3157 3158 // Find the loop boundaries. 3159 Value *Count = getOrCreateTripCount(Lp); 3160 3161 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3162 3163 // We need to test whether the backedge-taken count is uint##_max. Adding one 3164 // to it will cause overflow and an incorrect loop trip count in the vector 3165 // body. In case of overflow we want to directly jump to the scalar remainder 3166 // loop. 3167 emitMinimumIterationCountCheck(Lp, ScalarPH); 3168 // Now, compare the new count to zero. If it is zero skip the vector loop and 3169 // jump to the scalar loop. 3170 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3171 // Generate the code to check any assumptions that we've made for SCEV 3172 // expressions. 3173 emitSCEVChecks(Lp, ScalarPH); 3174 3175 // Generate the code that checks in runtime if arrays overlap. We put the 3176 // checks into a separate block to make the more common case of few elements 3177 // faster. 3178 emitMemRuntimeChecks(Lp, ScalarPH); 3179 3180 // Generate the induction variable. 3181 // The loop step is equal to the vectorization factor (num of SIMD elements) 3182 // times the unroll factor (num of SIMD instructions). 3183 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3184 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3185 Induction = 3186 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3187 getDebugLocFromInstOrOperands(OldInduction)); 3188 3189 // We are going to resume the execution of the scalar loop. 3190 // Go over all of the induction variables that we found and fix the 3191 // PHIs that are left in the scalar version of the loop. 3192 // The starting values of PHI nodes depend on the counter of the last 3193 // iteration in the vectorized loop. 3194 // If we come from a bypass edge then we need to start from the original 3195 // start value. 3196 3197 // This variable saves the new starting index for the scalar loop. It is used 3198 // to test if there are any tail iterations left once the vector loop has 3199 // completed. 3200 LoopVectorizationLegality::InductionList::iterator I, E; 3201 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3202 for (I = List->begin(), E = List->end(); I != E; ++I) { 3203 PHINode *OrigPhi = I->first; 3204 InductionDescriptor II = I->second; 3205 3206 // Create phi nodes to merge from the backedge-taken check block. 3207 PHINode *BCResumeVal = PHINode::Create( 3208 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3209 Value *EndValue; 3210 if (OrigPhi == OldInduction) { 3211 // We know what the end value is. 3212 EndValue = CountRoundDown; 3213 } else { 3214 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3215 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3216 II.getStep()->getType(), "cast.crd"); 3217 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3218 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3219 EndValue->setName("ind.end"); 3220 } 3221 3222 // The new PHI merges the original incoming value, in case of a bypass, 3223 // or the value at the end of the vectorized loop. 3224 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3225 3226 // Fix up external users of the induction variable. 3227 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3228 3229 // Fix the scalar body counter (PHI node). 3230 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3231 3232 // The old induction's phi node in the scalar body needs the truncated 3233 // value. 3234 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3235 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3236 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3237 } 3238 3239 // Add a check in the middle block to see if we have completed 3240 // all of the iterations in the first vector loop. 3241 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3242 Value *CmpN = 3243 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3244 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3245 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3246 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3247 3248 // Get ready to start creating new instructions into the vectorized body. 3249 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3250 3251 // Save the state. 3252 LoopVectorPreHeader = Lp->getLoopPreheader(); 3253 LoopScalarPreHeader = ScalarPH; 3254 LoopMiddleBlock = MiddleBlock; 3255 LoopExitBlock = ExitBlock; 3256 LoopVectorBody = VecBody; 3257 LoopScalarBody = OldBasicBlock; 3258 3259 // Keep all loop hints from the original loop on the vector loop (we'll 3260 // replace the vectorizer-specific hints below). 3261 if (MDNode *LID = OrigLoop->getLoopID()) 3262 Lp->setLoopID(LID); 3263 3264 LoopVectorizeHints Hints(Lp, true); 3265 Hints.setAlreadyVectorized(); 3266 } 3267 3268 // Fix up external users of the induction variable. At this point, we are 3269 // in LCSSA form, with all external PHIs that use the IV having one input value, 3270 // coming from the remainder loop. We need those PHIs to also have a correct 3271 // value for the IV when arriving directly from the middle block. 3272 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3273 const InductionDescriptor &II, 3274 Value *CountRoundDown, Value *EndValue, 3275 BasicBlock *MiddleBlock) { 3276 // There are two kinds of external IV usages - those that use the value 3277 // computed in the last iteration (the PHI) and those that use the penultimate 3278 // value (the value that feeds into the phi from the loop latch). 3279 // We allow both, but they, obviously, have different values. 3280 3281 // We only expect at most one of each kind of user. This is because LCSSA will 3282 // canonicalize the users to a single PHI node per exit block, and we 3283 // currently only vectorize loops with a single exit. 3284 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3285 3286 // An external user of the last iteration's value should see the value that 3287 // the remainder loop uses to initialize its own IV. 3288 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3289 for (User *U : PostInc->users()) { 3290 Instruction *UI = cast<Instruction>(U); 3291 if (!OrigLoop->contains(UI)) { 3292 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3293 cast<PHINode>(UI)->addIncoming(EndValue, MiddleBlock); 3294 break; 3295 } 3296 } 3297 3298 // An external user of the penultimate value need to see EndValue - Step. 3299 // The simplest way to get this is to recompute it from the constituent SCEVs, 3300 // that is Start + (Step * (CRD - 1)). 3301 for (User *U : OrigPhi->users()) { 3302 Instruction *UI = cast<Instruction>(U); 3303 if (!OrigLoop->contains(UI)) { 3304 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3305 const DataLayout &DL = 3306 OrigLoop->getHeader()->getModule()->getDataLayout(); 3307 3308 IRBuilder<> B(MiddleBlock->getTerminator()); 3309 Value *CountMinusOne = B.CreateSub( 3310 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3311 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3312 "cast.cmo"); 3313 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3314 Escape->setName("ind.escape"); 3315 cast<PHINode>(UI)->addIncoming(Escape, MiddleBlock); 3316 break; 3317 } 3318 } 3319 } 3320 3321 namespace { 3322 struct CSEDenseMapInfo { 3323 static bool canHandle(Instruction *I) { 3324 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3325 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3326 } 3327 static inline Instruction *getEmptyKey() { 3328 return DenseMapInfo<Instruction *>::getEmptyKey(); 3329 } 3330 static inline Instruction *getTombstoneKey() { 3331 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3332 } 3333 static unsigned getHashValue(Instruction *I) { 3334 assert(canHandle(I) && "Unknown instruction!"); 3335 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3336 I->value_op_end())); 3337 } 3338 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3339 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3340 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3341 return LHS == RHS; 3342 return LHS->isIdenticalTo(RHS); 3343 } 3344 }; 3345 } 3346 3347 ///\brief Perform cse of induction variable instructions. 3348 static void cse(BasicBlock *BB) { 3349 // Perform simple cse. 3350 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3351 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3352 Instruction *In = &*I++; 3353 3354 if (!CSEDenseMapInfo::canHandle(In)) 3355 continue; 3356 3357 // Check if we can replace this instruction with any of the 3358 // visited instructions. 3359 if (Instruction *V = CSEMap.lookup(In)) { 3360 In->replaceAllUsesWith(V); 3361 In->eraseFromParent(); 3362 continue; 3363 } 3364 3365 CSEMap[In] = In; 3366 } 3367 } 3368 3369 /// \brief Adds a 'fast' flag to floating point operations. 3370 static Value *addFastMathFlag(Value *V) { 3371 if (isa<FPMathOperator>(V)) { 3372 FastMathFlags Flags; 3373 Flags.setUnsafeAlgebra(); 3374 cast<Instruction>(V)->setFastMathFlags(Flags); 3375 } 3376 return V; 3377 } 3378 3379 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3380 /// the result needs to be inserted and/or extracted from vectors. 3381 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3382 const TargetTransformInfo &TTI) { 3383 if (Ty->isVoidTy()) 3384 return 0; 3385 3386 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3387 unsigned Cost = 0; 3388 3389 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3390 if (Insert) 3391 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3392 if (Extract) 3393 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3394 } 3395 3396 return Cost; 3397 } 3398 3399 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3400 // Return the cost of the instruction, including scalarization overhead if it's 3401 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3402 // i.e. either vector version isn't available, or is too expensive. 3403 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3404 const TargetTransformInfo &TTI, 3405 const TargetLibraryInfo *TLI, 3406 bool &NeedToScalarize) { 3407 Function *F = CI->getCalledFunction(); 3408 StringRef FnName = CI->getCalledFunction()->getName(); 3409 Type *ScalarRetTy = CI->getType(); 3410 SmallVector<Type *, 4> Tys, ScalarTys; 3411 for (auto &ArgOp : CI->arg_operands()) 3412 ScalarTys.push_back(ArgOp->getType()); 3413 3414 // Estimate cost of scalarized vector call. The source operands are assumed 3415 // to be vectors, so we need to extract individual elements from there, 3416 // execute VF scalar calls, and then gather the result into the vector return 3417 // value. 3418 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3419 if (VF == 1) 3420 return ScalarCallCost; 3421 3422 // Compute corresponding vector type for return value and arguments. 3423 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3424 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3425 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3426 3427 // Compute costs of unpacking argument values for the scalar calls and 3428 // packing the return values to a vector. 3429 unsigned ScalarizationCost = 3430 getScalarizationOverhead(RetTy, true, false, TTI); 3431 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3432 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3433 3434 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3435 3436 // If we can't emit a vector call for this function, then the currently found 3437 // cost is the cost we need to return. 3438 NeedToScalarize = true; 3439 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3440 return Cost; 3441 3442 // If the corresponding vector cost is cheaper, return its cost. 3443 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3444 if (VectorCallCost < Cost) { 3445 NeedToScalarize = false; 3446 return VectorCallCost; 3447 } 3448 return Cost; 3449 } 3450 3451 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3452 // factor VF. Return the cost of the instruction, including scalarization 3453 // overhead if it's needed. 3454 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3455 const TargetTransformInfo &TTI, 3456 const TargetLibraryInfo *TLI) { 3457 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3458 assert(ID && "Expected intrinsic call!"); 3459 3460 Type *RetTy = ToVectorTy(CI->getType(), VF); 3461 SmallVector<Type *, 4> Tys; 3462 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3463 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3464 3465 FastMathFlags FMF; 3466 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3467 FMF = FPMO->getFastMathFlags(); 3468 3469 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3470 } 3471 3472 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3473 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3474 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3475 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3476 } 3477 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3478 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3479 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3480 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3481 } 3482 3483 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3484 // For every instruction `I` in MinBWs, truncate the operands, create a 3485 // truncated version of `I` and reextend its result. InstCombine runs 3486 // later and will remove any ext/trunc pairs. 3487 // 3488 SmallPtrSet<Value *, 4> Erased; 3489 for (auto &KV : MinBWs) { 3490 VectorParts &Parts = WidenMap.get(KV.first); 3491 for (Value *&I : Parts) { 3492 if (Erased.count(I) || I->use_empty()) 3493 continue; 3494 Type *OriginalTy = I->getType(); 3495 Type *ScalarTruncatedTy = 3496 IntegerType::get(OriginalTy->getContext(), KV.second); 3497 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3498 OriginalTy->getVectorNumElements()); 3499 if (TruncatedTy == OriginalTy) 3500 continue; 3501 3502 if (!isa<Instruction>(I)) 3503 continue; 3504 3505 IRBuilder<> B(cast<Instruction>(I)); 3506 auto ShrinkOperand = [&](Value *V) -> Value * { 3507 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3508 if (ZI->getSrcTy() == TruncatedTy) 3509 return ZI->getOperand(0); 3510 return B.CreateZExtOrTrunc(V, TruncatedTy); 3511 }; 3512 3513 // The actual instruction modification depends on the instruction type, 3514 // unfortunately. 3515 Value *NewI = nullptr; 3516 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3517 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3518 ShrinkOperand(BO->getOperand(1))); 3519 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3520 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3521 NewI = 3522 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3523 ShrinkOperand(CI->getOperand(1))); 3524 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3525 NewI = B.CreateSelect(SI->getCondition(), 3526 ShrinkOperand(SI->getTrueValue()), 3527 ShrinkOperand(SI->getFalseValue())); 3528 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3529 switch (CI->getOpcode()) { 3530 default: 3531 llvm_unreachable("Unhandled cast!"); 3532 case Instruction::Trunc: 3533 NewI = ShrinkOperand(CI->getOperand(0)); 3534 break; 3535 case Instruction::SExt: 3536 NewI = B.CreateSExtOrTrunc( 3537 CI->getOperand(0), 3538 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3539 break; 3540 case Instruction::ZExt: 3541 NewI = B.CreateZExtOrTrunc( 3542 CI->getOperand(0), 3543 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3544 break; 3545 } 3546 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3547 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3548 auto *O0 = B.CreateZExtOrTrunc( 3549 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3550 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3551 auto *O1 = B.CreateZExtOrTrunc( 3552 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3553 3554 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3555 } else if (isa<LoadInst>(I)) { 3556 // Don't do anything with the operands, just extend the result. 