1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
95 #include "llvm/Analysis/TargetLibraryInfo.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/Analysis/VectorUtils.h"
98 #include "llvm/IR/Attributes.h"
99 #include "llvm/IR/BasicBlock.h"
100 #include "llvm/IR/CFG.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/DataLayout.h"
104 #include "llvm/IR/DebugInfoMetadata.h"
105 #include "llvm/IR/DebugLoc.h"
106 #include "llvm/IR/DerivedTypes.h"
107 #include "llvm/IR/DiagnosticInfo.h"
108 #include "llvm/IR/Dominators.h"
109 #include "llvm/IR/Function.h"
110 #include "llvm/IR/IRBuilder.h"
111 #include "llvm/IR/InstrTypes.h"
112 #include "llvm/IR/Instruction.h"
113 #include "llvm/IR/Instructions.h"
114 #include "llvm/IR/IntrinsicInst.h"
115 #include "llvm/IR/Intrinsics.h"
116 #include "llvm/IR/LLVMContext.h"
117 #include "llvm/IR/Metadata.h"
118 #include "llvm/IR/Module.h"
119 #include "llvm/IR/Operator.h"
120 #include "llvm/IR/PatternMatch.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/InstructionCost.h"
135 #include "llvm/Support/MathExtras.h"
136 #include "llvm/Support/raw_ostream.h"
137 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
138 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
139 #include "llvm/Transforms/Utils/LoopSimplify.h"
140 #include "llvm/Transforms/Utils/LoopUtils.h"
141 #include "llvm/Transforms/Utils/LoopVersioning.h"
142 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
143 #include "llvm/Transforms/Utils/SizeOpts.h"
144 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
145 #include <algorithm>
146 #include <cassert>
147 #include <cstdint>
148 #include <cstdlib>
149 #include <functional>
150 #include <iterator>
151 #include <limits>
152 #include <memory>
153 #include <string>
154 #include <tuple>
155 #include <utility>
156 
157 using namespace llvm;
158 
159 #define LV_NAME "loop-vectorize"
160 #define DEBUG_TYPE LV_NAME
161 
162 #ifndef NDEBUG
163 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
164 #endif
165 
166 /// @{
167 /// Metadata attribute names
168 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
169 const char LLVMLoopVectorizeFollowupVectorized[] =
170     "llvm.loop.vectorize.followup_vectorized";
171 const char LLVMLoopVectorizeFollowupEpilogue[] =
172     "llvm.loop.vectorize.followup_epilogue";
173 /// @}
174 
175 STATISTIC(LoopsVectorized, "Number of loops vectorized");
176 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
177 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
178 
179 static cl::opt<bool> EnableEpilogueVectorization(
180     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
181     cl::desc("Enable vectorization of epilogue loops."));
182 
183 static cl::opt<unsigned> EpilogueVectorizationForceVF(
184     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
185     cl::desc("When epilogue vectorization is enabled, and a value greater than "
186              "1 is specified, forces the given VF for all applicable epilogue "
187              "loops."));
188 
189 static cl::opt<unsigned> EpilogueVectorizationMinVF(
190     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
191     cl::desc("Only loops with vectorization factor equal to or larger than "
192              "the specified value are considered for epilogue vectorization."));
193 
194 /// Loops with a known constant trip count below this number are vectorized only
195 /// if no scalar iteration overheads are incurred.
196 static cl::opt<unsigned> TinyTripCountVectorThreshold(
197     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
198     cl::desc("Loops with a constant trip count that is smaller than this "
199              "value are vectorized only if no scalar iteration overheads "
200              "are incurred."));
201 
202 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
203     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
204     cl::desc("The maximum allowed number of runtime memory checks with a "
205              "vectorize(enable) pragma."));
206 
207 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
208 // that predication is preferred, and this lists all options. I.e., the
209 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
210 // and predicate the instructions accordingly. If tail-folding fails, there are
211 // different fallback strategies depending on these values:
212 namespace PreferPredicateTy {
213   enum Option {
214     ScalarEpilogue = 0,
215     PredicateElseScalarEpilogue,
216     PredicateOrDontVectorize
217   };
218 } // namespace PreferPredicateTy
219 
220 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
221     "prefer-predicate-over-epilogue",
222     cl::init(PreferPredicateTy::ScalarEpilogue),
223     cl::Hidden,
224     cl::desc("Tail-folding and predication preferences over creating a scalar "
225              "epilogue loop."),
226     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
227                          "scalar-epilogue",
228                          "Don't tail-predicate loops, create scalar epilogue"),
229               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
230                          "predicate-else-scalar-epilogue",
231                          "prefer tail-folding, create scalar epilogue if tail "
232                          "folding fails."),
233               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
234                          "predicate-dont-vectorize",
235                          "prefers tail-folding, don't attempt vectorization if "
236                          "tail-folding fails.")));
237 
238 static cl::opt<bool> MaximizeBandwidth(
239     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
240     cl::desc("Maximize bandwidth when selecting vectorization factor which "
241              "will be determined by the smallest type in loop."));
242 
243 static cl::opt<bool> EnableInterleavedMemAccesses(
244     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
245     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
246 
247 /// An interleave-group may need masking if it resides in a block that needs
248 /// predication, or in order to mask away gaps.
249 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
250     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
251     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
252 
253 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
254     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
255     cl::desc("We don't interleave loops with a estimated constant trip count "
256              "below this number"));
257 
258 static cl::opt<unsigned> ForceTargetNumScalarRegs(
259     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of scalar registers."));
261 
262 static cl::opt<unsigned> ForceTargetNumVectorRegs(
263     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's number of vector registers."));
265 
266 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
267     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
268     cl::desc("A flag that overrides the target's max interleave factor for "
269              "scalar loops."));
270 
271 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
272     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
273     cl::desc("A flag that overrides the target's max interleave factor for "
274              "vectorized loops."));
275 
276 static cl::opt<unsigned> ForceTargetInstructionCost(
277     "force-target-instruction-cost", cl::init(0), cl::Hidden,
278     cl::desc("A flag that overrides the target's expected cost for "
279              "an instruction to a single constant value. Mostly "
280              "useful for getting consistent testing."));
281 
282 static cl::opt<bool> ForceTargetSupportsScalableVectors(
283     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
284     cl::desc(
285         "Pretend that scalable vectors are supported, even if the target does "
286         "not support them. This flag should only be used for testing."));
287 
288 static cl::opt<unsigned> SmallLoopCost(
289     "small-loop-cost", cl::init(20), cl::Hidden,
290     cl::desc(
291         "The cost of a loop that is considered 'small' by the interleaver."));
292 
293 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
294     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
295     cl::desc("Enable the use of the block frequency analysis to access PGO "
296              "heuristics minimizing code growth in cold regions and being more "
297              "aggressive in hot regions."));
298 
299 // Runtime interleave loops for load/store throughput.
300 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
301     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
302     cl::desc(
303         "Enable runtime interleaving until load/store ports are saturated"));
304 
305 /// Interleave small loops with scalar reductions.
306 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
307     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
308     cl::desc("Enable interleaving for loops with small iteration counts that "
309              "contain scalar reductions to expose ILP."));
310 
311 /// The number of stores in a loop that are allowed to need predication.
312 static cl::opt<unsigned> NumberOfStoresToPredicate(
313     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
314     cl::desc("Max number of stores to be predicated behind an if."));
315 
316 static cl::opt<bool> EnableIndVarRegisterHeur(
317     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
318     cl::desc("Count the induction variable only once when interleaving"));
319 
320 static cl::opt<bool> EnableCondStoresVectorization(
321     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
322     cl::desc("Enable if predication of stores during vectorization."));
323 
324 static cl::opt<unsigned> MaxNestedScalarReductionIC(
325     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
326     cl::desc("The maximum interleave count to use when interleaving a scalar "
327              "reduction in a nested loop."));
328 
329 static cl::opt<bool>
330     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
331                            cl::Hidden,
332                            cl::desc("Prefer in-loop vector reductions, "
333                                     "overriding the targets preference."));
334 
335 cl::opt<bool> ForceOrderedReductions(
336     "force-ordered-reductions", cl::init(false), cl::Hidden,
337     cl::desc("Enable the vectorisation of loops with in-order (strict) "
338              "FP reductions"));
339 
340 static cl::opt<bool> PreferPredicatedReductionSelect(
341     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
342     cl::desc(
343         "Prefer predicating a reduction operation over an after loop select."));
344 
345 cl::opt<bool> EnableVPlanNativePath(
346     "enable-vplan-native-path", cl::init(false), cl::Hidden,
347     cl::desc("Enable VPlan-native vectorization path with "
348              "support for outer loop vectorization."));
349 
350 // FIXME: Remove this switch once we have divergence analysis. Currently we
351 // assume divergent non-backedge branches when this switch is true.
352 cl::opt<bool> EnableVPlanPredication(
353     "enable-vplan-predication", cl::init(false), cl::Hidden,
354     cl::desc("Enable VPlan-native vectorization path predicator with "
355              "support for outer loop vectorization."));
356 
357 // This flag enables the stress testing of the VPlan H-CFG construction in the
358 // VPlan-native vectorization path. It must be used in conjuction with
359 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
360 // verification of the H-CFGs built.
361 static cl::opt<bool> VPlanBuildStressTest(
362     "vplan-build-stress-test", cl::init(false), cl::Hidden,
363     cl::desc(
364         "Build VPlan for every supported loop nest in the function and bail "
365         "out right after the build (stress test the VPlan H-CFG construction "
366         "in the VPlan-native vectorization path)."));
367 
368 cl::opt<bool> llvm::EnableLoopInterleaving(
369     "interleave-loops", cl::init(true), cl::Hidden,
370     cl::desc("Enable loop interleaving in Loop vectorization passes"));
371 cl::opt<bool> llvm::EnableLoopVectorization(
372     "vectorize-loops", cl::init(true), cl::Hidden,
373     cl::desc("Run the Loop vectorization passes"));
374 
375 cl::opt<bool> PrintVPlansInDotFormat(
376     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
377     cl::desc("Use dot format instead of plain text when dumping VPlans"));
378 
379 /// A helper function that returns true if the given type is irregular. The
380 /// type is irregular if its allocated size doesn't equal the store size of an
381 /// element of the corresponding vector type.
382 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
383   // Determine if an array of N elements of type Ty is "bitcast compatible"
384   // with a <N x Ty> vector.
385   // This is only true if there is no padding between the array elements.
386   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
387 }
388 
389 /// A helper function that returns the reciprocal of the block probability of
390 /// predicated blocks. If we return X, we are assuming the predicated block
391 /// will execute once for every X iterations of the loop header.
392 ///
393 /// TODO: We should use actual block probability here, if available. Currently,
394 ///       we always assume predicated blocks have a 50% chance of executing.
395 static unsigned getReciprocalPredBlockProb() { return 2; }
396 
397 /// A helper function that returns an integer or floating-point constant with
398 /// value C.
399 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
400   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
401                            : ConstantFP::get(Ty, C);
402 }
403 
404 /// Returns "best known" trip count for the specified loop \p L as defined by
405 /// the following procedure:
406 ///   1) Returns exact trip count if it is known.
407 ///   2) Returns expected trip count according to profile data if any.
408 ///   3) Returns upper bound estimate if it is known.
409 ///   4) Returns None if all of the above failed.
410 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
411   // Check if exact trip count is known.
412   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
413     return ExpectedTC;
414 
415   // Check if there is an expected trip count available from profile data.
416   if (LoopVectorizeWithBlockFrequency)
417     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
418       return EstimatedTC;
419 
420   // Check if upper bound estimate is known.
421   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
422     return ExpectedTC;
423 
424   return None;
425 }
426 
427 // Forward declare GeneratedRTChecks.
428 class GeneratedRTChecks;
429 
430 namespace llvm {
431 
432 /// InnerLoopVectorizer vectorizes loops which contain only one basic
433 /// block to a specified vectorization factor (VF).
434 /// This class performs the widening of scalars into vectors, or multiple
435 /// scalars. This class also implements the following features:
436 /// * It inserts an epilogue loop for handling loops that don't have iteration
437 ///   counts that are known to be a multiple of the vectorization factor.
438 /// * It handles the code generation for reduction variables.
439 /// * Scalarization (implementation using scalars) of un-vectorizable
440 ///   instructions.
441 /// InnerLoopVectorizer does not perform any vectorization-legality
442 /// checks, and relies on the caller to check for the different legality
443 /// aspects. The InnerLoopVectorizer relies on the
444 /// LoopVectorizationLegality class to provide information about the induction
445 /// and reduction variables that were found to a given vectorization factor.
446 class InnerLoopVectorizer {
447 public:
448   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
449                       LoopInfo *LI, DominatorTree *DT,
450                       const TargetLibraryInfo *TLI,
451                       const TargetTransformInfo *TTI, AssumptionCache *AC,
452                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
453                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
454                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
455                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
456       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
457         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
458         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
459         PSI(PSI), RTChecks(RTChecks) {
460     // Query this against the original loop and save it here because the profile
461     // of the original loop header may change as the transformation happens.
462     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
463         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
464   }
465 
466   virtual ~InnerLoopVectorizer() = default;
467 
468   /// Create a new empty loop that will contain vectorized instructions later
469   /// on, while the old loop will be used as the scalar remainder. Control flow
470   /// is generated around the vectorized (and scalar epilogue) loops consisting
471   /// of various checks and bypasses. Return the pre-header block of the new
472   /// loop.
473   /// In the case of epilogue vectorization, this function is overriden to
474   /// handle the more complex control flow around the loops.
475   virtual BasicBlock *createVectorizedLoopSkeleton();
476 
477   /// Widen a single instruction within the innermost loop.
478   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
479                         VPTransformState &State);
480 
481   /// Widen a single call instruction within the innermost loop.
482   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
483                             VPTransformState &State);
484 
485   /// Widen a single select instruction within the innermost loop.
486   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
487                               bool InvariantCond, VPTransformState &State);
488 
489   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
490   void fixVectorizedLoop(VPTransformState &State);
491 
492   // Return true if any runtime check is added.
493   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
494 
495   /// A type for vectorized values in the new loop. Each value from the
496   /// original loop, when vectorized, is represented by UF vector values in the
497   /// new unrolled loop, where UF is the unroll factor.
498   using VectorParts = SmallVector<Value *, 2>;
499 
500   /// Vectorize a single GetElementPtrInst based on information gathered and
501   /// decisions taken during planning.
502   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
503                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
504                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask);
549 
550   /// Set the debug location in the builder \p Ptr using the debug location in
551   /// \p V. If \p Ptr is None then it uses the class member's Builder.
552   void setDebugLocFromInst(const Value *V,
553                            Optional<IRBuilder<> *> CustomBuilder = None);
554 
555   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
556   void fixNonInductionPHIs(VPTransformState &State);
557 
558   /// Returns true if the reordering of FP operations is not allowed, but we are
559   /// able to vectorize with strict in-order reductions for the given RdxDesc.
560   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
561 
562   /// Create a broadcast instruction. This method generates a broadcast
563   /// instruction (shuffle) for loop invariant values and for the induction
564   /// value. If this is the induction variable then we extend it to N, N+1, ...
565   /// this is needed because each iteration in the loop corresponds to a SIMD
566   /// element.
567   virtual Value *getBroadcastInstrs(Value *V);
568 
569 protected:
570   friend class LoopVectorizationPlanner;
571 
572   /// A small list of PHINodes.
573   using PhiVector = SmallVector<PHINode *, 4>;
574 
575   /// A type for scalarized values in the new loop. Each value from the
576   /// original loop, when scalarized, is represented by UF x VF scalar values
577   /// in the new unrolled loop, where UF is the unroll factor and VF is the
578   /// vectorization factor.
579   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
580 
581   /// Set up the values of the IVs correctly when exiting the vector loop.
582   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
583                     Value *CountRoundDown, Value *EndValue,
584                     BasicBlock *MiddleBlock);
585 
586   /// Create a new induction variable inside L.
587   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
588                                    Value *Step, Instruction *DL);
589 
590   /// Handle all cross-iteration phis in the header.
591   void fixCrossIterationPHIs(VPTransformState &State);
592 
593   /// Create the exit value of first order recurrences in the middle block and
594   /// update their users.
595   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
596 
597   /// Fix a reduction cross-iteration phi. This is the second phase of
598   /// vectorizing this phi node.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
625                                Instruction::BinaryOps Opcode =
626                                Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Allow subclasses to override and print debug traces before/after vplan
757   /// execution, when trace information is requested.
758   virtual void printDebugTracesAtStart(){};
759   virtual void printDebugTracesAtEnd(){};
760 
761   /// The original loop.
762   Loop *OrigLoop;
763 
764   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
765   /// dynamic knowledge to simplify SCEV expressions and converts them to a
766   /// more usable form.
767   PredicatedScalarEvolution &PSE;
768 
769   /// Loop Info.
770   LoopInfo *LI;
771 
772   /// Dominator Tree.
773   DominatorTree *DT;
774 
775   /// Alias Analysis.
776   AAResults *AA;
777 
778   /// Target Library Info.
779   const TargetLibraryInfo *TLI;
780 
781   /// Target Transform Info.
782   const TargetTransformInfo *TTI;
783 
784   /// Assumption Cache.
785   AssumptionCache *AC;
786 
787   /// Interface to emit optimization remarks.
788   OptimizationRemarkEmitter *ORE;
789 
790   /// LoopVersioning.  It's only set up (non-null) if memchecks were
791   /// used.
792   ///
793   /// This is currently only used to add no-alias metadata based on the
794   /// memchecks.  The actually versioning is performed manually.
795   std::unique_ptr<LoopVersioning> LVer;
796 
797   /// The vectorization SIMD factor to use. Each vector will have this many
798   /// vector elements.
799   ElementCount VF;
800 
801   /// The vectorization unroll factor to use. Each scalar is vectorized to this
802   /// many different vector instructions.
803   unsigned UF;
804 
805   /// The builder that we use
806   IRBuilder<> Builder;
807 
808   // --- Vectorization state ---
809 
810   /// The vector-loop preheader.
811   BasicBlock *LoopVectorPreHeader;
812 
813   /// The scalar-loop preheader.
814   BasicBlock *LoopScalarPreHeader;
815 
816   /// Middle Block between the vector and the scalar.
817   BasicBlock *LoopMiddleBlock;
818 
819   /// The unique ExitBlock of the scalar loop if one exists.  Note that
820   /// there can be multiple exiting edges reaching this block.
821   BasicBlock *LoopExitBlock;
822 
823   /// The vector loop body.
824   BasicBlock *LoopVectorBody;
825 
826   /// The scalar loop body.
827   BasicBlock *LoopScalarBody;
828 
829   /// A list of all bypass blocks. The first block is the entry of the loop.
830   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
831 
832   /// The new Induction variable which was added to the new block.
833   PHINode *Induction = nullptr;
834 
835   /// The induction variable of the old basic block.
836   PHINode *OldInduction = nullptr;
837 
838   /// Store instructions that were predicated.
839   SmallVector<Instruction *, 4> PredicatedInstructions;
840 
841   /// Trip count of the original loop.
842   Value *TripCount = nullptr;
843 
844   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
845   Value *VectorTripCount = nullptr;
846 
847   /// The legality analysis.
848   LoopVectorizationLegality *Legal;
849 
850   /// The profitablity analysis.
851   LoopVectorizationCostModel *Cost;
852 
853   // Record whether runtime checks are added.
854   bool AddedSafetyChecks = false;
855 
856   // Holds the end values for each induction variable. We save the end values
857   // so we can later fix-up the external users of the induction variables.
858   DenseMap<PHINode *, Value *> IVEndValues;
859 
860   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
861   // fixed up at the end of vector code generation.
862   SmallVector<PHINode *, 8> OrigPHIsToFix;
863 
864   /// BFI and PSI are used to check for profile guided size optimizations.
865   BlockFrequencyInfo *BFI;
866   ProfileSummaryInfo *PSI;
867 
868   // Whether this loop should be optimized for size based on profile guided size
869   // optimizatios.
870   bool OptForSizeBasedOnProfile;
871 
872   /// Structure to hold information about generated runtime checks, responsible
873   /// for cleaning the checks, if vectorization turns out unprofitable.
874   GeneratedRTChecks &RTChecks;
875 };
876 
877 class InnerLoopUnroller : public InnerLoopVectorizer {
878 public:
879   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
880                     LoopInfo *LI, DominatorTree *DT,
881                     const TargetLibraryInfo *TLI,
882                     const TargetTransformInfo *TTI, AssumptionCache *AC,
883                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
884                     LoopVectorizationLegality *LVL,
885                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
886                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
887       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
888                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
889                             BFI, PSI, Check) {}
890 
891 private:
892   Value *getBroadcastInstrs(Value *V) override;
893   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
894                        Instruction::BinaryOps Opcode =
895                        Instruction::BinaryOpsEnd) override;
896   Value *reverseVector(Value *Vec) override;
897 };
898 
899 /// Encapsulate information regarding vectorization of a loop and its epilogue.
900 /// This information is meant to be updated and used across two stages of
901 /// epilogue vectorization.
902 struct EpilogueLoopVectorizationInfo {
903   ElementCount MainLoopVF = ElementCount::getFixed(0);
904   unsigned MainLoopUF = 0;
905   ElementCount EpilogueVF = ElementCount::getFixed(0);
906   unsigned EpilogueUF = 0;
907   BasicBlock *MainLoopIterationCountCheck = nullptr;
908   BasicBlock *EpilogueIterationCountCheck = nullptr;
909   BasicBlock *SCEVSafetyCheck = nullptr;
910   BasicBlock *MemSafetyCheck = nullptr;
911   Value *TripCount = nullptr;
912   Value *VectorTripCount = nullptr;
913 
914   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
915                                 unsigned EUF)
916       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
917         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
918     assert(EUF == 1 &&
919            "A high UF for the epilogue loop is likely not beneficial.");
920   }
921 };
922 
923 /// An extension of the inner loop vectorizer that creates a skeleton for a
924 /// vectorized loop that has its epilogue (residual) also vectorized.
925 /// The idea is to run the vplan on a given loop twice, firstly to setup the
926 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
927 /// from the first step and vectorize the epilogue.  This is achieved by
928 /// deriving two concrete strategy classes from this base class and invoking
929 /// them in succession from the loop vectorizer planner.
930 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
931 public:
932   InnerLoopAndEpilogueVectorizer(
933       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
934       DominatorTree *DT, const TargetLibraryInfo *TLI,
935       const TargetTransformInfo *TTI, AssumptionCache *AC,
936       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
937       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
938       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
939       GeneratedRTChecks &Checks)
940       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
941                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
942                             Checks),
943         EPI(EPI) {}
944 
945   // Override this function to handle the more complex control flow around the
946   // three loops.
947   BasicBlock *createVectorizedLoopSkeleton() final override {
948     return createEpilogueVectorizedLoopSkeleton();
949   }
950 
951   /// The interface for creating a vectorized skeleton using one of two
952   /// different strategies, each corresponding to one execution of the vplan
953   /// as described above.
954   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
955 
956   /// Holds and updates state information required to vectorize the main loop
957   /// and its epilogue in two separate passes. This setup helps us avoid
958   /// regenerating and recomputing runtime safety checks. It also helps us to
959   /// shorten the iteration-count-check path length for the cases where the
960   /// iteration count of the loop is so small that the main vector loop is
961   /// completely skipped.
962   EpilogueLoopVectorizationInfo &EPI;
963 };
964 
965 /// A specialized derived class of inner loop vectorizer that performs
966 /// vectorization of *main* loops in the process of vectorizing loops and their
967 /// epilogues.
968 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
969 public:
970   EpilogueVectorizerMainLoop(
971       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
972       DominatorTree *DT, const TargetLibraryInfo *TLI,
973       const TargetTransformInfo *TTI, AssumptionCache *AC,
974       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
975       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
976       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
977       GeneratedRTChecks &Check)
978       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
979                                        EPI, LVL, CM, BFI, PSI, Check) {}
980   /// Implements the interface for creating a vectorized skeleton using the
981   /// *main loop* strategy (ie the first pass of vplan execution).
982   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
983 
984 protected:
985   /// Emits an iteration count bypass check once for the main loop (when \p
986   /// ForEpilogue is false) and once for the epilogue loop (when \p
987   /// ForEpilogue is true).
988   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
989                                              bool ForEpilogue);
990   void printDebugTracesAtStart() override;
991   void printDebugTracesAtEnd() override;
992 };
993 
994 // A specialized derived class of inner loop vectorizer that performs
995 // vectorization of *epilogue* loops in the process of vectorizing loops and
996 // their epilogues.
997 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
998 public:
999   EpilogueVectorizerEpilogueLoop(
1000       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1001       DominatorTree *DT, const TargetLibraryInfo *TLI,
1002       const TargetTransformInfo *TTI, AssumptionCache *AC,
1003       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1004       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1005       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1006       GeneratedRTChecks &Checks)
1007       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1008                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1009   /// Implements the interface for creating a vectorized skeleton using the
1010   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1011   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1012 
1013 protected:
1014   /// Emits an iteration count bypass check after the main vector loop has
1015   /// finished to see if there are any iterations left to execute by either
1016   /// the vector epilogue or the scalar epilogue.
1017   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1018                                                       BasicBlock *Bypass,
1019                                                       BasicBlock *Insert);
1020   void printDebugTracesAtStart() override;
1021   void printDebugTracesAtEnd() override;
1022 };
1023 } // end namespace llvm
1024 
1025 /// Look for a meaningful debug location on the instruction or it's
1026 /// operands.
1027 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1028   if (!I)
1029     return I;
1030 
1031   DebugLoc Empty;
1032   if (I->getDebugLoc() != Empty)
1033     return I;
1034 
1035   for (Use &Op : I->operands()) {
1036     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1037       if (OpInst->getDebugLoc() != Empty)
1038         return OpInst;
1039   }
1040 
1041   return I;
1042 }
1043 
1044 void InnerLoopVectorizer::setDebugLocFromInst(
1045     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1046   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1047   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1048     const DILocation *DIL = Inst->getDebugLoc();
1049 
1050     // When a FSDiscriminator is enabled, we don't need to add the multiply
1051     // factors to the discriminators.
1052     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1053         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1054       // FIXME: For scalable vectors, assume vscale=1.
1055       auto NewDIL =
1056           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1057       if (NewDIL)
1058         B->SetCurrentDebugLocation(NewDIL.getValue());
1059       else
1060         LLVM_DEBUG(dbgs()
1061                    << "Failed to create new discriminator: "
1062                    << DIL->getFilename() << " Line: " << DIL->getLine());
1063     } else
1064       B->SetCurrentDebugLocation(DIL);
1065   } else
1066     B->SetCurrentDebugLocation(DebugLoc());
1067 }
1068 
1069 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1070 /// is passed, the message relates to that particular instruction.
1071 #ifndef NDEBUG
1072 static void debugVectorizationMessage(const StringRef Prefix,
1073                                       const StringRef DebugMsg,
1074                                       Instruction *I) {
1075   dbgs() << "LV: " << Prefix << DebugMsg;
1076   if (I != nullptr)
1077     dbgs() << " " << *I;
1078   else
1079     dbgs() << '.';
1080   dbgs() << '\n';
1081 }
1082 #endif
1083 
1084 /// Create an analysis remark that explains why vectorization failed
1085 ///
1086 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1087 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1088 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1089 /// the location of the remark.  \return the remark object that can be
1090 /// streamed to.
1091 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1092     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1093   Value *CodeRegion = TheLoop->getHeader();
1094   DebugLoc DL = TheLoop->getStartLoc();
1095 
1096   if (I) {
1097     CodeRegion = I->getParent();
1098     // If there is no debug location attached to the instruction, revert back to
1099     // using the loop's.
1100     if (I->getDebugLoc())
1101       DL = I->getDebugLoc();
1102   }
1103 
1104   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1105 }
1106 
1107 /// Return a value for Step multiplied by VF.
1108 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1109   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1110   Constant *StepVal = ConstantInt::get(
1111       Step->getType(),
1112       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1113   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1114 }
1115 
1116 namespace llvm {
1117 
1118 /// Return the runtime value for VF.
1119 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1120   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1121   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1122 }
1123 
1124 void reportVectorizationFailure(const StringRef DebugMsg,
1125                                 const StringRef OREMsg, const StringRef ORETag,
1126                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1127                                 Instruction *I) {
1128   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1129   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1130   ORE->emit(
1131       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1132       << "loop not vectorized: " << OREMsg);
1133 }
1134 
1135 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1136                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1137                              Instruction *I) {
1138   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1139   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1140   ORE->emit(
1141       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1142       << Msg);
1143 }
1144 
1145 } // end namespace llvm
1146 
1147 #ifndef NDEBUG
1148 /// \return string containing a file name and a line # for the given loop.
1149 static std::string getDebugLocString(const Loop *L) {
1150   std::string Result;
1151   if (L) {
1152     raw_string_ostream OS(Result);
1153     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1154       LoopDbgLoc.print(OS);
1155     else
1156       // Just print the module name.
1157       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1158     OS.flush();
1159   }
1160   return Result;
1161 }
1162 #endif
1163 
1164 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1165                                          const Instruction *Orig) {
1166   // If the loop was versioned with memchecks, add the corresponding no-alias
1167   // metadata.
1168   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1169     LVer->annotateInstWithNoAlias(To, Orig);
1170 }
1171 
1172 void InnerLoopVectorizer::addMetadata(Instruction *To,
1173                                       Instruction *From) {
1174   propagateMetadata(To, From);
1175   addNewMetadata(To, From);
1176 }
1177 
1178 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1179                                       Instruction *From) {
1180   for (Value *V : To) {
1181     if (Instruction *I = dyn_cast<Instruction>(V))
1182       addMetadata(I, From);
1183   }
1184 }
1185 
1186 namespace llvm {
1187 
1188 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1189 // lowered.
1190 enum ScalarEpilogueLowering {
1191 
1192   // The default: allowing scalar epilogues.
1193   CM_ScalarEpilogueAllowed,
1194 
1195   // Vectorization with OptForSize: don't allow epilogues.
1196   CM_ScalarEpilogueNotAllowedOptSize,
1197 
1198   // A special case of vectorisation with OptForSize: loops with a very small
1199   // trip count are considered for vectorization under OptForSize, thereby
1200   // making sure the cost of their loop body is dominant, free of runtime
1201   // guards and scalar iteration overheads.
1202   CM_ScalarEpilogueNotAllowedLowTripLoop,
1203 
1204   // Loop hint predicate indicating an epilogue is undesired.
1205   CM_ScalarEpilogueNotNeededUsePredicate,
1206 
1207   // Directive indicating we must either tail fold or not vectorize
1208   CM_ScalarEpilogueNotAllowedUsePredicate
1209 };
1210 
1211 /// ElementCountComparator creates a total ordering for ElementCount
1212 /// for the purposes of using it in a set structure.
1213 struct ElementCountComparator {
1214   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1215     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1216            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1217   }
1218 };
1219 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1220 
1221 /// LoopVectorizationCostModel - estimates the expected speedups due to
1222 /// vectorization.
1223 /// In many cases vectorization is not profitable. This can happen because of
1224 /// a number of reasons. In this class we mainly attempt to predict the
1225 /// expected speedup/slowdowns due to the supported instruction set. We use the
1226 /// TargetTransformInfo to query the different backends for the cost of
1227 /// different operations.
1228 class LoopVectorizationCostModel {
1229 public:
1230   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1231                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1232                              LoopVectorizationLegality *Legal,
1233                              const TargetTransformInfo &TTI,
1234                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1235                              AssumptionCache *AC,
1236                              OptimizationRemarkEmitter *ORE, const Function *F,
1237                              const LoopVectorizeHints *Hints,
1238                              InterleavedAccessInfo &IAI)
1239       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1240         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1241         Hints(Hints), InterleaveInfo(IAI) {}
1242 
1243   /// \return An upper bound for the vectorization factors (both fixed and
1244   /// scalable). If the factors are 0, vectorization and interleaving should be
1245   /// avoided up front.
1246   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1247 
1248   /// \return True if runtime checks are required for vectorization, and false
1249   /// otherwise.