3557 continue; 3558 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3559 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3560 auto *O0 = B.CreateZExtOrTrunc( 3561 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3562 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3563 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3564 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3565 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3566 auto *O0 = B.CreateZExtOrTrunc( 3567 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3568 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3569 } else { 3570 llvm_unreachable("Unhandled instruction type!"); 3571 } 3572 3573 // Lastly, extend the result. 3574 NewI->takeName(cast<Instruction>(I)); 3575 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3576 I->replaceAllUsesWith(Res); 3577 cast<Instruction>(I)->eraseFromParent(); 3578 Erased.insert(I); 3579 I = Res; 3580 } 3581 } 3582 3583 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3584 for (auto &KV : MinBWs) { 3585 VectorParts &Parts = WidenMap.get(KV.first); 3586 for (Value *&I : Parts) { 3587 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3588 if (Inst && Inst->use_empty()) { 3589 Value *NewI = Inst->getOperand(0); 3590 Inst->eraseFromParent(); 3591 I = NewI; 3592 } 3593 } 3594 } 3595 } 3596 3597 void InnerLoopVectorizer::vectorizeLoop() { 3598 //===------------------------------------------------===// 3599 // 3600 // Notice: any optimization or new instruction that go 3601 // into the code below should be also be implemented in 3602 // the cost-model. 3603 // 3604 //===------------------------------------------------===// 3605 Constant *Zero = Builder.getInt32(0); 3606 3607 // In order to support recurrences we need to be able to vectorize Phi nodes. 3608 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3609 // we create a new vector PHI node with no incoming edges. We use this value 3610 // when we vectorize all of the instructions that use the PHI. Next, after 3611 // all of the instructions in the block are complete we add the new incoming 3612 // edges to the PHI. At this point all of the instructions in the basic block 3613 // are vectorized, so we can use them to construct the PHI. 3614 PhiVector PHIsToFix; 3615 3616 // Scan the loop in a topological order to ensure that defs are vectorized 3617 // before users. 3618 LoopBlocksDFS DFS(OrigLoop); 3619 DFS.perform(LI); 3620 3621 // Vectorize all of the blocks in the original loop. 3622 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3623 bb != be; ++bb) 3624 vectorizeBlockInLoop(*bb, &PHIsToFix); 3625 3626 // Insert truncates and extends for any truncated instructions as hints to 3627 // InstCombine. 3628 if (VF > 1) 3629 truncateToMinimalBitwidths(); 3630 3631 // At this point every instruction in the original loop is widened to a 3632 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3633 // nodes are currently empty because we did not want to introduce cycles. 3634 // This is the second stage of vectorizing recurrences. 3635 for (PHINode *Phi : PHIsToFix) { 3636 assert(Phi && "Unable to recover vectorized PHI"); 3637 3638 // Handle first-order recurrences that need to be fixed. 3639 if (Legal->isFirstOrderRecurrence(Phi)) { 3640 fixFirstOrderRecurrence(Phi); 3641 continue; 3642 } 3643 3644 // If the phi node is not a first-order recurrence, it must be a reduction. 3645 // Get it's reduction variable descriptor. 3646 assert(Legal->isReductionVariable(Phi) && 3647 "Unable to find the reduction variable"); 3648 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3649 3650 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3651 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3652 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3653 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3654 RdxDesc.getMinMaxRecurrenceKind(); 3655 setDebugLocFromInst(Builder, ReductionStartValue); 3656 3657 // We need to generate a reduction vector from the incoming scalar. 3658 // To do so, we need to generate the 'identity' vector and override 3659 // one of the elements with the incoming scalar reduction. We need 3660 // to do it in the vector-loop preheader. 3661 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3662 3663 // This is the vector-clone of the value that leaves the loop. 3664 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3665 Type *VecTy = VectorExit[0]->getType(); 3666 3667 // Find the reduction identity variable. Zero for addition, or, xor, 3668 // one for multiplication, -1 for And. 3669 Value *Identity; 3670 Value *VectorStart; 3671 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3672 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3673 // MinMax reduction have the start value as their identify. 3674 if (VF == 1) { 3675 VectorStart = Identity = ReductionStartValue; 3676 } else { 3677 VectorStart = Identity = 3678 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3679 } 3680 } else { 3681 // Handle other reduction kinds: 3682 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3683 RK, VecTy->getScalarType()); 3684 if (VF == 1) { 3685 Identity = Iden; 3686 // This vector is the Identity vector where the first element is the 3687 // incoming scalar reduction. 3688 VectorStart = ReductionStartValue; 3689 } else { 3690 Identity = ConstantVector::getSplat(VF, Iden); 3691 3692 // This vector is the Identity vector where the first element is the 3693 // incoming scalar reduction. 3694 VectorStart = 3695 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3696 } 3697 } 3698 3699 // Fix the vector-loop phi. 3700 3701 // Reductions do not have to start at zero. They can start with 3702 // any loop invariant values. 3703 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3704 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3705 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3706 VectorParts &Val = getVectorValue(LoopVal); 3707 for (unsigned part = 0; part < UF; ++part) { 3708 // Make sure to add the reduction stat value only to the 3709 // first unroll part. 3710 Value *StartVal = (part == 0) ? VectorStart : Identity; 3711 cast<PHINode>(VecRdxPhi[part]) 3712 ->addIncoming(StartVal, LoopVectorPreHeader); 3713 cast<PHINode>(VecRdxPhi[part]) 3714 ->addIncoming(Val[part], LoopVectorBody); 3715 } 3716 3717 // Before each round, move the insertion point right between 3718 // the PHIs and the values we are going to write. 3719 // This allows us to write both PHINodes and the extractelement 3720 // instructions. 3721 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3722 3723 VectorParts RdxParts = getVectorValue(LoopExitInst); 3724 setDebugLocFromInst(Builder, LoopExitInst); 3725 3726 // If the vector reduction can be performed in a smaller type, we truncate 3727 // then extend the loop exit value to enable InstCombine to evaluate the 3728 // entire expression in the smaller type. 3729 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3730 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3731 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3732 for (unsigned part = 0; part < UF; ++part) { 3733 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3734 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3735 : Builder.CreateZExt(Trunc, VecTy); 3736 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3737 UI != RdxParts[part]->user_end();) 3738 if (*UI != Trunc) { 3739 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3740 RdxParts[part] = Extnd; 3741 } else { 3742 ++UI; 3743 } 3744 } 3745 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3746 for (unsigned part = 0; part < UF; ++part) 3747 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3748 } 3749 3750 // Reduce all of the unrolled parts into a single vector. 3751 Value *ReducedPartRdx = RdxParts[0]; 3752 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3753 setDebugLocFromInst(Builder, ReducedPartRdx); 3754 for (unsigned part = 1; part < UF; ++part) { 3755 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3756 // Floating point operations had to be 'fast' to enable the reduction. 3757 ReducedPartRdx = addFastMathFlag( 3758 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3759 ReducedPartRdx, "bin.rdx")); 3760 else 3761 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3762 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3763 } 3764 3765 if (VF > 1) { 3766 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3767 // and vector ops, reducing the set of values being computed by half each 3768 // round. 3769 assert(isPowerOf2_32(VF) && 3770 "Reduction emission only supported for pow2 vectors!"); 3771 Value *TmpVec = ReducedPartRdx; 3772 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3773 for (unsigned i = VF; i != 1; i >>= 1) { 3774 // Move the upper half of the vector to the lower half. 3775 for (unsigned j = 0; j != i / 2; ++j) 3776 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3777 3778 // Fill the rest of the mask with undef. 3779 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3780 UndefValue::get(Builder.getInt32Ty())); 3781 3782 Value *Shuf = Builder.CreateShuffleVector( 3783 TmpVec, UndefValue::get(TmpVec->getType()), 3784 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3785 3786 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3787 // Floating point operations had to be 'fast' to enable the reduction. 3788 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3789 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3790 else 3791 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3792 TmpVec, Shuf); 3793 } 3794 3795 // The result is in the first element of the vector. 3796 ReducedPartRdx = 3797 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3798 3799 // If the reduction can be performed in a smaller type, we need to extend 3800 // the reduction to the wider type before we branch to the original loop. 3801 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3802 ReducedPartRdx = 3803 RdxDesc.isSigned() 3804 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3805 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3806 } 3807 3808 // Create a phi node that merges control-flow from the backedge-taken check 3809 // block and the middle block. 3810 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3811 LoopScalarPreHeader->getTerminator()); 3812 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3813 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3814 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3815 3816 // Now, we need to fix the users of the reduction variable 3817 // inside and outside of the scalar remainder loop. 3818 // We know that the loop is in LCSSA form. We need to update the 3819 // PHI nodes in the exit blocks. 3820 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3821 LEE = LoopExitBlock->end(); 3822 LEI != LEE; ++LEI) { 3823 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3824 if (!LCSSAPhi) 3825 break; 3826 3827 // All PHINodes need to have a single entry edge, or two if 3828 // we already fixed them. 3829 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3830 3831 // We found our reduction value exit-PHI. Update it with the 3832 // incoming bypass edge. 3833 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3834 // Add an edge coming from the bypass. 3835 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3836 break; 3837 } 3838 } // end of the LCSSA phi scan. 3839 3840 // Fix the scalar loop reduction variable with the incoming reduction sum 3841 // from the vector body and from the backedge value. 3842 int IncomingEdgeBlockIdx = 3843 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3844 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3845 // Pick the other block. 3846 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3847 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3848 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3849 } // end of for each Phi in PHIsToFix. 3850 3851 fixLCSSAPHIs(); 3852 3853 // Make sure DomTree is updated. 3854 updateAnalysis(); 3855 3856 // Predicate any stores. 3857 for (auto KV : PredicatedStores) { 3858 BasicBlock::iterator I(KV.first); 3859 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3860 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3861 /*BranchWeights=*/nullptr, DT, LI); 3862 I->moveBefore(T); 3863 I->getParent()->setName("pred.store.if"); 3864 BB->setName("pred.store.continue"); 3865 } 3866 DEBUG(DT->verifyDomTree()); 3867 // Remove redundant induction instructions. 3868 cse(LoopVectorBody); 3869 } 3870 3871 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3872 3873 // This is the second phase of vectorizing first-order recurrences. An 3874 // overview of the transformation is described below. Suppose we have the 3875 // following loop. 3876 // 3877 // for (int i = 0; i < n; ++i) 3878 // b[i] = a[i] - a[i - 1]; 3879 // 3880 // There is a first-order recurrence on "a". For this loop, the shorthand 3881 // scalar IR looks like: 3882 // 3883 // scalar.ph: 3884 // s_init = a[-1] 3885 // br scalar.body 3886 // 3887 // scalar.body: 3888 // i = phi [0, scalar.ph], [i+1, scalar.body] 3889 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3890 // s2 = a[i] 3891 // b[i] = s2 - s1 3892 // br cond, scalar.body, ... 3893 // 3894 // In this example, s1 is a recurrence because it's value depends on the 3895 // previous iteration. In the first phase of vectorization, we created a 3896 // temporary value for s1. We now complete the vectorization and produce the 3897 // shorthand vector IR shown below (for VF = 4, UF = 1). 3898 // 3899 // vector.ph: 3900 // v_init = vector(..., ..., ..., a[-1]) 3901 // br vector.body 3902 // 3903 // vector.body 3904 // i = phi [0, vector.ph], [i+4, vector.body] 3905 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3906 // v2 = a[i, i+1, i+2, i+3]; 3907 // v3 = vector(v1(3), v2(0, 1, 2)) 3908 // b[i, i+1, i+2, i+3] = v2 - v3 3909 // br cond, vector.body, middle.block 3910 // 3911 // middle.block: 3912 // x = v2(3) 3913 // br scalar.ph 3914 // 3915 // scalar.ph: 3916 // s_init = phi [x, middle.block], [a[-1], otherwise] 3917 // br scalar.body 3918 // 3919 // After execution completes the vector loop, we extract the next value of 3920 // the recurrence (x) to use as the initial value in the scalar loop. 3921 3922 // Get the original loop preheader and single loop latch. 3923 auto *Preheader = OrigLoop->getLoopPreheader(); 3924 auto *Latch = OrigLoop->getLoopLatch(); 3925 3926 // Get the initial and previous values of the scalar recurrence. 3927 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3928 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3929 3930 // Create a vector from the initial value. 3931 auto *VectorInit = ScalarInit; 3932 if (VF > 1) { 3933 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3934 VectorInit = Builder.CreateInsertElement( 3935 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3936 Builder.getInt32(VF - 1), "vector.recur.init"); 3937 } 3938 3939 // We constructed a temporary phi node in the first phase of vectorization. 3940 // This phi node will eventually be deleted. 3941 auto &PhiParts = getVectorValue(Phi); 3942 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3943 3944 // Create a phi node for the new recurrence. The current value will either be 3945 // the initial value inserted into a vector or loop-varying vector value. 3946 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3947 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3948 3949 // Get the vectorized previous value. We ensured the previous values was an 3950 // instruction when detecting the recurrence. 3951 auto &PreviousParts = getVectorValue(Previous); 3952 3953 // Set the insertion point to be after this instruction. We ensured the 3954 // previous value dominated all uses of the phi when detecting the 3955 // recurrence. 3956 Builder.SetInsertPoint( 3957 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3958 3959 // We will construct a vector for the recurrence by combining the values for 3960 // the current and previous iterations. This is the required shuffle mask. 3961 SmallVector<Constant *, 8> ShuffleMask(VF); 3962 ShuffleMask[0] = Builder.getInt32(VF - 1); 3963 for (unsigned I = 1; I < VF; ++I) 3964 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3965 3966 // The vector from which to take the initial value for the current iteration 3967 // (actual or unrolled). Initially, this is the vector phi node. 3968 Value *Incoming = VecPhi; 3969 3970 // Shuffle the current and previous vector and update the vector parts. 3971 for (unsigned Part = 0; Part < UF; ++Part) { 3972 auto *Shuffle = 3973 VF > 1 3974 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3975 ConstantVector::get(ShuffleMask)) 3976 : Incoming; 3977 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3978 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3979 PhiParts[Part] = Shuffle; 3980 Incoming = PreviousParts[Part]; 3981 } 3982 3983 // Fix the latch value of the new recurrence in the vector loop. 3984 VecPhi->addIncoming(Incoming, 3985 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3986 3987 // Extract the last vector element in the middle block. This will be the 3988 // initial value for the recurrence when jumping to the scalar loop. 3989 auto *Extract = Incoming; 3990 if (VF > 1) { 3991 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3992 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3993 "vector.recur.extract"); 3994 } 3995 3996 // Fix the initial value of the original recurrence in the scalar loop. 3997 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3998 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3999 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4000 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4001 Start->addIncoming(Incoming, BB); 4002 } 4003 4004 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4005 Phi->setName("scalar.recur"); 4006 4007 // Finally, fix users of the recurrence outside the loop. The users will need 4008 // either the last value of the scalar recurrence or the last value of the 4009 // vector recurrence we extracted in the middle block. Since the loop is in 4010 // LCSSA form, we just need to find the phi node for the original scalar 4011 // recurrence in the exit block, and then add an edge for the middle block. 4012 for (auto &I : *LoopExitBlock) { 4013 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4014 if (!LCSSAPhi) 4015 break; 4016 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4017 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4018 break; 4019 } 4020 } 4021 } 4022 4023 void InnerLoopVectorizer::fixLCSSAPHIs() { 4024 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4025 LEE = LoopExitBlock->end(); 4026 LEI != LEE; ++LEI) { 4027 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4028 if (!LCSSAPhi) 4029 break; 4030 if (LCSSAPhi->getNumIncomingValues() == 1) 4031 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4032 LoopMiddleBlock); 4033 } 4034 } 4035 4036 InnerLoopVectorizer::VectorParts 4037 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4038 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 4039 "Invalid edge"); 4040 4041 // Look for cached value. 4042 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4043 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4044 if (ECEntryIt != MaskCache.end()) 4045 return ECEntryIt->second; 4046 4047 VectorParts SrcMask = createBlockInMask(Src); 4048 4049 // The terminator has to be a branch inst! 4050 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4051 assert(BI && "Unexpected terminator found"); 4052 4053 if (BI->isConditional()) { 4054 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4055 4056 if (BI->getSuccessor(0) != Dst) 4057 for (unsigned part = 0; part < UF; ++part) 4058 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4059 4060 for (unsigned part = 0; part < UF; ++part) 4061 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4062 4063 MaskCache[Edge] = EdgeMask; 4064 return EdgeMask; 4065 } 4066 4067 MaskCache[Edge] = SrcMask; 4068 return SrcMask; 4069 } 4070 4071 InnerLoopVectorizer::VectorParts 4072 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4073 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4074 4075 // Loop incoming mask is all-one. 4076 if (OrigLoop->getHeader() == BB) { 4077 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4078 return getVectorValue(C); 4079 } 4080 4081 // This is the block mask. We OR all incoming edges, and with zero. 4082 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4083 VectorParts BlockMask = getVectorValue(Zero); 4084 4085 // For each pred: 4086 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4087 VectorParts EM = createEdgeMask(*it, BB); 4088 for (unsigned part = 0; part < UF; ++part) 4089 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4090 } 4091 4092 return BlockMask; 4093 } 4094 4095 void InnerLoopVectorizer::widenPHIInstruction( 4096 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4097 unsigned VF, PhiVector *PV) { 4098 PHINode *P = cast<PHINode>(PN); 4099 // Handle recurrences. 4100 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4101 for (unsigned part = 0; part < UF; ++part) { 4102 // This is phase one of vectorizing PHIs. 4103 Type *VecTy = 4104 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4105 Entry[part] = PHINode::Create( 4106 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4107 } 4108 PV->push_back(P); 4109 return; 4110 } 4111 4112 setDebugLocFromInst(Builder, P); 4113 // Check for PHI nodes that are lowered to vector selects. 4114 if (P->getParent() != OrigLoop->getHeader()) { 4115 // We know that all PHIs in non-header blocks are converted into 4116 // selects, so we don't have to worry about the insertion order and we 4117 // can just use the builder. 4118 // At this point we generate the predication tree. There may be 4119 // duplications since this is a simple recursive scan, but future 4120 // optimizations will clean it up. 4121 4122 unsigned NumIncoming = P->getNumIncomingValues(); 4123 4124 // Generate a sequence of selects of the form: 4125 // SELECT(Mask3, In3, 4126 // SELECT(Mask2, In2, 4127 // ( ...))) 4128 for (unsigned In = 0; In < NumIncoming; In++) { 4129 VectorParts Cond = 4130 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4131 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4132 4133 for (unsigned part = 0; part < UF; ++part) { 4134 // We might have single edge PHIs (blocks) - use an identity 4135 // 'select' for the first PHI operand. 4136 if (In == 0) 4137 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4138 else 4139 // Select between the current value and the previous incoming edge 4140 // based on the incoming mask. 4141 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4142 "predphi"); 4143 } 4144 } 4145 return; 4146 } 4147 4148 // This PHINode must be an induction variable. 4149 // Make sure that we know about it. 4150 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4151 4152 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4153 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4154 4155 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4156 // which can be found from the original scalar operations. 4157 switch (II.getKind()) { 4158 case InductionDescriptor::IK_NoInduction: 4159 llvm_unreachable("Unknown induction"); 4160 case InductionDescriptor::IK_IntInduction: { 4161 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4162 if (VF == 1 || P->getType() != Induction->getType() || 4163 !II.getConstIntStepValue()) { 4164 Value *V = Induction; 4165 // Handle other induction variables that are now based on the 4166 // canonical one. 4167 if (P != OldInduction) { 4168 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4169 V = II.transform(Builder, V, PSE.getSE(), DL); 4170 V->setName("offset.idx"); 4171 } 4172 Value *Broadcasted = getBroadcastInstrs(V); 4173 // After broadcasting the induction variable we need to make the vector 4174 // consecutive by adding 0, 1, 2, etc. 4175 for (unsigned part = 0; part < UF; ++part) 4176 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4177 } else { 4178 // Instead of re-creating the vector IV by splatting the scalar IV 4179 // in each iteration, we can make a new independent vector IV. 4180 widenInductionVariable(II, Entry); 4181 } 4182 return; 4183 } 4184 case InductionDescriptor::IK_PtrInduction: 4185 // Handle the pointer induction variable case. 4186 assert(P->getType()->isPointerTy() && "Unexpected type."); 4187 // This is the normalized GEP that starts counting at zero. 4188 Value *PtrInd = Induction; 4189 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4190 // This is the vector of results. Notice that we don't generate 4191 // vector geps because scalar geps result in better code. 4192 for (unsigned part = 0; part < UF; ++part) { 4193 if (VF == 1) { 4194 int EltIndex = part; 4195 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4196 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4197 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4198 SclrGep->setName("next.gep"); 4199 Entry[part] = SclrGep; 4200 continue; 4201 } 4202 4203 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4204 for (unsigned int i = 0; i < VF; ++i) { 4205 int EltIndex = i + part * VF; 4206 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4207 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4208 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4209 SclrGep->setName("next.gep"); 4210 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4211 Builder.getInt32(i), "insert.gep"); 4212 } 4213 Entry[part] = VecVal; 4214 } 4215 return; 4216 } 4217 } 4218 4219 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4220 // For each instruction in the old loop. 4221 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4222 VectorParts &Entry = WidenMap.get(&*it); 4223 4224 switch (it->getOpcode()) { 4225 case Instruction::Br: 4226 // Nothing to do for PHIs and BR, since we already took care of the 4227 // loop control flow instructions. 4228 continue; 4229 case Instruction::PHI: { 4230 // Vectorize PHINodes. 4231 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4232 continue; 4233 } // End of PHI. 4234 4235 case Instruction::Add: 4236 case Instruction::FAdd: 4237 case Instruction::Sub: 4238 case Instruction::FSub: 4239 case Instruction::Mul: 4240 case Instruction::FMul: 4241 case Instruction::UDiv: 4242 case Instruction::SDiv: 4243 case Instruction::FDiv: 4244 case Instruction::URem: 4245 case Instruction::SRem: 4246 case Instruction::FRem: 4247 case Instruction::Shl: 4248 case Instruction::LShr: 4249 case Instruction::AShr: 4250 case Instruction::And: 4251 case Instruction::Or: 4252 case Instruction::Xor: { 4253 // Just widen binops. 4254 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4255 setDebugLocFromInst(Builder, BinOp); 4256 VectorParts &A = getVectorValue(it->getOperand(0)); 4257 VectorParts &B = getVectorValue(it->getOperand(1)); 4258 4259 // Use this vector value for all users of the original instruction. 4260 for (unsigned Part = 0; Part < UF; ++Part) { 4261 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4262 4263 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4264 VecOp->copyIRFlags(BinOp); 4265 4266 Entry[Part] = V; 4267 } 4268 4269 addMetadata(Entry, &*it); 4270 break; 4271 } 4272 case Instruction::Select: { 4273 // Widen selects. 4274 // If the selector is loop invariant we can create a select 4275 // instruction with a scalar condition. Otherwise, use vector-select. 4276 auto *SE = PSE.getSE(); 4277 bool InvariantCond = 4278 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4279 setDebugLocFromInst(Builder, &*it); 4280 4281 // The condition can be loop invariant but still defined inside the 4282 // loop. This means that we can't just use the original 'cond' value. 4283 // We have to take the 'vectorized' value and pick the first lane. 4284 // Instcombine will make this a no-op. 4285 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4286 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4287 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4288 4289 Value *ScalarCond = 4290 (VF == 1) 4291 ? Cond[0] 4292 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4293 4294 for (unsigned Part = 0; Part < UF; ++Part) { 4295 Entry[Part] = Builder.CreateSelect( 4296 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4297 } 4298 4299 addMetadata(Entry, &*it); 4300 break; 4301 } 4302 4303 case Instruction::ICmp: 4304 case Instruction::FCmp: { 4305 // Widen compares. Generate vector compares. 4306 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4307 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4308 setDebugLocFromInst(Builder, &*it); 4309 VectorParts &A = getVectorValue(it->getOperand(0)); 4310 VectorParts &B = getVectorValue(it->getOperand(1)); 4311 for (unsigned Part = 0; Part < UF; ++Part) { 4312 Value *C = nullptr; 4313 if (FCmp) { 4314 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4315 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4316 } else { 4317 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4318 } 4319 Entry[Part] = C; 4320 } 4321 4322 addMetadata(Entry, &*it); 4323 break; 4324 } 4325 4326 case Instruction::Store: 4327 case Instruction::Load: 4328 vectorizeMemoryInstruction(&*it); 4329 break; 4330 case Instruction::ZExt: 4331 case Instruction::SExt: 4332 case Instruction::FPToUI: 4333 case Instruction::FPToSI: 4334 case Instruction::FPExt: 4335 case Instruction::PtrToInt: 4336 case Instruction::IntToPtr: 4337 case Instruction::SIToFP: 4338 case Instruction::UIToFP: 4339 case Instruction::Trunc: 4340 case Instruction::FPTrunc: 4341 case Instruction::BitCast: { 4342 CastInst *CI = dyn_cast<CastInst>(it); 4343 setDebugLocFromInst(Builder, &*it); 4344 /// Optimize the special case where the source is a constant integer 4345 /// induction variable. Notice that we can only optimize the 'trunc' case 4346 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4347 /// c. other casts depend on pointer size. 4348 4349 if (CI->getOperand(0) == OldInduction && 4350 it->getOpcode() == Instruction::Trunc) { 4351 InductionDescriptor II = 4352 Legal->getInductionVars()->lookup(OldInduction); 4353 if (auto StepValue = II.getConstIntStepValue()) { 4354 IntegerType *TruncType = cast<IntegerType>(CI->getType()); 4355 if (VF == 1) { 4356 StepValue = 4357 ConstantInt::getSigned(TruncType, StepValue->getSExtValue()); 4358 Value *ScalarCast = 4359 Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); 4360 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4361 for (unsigned Part = 0; Part < UF; ++Part) 4362 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4363 } else { 4364 // Truncating a vector induction variable on each iteration 4365 // may be expensive. Instead, truncate the initial value, and create 4366 // a new, truncated, vector IV based on that. 4367 widenInductionVariable(II, Entry, TruncType); 4368 } 4369 addMetadata(Entry, &*it); 4370 break; 4371 } 4372 } 4373 /// Vectorize casts. 