1250   bool runtimeChecksRequired();
1251 
1252   /// \return The most profitable vectorization factor and the cost of that VF.
1253   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1254   /// then this vectorization factor will be selected if vectorization is
1255   /// possible.
1256   VectorizationFactor
1257   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1258 
1259   VectorizationFactor
1260   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1261                                     const LoopVectorizationPlanner &LVP);
1262 
1263   /// Setup cost-based decisions for user vectorization factor.
1264   /// \return true if the UserVF is a feasible VF to be chosen.
1265   bool selectUserVectorizationFactor(ElementCount UserVF) {
1266     collectUniformsAndScalars(UserVF);
1267     collectInstsToScalarize(UserVF);
1268     return expectedCost(UserVF).first.isValid();
1269   }
1270 
1271   /// \return The size (in bits) of the smallest and widest types in the code
1272   /// that needs to be vectorized. We ignore values that remain scalar such as
1273   /// 64 bit loop indices.
1274   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1275 
1276   /// \return The desired interleave count.
1277   /// If interleave count has been specified by metadata it will be returned.
1278   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1279   /// are the selected vectorization factor and the cost of the selected VF.
1280   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1281 
1282   /// Memory access instruction may be vectorized in more than one way.
1283   /// Form of instruction after vectorization depends on cost.
1284   /// This function takes cost-based decisions for Load/Store instructions
1285   /// and collects them in a map. This decisions map is used for building
1286   /// the lists of loop-uniform and loop-scalar instructions.
1287   /// The calculated cost is saved with widening decision in order to
1288   /// avoid redundant calculations.
1289   void setCostBasedWideningDecision(ElementCount VF);
1290 
1291   /// A struct that represents some properties of the register usage
1292   /// of a loop.
1293   struct RegisterUsage {
1294     /// Holds the number of loop invariant values that are used in the loop.
1295     /// The key is ClassID of target-provided register class.
1296     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1297     /// Holds the maximum number of concurrent live intervals in the loop.
1298     /// The key is ClassID of target-provided register class.
1299     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1300   };
1301 
1302   /// \return Returns information about the register usages of the loop for the
1303   /// given vectorization factors.
1304   SmallVector<RegisterUsage, 8>
1305   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1306 
1307   /// Collect values we want to ignore in the cost model.
1308   void collectValuesToIgnore();
1309 
1310   /// Collect all element types in the loop for which widening is needed.
1311   void collectElementTypesForWidening();
1312 
1313   /// Split reductions into those that happen in the loop, and those that happen
1314   /// outside. In loop reductions are collected into InLoopReductionChains.
1315   void collectInLoopReductions();
1316 
1317   /// Returns true if we should use strict in-order reductions for the given
1318   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1319   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1320   /// of FP operations.
1321   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1322     return ForceOrderedReductions && !Hints->allowReordering() &&
1323            RdxDesc.isOrdered();
1324   }
1325 
1326   /// \returns The smallest bitwidth each instruction can be represented with.
1327   /// The vector equivalents of these instructions should be truncated to this
1328   /// type.
1329   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1330     return MinBWs;
1331   }
1332 
1333   /// \returns True if it is more profitable to scalarize instruction \p I for
1334   /// vectorization factor \p VF.
1335   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() &&
1337            "Profitable to scalarize relevant only for VF > 1.");
1338 
1339     // Cost model is not run in the VPlan-native path - return conservative
1340     // result until this changes.
1341     if (EnableVPlanNativePath)
1342       return false;
1343 
1344     auto Scalars = InstsToScalarize.find(VF);
1345     assert(Scalars != InstsToScalarize.end() &&
1346            "VF not yet analyzed for scalarization profitability");
1347     return Scalars->second.find(I) != Scalars->second.end();
1348   }
1349 
1350   /// Returns true if \p I is known to be uniform after vectorization.
1351   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1352     if (VF.isScalar())
1353       return true;
1354 
1355     // Cost model is not run in the VPlan-native path - return conservative
1356     // result until this changes.
1357     if (EnableVPlanNativePath)
1358       return false;
1359 
1360     auto UniformsPerVF = Uniforms.find(VF);
1361     assert(UniformsPerVF != Uniforms.end() &&
1362            "VF not yet analyzed for uniformity");
1363     return UniformsPerVF->second.count(I);
1364   }
1365 
1366   /// Returns true if \p I is known to be scalar after vectorization.
1367   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1368     if (VF.isScalar())
1369       return true;
1370 
1371     // Cost model is not run in the VPlan-native path - return conservative
1372     // result until this changes.
1373     if (EnableVPlanNativePath)
1374       return false;
1375 
1376     auto ScalarsPerVF = Scalars.find(VF);
1377     assert(ScalarsPerVF != Scalars.end() &&
1378            "Scalar values are not calculated for VF");
1379     return ScalarsPerVF->second.count(I);
1380   }
1381 
1382   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1383   /// for vectorization factor \p VF.
1384   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1385     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1386            !isProfitableToScalarize(I, VF) &&
1387            !isScalarAfterVectorization(I, VF);
1388   }
1389 
1390   /// Decision that was taken during cost calculation for memory instruction.
1391   enum InstWidening {
1392     CM_Unknown,
1393     CM_Widen,         // For consecutive accesses with stride +1.
1394     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1395     CM_Interleave,
1396     CM_GatherScatter,
1397     CM_Scalarize
1398   };
1399 
1400   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1401   /// instruction \p I and vector width \p VF.
1402   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1403                            InstructionCost Cost) {
1404     assert(VF.isVector() && "Expected VF >=2");
1405     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1406   }
1407 
1408   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1409   /// interleaving group \p Grp and vector width \p VF.
1410   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1411                            ElementCount VF, InstWidening W,
1412                            InstructionCost Cost) {
1413     assert(VF.isVector() && "Expected VF >=2");
1414     /// Broadcast this decicion to all instructions inside the group.
1415     /// But the cost will be assigned to one instruction only.
1416     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1417       if (auto *I = Grp->getMember(i)) {
1418         if (Grp->getInsertPos() == I)
1419           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1420         else
1421           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1422       }
1423     }
1424   }
1425 
1426   /// Return the cost model decision for the given instruction \p I and vector
1427   /// width \p VF. Return CM_Unknown if this instruction did not pass
1428   /// through the cost modeling.
1429   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1430     assert(VF.isVector() && "Expected VF to be a vector VF");
1431     // Cost model is not run in the VPlan-native path - return conservative
1432     // result until this changes.
1433     if (EnableVPlanNativePath)
1434       return CM_GatherScatter;
1435 
1436     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1437     auto Itr = WideningDecisions.find(InstOnVF);
1438     if (Itr == WideningDecisions.end())
1439       return CM_Unknown;
1440     return Itr->second.first;
1441   }
1442 
1443   /// Return the vectorization cost for the given instruction \p I and vector
1444   /// width \p VF.
1445   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1446     assert(VF.isVector() && "Expected VF >=2");
1447     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1448     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1449            "The cost is not calculated");
1450     return WideningDecisions[InstOnVF].second;
1451   }
1452 
1453   /// Return True if instruction \p I is an optimizable truncate whose operand
1454   /// is an induction variable. Such a truncate will be removed by adding a new
1455   /// induction variable with the destination type.
1456   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1457     // If the instruction is not a truncate, return false.
1458     auto *Trunc = dyn_cast<TruncInst>(I);
1459     if (!Trunc)
1460       return false;
1461 
1462     // Get the source and destination types of the truncate.
1463     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1464     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1465 
1466     // If the truncate is free for the given types, return false. Replacing a
1467     // free truncate with an induction variable would add an induction variable
1468     // update instruction to each iteration of the loop. We exclude from this
1469     // check the primary induction variable since it will need an update
1470     // instruction regardless.
1471     Value *Op = Trunc->getOperand(0);
1472     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1473       return false;
1474 
1475     // If the truncated value is not an induction variable, return false.
1476     return Legal->isInductionPhi(Op);
1477   }
1478 
1479   /// Collects the instructions to scalarize for each predicated instruction in
1480   /// the loop.
1481   void collectInstsToScalarize(ElementCount VF);
1482 
1483   /// Collect Uniform and Scalar values for the given \p VF.
1484   /// The sets depend on CM decision for Load/Store instructions
1485   /// that may be vectorized as interleave, gather-scatter or scalarized.
1486   void collectUniformsAndScalars(ElementCount VF) {
1487     // Do the analysis once.
1488     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1489       return;
1490     setCostBasedWideningDecision(VF);
1491     collectLoopUniforms(VF);
1492     collectLoopScalars(VF);
1493   }
1494 
1495   /// Returns true if the target machine supports masked store operation
1496   /// for the given \p DataType and kind of access to \p Ptr.
1497   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1498     return Legal->isConsecutivePtr(Ptr) &&
1499            TTI.isLegalMaskedStore(DataType, Alignment);
1500   }
1501 
1502   /// Returns true if the target machine supports masked load operation
1503   /// for the given \p DataType and kind of access to \p Ptr.
1504   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1505     return Legal->isConsecutivePtr(Ptr) &&
1506            TTI.isLegalMaskedLoad(DataType, Alignment);
1507   }
1508 
1509   /// Returns true if the target machine can represent \p V as a masked gather
1510   /// or scatter operation.
1511   bool isLegalGatherOrScatter(Value *V) {
1512     bool LI = isa<LoadInst>(V);
1513     bool SI = isa<StoreInst>(V);
1514     if (!LI && !SI)
1515       return false;
1516     auto *Ty = getLoadStoreType(V);
1517     Align Align = getLoadStoreAlignment(V);
1518     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1519            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1520   }
1521 
1522   /// Returns true if the target machine supports all of the reduction
1523   /// variables found for the given VF.
1524   bool canVectorizeReductions(ElementCount VF) const {
1525     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1526       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1527       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1528     }));
1529   }
1530 
1531   /// Returns true if \p I is an instruction that will be scalarized with
1532   /// predication. Such instructions include conditional stores and
1533   /// instructions that may divide by zero.
1534   /// If a non-zero VF has been calculated, we check if I will be scalarized
1535   /// predication for that VF.
1536   bool isScalarWithPredication(Instruction *I) const;
1537 
1538   // Returns true if \p I is an instruction that will be predicated either
1539   // through scalar predication or masked load/store or masked gather/scatter.
1540   // Superset of instructions that return true for isScalarWithPredication.
1541   bool isPredicatedInst(Instruction *I) {
1542     if (!blockNeedsPredication(I->getParent()))
1543       return false;
1544     // Loads and stores that need some form of masked operation are predicated
1545     // instructions.
1546     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1547       return Legal->isMaskRequired(I);
1548     return isScalarWithPredication(I);
1549   }
1550 
1551   /// Returns true if \p I is a memory instruction with consecutive memory
1552   /// access that can be widened.
1553   bool
1554   memoryInstructionCanBeWidened(Instruction *I,
1555                                 ElementCount VF = ElementCount::getFixed(1));
1556 
1557   /// Returns true if \p I is a memory instruction in an interleaved-group
1558   /// of memory accesses that can be vectorized with wide vector loads/stores
1559   /// and shuffles.
1560   bool
1561   interleavedAccessCanBeWidened(Instruction *I,
1562                                 ElementCount VF = ElementCount::getFixed(1));
1563 
1564   /// Check if \p Instr belongs to any interleaved access group.
1565   bool isAccessInterleaved(Instruction *Instr) {
1566     return InterleaveInfo.isInterleaved(Instr);
1567   }
1568 
1569   /// Get the interleaved access group that \p Instr belongs to.
1570   const InterleaveGroup<Instruction> *
1571   getInterleavedAccessGroup(Instruction *Instr) {
1572     return InterleaveInfo.getInterleaveGroup(Instr);
1573   }
1574 
1575   /// Returns true if we're required to use a scalar epilogue for at least
1576   /// the final iteration of the original loop.
1577   bool requiresScalarEpilogue(ElementCount VF) const {
1578     if (!isScalarEpilogueAllowed())
1579       return false;
1580     // If we might exit from anywhere but the latch, must run the exiting
1581     // iteration in scalar form.
1582     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1583       return true;
1584     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1585   }
1586 
1587   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1588   /// loop hint annotation.
1589   bool isScalarEpilogueAllowed() const {
1590     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1591   }
1592 
1593   /// Returns true if all loop blocks should be masked to fold tail loop.
1594   bool foldTailByMasking() const { return FoldTailByMasking; }
1595 
1596   bool blockNeedsPredication(BasicBlock *BB) const {
1597     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1598   }
1599 
1600   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1601   /// nodes to the chain of instructions representing the reductions. Uses a
1602   /// MapVector to ensure deterministic iteration order.
1603   using ReductionChainMap =
1604       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1605 
1606   /// Return the chain of instructions representing an inloop reduction.
1607   const ReductionChainMap &getInLoopReductionChains() const {
1608     return InLoopReductionChains;
1609   }
1610 
1611   /// Returns true if the Phi is part of an inloop reduction.
1612   bool isInLoopReduction(PHINode *Phi) const {
1613     return InLoopReductionChains.count(Phi);
1614   }
1615 
1616   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1617   /// with factor VF.  Return the cost of the instruction, including
1618   /// scalarization overhead if it's needed.
1619   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1620 
1621   /// Estimate cost of a call instruction CI if it were vectorized with factor
1622   /// VF. Return the cost of the instruction, including scalarization overhead
1623   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1624   /// scalarized -
1625   /// i.e. either vector version isn't available, or is too expensive.
1626   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1627                                     bool &NeedToScalarize) const;
1628 
1629   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1630   /// that of B.
1631   bool isMoreProfitable(const VectorizationFactor &A,
1632                         const VectorizationFactor &B) const;
1633 
1634   /// Invalidates decisions already taken by the cost model.
1635   void invalidateCostModelingDecisions() {
1636     WideningDecisions.clear();
1637     Uniforms.clear();
1638     Scalars.clear();
1639   }
1640 
1641 private:
1642   unsigned NumPredStores = 0;
1643 
1644   /// \return An upper bound for the vectorization factors for both
1645   /// fixed and scalable vectorization, where the minimum-known number of
1646   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1647   /// disabled or unsupported, then the scalable part will be equal to
1648   /// ElementCount::getScalable(0).
1649   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1650                                            ElementCount UserVF);
1651 
1652   /// \return the maximized element count based on the targets vector
1653   /// registers and the loop trip-count, but limited to a maximum safe VF.
1654   /// This is a helper function of computeFeasibleMaxVF.
1655   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1656   /// issue that occurred on one of the buildbots which cannot be reproduced
1657   /// without having access to the properietary compiler (see comments on
1658   /// D98509). The issue is currently under investigation and this workaround
1659   /// will be removed as soon as possible.
1660   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1661                                        unsigned SmallestType,
1662                                        unsigned WidestType,
1663                                        const ElementCount &MaxSafeVF);
1664 
1665   /// \return the maximum legal scalable VF, based on the safe max number
1666   /// of elements.
1667   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1668 
1669   /// The vectorization cost is a combination of the cost itself and a boolean
1670   /// indicating whether any of the contributing operations will actually
1671   /// operate on vector values after type legalization in the backend. If this
1672   /// latter value is false, then all operations will be scalarized (i.e. no
1673   /// vectorization has actually taken place).
1674   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1675 
1676   /// Returns the expected execution cost. The unit of the cost does
1677   /// not matter because we use the 'cost' units to compare different
1678   /// vector widths. The cost that is returned is *not* normalized by
1679   /// the factor width. If \p Invalid is not nullptr, this function
1680   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1681   /// each instruction that has an Invalid cost for the given VF.
1682   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1683   VectorizationCostTy
1684   expectedCost(ElementCount VF,
1685                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1686 
1687   /// Returns the execution time cost of an instruction for a given vector
1688   /// width. Vector width of one means scalar.
1689   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1690 
1691   /// The cost-computation logic from getInstructionCost which provides
1692   /// the vector type as an output parameter.
1693   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1694                                      Type *&VectorTy);
1695 
1696   /// Return the cost of instructions in an inloop reduction pattern, if I is
1697   /// part of that pattern.
1698   Optional<InstructionCost>
1699   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1700                           TTI::TargetCostKind CostKind);
1701 
1702   /// Calculate vectorization cost of memory instruction \p I.
1703   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for scalarized memory instruction.
1706   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for interleaving group of memory instructions.
1709   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for Gather/Scatter instruction.
1712   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1713 
1714   /// The cost computation for widening instruction \p I with consecutive
1715   /// memory access.
1716   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1717 
1718   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1719   /// Load: scalar load + broadcast.
1720   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1721   /// element)
1722   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1723 
1724   /// Estimate the overhead of scalarizing an instruction. This is a
1725   /// convenience wrapper for the type-based getScalarizationOverhead API.
1726   InstructionCost getScalarizationOverhead(Instruction *I,
1727                                            ElementCount VF) const;
1728 
1729   /// Returns whether the instruction is a load or store and will be a emitted
1730   /// as a vector operation.
1731   bool isConsecutiveLoadOrStore(Instruction *I);
1732 
1733   /// Returns true if an artificially high cost for emulated masked memrefs
1734   /// should be used.
1735   bool useEmulatedMaskMemRefHack(Instruction *I);
1736 
1737   /// Map of scalar integer values to the smallest bitwidth they can be legally
1738   /// represented as. The vector equivalents of these values should be truncated
1739   /// to this type.
1740   MapVector<Instruction *, uint64_t> MinBWs;
1741 
1742   /// A type representing the costs for instructions if they were to be
1743   /// scalarized rather than vectorized. The entries are Instruction-Cost
1744   /// pairs.
1745   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1746 
1747   /// A set containing all BasicBlocks that are known to present after
1748   /// vectorization as a predicated block.
1749   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1750 
1751   /// Records whether it is allowed to have the original scalar loop execute at
1752   /// least once. This may be needed as a fallback loop in case runtime
1753   /// aliasing/dependence checks fail, or to handle the tail/remainder
1754   /// iterations when the trip count is unknown or doesn't divide by the VF,
1755   /// or as a peel-loop to handle gaps in interleave-groups.
1756   /// Under optsize and when the trip count is very small we don't allow any
1757   /// iterations to execute in the scalar loop.
1758   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1759 
1760   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1761   bool FoldTailByMasking = false;
1762 
1763   /// A map holding scalar costs for different vectorization factors. The
1764   /// presence of a cost for an instruction in the mapping indicates that the
1765   /// instruction will be scalarized when vectorizing with the associated
1766   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1767   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1768 
1769   /// Holds the instructions known to be uniform after vectorization.
1770   /// The data is collected per VF.
1771   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1772 
1773   /// Holds the instructions known to be scalar after vectorization.
1774   /// The data is collected per VF.
1775   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1776 
1777   /// Holds the instructions (address computations) that are forced to be
1778   /// scalarized.
1779   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1780 
1781   /// PHINodes of the reductions that should be expanded in-loop along with
1782   /// their associated chains of reduction operations, in program order from top
1783   /// (PHI) to bottom
1784   ReductionChainMap InLoopReductionChains;
1785 
1786   /// A Map of inloop reduction operations and their immediate chain operand.
1787   /// FIXME: This can be removed once reductions can be costed correctly in
1788   /// vplan. This was added to allow quick lookup to the inloop operations,
1789   /// without having to loop through InLoopReductionChains.
1790   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1791 
1792   /// Returns the expected difference in cost from scalarizing the expression
1793   /// feeding a predicated instruction \p PredInst. The instructions to
1794   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1795   /// non-negative return value implies the expression will be scalarized.
1796   /// Currently, only single-use chains are considered for scalarization.
1797   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1798                               ElementCount VF);
1799 
1800   /// Collect the instructions that are uniform after vectorization. An
1801   /// instruction is uniform if we represent it with a single scalar value in
1802   /// the vectorized loop corresponding to each vector iteration. Examples of
1803   /// uniform instructions include pointer operands of consecutive or
1804   /// interleaved memory accesses. Note that although uniformity implies an
1805   /// instruction will be scalar, the reverse is not true. In general, a
1806   /// scalarized instruction will be represented by VF scalar values in the
1807   /// vectorized loop, each corresponding to an iteration of the original
1808   /// scalar loop.
1809   void collectLoopUniforms(ElementCount VF);
1810 
1811   /// Collect the instructions that are scalar after vectorization. An
1812   /// instruction is scalar if it is known to be uniform or will be scalarized
1813   /// during vectorization. Non-uniform scalarized instructions will be
1814   /// represented by VF values in the vectorized loop, each corresponding to an
1815   /// iteration of the original scalar loop.
1816   void collectLoopScalars(ElementCount VF);
1817 
1818   /// Keeps cost model vectorization decision and cost for instructions.
1819   /// Right now it is used for memory instructions only.
1820   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1821                                 std::pair<InstWidening, InstructionCost>>;
1822 
1823   DecisionList WideningDecisions;
1824 
1825   /// Returns true if \p V is expected to be vectorized and it needs to be
1826   /// extracted.
1827   bool needsExtract(Value *V, ElementCount VF) const {
1828     Instruction *I = dyn_cast<Instruction>(V);
1829     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1830         TheLoop->isLoopInvariant(I))
1831       return false;
1832 
1833     // Assume we can vectorize V (and hence we need extraction) if the
1834     // scalars are not computed yet. This can happen, because it is called
1835     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1836     // the scalars are collected. That should be a safe assumption in most
1837     // cases, because we check if the operands have vectorizable types
1838     // beforehand in LoopVectorizationLegality.
1839     return Scalars.find(VF) == Scalars.end() ||
1840            !isScalarAfterVectorization(I, VF);
1841   };
1842 
1843   /// Returns a range containing only operands needing to be extracted.
1844   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1845                                                    ElementCount VF) const {
1846     return SmallVector<Value *, 4>(make_filter_range(
1847         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1848   }
1849 
1850   /// Determines if we have the infrastructure to vectorize loop \p L and its
1851   /// epilogue, assuming the main loop is vectorized by \p VF.
1852   bool isCandidateForEpilogueVectorization(const Loop &L,
1853                                            const ElementCount VF) const;
1854 
1855   /// Returns true if epilogue vectorization is considered profitable, and
1856   /// false otherwise.
1857   /// \p VF is the vectorization factor chosen for the original loop.
1858   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1859 
1860 public:
1861   /// The loop that we evaluate.
1862   Loop *TheLoop;
1863 
1864   /// Predicated scalar evolution analysis.
1865   PredicatedScalarEvolution &PSE;
1866 
1867   /// Loop Info analysis.
1868   LoopInfo *LI;
1869 
1870   /// Vectorization legality.
1871   LoopVectorizationLegality *Legal;
1872 
1873   /// Vector target information.
1874   const TargetTransformInfo &TTI;
1875 
1876   /// Target Library Info.
1877   const TargetLibraryInfo *TLI;
1878 
1879   /// Demanded bits analysis.
1880   DemandedBits *DB;
1881 
1882   /// Assumption cache.
1883   AssumptionCache *AC;
1884 
1885   /// Interface to emit optimization remarks.
1886   OptimizationRemarkEmitter *ORE;
1887 
1888   const Function *TheFunction;
1889 
1890   /// Loop Vectorize Hint.
1891   const LoopVectorizeHints *Hints;
1892 
1893   /// The interleave access information contains groups of interleaved accesses
1894   /// with the same stride and close to each other.
1895   InterleavedAccessInfo &InterleaveInfo;
1896 
1897   /// Values to ignore in the cost model.
1898   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1899 
1900   /// Values to ignore in the cost model when VF > 1.
1901   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1902 
1903   /// All element types found in the loop.
1904   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1905 
1906   /// Profitable vector factors.
1907   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1908 };
1909 } // end namespace llvm
1910 
1911 /// Helper struct to manage generating runtime checks for vectorization.
1912 ///
1913 /// The runtime checks are created up-front in temporary blocks to allow better
1914 /// estimating the cost and un-linked from the existing IR. After deciding to
1915 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1916 /// temporary blocks are completely removed.
1917 class GeneratedRTChecks {
1918   /// Basic block which contains the generated SCEV checks, if any.
1919   BasicBlock *SCEVCheckBlock = nullptr;
1920 
1921   /// The value representing the result of the generated SCEV checks. If it is
1922   /// nullptr, either no SCEV checks have been generated or they have been used.
1923   Value *SCEVCheckCond = nullptr;
1924 
1925   /// Basic block which contains the generated memory runtime checks, if any.
1926   BasicBlock *MemCheckBlock = nullptr;
1927 
1928   /// The value representing the result of the generated memory runtime checks.
1929   /// If it is nullptr, either no memory runtime checks have been generated or
1930   /// they have been used.
1931   Instruction *MemRuntimeCheckCond = nullptr;
1932 
1933   DominatorTree *DT;
1934   LoopInfo *LI;
1935 
1936   SCEVExpander SCEVExp;
1937   SCEVExpander MemCheckExp;
1938 
1939 public:
1940   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1941                     const DataLayout &DL)
1942       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1943         MemCheckExp(SE, DL, "scev.check") {}
1944 
1945   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1946   /// accurately estimate the cost of the runtime checks. The blocks are
1947   /// un-linked from the IR and is added back during vector code generation. If
1948   /// there is no vector code generation, the check blocks are removed
1949   /// completely.
1950   void Create(Loop *L, const LoopAccessInfo &LAI,
1951               const SCEVUnionPredicate &UnionPred) {
1952 
1953     BasicBlock *LoopHeader = L->getHeader();
1954     BasicBlock *Preheader = L->getLoopPreheader();
1955 
1956     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1957     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1958     // may be used by SCEVExpander. The blocks will be un-linked from their
1959     // predecessors and removed from LI & DT at the end of the function.
1960     if (!UnionPred.isAlwaysTrue()) {
1961       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1962                                   nullptr, "vector.scevcheck");
1963 
1964       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1965           &UnionPred, SCEVCheckBlock->getTerminator());
1966     }
1967 
1968     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1969     if (RtPtrChecking.Need) {
1970       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1971       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1972                                  "vector.memcheck");
1973 
1974       std::tie(std::ignore, MemRuntimeCheckCond) =
1975           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1976                            RtPtrChecking.getChecks(), MemCheckExp);
1977       assert(MemRuntimeCheckCond &&
1978              "no RT checks generated although RtPtrChecking "
1979              "claimed checks are required");
1980     }
1981 
1982     if (!MemCheckBlock && !SCEVCheckBlock)
1983       return;
1984 
1985     // Unhook the temporary block with the checks, update various places
1986     // accordingly.
1987     if (SCEVCheckBlock)
1988       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1989     if (MemCheckBlock)
1990       MemCheckBlock->replaceAllUsesWith(Preheader);
1991 
1992     if (SCEVCheckBlock) {
1993       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1994       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1995       Preheader->getTerminator()->eraseFromParent();
1996     }
1997     if (MemCheckBlock) {
1998       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1999       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2000       Preheader->getTerminator()->eraseFromParent();
2001     }
2002 
2003     DT->changeImmediateDominator(LoopHeader, Preheader);
2004     if (MemCheckBlock) {
2005       DT->eraseNode(MemCheckBlock);
2006       LI->removeBlock(MemCheckBlock);
2007     }
2008     if (SCEVCheckBlock) {
2009       DT->eraseNode(SCEVCheckBlock);
2010       LI->removeBlock(SCEVCheckBlock);
2011     }
2012   }
2013 
2014   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2015   /// unused.
2016   ~GeneratedRTChecks() {
2017     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2018     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2019     if (!SCEVCheckCond)
2020       SCEVCleaner.markResultUsed();
2021 
2022     if (!MemRuntimeCheckCond)
2023       MemCheckCleaner.markResultUsed();
2024 
2025     if (MemRuntimeCheckCond) {
2026       auto &SE = *MemCheckExp.getSE();
2027       // Memory runtime check generation creates compares that use expanded
2028       // values. Remove them before running the SCEVExpanderCleaners.
2029       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2030         if (MemCheckExp.isInsertedInstruction(&I))
2031           continue;
2032         SE.forgetValue(&I);
2033         SE.eraseValueFromMap(&I);
2034         I.eraseFromParent();
2035       }
2036     }
2037     MemCheckCleaner.cleanup();
2038     SCEVCleaner.cleanup();
2039 
2040     if (SCEVCheckCond)
2041       SCEVCheckBlock->eraseFromParent();
2042     if (MemRuntimeCheckCond)
2043       MemCheckBlock->eraseFromParent();
2044   }
2045 
2046   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2047   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2048   /// depending on the generated condition.
2049   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2050                              BasicBlock *LoopVectorPreHeader,
2051                              BasicBlock *LoopExitBlock) {
2052     if (!SCEVCheckCond)
2053       return nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(
2074         SCEVCheckBlock->getTerminator(),
2075         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2076     // Mark the check as used, to prevent it from being removed during cleanup.
2077     SCEVCheckCond = nullptr;
2078     return SCEVCheckBlock;
2079   }
2080 
2081   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2082   /// the branches to branch to the vector preheader or \p Bypass, depending on
2083   /// the generated condition.
2084   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2085                                    BasicBlock *LoopVectorPreHeader) {
2086     // Check if we generated code that checks in runtime if arrays overlap.
2087     if (!MemRuntimeCheckCond)
2088       return nullptr;
2089 
2090     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2091     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2092                                                 MemCheckBlock);
2093 
2094     DT->addNewBlock(MemCheckBlock, Pred);
2095     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2096     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2097 
2098     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2099       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2100 
2101     ReplaceInstWithInst(
2102         MemCheckBlock->getTerminator(),
2103         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2104     MemCheckBlock->getTerminator()->setDebugLoc(
2105         Pred->getTerminator()->getDebugLoc());
2106 
2107     // Mark the check as used, to prevent it from being removed during cleanup.
2108     MemRuntimeCheckCond = nullptr;
2109     return MemCheckBlock;
2110   }
2111 };
2112 
2113 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2114 // vectorization. The loop needs to be annotated with #pragma omp simd
2115 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2116 // vector length information is not provided, vectorization is not considered
2117 // explicit. Interleave hints are not allowed either. These limitations will be
2118 // relaxed in the future.
2119 // Please, note that we are currently forced to abuse the pragma 'clang
2120 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2121 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2122 // provides *explicit vectorization hints* (LV can bypass legal checks and
2123 // assume that vectorization is legal). However, both hints are implemented
2124 // using the same metadata (llvm.loop.vectorize, processed by
2125 // LoopVectorizeHints). This will be fixed in the future when the native IR
2126 // representation for pragma 'omp simd' is introduced.
2127 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2128                                    OptimizationRemarkEmitter *ORE) {
2129   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2130   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2131 
2132   // Only outer loops with an explicit vectorization hint are supported.
2133   // Unannotated outer loops are ignored.
2134   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2135     return false;
2136 
2137   Function *Fn = OuterLp->getHeader()->getParent();
2138   if (!Hints.allowVectorization(Fn, OuterLp,
2139                                 true /*VectorizeOnlyWhenForced*/)) {
2140     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2141     return false;
2142   }
2143 
2144   if (Hints.getInterleave() > 1) {
2145     // TODO: Interleave support is future work.
2146     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2147                          "outer loops.\n");
2148     Hints.emitRemarkWithHints();
2149     return false;
2150   }
2151 
2152   return true;
2153 }
2154 
2155 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2156                                   OptimizationRemarkEmitter *ORE,
2157                                   SmallVectorImpl<Loop *> &V) {
2158   // Collect inner loops and outer loops without irreducible control flow. For
2159   // now, only collect outer loops that have explicit vectorization hints. If we
2160   // are stress testing the VPlan H-CFG construction, we collect the outermost
2161   // loop of every loop nest.
2162   if (L.isInnermost() || VPlanBuildStressTest ||
2163       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2164     LoopBlocksRPO RPOT(&L);
2165     RPOT.perform(LI);
2166     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2167       V.push_back(&L);
2168       // TODO: Collect inner loops inside marked outer loops in case
2169       // vectorization fails for the outer loop. Do not invoke
2170       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2171       // already known to be reducible. We can use an inherited attribute for
2172       // that.
2173       return;
2174     }
2175   }
2176   for (Loop *InnerL : L)
2177     collectSupportedLoops(*InnerL, LI, ORE, V);
2178 }
2179 
2180 namespace {
2181 
2182 /// The LoopVectorize Pass.