4374 Type *DestTy = 4375 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4376 4377 VectorParts &A = getVectorValue(it->getOperand(0)); 4378 for (unsigned Part = 0; Part < UF; ++Part) 4379 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4380 addMetadata(Entry, &*it); 4381 break; 4382 } 4383 4384 case Instruction::Call: { 4385 // Ignore dbg intrinsics. 4386 if (isa<DbgInfoIntrinsic>(it)) 4387 break; 4388 setDebugLocFromInst(Builder, &*it); 4389 4390 Module *M = BB->getParent()->getParent(); 4391 CallInst *CI = cast<CallInst>(it); 4392 4393 StringRef FnName = CI->getCalledFunction()->getName(); 4394 Function *F = CI->getCalledFunction(); 4395 Type *RetTy = ToVectorTy(CI->getType(), VF); 4396 SmallVector<Type *, 4> Tys; 4397 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4398 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4399 4400 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4401 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4402 ID == Intrinsic::lifetime_start)) { 4403 scalarizeInstruction(&*it); 4404 break; 4405 } 4406 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4407 // version of the instruction. 4408 // Is it beneficial to perform intrinsic call compared to lib call? 4409 bool NeedToScalarize; 4410 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4411 bool UseVectorIntrinsic = 4412 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4413 if (!UseVectorIntrinsic && NeedToScalarize) { 4414 scalarizeInstruction(&*it); 4415 break; 4416 } 4417 4418 for (unsigned Part = 0; Part < UF; ++Part) { 4419 SmallVector<Value *, 4> Args; 4420 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4421 Value *Arg = CI->getArgOperand(i); 4422 // Some intrinsics have a scalar argument - don't replace it with a 4423 // vector. 4424 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4425 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4426 Arg = VectorArg[Part]; 4427 } 4428 Args.push_back(Arg); 4429 } 4430 4431 Function *VectorF; 4432 if (UseVectorIntrinsic) { 4433 // Use vector version of the intrinsic. 4434 Type *TysForDecl[] = {CI->getType()}; 4435 if (VF > 1) 4436 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4437 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4438 } else { 4439 // Use vector version of the library call. 4440 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4441 assert(!VFnName.empty() && "Vector function name is empty."); 4442 VectorF = M->getFunction(VFnName); 4443 if (!VectorF) { 4444 // Generate a declaration 4445 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4446 VectorF = 4447 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4448 VectorF->copyAttributesFrom(F); 4449 } 4450 } 4451 assert(VectorF && "Can't create vector function."); 4452 4453 SmallVector<OperandBundleDef, 1> OpBundles; 4454 CI->getOperandBundlesAsDefs(OpBundles); 4455 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4456 4457 if (isa<FPMathOperator>(V)) 4458 V->copyFastMathFlags(CI); 4459 4460 Entry[Part] = V; 4461 } 4462 4463 addMetadata(Entry, &*it); 4464 break; 4465 } 4466 4467 default: 4468 // All other instructions are unsupported. Scalarize them. 4469 scalarizeInstruction(&*it); 4470 break; 4471 } // end of switch. 4472 } // end of for_each instr. 4473 } 4474 4475 void InnerLoopVectorizer::updateAnalysis() { 4476 // Forget the original basic block. 4477 PSE.getSE()->forgetLoop(OrigLoop); 4478 4479 // Update the dominator tree information. 4480 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4481 "Entry does not dominate exit."); 4482 4483 // We don't predicate stores by this point, so the vector body should be a 4484 // single loop. 4485 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4486 4487 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4488 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4489 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4490 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4491 4492 DEBUG(DT->verifyDomTree()); 4493 } 4494 4495 /// \brief Check whether it is safe to if-convert this phi node. 4496 /// 4497 /// Phi nodes with constant expressions that can trap are not safe to if 4498 /// convert. 4499 static bool canIfConvertPHINodes(BasicBlock *BB) { 4500 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4501 PHINode *Phi = dyn_cast<PHINode>(I); 4502 if (!Phi) 4503 return true; 4504 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4505 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4506 if (C->canTrap()) 4507 return false; 4508 } 4509 return true; 4510 } 4511 4512 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4513 if (!EnableIfConversion) { 4514 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4515 return false; 4516 } 4517 4518 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4519 4520 // A list of pointers that we can safely read and write to. 4521 SmallPtrSet<Value *, 8> SafePointes; 4522 4523 // Collect safe addresses. 4524 for (Loop::block_iterator BI = TheLoop->block_begin(), 4525 BE = TheLoop->block_end(); 4526 BI != BE; ++BI) { 4527 BasicBlock *BB = *BI; 4528 4529 if (blockNeedsPredication(BB)) 4530 continue; 4531 4532 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4533 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4534 SafePointes.insert(LI->getPointerOperand()); 4535 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4536 SafePointes.insert(SI->getPointerOperand()); 4537 } 4538 } 4539 4540 // Collect the blocks that need predication. 4541 BasicBlock *Header = TheLoop->getHeader(); 4542 for (Loop::block_iterator BI = TheLoop->block_begin(), 4543 BE = TheLoop->block_end(); 4544 BI != BE; ++BI) { 4545 BasicBlock *BB = *BI; 4546 4547 // We don't support switch statements inside loops. 4548 if (!isa<BranchInst>(BB->getTerminator())) { 4549 emitAnalysis(VectorizationReport(BB->getTerminator()) 4550 << "loop contains a switch statement"); 4551 return false; 4552 } 4553 4554 // We must be able to predicate all blocks that need to be predicated. 4555 if (blockNeedsPredication(BB)) { 4556 if (!blockCanBePredicated(BB, SafePointes)) { 4557 emitAnalysis(VectorizationReport(BB->getTerminator()) 4558 << "control flow cannot be substituted for a select"); 4559 return false; 4560 } 4561 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4562 emitAnalysis(VectorizationReport(BB->getTerminator()) 4563 << "control flow cannot be substituted for a select"); 4564 return false; 4565 } 4566 } 4567 4568 // We can if-convert this loop. 4569 return true; 4570 } 4571 4572 bool LoopVectorizationLegality::canVectorize() { 4573 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4574 // be canonicalized. 4575 if (!TheLoop->getLoopPreheader()) { 4576 emitAnalysis(VectorizationReport() 4577 << "loop control flow is not understood by vectorizer"); 4578 return false; 4579 } 4580 4581 // We can only vectorize innermost loops. 4582 if (!TheLoop->empty()) { 4583 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4584 return false; 4585 } 4586 4587 // We must have a single backedge. 4588 if (TheLoop->getNumBackEdges() != 1) { 4589 emitAnalysis(VectorizationReport() 4590 << "loop control flow is not understood by vectorizer"); 4591 return false; 4592 } 4593 4594 // We must have a single exiting block. 4595 if (!TheLoop->getExitingBlock()) { 4596 emitAnalysis(VectorizationReport() 4597 << "loop control flow is not understood by vectorizer"); 4598 return false; 4599 } 4600 4601 // We only handle bottom-tested loops, i.e. loop in which the condition is 4602 // checked at the end of each iteration. With that we can assume that all 4603 // instructions in the loop are executed the same number of times. 4604 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4605 emitAnalysis(VectorizationReport() 4606 << "loop control flow is not understood by vectorizer"); 4607 return false; 4608 } 4609 4610 // We need to have a loop header. 4611 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4612 << '\n'); 4613 4614 // Check if we can if-convert non-single-bb loops. 4615 unsigned NumBlocks = TheLoop->getNumBlocks(); 4616 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4617 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4618 return false; 4619 } 4620 4621 // ScalarEvolution needs to be able to find the exit count. 4622 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4623 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4624 emitAnalysis(VectorizationReport() 4625 << "could not determine number of loop iterations"); 4626 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4627 return false; 4628 } 4629 4630 // Check if we can vectorize the instructions and CFG in this loop. 4631 if (!canVectorizeInstrs()) { 4632 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4633 return false; 4634 } 4635 4636 // Go over each instruction and look at memory deps. 4637 if (!canVectorizeMemory()) { 4638 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4639 return false; 4640 } 4641 4642 // Collect all of the variables that remain uniform after vectorization. 4643 collectLoopUniforms(); 4644 4645 DEBUG(dbgs() << "LV: We can vectorize this loop" 4646 << (LAI->getRuntimePointerChecking()->Need 4647 ? " (with a runtime bound check)" 4648 : "") 4649 << "!\n"); 4650 4651 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4652 4653 // If an override option has been passed in for interleaved accesses, use it. 4654 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4655 UseInterleaved = EnableInterleavedMemAccesses; 4656 4657 // Analyze interleaved memory accesses. 4658 if (UseInterleaved) 4659 InterleaveInfo.analyzeInterleaving(Strides); 4660 4661 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4662 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4663 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4664 4665 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4666 emitAnalysis(VectorizationReport() 4667 << "Too many SCEV assumptions need to be made and checked " 4668 << "at runtime"); 4669 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4670 return false; 4671 } 4672 4673 // Okay! We can vectorize. At this point we don't have any other mem analysis 4674 // which may limit our maximum vectorization factor, so just return true with 4675 // no restrictions. 4676 return true; 4677 } 4678 4679 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4680 if (Ty->isPointerTy()) 4681 return DL.getIntPtrType(Ty); 4682 4683 // It is possible that char's or short's overflow when we ask for the loop's 4684 // trip count, work around this by changing the type size. 4685 if (Ty->getScalarSizeInBits() < 32) 4686 return Type::getInt32Ty(Ty->getContext()); 4687 4688 return Ty; 4689 } 4690 4691 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4692 Ty0 = convertPointerToIntegerType(DL, Ty0); 4693 Ty1 = convertPointerToIntegerType(DL, Ty1); 4694 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4695 return Ty0; 4696 return Ty1; 4697 } 4698 4699 /// \brief Check that the instruction has outside loop users and is not an 4700 /// identified reduction variable. 4701 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4702 SmallPtrSetImpl<Value *> &AllowedExit) { 4703 // Reduction and Induction instructions are allowed to have exit users. All 4704 // other instructions must not have external users. 4705 if (!AllowedExit.count(Inst)) 4706 // Check that all of the users of the loop are inside the BB. 4707 for (User *U : Inst->users()) { 4708 Instruction *UI = cast<Instruction>(U); 4709 // This user may be a reduction exit value. 4710 if (!TheLoop->contains(UI)) { 4711 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4712 return true; 4713 } 4714 } 4715 return false; 4716 } 4717 4718 void LoopVectorizationLegality::addInductionPhi( 4719 PHINode *Phi, InductionDescriptor ID, 4720 SmallPtrSetImpl<Value *> &AllowedExit) { 4721 Inductions[Phi] = ID; 4722 Type *PhiTy = Phi->getType(); 4723 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4724 4725 // Get the widest type. 4726 if (!WidestIndTy) 4727 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4728 else 4729 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4730 4731 // Int inductions are special because we only allow one IV. 4732 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4733 ID.getConstIntStepValue() && 4734 ID.getConstIntStepValue()->isOne() && 4735 isa<Constant>(ID.getStartValue()) && 4736 cast<Constant>(ID.getStartValue())->isNullValue()) { 4737 4738 // Use the phi node with the widest type as induction. Use the last 4739 // one if there are multiple (no good reason for doing this other 4740 // than it is expedient). We've checked that it begins at zero and 4741 // steps by one, so this is a canonical induction variable. 4742 if (!Induction || PhiTy == WidestIndTy) 4743 Induction = Phi; 4744 } 4745 4746 // Both the PHI node itself, and the "post-increment" value feeding 4747 // back into the PHI node may have external users. 4748 AllowedExit.insert(Phi); 4749 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4750 4751 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4752 return; 4753 } 4754 4755 bool LoopVectorizationLegality::canVectorizeInstrs() { 4756 BasicBlock *Header = TheLoop->getHeader(); 4757 4758 // Look for the attribute signaling the absence of NaNs. 4759 Function &F = *Header->getParent(); 4760 HasFunNoNaNAttr = 4761 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4762 4763 // For each block in the loop. 4764 for (Loop::block_iterator bb = TheLoop->block_begin(), 4765 be = TheLoop->block_end(); 4766 bb != be; ++bb) { 4767 4768 // Scan the instructions in the block and look for hazards. 4769 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4770 ++it) { 4771 4772 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4773 Type *PhiTy = Phi->getType(); 4774 // Check that this PHI type is allowed. 4775 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4776 !PhiTy->isPointerTy()) { 4777 emitAnalysis(VectorizationReport(&*it) 4778 << "loop control flow is not understood by vectorizer"); 4779 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4780 return false; 4781 } 4782 4783 // If this PHINode is not in the header block, then we know that we 4784 // can convert it to select during if-conversion. No need to check if 4785 // the PHIs in this block are induction or reduction variables. 4786 if (*bb != Header) { 4787 // Check that this instruction has no outside users or is an 4788 // identified reduction value with an outside user. 4789 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4790 continue; 4791 emitAnalysis(VectorizationReport(&*it) 4792 << "value could not be identified as " 4793 "an induction or reduction variable"); 4794 return false; 4795 } 4796 4797 // We only allow if-converted PHIs with exactly two incoming values. 4798 if (Phi->getNumIncomingValues() != 2) { 4799 emitAnalysis(VectorizationReport(&*it) 4800 << "control flow not understood by vectorizer"); 4801 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4802 return false; 4803 } 4804 4805 RecurrenceDescriptor RedDes; 4806 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4807 if (RedDes.hasUnsafeAlgebra()) 4808 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4809 AllowedExit.insert(RedDes.getLoopExitInstr()); 4810 Reductions[Phi] = RedDes; 4811 continue; 4812 } 4813 4814 InductionDescriptor ID; 4815 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4816 addInductionPhi(Phi, ID, AllowedExit); 4817 continue; 4818 } 4819 4820 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4821 FirstOrderRecurrences.insert(Phi); 4822 continue; 4823 } 4824 4825 // As a last resort, coerce the PHI to a AddRec expression 4826 // and re-try classifying it a an induction PHI. 4827 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4828 addInductionPhi(Phi, ID, AllowedExit); 4829 continue; 4830 } 4831 4832 emitAnalysis(VectorizationReport(&*it) 4833 << "value that could not be identified as " 4834 "reduction is used outside the loop"); 4835 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4836 return false; 4837 } // end of PHI handling 4838 4839 // We handle calls that: 4840 // * Are debug info intrinsics. 4841 // * Have a mapping to an IR intrinsic. 4842 // * Have a vector version available. 4843 CallInst *CI = dyn_cast<CallInst>(it); 4844 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4845 !isa<DbgInfoIntrinsic>(CI) && 4846 !(CI->getCalledFunction() && TLI && 4847 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4848 emitAnalysis(VectorizationReport(&*it) 4849 << "call instruction cannot be vectorized"); 4850 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4851 return false; 4852 } 4853 4854 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4855 // second argument is the same (i.e. loop invariant) 4856 if (CI && hasVectorInstrinsicScalarOpd( 4857 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4858 auto *SE = PSE.getSE(); 4859 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4860 emitAnalysis(VectorizationReport(&*it) 4861 << "intrinsic instruction cannot be vectorized"); 4862 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4863 return false; 4864 } 4865 } 4866 4867 // Check that the instruction return type is vectorizable. 4868 // Also, we can't vectorize extractelement instructions. 4869 if ((!VectorType::isValidElementType(it->getType()) && 4870 !it->getType()->isVoidTy()) || 4871 isa<ExtractElementInst>(it)) { 4872 emitAnalysis(VectorizationReport(&*it) 4873 << "instruction return type cannot be vectorized"); 4874 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4875 return false; 4876 } 4877 4878 // Check that the stored type is vectorizable. 4879 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4880 Type *T = ST->getValueOperand()->getType(); 4881 if (!VectorType::isValidElementType(T)) { 4882 emitAnalysis(VectorizationReport(ST) 4883 << "store instruction cannot be vectorized"); 4884 return false; 4885 } 4886 if (EnableMemAccessVersioning) 4887 collectStridedAccess(ST); 4888 4889 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4890 if (EnableMemAccessVersioning) 4891 collectStridedAccess(LI); 4892 4893 // FP instructions can allow unsafe algebra, thus vectorizable by 4894 // non-IEEE-754 compliant SIMD units. 4895 // This applies to floating-point math operations and calls, not memory 4896 // operations, shuffles, or casts, as they don't change precision or 4897 // semantics. 4898 } else if (it->getType()->isFloatingPointTy() && 4899 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4900 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4901 Hints->setPotentiallyUnsafe(); 4902 } 4903 4904 // Reduction instructions are allowed to have exit users. 4905 // All other instructions must not have external users. 4906 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4907 emitAnalysis(VectorizationReport(&*it) 4908 << "value cannot be used outside the loop"); 4909 return false; 4910 } 4911 4912 } // next instr. 4913 } 4914 4915 if (!Induction) { 4916 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4917 if (Inductions.empty()) { 4918 emitAnalysis(VectorizationReport() 4919 << "loop induction variable could not be identified"); 4920 return false; 4921 } 4922 } 4923 4924 // Now we know the widest induction type, check if our found induction 4925 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4926 // will create another. 4927 if (Induction && WidestIndTy != Induction->getType()) 4928 Induction = nullptr; 4929 4930 return true; 4931 } 4932 4933 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4934 Value *Ptr = nullptr; 4935 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4936 Ptr = LI->getPointerOperand(); 4937 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4938 Ptr = SI->getPointerOperand(); 4939 else 4940 return; 4941 4942 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4943 if (!Stride) 4944 return; 4945 4946 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4947 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4948 Strides[Ptr] = Stride; 4949 StrideSet.insert(Stride); 4950 } 4951 4952 void LoopVectorizationLegality::collectLoopUniforms() { 4953 // We now know that the loop is vectorizable! 4954 // Collect variables that will remain uniform after vectorization. 4955 std::vector<Value *> Worklist; 4956 BasicBlock *Latch = TheLoop->getLoopLatch(); 4957 4958 // Start with the conditional branch and walk up the block. 4959 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4960 4961 // Also add all consecutive pointer values; these values will be uniform 4962 // after vectorization (and subsequent cleanup) and, until revectorization is 4963 // supported, all dependencies must also be uniform. 4964 for (Loop::block_iterator B = TheLoop->block_begin(), 4965 BE = TheLoop->block_end(); 4966 B != BE; ++B) 4967 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); I != IE; ++I) 4968 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4969 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4970 4971 while (!Worklist.empty()) { 4972 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4973 Worklist.pop_back(); 4974 4975 // Look at instructions inside this loop. 4976 // Stop when reaching PHI nodes. 4977 // TODO: we need to follow values all over the loop, not only in this block. 4978 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4979 continue; 4980 4981 // This is a known uniform. 4982 Uniforms.insert(I); 4983 4984 // Insert all operands. 4985 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4986 } 4987 } 4988 4989 bool LoopVectorizationLegality::canVectorizeMemory() { 4990 LAI = &LAA->getInfo(TheLoop, Strides); 4991 auto &OptionalReport = LAI->getReport(); 4992 if (OptionalReport) 4993 emitAnalysis(VectorizationReport(*OptionalReport)); 4994 if (!LAI->canVectorizeMemory()) 4995 return false; 4996 4997 if (LAI->hasStoreToLoopInvariantAddress()) { 4998 emitAnalysis( 4999 VectorizationReport() 5000 << "write to a loop invariant address could not be vectorized"); 5001 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5002 return false; 5003 } 5004 5005 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5006 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 5007 5008 return true; 5009 } 5010 5011 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5012 Value *In0 = const_cast<Value *>(V); 5013 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5014 if (!PN) 5015 return false; 5016 5017 return Inductions.count(PN); 5018 } 5019 5020 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5021 return FirstOrderRecurrences.count(Phi); 5022 } 5023 5024 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5025 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5026 } 5027 5028 bool LoopVectorizationLegality::blockCanBePredicated( 5029 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5030 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5031 5032 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5033 // Check that we don't have a constant expression that can trap as operand. 5034 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5035 OI != OE; ++OI) { 5036 if (Constant *C = dyn_cast<Constant>(*OI)) 5037 if (C->canTrap()) 5038 return false; 5039 } 5040 // We might be able to hoist the load. 5041 if (it->mayReadFromMemory()) { 5042 LoadInst *LI = dyn_cast<LoadInst>(it); 5043 if (!LI) 5044 return false; 5045 if (!SafePtrs.count(LI->getPointerOperand())) { 5046 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5047 isLegalMaskedGather(LI->getType())) { 5048 MaskedOp.insert(LI); 5049 continue; 5050 } 5051 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5052 if (IsAnnotatedParallel) 5053 continue; 5054 return false; 5055 } 5056 } 5057 5058 // We don't predicate stores at the moment. 5059 if (it->mayWriteToMemory()) { 5060 StoreInst *SI = dyn_cast<StoreInst>(it); 5061 // We only support predication of stores in basic blocks with one 5062 // predecessor. 5063 if (!SI) 5064 return false; 5065 5066 // Build a masked store if it is legal for the target. 5067 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5068 SI->getPointerOperand()) || 5069 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5070 MaskedOp.insert(SI); 5071 continue; 5072 } 5073 5074 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5075 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5076 5077 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5078 !isSinglePredecessor) 5079 return false; 5080 } 5081 if (it->mayThrow()) 5082 return false; 5083 5084 // The instructions below can trap. 5085 switch (it->getOpcode()) { 5086 default: 5087 continue; 5088 case Instruction::UDiv: 5089 case Instruction::SDiv: 5090 case Instruction::URem: 5091 case Instruction::SRem: 5092 return false; 5093 } 5094 } 5095 5096 return true; 5097 } 5098 5099 void InterleavedAccessInfo::collectConstStridedAccesses( 5100 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 5101 const ValueToValueMap &Strides) { 5102 // Holds load/store instructions in program order. 5103 SmallVector<Instruction *, 16> AccessList; 5104 5105 for (auto *BB : TheLoop->getBlocks()) { 5106 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5107 5108 for (auto &I : *BB) { 5109 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 5110 continue; 5111 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5112 if (IsPred) 5113 return; 5114 5115 AccessList.push_back(&I); 5116 } 5117 } 5118 5119 if (AccessList.empty()) 5120 return; 5121 5122 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5123 for (auto I : AccessList) { 5124 LoadInst *LI = dyn_cast<LoadInst>(I); 5125 StoreInst *SI = dyn_cast<StoreInst>(I); 5126 5127 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5128 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5129 5130 // The factor of the corresponding interleave group. 5131 unsigned Factor = std::abs(Stride); 5132 5133 // Ignore the access if the factor is too small or too large. 5134 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5135 continue; 5136 5137 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5138 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5139 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5140 5141 // An alignment of 0 means target ABI alignment. 5142 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5143 if (!Align) 5144 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5145 5146 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5147 } 5148 } 5149 5150 // Analyze interleaved accesses and collect them into interleave groups. 5151 // 5152 // Notice that the vectorization on interleaved groups will change instruction 5153 // orders and may break dependences. But the memory dependence check guarantees 5154 // that there is no overlap between two pointers of different strides, element 5155 // sizes or underlying bases. 5156 // 5157 // For pointers sharing the same stride, element size and underlying base, no 5158 // need to worry about Read-After-Write dependences and Write-After-Read 5159 // dependences. 5160 // 5161 // E.g. The RAW dependence: A[i] = a; 5162 // b = A[i]; 5163 // This won't exist as it is a store-load forwarding conflict, which has 5164 // already been checked and forbidden in the dependence check. 5165 // 5166 // E.g. The WAR dependence: a = A[i]; // (1) 5167 // A[i] = b; // (2) 5168 // The store group of (2) is always inserted at or below (2), and the load group 5169 // of (1) is always inserted at or above (1). The dependence is safe. 5170 void InterleavedAccessInfo::analyzeInterleaving( 5171 const ValueToValueMap &Strides) { 5172 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5173 5174 // Holds all the stride accesses. 5175 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5176 collectConstStridedAccesses(StrideAccesses, Strides); 5177 5178 if (StrideAccesses.empty()) 5179 return; 5180 5181 // Holds all interleaved store groups temporarily. 5182 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5183 // Holds all interleaved load groups temporarily. 5184 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5185 5186 // Search the load-load/write-write pair B-A in bottom-up order and try to 5187 // insert B into the interleave group of A according to 3 rules: 5188 // 1. A and B have the same stride. 5189 // 2. A and B have the same memory object size. 5190 // 3. B belongs to the group according to the distance. 5191 // 5192 // The bottom-up order can avoid breaking the Write-After-Write dependences 5193 // between two pointers of the same base. 5194 // E.g. A[i] = a; (1) 5195 // A[i] = b; (2) 5196 // A[i+1] = c (3) 5197 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5198 // above (1), which guarantees that (1) is always above (2). 5199 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5200 ++I) { 5201 Instruction *A = I->first; 5202 StrideDescriptor DesA = I->second; 5203 5204 InterleaveGroup *Group = getInterleaveGroup(A); 5205 if (!Group) { 5206 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5207 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5208 } 5209 5210 if (A->mayWriteToMemory()) 5211 StoreGroups.insert(Group); 5212 else 5213 LoadGroups.insert(Group); 5214 5215 for (auto II = std::next(I); II != E; ++II) { 5216 Instruction *B = II->first; 5217 StrideDescriptor DesB = II->second; 5218 5219 // Ignore if B is already in a group or B is a different memory operation. 5220 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5221 continue; 5222 5223 // Check the rule 1 and 2. 5224 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5225 continue; 5226 5227 // Calculate the distance and prepare for the rule 3. 5228 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5229 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5230 if (!DistToA) 5231 continue; 5232 5233 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5234 5235 // Skip if the distance is not multiple of size as they are not in the 5236 // same group. 