2183 struct LoopVectorize : public FunctionPass {
2184   /// Pass identification, replacement for typeid
2185   static char ID;
2186 
2187   LoopVectorizePass Impl;
2188 
2189   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2190                          bool VectorizeOnlyWhenForced = false)
2191       : FunctionPass(ID),
2192         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2193     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2194   }
2195 
2196   bool runOnFunction(Function &F) override {
2197     if (skipFunction(F))
2198       return false;
2199 
2200     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2201     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2202     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2203     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2204     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2205     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2206     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2207     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2209     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2210     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2211     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2212     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2213 
2214     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2215         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2216 
2217     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2218                         GetLAA, *ORE, PSI).MadeAnyChange;
2219   }
2220 
2221   void getAnalysisUsage(AnalysisUsage &AU) const override {
2222     AU.addRequired<AssumptionCacheTracker>();
2223     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2224     AU.addRequired<DominatorTreeWrapperPass>();
2225     AU.addRequired<LoopInfoWrapperPass>();
2226     AU.addRequired<ScalarEvolutionWrapperPass>();
2227     AU.addRequired<TargetTransformInfoWrapperPass>();
2228     AU.addRequired<AAResultsWrapperPass>();
2229     AU.addRequired<LoopAccessLegacyAnalysis>();
2230     AU.addRequired<DemandedBitsWrapperPass>();
2231     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2232     AU.addRequired<InjectTLIMappingsLegacy>();
2233 
2234     // We currently do not preserve loopinfo/dominator analyses with outer loop
2235     // vectorization. Until this is addressed, mark these analyses as preserved
2236     // only for non-VPlan-native path.
2237     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2238     if (!EnableVPlanNativePath) {
2239       AU.addPreserved<LoopInfoWrapperPass>();
2240       AU.addPreserved<DominatorTreeWrapperPass>();
2241     }
2242 
2243     AU.addPreserved<BasicAAWrapperPass>();
2244     AU.addPreserved<GlobalsAAWrapperPass>();
2245     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2246   }
2247 };
2248 
2249 } // end anonymous namespace
2250 
2251 //===----------------------------------------------------------------------===//
2252 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2253 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2254 //===----------------------------------------------------------------------===//
2255 
2256 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2257   // We need to place the broadcast of invariant variables outside the loop,
2258   // but only if it's proven safe to do so. Else, broadcast will be inside
2259   // vector loop body.
2260   Instruction *Instr = dyn_cast<Instruction>(V);
2261   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2262                      (!Instr ||
2263                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2264   // Place the code for broadcasting invariant variables in the new preheader.
2265   IRBuilder<>::InsertPointGuard Guard(Builder);
2266   if (SafeToHoist)
2267     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2268 
2269   // Broadcast the scalar into all locations in the vector.
2270   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2271 
2272   return Shuf;
2273 }
2274 
2275 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2276     const InductionDescriptor &II, Value *Step, Value *Start,
2277     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2278     VPTransformState &State) {
2279   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2280          "Expected either an induction phi-node or a truncate of it!");
2281 
2282   // Construct the initial value of the vector IV in the vector loop preheader
2283   auto CurrIP = Builder.saveIP();
2284   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2285   if (isa<TruncInst>(EntryVal)) {
2286     assert(Start->getType()->isIntegerTy() &&
2287            "Truncation requires an integer type");
2288     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2289     Step = Builder.CreateTrunc(Step, TruncType);
2290     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2291   }
2292   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2293   Value *SteppedStart =
2294       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2295 
2296   // We create vector phi nodes for both integer and floating-point induction
2297   // variables. Here, we determine the kind of arithmetic we will perform.
2298   Instruction::BinaryOps AddOp;
2299   Instruction::BinaryOps MulOp;
2300   if (Step->getType()->isIntegerTy()) {
2301     AddOp = Instruction::Add;
2302     MulOp = Instruction::Mul;
2303   } else {
2304     AddOp = II.getInductionOpcode();
2305     MulOp = Instruction::FMul;
2306   }
2307 
2308   // Multiply the vectorization factor by the step using integer or
2309   // floating-point arithmetic as appropriate.
2310   Type *StepType = Step->getType();
2311   if (Step->getType()->isFloatingPointTy())
2312     StepType = IntegerType::get(StepType->getContext(),
2313                                 StepType->getScalarSizeInBits());
2314   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2315   if (Step->getType()->isFloatingPointTy())
2316     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2317   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2318 
2319   // Create a vector splat to use in the induction update.
2320   //
2321   // FIXME: If the step is non-constant, we create the vector splat with
2322   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2323   //        handle a constant vector splat.
2324   Value *SplatVF = isa<Constant>(Mul)
2325                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2326                        : Builder.CreateVectorSplat(VF, Mul);
2327   Builder.restoreIP(CurrIP);
2328 
2329   // We may need to add the step a number of times, depending on the unroll
2330   // factor. The last of those goes into the PHI.
2331   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2332                                     &*LoopVectorBody->getFirstInsertionPt());
2333   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2334   Instruction *LastInduction = VecInd;
2335   for (unsigned Part = 0; Part < UF; ++Part) {
2336     State.set(Def, LastInduction, Part);
2337 
2338     if (isa<TruncInst>(EntryVal))
2339       addMetadata(LastInduction, EntryVal);
2340     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2341                                           State, Part);
2342 
2343     LastInduction = cast<Instruction>(
2344         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2345     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2346   }
2347 
2348   // Move the last step to the end of the latch block. This ensures consistent
2349   // placement of all induction updates.
2350   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2351   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2352   auto *ICmp = cast<Instruction>(Br->getCondition());
2353   LastInduction->moveBefore(ICmp);
2354   LastInduction->setName("vec.ind.next");
2355 
2356   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2357   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2358 }
2359 
2360 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2361   return Cost->isScalarAfterVectorization(I, VF) ||
2362          Cost->isProfitableToScalarize(I, VF);
2363 }
2364 
2365 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2366   if (shouldScalarizeInstruction(IV))
2367     return true;
2368   auto isScalarInst = [&](User *U) -> bool {
2369     auto *I = cast<Instruction>(U);
2370     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2371   };
2372   return llvm::any_of(IV->users(), isScalarInst);
2373 }
2374 
2375 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2376     const InductionDescriptor &ID, const Instruction *EntryVal,
2377     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2378     unsigned Part, unsigned Lane) {
2379   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2380          "Expected either an induction phi-node or a truncate of it!");
2381 
2382   // This induction variable is not the phi from the original loop but the
2383   // newly-created IV based on the proof that casted Phi is equal to the
2384   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2385   // re-uses the same InductionDescriptor that original IV uses but we don't
2386   // have to do any recording in this case - that is done when original IV is
2387   // processed.
2388   if (isa<TruncInst>(EntryVal))
2389     return;
2390 
2391   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2392   if (Casts.empty())
2393     return;
2394   // Only the first Cast instruction in the Casts vector is of interest.
2395   // The rest of the Casts (if exist) have no uses outside the
2396   // induction update chain itself.
2397   if (Lane < UINT_MAX)
2398     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2399   else
2400     State.set(CastDef, VectorLoopVal, Part);
2401 }
2402 
2403 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2404                                                 TruncInst *Trunc, VPValue *Def,
2405                                                 VPValue *CastDef,
2406                                                 VPTransformState &State) {
2407   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2408          "Primary induction variable must have an integer type");
2409 
2410   auto II = Legal->getInductionVars().find(IV);
2411   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2412 
2413   auto ID = II->second;
2414   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2415 
2416   // The value from the original loop to which we are mapping the new induction
2417   // variable.
2418   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2419 
2420   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2421 
2422   // Generate code for the induction step. Note that induction steps are
2423   // required to be loop-invariant
2424   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2425     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2426            "Induction step should be loop invariant");
2427     if (PSE.getSE()->isSCEVable(IV->getType())) {
2428       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2429       return Exp.expandCodeFor(Step, Step->getType(),
2430                                LoopVectorPreHeader->getTerminator());
2431     }
2432     return cast<SCEVUnknown>(Step)->getValue();
2433   };
2434 
2435   // The scalar value to broadcast. This is derived from the canonical
2436   // induction variable. If a truncation type is given, truncate the canonical
2437   // induction variable and step. Otherwise, derive these values from the
2438   // induction descriptor.
2439   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2440     Value *ScalarIV = Induction;
2441     if (IV != OldInduction) {
2442       ScalarIV = IV->getType()->isIntegerTy()
2443                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2444                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2445                                           IV->getType());
2446       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2447       ScalarIV->setName("offset.idx");
2448     }
2449     if (Trunc) {
2450       auto *TruncType = cast<IntegerType>(Trunc->getType());
2451       assert(Step->getType()->isIntegerTy() &&
2452              "Truncation requires an integer step");
2453       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2454       Step = Builder.CreateTrunc(Step, TruncType);
2455     }
2456     return ScalarIV;
2457   };
2458 
2459   // Create the vector values from the scalar IV, in the absence of creating a
2460   // vector IV.
2461   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2462     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2463     for (unsigned Part = 0; Part < UF; ++Part) {
2464       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2465       Value *EntryPart =
2466           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2467                         ID.getInductionOpcode());
2468       State.set(Def, EntryPart, Part);
2469       if (Trunc)
2470         addMetadata(EntryPart, Trunc);
2471       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2472                                             State, Part);
2473     }
2474   };
2475 
2476   // Fast-math-flags propagate from the original induction instruction.
2477   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2478   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2479     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2480 
2481   // Now do the actual transformations, and start with creating the step value.
2482   Value *Step = CreateStepValue(ID.getStep());
2483   if (VF.isZero() || VF.isScalar()) {
2484     Value *ScalarIV = CreateScalarIV(Step);
2485     CreateSplatIV(ScalarIV, Step);
2486     return;
2487   }
2488 
2489   // Determine if we want a scalar version of the induction variable. This is
2490   // true if the induction variable itself is not widened, or if it has at
2491   // least one user in the loop that is not widened.
2492   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2493   if (!NeedsScalarIV) {
2494     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2495                                     State);
2496     return;
2497   }
2498 
2499   // Try to create a new independent vector induction variable. If we can't
2500   // create the phi node, we will splat the scalar induction variable in each
2501   // loop iteration.
2502   if (!shouldScalarizeInstruction(EntryVal)) {
2503     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2504                                     State);
2505     Value *ScalarIV = CreateScalarIV(Step);
2506     // Create scalar steps that can be used by instructions we will later
2507     // scalarize. Note that the addition of the scalar steps will not increase
2508     // the number of instructions in the loop in the common case prior to
2509     // InstCombine. We will be trading one vector extract for each scalar step.
2510     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2511     return;
2512   }
2513 
2514   // All IV users are scalar instructions, so only emit a scalar IV, not a
2515   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2516   // predicate used by the masked loads/stores.
2517   Value *ScalarIV = CreateScalarIV(Step);
2518   if (!Cost->isScalarEpilogueAllowed())
2519     CreateSplatIV(ScalarIV, Step);
2520   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2521 }
2522 
2523 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2524                                           Instruction::BinaryOps BinOp) {
2525   // Create and check the types.
2526   auto *ValVTy = cast<VectorType>(Val->getType());
2527   ElementCount VLen = ValVTy->getElementCount();
2528 
2529   Type *STy = Val->getType()->getScalarType();
2530   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2531          "Induction Step must be an integer or FP");
2532   assert(Step->getType() == STy && "Step has wrong type");
2533 
2534   SmallVector<Constant *, 8> Indices;
2535 
2536   // Create a vector of consecutive numbers from zero to VF.
2537   VectorType *InitVecValVTy = ValVTy;
2538   Type *InitVecValSTy = STy;
2539   if (STy->isFloatingPointTy()) {
2540     InitVecValSTy =
2541         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2542     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2543   }
2544   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2545 
2546   // Add on StartIdx
2547   Value *StartIdxSplat = Builder.CreateVectorSplat(
2548       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2549   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2550 
2551   if (STy->isIntegerTy()) {
2552     Step = Builder.CreateVectorSplat(VLen, Step);
2553     assert(Step->getType() == Val->getType() && "Invalid step vec");
2554     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2555     // which can be found from the original scalar operations.
2556     Step = Builder.CreateMul(InitVec, Step);
2557     return Builder.CreateAdd(Val, Step, "induction");
2558   }
2559 
2560   // Floating point induction.
2561   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2562          "Binary Opcode should be specified for FP induction");
2563   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2564   Step = Builder.CreateVectorSplat(VLen, Step);
2565   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2566   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2567 }
2568 
2569 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2570                                            Instruction *EntryVal,
2571                                            const InductionDescriptor &ID,
2572                                            VPValue *Def, VPValue *CastDef,
2573                                            VPTransformState &State) {
2574   // We shouldn't have to build scalar steps if we aren't vectorizing.
2575   assert(VF.isVector() && "VF should be greater than one");
2576   // Get the value type and ensure it and the step have the same integer type.
2577   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2578   assert(ScalarIVTy == Step->getType() &&
2579          "Val and Step should have the same type");
2580 
2581   // We build scalar steps for both integer and floating-point induction
2582   // variables. Here, we determine the kind of arithmetic we will perform.
2583   Instruction::BinaryOps AddOp;
2584   Instruction::BinaryOps MulOp;
2585   if (ScalarIVTy->isIntegerTy()) {
2586     AddOp = Instruction::Add;
2587     MulOp = Instruction::Mul;
2588   } else {
2589     AddOp = ID.getInductionOpcode();
2590     MulOp = Instruction::FMul;
2591   }
2592 
2593   // Determine the number of scalars we need to generate for each unroll
2594   // iteration. If EntryVal is uniform, we only need to generate the first
2595   // lane. Otherwise, we generate all VF values.
2596   bool IsUniform =
2597       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2598   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2599   // Compute the scalar steps and save the results in State.
2600   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2601                                      ScalarIVTy->getScalarSizeInBits());
2602   Type *VecIVTy = nullptr;
2603   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2604   if (!IsUniform && VF.isScalable()) {
2605     VecIVTy = VectorType::get(ScalarIVTy, VF);
2606     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2607     SplatStep = Builder.CreateVectorSplat(VF, Step);
2608     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2609   }
2610 
2611   for (unsigned Part = 0; Part < UF; ++Part) {
2612     Value *StartIdx0 =
2613         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2614 
2615     if (!IsUniform && VF.isScalable()) {
2616       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2617       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2618       if (ScalarIVTy->isFloatingPointTy())
2619         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2620       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2621       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2622       State.set(Def, Add, Part);
2623       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2624                                             Part);
2625       // It's useful to record the lane values too for the known minimum number
2626       // of elements so we do those below. This improves the code quality when
2627       // trying to extract the first element, for example.
2628     }
2629 
2630     if (ScalarIVTy->isFloatingPointTy())
2631       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2632 
2633     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2634       Value *StartIdx = Builder.CreateBinOp(
2635           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2636       // The step returned by `createStepForVF` is a runtime-evaluated value
2637       // when VF is scalable. Otherwise, it should be folded into a Constant.
2638       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2639              "Expected StartIdx to be folded to a constant when VF is not "
2640              "scalable");
2641       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2642       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2643       State.set(Def, Add, VPIteration(Part, Lane));
2644       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2645                                             Part, Lane);
2646     }
2647   }
2648 }
2649 
2650 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2651                                                     const VPIteration &Instance,
2652                                                     VPTransformState &State) {
2653   Value *ScalarInst = State.get(Def, Instance);
2654   Value *VectorValue = State.get(Def, Instance.Part);
2655   VectorValue = Builder.CreateInsertElement(
2656       VectorValue, ScalarInst,
2657       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2658   State.set(Def, VectorValue, Instance.Part);
2659 }
2660 
2661 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2662   assert(Vec->getType()->isVectorTy() && "Invalid type");
2663   return Builder.CreateVectorReverse(Vec, "reverse");
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = reverseVector(StridedVec);
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     // Collect the stored vector from each member.
2843     SmallVector<Value *, 4> StoredVecs;
2844     for (unsigned i = 0; i < InterleaveFactor; i++) {
2845       // Interleaved store group doesn't allow a gap, so each index has a member
2846       assert(Group->getMember(i) && "Fail to get a member from an interleaved store group");
2847 
2848       Value *StoredVec = State.get(StoredValues[i], Part);
2849 
2850       if (Group->isReverse())
2851         StoredVec = reverseVector(StoredVec);
2852 
2853       // If this member has different type, cast it to a unified type.
2854 
2855       if (StoredVec->getType() != SubVT)
2856         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2857 
2858       StoredVecs.push_back(StoredVec);
2859     }
2860 
2861     // Concatenate all vectors into a wide vector.
2862     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2863 
2864     // Interleave the elements in the wide vector.
2865     Value *IVec = Builder.CreateShuffleVector(
2866         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2867         "interleaved.vec");
2868 
2869     Instruction *NewStoreInstr;
2870     if (BlockInMask) {
2871       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2872       Value *ShuffledMask = Builder.CreateShuffleVector(
2873           BlockInMaskPart,
2874           createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2875           "interleaved.mask");
2876       NewStoreInstr = Builder.CreateMaskedStore(
2877           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2878     }
2879     else
2880       NewStoreInstr =
2881           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2882 
2883     Group->addMetadata(NewStoreInstr);
2884   }
2885 }
2886 
2887 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2888     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2889     VPValue *StoredValue, VPValue *BlockInMask) {
2890   // Attempt to issue a wide load.
2891   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2892   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2893 
2894   assert((LI || SI) && "Invalid Load/Store instruction");
2895   assert((!SI || StoredValue) && "No stored value provided for widened store");
2896   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2897 
2898   LoopVectorizationCostModel::InstWidening Decision =
2899       Cost->getWideningDecision(Instr, VF);
2900   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2901           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2902           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2903          "CM decision is not to widen the memory instruction");
2904 
2905   Type *ScalarDataTy = getLoadStoreType(Instr);
2906 
2907   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2908   const Align Alignment = getLoadStoreAlignment(Instr);
2909 
2910   // Determine if the pointer operand of the access is either consecutive or
2911   // reverse consecutive.
2912   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2913   bool ConsecutiveStride =
2914       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2915   bool CreateGatherScatter =
2916       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2917 
2918   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2919   // gather/scatter. Otherwise Decision should have been to Scalarize.
2920   assert((ConsecutiveStride || CreateGatherScatter) &&
2921          "The instruction should be scalarized");
2922   (void)ConsecutiveStride;
2923 
2924   VectorParts BlockInMaskParts(UF);
2925   bool isMaskRequired = BlockInMask;
2926   if (isMaskRequired)
2927     for (unsigned Part = 0; Part < UF; ++Part)
2928       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2929 
2930   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2931     // Calculate the pointer for the specific unroll-part.
2932     GetElementPtrInst *PartPtr = nullptr;
2933 
2934     bool InBounds = false;
2935     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2936       InBounds = gep->isInBounds();
2937     if (Reverse) {
2938       // If the address is consecutive but reversed, then the
2939       // wide store needs to start at the last vector element.
2940       // RunTimeVF =  VScale * VF.getKnownMinValue()
2941       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2942       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2943       // NumElt = -Part * RunTimeVF
2944       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2945       // LastLane = 1 - RunTimeVF
2946       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2947       PartPtr =
2948           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2949       PartPtr->setIsInBounds(InBounds);
2950       PartPtr = cast<GetElementPtrInst>(
2951           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2952       PartPtr->setIsInBounds(InBounds);
2953       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2954         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2955     } else {
2956       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2957       PartPtr = cast<GetElementPtrInst>(
2958           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2959       PartPtr->setIsInBounds(InBounds);
2960     }
2961 
2962     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2963     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2964   };
2965 
2966   // Handle Stores:
2967   if (SI) {
2968     setDebugLocFromInst(SI);
2969 
2970     for (unsigned Part = 0; Part < UF; ++Part) {
2971       Instruction *NewSI = nullptr;
2972       Value *StoredVal = State.get(StoredValue, Part);
2973       if (CreateGatherScatter) {
2974         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2975         Value *VectorGep = State.get(Addr, Part);
2976         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2977                                             MaskPart);
2978       } else {
2979         if (Reverse) {
2980           // If we store to reverse consecutive memory locations, then we need
2981           // to reverse the order of elements in the stored value.
2982           StoredVal = reverseVector(StoredVal);
2983           // We don't want to update the value in the map as it might be used in
2984           // another expression. So don't call resetVectorValue(StoredVal).
2985         }
2986         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
2987         if (isMaskRequired)
2988           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2989                                             BlockInMaskParts[Part]);
2990         else
2991           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2992       }
2993       addMetadata(NewSI, SI);
2994     }
2995     return;
2996   }
2997 
2998   // Handle loads.
2999   assert(LI && "Must have a load instruction");
3000   setDebugLocFromInst(LI);
3001   for (unsigned Part = 0; Part < UF; ++Part) {
3002     Value *NewLI;
3003     if (CreateGatherScatter) {
3004       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3005       Value *VectorGep = State.get(Addr, Part);
3006       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3007                                          nullptr, "wide.masked.gather");
3008       addMetadata(NewLI, LI);
3009     } else {
3010       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3011       if (isMaskRequired)
3012         NewLI = Builder.CreateMaskedLoad(
3013             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3014             PoisonValue::get(DataTy), "wide.masked.load");
3015       else
3016         NewLI =
3017             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3018 
3019       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3020       addMetadata(NewLI, LI);
3021       if (Reverse)
3022         NewLI = reverseVector(NewLI);
3023     }
3024 
3025     State.set(Def, NewLI, Part);
3026   }
3027 }
3028 
3029 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3030                                                VPUser &User,
3031                                                const VPIteration &Instance,
3032                                                bool IfPredicateInstr,
3033                                                VPTransformState &State) {
3034   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3035 
3036   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3037   // the first lane and part.
3038   if (isa<NoAliasScopeDeclInst>(Instr))
3039     if (!Instance.isFirstIteration())
3040       return;
3041 
3042   setDebugLocFromInst(Instr);
3043 
3044   // Does this instruction return a value ?
3045   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3046 
3047   Instruction *Cloned = Instr->clone();
3048   if (!IsVoidRetTy)
3049     Cloned->setName(Instr->getName() + ".cloned");
3050 
3051   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3052                                Builder.GetInsertPoint());
3053   // Replace the operands of the cloned instructions with their scalar
3054   // equivalents in the new loop.
3055   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3056     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3057     auto InputInstance = Instance;
3058     if (!Operand || !OrigLoop->contains(Operand) ||
3059         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3060       InputInstance.Lane = VPLane::getFirstLane();
3061     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3062     Cloned->setOperand(op, NewOp);
3063   }
3064   addNewMetadata(Cloned, Instr);
3065 
3066   // Place the cloned scalar in the new loop.
3067   Builder.Insert(Cloned);
3068 
3069   State.set(Def, Cloned, Instance);
3070 
3071   // If we just cloned a new assumption, add it the assumption cache.
3072   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3073     AC->registerAssumption(II);
3074 
3075   // End if-block.
3076   if (IfPredicateInstr)
3077     PredicatedInstructions.push_back(Cloned);
3078 }
3079 
3080 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3081                                                       Value *End, Value *Step,
3082                                                       Instruction *DL) {
3083   BasicBlock *Header = L->getHeader();
3084   BasicBlock *Latch = L->getLoopLatch();
3085   // As we're just creating this loop, it's possible no latch exists
3086   // yet. If so, use the header as this will be a single block loop.
3087   if (!Latch)
3088     Latch = Header;
3089 
3090   IRBuilder<> B(&*Header->getFirstInsertionPt());
3091   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3092   setDebugLocFromInst(OldInst, &B);
3093   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3094 
3095   B.SetInsertPoint(Latch->getTerminator());
3096   setDebugLocFromInst(OldInst, &B);
3097 
3098   // Create i+1 and fill the PHINode.
3099   //
3100   // If the tail is not folded, we know that End - Start >= Step (either
3101   // statically or through the minimum iteration checks). We also know that both
3102   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3103   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3104   // overflows and we can mark the induction increment as NUW.
3105   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3106                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3107   Induction->addIncoming(Start, L->getLoopPreheader());
3108   Induction->addIncoming(Next, Latch);
3109   // Create the compare.
3110   Value *ICmp = B.CreateICmpEQ(Next, End);
3111   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3112 
3113   // Now we have two terminators. Remove the old one from the block.
3114   Latch->getTerminator()->eraseFromParent();
3115 
3116   return Induction;
3117 }
3118 
3119 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3120   if (TripCount)
3121     return TripCount;
3122 
3123   assert(L && "Create Trip Count for null loop.");
3124   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3125   // Find the loop boundaries.
3126   ScalarEvolution *SE = PSE.getSE();
3127   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3128   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3129          "Invalid loop count");
3130 
3131   Type *IdxTy = Legal->getWidestInductionType();
3132   assert(IdxTy && "No type for induction");
3133 
3134   // The exit count might have the type of i64 while the phi is i32. This can
3135   // happen if we have an induction variable that is sign extended before the
3136   // compare. The only way that we get a backedge taken count is that the
3137   // induction variable was signed and as such will not overflow. In such a case
3138   // truncation is legal.
3139   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3140       IdxTy->getPrimitiveSizeInBits())
3141     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3142   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3143 
3144   // Get the total trip count from the count by adding 1.
3145   const SCEV *ExitCount = SE->getAddExpr(
3146       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3147 
3148   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3149 
3150   // Expand the trip count and place the new instructions in the preheader.
3151   // Notice that the pre-header does not change, only the loop body.
3152   SCEVExpander Exp(*SE, DL, "induction");
3153 
3154   // Count holds the overall loop count (N).
3155   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3156                                 L->getLoopPreheader()->getTerminator());
3157 
3158   if (TripCount->getType()->isPointerTy())
3159     TripCount =
3160         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3161                                     L->getLoopPreheader()->getTerminator());
3162 
3163   return TripCount;
3164 }
3165 
3166 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3167   if (VectorTripCount)
3168     return VectorTripCount;
3169 
3170   Value *TC = getOrCreateTripCount(L);
3171   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3172 
3173   Type *Ty = TC->getType();
3174   // This is where we can make the step a runtime constant.
3175   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3176 
3177   // If the tail is to be folded by masking, round the number of iterations N
3178   // up to a multiple of Step instead of rounding down. This is done by first
3179   // adding Step-1 and then rounding down. Note that it's ok if this addition
3180   // overflows: the vector induction variable will eventually wrap to zero given
3181   // that it starts at zero and its Step is a power of two; the loop will then
3182   // exit, with the last early-exit vector comparison also producing all-true.
3183   if (Cost->foldTailByMasking()) {
3184     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3185            "VF*UF must be a power of 2 when folding tail by masking");
3186     assert(!VF.isScalable() &&
3187            "Tail folding not yet supported for scalable vectors");
3188     TC = Builder.CreateAdd(
3189         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3190   }
3191 
3192   // Now we need to generate the expression for the part of the loop that the
3193   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3194   // iterations are not required for correctness, or N - Step, otherwise. Step
3195   // is equal to the vectorization factor (number of SIMD elements) times the
3196   // unroll factor (number of SIMD instructions).
3197   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3198 
3199   // There are cases where we *must* run at least one iteration in the remainder
3200   // loop.  See the cost model for when this can happen.  If the step evenly
3201   // divides the trip count, we set the remainder to be equal to the step. If
3202   // the step does not evenly divide the trip count, no adjustment is necessary
3203   // since there will already be scalar iterations. Note that the minimum
3204   // iterations check ensures that N >= Step.
3205   if (Cost->requiresScalarEpilogue(VF)) {
3206     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3207     R = Builder.CreateSelect(IsZero, Step, R);
3208   }
3209 
3210   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3211 
3212   return VectorTripCount;
3213 }
3214 
3215 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3216                                                    const DataLayout &DL) {
3217   // Verify that V is a vector type with same number of elements as DstVTy.
3218   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3219   unsigned VF = DstFVTy->getNumElements();
3220   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3221   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3222   Type *SrcElemTy = SrcVecTy->getElementType();
3223   Type *DstElemTy = DstFVTy->getElementType();
3224   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3225          "Vector elements must have same size");
3226 
3227   // Do a direct cast if element types are castable.
3228   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3229     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3230   }
3231   // V cannot be directly casted to desired vector type.
3232   // May happen when V is a floating point vector but DstVTy is a vector of
3233   // pointers or vice-versa. Handle this using a two-step bitcast using an
3234   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3235   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3236          "Only one type should be a pointer type");
3237   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3238          "Only one type should be a floating point type");
3239   Type *IntTy =
3240       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3241   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3242   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3243   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3244 }
3245 
3246 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3247                                                          BasicBlock *Bypass) {
3248   Value *Count = getOrCreateTripCount(L);
3249   // Reuse existing vector loop preheader for TC checks.
3250   // Note that new preheader block is generated for vector loop.
3251   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3252   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3253 
3254   // Generate code to check if the loop's trip count is less than VF * UF, or
3255   // equal to it in case a scalar epilogue is required; this implies that the
3256   // vector trip count is zero. This check also covers the case where adding one
3257   // to the backedge-taken count overflowed leading to an incorrect trip count
3258   // of zero. In this case we will also jump to the scalar loop.
3259   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3260                                             : ICmpInst::ICMP_ULT;
3261 
3262   // If tail is to be folded, vector loop takes care of all iterations.
3263   Value *CheckMinIters = Builder.getFalse();
3264   if (!Cost->foldTailByMasking()) {
3265     Value *Step =
3266         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3267     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3268   }
3269   // Create new preheader for vector loop.
3270   LoopVectorPreHeader =
3271       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3272                  "vector.ph");
3273 
3274   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3275                                DT->getNode(Bypass)->getIDom()) &&
3276          "TC check is expected to dominate Bypass");
3277 
3278   // Update dominator for Bypass & LoopExit (if needed).
3279   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3280   if (!Cost->requiresScalarEpilogue(VF))
3281     // If there is an epilogue which must run, there's no edge from the
3282     // middle block to exit blocks  and thus no need to update the immediate
3283     // dominator of the exit blocks.
3284     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3285 
3286   ReplaceInstWithInst(
3287       TCCheckBlock->getTerminator(),
3288       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3289   LoopBypassBlocks.push_back(TCCheckBlock);
3290 }
3291 
3292 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3293 
3294   BasicBlock *const SCEVCheckBlock =
3295       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3296   if (!SCEVCheckBlock)
3297     return nullptr;
3298 
3299   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3300            (OptForSizeBasedOnProfile &&
3301             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3302          "Cannot SCEV check stride or overflow when optimizing for size");
3303 
3304 
3305   // Update dominator only if this is first RT check.
3306   if (LoopBypassBlocks.empty()) {
3307     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3308     if (!Cost->requiresScalarEpilogue(VF))
3309       // If there is an epilogue which must run, there's no edge from the
3310       // middle block to exit blocks  and thus no need to update the immediate
3311       // dominator of the exit blocks.
3312       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3313   }
3314 
3315   LoopBypassBlocks.push_back(SCEVCheckBlock);
3316   AddedSafetyChecks = true;
3317   return SCEVCheckBlock;
3318 }
3319 
3320 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3321                                                       BasicBlock *Bypass) {
3322   // VPlan-native path does not do any analysis for runtime checks currently.
3323   if (EnableVPlanNativePath)
3324     return nullptr;
3325 
3326   BasicBlock *const MemCheckBlock =
3327       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3328 
3329   // Check if we generated code that checks in runtime if arrays overlap. We put
3330   // the checks into a separate block to make the more common case of few
3331   // elements faster.
3332   if (!MemCheckBlock)
3333     return nullptr;
3334 
3335   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3336     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3337            "Cannot emit memory checks when optimizing for size, unless forced "
3338            "to vectorize.");
3339     ORE->emit([&]() {
3340       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3341                                         L->getStartLoc(), L->getHeader())
3342              << "Code-size may be reduced by not forcing "
3343                 "vectorization, or by source-code modifications "
3344                 "eliminating the need for runtime checks "
3345                 "(e.g., adding 'restrict').";
3346     });
3347   }
3348 
3349   LoopBypassBlocks.push_back(MemCheckBlock);
3350 
3351   AddedSafetyChecks = true;
3352 
3353   // We currently don't use LoopVersioning for the actual loop cloning but we
3354   // still use it to add the noalias metadata.