5237 if (DistanceToA % static_cast<int>(DesA.Size)) 5238 continue; 5239 5240 // The index of B is the index of A plus the related index to A. 5241 int IndexB = 5242 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5243 5244 // Try to insert B into the group. 5245 if (Group->insertMember(B, IndexB, DesB.Align)) { 5246 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5247 << " into the interleave group with" << *A << '\n'); 5248 InterleaveGroupMap[B] = Group; 5249 5250 // Set the first load in program order as the insert position. 5251 if (B->mayReadFromMemory()) 5252 Group->setInsertPos(B); 5253 } 5254 } // Iteration on instruction B 5255 } // Iteration on instruction A 5256 5257 // Remove interleaved store groups with gaps. 5258 for (InterleaveGroup *Group : StoreGroups) 5259 if (Group->getNumMembers() != Group->getFactor()) 5260 releaseGroup(Group); 5261 5262 // If there is a non-reversed interleaved load group with gaps, we will need 5263 // to execute at least one scalar epilogue iteration. This will ensure that 5264 // we don't speculatively access memory out-of-bounds. Note that we only need 5265 // to look for a member at index factor - 1, since every group must have a 5266 // member at index zero. 5267 for (InterleaveGroup *Group : LoadGroups) 5268 if (!Group->getMember(Group->getFactor() - 1)) { 5269 if (Group->isReverse()) { 5270 releaseGroup(Group); 5271 } else { 5272 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5273 RequiresScalarEpilogue = true; 5274 } 5275 } 5276 } 5277 5278 LoopVectorizationCostModel::VectorizationFactor 5279 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5280 // Width 1 means no vectorize 5281 VectorizationFactor Factor = {1U, 0U}; 5282 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5283 emitAnalysis( 5284 VectorizationReport() 5285 << "runtime pointer checks needed. Enable vectorization of this " 5286 "loop with '#pragma clang loop vectorize(enable)' when " 5287 "compiling with -Os/-Oz"); 5288 DEBUG(dbgs() 5289 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5290 return Factor; 5291 } 5292 5293 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5294 emitAnalysis( 5295 VectorizationReport() 5296 << "store that is conditionally executed prevents vectorization"); 5297 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5298 return Factor; 5299 } 5300 5301 // Find the trip count. 5302 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5303 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5304 5305 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5306 unsigned SmallestType, WidestType; 5307 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5308 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5309 unsigned MaxSafeDepDist = -1U; 5310 5311 // Get the maximum safe dependence distance in bits computed by LAA. If the 5312 // loop contains any interleaved accesses, we divide the dependence distance 5313 // by the maximum interleave factor of all interleaved groups. Note that 5314 // although the division ensures correctness, this is a fairly conservative 5315 // computation because the maximum distance computed by LAA may not involve 5316 // any of the interleaved accesses. 5317 if (Legal->getMaxSafeDepDistBytes() != -1U) 5318 MaxSafeDepDist = 5319 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5320 5321 WidestRegister = 5322 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5323 unsigned MaxVectorSize = WidestRegister / WidestType; 5324 5325 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5326 << WidestType << " bits.\n"); 5327 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5328 << " bits.\n"); 5329 5330 if (MaxVectorSize == 0) { 5331 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5332 MaxVectorSize = 1; 5333 } 5334 5335 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5336 " into one vector!"); 5337 5338 unsigned VF = MaxVectorSize; 5339 if (MaximizeBandwidth && !OptForSize) { 5340 // Collect all viable vectorization factors. 5341 SmallVector<unsigned, 8> VFs; 5342 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5343 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5344 VFs.push_back(VS); 5345 5346 // For each VF calculate its register usage. 5347 auto RUs = calculateRegisterUsage(VFs); 5348 5349 // Select the largest VF which doesn't require more registers than existing 5350 // ones. 5351 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5352 for (int i = RUs.size() - 1; i >= 0; --i) { 5353 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5354 VF = VFs[i]; 5355 break; 5356 } 5357 } 5358 } 5359 5360 // If we optimize the program for size, avoid creating the tail loop. 5361 if (OptForSize) { 5362 // If we are unable to calculate the trip count then don't try to vectorize. 5363 if (TC < 2) { 5364 emitAnalysis( 5365 VectorizationReport() 5366 << "unable to calculate the loop count due to complex control flow"); 5367 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5368 return Factor; 5369 } 5370 5371 // Find the maximum SIMD width that can fit within the trip count. 5372 VF = TC % MaxVectorSize; 5373 5374 if (VF == 0) 5375 VF = MaxVectorSize; 5376 else { 5377 // If the trip count that we found modulo the vectorization factor is not 5378 // zero then we require a tail. 5379 emitAnalysis(VectorizationReport() 5380 << "cannot optimize for size and vectorize at the " 5381 "same time. Enable vectorization of this loop " 5382 "with '#pragma clang loop vectorize(enable)' " 5383 "when compiling with -Os/-Oz"); 5384 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5385 return Factor; 5386 } 5387 } 5388 5389 int UserVF = Hints->getWidth(); 5390 if (UserVF != 0) { 5391 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5392 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5393 5394 Factor.Width = UserVF; 5395 return Factor; 5396 } 5397 5398 float Cost = expectedCost(1).first; 5399 #ifndef NDEBUG 5400 const float ScalarCost = Cost; 5401 #endif /* NDEBUG */ 5402 unsigned Width = 1; 5403 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5404 5405 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5406 // Ignore scalar width, because the user explicitly wants vectorization. 5407 if (ForceVectorization && VF > 1) { 5408 Width = 2; 5409 Cost = expectedCost(Width).first / (float)Width; 5410 } 5411 5412 for (unsigned i = 2; i <= VF; i *= 2) { 5413 // Notice that the vector loop needs to be executed less times, so 5414 // we need to divide the cost of the vector loops by the width of 5415 // the vector elements. 5416 VectorizationCostTy C = expectedCost(i); 5417 float VectorCost = C.first / (float)i; 5418 DEBUG(dbgs() << "LV: Vector loop of width " << i 5419 << " costs: " << (int)VectorCost << ".\n"); 5420 if (!C.second && !ForceVectorization) { 5421 DEBUG( 5422 dbgs() << "LV: Not considering vector loop of width " << i 5423 << " because it will not generate any vector instructions.\n"); 5424 continue; 5425 } 5426 if (VectorCost < Cost) { 5427 Cost = VectorCost; 5428 Width = i; 5429 } 5430 } 5431 5432 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5433 << "LV: Vectorization seems to be not beneficial, " 5434 << "but was forced by a user.\n"); 5435 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5436 Factor.Width = Width; 5437 Factor.Cost = Width * Cost; 5438 return Factor; 5439 } 5440 5441 std::pair<unsigned, unsigned> 5442 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5443 unsigned MinWidth = -1U; 5444 unsigned MaxWidth = 8; 5445 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5446 5447 // For each block. 5448 for (Loop::block_iterator bb = TheLoop->block_begin(), 5449 be = TheLoop->block_end(); 5450 bb != be; ++bb) { 5451 BasicBlock *BB = *bb; 5452 5453 // For each instruction in the loop. 5454 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5455 Type *T = it->getType(); 5456 5457 // Skip ignored values. 5458 if (ValuesToIgnore.count(&*it)) 5459 continue; 5460 5461 // Only examine Loads, Stores and PHINodes. 5462 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5463 continue; 5464 5465 // Examine PHI nodes that are reduction variables. Update the type to 5466 // account for the recurrence type. 5467 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5468 if (!Legal->isReductionVariable(PN)) 5469 continue; 5470 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5471 T = RdxDesc.getRecurrenceType(); 5472 } 5473 5474 // Examine the stored values. 5475 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5476 T = ST->getValueOperand()->getType(); 5477 5478 // Ignore loaded pointer types and stored pointer types that are not 5479 // consecutive. However, we do want to take consecutive stores/loads of 5480 // pointer vectors into account. 5481 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5482 continue; 5483 5484 MinWidth = std::min(MinWidth, 5485 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5486 MaxWidth = std::max(MaxWidth, 5487 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5488 } 5489 } 5490 5491 return {MinWidth, MaxWidth}; 5492 } 5493 5494 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5495 unsigned VF, 5496 unsigned LoopCost) { 5497 5498 // -- The interleave heuristics -- 5499 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5500 // There are many micro-architectural considerations that we can't predict 5501 // at this level. For example, frontend pressure (on decode or fetch) due to 5502 // code size, or the number and capabilities of the execution ports. 5503 // 5504 // We use the following heuristics to select the interleave count: 5505 // 1. If the code has reductions, then we interleave to break the cross 5506 // iteration dependency. 5507 // 2. If the loop is really small, then we interleave to reduce the loop 5508 // overhead. 5509 // 3. We don't interleave if we think that we will spill registers to memory 5510 // due to the increased register pressure. 5511 5512 // When we optimize for size, we don't interleave. 5513 if (OptForSize) 5514 return 1; 5515 5516 // We used the distance for the interleave count. 5517 if (Legal->getMaxSafeDepDistBytes() != -1U) 5518 return 1; 5519 5520 // Do not interleave loops with a relatively small trip count. 5521 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5522 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5523 return 1; 5524 5525 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5526 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5527 << " registers\n"); 5528 5529 if (VF == 1) { 5530 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5531 TargetNumRegisters = ForceTargetNumScalarRegs; 5532 } else { 5533 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5534 TargetNumRegisters = ForceTargetNumVectorRegs; 5535 } 5536 5537 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5538 // We divide by these constants so assume that we have at least one 5539 // instruction that uses at least one register. 5540 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5541 R.NumInstructions = std::max(R.NumInstructions, 1U); 5542 5543 // We calculate the interleave count using the following formula. 5544 // Subtract the number of loop invariants from the number of available 5545 // registers. These registers are used by all of the interleaved instances. 5546 // Next, divide the remaining registers by the number of registers that is 5547 // required by the loop, in order to estimate how many parallel instances 5548 // fit without causing spills. All of this is rounded down if necessary to be 5549 // a power of two. We want power of two interleave count to simplify any 5550 // addressing operations or alignment considerations. 5551 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5552 R.MaxLocalUsers); 5553 5554 // Don't count the induction variable as interleaved. 5555 if (EnableIndVarRegisterHeur) 5556 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5557 std::max(1U, (R.MaxLocalUsers - 1))); 5558 5559 // Clamp the interleave ranges to reasonable counts. 5560 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5561 5562 // Check if the user has overridden the max. 5563 if (VF == 1) { 5564 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5565 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5566 } else { 5567 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5568 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5569 } 5570 5571 // If we did not calculate the cost for VF (because the user selected the VF) 5572 // then we calculate the cost of VF here. 5573 if (LoopCost == 0) 5574 LoopCost = expectedCost(VF).first; 5575 5576 // Clamp the calculated IC to be between the 1 and the max interleave count 5577 // that the target allows. 5578 if (IC > MaxInterleaveCount) 5579 IC = MaxInterleaveCount; 5580 else if (IC < 1) 5581 IC = 1; 5582 5583 // Interleave if we vectorized this loop and there is a reduction that could 5584 // benefit from interleaving. 5585 if (VF > 1 && Legal->getReductionVars()->size()) { 5586 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5587 return IC; 5588 } 5589 5590 // Note that if we've already vectorized the loop we will have done the 5591 // runtime check and so interleaving won't require further checks. 5592 bool InterleavingRequiresRuntimePointerCheck = 5593 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5594 5595 // We want to interleave small loops in order to reduce the loop overhead and 5596 // potentially expose ILP opportunities. 5597 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5598 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5599 // We assume that the cost overhead is 1 and we use the cost model 5600 // to estimate the cost of the loop and interleave until the cost of the 5601 // loop overhead is about 5% of the cost of the loop. 5602 unsigned SmallIC = 5603 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5604 5605 // Interleave until store/load ports (estimated by max interleave count) are 5606 // saturated. 5607 unsigned NumStores = Legal->getNumStores(); 5608 unsigned NumLoads = Legal->getNumLoads(); 5609 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5610 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5611 5612 // If we have a scalar reduction (vector reductions are already dealt with 5613 // by this point), we can increase the critical path length if the loop 5614 // we're interleaving is inside another loop. Limit, by default to 2, so the 5615 // critical path only gets increased by one reduction operation. 5616 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5617 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5618 SmallIC = std::min(SmallIC, F); 5619 StoresIC = std::min(StoresIC, F); 5620 LoadsIC = std::min(LoadsIC, F); 5621 } 5622 5623 if (EnableLoadStoreRuntimeInterleave && 5624 std::max(StoresIC, LoadsIC) > SmallIC) { 5625 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5626 return std::max(StoresIC, LoadsIC); 5627 } 5628 5629 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5630 return SmallIC; 5631 } 5632 5633 // Interleave if this is a large loop (small loops are already dealt with by 5634 // this point) that could benefit from interleaving. 