3355   LVer = std::make_unique<LoopVersioning>(
3356       *Legal->getLAI(),
3357       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3358       DT, PSE.getSE());
3359   LVer->prepareNoAliasMetadata();
3360   return MemCheckBlock;
3361 }
3362 
3363 Value *InnerLoopVectorizer::emitTransformedIndex(
3364     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3365     const InductionDescriptor &ID) const {
3366 
3367   SCEVExpander Exp(*SE, DL, "induction");
3368   auto Step = ID.getStep();
3369   auto StartValue = ID.getStartValue();
3370   assert(Index->getType()->getScalarType() == Step->getType() &&
3371          "Index scalar type does not match StepValue type");
3372 
3373   // Note: the IR at this point is broken. We cannot use SE to create any new
3374   // SCEV and then expand it, hoping that SCEV's simplification will give us
3375   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3376   // lead to various SCEV crashes. So all we can do is to use builder and rely
3377   // on InstCombine for future simplifications. Here we handle some trivial
3378   // cases only.
3379   auto CreateAdd = [&B](Value *X, Value *Y) {
3380     assert(X->getType() == Y->getType() && "Types don't match!");
3381     if (auto *CX = dyn_cast<ConstantInt>(X))
3382       if (CX->isZero())
3383         return Y;
3384     if (auto *CY = dyn_cast<ConstantInt>(Y))
3385       if (CY->isZero())
3386         return X;
3387     return B.CreateAdd(X, Y);
3388   };
3389 
3390   // We allow X to be a vector type, in which case Y will potentially be
3391   // splatted into a vector with the same element count.
3392   auto CreateMul = [&B](Value *X, Value *Y) {
3393     assert(X->getType()->getScalarType() == Y->getType() &&
3394            "Types don't match!");
3395     if (auto *CX = dyn_cast<ConstantInt>(X))
3396       if (CX->isOne())
3397         return Y;
3398     if (auto *CY = dyn_cast<ConstantInt>(Y))
3399       if (CY->isOne())
3400         return X;
3401     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3402     if (XVTy && !isa<VectorType>(Y->getType()))
3403       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3404     return B.CreateMul(X, Y);
3405   };
3406 
3407   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3408   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3409   // the DomTree is not kept up-to-date for additional blocks generated in the
3410   // vector loop. By using the header as insertion point, we guarantee that the
3411   // expanded instructions dominate all their uses.
3412   auto GetInsertPoint = [this, &B]() {
3413     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3414     if (InsertBB != LoopVectorBody &&
3415         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3416       return LoopVectorBody->getTerminator();
3417     return &*B.GetInsertPoint();
3418   };
3419 
3420   switch (ID.getKind()) {
3421   case InductionDescriptor::IK_IntInduction: {
3422     assert(!isa<VectorType>(Index->getType()) &&
3423            "Vector indices not supported for integer inductions yet");
3424     assert(Index->getType() == StartValue->getType() &&
3425            "Index type does not match StartValue type");
3426     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3427       return B.CreateSub(StartValue, Index);
3428     auto *Offset = CreateMul(
3429         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3430     return CreateAdd(StartValue, Offset);
3431   }
3432   case InductionDescriptor::IK_PtrInduction: {
3433     assert(isa<SCEVConstant>(Step) &&
3434            "Expected constant step for pointer induction");
3435     return B.CreateGEP(
3436         StartValue->getType()->getPointerElementType(), StartValue,
3437         CreateMul(Index,
3438                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3439                                     GetInsertPoint())));
3440   }
3441   case InductionDescriptor::IK_FpInduction: {
3442     assert(!isa<VectorType>(Index->getType()) &&
3443            "Vector indices not supported for FP inductions yet");
3444     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3445     auto InductionBinOp = ID.getInductionBinOp();
3446     assert(InductionBinOp &&
3447            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3448             InductionBinOp->getOpcode() == Instruction::FSub) &&
3449            "Original bin op should be defined for FP induction");
3450 
3451     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3452     Value *MulExp = B.CreateFMul(StepValue, Index);
3453     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3454                          "induction");
3455   }
3456   case InductionDescriptor::IK_NoInduction:
3457     return nullptr;
3458   }
3459   llvm_unreachable("invalid enum");
3460 }
3461 
3462 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3463   LoopScalarBody = OrigLoop->getHeader();
3464   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3465   assert(LoopVectorPreHeader && "Invalid loop structure");
3466   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3467   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3468          "multiple exit loop without required epilogue?");
3469 
3470   LoopMiddleBlock =
3471       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3472                  LI, nullptr, Twine(Prefix) + "middle.block");
3473   LoopScalarPreHeader =
3474       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3475                  nullptr, Twine(Prefix) + "scalar.ph");
3476 
3477   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3478 
3479   // Set up the middle block terminator.  Two cases:
3480   // 1) If we know that we must execute the scalar epilogue, emit an
3481   //    unconditional branch.
3482   // 2) Otherwise, we must have a single unique exit block (due to how we
3483   //    implement the multiple exit case).  In this case, set up a conditonal
3484   //    branch from the middle block to the loop scalar preheader, and the
3485   //    exit block.  completeLoopSkeleton will update the condition to use an
3486   //    iteration check, if required to decide whether to execute the remainder.
3487   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3488     BranchInst::Create(LoopScalarPreHeader) :
3489     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3490                        Builder.getTrue());
3491   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3492   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3493 
3494   // We intentionally don't let SplitBlock to update LoopInfo since
3495   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3496   // LoopVectorBody is explicitly added to the correct place few lines later.
3497   LoopVectorBody =
3498       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3499                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3500 
3501   // Update dominator for loop exit.
3502   if (!Cost->requiresScalarEpilogue(VF))
3503     // If there is an epilogue which must run, there's no edge from the
3504     // middle block to exit blocks  and thus no need to update the immediate
3505     // dominator of the exit blocks.
3506     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3507 
3508   // Create and register the new vector loop.
3509   Loop *Lp = LI->AllocateLoop();
3510   Loop *ParentLoop = OrigLoop->getParentLoop();
3511 
3512   // Insert the new loop into the loop nest and register the new basic blocks
3513   // before calling any utilities such as SCEV that require valid LoopInfo.
3514   if (ParentLoop) {
3515     ParentLoop->addChildLoop(Lp);
3516   } else {
3517     LI->addTopLevelLoop(Lp);
3518   }
3519   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3520   return Lp;
3521 }
3522 
3523 void InnerLoopVectorizer::createInductionResumeValues(
3524     Loop *L, Value *VectorTripCount,
3525     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3526   assert(VectorTripCount && L && "Expected valid arguments");
3527   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3528           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3529          "Inconsistent information about additional bypass.");
3530   // We are going to resume the execution of the scalar loop.
3531   // Go over all of the induction variables that we found and fix the
3532   // PHIs that are left in the scalar version of the loop.
3533   // The starting values of PHI nodes depend on the counter of the last
3534   // iteration in the vectorized loop.
3535   // If we come from a bypass edge then we need to start from the original
3536   // start value.
3537   for (auto &InductionEntry : Legal->getInductionVars()) {
3538     PHINode *OrigPhi = InductionEntry.first;
3539     InductionDescriptor II = InductionEntry.second;
3540 
3541     // Create phi nodes to merge from the  backedge-taken check block.
3542     PHINode *BCResumeVal =
3543         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3544                         LoopScalarPreHeader->getTerminator());
3545     // Copy original phi DL over to the new one.
3546     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3547     Value *&EndValue = IVEndValues[OrigPhi];
3548     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3549     if (OrigPhi == OldInduction) {
3550       // We know what the end value is.
3551       EndValue = VectorTripCount;
3552     } else {
3553       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3554 
3555       // Fast-math-flags propagate from the original induction instruction.
3556       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3557         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3558 
3559       Type *StepType = II.getStep()->getType();
3560       Instruction::CastOps CastOp =
3561           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3562       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3563       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3564       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3565       EndValue->setName("ind.end");
3566 
3567       // Compute the end value for the additional bypass (if applicable).
3568       if (AdditionalBypass.first) {
3569         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3570         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3571                                          StepType, true);
3572         CRD =
3573             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3574         EndValueFromAdditionalBypass =
3575             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3576         EndValueFromAdditionalBypass->setName("ind.end");
3577       }
3578     }
3579     // The new PHI merges the original incoming value, in case of a bypass,
3580     // or the value at the end of the vectorized loop.
3581     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3582 
3583     // Fix the scalar body counter (PHI node).
3584     // The old induction's phi node in the scalar body needs the truncated
3585     // value.
3586     for (BasicBlock *BB : LoopBypassBlocks)
3587       BCResumeVal->addIncoming(II.getStartValue(), BB);
3588 
3589     if (AdditionalBypass.first)
3590       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3591                                             EndValueFromAdditionalBypass);
3592 
3593     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3594   }
3595 }
3596 
3597 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3598                                                       MDNode *OrigLoopID) {
3599   assert(L && "Expected valid loop.");
3600 
3601   // The trip counts should be cached by now.
3602   Value *Count = getOrCreateTripCount(L);
3603   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3604 
3605   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3606 
3607   // Add a check in the middle block to see if we have completed
3608   // all of the iterations in the first vector loop.  Three cases:
3609   // 1) If we require a scalar epilogue, there is no conditional branch as
3610   //    we unconditionally branch to the scalar preheader.  Do nothing.
3611   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3612   //    Thus if tail is to be folded, we know we don't need to run the
3613   //    remainder and we can use the previous value for the condition (true).
3614   // 3) Otherwise, construct a runtime check.
3615   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3616     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3617                                         Count, VectorTripCount, "cmp.n",
3618                                         LoopMiddleBlock->getTerminator());
3619 
3620     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3621     // of the corresponding compare because they may have ended up with
3622     // different line numbers and we want to avoid awkward line stepping while
3623     // debugging. Eg. if the compare has got a line number inside the loop.
3624     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3625     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3626   }
3627 
3628   // Get ready to start creating new instructions into the vectorized body.
3629   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3630          "Inconsistent vector loop preheader");
3631   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3632 
3633   Optional<MDNode *> VectorizedLoopID =
3634       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3635                                       LLVMLoopVectorizeFollowupVectorized});
3636   if (VectorizedLoopID.hasValue()) {
3637     L->setLoopID(VectorizedLoopID.getValue());
3638 
3639     // Do not setAlreadyVectorized if loop attributes have been defined
3640     // explicitly.
3641     return LoopVectorPreHeader;
3642   }
3643 
3644   // Keep all loop hints from the original loop on the vector loop (we'll
3645   // replace the vectorizer-specific hints below).
3646   if (MDNode *LID = OrigLoop->getLoopID())
3647     L->setLoopID(LID);
3648 
3649   LoopVectorizeHints Hints(L, true, *ORE);
3650   Hints.setAlreadyVectorized();
3651 
3652 #ifdef EXPENSIVE_CHECKS
3653   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3654   LI->verify(*DT);
3655 #endif
3656 
3657   return LoopVectorPreHeader;
3658 }
3659 
3660 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3661   /*
3662    In this function we generate a new loop. The new loop will contain
3663    the vectorized instructions while the old loop will continue to run the
3664    scalar remainder.
3665 
3666        [ ] <-- loop iteration number check.
3667     /   |
3668    /    v
3669   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3670   |  /  |
3671   | /   v
3672   ||   [ ]     <-- vector pre header.
3673   |/    |
3674   |     v
3675   |    [  ] \
3676   |    [  ]_|   <-- vector loop.
3677   |     |
3678   |     v
3679   \   -[ ]   <--- middle-block.
3680    \/   |
3681    /\   v
3682    | ->[ ]     <--- new preheader.
3683    |    |
3684  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3685    |   [ ] \
3686    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3687     \   |
3688      \  v
3689       >[ ]     <-- exit block(s).
3690    ...
3691    */
3692 
3693   // Get the metadata of the original loop before it gets modified.
3694   MDNode *OrigLoopID = OrigLoop->getLoopID();
3695 
3696   // Workaround!  Compute the trip count of the original loop and cache it
3697   // before we start modifying the CFG.  This code has a systemic problem
3698   // wherein it tries to run analysis over partially constructed IR; this is
3699   // wrong, and not simply for SCEV.  The trip count of the original loop
3700   // simply happens to be prone to hitting this in practice.  In theory, we
3701   // can hit the same issue for any SCEV, or ValueTracking query done during
3702   // mutation.  See PR49900.
3703   getOrCreateTripCount(OrigLoop);
3704 
3705   // Create an empty vector loop, and prepare basic blocks for the runtime
3706   // checks.
3707   Loop *Lp = createVectorLoopSkeleton("");
3708 
3709   // Now, compare the new count to zero. If it is zero skip the vector loop and
3710   // jump to the scalar loop. This check also covers the case where the
3711   // backedge-taken count is uint##_max: adding one to it will overflow leading
3712   // to an incorrect trip count of zero. In this (rare) case we will also jump
3713   // to the scalar loop.
3714   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3715 
3716   // Generate the code to check any assumptions that we've made for SCEV
3717   // expressions.
3718   emitSCEVChecks(Lp, LoopScalarPreHeader);
3719 
3720   // Generate the code that checks in runtime if arrays overlap. We put the
3721   // checks into a separate block to make the more common case of few elements
3722   // faster.
3723   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3724 
3725   // Some loops have a single integer induction variable, while other loops
3726   // don't. One example is c++ iterators that often have multiple pointer
3727   // induction variables. In the code below we also support a case where we
3728   // don't have a single induction variable.
3729   //
3730   // We try to obtain an induction variable from the original loop as hard
3731   // as possible. However if we don't find one that:
3732   //   - is an integer
3733   //   - counts from zero, stepping by one
3734   //   - is the size of the widest induction variable type
3735   // then we create a new one.
3736   OldInduction = Legal->getPrimaryInduction();
3737   Type *IdxTy = Legal->getWidestInductionType();
3738   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3739   // The loop step is equal to the vectorization factor (num of SIMD elements)
3740   // times the unroll factor (num of SIMD instructions).
3741   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3742   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3743   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3744   Induction =
3745       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3746                               getDebugLocFromInstOrOperands(OldInduction));
3747 
3748   // Emit phis for the new starting index of the scalar loop.
3749   createInductionResumeValues(Lp, CountRoundDown);
3750 
3751   return completeLoopSkeleton(Lp, OrigLoopID);
3752 }
3753 
3754 // Fix up external users of the induction variable. At this point, we are
3755 // in LCSSA form, with all external PHIs that use the IV having one input value,
3756 // coming from the remainder loop. We need those PHIs to also have a correct
3757 // value for the IV when arriving directly from the middle block.
3758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3759                                        const InductionDescriptor &II,
3760                                        Value *CountRoundDown, Value *EndValue,
3761                                        BasicBlock *MiddleBlock) {
3762   // There are two kinds of external IV usages - those that use the value
3763   // computed in the last iteration (the PHI) and those that use the penultimate
3764   // value (the value that feeds into the phi from the loop latch).
3765   // We allow both, but they, obviously, have different values.
3766 
3767   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3768 
3769   DenseMap<Value *, Value *> MissingVals;
3770 
3771   // An external user of the last iteration's value should see the value that
3772   // the remainder loop uses to initialize its own IV.
3773   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3774   for (User *U : PostInc->users()) {
3775     Instruction *UI = cast<Instruction>(U);
3776     if (!OrigLoop->contains(UI)) {
3777       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3778       MissingVals[UI] = EndValue;
3779     }
3780   }
3781 
3782   // An external user of the penultimate value need to see EndValue - Step.
3783   // The simplest way to get this is to recompute it from the constituent SCEVs,
3784   // that is Start + (Step * (CRD - 1)).
3785   for (User *U : OrigPhi->users()) {
3786     auto *UI = cast<Instruction>(U);
3787     if (!OrigLoop->contains(UI)) {
3788       const DataLayout &DL =
3789           OrigLoop->getHeader()->getModule()->getDataLayout();
3790       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3791 
3792       IRBuilder<> B(MiddleBlock->getTerminator());
3793 
3794       // Fast-math-flags propagate from the original induction instruction.
3795       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3796         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3797 
3798       Value *CountMinusOne = B.CreateSub(
3799           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3800       Value *CMO =
3801           !II.getStep()->getType()->isIntegerTy()
3802               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3803                              II.getStep()->getType())
3804               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3805       CMO->setName("cast.cmo");
3806       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3807       Escape->setName("ind.escape");
3808       MissingVals[UI] = Escape;
3809     }
3810   }
3811 
3812   for (auto &I : MissingVals) {
3813     PHINode *PHI = cast<PHINode>(I.first);
3814     // One corner case we have to handle is two IVs "chasing" each-other,
3815     // that is %IV2 = phi [...], [ %IV1, %latch ]
3816     // In this case, if IV1 has an external use, we need to avoid adding both
3817     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3818     // don't already have an incoming value for the middle block.
3819     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3820       PHI->addIncoming(I.second, MiddleBlock);
3821   }
3822 }
3823 
3824 namespace {
3825 
3826 struct CSEDenseMapInfo {
3827   static bool canHandle(const Instruction *I) {
3828     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3829            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3830   }
3831 
3832   static inline Instruction *getEmptyKey() {
3833     return DenseMapInfo<Instruction *>::getEmptyKey();
3834   }
3835 
3836   static inline Instruction *getTombstoneKey() {
3837     return DenseMapInfo<Instruction *>::getTombstoneKey();
3838   }
3839 
3840   static unsigned getHashValue(const Instruction *I) {
3841     assert(canHandle(I) && "Unknown instruction!");
3842     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3843                                                            I->value_op_end()));
3844   }
3845 
3846   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3847     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3848         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3849       return LHS == RHS;
3850     return LHS->isIdenticalTo(RHS);
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 ///Perform cse of induction variable instructions.
3857 static void cse(BasicBlock *BB) {
3858   // Perform simple cse.
3859   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3860   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3861     Instruction *In = &*I++;
3862 
3863     if (!CSEDenseMapInfo::canHandle(In))
3864       continue;
3865 
3866     // Check if we can replace this instruction with any of the
3867     // visited instructions.
3868     if (Instruction *V = CSEMap.lookup(In)) {
3869       In->replaceAllUsesWith(V);
3870       In->eraseFromParent();
3871       continue;
3872     }
3873 
3874     CSEMap[In] = In;
3875   }
3876 }
3877 
3878 InstructionCost
3879 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3880                                               bool &NeedToScalarize) const {
3881   Function *F = CI->getCalledFunction();
3882   Type *ScalarRetTy = CI->getType();
3883   SmallVector<Type *, 4> Tys, ScalarTys;
3884   for (auto &ArgOp : CI->arg_operands())
3885     ScalarTys.push_back(ArgOp->getType());
3886 
3887   // Estimate cost of scalarized vector call. The source operands are assumed
3888   // to be vectors, so we need to extract individual elements from there,
3889   // execute VF scalar calls, and then gather the result into the vector return
3890   // value.
3891   InstructionCost ScalarCallCost =
3892       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3893   if (VF.isScalar())
3894     return ScalarCallCost;
3895 
3896   // Compute corresponding vector type for return value and arguments.
3897   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3898   for (Type *ScalarTy : ScalarTys)
3899     Tys.push_back(ToVectorTy(ScalarTy, VF));
3900 
3901   // Compute costs of unpacking argument values for the scalar calls and
3902   // packing the return values to a vector.
3903   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3904 
3905   InstructionCost Cost =
3906       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3907 
3908   // If we can't emit a vector call for this function, then the currently found
3909   // cost is the cost we need to return.
3910   NeedToScalarize = true;
3911   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3912   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3913 
3914   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3915     return Cost;
3916 
3917   // If the corresponding vector cost is cheaper, return its cost.
3918   InstructionCost VectorCallCost =
3919       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3920   if (VectorCallCost < Cost) {
3921     NeedToScalarize = false;
3922     Cost = VectorCallCost;
3923   }
3924   return Cost;
3925 }
3926 
3927 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3928   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3929     return Elt;
3930   return VectorType::get(Elt, VF);
3931 }
3932 
3933 InstructionCost
3934 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3935                                                    ElementCount VF) const {
3936   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3937   assert(ID && "Expected intrinsic call!");
3938   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3939   FastMathFlags FMF;
3940   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3941     FMF = FPMO->getFastMathFlags();
3942 
3943   SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end());
3944   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3945   SmallVector<Type *> ParamTys;
3946   std::transform(FTy->param_begin(), FTy->param_end(),
3947                  std::back_inserter(ParamTys),
3948                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3949 
3950   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3951                                     dyn_cast<IntrinsicInst>(CI));
3952   return TTI.getIntrinsicInstrCost(CostAttrs,
3953                                    TargetTransformInfo::TCK_RecipThroughput);
3954 }
3955 
3956 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3957   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3958   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3959   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3960 }
3961 
3962 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3963   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3964   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3965   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3966 }
3967 
3968 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3969   // For every instruction `I` in MinBWs, truncate the operands, create a
3970   // truncated version of `I` and reextend its result. InstCombine runs
3971   // later and will remove any ext/trunc pairs.
3972   SmallPtrSet<Value *, 4> Erased;
3973   for (const auto &KV : Cost->getMinimalBitwidths()) {
3974     // If the value wasn't vectorized, we must maintain the original scalar
3975     // type. The absence of the value from State indicates that it
3976     // wasn't vectorized.
3977     VPValue *Def = State.Plan->getVPValue(KV.first);
3978     if (!State.hasAnyVectorValue(Def))
3979       continue;
3980     for (unsigned Part = 0; Part < UF; ++Part) {
3981       Value *I = State.get(Def, Part);
3982       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3983         continue;
3984       Type *OriginalTy = I->getType();
3985       Type *ScalarTruncatedTy =
3986           IntegerType::get(OriginalTy->getContext(), KV.second);
3987       auto *TruncatedTy = VectorType::get(
3988           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3989       if (TruncatedTy == OriginalTy)
3990         continue;
3991 
3992       IRBuilder<> B(cast<Instruction>(I));
3993       auto ShrinkOperand = [&](Value *V) -> Value * {
3994         if (auto *ZI = dyn_cast<ZExtInst>(V))
3995           if (ZI->getSrcTy() == TruncatedTy)
3996             return ZI->getOperand(0);
3997         return B.CreateZExtOrTrunc(V, TruncatedTy);
3998       };
3999 
4000       // The actual instruction modification depends on the instruction type,
4001       // unfortunately.
4002       Value *NewI = nullptr;
4003       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4004         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4005                              ShrinkOperand(BO->getOperand(1)));
4006 
4007         // Any wrapping introduced by shrinking this operation shouldn't be
4008         // considered undefined behavior. So, we can't unconditionally copy
4009         // arithmetic wrapping flags to NewI.
4010         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4011       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4012         NewI =
4013             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4014                          ShrinkOperand(CI->getOperand(1)));
4015       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4016         NewI = B.CreateSelect(SI->getCondition(),
4017                               ShrinkOperand(SI->getTrueValue()),
4018                               ShrinkOperand(SI->getFalseValue()));
4019       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4020         switch (CI->getOpcode()) {
4021         default:
4022           llvm_unreachable("Unhandled cast!");
4023         case Instruction::Trunc:
4024           NewI = ShrinkOperand(CI->getOperand(0));
4025           break;
4026         case Instruction::SExt:
4027           NewI = B.CreateSExtOrTrunc(
4028               CI->getOperand(0),
4029               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4030           break;
4031         case Instruction::ZExt:
4032           NewI = B.CreateZExtOrTrunc(
4033               CI->getOperand(0),
4034               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4035           break;
4036         }
4037       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4038         auto Elements0 =
4039             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4040         auto *O0 = B.CreateZExtOrTrunc(
4041             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4042         auto Elements1 =
4043             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4044         auto *O1 = B.CreateZExtOrTrunc(
4045             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4046 
4047         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4048       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4049         // Don't do anything with the operands, just extend the result.
4050         continue;
4051       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4052         auto Elements =
4053             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4054         auto *O0 = B.CreateZExtOrTrunc(
4055             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4056         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4057         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4058       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4059         auto Elements =
4060             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4061         auto *O0 = B.CreateZExtOrTrunc(
4062             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4063         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4064       } else {
4065         // If we don't know what to do, be conservative and don't do anything.
4066         continue;
4067       }
4068 
4069       // Lastly, extend the result.
4070       NewI->takeName(cast<Instruction>(I));
4071       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4072       I->replaceAllUsesWith(Res);
4073       cast<Instruction>(I)->eraseFromParent();
4074       Erased.insert(I);
4075       State.reset(Def, Res, Part);
4076     }
4077   }
4078 
4079   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4080   for (const auto &KV : Cost->getMinimalBitwidths()) {
4081     // If the value wasn't vectorized, we must maintain the original scalar
4082     // type. The absence of the value from State indicates that it
4083     // wasn't vectorized.
4084     VPValue *Def = State.Plan->getVPValue(KV.first);
4085     if (!State.hasAnyVectorValue(Def))
4086       continue;
4087     for (unsigned Part = 0; Part < UF; ++Part) {
4088       Value *I = State.get(Def, Part);
4089       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4090       if (Inst && Inst->use_empty()) {
4091         Value *NewI = Inst->getOperand(0);
4092         Inst->eraseFromParent();
4093         State.reset(Def, NewI, Part);
4094       }
4095     }
4096   }
4097 }
4098 
4099 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4100   // Insert truncates and extends for any truncated instructions as hints to
4101   // InstCombine.
4102   if (VF.isVector())
4103     truncateToMinimalBitwidths(State);
4104 
4105   // Fix widened non-induction PHIs by setting up the PHI operands.
4106   if (OrigPHIsToFix.size()) {
4107     assert(EnableVPlanNativePath &&
4108            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4109     fixNonInductionPHIs(State);
4110   }
4111 
4112   // At this point every instruction in the original loop is widened to a
4113   // vector form. Now we need to fix the recurrences in the loop. These PHI
4114   // nodes are currently empty because we did not want to introduce cycles.
4115   // This is the second stage of vectorizing recurrences.
4116   fixCrossIterationPHIs(State);
4117 
4118   // Forget the original basic block.
4119   PSE.getSE()->forgetLoop(OrigLoop);
4120 
4121   // If we inserted an edge from the middle block to the unique exit block,
4122   // update uses outside the loop (phis) to account for the newly inserted
4123   // edge.
4124   if (!Cost->requiresScalarEpilogue(VF)) {
4125     // Fix-up external users of the induction variables.
4126     for (auto &Entry : Legal->getInductionVars())
4127       fixupIVUsers(Entry.first, Entry.second,
4128                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4129                    IVEndValues[Entry.first], LoopMiddleBlock);
4130 
4131     fixLCSSAPHIs(State);
4132   }
4133 
4134   for (Instruction *PI : PredicatedInstructions)
4135     sinkScalarOperands(&*PI);
4136 
4137   // Remove redundant induction instructions.
4138   cse(LoopVectorBody);
4139 
4140   // Set/update profile weights for the vector and remainder loops as original
4141   // loop iterations are now distributed among them. Note that original loop
4142   // represented by LoopScalarBody becomes remainder loop after vectorization.
4143   //
4144   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4145   // end up getting slightly roughened result but that should be OK since
4146   // profile is not inherently precise anyway. Note also possible bypass of
4147   // vector code caused by legality checks is ignored, assigning all the weight
4148   // to the vector loop, optimistically.
4149   //
4150   // For scalable vectorization we can't know at compile time how many iterations
4151   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4152   // vscale of '1'.
4153   setProfileInfoAfterUnrolling(
4154       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4155       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4156 }
4157 
4158 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4159   // In order to support recurrences we need to be able to vectorize Phi nodes.
4160   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4161   // stage #2: We now need to fix the recurrences by adding incoming edges to
4162   // the currently empty PHI nodes. At this point every instruction in the
4163   // original loop is widened to a vector form so we can use them to construct
4164   // the incoming edges.
4165   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4166   for (VPRecipeBase &R : Header->phis()) {
4167     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4168       fixReduction(ReductionPhi, State);
4169     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4170       fixFirstOrderRecurrence(FOR, State);
4171   }
4172 }
4173 
4174 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4175                                                   VPTransformState &State) {
4176   // This is the second phase of vectorizing first-order recurrences. An
4177   // overview of the transformation is described below. Suppose we have the
4178   // following loop.
4179   //
4180   //   for (int i = 0; i < n; ++i)
4181   //     b[i] = a[i] - a[i - 1];
4182   //
4183   // There is a first-order recurrence on "a". For this loop, the shorthand
4184   // scalar IR looks like:
4185   //
4186   //   scalar.ph:
4187   //     s_init = a[-1]
4188   //     br scalar.body
4189   //
4190   //   scalar.body:
4191   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4192   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4193   //     s2 = a[i]
4194   //     b[i] = s2 - s1
4195   //     br cond, scalar.body, ...
4196   //
4197   // In this example, s1 is a recurrence because it's value depends on the
4198   // previous iteration. In the first phase of vectorization, we created a
4199   // vector phi v1 for s1. We now complete the vectorization and produce the
4200   // shorthand vector IR shown below (for VF = 4, UF = 1).
4201   //
4202   //   vector.ph:
4203   //     v_init = vector(..., ..., ..., a[-1])
4204   //     br vector.body
4205   //
4206   //   vector.body
4207   //     i = phi [0, vector.ph], [i+4, vector.body]
4208   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4209   //     v2 = a[i, i+1, i+2, i+3];
4210   //     v3 = vector(v1(3), v2(0, 1, 2))
4211   //     b[i, i+1, i+2, i+3] = v2 - v3
4212   //     br cond, vector.body, middle.block
4213   //
4214   //   middle.block:
4215   //     x = v2(3)
4216   //     br scalar.ph
4217   //
4218   //   scalar.ph:
4219   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4220   //     br scalar.body
4221   //
4222   // After execution completes the vector loop, we extract the next value of
4223   // the recurrence (x) to use as the initial value in the scalar loop.
4224 
4225   // Extract the last vector element in the middle block. This will be the
4226   // initial value for the recurrence when jumping to the scalar loop.
4227   VPValue *PreviousDef = PhiR->getBackedgeValue();
4228   Value *Incoming = State.get(PreviousDef, UF - 1);
4229   auto *ExtractForScalar = Incoming;
4230   auto *IdxTy = Builder.getInt32Ty();
4231   if (VF.isVector()) {
4232     auto *One = ConstantInt::get(IdxTy, 1);
4233     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4234     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4235     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4236     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4237                                                     "vector.recur.extract");
4238   }
4239   // Extract the second last element in the middle block if the
4240   // Phi is used outside the loop. We need to extract the phi itself
4241   // and not the last element (the phi update in the current iteration). This
4242   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4243   // when the scalar loop is not run at all.
4244   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4245   if (VF.isVector()) {
4246     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4247     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4248     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4249         Incoming, Idx, "vector.recur.extract.for.phi");
4250   } else if (UF > 1)
4251     // When loop is unrolled without vectorizing, initialize
4252     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4253     // of `Incoming`. This is analogous to the vectorized case above: extracting
4254     // the second last element when VF > 1.
4255     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4256 
4257   // Fix the initial value of the original recurrence in the scalar loop.
4258   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4259   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4260   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4261   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4262   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4263     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4264     Start->addIncoming(Incoming, BB);
4265   }
4266 
4267   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4268   Phi->setName("scalar.recur");
4269 
4270   // Finally, fix users of the recurrence outside the loop. The users will need
4271   // either the last value of the scalar recurrence or the last value of the
4272   // vector recurrence we extracted in the middle block. Since the loop is in
4273   // LCSSA form, we just need to find all the phi nodes for the original scalar
4274   // recurrence in the exit block, and then add an edge for the middle block.
4275   // Note that LCSSA does not imply single entry when the original scalar loop
4276   // had multiple exiting edges (as we always run the last iteration in the
4277   // scalar epilogue); in that case, there is no edge from middle to exit and
4278   // and thus no phis which needed updated.
4279   if (!Cost->requiresScalarEpilogue(VF))
4280     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4281       if (any_of(LCSSAPhi.incoming_values(),
4282                  [Phi](Value *V) { return V == Phi; }))
4283         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4284 }
4285 
4286 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4287                                        VPTransformState &State) {
4288   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4289   // Get it's reduction variable descriptor.
4290   assert(Legal->isReductionVariable(OrigPhi) &&
4291          "Unable to find the reduction variable");
4292   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4293 
4294   RecurKind RK = RdxDesc.getRecurrenceKind();
4295   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4296   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4297   setDebugLocFromInst(ReductionStartValue);
4298 
4299   VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst);
4300   // This is the vector-clone of the value that leaves the loop.
4301   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4302 
4303   // Wrap flags are in general invalid after vectorization, clear them.
4304   clearReductionWrapFlags(RdxDesc, State);
4305 
4306   // Fix the vector-loop phi.
4307 
4308   // Reductions do not have to start at zero. They can start with
4309   // any loop invariant values.
4310   BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4311 
4312   unsigned LastPartForNewPhi = PhiR->isOrdered() ? 1 : UF;
4313   for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
4314     Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part);
4315     Value *Val = State.get(PhiR->getBackedgeValue(), Part);
4316     if (PhiR->isOrdered())
4317       Val = State.get(PhiR->getBackedgeValue(), UF - 1);
4318 
4319     cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch);
4320   }
4321 
4322   // Before each round, move the insertion point right between
4323   // the PHIs and the values we are going to write.
4324   // This allows us to write both PHINodes and the extractelement
4325   // instructions.
4326   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4327 
4328   setDebugLocFromInst(LoopExitInst);
4329 
4330   Type *PhiTy = OrigPhi->getType();
4331   // If tail is folded by masking, the vector value to leave the loop should be
4332   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4333   // instead of the former. For an inloop reduction the reduction will already
4334   // be predicated, and does not need to be handled here.
4335   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4336     for (unsigned Part = 0; Part < UF; ++Part) {
4337       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4338       Value *Sel = nullptr;
4339       for (User *U : VecLoopExitInst->users()) {
4340         if (isa<SelectInst>(U)) {
4341           assert(!Sel && "Reduction exit feeding two selects");
4342           Sel = U;
4343         } else
4344           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4345       }
4346       assert(Sel && "Reduction exit feeds no select");
4347       State.reset(LoopExitInstDef, Sel, Part);
4348 
4349       // If the target can create a predicated operator for the reduction at no
4350       // extra cost in the loop (for example a predicated vadd), it can be
4351       // cheaper for the select to remain in the loop than be sunk out of it,
4352       // and so use the select value for the phi instead of the old
4353       // LoopExitValue.
4354       if (PreferPredicatedReductionSelect ||
4355           TTI->preferPredicatedReductionSelect(
4356               RdxDesc.getOpcode(), PhiTy,
4357               TargetTransformInfo::ReductionFlags())) {
4358         auto *VecRdxPhi =
4359             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4360         VecRdxPhi->setIncomingValueForBlock(
4361             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4362       }
4363     }
4364   }
4365 
4366   // If the vector reduction can be performed in a smaller type, we truncate
4367   // then extend the loop exit value to enable InstCombine to evaluate the
4368   // entire expression in the smaller type.
4369   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4370     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4371     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4372     Builder.SetInsertPoint(
4373         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4374     VectorParts RdxParts(UF);
4375     for (unsigned Part = 0; Part < UF; ++Part) {
4376       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4377       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4378       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4379                                         : Builder.CreateZExt(Trunc, VecTy);
4380       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4381            UI != RdxParts[Part]->user_end();)
4382         if (*UI != Trunc) {
4383           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4384           RdxParts[Part] = Extnd;
4385         } else {
4386           ++UI;
4387         }
4388     }
4389     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4390     for (unsigned Part = 0; Part < UF; ++Part) {
4391       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4392       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4393     }
4394   }
4395 
4396   // Reduce all of the unrolled parts into a single vector.
4397   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4398   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4399 
4400   // The middle block terminator has already been assigned a DebugLoc here (the
4401   // OrigLoop's single latch terminator). We want the whole middle block to
4402   // appear to execute on this line because: (a) it is all compiler generated,
4403   // (b) these instructions are always executed after evaluating the latch
4404   // conditional branch, and (c) other passes may add new predecessors which
4405   // terminate on this line. This is the easiest way to ensure we don't
4406   // accidentally cause an extra step back into the loop while debugging.
4407   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4408   if (PhiR->isOrdered())
4409     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4410   else {
4411     // Floating-point operations should have some FMF to enable the reduction.
4412     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4413     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4414     for (unsigned Part = 1; Part < UF; ++Part) {
4415       Value *RdxPart = State.get(LoopExitInstDef, Part);
4416       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4417         ReducedPartRdx = Builder.CreateBinOp(
4418             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4419       } else {
4420         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4421       }
4422     }
4423   }
4424 
4425   // Create the reduction after the loop. Note that inloop reductions create the
4426   // target reduction in the loop using a Reduction recipe.
4427   if (VF.isVector() && !PhiR->isInLoop()) {
4428     ReducedPartRdx =
4429         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4430     // If the reduction can be performed in a smaller type, we need to extend
4431     // the reduction to the wider type before we branch to the original loop.
4432     if (PhiTy != RdxDesc.getRecurrenceType())
4433       ReducedPartRdx = RdxDesc.isSigned()
4434                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4435                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4436   }
4437 
4438   // Create a phi node that merges control-flow from the backedge-taken check
4439   // block and the middle block.
4440   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4441                                         LoopScalarPreHeader->getTerminator());
4442   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4443     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4444   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4445 
4446   // Now, we need to fix the users of the reduction variable
4447   // inside and outside of the scalar remainder loop.
4448 
4449   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4450   // in the exit blocks.  See comment on analogous loop in
4451   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4452   if (!Cost->requiresScalarEpilogue(VF))
4453     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4454       if (any_of(LCSSAPhi.incoming_values(),
4455                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4456         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4457 
4458   // Fix the scalar loop reduction variable with the incoming reduction sum
4459   // from the vector body and from the backedge value.
4460   int IncomingEdgeBlockIdx =
4461       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4462   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4463   // Pick the other block.
4464   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4465   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4466   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4467 }
4468 
4469 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4470                                                   VPTransformState &State) {
4471   RecurKind RK = RdxDesc.getRecurrenceKind();
4472   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4473     return;
4474 
4475   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4476   assert(LoopExitInstr && "null loop exit instruction");
4477   SmallVector<Instruction *, 8> Worklist;
4478   SmallPtrSet<Instruction *, 8> Visited;
4479   Worklist.push_back(LoopExitInstr);
4480   Visited.insert(LoopExitInstr);
4481 
4482   while (!Worklist.empty()) {
4483     Instruction *Cur = Worklist.pop_back_val();
4484     if (isa<OverflowingBinaryOperator>(Cur))
4485       for (unsigned Part = 0; Part < UF; ++Part) {
4486         Value *V = State.get(State.Plan->getVPValue(Cur), Part);
4487         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4488       }
4489 
4490     for (User *U : Cur->users()) {
4491       Instruction *UI = cast<Instruction>(U);
4492       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4493           Visited.insert(UI).second)
4494         Worklist.push_back(UI);
4495     }
4496   }
4497 }
4498 
4499 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4500   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4501     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4502       // Some phis were already hand updated by the reduction and recurrence
4503       // code above, leave them alone.
4504       continue;
4505 
4506     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4507     // Non-instruction incoming values will have only one value.
4508 
4509     VPLane Lane = VPLane::getFirstLane();
4510     if (isa<Instruction>(IncomingValue) &&
4511         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4512                                            VF))
4513       Lane = VPLane::getLastLaneForVF(VF);
4514 
4515     // Can be a loop invariant incoming value or the last scalar value to be
4516     // extracted from the vectorized loop.
4517     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4518     Value *lastIncomingValue =
4519         OrigLoop->isLoopInvariant(IncomingValue)
4520             ? IncomingValue
4521             : State.get(State.Plan->getVPValue(IncomingValue),
4522                         VPIteration(UF - 1, Lane));
4523     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4524   }
4525 }
4526 
4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4528   // The basic block and loop containing the predicated instruction.
4529   auto *PredBB = PredInst->getParent();
4530   auto *VectorLoop = LI->getLoopFor(PredBB);
4531 
4532   // Initialize a worklist with the operands of the predicated instruction.
4533   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4534 
4535   // Holds instructions that we need to analyze again. An instruction may be
4536   // reanalyzed if we don't yet know if we can sink it or not.
4537   SmallVector<Instruction *, 8> InstsToReanalyze;
4538 
4539   // Returns true if a given use occurs in the predicated block. Phi nodes use
4540   // their operands in their corresponding predecessor blocks.
4541   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4542     auto *I = cast<Instruction>(U.getUser());
4543     BasicBlock *BB = I->getParent();
4544     if (auto *Phi = dyn_cast<PHINode>(I))
4545       BB = Phi->getIncomingBlock(
4546           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4547     return BB == PredBB;
4548   };
4549 
4550   // Iteratively sink the scalarized operands of the predicated instruction
4551   // into the block we created for it. When an instruction is sunk, it's
4552   // operands are then added to the worklist. The algorithm ends after one pass
4553   // through the worklist doesn't sink a single instruction.
4554   bool Changed;
4555   do {
4556     // Add the instructions that need to be reanalyzed to the worklist, and
4557     // reset the changed indicator.
4558     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4559     InstsToReanalyze.clear();
4560     Changed = false;
4561 
4562     while (!Worklist.empty()) {
4563       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4564 
4565       // We can't sink an instruction if it is a phi node, is not in the loop,
4566       // or may have side effects.
4567       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4568           I->mayHaveSideEffects())
4569         continue;
4570 
4571       // If the instruction is already in PredBB, check if we can sink its
4572       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4573       // sinking the scalar instruction I, hence it appears in PredBB; but it
4574       // may have failed to sink I's operands (recursively), which we try
4575       // (again) here.
4576       if (I->getParent() == PredBB) {
4577         Worklist.insert(I->op_begin(), I->op_end());
4578         continue;
4579       }
4580 
4581       // It's legal to sink the instruction if all its uses occur in the
4582       // predicated block. Otherwise, there's nothing to do yet, and we may
4583       // need to reanalyze the instruction.
4584       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4585         InstsToReanalyze.push_back(I);
4586         continue;
4587       }
4588 
4589       // Move the instruction to the beginning of the predicated block, and add
4590       // it's operands to the worklist.
4591       I->moveBefore(&*PredBB->getFirstInsertionPt());
4592       Worklist.insert(I->op_begin(), I->op_end());
4593 
4594       // The sinking may have enabled other instructions to be sunk, so we will
4595       // need to iterate.
4596       Changed = true;
4597     }
4598   } while (Changed);
4599 }
4600 
4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4602   for (PHINode *OrigPhi : OrigPHIsToFix) {
4603     VPWidenPHIRecipe *VPPhi =
4604         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4605     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4606     // Make sure the builder has a valid insert point.
4607     Builder.SetInsertPoint(NewPhi);
4608     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4609       VPValue *Inc = VPPhi->getIncomingValue(i);
4610       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4611       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4612     }
4613   }
4614 }
4615 
4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4617   return Cost->useOrderedReductions(RdxDesc);
4618 }
4619 
4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4621                                    VPUser &Operands, unsigned UF,
4622                                    ElementCount VF, bool IsPtrLoopInvariant,
4623                                    SmallBitVector &IsIndexLoopInvariant,
4624                                    VPTransformState &State) {
4625   // Construct a vector GEP by widening the operands of the scalar GEP as
4626   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4627   // results in a vector of pointers when at least one operand of the GEP
4628   // is vector-typed. Thus, to keep the representation compact, we only use
4629   // vector-typed operands for loop-varying values.
4630 
4631   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4632     // If we are vectorizing, but the GEP has only loop-invariant operands,
4633     // the GEP we build (by only using vector-typed operands for
4634     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4635     // produce a vector of pointers, we need to either arbitrarily pick an
4636     // operand to broadcast, or broadcast a clone of the original GEP.
4637     // Here, we broadcast a clone of the original.
4638     //
4639     // TODO: If at some point we decide to scalarize instructions having
4640     //       loop-invariant operands, this special case will no longer be
4641     //       required. We would add the scalarization decision to
4642     //       collectLoopScalars() and teach getVectorValue() to broadcast
4643     //       the lane-zero scalar value.
4644     auto *Clone = Builder.Insert(GEP->clone());
4645     for (unsigned Part = 0; Part < UF; ++Part) {
4646       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4647       State.set(VPDef, EntryPart, Part);
4648       addMetadata(EntryPart, GEP);
4649     }
4650   } else {
4651     // If the GEP has at least one loop-varying operand, we are sure to
4652     // produce a vector of pointers. But if we are only unrolling, we want
4653     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4654     // produce with the code below will be scalar (if VF == 1) or vector
4655     // (otherwise). Note that for the unroll-only case, we still maintain
4656     // values in the vector mapping with initVector, as we do for other
4657     // instructions.
4658     for (unsigned Part = 0; Part < UF; ++Part) {
4659       // The pointer operand of the new GEP. If it's loop-invariant, we
4660       // won't broadcast it.
4661       auto *Ptr = IsPtrLoopInvariant
4662                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4663                       : State.get(Operands.getOperand(0), Part);
4664 
4665       // Collect all the indices for the new GEP. If any index is
4666       // loop-invariant, we won't broadcast it.
4667       SmallVector<Value *, 4> Indices;
4668       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4669         VPValue *Operand = Operands.getOperand(I);
4670         if (IsIndexLoopInvariant[I - 1])
4671           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4672         else
4673           Indices.push_back(State.get(Operand, Part));
4674       }
4675 
4676       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4677       // but it should be a vector, otherwise.
4678       auto *NewGEP =
4679           GEP->isInBounds()
4680               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4681                                           Indices)
4682               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4683       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4684              "NewGEP is not a pointer vector");
4685       State.set(VPDef, NewGEP, Part);
4686       addMetadata(NewGEP, GEP);
4687     }
4688   }
4689 }
4690 
4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4692                                               VPWidenPHIRecipe *PhiR,
4693                                               VPTransformState &State) {
4694   PHINode *P = cast<PHINode>(PN);
4695   if (EnableVPlanNativePath) {
4696     // Currently we enter here in the VPlan-native path for non-induction
4697     // PHIs where all control flow is uniform. We simply widen these PHIs.
4698     // Create a vector phi with no operands - the vector phi operands will be
4699     // set at the end of vector code generation.
4700     Type *VecTy = (State.VF.isScalar())
4701                       ? PN->getType()
4702                       : VectorType::get(PN->getType(), State.VF);
4703     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4704     State.set(PhiR, VecPhi, 0);
4705     OrigPHIsToFix.push_back(P);
4706 
4707     return;
4708   }
4709 
4710   assert(PN->getParent() == OrigLoop->getHeader() &&
4711          "Non-header phis should have been handled elsewhere");
4712 
4713   // In order to support recurrences we need to be able to vectorize Phi nodes.
4714   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4715   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4716   // this value when we vectorize all of the instructions that use the PHI.
4717 
4718   assert(!Legal->isReductionVariable(P) &&
4719          "reductions should be handled elsewhere");
4720 
4721   setDebugLocFromInst(P);
4722 
4723   // This PHINode must be an induction variable.
4724   // Make sure that we know about it.
4725   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4726 
4727   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4728   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4729 
4730   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4731   // which can be found from the original scalar operations.
4732   switch (II.getKind()) {
4733   case InductionDescriptor::IK_NoInduction:
4734     llvm_unreachable("Unknown induction");
4735   case InductionDescriptor::IK_IntInduction:
4736   case InductionDescriptor::IK_FpInduction:
4737     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4738   case InductionDescriptor::IK_PtrInduction: {
4739     // Handle the pointer induction variable case.
4740     assert(P->getType()->isPointerTy() && "Unexpected type.");
4741 
4742     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4743       // This is the normalized GEP that starts counting at zero.
4744       Value *PtrInd =
4745           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4746       // Determine the number of scalars we need to generate for each unroll
4747       // iteration. If the instruction is uniform, we only need to generate the
4748       // first lane. Otherwise, we generate all VF values.
4749       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4750       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4751 
4752       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4753       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4754       if (NeedsVectorIndex) {
4755         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4756         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4757         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4758       }
4759 
4760       for (unsigned Part = 0; Part < UF; ++Part) {
4761         Value *PartStart = createStepForVF(
4762             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4763 
4764         if (NeedsVectorIndex) {
4765           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4766           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4767           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4768           Value *SclrGep =
4769               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4770           SclrGep->setName("next.gep");
4771           State.set(PhiR, SclrGep, Part);
4772           // We've cached the whole vector, which means we can support the
4773           // extraction of any lane.
4774           continue;
4775         }
4776 
4777         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4778           Value *Idx = Builder.CreateAdd(
4779               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4780           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4781           Value *SclrGep =
4782               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4783           SclrGep->setName("next.gep");
4784           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4785         }
4786       }
4787       return;
4788     }
4789     assert(isa<SCEVConstant>(II.getStep()) &&
4790            "Induction step not a SCEV constant!");
4791     Type *PhiType = II.getStep()->getType();
4792 
4793     // Build a pointer phi
4794     Value *ScalarStartValue = II.getStartValue();
4795     Type *ScStValueType = ScalarStartValue->getType();
4796     PHINode *NewPointerPhi =
4797         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4798     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4799 
4800     // A pointer induction, performed by using a gep
4801     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4802     Instruction *InductionLoc = LoopLatch->getTerminator();
4803     const SCEV *ScalarStep = II.getStep();
4804     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4805     Value *ScalarStepValue =
4806         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4807     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4808     Value *NumUnrolledElems =
4809         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4810     Value *InductionGEP = GetElementPtrInst::Create(
4811         ScStValueType->getPointerElementType(), NewPointerPhi,
4812         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4813         InductionLoc);
4814     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4815 
4816     // Create UF many actual address geps that use the pointer
4817     // phi as base and a vectorized version of the step value
4818     // (<step*0, ..., step*N>) as offset.
4819     for (unsigned Part = 0; Part < State.UF; ++Part) {
4820       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4821       Value *StartOffsetScalar =
4822           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4823       Value *StartOffset =
4824           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4825       // Create a vector of consecutive numbers from zero to VF.
4826       StartOffset =
4827           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4828 
4829       Value *GEP = Builder.CreateGEP(
4830           ScStValueType->getPointerElementType(), NewPointerPhi,
4831           Builder.CreateMul(
4832               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4833               "vector.gep"));
4834       State.set(PhiR, GEP, Part);
4835     }
4836   }
4837   }
4838 }
4839 
4840 /// A helper function for checking whether an integer division-related
4841 /// instruction may divide by zero (in which case it must be predicated if
4842 /// executed conditionally in the scalar code).
4843 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4844 /// Non-zero divisors that are non compile-time constants will not be
4845 /// converted into multiplication, so we will still end up scalarizing
4846 /// the division, but can do so w/o predication.
4847 static bool mayDivideByZero(Instruction &I) {
4848   assert((I.getOpcode() == Instruction::UDiv ||
4849           I.getOpcode() == Instruction::SDiv ||
4850           I.getOpcode() == Instruction::URem ||
4851           I.getOpcode() == Instruction::SRem) &&
4852          "Unexpected instruction");
4853   Value *Divisor = I.getOperand(1);
4854   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4855   return !CInt || CInt->isZero();
4856 }
4857 
4858 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4859                                            VPUser &User,
4860                                            VPTransformState &State) {
4861   switch (I.getOpcode()) {
4862   case Instruction::Call:
4863   case Instruction::Br:
4864   case Instruction::PHI:
4865   case Instruction::GetElementPtr:
4866   case Instruction::Select:
4867     llvm_unreachable("This instruction is handled by a different recipe.");
4868   case Instruction::UDiv:
4869   case Instruction::SDiv:
4870   case Instruction::SRem:
4871   case Instruction::URem:
4872   case Instruction::Add:
4873   case Instruction::FAdd:
4874   case Instruction::Sub:
4875   case Instruction::FSub:
4876   case Instruction::FNeg:
4877   case Instruction::Mul:
4878   case Instruction::FMul:
4879   case Instruction::FDiv:
4880   case Instruction::FRem:
4881   case Instruction::Shl:
4882   case Instruction::LShr:
4883   case Instruction::AShr:
4884   case Instruction::And:
4885   case Instruction::Or:
4886   case Instruction::Xor: {
4887     // Just widen unops and binops.
4888     setDebugLocFromInst(&I);
4889 
4890     for (unsigned Part = 0; Part < UF; ++Part) {
4891       SmallVector<Value *, 2> Ops;
4892       for (VPValue *VPOp : User.operands())
4893         Ops.push_back(State.get(VPOp, Part));
4894 
4895       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4896 
4897       if (auto *VecOp = dyn_cast<Instruction>(V))
4898         VecOp->copyIRFlags(&I);
4899 
4900       // Use this vector value for all users of the original instruction.
4901       State.set(Def, V, Part);
4902       addMetadata(V, &I);
4903     }
4904 
4905     break;
4906   }
4907   case Instruction::ICmp:
4908   case Instruction::FCmp: {
4909     // Widen compares. Generate vector compares.
4910     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4911     auto *Cmp = cast<CmpInst>(&I);
4912     setDebugLocFromInst(Cmp);
4913     for (unsigned Part = 0; Part < UF; ++Part) {
4914       Value *A = State.get(User.getOperand(0), Part);
4915       Value *B = State.get(User.getOperand(1), Part);
4916       Value *C = nullptr;
4917       if (FCmp) {
4918         // Propagate fast math flags.
4919         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4920         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4921         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4922       } else {
4923         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4924       }
4925       State.set(Def, C, Part);
4926       addMetadata(C, &I);
4927     }
4928 
4929     break;
4930   }
4931 
4932   case Instruction::ZExt:
4933   case Instruction::SExt:
4934   case Instruction::FPToUI:
4935   case Instruction::FPToSI:
4936   case Instruction::FPExt:
4937   case Instruction::PtrToInt:
4938   case Instruction::IntToPtr:
4939   case Instruction::SIToFP:
4940   case Instruction::UIToFP:
4941   case Instruction::Trunc:
4942   case Instruction::FPTrunc:
4943   case Instruction::BitCast: {
4944     auto *CI = cast<CastInst>(&I);
4945     setDebugLocFromInst(CI);
4946 
4947     /// Vectorize casts.
4948     Type *DestTy =
4949         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4950 
4951     for (unsigned Part = 0; Part < UF; ++Part) {
4952       Value *A = State.get(User.getOperand(0), Part);
4953       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4954       State.set(Def, Cast, Part);
4955       addMetadata(Cast, &I);
4956     }
4957     break;
4958   }
4959   default:
4960     // This instruction is not vectorized by simple widening.
4961     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4962     llvm_unreachable("Unhandled instruction!");
4963   } // end of switch.
4964 }
4965 
4966 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4967                                                VPUser &ArgOperands,
4968                                                VPTransformState &State) {
4969   assert(!isa<DbgInfoIntrinsic>(I) &&
4970          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4971   setDebugLocFromInst(&I);
4972 
4973   Module *M = I.getParent()->getParent()->getParent();
4974   auto *CI = cast<CallInst>(&I);
4975 
4976   SmallVector<Type *, 4> Tys;
4977   for (Value *ArgOperand : CI->arg_operands())
4978     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4979 
4980   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4981 
4982   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4983   // version of the instruction.
4984   // Is it beneficial to perform intrinsic call compared to lib call?
4985   bool NeedToScalarize = false;
4986   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4987   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4988   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4989   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4990          "Instruction should be scalarized elsewhere.");
4991   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4992          "Either the intrinsic cost or vector call cost must be valid");
4993 
4994   for (unsigned Part = 0; Part < UF; ++Part) {
4995     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4996     SmallVector<Value *, 4> Args;
4997     for (auto &I : enumerate(ArgOperands.operands())) {
4998       // Some intrinsics have a scalar argument - don't replace it with a
4999       // vector.
5000       Value *Arg;
5001       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5002         Arg = State.get(I.value(), Part);
5003       else {
5004         Arg = State.get(I.value(), VPIteration(0, 0));
5005         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5006           TysForDecl.push_back(Arg->getType());
5007       }
5008       Args.push_back(Arg);
5009     }
5010 
5011     Function *VectorF;
5012     if (UseVectorIntrinsic) {
5013       // Use vector version of the intrinsic.
5014       if (VF.isVector())
5015         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5016       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5017       assert(VectorF && "Can't retrieve vector intrinsic.");
5018     } else {
5019       // Use vector version of the function call.
5020       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5021 #ifndef NDEBUG
5022       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5023              "Can't create vector function.");
5024 #endif
5025         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5026     }
5027       SmallVector<OperandBundleDef, 1> OpBundles;
5028       CI->getOperandBundlesAsDefs(OpBundles);
5029       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5030 
5031       if (isa<FPMathOperator>(V))
5032         V->copyFastMathFlags(CI);
5033 
5034       State.set(Def, V, Part);
5035       addMetadata(V, &I);
5036   }
5037 }
5038 
5039 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5040                                                  VPUser &Operands,
5041                                                  bool InvariantCond,
5042                                                  VPTransformState &State) {
5043   setDebugLocFromInst(&I);
5044 
5045   // The condition can be loop invariant  but still defined inside the
5046   // loop. This means that we can't just use the original 'cond' value.
5047   // We have to take the 'vectorized' value and pick the first lane.
5048   // Instcombine will make this a no-op.
5049   auto *InvarCond = InvariantCond
5050                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5051                         : nullptr;
5052 
5053   for (unsigned Part = 0; Part < UF; ++Part) {
5054     Value *Cond =
5055         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5056     Value *Op0 = State.get(Operands.getOperand(1), Part);
5057     Value *Op1 = State.get(Operands.getOperand(2), Part);
5058     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5059     State.set(VPDef, Sel, Part);
5060     addMetadata(Sel, &I);
5061   }
5062 }
5063 
5064 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5065   // We should not collect Scalars more than once per VF. Right now, this
5066   // function is called from collectUniformsAndScalars(), which already does
5067   // this check. Collecting Scalars for VF=1 does not make any sense.
5068   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5069          "This function should not be visited twice for the same VF");
5070 
5071   SmallSetVector<Instruction *, 8> Worklist;
5072 
5073   // These sets are used to seed the analysis with pointers used by memory
5074   // accesses that will remain scalar.
5075   SmallSetVector<Instruction *, 8> ScalarPtrs;
5076   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5077   auto *Latch = TheLoop->getLoopLatch();
5078 
5079   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5080   // The pointer operands of loads and stores will be scalar as long as the
5081   // memory access is not a gather or scatter operation. The value operand of a
5082   // store will remain scalar if the store is scalarized.
5083   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5084     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5085     assert(WideningDecision != CM_Unknown &&
5086            "Widening decision should be ready at this moment");
5087     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5088       if (Ptr == Store->getValueOperand())
5089         return WideningDecision == CM_Scalarize;
5090     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5091            "Ptr is neither a value or pointer operand");
5092     return WideningDecision != CM_GatherScatter;
5093   };
5094 
5095   // A helper that returns true if the given value is a bitcast or
5096   // getelementptr instruction contained in the loop.
5097   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5098     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5099             isa<GetElementPtrInst>(V)) &&
5100            !TheLoop->isLoopInvariant(V);
5101   };
5102 
5103   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5104     if (!isa<PHINode>(Ptr) ||
5105         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5106       return false;
5107     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5108     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5109       return false;
5110     return isScalarUse(MemAccess, Ptr);
5111   };
5112 
5113   // A helper that evaluates a memory access's use of a pointer. If the
5114   // pointer is actually the pointer induction of a loop, it is being
5115   // inserted into Worklist. If the use will be a scalar use, and the
5116   // pointer is only used by memory accesses, we place the pointer in
5117   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5118   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5119     if (isScalarPtrInduction(MemAccess, Ptr)) {
5120       Worklist.insert(cast<Instruction>(Ptr));
5121       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5122                         << "\n");
5123 
5124       Instruction *Update = cast<Instruction>(
5125           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5126       ScalarPtrs.insert(Update);
5127       return;
5128     }
5129     // We only care about bitcast and getelementptr instructions contained in
5130     // the loop.
5131     if (!isLoopVaryingBitCastOrGEP(Ptr))
5132       return;
5133 
5134     // If the pointer has already been identified as scalar (e.g., if it was
5135     // also identified as uniform), there's nothing to do.
5136     auto *I = cast<Instruction>(Ptr);
5137     if (Worklist.count(I))
5138       return;
5139 
5140     // If all users of the pointer will be memory accesses and scalar, place the
5141     // pointer in ScalarPtrs. Otherwise, place the pointer in
5142     // PossibleNonScalarPtrs.
5143     if (llvm::all_of(I->users(), [&](User *U) {
5144           return (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
5145                  isScalarUse(cast<Instruction>(U), Ptr);
5146         }))
5147       ScalarPtrs.insert(I);
5148     else
5149       PossibleNonScalarPtrs.insert(I);
5150   };
5151 
5152   // We seed the scalars analysis with three classes of instructions: (1)
5153   // instructions marked uniform-after-vectorization and (2) bitcast,
5154   // getelementptr and (pointer) phi instructions used by memory accesses
5155   // requiring a scalar use.
5156   //
5157   // (1) Add to the worklist all instructions that have been identified as
5158   // uniform-after-vectorization.
5159   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5160 
5161   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5162   // memory accesses requiring a scalar use. The pointer operands of loads and
5163   // stores will be scalar as long as the memory accesses is not a gather or
5164   // scatter operation. The value operand of a store will remain scalar if the
5165   // store is scalarized.
5166   for (auto *BB : TheLoop->blocks())
5167     for (auto &I : *BB) {
5168       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5169         evaluatePtrUse(Load, Load->getPointerOperand());
5170       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5171         evaluatePtrUse(Store, Store->getPointerOperand());
5172         evaluatePtrUse(Store, Store->getValueOperand());
5173       }
5174     }
5175   for (auto *I : ScalarPtrs)
5176     if (!PossibleNonScalarPtrs.count(I)) {
5177       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5178       Worklist.insert(I);
5179     }
5180 
5181   // Insert the forced scalars.
5182   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5183   // induction variable when the PHI user is scalarized.
5184   auto ForcedScalar = ForcedScalars.find(VF);
5185   if (ForcedScalar != ForcedScalars.end())
5186     for (auto *I : ForcedScalar->second)
5187       Worklist.insert(I);
5188 
5189   // Expand the worklist by looking through any bitcasts and getelementptr
5190   // instructions we've already identified as scalar. This is similar to the
5191   // expansion step in collectLoopUniforms(); however, here we're only
5192   // expanding to include additional bitcasts and getelementptr instructions.
5193   unsigned Idx = 0;
5194   while (Idx != Worklist.size()) {
5195     Instruction *Dst = Worklist[Idx++];
5196     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5197       continue;
5198     auto *Src = cast<Instruction>(Dst->getOperand(0));
5199     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5200           auto *J = cast<Instruction>(U);
5201           return !TheLoop->contains(J) || Worklist.count(J) ||
5202                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5203                   isScalarUse(J, Src));
5204         })) {
5205       Worklist.insert(Src);
5206       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5207     }
5208   }
5209 
5210   // An induction variable will remain scalar if all users of the induction
5211   // variable and induction variable update remain scalar.
5212   for (auto &Induction : Legal->getInductionVars()) {
5213     auto *Ind = Induction.first;
5214     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5215 
5216     // If tail-folding is applied, the primary induction variable will be used
5217     // to feed a vector compare.
5218     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5219       continue;
5220 
5221     // Determine if all users of the induction variable are scalar after
5222     // vectorization.
5223     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5224       auto *I = cast<Instruction>(U);
5225       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5226     });
5227     if (!ScalarInd)
5228       continue;
5229 
5230     // Determine if all users of the induction variable update instruction are
5231     // scalar after vectorization.
5232     auto ScalarIndUpdate =
5233         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5234           auto *I = cast<Instruction>(U);
5235           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5236         });
5237     if (!ScalarIndUpdate)
5238       continue;
5239 
5240     // The induction variable and its update instruction will remain scalar.