5635 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5636 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5637 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5638 return IC; 5639 } 5640 5641 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5642 return 1; 5643 } 5644 5645 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5646 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5647 // This function calculates the register usage by measuring the highest number 5648 // of values that are alive at a single location. Obviously, this is a very 5649 // rough estimation. We scan the loop in a topological order in order and 5650 // assign a number to each instruction. We use RPO to ensure that defs are 5651 // met before their users. We assume that each instruction that has in-loop 5652 // users starts an interval. We record every time that an in-loop value is 5653 // used, so we have a list of the first and last occurrences of each 5654 // instruction. Next, we transpose this data structure into a multi map that 5655 // holds the list of intervals that *end* at a specific location. This multi 5656 // map allows us to perform a linear search. We scan the instructions linearly 5657 // and record each time that a new interval starts, by placing it in a set. 5658 // If we find this value in the multi-map then we remove it from the set. 5659 // The max register usage is the maximum size of the set. 5660 // We also search for instructions that are defined outside the loop, but are 5661 // used inside the loop. We need this number separately from the max-interval 5662 // usage number because when we unroll, loop-invariant values do not take 5663 // more register. 5664 LoopBlocksDFS DFS(TheLoop); 5665 DFS.perform(LI); 5666 5667 RegisterUsage RU; 5668 RU.NumInstructions = 0; 5669 5670 // Each 'key' in the map opens a new interval. The values 5671 // of the map are the index of the 'last seen' usage of the 5672 // instruction that is the key. 5673 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5674 // Maps instruction to its index. 5675 DenseMap<unsigned, Instruction *> IdxToInstr; 5676 // Marks the end of each interval. 5677 IntervalMap EndPoint; 5678 // Saves the list of instruction indices that are used in the loop. 5679 SmallSet<Instruction *, 8> Ends; 5680 // Saves the list of values that are used in the loop but are 5681 // defined outside the loop, such as arguments and constants. 5682 SmallPtrSet<Value *, 8> LoopInvariants; 5683 5684 unsigned Index = 0; 5685 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5686 bb != be; ++bb) { 5687 RU.NumInstructions += (*bb)->size(); 5688 for (Instruction &I : **bb) { 5689 IdxToInstr[Index++] = &I; 5690 5691 // Save the end location of each USE. 5692 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5693 Value *U = I.getOperand(i); 5694 Instruction *Instr = dyn_cast<Instruction>(U); 5695 5696 // Ignore non-instruction values such as arguments, constants, etc. 5697 if (!Instr) 5698 continue; 5699 5700 // If this instruction is outside the loop then record it and continue. 5701 if (!TheLoop->contains(Instr)) { 5702 LoopInvariants.insert(Instr); 5703 continue; 5704 } 5705 5706 // Overwrite previous end points. 5707 EndPoint[Instr] = Index; 5708 Ends.insert(Instr); 5709 } 5710 } 5711 } 5712 5713 // Saves the list of intervals that end with the index in 'key'. 5714 typedef SmallVector<Instruction *, 2> InstrList; 5715 DenseMap<unsigned, InstrList> TransposeEnds; 5716 5717 // Transpose the EndPoints to a list of values that end at each index. 5718 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5719 ++it) 5720 TransposeEnds[it->second].push_back(it->first); 5721 5722 SmallSet<Instruction *, 8> OpenIntervals; 5723 5724 // Get the size of the widest register. 5725 unsigned MaxSafeDepDist = -1U; 5726 if (Legal->getMaxSafeDepDistBytes() != -1U) 5727 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5728 unsigned WidestRegister = 5729 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5730 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5731 5732 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5733 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5734 5735 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5736 5737 // A lambda that gets the register usage for the given type and VF. 5738 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5739 if (Ty->isTokenTy()) 5740 return 0U; 5741 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5742 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5743 }; 5744 5745 for (unsigned int i = 0; i < Index; ++i) { 5746 Instruction *I = IdxToInstr[i]; 5747 // Ignore instructions that are never used within the loop. 5748 if (!Ends.count(I)) 5749 continue; 5750 5751 // Remove all of the instructions that end at this location. 5752 InstrList &List = TransposeEnds[i]; 5753 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5754 OpenIntervals.erase(List[j]); 5755 5756 // Skip ignored values. 5757 if (ValuesToIgnore.count(I)) 5758 continue; 5759 5760 // For each VF find the maximum usage of registers. 5761 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5762 if (VFs[j] == 1) { 5763 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5764 continue; 5765 } 5766 5767 // Count the number of live intervals. 5768 unsigned RegUsage = 0; 5769 for (auto Inst : OpenIntervals) { 5770 // Skip ignored values for VF > 1. 5771 if (VecValuesToIgnore.count(Inst)) 5772 continue; 5773 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5774 } 5775 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5776 } 5777 5778 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5779 << OpenIntervals.size() << '\n'); 5780 5781 // Add the current instruction to the list of open intervals. 5782 OpenIntervals.insert(I); 5783 } 5784 5785 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5786 unsigned Invariant = 0; 5787 if (VFs[i] == 1) 5788 Invariant = LoopInvariants.size(); 5789 else { 5790 for (auto Inst : LoopInvariants) 5791 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5792 } 5793 5794 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5795 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5796 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5797 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5798 5799 RU.LoopInvariantRegs = Invariant; 5800 RU.MaxLocalUsers = MaxUsages[i]; 5801 RUs[i] = RU; 5802 } 5803 5804 return RUs; 5805 } 5806 5807 LoopVectorizationCostModel::VectorizationCostTy 5808 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5809 VectorizationCostTy Cost; 5810 5811 // For each block. 5812 for (Loop::block_iterator bb = TheLoop->block_begin(), 5813 be = TheLoop->block_end(); 5814 bb != be; ++bb) { 5815 VectorizationCostTy BlockCost; 5816 BasicBlock *BB = *bb; 5817 5818 // For each instruction in the old loop. 5819 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5820 // Skip dbg intrinsics. 5821 if (isa<DbgInfoIntrinsic>(it)) 5822 continue; 5823 5824 // Skip ignored values. 5825 if (ValuesToIgnore.count(&*it)) 5826 continue; 5827 5828 VectorizationCostTy C = getInstructionCost(&*it, VF); 5829 5830 // Check if we should override the cost. 5831 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5832 C.first = ForceTargetInstructionCost; 5833 5834 BlockCost.first += C.first; 5835 BlockCost.second |= C.second; 5836 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5837 << VF << " For instruction: " << *it << '\n'); 5838 } 5839 5840 // We assume that if-converted blocks have a 50% chance of being executed. 5841 // When the code is scalar then some of the blocks are avoided due to CF. 5842 // When the code is vectorized we execute all code paths. 5843 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5844 BlockCost.first /= 2; 5845 5846 Cost.first += BlockCost.first; 5847 Cost.second |= BlockCost.second; 5848 } 5849 5850 return Cost; 5851 } 5852 5853 /// \brief Check if the load/store instruction \p I may be translated into 5854 /// gather/scatter during vectorization. 5855 /// 5856 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5857 /// instruction. We need it to retrieve data type. 5858 /// Using gather/scatter is possible when it is supported by target. 5859 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5860 LoopVectorizationLegality *Legal) { 5861 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5862 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5863 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5864 } 5865 5866 /// \brief Check whether the address computation for a non-consecutive memory 5867 /// access looks like an unlikely candidate for being merged into the indexing 5868 /// mode. 5869 /// 5870 /// We look for a GEP which has one index that is an induction variable and all 5871 /// other indices are loop invariant. If the stride of this access is also 5872 /// within a small bound we decide that this address computation can likely be 5873 /// merged into the addressing mode. 5874 /// In all other cases, we identify the address computation as complex. 5875 static bool isLikelyComplexAddressComputation(Value *Ptr, 5876 LoopVectorizationLegality *Legal, 5877 ScalarEvolution *SE, 5878 const Loop *TheLoop) { 5879 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5880 if (!Gep) 5881 return true; 5882 5883 // We are looking for a gep with all loop invariant indices except for one 5884 // which should be an induction variable. 5885 unsigned NumOperands = Gep->getNumOperands(); 5886 for (unsigned i = 1; i < NumOperands; ++i) { 5887 Value *Opd = Gep->getOperand(i); 5888 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5889 !Legal->isInductionVariable(Opd)) 5890 return true; 5891 } 5892 5893 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5894 // can likely be merged into the address computation. 5895 unsigned MaxMergeDistance = 64; 5896 5897 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5898 if (!AddRec) 5899 return true; 5900 5901 // Check the step is constant. 5902 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5903 // Calculate the pointer stride and check if it is consecutive. 5904 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5905 if (!C) 5906 return true; 5907 5908 const APInt &APStepVal = C->getAPInt(); 5909 5910 // Huge step value - give up. 5911 if (APStepVal.getBitWidth() > 64) 5912 return true; 5913 5914 int64_t StepVal = APStepVal.getSExtValue(); 5915 5916 return StepVal > MaxMergeDistance; 5917 } 5918 5919 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5920 return Legal->hasStride(I->getOperand(0)) || 5921 Legal->hasStride(I->getOperand(1)); 5922 } 5923 5924 LoopVectorizationCostModel::VectorizationCostTy 5925 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5926 // If we know that this instruction will remain uniform, check the cost of 5927 // the scalar version. 5928 if (Legal->isUniformAfterVectorization(I)) 5929 VF = 1; 5930 5931 Type *VectorTy; 5932 unsigned C = getInstructionCost(I, VF, VectorTy); 5933 5934 bool TypeNotScalarized = 5935 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5936 return VectorizationCostTy(C, TypeNotScalarized); 5937 } 5938 5939 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5940 unsigned VF, 5941 Type *&VectorTy) { 5942 Type *RetTy = I->getType(); 5943 if (VF > 1 && MinBWs.count(I)) 5944 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5945 VectorTy = ToVectorTy(RetTy, VF); 5946 auto SE = PSE.getSE(); 5947 5948 // TODO: We need to estimate the cost of intrinsic calls. 5949 switch (I->getOpcode()) { 5950 case Instruction::GetElementPtr: 5951 // We mark this instruction as zero-cost because the cost of GEPs in 5952 // vectorized code depends on whether the corresponding memory instruction 5953 // is scalarized or not. Therefore, we handle GEPs with the memory 5954 // instruction cost. 5955 return 0; 5956 case Instruction::Br: { 5957 return TTI.getCFInstrCost(I->getOpcode()); 5958 } 5959 case Instruction::PHI: { 5960 auto *Phi = cast<PHINode>(I); 5961 5962 // First-order recurrences are replaced by vector shuffles inside the loop. 5963 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5964 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5965 VectorTy, VF - 1, VectorTy); 5966 5967 // TODO: IF-converted IFs become selects. 5968 return 0; 5969 } 5970 case Instruction::Add: 5971 case Instruction::FAdd: 5972 case Instruction::Sub: 5973 case Instruction::FSub: 5974 case Instruction::Mul: 5975 case Instruction::FMul: 5976 case Instruction::UDiv: 5977 case Instruction::SDiv: 5978 case Instruction::FDiv: 5979 case Instruction::URem: 5980 case Instruction::SRem: 5981 case Instruction::FRem: 5982 case Instruction::Shl: 5983 case Instruction::LShr: 5984 case Instruction::AShr: 5985 case Instruction::And: 5986 case Instruction::Or: 5987 case Instruction::Xor: { 5988 // Since we will replace the stride by 1 the multiplication should go away. 5989 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5990 return 0; 5991 // Certain instructions can be cheaper to vectorize if they have a constant 5992 // second vector operand. One example of this are shifts on x86. 5993 TargetTransformInfo::OperandValueKind Op1VK = 5994 TargetTransformInfo::OK_AnyValue; 5995 TargetTransformInfo::OperandValueKind Op2VK = 5996 TargetTransformInfo::OK_AnyValue; 5997 TargetTransformInfo::OperandValueProperties Op1VP = 5998 TargetTransformInfo::OP_None; 5999 TargetTransformInfo::OperandValueProperties Op2VP = 6000 TargetTransformInfo::OP_None; 6001 Value *Op2 = I->getOperand(1); 6002 6003 // Check for a splat of a constant or for a non uniform vector of constants. 6004 if (isa<ConstantInt>(Op2)) { 6005 ConstantInt *CInt = cast<ConstantInt>(Op2); 6006 if (CInt && CInt->getValue().isPowerOf2()) 6007 Op2VP = TargetTransformInfo::OP_PowerOf2; 6008 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6009 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6010 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6011 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6012 if (SplatValue) { 6013 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6014 if (CInt && CInt->getValue().isPowerOf2()) 6015 Op2VP = TargetTransformInfo::OP_PowerOf2; 6016 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6017 } 6018 } 6019 6020 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6021 Op1VP, Op2VP); 6022 } 6023 case Instruction::Select: { 6024 SelectInst *SI = cast<SelectInst>(I); 6025 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6026 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6027 Type *CondTy = SI->getCondition()->getType(); 6028 if (!ScalarCond) 6029 CondTy = VectorType::get(CondTy, VF); 6030 6031 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6032 } 6033 case Instruction::ICmp: 6034 case Instruction::FCmp: { 6035 Type *ValTy = I->getOperand(0)->getType(); 6036 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6037 auto It = MinBWs.find(Op0AsInstruction); 6038 if (VF > 1 && It != MinBWs.end()) 6039 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6040 VectorTy = ToVectorTy(ValTy, VF); 6041 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6042 } 6043 case Instruction::Store: 6044 case Instruction::Load: { 6045 StoreInst *SI = dyn_cast<StoreInst>(I); 6046 LoadInst *LI = dyn_cast<LoadInst>(I); 6047 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6048 VectorTy = ToVectorTy(ValTy, VF); 6049 6050 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6051 unsigned AS = 6052 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6053 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6054 // We add the cost of address computation here instead of with the gep 6055 // instruction because only here we know whether the operation is 6056 // scalarized. 