5241     Worklist.insert(Ind);
5242     Worklist.insert(IndUpdate);
5243     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5244     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5245                       << "\n");
5246   }
5247 
5248   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5249 }
5250 
5251 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5252   if (!blockNeedsPredication(I->getParent()))
5253     return false;
5254   switch(I->getOpcode()) {
5255   default:
5256     break;
5257   case Instruction::Load:
5258   case Instruction::Store: {
5259     if (!Legal->isMaskRequired(I))
5260       return false;
5261     auto *Ptr = getLoadStorePointerOperand(I);
5262     auto *Ty = getLoadStoreType(I);
5263     const Align Alignment = getLoadStoreAlignment(I);
5264     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5265                                 TTI.isLegalMaskedGather(Ty, Alignment))
5266                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5267                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5268   }
5269   case Instruction::UDiv:
5270   case Instruction::SDiv:
5271   case Instruction::SRem:
5272   case Instruction::URem:
5273     return mayDivideByZero(*I);
5274   }
5275   return false;
5276 }
5277 
5278 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5279     Instruction *I, ElementCount VF) {
5280   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5281   assert(getWideningDecision(I, VF) == CM_Unknown &&
5282          "Decision should not be set yet.");
5283   auto *Group = getInterleavedAccessGroup(I);
5284   assert(Group && "Must have a group.");
5285 
5286   // If the instruction's allocated size doesn't equal it's type size, it
5287   // requires padding and will be scalarized.
5288   auto &DL = I->getModule()->getDataLayout();
5289   auto *ScalarTy = getLoadStoreType(I);
5290   if (hasIrregularType(ScalarTy, DL))
5291     return false;
5292 
5293   // Check if masking is required.
5294   // A Group may need masking for one of two reasons: it resides in a block that
5295   // needs predication, or it was decided to use masking to deal with gaps.
5296   bool PredicatedAccessRequiresMasking =
5297       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5298   bool AccessWithGapsRequiresMasking =
5299       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5300   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
5301     return true;
5302 
5303   // If masked interleaving is required, we expect that the user/target had
5304   // enabled it, because otherwise it either wouldn't have been created or
5305   // it should have been invalidated by the CostModel.
5306   assert(useMaskedInterleavedAccesses(TTI) &&
5307          "Masked interleave-groups for predicated accesses are not enabled.");
5308 
5309   auto *Ty = getLoadStoreType(I);
5310   const Align Alignment = getLoadStoreAlignment(I);
5311   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5312                           : TTI.isLegalMaskedStore(Ty, Alignment);
5313 }
5314 
5315 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5316     Instruction *I, ElementCount VF) {
5317   // Get and ensure we have a valid memory instruction.
5318   LoadInst *LI = dyn_cast<LoadInst>(I);
5319   StoreInst *SI = dyn_cast<StoreInst>(I);
5320   assert((LI || SI) && "Invalid memory instruction");
5321 
5322   auto *Ptr = getLoadStorePointerOperand(I);
5323 
5324   // In order to be widened, the pointer should be consecutive, first of all.
5325   if (!Legal->isConsecutivePtr(Ptr))
5326     return false;
5327 
5328   // If the instruction is a store located in a predicated block, it will be
5329   // scalarized.
5330   if (isScalarWithPredication(I))
5331     return false;
5332 
5333   // If the instruction's allocated size doesn't equal it's type size, it
5334   // requires padding and will be scalarized.
5335   auto &DL = I->getModule()->getDataLayout();
5336   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5337   if (hasIrregularType(ScalarTy, DL))
5338     return false;
5339 
5340   return true;
5341 }
5342 
5343 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5344   // We should not collect Uniforms more than once per VF. Right now,
5345   // this function is called from collectUniformsAndScalars(), which
5346   // already does this check. Collecting Uniforms for VF=1 does not make any
5347   // sense.
5348 
5349   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5350          "This function should not be visited twice for the same VF");
5351 
5352   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5353   // not analyze again.  Uniforms.count(VF) will return 1.
5354   Uniforms[VF].clear();
5355 
5356   // We now know that the loop is vectorizable!
5357   // Collect instructions inside the loop that will remain uniform after
5358   // vectorization.
5359 
5360   // Global values, params and instructions outside of current loop are out of
5361   // scope.
5362   auto isOutOfScope = [&](Value *V) -> bool {
5363     Instruction *I = dyn_cast<Instruction>(V);
5364     return (!I || !TheLoop->contains(I));
5365   };
5366 
5367   SetVector<Instruction *> Worklist;
5368   BasicBlock *Latch = TheLoop->getLoopLatch();
5369 
5370   // Instructions that are scalar with predication must not be considered
5371   // uniform after vectorization, because that would create an erroneous
5372   // replicating region where only a single instance out of VF should be formed.
5373   // TODO: optimize such seldom cases if found important, see PR40816.
5374   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5375     if (isOutOfScope(I)) {
5376       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5377                         << *I << "\n");
5378       return;
5379     }
5380     if (isScalarWithPredication(I)) {
5381       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5382                         << *I << "\n");
5383       return;
5384     }
5385     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5386     Worklist.insert(I);
5387   };
5388 
5389   // Start with the conditional branch. If the branch condition is an
5390   // instruction contained in the loop that is only used by the branch, it is
5391   // uniform.
5392   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5393   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5394     addToWorklistIfAllowed(Cmp);
5395 
5396   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5397     InstWidening WideningDecision = getWideningDecision(I, VF);
5398     assert(WideningDecision != CM_Unknown &&
5399            "Widening decision should be ready at this moment");
5400 
5401     // A uniform memory op is itself uniform.  We exclude uniform stores
5402     // here as they demand the last lane, not the first one.
5403     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5404       assert(WideningDecision == CM_Scalarize);
5405       return true;
5406     }
5407 
5408     return (WideningDecision == CM_Widen ||
5409             WideningDecision == CM_Widen_Reverse ||
5410             WideningDecision == CM_Interleave);
5411   };
5412 
5413 
5414   // Returns true if Ptr is the pointer operand of a memory access instruction
5415   // I, and I is known to not require scalarization.
5416   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5417     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5418   };
5419 
5420   // Holds a list of values which are known to have at least one uniform use.
5421   // Note that there may be other uses which aren't uniform.  A "uniform use"
5422   // here is something which only demands lane 0 of the unrolled iterations;
5423   // it does not imply that all lanes produce the same value (e.g. this is not
5424   // the usual meaning of uniform)
5425   SetVector<Value *> HasUniformUse;
5426 
5427   // Scan the loop for instructions which are either a) known to have only
5428   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5429   for (auto *BB : TheLoop->blocks())
5430     for (auto &I : *BB) {
5431       // If there's no pointer operand, there's nothing to do.
5432       auto *Ptr = getLoadStorePointerOperand(&I);
5433       if (!Ptr)
5434         continue;
5435 
5436       // A uniform memory op is itself uniform.  We exclude uniform stores
5437       // here as they demand the last lane, not the first one.
5438       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5439         addToWorklistIfAllowed(&I);
5440 
5441       if (isUniformDecision(&I, VF)) {
5442         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5443         HasUniformUse.insert(Ptr);
5444       }
5445     }
5446 
5447   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5448   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5449   // disallows uses outside the loop as well.
5450   for (auto *V : HasUniformUse) {
5451     if (isOutOfScope(V))
5452       continue;
5453     auto *I = cast<Instruction>(V);
5454     auto UsersAreMemAccesses =
5455       llvm::all_of(I->users(), [&](User *U) -> bool {
5456         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5457       });
5458     if (UsersAreMemAccesses)
5459       addToWorklistIfAllowed(I);
5460   }
5461 
5462   // Expand Worklist in topological order: whenever a new instruction
5463   // is added , its users should be already inside Worklist.  It ensures
5464   // a uniform instruction will only be used by uniform instructions.
5465   unsigned idx = 0;
5466   while (idx != Worklist.size()) {
5467     Instruction *I = Worklist[idx++];
5468 
5469     for (auto OV : I->operand_values()) {
5470       // isOutOfScope operands cannot be uniform instructions.
5471       if (isOutOfScope(OV))
5472         continue;
5473       // First order recurrence Phi's should typically be considered
5474       // non-uniform.
5475       auto *OP = dyn_cast<PHINode>(OV);
5476       if (OP && Legal->isFirstOrderRecurrence(OP))
5477         continue;
5478       // If all the users of the operand are uniform, then add the
5479       // operand into the uniform worklist.
5480       auto *OI = cast<Instruction>(OV);
5481       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5482             auto *J = cast<Instruction>(U);
5483             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5484           }))
5485         addToWorklistIfAllowed(OI);
5486     }
5487   }
5488 
5489   // For an instruction to be added into Worklist above, all its users inside
5490   // the loop should also be in Worklist. However, this condition cannot be
5491   // true for phi nodes that form a cyclic dependence. We must process phi
5492   // nodes separately. An induction variable will remain uniform if all users
5493   // of the induction variable and induction variable update remain uniform.
5494   // The code below handles both pointer and non-pointer induction variables.
5495   for (auto &Induction : Legal->getInductionVars()) {
5496     auto *Ind = Induction.first;
5497     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5498 
5499     // Determine if all users of the induction variable are uniform after
5500     // vectorization.
5501     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5502       auto *I = cast<Instruction>(U);
5503       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5504              isVectorizedMemAccessUse(I, Ind);
5505     });
5506     if (!UniformInd)
5507       continue;
5508 
5509     // Determine if all users of the induction variable update instruction are
5510     // uniform after vectorization.
5511     auto UniformIndUpdate =
5512         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5513           auto *I = cast<Instruction>(U);
5514           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5515                  isVectorizedMemAccessUse(I, IndUpdate);
5516         });
5517     if (!UniformIndUpdate)
5518       continue;
5519 
5520     // The induction variable and its update instruction will remain uniform.
5521     addToWorklistIfAllowed(Ind);
5522     addToWorklistIfAllowed(IndUpdate);
5523   }
5524 
5525   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5526 }
5527 
5528 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5529   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5530 
5531   if (Legal->getRuntimePointerChecking()->Need) {
5532     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5533         "runtime pointer checks needed. Enable vectorization of this "
5534         "loop with '#pragma clang loop vectorize(enable)' when "
5535         "compiling with -Os/-Oz",
5536         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5537     return true;
5538   }
5539 
5540   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5541     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5542         "runtime SCEV checks needed. Enable vectorization of this "
5543         "loop with '#pragma clang loop vectorize(enable)' when "
5544         "compiling with -Os/-Oz",
5545         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5546     return true;
5547   }
5548 
5549   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5550   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5551     reportVectorizationFailure("Runtime stride check for small trip count",
5552         "runtime stride == 1 checks needed. Enable vectorization of "
5553         "this loop without such check by compiling with -Os/-Oz",
5554         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5555     return true;
5556   }
5557 
5558   return false;
5559 }
5560 
5561 ElementCount
5562 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5563   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5564     reportVectorizationInfo(
5565         "Disabling scalable vectorization, because target does not "
5566         "support scalable vectors.",
5567         "ScalableVectorsUnsupported", ORE, TheLoop);
5568     return ElementCount::getScalable(0);
5569   }
5570 
5571   if (Hints->isScalableVectorizationDisabled()) {
5572     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5573                             "ScalableVectorizationDisabled", ORE, TheLoop);
5574     return ElementCount::getScalable(0);
5575   }
5576 
5577   auto MaxScalableVF = ElementCount::getScalable(
5578       std::numeric_limits<ElementCount::ScalarTy>::max());
5579 
5580   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5581   // FIXME: While for scalable vectors this is currently sufficient, this should
5582   // be replaced by a more detailed mechanism that filters out specific VFs,
5583   // instead of invalidating vectorization for a whole set of VFs based on the
5584   // MaxVF.
5585 
5586   // Disable scalable vectorization if the loop contains unsupported reductions.
5587   if (!canVectorizeReductions(MaxScalableVF)) {
5588     reportVectorizationInfo(
5589         "Scalable vectorization not supported for the reduction "
5590         "operations found in this loop.",
5591         "ScalableVFUnfeasible", ORE, TheLoop);
5592     return ElementCount::getScalable(0);
5593   }
5594 
5595   // Disable scalable vectorization if the loop contains any instructions
5596   // with element types not supported for scalable vectors.
5597   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5598         return !Ty->isVoidTy() &&
5599                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5600       })) {
5601     reportVectorizationInfo("Scalable vectorization is not supported "
5602                             "for all element types found in this loop.",
5603                             "ScalableVFUnfeasible", ORE, TheLoop);
5604     return ElementCount::getScalable(0);
5605   }
5606 
5607   if (Legal->isSafeForAnyVectorWidth())
5608     return MaxScalableVF;
5609 
5610   // Limit MaxScalableVF by the maximum safe dependence distance.
5611   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5612   MaxScalableVF = ElementCount::getScalable(
5613       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5614   if (!MaxScalableVF)
5615     reportVectorizationInfo(
5616         "Max legal vector width too small, scalable vectorization "
5617         "unfeasible.",
5618         "ScalableVFUnfeasible", ORE, TheLoop);
5619 
5620   return MaxScalableVF;
5621 }
5622 
5623 FixedScalableVFPair
5624 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5625                                                  ElementCount UserVF) {
5626   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5627   unsigned SmallestType, WidestType;
5628   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5629 
5630   // Get the maximum safe dependence distance in bits computed by LAA.
5631   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5632   // the memory accesses that is most restrictive (involved in the smallest
5633   // dependence distance).
5634   unsigned MaxSafeElements =
5635       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5636 
5637   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5638   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5639 
5640   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5641                     << ".\n");
5642   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5643                     << ".\n");
5644 
5645   // First analyze the UserVF, fall back if the UserVF should be ignored.
5646   if (UserVF) {
5647     auto MaxSafeUserVF =
5648         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5649 
5650     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5651       // If `VF=vscale x N` is safe, then so is `VF=N`
5652       if (UserVF.isScalable())
5653         return FixedScalableVFPair(
5654             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5655       else
5656         return UserVF;
5657     }
5658 
5659     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5660 
5661     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5662     // is better to ignore the hint and let the compiler choose a suitable VF.
5663     if (!UserVF.isScalable()) {
5664       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5665                         << " is unsafe, clamping to max safe VF="
5666                         << MaxSafeFixedVF << ".\n");
5667       ORE->emit([&]() {
5668         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5669                                           TheLoop->getStartLoc(),
5670                                           TheLoop->getHeader())
5671                << "User-specified vectorization factor "
5672                << ore::NV("UserVectorizationFactor", UserVF)
5673                << " is unsafe, clamping to maximum safe vectorization factor "
5674                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5675       });
5676       return MaxSafeFixedVF;
5677     }
5678 
5679     LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5680                       << " is unsafe. Ignoring scalable UserVF.\n");
5681     ORE->emit([&]() {
5682       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5683                                         TheLoop->getStartLoc(),
5684                                         TheLoop->getHeader())
5685              << "User-specified vectorization factor "
5686              << ore::NV("UserVectorizationFactor", UserVF)
5687              << " is unsafe. Ignoring the hint to let the compiler pick a "
5688                 "suitable VF.";
5689     });
5690   }
5691 
5692   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5693                     << " / " << WidestType << " bits.\n");
5694 
5695   FixedScalableVFPair Result(ElementCount::getFixed(1),
5696                              ElementCount::getScalable(0));
5697   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5698                                            WidestType, MaxSafeFixedVF))
5699     Result.FixedVF = MaxVF;
5700 
5701   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5702                                            WidestType, MaxSafeScalableVF))
5703     if (MaxVF.isScalable()) {
5704       Result.ScalableVF = MaxVF;
5705       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5706                         << "\n");
5707     }
5708 
5709   return Result;
5710 }
5711 
5712 FixedScalableVFPair
5713 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5714   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5715     // TODO: It may by useful to do since it's still likely to be dynamically
5716     // uniform if the target can skip.
5717     reportVectorizationFailure(
5718         "Not inserting runtime ptr check for divergent target",
5719         "runtime pointer checks needed. Not enabled for divergent target",
5720         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5721     return FixedScalableVFPair::getNone();
5722   }
5723 
5724   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5725   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5726   if (TC == 1) {
5727     reportVectorizationFailure("Single iteration (non) loop",
5728         "loop trip count is one, irrelevant for vectorization",
5729         "SingleIterationLoop", ORE, TheLoop);
5730     return FixedScalableVFPair::getNone();
5731   }
5732 
5733   switch (ScalarEpilogueStatus) {
5734   case CM_ScalarEpilogueAllowed:
5735     return computeFeasibleMaxVF(TC, UserVF);
5736   case CM_ScalarEpilogueNotAllowedUsePredicate:
5737     LLVM_FALLTHROUGH;
5738   case CM_ScalarEpilogueNotNeededUsePredicate:
5739     LLVM_DEBUG(
5740         dbgs() << "LV: vector predicate hint/switch found.\n"
5741                << "LV: Not allowing scalar epilogue, creating predicated "
5742                << "vector loop.\n");
5743     break;
5744   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5745     // fallthrough as a special case of OptForSize
5746   case CM_ScalarEpilogueNotAllowedOptSize:
5747     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5748       LLVM_DEBUG(
5749           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5750     else
5751       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5752                         << "count.\n");
5753 
5754     // Bail if runtime checks are required, which are not good when optimising
5755     // for size.
5756     if (runtimeChecksRequired())
5757       return FixedScalableVFPair::getNone();
5758 
5759     break;
5760   }
5761 
5762   // The only loops we can vectorize without a scalar epilogue, are loops with
5763   // a bottom-test and a single exiting block. We'd have to handle the fact
5764   // that not every instruction executes on the last iteration.  This will
5765   // require a lane mask which varies through the vector loop body.  (TODO)
5766   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5767     // If there was a tail-folding hint/switch, but we can't fold the tail by
5768     // masking, fallback to a vectorization with a scalar epilogue.
5769     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5770       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5771                            "scalar epilogue instead.\n");
5772       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5773       return computeFeasibleMaxVF(TC, UserVF);
5774     }
5775     return FixedScalableVFPair::getNone();
5776   }
5777 
5778   // Now try the tail folding
5779 
5780   // Invalidate interleave groups that require an epilogue if we can't mask
5781   // the interleave-group.
5782   if (!useMaskedInterleavedAccesses(TTI)) {
5783     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5784            "No decisions should have been taken at this point");
5785     // Note: There is no need to invalidate any cost modeling decisions here, as
5786     // non where taken so far.
5787     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5788   }
5789 
5790   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5791   // Avoid tail folding if the trip count is known to be a multiple of any VF
5792   // we chose.
5793   // FIXME: The condition below pessimises the case for fixed-width vectors,
5794   // when scalable VFs are also candidates for vectorization.
5795   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5796     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5797     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5798            "MaxFixedVF must be a power of 2");
5799     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5800                                    : MaxFixedVF.getFixedValue();
5801     ScalarEvolution *SE = PSE.getSE();
5802     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5803     const SCEV *ExitCount = SE->getAddExpr(
5804         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5805     const SCEV *Rem = SE->getURemExpr(
5806         SE->applyLoopGuards(ExitCount, TheLoop),
5807         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5808     if (Rem->isZero()) {
5809       // Accept MaxFixedVF if we do not have a tail.
5810       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5811       return MaxFactors;
5812     }
5813   }
5814 
5815   // For scalable vectors, don't use tail folding as this is currently not yet
5816   // supported. The code is likely to have ended up here if the tripcount is
5817   // low, in which case it makes sense not to use scalable vectors.
5818   if (MaxFactors.ScalableVF.isVector())
5819     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5820 
5821   // If we don't know the precise trip count, or if the trip count that we
5822   // found modulo the vectorization factor is not zero, try to fold the tail
5823   // by masking.
5824   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5825   if (Legal->prepareToFoldTailByMasking()) {
5826     FoldTailByMasking = true;
5827     return MaxFactors;
5828   }
5829 
5830   // If there was a tail-folding hint/switch, but we can't fold the tail by
5831   // masking, fallback to a vectorization with a scalar epilogue.
5832   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5833     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5834                          "scalar epilogue instead.\n");
5835     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5836     return MaxFactors;
5837   }
5838 
5839   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5840     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5841     return FixedScalableVFPair::getNone();
5842   }
5843 
5844   if (TC == 0) {
5845     reportVectorizationFailure(
5846         "Unable to calculate the loop count due to complex control flow",
5847         "unable to calculate the loop count due to complex control flow",
5848         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5849     return FixedScalableVFPair::getNone();
5850   }
5851 
5852   reportVectorizationFailure(
5853       "Cannot optimize for size and vectorize at the same time.",
5854       "cannot optimize for size and vectorize at the same time. "
5855       "Enable vectorization of this loop with '#pragma clang loop "
5856       "vectorize(enable)' when compiling with -Os/-Oz",
5857       "NoTailLoopWithOptForSize", ORE, TheLoop);
5858   return FixedScalableVFPair::getNone();
5859 }
5860 
5861 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5862     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5863     const ElementCount &MaxSafeVF) {
5864   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5865   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5866       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5867                            : TargetTransformInfo::RGK_FixedWidthVector);
5868 
5869   // Convenience function to return the minimum of two ElementCounts.
5870   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5871     assert((LHS.isScalable() == RHS.isScalable()) &&
5872            "Scalable flags must match");
5873     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5874   };
5875 
5876   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5877   // Note that both WidestRegister and WidestType may not be a powers of 2.
5878   auto MaxVectorElementCount = ElementCount::get(
5879       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5880       ComputeScalableMaxVF);
5881   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5882   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5883                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5884 
5885   if (!MaxVectorElementCount) {
5886     LLVM_DEBUG(dbgs() << "LV: The target has no "
5887                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5888                       << " vector registers.\n");
5889     return ElementCount::getFixed(1);
5890   }
5891 
5892   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5893   if (ConstTripCount &&
5894       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5895       isPowerOf2_32(ConstTripCount)) {
5896     // We need to clamp the VF to be the ConstTripCount. There is no point in
5897     // choosing a higher viable VF as done in the loop below. If
5898     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5899     // the TC is less than or equal to the known number of lanes.
5900     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5901                       << ConstTripCount << "\n");
5902     return TripCountEC;
5903   }
5904 
5905   ElementCount MaxVF = MaxVectorElementCount;
5906   if (TTI.shouldMaximizeVectorBandwidth() ||
5907       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5908     auto MaxVectorElementCountMaxBW = ElementCount::get(
5909         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5910         ComputeScalableMaxVF);
5911     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5912 
5913     // Collect all viable vectorization factors larger than the default MaxVF
5914     // (i.e. MaxVectorElementCount).
5915     SmallVector<ElementCount, 8> VFs;
5916     for (ElementCount VS = MaxVectorElementCount * 2;
5917          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5918       VFs.push_back(VS);
5919 
5920     // For each VF calculate its register usage.
5921     auto RUs = calculateRegisterUsage(VFs);
5922 
5923     // Select the largest VF which doesn't require more registers than existing
5924     // ones.
5925     for (int i = RUs.size() - 1; i >= 0; --i) {
5926       bool Selected = true;
5927       for (auto &pair : RUs[i].MaxLocalUsers) {
5928         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5929         if (pair.second > TargetNumRegisters)
5930           Selected = false;
5931       }
5932       if (Selected) {
5933         MaxVF = VFs[i];
5934         break;
5935       }
5936     }
5937     if (ElementCount MinVF =
5938             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5939       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5940         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5941                           << ") with target's minimum: " << MinVF << '\n');
5942         MaxVF = MinVF;
5943       }
5944     }
5945   }
5946   return MaxVF;
5947 }
5948 
5949 bool LoopVectorizationCostModel::isMoreProfitable(
5950     const VectorizationFactor &A, const VectorizationFactor &B) const {
5951   InstructionCost CostA = A.Cost;
5952   InstructionCost CostB = B.Cost;
5953 
5954   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5955 
5956   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5957       MaxTripCount) {
5958     // If we are folding the tail and the trip count is a known (possibly small)
5959     // constant, the trip count will be rounded up to an integer number of
5960     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5961     // which we compare directly. When not folding the tail, the total cost will
5962     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5963     // approximated with the per-lane cost below instead of using the tripcount
5964     // as here.
5965     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5966     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5967     return RTCostA < RTCostB;
5968   }
5969 
5970   // When set to preferred, for now assume vscale may be larger than 1, so
5971   // that scalable vectorization is slightly favorable over fixed-width
5972   // vectorization.
5973   if (Hints->isScalableVectorizationPreferred())
5974     if (A.Width.isScalable() && !B.Width.isScalable())
5975       return (CostA * B.Width.getKnownMinValue()) <=
5976              (CostB * A.Width.getKnownMinValue());
5977 
5978   // To avoid the need for FP division:
5979   //      (CostA / A.Width) < (CostB / B.Width)
5980   // <=>  (CostA * B.Width) < (CostB * A.Width)
5981   return (CostA * B.Width.getKnownMinValue()) <
5982          (CostB * A.Width.getKnownMinValue());
5983 }
5984 
5985 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5986     const ElementCountSet &VFCandidates) {
5987   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5988   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5989   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5990   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5991          "Expected Scalar VF to be a candidate");
5992 
5993   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5994   VectorizationFactor ChosenFactor = ScalarCost;
5995 
5996   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5997   if (ForceVectorization && VFCandidates.size() > 1) {
5998     // Ignore scalar width, because the user explicitly wants vectorization.
5999     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6000     // evaluation.
6001     ChosenFactor.Cost = InstructionCost::getMax();
6002   }
6003 
6004   SmallVector<InstructionVFPair> InvalidCosts;
6005   for (const auto &i : VFCandidates) {
6006     // The cost for scalar VF=1 is already calculated, so ignore it.
6007     if (i.isScalar())
6008       continue;
6009 
6010     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6011     VectorizationFactor Candidate(i, C.first);
6012     LLVM_DEBUG(
6013         dbgs() << "LV: Vector loop of width " << i << " costs: "
6014                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6015                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6016                << ".\n");
6017 
6018     if (!C.second && !ForceVectorization) {
6019       LLVM_DEBUG(
6020           dbgs() << "LV: Not considering vector loop of width " << i
6021                  << " because it will not generate any vector instructions.\n");
6022       continue;
6023     }
6024 
6025     // If profitable add it to ProfitableVF list.
6026     if (isMoreProfitable(Candidate, ScalarCost))
6027       ProfitableVFs.push_back(Candidate);
6028 
6029     if (isMoreProfitable(Candidate, ChosenFactor))
6030       ChosenFactor = Candidate;
6031   }
6032 
6033   // Emit a report of VFs with invalid costs in the loop.
6034   if (!InvalidCosts.empty()) {
6035     // Group the remarks per instruction, keeping the instruction order from
6036     // InvalidCosts.
6037     std::map<Instruction *, unsigned> Numbering;
6038     unsigned I = 0;
6039     for (auto &Pair : InvalidCosts)
6040       if (!Numbering.count(Pair.first))
6041         Numbering[Pair.first] = I++;
6042 
6043     // Sort the list, first on instruction(number) then on VF.
6044     llvm::sort(InvalidCosts,
6045                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6046                  if (Numbering[A.first] != Numbering[B.first])
6047                    return Numbering[A.first] < Numbering[B.first];
6048                  ElementCountComparator ECC;
6049                  return ECC(A.second, B.second);
6050                });
6051 
6052     // For a list of ordered instruction-vf pairs:
6053     //   [(load, vf1), (load, vf2), (store, vf1)]
6054     // Group the instructions together to emit separate remarks for:
6055     //   load  (vf1, vf2)
6056     //   store (vf1)
6057     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6058     auto Subset = ArrayRef<InstructionVFPair>();
6059     do {
6060       if (Subset.empty())
6061         Subset = Tail.take_front(1);
6062 
6063       Instruction *I = Subset.front().first;
6064 
6065       // If the next instruction is different, or if there are no other pairs,
6066       // emit a remark for the collated subset. e.g.
6067       //   [(load, vf1), (load, vf2))]
6068       // to emit:
6069       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6070       if (Subset == Tail || Tail[Subset.size()].first != I) {
6071         std::string OutString;
6072         raw_string_ostream OS(OutString);
6073         assert(!Subset.empty() && "Unexpected empty range");
6074         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6075         for (auto &Pair : Subset)
6076           OS << (Pair.second == Subset.front().second ? "" : ", ")
6077              << Pair.second;
6078         OS << "):";
6079         if (auto *CI = dyn_cast<CallInst>(I))
6080           OS << " call to " << CI->getCalledFunction()->getName();
6081         else
6082           OS << " " << I->getOpcodeName();
6083         OS.flush();
6084         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6085         Tail = Tail.drop_front(Subset.size());
6086         Subset = {};
6087       } else
6088         // Grow the subset by one element
6089         Subset = Tail.take_front(Subset.size() + 1);
6090     } while (!Tail.empty());
6091   }
6092 
6093   if (!EnableCondStoresVectorization && NumPredStores) {
6094     reportVectorizationFailure("There are conditional stores.",
6095         "store that is conditionally executed prevents vectorization",
6096         "ConditionalStore", ORE, TheLoop);
6097     ChosenFactor = ScalarCost;
6098   }
6099 
6100   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6101                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6102              << "LV: Vectorization seems to be not beneficial, "
6103              << "but was forced by a user.\n");
6104   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6105   return ChosenFactor;
6106 }
6107 
6108 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6109     const Loop &L, ElementCount VF) const {
6110   // Cross iteration phis such as reductions need special handling and are
6111   // currently unsupported.
6112   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6113         return Legal->isFirstOrderRecurrence(&Phi) ||
6114                Legal->isReductionVariable(&Phi);
6115       }))
6116     return false;
6117 
6118   // Phis with uses outside of the loop require special handling and are
6119   // currently unsupported.
6120   for (auto &Entry : Legal->getInductionVars()) {
6121     // Look for uses of the value of the induction at the last iteration.
6122     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6123     for (User *U : PostInc->users())
6124       if (!L.contains(cast<Instruction>(U)))
6125         return false;
6126     // Look for uses of penultimate value of the induction.
6127     for (User *U : Entry.first->users())
6128       if (!L.contains(cast<Instruction>(U)))
6129         return false;
6130   }
6131 
6132   // Induction variables that are widened require special handling that is
6133   // currently not supported.
6134   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6135         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6136                  this->isProfitableToScalarize(Entry.first, VF));
6137       }))
6138     return false;
6139 
6140   // Epilogue vectorization code has not been auditted to ensure it handles
6141   // non-latch exits properly.  It may be fine, but it needs auditted and
6142   // tested.
6143   if (L.getExitingBlock() != L.getLoopLatch())
6144     return false;
6145 
6146   return true;
6147 }
6148 
6149 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6150     const ElementCount VF) const {
6151   // FIXME: We need a much better cost-model to take different parameters such
6152   // as register pressure, code size increase and cost of extra branches into
6153   // account. For now we apply a very crude heuristic and only consider loops
6154   // with vectorization factors larger than a certain value.
6155   // We also consider epilogue vectorization unprofitable for targets that don't
6156   // consider interleaving beneficial (eg. MVE).
6157   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6158     return false;
6159   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6160     return true;
6161   return false;
6162 }
6163 
6164 VectorizationFactor
6165 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6166     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6167   VectorizationFactor Result = VectorizationFactor::Disabled();
6168   if (!EnableEpilogueVectorization) {
6169     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6170     return Result;
6171   }
6172 
6173   if (!isScalarEpilogueAllowed()) {
6174     LLVM_DEBUG(
6175         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6176                   "allowed.\n";);
6177     return Result;
6178   }
6179 
6180   // FIXME: This can be fixed for scalable vectors later, because at this stage
6181   // the LoopVectorizer will only consider vectorizing a loop with scalable
6182   // vectors when the loop has a hint to enable vectorization for a given VF.
6183   if (MainLoopVF.isScalable()) {
6184     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6185                          "yet supported.\n");
6186     return Result;
6187   }
6188 
6189   // Not really a cost consideration, but check for unsupported cases here to
6190   // simplify the logic.