6057 if (VF == 1) 6058 return TTI.getAddressComputationCost(VectorTy) + 6059 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6060 6061 if (LI && Legal->isUniform(Ptr)) { 6062 // Scalar load + broadcast 6063 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6064 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6065 Alignment, AS); 6066 return Cost + 6067 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6068 } 6069 6070 // For an interleaved access, calculate the total cost of the whole 6071 // interleave group. 6072 if (Legal->isAccessInterleaved(I)) { 6073 auto Group = Legal->getInterleavedAccessGroup(I); 6074 assert(Group && "Fail to get an interleaved access group."); 6075 6076 // Only calculate the cost once at the insert position. 6077 if (Group->getInsertPos() != I) 6078 return 0; 6079 6080 unsigned InterleaveFactor = Group->getFactor(); 6081 Type *WideVecTy = 6082 VectorType::get(VectorTy->getVectorElementType(), 6083 VectorTy->getVectorNumElements() * InterleaveFactor); 6084 6085 // Holds the indices of existing members in an interleaved load group. 6086 // An interleaved store group doesn't need this as it doesn't allow gaps. 6087 SmallVector<unsigned, 4> Indices; 6088 if (LI) { 6089 for (unsigned i = 0; i < InterleaveFactor; i++) 6090 if (Group->getMember(i)) 6091 Indices.push_back(i); 6092 } 6093 6094 // Calculate the cost of the whole interleaved group. 6095 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6096 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6097 Group->getAlignment(), AS); 6098 6099 if (Group->isReverse()) 6100 Cost += 6101 Group->getNumMembers() * 6102 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6103 6104 // FIXME: The interleaved load group with a huge gap could be even more 6105 // expensive than scalar operations. Then we could ignore such group and 6106 // use scalar operations instead. 6107 return Cost; 6108 } 6109 6110 // Scalarized loads/stores. 6111 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6112 bool UseGatherOrScatter = 6113 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6114 6115 bool Reverse = ConsecutiveStride < 0; 6116 const DataLayout &DL = I->getModule()->getDataLayout(); 6117 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6118 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6119 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6120 ScalarAllocatedSize != VectorElementSize) { 6121 bool IsComplexComputation = 6122 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6123 unsigned Cost = 0; 6124 // The cost of extracting from the value vector and pointer vector. 6125 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6126 for (unsigned i = 0; i < VF; ++i) { 6127 // The cost of extracting the pointer operand. 6128 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6129 // In case of STORE, the cost of ExtractElement from the vector. 6130 // In case of LOAD, the cost of InsertElement into the returned 6131 // vector. 6132 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6133 : Instruction::InsertElement, 6134 VectorTy, i); 6135 } 6136 6137 // The cost of the scalar loads/stores. 6138 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6139 Cost += VF * 6140 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6141 Alignment, AS); 6142 return Cost; 6143 } 6144 6145 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6146 if (UseGatherOrScatter) { 6147 assert(ConsecutiveStride == 0 && 6148 "Gather/Scatter are not used for consecutive stride"); 6149 return Cost + 6150 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6151 Legal->isMaskRequired(I), Alignment); 6152 } 6153 // Wide load/stores. 6154 if (Legal->isMaskRequired(I)) 6155 Cost += 6156 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6157 else 6158 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6159 6160 if (Reverse) 6161 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6162 return Cost; 6163 } 6164 case Instruction::ZExt: 6165 case Instruction::SExt: 6166 case Instruction::FPToUI: 6167 case Instruction::FPToSI: 6168 case Instruction::FPExt: 6169 case Instruction::PtrToInt: 6170 case Instruction::IntToPtr: 6171 case Instruction::SIToFP: 6172 case Instruction::UIToFP: 6173 case Instruction::Trunc: 6174 case Instruction::FPTrunc: 6175 case Instruction::BitCast: { 6176 // We optimize the truncation of induction variable. 6177 // The cost of these is the same as the scalar operation. 6178 if (I->getOpcode() == Instruction::Trunc && 6179 Legal->isInductionVariable(I->getOperand(0))) 6180 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6181 I->getOperand(0)->getType()); 6182 6183 Type *SrcScalarTy = I->getOperand(0)->getType(); 6184 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6185 if (VF > 1 && MinBWs.count(I)) { 6186 // This cast is going to be shrunk. This may remove the cast or it might 6187 // turn it into slightly different cast. For example, if MinBW == 16, 6188 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6189 // 6190 // Calculate the modified src and dest types. 6191 Type *MinVecTy = VectorTy; 6192 if (I->getOpcode() == Instruction::Trunc) { 6193 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6194 VectorTy = 6195 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6196 } else if (I->getOpcode() == Instruction::ZExt || 6197 I->getOpcode() == Instruction::SExt) { 6198 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6199 VectorTy = 6200 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6201 } 6202 } 6203 6204 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6205 } 6206 case Instruction::Call: { 6207 bool NeedToScalarize; 6208 CallInst *CI = cast<CallInst>(I); 6209 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6210 if (getVectorIntrinsicIDForCall(CI, TLI)) 6211 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6212 return CallCost; 6213 } 6214 default: { 6215 // We are scalarizing the instruction. Return the cost of the scalar 6216 // instruction, plus the cost of insert and extract into vector 6217 // elements, times the vector width. 6218 unsigned Cost = 0; 6219 6220 if (!RetTy->isVoidTy() && VF != 1) { 6221 unsigned InsCost = 6222 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6223 unsigned ExtCost = 6224 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6225 6226 // The cost of inserting the results plus extracting each one of the 6227 // operands. 6228 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6229 } 6230 6231 // The cost of executing VF copies of the scalar instruction. This opcode 6232 // is unknown. Assume that it is the same as 'mul'. 6233 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6234 return Cost; 6235 } 6236 } // end of switch. 6237 } 6238 6239 char LoopVectorize::ID = 0; 6240 static const char lv_name[] = "Loop Vectorization"; 6241 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6243 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6244 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6245 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6246 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6247 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6248 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6249 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6250 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6251 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6252 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6253 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6254 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6255 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6256 6257 namespace llvm { 6258 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6259 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6260 } 6261 } 6262 6263 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6264 // Check for a store. 6265 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6266 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6267 6268 // Check for a load. 6269 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6270 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6271 6272 return false; 6273 } 6274 6275 void LoopVectorizationCostModel::collectValuesToIgnore() { 6276 // Ignore ephemeral values. 6277 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6278 6279 // Ignore type-promoting instructions we identified during reduction 6280 // detection. 6281 for (auto &Reduction : *Legal->getReductionVars()) { 6282 RecurrenceDescriptor &RedDes = Reduction.second; 6283 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6284 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6285 } 6286 6287 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6288 // instruction to exit loop. Induction variables usually have large types and 6289 // can have big impact when estimating register usage. 6290 // This is for when VF > 1. 6291 for (auto &Induction : *Legal->getInductionVars()) { 6292 auto *PN = Induction.first; 6293 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6294 6295 // Check that the PHI is only used by the induction increment (UpdateV) or 6296 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6297 // the loop header PHI. 6298 // FIXME: Need precise def-use analysis to determine if this instruction 6299 // variable will be vectorized. 6300 if (std::all_of(PN->user_begin(), PN->user_end(), 6301 [&](const User *U) -> bool { 6302 return U == UpdateV || isa<GetElementPtrInst>(U); 6303 }) && 6304 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6305 [&](const User *U) -> bool { 6306 return U == PN || isa<ICmpInst>(U); 6307 })) { 6308 VecValuesToIgnore.insert(PN); 6309 VecValuesToIgnore.insert(UpdateV); 6310 } 6311 } 6312 6313 // Ignore instructions that will not be vectorized. 6314 // This is for when VF > 1. 6315 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6316 ++bb) { 6317 for (auto &Inst : **bb) { 6318 switch (Inst.getOpcode()) 6319 case Instruction::GetElementPtr: { 6320 // Ignore GEP if its last operand is an induction variable so that it is 6321 // a consecutive load/store and won't be vectorized as scatter/gather 6322 // pattern. 6323 6324 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6325 unsigned NumOperands = Gep->getNumOperands(); 6326 unsigned InductionOperand = getGEPInductionOperand(Gep); 6327 bool GepToIgnore = true; 6328 6329 // Check that all of the gep indices are uniform except for the 6330 // induction operand. 6331 for (unsigned i = 0; i != NumOperands; ++i) { 6332 if (i != InductionOperand && 6333 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6334 TheLoop)) { 6335 GepToIgnore = false; 6336 break; 6337 } 6338 } 6339 6340 if (GepToIgnore) 6341 VecValuesToIgnore.insert(&Inst); 6342 break; 6343 } 6344 } 6345 } 6346 } 6347 6348 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6349 bool IfPredicateStore) { 6350 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6351 // Holds vector parameters or scalars, in case of uniform vals. 6352 SmallVector<VectorParts, 4> Params; 6353 6354 setDebugLocFromInst(Builder, Instr); 6355 6356 // Find all of the vectorized parameters. 6357 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6358 Value *SrcOp = Instr->getOperand(op); 6359 6360 // If we are accessing the old induction variable, use the new one. 6361 if (SrcOp == OldInduction) { 6362 Params.push_back(getVectorValue(SrcOp)); 6363 continue; 6364 } 6365 6366 // Try using previously calculated values. 6367 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6368 6369 // If the src is an instruction that appeared earlier in the basic block 6370 // then it should already be vectorized. 6371 if (SrcInst && OrigLoop->contains(SrcInst)) { 6372 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6373 // The parameter is a vector value from earlier. 6374 Params.push_back(WidenMap.get(SrcInst)); 6375 } else { 6376 // The parameter is a scalar from outside the loop. Maybe even a constant. 6377 VectorParts Scalars; 6378 Scalars.append(UF, SrcOp); 6379 Params.push_back(Scalars); 6380 } 6381 } 6382 6383 assert(Params.size() == Instr->getNumOperands() && 6384 "Invalid number of operands"); 6385 6386 // Does this instruction return a value ? 6387 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6388 6389 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6390 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6391 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6392 6393 VectorParts Cond; 6394 if (IfPredicateStore) { 6395 assert(Instr->getParent()->getSinglePredecessor() && 6396 "Only support single predecessor blocks"); 6397 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6398 Instr->getParent()); 6399 } 6400 6401 // For each vector unroll 'part': 6402 for (unsigned Part = 0; Part < UF; ++Part) { 6403 // For each scalar that we create: 6404 6405 // Start an "if (pred) a[i] = ..." block. 6406 Value *Cmp = nullptr; 6407 if (IfPredicateStore) { 6408 if (Cond[Part]->getType()->isVectorTy()) 6409 Cond[Part] = 6410 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6411 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6412 ConstantInt::get(Cond[Part]->getType(), 1)); 6413 } 6414 6415 Instruction *Cloned = Instr->clone(); 6416 if (!IsVoidRetTy) 6417 Cloned->setName(Instr->getName() + ".cloned"); 6418 // Replace the operands of the cloned instructions with extracted scalars. 6419 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6420 Value *Op = Params[op][Part]; 6421 Cloned->setOperand(op, Op); 6422 } 6423 6424 // Place the cloned scalar in the new loop. 6425 Builder.Insert(Cloned); 6426 6427 // If we just cloned a new assumption, add it the assumption cache. 6428 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6429 if (II->getIntrinsicID() == Intrinsic::assume) 6430 AC->registerAssumption(II); 6431 6432 // If the original scalar returns a value we need to place it in a vector 6433 // so that future users will be able to use it. 6434 if (!IsVoidRetTy) 6435 VecResults[Part] = Cloned; 6436 6437 // End if-block. 6438 if (IfPredicateStore) 6439 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6440 } 6441 } 6442 6443 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6444 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6445 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6446 6447 return scalarizeInstruction(Instr, IfPredicateStore); 6448 } 6449 6450 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6451 6452 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6453 6454 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6455 const SCEV *StepSCEV) { 6456 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6457 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6458 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6459 &*Builder.GetInsertPoint()); 6460 return getStepVector(Val, StartIdx, StepValue); 6461 } 6462 6463 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6464 // When unrolling and the VF is 1, we only need to add a simple scalar. 6465 Type *ITy = Val->getType(); 6466 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6467 Constant *C = ConstantInt::get(ITy, StartIdx); 6468 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6469 } 6470