6191   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6192     LLVM_DEBUG(
6193         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6194                   "not a supported candidate.\n";);
6195     return Result;
6196   }
6197 
6198   if (EpilogueVectorizationForceVF > 1) {
6199     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6200     if (LVP.hasPlanWithVFs(
6201             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6202       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6203     else {
6204       LLVM_DEBUG(
6205           dbgs()
6206               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6207       return Result;
6208     }
6209   }
6210 
6211   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6212       TheLoop->getHeader()->getParent()->hasMinSize()) {
6213     LLVM_DEBUG(
6214         dbgs()
6215             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6216     return Result;
6217   }
6218 
6219   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6220     return Result;
6221 
6222   for (auto &NextVF : ProfitableVFs)
6223     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6224         (Result.Width.getFixedValue() == 1 ||
6225          isMoreProfitable(NextVF, Result)) &&
6226         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6227       Result = NextVF;
6228 
6229   if (Result != VectorizationFactor::Disabled())
6230     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6231                       << Result.Width.getFixedValue() << "\n";);
6232   return Result;
6233 }
6234 
6235 std::pair<unsigned, unsigned>
6236 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6237   unsigned MinWidth = -1U;
6238   unsigned MaxWidth = 8;
6239   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6240   for (Type *T : ElementTypesInLoop) {
6241     MinWidth = std::min<unsigned>(
6242         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6243     MaxWidth = std::max<unsigned>(
6244         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6245   }
6246   return {MinWidth, MaxWidth};
6247 }
6248 
6249 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6250   ElementTypesInLoop.clear();
6251   // For each block.
6252   for (BasicBlock *BB : TheLoop->blocks()) {
6253     // For each instruction in the loop.
6254     for (Instruction &I : BB->instructionsWithoutDebug()) {
6255       Type *T = I.getType();
6256 
6257       // Skip ignored values.
6258       if (ValuesToIgnore.count(&I))
6259         continue;
6260 
6261       // Only examine Loads, Stores and PHINodes.
6262       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6263         continue;
6264 
6265       // Examine PHI nodes that are reduction variables. Update the type to
6266       // account for the recurrence type.
6267       if (auto *PN = dyn_cast<PHINode>(&I)) {
6268         if (!Legal->isReductionVariable(PN))
6269           continue;
6270         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6271         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6272             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6273                                       RdxDesc.getRecurrenceType(),
6274                                       TargetTransformInfo::ReductionFlags()))
6275           continue;
6276         T = RdxDesc.getRecurrenceType();
6277       }
6278 
6279       // Examine the stored values.
6280       if (auto *ST = dyn_cast<StoreInst>(&I))
6281         T = ST->getValueOperand()->getType();
6282 
6283       // Ignore loaded pointer types and stored pointer types that are not
6284       // vectorizable.
6285       //
6286       // FIXME: The check here attempts to predict whether a load or store will
6287       //        be vectorized. We only know this for certain after a VF has
6288       //        been selected. Here, we assume that if an access can be
6289       //        vectorized, it will be. We should also look at extending this
6290       //        optimization to non-pointer types.
6291       //
6292       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6293           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6294         continue;
6295 
6296       ElementTypesInLoop.insert(T);
6297     }
6298   }
6299 }
6300 
6301 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6302                                                            unsigned LoopCost) {
6303   // -- The interleave heuristics --
6304   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6305   // There are many micro-architectural considerations that we can't predict
6306   // at this level. For example, frontend pressure (on decode or fetch) due to
6307   // code size, or the number and capabilities of the execution ports.
6308   //
6309   // We use the following heuristics to select the interleave count:
6310   // 1. If the code has reductions, then we interleave to break the cross
6311   // iteration dependency.
6312   // 2. If the loop is really small, then we interleave to reduce the loop
6313   // overhead.
6314   // 3. We don't interleave if we think that we will spill registers to memory
6315   // due to the increased register pressure.
6316 
6317   if (!isScalarEpilogueAllowed())
6318     return 1;
6319 
6320   // We used the distance for the interleave count.
6321   if (Legal->getMaxSafeDepDistBytes() != -1U)
6322     return 1;
6323 
6324   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6325   const bool HasReductions = !Legal->getReductionVars().empty();
6326   // Do not interleave loops with a relatively small known or estimated trip
6327   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6328   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6329   // because with the above conditions interleaving can expose ILP and break
6330   // cross iteration dependences for reductions.
6331   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6332       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6333     return 1;
6334 
6335   RegisterUsage R = calculateRegisterUsage({VF})[0];
6336   // We divide by these constants so assume that we have at least one
6337   // instruction that uses at least one register.
6338   for (auto& pair : R.MaxLocalUsers) {
6339     pair.second = std::max(pair.second, 1U);
6340   }
6341 
6342   // We calculate the interleave count using the following formula.
6343   // Subtract the number of loop invariants from the number of available
6344   // registers. These registers are used by all of the interleaved instances.
6345   // Next, divide the remaining registers by the number of registers that is
6346   // required by the loop, in order to estimate how many parallel instances
6347   // fit without causing spills. All of this is rounded down if necessary to be
6348   // a power of two. We want power of two interleave count to simplify any
6349   // addressing operations or alignment considerations.
6350   // We also want power of two interleave counts to ensure that the induction
6351   // variable of the vector loop wraps to zero, when tail is folded by masking;
6352   // this currently happens when OptForSize, in which case IC is set to 1 above.
6353   unsigned IC = UINT_MAX;
6354 
6355   for (auto& pair : R.MaxLocalUsers) {
6356     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6357     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6358                       << " registers of "
6359                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6360     if (VF.isScalar()) {
6361       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6362         TargetNumRegisters = ForceTargetNumScalarRegs;
6363     } else {
6364       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6365         TargetNumRegisters = ForceTargetNumVectorRegs;
6366     }
6367     unsigned MaxLocalUsers = pair.second;
6368     unsigned LoopInvariantRegs = 0;
6369     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6370       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6371 
6372     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6373     // Don't count the induction variable as interleaved.
6374     if (EnableIndVarRegisterHeur) {
6375       TmpIC =
6376           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6377                         std::max(1U, (MaxLocalUsers - 1)));
6378     }
6379 
6380     IC = std::min(IC, TmpIC);
6381   }
6382 
6383   // Clamp the interleave ranges to reasonable counts.
6384   unsigned MaxInterleaveCount =
6385       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6386 
6387   // Check if the user has overridden the max.
6388   if (VF.isScalar()) {
6389     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6390       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6391   } else {
6392     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6393       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6394   }
6395 
6396   // If trip count is known or estimated compile time constant, limit the
6397   // interleave count to be less than the trip count divided by VF, provided it
6398   // is at least 1.
6399   //
6400   // For scalable vectors we can't know if interleaving is beneficial. It may
6401   // not be beneficial for small loops if none of the lanes in the second vector
6402   // iterations is enabled. However, for larger loops, there is likely to be a
6403   // similar benefit as for fixed-width vectors. For now, we choose to leave
6404   // the InterleaveCount as if vscale is '1', although if some information about
6405   // the vector is known (e.g. min vector size), we can make a better decision.
6406   if (BestKnownTC) {
6407     MaxInterleaveCount =
6408         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6409     // Make sure MaxInterleaveCount is greater than 0.
6410     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6411   }
6412 
6413   assert(MaxInterleaveCount > 0 &&
6414          "Maximum interleave count must be greater than 0");
6415 
6416   // Clamp the calculated IC to be between the 1 and the max interleave count
6417   // that the target and trip count allows.
6418   if (IC > MaxInterleaveCount)
6419     IC = MaxInterleaveCount;
6420   else
6421     // Make sure IC is greater than 0.
6422     IC = std::max(1u, IC);
6423 
6424   assert(IC > 0 && "Interleave count must be greater than 0.");
6425 
6426   // If we did not calculate the cost for VF (because the user selected the VF)
6427   // then we calculate the cost of VF here.
6428   if (LoopCost == 0) {
6429     InstructionCost C = expectedCost(VF).first;
6430     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6431     LoopCost = *C.getValue();
6432   }
6433 
6434   assert(LoopCost && "Non-zero loop cost expected");
6435 
6436   // Interleave if we vectorized this loop and there is a reduction that could
6437   // benefit from interleaving.
6438   if (VF.isVector() && HasReductions) {
6439     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6440     return IC;
6441   }
6442 
6443   // Note that if we've already vectorized the loop we will have done the
6444   // runtime check and so interleaving won't require further checks.
6445   bool InterleavingRequiresRuntimePointerCheck =
6446       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6447 
6448   // We want to interleave small loops in order to reduce the loop overhead and
6449   // potentially expose ILP opportunities.
6450   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6451                     << "LV: IC is " << IC << '\n'
6452                     << "LV: VF is " << VF << '\n');
6453   const bool AggressivelyInterleaveReductions =
6454       TTI.enableAggressiveInterleaving(HasReductions);
6455   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6456     // We assume that the cost overhead is 1 and we use the cost model
6457     // to estimate the cost of the loop and interleave until the cost of the
6458     // loop overhead is about 5% of the cost of the loop.
6459     unsigned SmallIC =
6460         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6461 
6462     // Interleave until store/load ports (estimated by max interleave count) are
6463     // saturated.
6464     unsigned NumStores = Legal->getNumStores();
6465     unsigned NumLoads = Legal->getNumLoads();
6466     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6467     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6468 
6469     // If we have a scalar reduction (vector reductions are already dealt with
6470     // by this point), we can increase the critical path length if the loop
6471     // we're interleaving is inside another loop. For tree-wise reductions
6472     // set the limit to 2, and for ordered reductions it's best to disable
6473     // interleaving entirely.
6474     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6475       bool HasOrderedReductions =
6476           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6477             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6478             return RdxDesc.isOrdered();
6479           });
6480       if (HasOrderedReductions) {
6481         LLVM_DEBUG(
6482             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6483         return 1;
6484       }
6485 
6486       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6487       SmallIC = std::min(SmallIC, F);
6488       StoresIC = std::min(StoresIC, F);
6489       LoadsIC = std::min(LoadsIC, F);
6490     }
6491 
6492     if (EnableLoadStoreRuntimeInterleave &&
6493         std::max(StoresIC, LoadsIC) > SmallIC) {
6494       LLVM_DEBUG(
6495           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6496       return std::max(StoresIC, LoadsIC);
6497     }
6498 
6499     // If there are scalar reductions and TTI has enabled aggressive
6500     // interleaving for reductions, we will interleave to expose ILP.
6501     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6502         AggressivelyInterleaveReductions) {
6503       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6504       // Interleave no less than SmallIC but not as aggressive as the normal IC
6505       // to satisfy the rare situation when resources are too limited.
6506       return std::max(IC / 2, SmallIC);
6507     } else {
6508       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6509       return SmallIC;
6510     }
6511   }
6512 
6513   // Interleave if this is a large loop (small loops are already dealt with by
6514   // this point) that could benefit from interleaving.
6515   if (AggressivelyInterleaveReductions) {
6516     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6517     return IC;
6518   }
6519 
6520   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6521   return 1;
6522 }
6523 
6524 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6525 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6526   // This function calculates the register usage by measuring the highest number
6527   // of values that are alive at a single location. Obviously, this is a very
6528   // rough estimation. We scan the loop in a topological order in order and
6529   // assign a number to each instruction. We use RPO to ensure that defs are
6530   // met before their users. We assume that each instruction that has in-loop
6531   // users starts an interval. We record every time that an in-loop value is
6532   // used, so we have a list of the first and last occurrences of each
6533   // instruction. Next, we transpose this data structure into a multi map that
6534   // holds the list of intervals that *end* at a specific location. This multi
6535   // map allows us to perform a linear search. We scan the instructions linearly
6536   // and record each time that a new interval starts, by placing it in a set.
6537   // If we find this value in the multi-map then we remove it from the set.
6538   // The max register usage is the maximum size of the set.
6539   // We also search for instructions that are defined outside the loop, but are
6540   // used inside the loop. We need this number separately from the max-interval
6541   // usage number because when we unroll, loop-invariant values do not take
6542   // more register.
6543   LoopBlocksDFS DFS(TheLoop);
6544   DFS.perform(LI);
6545 
6546   RegisterUsage RU;
6547 
6548   // Each 'key' in the map opens a new interval. The values
6549   // of the map are the index of the 'last seen' usage of the
6550   // instruction that is the key.
6551   using IntervalMap = DenseMap<Instruction *, unsigned>;
6552 
6553   // Maps instruction to its index.
6554   SmallVector<Instruction *, 64> IdxToInstr;
6555   // Marks the end of each interval.
6556   IntervalMap EndPoint;
6557   // Saves the list of instruction indices that are used in the loop.
6558   SmallPtrSet<Instruction *, 8> Ends;
6559   // Saves the list of values that are used in the loop but are
6560   // defined outside the loop, such as arguments and constants.
6561   SmallPtrSet<Value *, 8> LoopInvariants;
6562 
6563   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6564     for (Instruction &I : BB->instructionsWithoutDebug()) {
6565       IdxToInstr.push_back(&I);
6566 
6567       // Save the end location of each USE.
6568       for (Value *U : I.operands()) {
6569         auto *Instr = dyn_cast<Instruction>(U);
6570 
6571         // Ignore non-instruction values such as arguments, constants, etc.
6572         if (!Instr)
6573           continue;
6574 
6575         // If this instruction is outside the loop then record it and continue.
6576         if (!TheLoop->contains(Instr)) {
6577           LoopInvariants.insert(Instr);
6578           continue;
6579         }
6580 
6581         // Overwrite previous end points.
6582         EndPoint[Instr] = IdxToInstr.size();
6583         Ends.insert(Instr);
6584       }
6585     }
6586   }
6587 
6588   // Saves the list of intervals that end with the index in 'key'.
6589   using InstrList = SmallVector<Instruction *, 2>;
6590   DenseMap<unsigned, InstrList> TransposeEnds;
6591 
6592   // Transpose the EndPoints to a list of values that end at each index.
6593   for (auto &Interval : EndPoint)
6594     TransposeEnds[Interval.second].push_back(Interval.first);
6595 
6596   SmallPtrSet<Instruction *, 8> OpenIntervals;
6597   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6598   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6599 
6600   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6601 
6602   // A lambda that gets the register usage for the given type and VF.
6603   const auto &TTICapture = TTI;
6604   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6605     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6606       return 0;
6607     InstructionCost::CostType RegUsage =
6608         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6609     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6610            "Nonsensical values for register usage.");
6611     return RegUsage;
6612   };
6613 
6614   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6615     Instruction *I = IdxToInstr[i];
6616 
6617     // Remove all of the instructions that end at this location.
6618     InstrList &List = TransposeEnds[i];
6619     for (Instruction *ToRemove : List)
6620       OpenIntervals.erase(ToRemove);
6621 
6622     // Ignore instructions that are never used within the loop.
6623     if (!Ends.count(I))
6624       continue;
6625 
6626     // Skip ignored values.
6627     if (ValuesToIgnore.count(I))
6628       continue;
6629 
6630     // For each VF find the maximum usage of registers.
6631     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6632       // Count the number of live intervals.
6633       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6634 
6635       if (VFs[j].isScalar()) {
6636         for (auto Inst : OpenIntervals) {
6637           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6638           if (RegUsage.find(ClassID) == RegUsage.end())
6639             RegUsage[ClassID] = 1;
6640           else
6641             RegUsage[ClassID] += 1;
6642         }
6643       } else {
6644         collectUniformsAndScalars(VFs[j]);
6645         for (auto Inst : OpenIntervals) {
6646           // Skip ignored values for VF > 1.
6647           if (VecValuesToIgnore.count(Inst))
6648             continue;
6649           if (isScalarAfterVectorization(Inst, VFs[j])) {
6650             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6651             if (RegUsage.find(ClassID) == RegUsage.end())
6652               RegUsage[ClassID] = 1;
6653             else
6654               RegUsage[ClassID] += 1;
6655           } else {
6656             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6657             if (RegUsage.find(ClassID) == RegUsage.end())
6658               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6659             else
6660               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6661           }
6662         }
6663       }
6664 
6665       for (auto& pair : RegUsage) {
6666         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6667           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6668         else
6669           MaxUsages[j][pair.first] = pair.second;
6670       }
6671     }
6672 
6673     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6674                       << OpenIntervals.size() << '\n');
6675 
6676     // Add the current instruction to the list of open intervals.
6677     OpenIntervals.insert(I);
6678   }
6679 
6680   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6681     SmallMapVector<unsigned, unsigned, 4> Invariant;
6682 
6683     for (auto Inst : LoopInvariants) {
6684       unsigned Usage =
6685           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6686       unsigned ClassID =
6687           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6688       if (Invariant.find(ClassID) == Invariant.end())
6689         Invariant[ClassID] = Usage;
6690       else
6691         Invariant[ClassID] += Usage;
6692     }
6693 
6694     LLVM_DEBUG({
6695       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6696       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6697              << " item\n";
6698       for (const auto &pair : MaxUsages[i]) {
6699         dbgs() << "LV(REG): RegisterClass: "
6700                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6701                << " registers\n";
6702       }
6703       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6704              << " item\n";
6705       for (const auto &pair : Invariant) {
6706         dbgs() << "LV(REG): RegisterClass: "
6707                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6708                << " registers\n";
6709       }
6710     });
6711 
6712     RU.LoopInvariantRegs = Invariant;
6713     RU.MaxLocalUsers = MaxUsages[i];
6714     RUs[i] = RU;
6715   }
6716 
6717   return RUs;
6718 }
6719 
6720 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6721   // TODO: Cost model for emulated masked load/store is completely
6722   // broken. This hack guides the cost model to use an artificially
6723   // high enough value to practically disable vectorization with such
6724   // operations, except where previously deployed legality hack allowed
6725   // using very low cost values. This is to avoid regressions coming simply
6726   // from moving "masked load/store" check from legality to cost model.
6727   // Masked Load/Gather emulation was previously never allowed.
6728   // Limited number of Masked Store/Scatter emulation was allowed.
6729   assert(isPredicatedInst(I) &&
6730          "Expecting a scalar emulated instruction");
6731   return isa<LoadInst>(I) ||
6732          (isa<StoreInst>(I) &&
6733           NumPredStores > NumberOfStoresToPredicate);
6734 }
6735 
6736 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6737   // If we aren't vectorizing the loop, or if we've already collected the
6738   // instructions to scalarize, there's nothing to do. Collection may already
6739   // have occurred if we have a user-selected VF and are now computing the
6740   // expected cost for interleaving.
6741   if (VF.isScalar() || VF.isZero() ||
6742       InstsToScalarize.find(VF) != InstsToScalarize.end())
6743     return;
6744 
6745   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6746   // not profitable to scalarize any instructions, the presence of VF in the
6747   // map will indicate that we've analyzed it already.
6748   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6749 
6750   // Find all the instructions that are scalar with predication in the loop and
6751   // determine if it would be better to not if-convert the blocks they are in.
6752   // If so, we also record the instructions to scalarize.
6753   for (BasicBlock *BB : TheLoop->blocks()) {
6754     if (!blockNeedsPredication(BB))
6755       continue;
6756     for (Instruction &I : *BB)
6757       if (isScalarWithPredication(&I)) {
6758         ScalarCostsTy ScalarCosts;
6759         // Do not apply discount if scalable, because that would lead to
6760         // invalid scalarization costs.
6761         // Do not apply discount logic if hacked cost is needed
6762         // for emulated masked memrefs.
6763         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6764             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6765           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6766         // Remember that BB will remain after vectorization.
6767         PredicatedBBsAfterVectorization.insert(BB);
6768       }
6769   }
6770 }
6771 
6772 int LoopVectorizationCostModel::computePredInstDiscount(
6773     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6774   assert(!isUniformAfterVectorization(PredInst, VF) &&
6775          "Instruction marked uniform-after-vectorization will be predicated");
6776 
6777   // Initialize the discount to zero, meaning that the scalar version and the
6778   // vector version cost the same.
6779   InstructionCost Discount = 0;
6780 
6781   // Holds instructions to analyze. The instructions we visit are mapped in
6782   // ScalarCosts. Those instructions are the ones that would be scalarized if
6783   // we find that the scalar version costs less.
6784   SmallVector<Instruction *, 8> Worklist;
6785 
6786   // Returns true if the given instruction can be scalarized.
6787   auto canBeScalarized = [&](Instruction *I) -> bool {
6788     // We only attempt to scalarize instructions forming a single-use chain
6789     // from the original predicated block that would otherwise be vectorized.
6790     // Although not strictly necessary, we give up on instructions we know will
6791     // already be scalar to avoid traversing chains that are unlikely to be
6792     // beneficial.
6793     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6794         isScalarAfterVectorization(I, VF))
6795       return false;
6796 
6797     // If the instruction is scalar with predication, it will be analyzed
6798     // separately. We ignore it within the context of PredInst.
6799     if (isScalarWithPredication(I))
6800       return false;
6801 
6802     // If any of the instruction's operands are uniform after vectorization,
6803     // the instruction cannot be scalarized. This prevents, for example, a
6804     // masked load from being scalarized.
6805     //
6806     // We assume we will only emit a value for lane zero of an instruction
6807     // marked uniform after vectorization, rather than VF identical values.
6808     // Thus, if we scalarize an instruction that uses a uniform, we would
6809     // create uses of values corresponding to the lanes we aren't emitting code
6810     // for. This behavior can be changed by allowing getScalarValue to clone
6811     // the lane zero values for uniforms rather than asserting.
6812     for (Use &U : I->operands())
6813       if (auto *J = dyn_cast<Instruction>(U.get()))
6814         if (isUniformAfterVectorization(J, VF))
6815           return false;
6816 
6817     // Otherwise, we can scalarize the instruction.
6818     return true;
6819   };
6820 
6821   // Compute the expected cost discount from scalarizing the entire expression
6822   // feeding the predicated instruction. We currently only consider expressions
6823   // that are single-use instruction chains.
6824   Worklist.push_back(PredInst);
6825   while (!Worklist.empty()) {
6826     Instruction *I = Worklist.pop_back_val();
6827 
6828     // If we've already analyzed the instruction, there's nothing to do.
6829     if (ScalarCosts.find(I) != ScalarCosts.end())
6830       continue;
6831 
6832     // Compute the cost of the vector instruction. Note that this cost already
6833     // includes the scalarization overhead of the predicated instruction.
6834     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6835 
6836     // Compute the cost of the scalarized instruction. This cost is the cost of
6837     // the instruction as if it wasn't if-converted and instead remained in the
6838     // predicated block. We will scale this cost by block probability after
6839     // computing the scalarization overhead.
6840     InstructionCost ScalarCost =
6841         VF.getFixedValue() *
6842         getInstructionCost(I, ElementCount::getFixed(1)).first;
6843 
6844     // Compute the scalarization overhead of needed insertelement instructions
6845     // and phi nodes.
6846     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6847       ScalarCost += TTI.getScalarizationOverhead(
6848           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6849           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6850       ScalarCost +=
6851           VF.getFixedValue() *
6852           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6853     }
6854 
6855     // Compute the scalarization overhead of needed extractelement
6856     // instructions. For each of the instruction's operands, if the operand can
6857     // be scalarized, add it to the worklist; otherwise, account for the
6858     // overhead.
6859     for (Use &U : I->operands())
6860       if (auto *J = dyn_cast<Instruction>(U.get())) {
6861         assert(VectorType::isValidElementType(J->getType()) &&
6862                "Instruction has non-scalar type");
6863         if (canBeScalarized(J))
6864           Worklist.push_back(J);
6865         else if (needsExtract(J, VF)) {
6866           ScalarCost += TTI.getScalarizationOverhead(
6867               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6868               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6869         }
6870       }
6871 
6872     // Scale the total scalar cost by block probability.
6873     ScalarCost /= getReciprocalPredBlockProb();
6874 
6875     // Compute the discount. A non-negative discount means the vector version
6876     // of the instruction costs more, and scalarizing would be beneficial.
6877     Discount += VectorCost - ScalarCost;
6878     ScalarCosts[I] = ScalarCost;
6879   }
6880 
6881   return *Discount.getValue();
6882 }
6883 
6884 LoopVectorizationCostModel::VectorizationCostTy
6885 LoopVectorizationCostModel::expectedCost(
6886     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6887   VectorizationCostTy Cost;
6888 
6889   // For each block.
6890   for (BasicBlock *BB : TheLoop->blocks()) {
6891     VectorizationCostTy BlockCost;
6892 
6893     // For each instruction in the old loop.
6894     for (Instruction &I : BB->instructionsWithoutDebug()) {
6895       // Skip ignored values.
6896       if (ValuesToIgnore.count(&I) ||
6897           (VF.isVector() && VecValuesToIgnore.count(&I)))
6898         continue;
6899 
6900       VectorizationCostTy C = getInstructionCost(&I, VF);
6901 
6902       // Check if we should override the cost.
6903       if (C.first.isValid() &&
6904           ForceTargetInstructionCost.getNumOccurrences() > 0)
6905         C.first = InstructionCost(ForceTargetInstructionCost);
6906 
6907       // Keep a list of instructions with invalid costs.
6908       if (Invalid && !C.first.isValid())
6909         Invalid->emplace_back(&I, VF);
6910 
6911       BlockCost.first += C.first;
6912       BlockCost.second |= C.second;
6913       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6914                         << " for VF " << VF << " For instruction: " << I
6915                         << '\n');
6916     }
6917 
6918     // If we are vectorizing a predicated block, it will have been
6919     // if-converted. This means that the block's instructions (aside from
6920     // stores and instructions that may divide by zero) will now be
6921     // unconditionally executed. For the scalar case, we may not always execute
6922     // the predicated block, if it is an if-else block. Thus, scale the block's
6923     // cost by the probability of executing it. blockNeedsPredication from
6924     // Legal is used so as to not include all blocks in tail folded loops.
6925     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6926       BlockCost.first /= getReciprocalPredBlockProb();
6927 
6928     Cost.first += BlockCost.first;
6929     Cost.second |= BlockCost.second;
6930   }
6931 
6932   return Cost;
6933 }
6934 
6935 /// Gets Address Access SCEV after verifying that the access pattern
6936 /// is loop invariant except the induction variable dependence.
6937 ///
6938 /// This SCEV can be sent to the Target in order to estimate the address
6939 /// calculation cost.
6940 static const SCEV *getAddressAccessSCEV(
6941               Value *Ptr,
6942               LoopVectorizationLegality *Legal,
6943               PredicatedScalarEvolution &PSE,
6944               const Loop *TheLoop) {
6945 
6946   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6947   if (!Gep)
6948     return nullptr;
6949 
6950   // We are looking for a gep with all loop invariant indices except for one
6951   // which should be an induction variable.
6952   auto SE = PSE.getSE();
6953   unsigned NumOperands = Gep->getNumOperands();
6954   for (unsigned i = 1; i < NumOperands; ++i) {
6955     Value *Opd = Gep->getOperand(i);
6956     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6957         !Legal->isInductionVariable(Opd))
6958       return nullptr;
6959   }
6960 
6961   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6962   return PSE.getSCEV(Ptr);
6963 }
6964 
6965 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6966   return Legal->hasStride(I->getOperand(0)) ||
6967          Legal->hasStride(I->getOperand(1));
6968 }
6969 
6970 InstructionCost
6971 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6972                                                         ElementCount VF) {
6973   assert(VF.isVector() &&
6974          "Scalarization cost of instruction implies vectorization.");
6975   if (VF.isScalable())
6976     return InstructionCost::getInvalid();
6977 
6978   Type *ValTy = getLoadStoreType(I);
6979   auto SE = PSE.getSE();
6980 
6981   unsigned AS = getLoadStoreAddressSpace(I);
6982   Value *Ptr = getLoadStorePointerOperand(I);
6983   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6984 
6985   // Figure out whether the access is strided and get the stride value
6986   // if it's known in compile time
6987   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6988 
6989   // Get the cost of the scalar memory instruction and address computation.
6990   InstructionCost Cost =
6991       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6992 
6993   // Don't pass *I here, since it is scalar but will actually be part of a
6994   // vectorized loop where the user of it is a vectorized instruction.
6995   const Align Alignment = getLoadStoreAlignment(I);
6996   Cost += VF.getKnownMinValue() *
6997           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6998                               AS, TTI::TCK_RecipThroughput);
6999 
7000   // Get the overhead of the extractelement and insertelement instructions
7001   // we might create due to scalarization.
7002   Cost += getScalarizationOverhead(I, VF);
7003 
7004   // If we have a predicated load/store, it will need extra i1 extracts and
7005   // conditional branches, but may not be executed for each vector lane. Scale
7006   // the cost by the probability of executing the predicated block.
7007   if (isPredicatedInst(I)) {
7008     Cost /= getReciprocalPredBlockProb();
7009 
7010     // Add the cost of an i1 extract and a branch
7011     auto *Vec_i1Ty =
7012         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7013     Cost += TTI.getScalarizationOverhead(
7014         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7015         /*Insert=*/false, /*Extract=*/true);
7016     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7017 
7018     if (useEmulatedMaskMemRefHack(I))
7019       // Artificially setting to a high enough value to practically disable
7020       // vectorization with such operations.
7021       Cost = 3000000;
7022   }
7023 
7024   return Cost;
7025 }
7026 
7027 InstructionCost
7028 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7029                                                     ElementCount VF) {
7030   Type *ValTy = getLoadStoreType(I);
7031   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7032   Value *Ptr = getLoadStorePointerOperand(I);
7033   unsigned AS = getLoadStoreAddressSpace(I);
7034   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7035   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7036 
7037   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7038          "Stride should be 1 or -1 for consecutive memory access");
7039   const Align Alignment = getLoadStoreAlignment(I);
7040   InstructionCost Cost = 0;
7041   if (Legal->isMaskRequired(I))
7042     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7043                                       CostKind);
7044   else
7045     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7046                                 CostKind, I);
7047 
7048   bool Reverse = ConsecutiveStride < 0;
7049   if (Reverse)
7050     Cost +=
7051         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7052   return Cost;
7053 }
7054 
7055 InstructionCost
7056 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7057                                                 ElementCount VF) {
7058   assert(Legal->isUniformMemOp(*I));
7059 
7060   Type *ValTy = getLoadStoreType(I);
7061   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7062   const Align Alignment = getLoadStoreAlignment(I);
7063   unsigned AS = getLoadStoreAddressSpace(I);
7064   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7065   if (isa<LoadInst>(I)) {
7066     return TTI.getAddressComputationCost(ValTy) +
7067            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7068                                CostKind) +
7069            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7070   }
7071   StoreInst *SI = cast<StoreInst>(I);
7072 
7073   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7074   return TTI.getAddressComputationCost(ValTy) +
7075          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7076                              CostKind) +
7077          (isLoopInvariantStoreValue
7078               ? 0
7079               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7080                                        VF.getKnownMinValue() - 1));
7081 }
7082 
7083 InstructionCost
7084 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7085                                                  ElementCount VF) {
7086   Type *ValTy = getLoadStoreType(I);
7087   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7088   const Align Alignment = getLoadStoreAlignment(I);
7089   const Value *Ptr = getLoadStorePointerOperand(I);
7090 
7091   return TTI.getAddressComputationCost(VectorTy) +
7092          TTI.getGatherScatterOpCost(
7093              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7094              TargetTransformInfo::TCK_RecipThroughput, I);
7095 }
7096 
7097 InstructionCost
7098 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7099                                                    ElementCount VF) {
7100   // TODO: Once we have support for interleaving with scalable vectors
7101   // we can calculate the cost properly here.
7102   if (VF.isScalable())
7103     return InstructionCost::getInvalid();
7104 
7105   Type *ValTy = getLoadStoreType(I);
7106   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7107   unsigned AS = getLoadStoreAddressSpace(I);
7108 
7109   auto Group = getInterleavedAccessGroup(I);
7110   assert(Group && "Fail to get an interleaved access group.");
7111 
7112   unsigned InterleaveFactor = Group->getFactor();
7113   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7114 
7115   // Holds the indices of existing members in an interleaved load group.
7116   // An interleaved store group doesn't need this as it doesn't allow gaps.
7117   SmallVector<unsigned, 4> Indices;
7118   if (isa<LoadInst>(I)) {
7119     for (unsigned i = 0; i < InterleaveFactor; i++)
7120       if (Group->getMember(i))
7121         Indices.push_back(i);
7122   }
7123 
7124   // Calculate the cost of the whole interleaved group.
7125   bool UseMaskForGaps =
7126       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
7127   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7128       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7129       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7130 
7131   if (Group->isReverse()) {
7132     // TODO: Add support for reversed masked interleaved access.
7133     assert(!Legal->isMaskRequired(I) &&
7134            "Reverse masked interleaved access not supported.");
7135     Cost +=
7136         Group->getNumMembers() *
7137         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7138   }
7139   return Cost;
7140 }
7141 
7142 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7143     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7144   using namespace llvm::PatternMatch;
7145   // Early exit for no inloop reductions
7146   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7147     return None;
7148   auto *VectorTy = cast<VectorType>(Ty);
7149 
7150   // We are looking for a pattern of, and finding the minimal acceptable cost:
7151   //  reduce(mul(ext(A), ext(B))) or
7152   //  reduce(mul(A, B)) or
7153   //  reduce(ext(A)) or
7154   //  reduce(A).
7155   // The basic idea is that we walk down the tree to do that, finding the root
7156   // reduction instruction in InLoopReductionImmediateChains. From there we find
7157   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7158   // of the components. If the reduction cost is lower then we return it for the
7159   // reduction instruction and 0 for the other instructions in the pattern. If
7160   // it is not we return an invalid cost specifying the orignal cost method
7161   // should be used.
7162   Instruction *RetI = I;
7163   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7164     if (!RetI->hasOneUser())
7165       return None;
7166     RetI = RetI->user_back();
7167   }
7168   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7169       RetI->user_back()->getOpcode() == Instruction::Add) {
7170     if (!RetI->hasOneUser())
7171       return None;
7172     RetI = RetI->user_back();
7173   }
7174 
7175   // Test if the found instruction is a reduction, and if not return an invalid
7176   // cost specifying the parent to use the original cost modelling.
7177   if (!InLoopReductionImmediateChains.count(RetI))
7178     return None;
7179 
7180   // Find the reduction this chain is a part of and calculate the basic cost of
7181   // the reduction on its own.
7182   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7183   Instruction *ReductionPhi = LastChain;
7184   while (!isa<PHINode>(ReductionPhi))
7185     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7186 
7187   const RecurrenceDescriptor &RdxDesc =
7188       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7189 
7190   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7191       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7192 
7193   // If we're using ordered reductions then we can just return the base cost
7194   // here, since getArithmeticReductionCost calculates the full ordered
7195   // reduction cost when FP reassociation is not allowed.
7196   if (useOrderedReductions(RdxDesc))
7197     return BaseCost;
7198 
7199   // Get the operand that was not the reduction chain and match it to one of the
7200   // patterns, returning the better cost if it is found.
7201   Instruction *RedOp = RetI->getOperand(1) == LastChain
7202                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7203                            : dyn_cast<Instruction>(RetI->getOperand(1));
7204 
7205   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7206 
7207   Instruction *Op0, *Op1;
7208   if (RedOp &&
7209       match(RedOp,
7210             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7211       match(Op0, m_ZExtOrSExt(m_Value())) &&
7212       Op0->getOpcode() == Op1->getOpcode() &&
7213       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7214       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7215       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7216 
7217     // Matched reduce(ext(mul(ext(A), ext(B)))
7218     // Note that the extend opcodes need to all match, or if A==B they will have
7219     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7220     // which is equally fine.
7221     bool IsUnsigned = isa<ZExtInst>(Op0);
7222     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7223     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7224 
7225     InstructionCost ExtCost =
7226         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7227                              TTI::CastContextHint::None, CostKind, Op0);
7228     InstructionCost MulCost =
7229         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7230     InstructionCost Ext2Cost =
7231         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7232                              TTI::CastContextHint::None, CostKind, RedOp);
7233 
7234     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7235         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7236         CostKind);
7237 
7238     if (RedCost.isValid() &&
7239         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7240       return I == RetI ? RedCost : 0;
7241   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7242              !TheLoop->isLoopInvariant(RedOp)) {
7243     // Matched reduce(ext(A))
7244     bool IsUnsigned = isa<ZExtInst>(RedOp);
7245     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7246     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7247         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7248         CostKind);
7249 
7250     InstructionCost ExtCost =
7251         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7252                              TTI::CastContextHint::None, CostKind, RedOp);
7253     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7254       return I == RetI ? RedCost : 0;
7255   } else if (RedOp &&
7256              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7257     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7258         Op0->getOpcode() == Op1->getOpcode() &&
7259         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7260         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7261       bool IsUnsigned = isa<ZExtInst>(Op0);
7262       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7263       // Matched reduce(mul(ext, ext))
7264       InstructionCost ExtCost =
7265           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7266                                TTI::CastContextHint::None, CostKind, Op0);
7267       InstructionCost MulCost =
7268           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7269 
7270       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7271           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7272           CostKind);
7273 
7274       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7275         return I == RetI ? RedCost : 0;
7276     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7277       // Matched reduce(mul())
7278       InstructionCost MulCost =
7279           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7280 
7281       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7282           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7283           CostKind);
7284 
7285       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7286         return I == RetI ? RedCost : 0;
7287     }
7288   }
7289 
7290   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7291 }
7292 
7293 InstructionCost
7294 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7295                                                      ElementCount VF) {
7296   // Calculate scalar cost only. Vectorization cost should be ready at this
7297   // moment.
7298   if (VF.isScalar()) {
7299     Type *ValTy = getLoadStoreType(I);
7300     const Align Alignment = getLoadStoreAlignment(I);
7301     unsigned AS = getLoadStoreAddressSpace(I);
7302 
7303     return TTI.getAddressComputationCost(ValTy) +
7304            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7305                                TTI::TCK_RecipThroughput, I);
7306   }
7307   return getWideningCost(I, VF);
7308 }
7309 
7310 LoopVectorizationCostModel::VectorizationCostTy
7311 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7312                                                ElementCount VF) {
7313   // If we know that this instruction will remain uniform, check the cost of
7314   // the scalar version.
7315   if (isUniformAfterVectorization(I, VF))
7316     VF = ElementCount::getFixed(1);
7317 
7318   if (VF.isVector() && isProfitableToScalarize(I, VF))
7319     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7320 
7321   // Forced scalars do not have any scalarization overhead.
7322   auto ForcedScalar = ForcedScalars.find(VF);
7323   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7324     auto InstSet = ForcedScalar->second;
7325     if (InstSet.count(I))
7326       return VectorizationCostTy(
7327           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7328            VF.getKnownMinValue()),
7329           false);
7330   }
7331 
7332   Type *VectorTy;
7333   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7334 
7335   bool TypeNotScalarized =
7336       VF.isVector() && VectorTy->isVectorTy() &&
7337       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7338   return VectorizationCostTy(C, TypeNotScalarized);
7339 }
7340 
7341 InstructionCost
7342 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7343                                                      ElementCount VF) const {
7344 
7345   // There is no mechanism yet to create a scalable scalarization loop,
7346   // so this is currently Invalid.
7347   if (VF.isScalable())
7348     return InstructionCost::getInvalid();
7349 
7350   if (VF.isScalar())
7351     return 0;
7352 
7353   InstructionCost Cost = 0;
7354   Type *RetTy = ToVectorTy(I->getType(), VF);
7355   if (!RetTy->isVoidTy() &&
7356       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7357     Cost += TTI.getScalarizationOverhead(
7358         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7359         true, false);
7360 
7361   // Some targets keep addresses scalar.
7362   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7363     return Cost;
7364 
7365   // Some targets support efficient element stores.
7366   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7367     return Cost;
7368 
7369   // Collect operands to consider.
7370   CallInst *CI = dyn_cast<CallInst>(I);
7371   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7372 
7373   // Skip operands that do not require extraction/scalarization and do not incur
7374   // any overhead.
7375   SmallVector<Type *> Tys;
7376   for (auto *V : filterExtractingOperands(Ops, VF))
7377     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7378   return Cost + TTI.getOperandsScalarizationOverhead(
7379                     filterExtractingOperands(Ops, VF), Tys);
7380 }
7381 
7382 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7383   if (VF.isScalar())
7384     return;
7385   NumPredStores = 0;
7386   for (BasicBlock *BB : TheLoop->blocks()) {
7387     // For each instruction in the old loop.
7388     for (Instruction &I : *BB) {
7389       Value *Ptr =  getLoadStorePointerOperand(&I);
7390       if (!Ptr)
7391         continue;
7392 
7393       // TODO: We should generate better code and update the cost model for
7394       // predicated uniform stores. Today they are treated as any other
7395       // predicated store (see added test cases in
7396       // invariant-store-vectorization.ll).
7397       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7398         NumPredStores++;
7399 
7400       if (Legal->isUniformMemOp(I)) {
7401         // TODO: Avoid replicating loads and stores instead of
7402         // relying on instcombine to remove them.
7403         // Load: Scalar load + broadcast
7404         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7405         InstructionCost Cost;
7406         if (isa<StoreInst>(&I) && VF.isScalable() &&
7407             isLegalGatherOrScatter(&I)) {
7408           Cost = getGatherScatterCost(&I, VF);
7409           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7410         } else {
7411           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7412                  "Cannot yet scalarize uniform stores");
7413           Cost = getUniformMemOpCost(&I, VF);
7414           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7415         }
7416         continue;
7417       }
7418 
7419       // We assume that widening is the best solution when possible.
7420       if (memoryInstructionCanBeWidened(&I, VF)) {
7421         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7422         int ConsecutiveStride =
7423                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7424         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7425                "Expected consecutive stride.");
7426         InstWidening Decision =
7427             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7428         setWideningDecision(&I, VF, Decision, Cost);
7429         continue;
7430       }
7431 
7432       // Choose between Interleaving, Gather/Scatter or Scalarization.
7433       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7434       unsigned NumAccesses = 1;
7435       if (isAccessInterleaved(&I)) {
7436         auto Group = getInterleavedAccessGroup(&I);
7437         assert(Group && "Fail to get an interleaved access group.");
7438 
7439         // Make one decision for the whole group.
7440         if (getWideningDecision(&I, VF) != CM_Unknown)
7441           continue;
7442 
7443         NumAccesses = Group->getNumMembers();
7444         if (interleavedAccessCanBeWidened(&I, VF))
7445           InterleaveCost = getInterleaveGroupCost(&I, VF);
7446       }
7447 
7448       InstructionCost GatherScatterCost =
7449           isLegalGatherOrScatter(&I)
7450               ? getGatherScatterCost(&I, VF) * NumAccesses
7451               : InstructionCost::getInvalid();
7452 
7453       InstructionCost ScalarizationCost =
7454           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7455 
7456       // Choose better solution for the current VF,
7457       // write down this decision and use it during vectorization.
7458       InstructionCost Cost;
7459       InstWidening Decision;
7460       if (InterleaveCost <= GatherScatterCost &&
7461           InterleaveCost < ScalarizationCost) {
7462         Decision = CM_Interleave;
7463         Cost = InterleaveCost;
7464       } else if (GatherScatterCost < ScalarizationCost) {
7465         Decision = CM_GatherScatter;
7466         Cost = GatherScatterCost;
7467       } else {
7468         Decision = CM_Scalarize;
7469         Cost = ScalarizationCost;
7470       }
7471       // If the instructions belongs to an interleave group, the whole group
7472       // receives the same decision. The whole group receives the cost, but
7473       // the cost will actually be assigned to one instruction.
7474       if (auto Group = getInterleavedAccessGroup(&I))
7475         setWideningDecision(Group, VF, Decision, Cost);
7476       else
7477         setWideningDecision(&I, VF, Decision, Cost);
7478     }
7479   }
7480 
7481   // Make sure that any load of address and any other address computation
7482   // remains scalar unless there is gather/scatter support. This avoids
7483   // inevitable extracts into address registers, and also has the benefit of
7484   // activating LSR more, since that pass can't optimize vectorized
7485   // addresses.
7486   if (TTI.prefersVectorizedAddressing())
7487     return;
7488 
7489   // Start with all scalar pointer uses.
7490   SmallPtrSet<Instruction *, 8> AddrDefs;
7491   for (BasicBlock *BB : TheLoop->blocks())
7492     for (Instruction &I : *BB) {
7493       Instruction *PtrDef =
7494         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7495       if (PtrDef && TheLoop->contains(PtrDef) &&
7496           getWideningDecision(&I, VF) != CM_GatherScatter)
7497         AddrDefs.insert(PtrDef);
7498     }
7499 
7500   // Add all instructions used to generate the addresses.
7501   SmallVector<Instruction *, 4> Worklist;
7502   append_range(Worklist, AddrDefs);
7503   while (!Worklist.empty()) {
7504     Instruction *I = Worklist.pop_back_val();
7505     for (auto &Op : I->operands())
7506       if (auto *InstOp = dyn_cast<Instruction>(Op))
7507         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7508             AddrDefs.insert(InstOp).second)
7509           Worklist.push_back(InstOp);
7510   }
7511 
7512   for (auto *I : AddrDefs) {
7513     if (isa<LoadInst>(I)) {
7514       // Setting the desired widening decision should ideally be handled in
7515       // by cost functions, but since this involves the task of finding out
7516       // if the loaded register is involved in an address computation, it is
7517       // instead changed here when we know this is the case.
7518       InstWidening Decision = getWideningDecision(I, VF);
7519       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7520         // Scalarize a widened load of address.
7521         setWideningDecision(
7522             I, VF, CM_Scalarize,
7523             (VF.getKnownMinValue() *
7524              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7525       else if (auto Group = getInterleavedAccessGroup(I)) {
7526         // Scalarize an interleave group of address loads.
7527         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7528           if (Instruction *Member = Group->getMember(I))
7529             setWideningDecision(
7530                 Member, VF, CM_Scalarize,
7531                 (VF.getKnownMinValue() *
7532                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7533         }
7534       }
7535     } else
7536       // Make sure I gets scalarized and a cost estimate without
7537       // scalarization overhead.
7538       ForcedScalars[VF].insert(I);
7539   }
7540 }
7541 
7542 InstructionCost
7543 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7544                                                Type *&VectorTy) {
7545   Type *RetTy = I->getType();
7546   if (canTruncateToMinimalBitwidth(I, VF))
7547     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7548   auto SE = PSE.getSE();
7549   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7550 
7551   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7552                                                 ElementCount VF) -> bool {
7553     if (VF.isScalar())
7554       return true;
7555 
7556     auto Scalarized = InstsToScalarize.find(VF);
7557     assert(Scalarized != InstsToScalarize.end() &&
7558            "VF not yet analyzed for scalarization profitability");
7559     return !Scalarized->second.count(I) &&
7560            llvm::all_of(I->users(), [&](User *U) {
7561              auto *UI = cast<Instruction>(U);
7562              return !Scalarized->second.count(UI);
7563            });
7564   };
7565   (void) hasSingleCopyAfterVectorization;
7566 
7567   if (isScalarAfterVectorization(I, VF)) {
7568     // With the exception of GEPs and PHIs, after scalarization there should
7569     // only be one copy of the instruction generated in the loop. This is
7570     // because the VF is either 1, or any instructions that need scalarizing
7571     // have already been dealt with by the the time we get here. As a result,
7572     // it means we don't have to multiply the instruction cost by VF.
7573     assert(I->getOpcode() == Instruction::GetElementPtr ||
7574            I->getOpcode() == Instruction::PHI ||
7575            (I->getOpcode() == Instruction::BitCast &&
7576             I->getType()->isPointerTy()) ||
7577            hasSingleCopyAfterVectorization(I, VF));
7578     VectorTy = RetTy;
7579   } else
7580     VectorTy = ToVectorTy(RetTy, VF);
7581 
7582   // TODO: We need to estimate the cost of intrinsic calls.
7583   switch (I->getOpcode()) {
7584   case Instruction::GetElementPtr:
7585     // We mark this instruction as zero-cost because the cost of GEPs in
7586     // vectorized code depends on whether the corresponding memory instruction
7587     // is scalarized or not. Therefore, we handle GEPs with the memory
7588     // instruction cost.
7589     return 0;
7590   case Instruction::Br: {
7591     // In cases of scalarized and predicated instructions, there will be VF
7592     // predicated blocks in the vectorized loop. Each branch around these
7593     // blocks requires also an extract of its vector compare i1 element.
7594     bool ScalarPredicatedBB = false;
7595     BranchInst *BI = cast<BranchInst>(I);
7596     if (VF.isVector() && BI->isConditional() &&
7597         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7598          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7599       ScalarPredicatedBB = true;
7600 
7601     if (ScalarPredicatedBB) {
7602       // Not possible to scalarize scalable vector with predicated instructions.
7603       if (VF.isScalable())
7604         return InstructionCost::getInvalid();
7605       // Return cost for branches around scalarized and predicated blocks.
7606       auto *Vec_i1Ty =
7607           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7608       return (
7609           TTI.getScalarizationOverhead(
7610               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7611               true) +
7612           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7613     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7614       // The back-edge branch will remain, as will all scalar branches.
7615       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7616     else
7617       // This branch will be eliminated by if-conversion.
7618       return 0;
7619     // Note: We currently assume zero cost for an unconditional branch inside
7620     // a predicated block since it will become a fall-through, although we
7621     // may decide in the future to call TTI for all branches.
7622   }
7623   case Instruction::PHI: {
7624     auto *Phi = cast<PHINode>(I);
7625 
7626     // First-order recurrences are replaced by vector shuffles inside the loop.
7627     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7628     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7629       return TTI.getShuffleCost(
7630           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7631           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7632 
7633     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7634     // converted into select instructions. We require N - 1 selects per phi
7635     // node, where N is the number of incoming values.
7636     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7637       return (Phi->getNumIncomingValues() - 1) *
7638              TTI.getCmpSelInstrCost(
7639                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7640                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7641                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7642 
7643     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7644   }
7645   case Instruction::UDiv:
7646   case Instruction::SDiv:
7647   case Instruction::URem:
7648   case Instruction::SRem:
7649     // If we have a predicated instruction, it may not be executed for each
7650     // vector lane. Get the scalarization cost and scale this amount by the
7651     // probability of executing the predicated block. If the instruction is not
7652     // predicated, we fall through to the next case.
7653     if (VF.isVector() && isScalarWithPredication(I)) {
7654       InstructionCost Cost = 0;
7655 
7656       // These instructions have a non-void type, so account for the phi nodes
7657       // that we will create. This cost is likely to be zero. The phi node
7658       // cost, if any, should be scaled by the block probability because it
7659       // models a copy at the end of each predicated block.
7660       Cost += VF.getKnownMinValue() *
7661               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7662 
7663       // The cost of the non-predicated instruction.
7664       Cost += VF.getKnownMinValue() *
7665               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7666 
7667       // The cost of insertelement and extractelement instructions needed for
7668       // scalarization.
7669       Cost += getScalarizationOverhead(I, VF);
7670 
7671       // Scale the cost by the probability of executing the predicated blocks.
7672       // This assumes the predicated block for each vector lane is equally
7673       // likely.
7674       return Cost / getReciprocalPredBlockProb();
7675     }
7676     LLVM_FALLTHROUGH;
7677   case Instruction::Add:
7678   case Instruction::FAdd:
7679   case Instruction::Sub:
7680   case Instruction::FSub:
7681   case Instruction::Mul:
7682   case Instruction::FMul:
7683   case Instruction::FDiv:
7684   case Instruction::FRem:
7685   case Instruction::Shl:
7686   case Instruction::LShr:
7687   case Instruction::AShr:
7688   case Instruction::And:
7689   case Instruction::Or:
7690   case Instruction::Xor: {
7691     // Since we will replace the stride by 1 the multiplication should go away.
7692     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7693       return 0;
7694 
7695     // Detect reduction patterns
7696     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7697       return *RedCost;
7698 
7699     // Certain instructions can be cheaper to vectorize if they have a constant
7700     // second vector operand. One example of this are shifts on x86.
7701     Value *Op2 = I->getOperand(1);
7702     TargetTransformInfo::OperandValueProperties Op2VP;
7703     TargetTransformInfo::OperandValueKind Op2VK =
7704         TTI.getOperandInfo(Op2, Op2VP);
7705     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7706       Op2VK = TargetTransformInfo::OK_UniformValue;
7707 
7708     SmallVector<const Value *, 4> Operands(I->operand_values());
7709     return TTI.getArithmeticInstrCost(
7710         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7711         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7712   }
7713   case Instruction::FNeg: {
7714     return TTI.getArithmeticInstrCost(
7715         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7716         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7717         TargetTransformInfo::OP_None, I->getOperand(0), I);
7718   }
7719   case Instruction::Select: {
7720     SelectInst *SI = cast<SelectInst>(I);
7721     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7722     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7723 
7724     const Value *Op0, *Op1;
7725     using namespace llvm::PatternMatch;
7726     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7727                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7728       // select x, y, false --> x & y
7729       // select x, true, y --> x | y
7730       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7731       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7732       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7733       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7734       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7735               Op1->getType()->getScalarSizeInBits() == 1);
7736 
7737       SmallVector<const Value *, 2> Operands{Op0, Op1};
7738       return TTI.getArithmeticInstrCost(
7739           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7740           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7741     }
7742 
7743     Type *CondTy = SI->getCondition()->getType();
7744     if (!ScalarCond)
7745       CondTy = VectorType::get(CondTy, VF);
7746     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7747                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7748   }
7749   case Instruction::ICmp:
7750   case Instruction::FCmp: {
7751     Type *ValTy = I->getOperand(0)->getType();
7752     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7753     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7754       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7755     VectorTy = ToVectorTy(ValTy, VF);
7756     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7757                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7758   }
7759   case Instruction::Store:
7760   case Instruction::Load: {
7761     ElementCount Width = VF;
7762     if (Width.isVector()) {
7763       InstWidening Decision = getWideningDecision(I, Width);
7764       assert(Decision != CM_Unknown &&
7765              "CM decision should be taken at this point");
7766       if (Decision == CM_Scalarize)
7767         Width = ElementCount::getFixed(1);
7768     }
7769     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7770     return getMemoryInstructionCost(I, VF);
7771   }
7772   case Instruction::BitCast:
7773     if (I->getType()->isPointerTy())
7774       return 0;
7775     LLVM_FALLTHROUGH;
7776   case Instruction::ZExt:
7777   case Instruction::SExt:
7778   case Instruction::FPToUI:
7779   case Instruction::FPToSI:
7780   case Instruction::FPExt:
7781   case Instruction::PtrToInt:
7782   case Instruction::IntToPtr:
7783   case Instruction::SIToFP:
7784   case Instruction::UIToFP:
7785   case Instruction::Trunc:
7786   case Instruction::FPTrunc: {
7787     // Computes the CastContextHint from a Load/Store instruction.
7788     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7789       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7790              "Expected a load or a store!");
7791 
7792       if (VF.isScalar() || !TheLoop->contains(I))
7793         return TTI::CastContextHint::Normal;
7794 
7795       switch (getWideningDecision(I, VF)) {
7796       case LoopVectorizationCostModel::CM_GatherScatter:
7797         return TTI::CastContextHint::GatherScatter;
7798       case LoopVectorizationCostModel::CM_Interleave:
7799         return TTI::CastContextHint::Interleave;
7800       case LoopVectorizationCostModel::CM_Scalarize:
7801       case LoopVectorizationCostModel::CM_Widen:
7802         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7803                                         : TTI::CastContextHint::Normal;
7804       case LoopVectorizationCostModel::CM_Widen_Reverse:
7805         return TTI::CastContextHint::Reversed;
7806       case LoopVectorizationCostModel::CM_Unknown:
7807         llvm_unreachable("Instr did not go through cost modelling?");
7808       }
7809 
7810       llvm_unreachable("Unhandled case!");
7811     };
7812 
7813     unsigned Opcode = I->getOpcode();
7814     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7815     // For Trunc, the context is the only user, which must be a StoreInst.
7816     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7817       if (I->hasOneUse())
7818         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7819           CCH = ComputeCCH(Store);
7820     }
7821     // For Z/Sext, the context is the operand, which must be a LoadInst.
7822     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7823              Opcode == Instruction::FPExt) {
7824       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7825         CCH = ComputeCCH(Load);
7826     }
7827 
7828     // We optimize the truncation of induction variables having constant
7829     // integer steps. The cost of these truncations is the same as the scalar
7830     // operation.
7831     if (isOptimizableIVTruncate(I, VF)) {
7832       auto *Trunc = cast<TruncInst>(I);
7833       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7834                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7835     }
7836 
7837     // Detect reduction patterns
7838     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7839       return *RedCost;
7840 
7841     Type *SrcScalarTy = I->getOperand(0)->getType();
7842     Type *SrcVecTy =
7843         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7844     if (canTruncateToMinimalBitwidth(I, VF)) {
7845       // This cast is going to be shrunk. This may remove the cast or it might
7846       // turn it into slightly different cast. For example, if MinBW == 16,
7847       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7848       //
7849       // Calculate the modified src and dest types.
7850       Type *MinVecTy = VectorTy;
7851       if (Opcode == Instruction::Trunc) {
7852         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7853         VectorTy =
7854             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7855       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7856         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7857         VectorTy =
7858             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7859       }
7860     }
7861 
7862     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7863   }
7864   case Instruction::Call: {
7865     bool NeedToScalarize;
7866     CallInst *CI = cast<CallInst>(I);
7867     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7868     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7869       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7870       return std::min(CallCost, IntrinsicCost);
7871     }
7872     return CallCost;
7873   }
7874   case Instruction::ExtractValue:
7875     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7876   case Instruction::Alloca:
7877     // We cannot easily widen alloca to a scalable alloca, as
7878     // the result would need to be a vector of pointers.
7879     if (VF.isScalable())
7880       return InstructionCost::getInvalid();
7881     LLVM_FALLTHROUGH;
7882   default:
7883     // This opcode is unknown. Assume that it is the same as 'mul'.
7884     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7885   } // end of switch.
7886 }
7887 
7888 char LoopVectorize::ID = 0;
7889 
7890 static const char lv_name[] = "Loop Vectorization";
7891 
7892 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7893 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7894 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7895 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7896 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7897 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7898 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7899 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7900 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7901 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7902 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7903 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7904 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7905 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7906 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7907 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7908 
7909 namespace llvm {
7910 
7911 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7912 
7913 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7914                               bool VectorizeOnlyWhenForced) {
7915   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7916 }
7917 
7918 } // end namespace llvm
7919 
7920 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7921   // Check if the pointer operand of a load or store instruction is
7922   // consecutive.
7923   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7924     return Legal->isConsecutivePtr(Ptr);
7925   return false;
7926 }
7927 
7928 void LoopVectorizationCostModel::collectValuesToIgnore() {
7929   // Ignore ephemeral values.
7930   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7931 
7932   // Ignore type-promoting instructions we identified during reduction
7933   // detection.
7934   for (auto &Reduction : Legal->getReductionVars()) {
7935     RecurrenceDescriptor &RedDes = Reduction.second;
7936     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7937     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7938   }
7939   // Ignore type-casting instructions we identified during induction
7940   // detection.
7941   for (auto &Induction : Legal->getInductionVars()) {
7942     InductionDescriptor &IndDes = Induction.second;
7943     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7944     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7945   }
7946 }
7947 
7948 void LoopVectorizationCostModel::collectInLoopReductions() {
7949   for (auto &Reduction : Legal->getReductionVars()) {
7950     PHINode *Phi = Reduction.first;
7951     RecurrenceDescriptor &RdxDesc = Reduction.second;
7952 
7953     // We don't collect reductions that are type promoted (yet).
7954     if (RdxDesc.getRecurrenceType() != Phi->getType())
7955       continue;
7956 
7957     // If the target would prefer this reduction to happen "in-loop", then we
7958     // want to record it as such.
7959     unsigned Opcode = RdxDesc.getOpcode();
7960     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7961         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7962                                    TargetTransformInfo::ReductionFlags()))
7963       continue;
7964 
7965     // Check that we can correctly put the reductions into the loop, by
7966     // finding the chain of operations that leads from the phi to the loop
7967     // exit value.
7968     SmallVector<Instruction *, 4> ReductionOperations =
7969         RdxDesc.getReductionOpChain(Phi, TheLoop);
7970     bool InLoop = !ReductionOperations.empty();
7971     if (InLoop) {
7972       InLoopReductionChains[Phi] = ReductionOperations;
7973       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7974       Instruction *LastChain = Phi;
7975       for (auto *I : ReductionOperations) {
7976         InLoopReductionImmediateChains[I] = LastChain;
7977         LastChain = I;
7978       }
7979     }
7980     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7981                       << " reduction for phi: " << *Phi << "\n");
7982   }
7983 }
7984 
7985 // TODO: we could return a pair of values that specify the max VF and
7986 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7987 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7988 // doesn't have a cost model that can choose which plan to execute if
7989 // more than one is generated.
7990 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7991                                  LoopVectorizationCostModel &CM) {
7992   unsigned WidestType;
7993   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7994   return WidestVectorRegBits / WidestType;
7995 }
7996 
7997 VectorizationFactor
7998 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7999   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8000   ElementCount VF = UserVF;
8001   // Outer loop handling: They may require CFG and instruction level
8002   // transformations before even evaluating whether vectorization is profitable.
8003   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8004   // the vectorization pipeline.
8005   if (!OrigLoop->isInnermost()) {
8006     // If the user doesn't provide a vectorization factor, determine a
8007     // reasonable one.
8008     if (UserVF.isZero()) {
8009       VF = ElementCount::getFixed(determineVPlanVF(
8010           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8011               .getFixedSize(),
8012           CM));
8013       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8014 
8015       // Make sure we have a VF > 1 for stress testing.
8016       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8017         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8018                           << "overriding computed VF.\n");
8019         VF = ElementCount::getFixed(4);
8020       }
8021     }
8022     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8023     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8024            "VF needs to be a power of two");
8025     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8026                       << "VF " << VF << " to build VPlans.\n");
8027     buildVPlans(VF, VF);
8028 
8029     // For VPlan build stress testing, we bail out after VPlan construction.
8030     if (VPlanBuildStressTest)
8031       return VectorizationFactor::Disabled();
8032 
8033     return {VF, 0 /*Cost*/};
8034   }
8035 
8036   LLVM_DEBUG(
8037       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8038                 "VPlan-native path.\n");
8039   return VectorizationFactor::Disabled();
8040 }
8041 
8042 Optional<VectorizationFactor>
8043 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8044   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8045   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8046   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8047     return None;
8048 
8049   // Invalidate interleave groups if all blocks of loop will be predicated.
8050   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8051       !useMaskedInterleavedAccesses(*TTI)) {
8052     LLVM_DEBUG(
8053         dbgs()
8054         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8055            "which requires masked-interleaved support.\n");
8056     if (CM.InterleaveInfo.invalidateGroups())
8057       // Invalidating interleave groups also requires invalidating all decisions
8058       // based on them, which includes widening decisions and uniform and scalar
8059       // values.
8060       CM.invalidateCostModelingDecisions();
8061   }
8062 
8063   ElementCount MaxUserVF =
8064       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8065   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8066   if (!UserVF.isZero() && UserVFIsLegal) {
8067     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8068            "VF needs to be a power of two");
8069     // Collect the instructions (and their associated costs) that will be more
8070     // profitable to scalarize.
8071     if (CM.selectUserVectorizationFactor(UserVF)) {
8072       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8073       CM.collectInLoopReductions();
8074       buildVPlansWithVPRecipes(UserVF, UserVF);
8075       LLVM_DEBUG(printPlans(dbgs()));
8076       return {{UserVF, 0}};
8077     } else
8078       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8079                               "InvalidCost", ORE, OrigLoop);
8080   }
8081 
8082   // Populate the set of Vectorization Factor Candidates.
8083   ElementCountSet VFCandidates;
8084   for (auto VF = ElementCount::getFixed(1);
8085        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8086     VFCandidates.insert(VF);
8087   for (auto VF = ElementCount::getScalable(1);
8088        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8089     VFCandidates.insert(VF);
8090 
8091   for (const auto &VF : VFCandidates) {
8092     // Collect Uniform and Scalar instructions after vectorization with VF.
8093     CM.collectUniformsAndScalars(VF);
8094 
8095     // Collect the instructions (and their associated costs) that will be more
8096     // profitable to scalarize.
8097     if (VF.isVector())
8098       CM.collectInstsToScalarize(VF);
8099   }
8100 
8101   CM.collectInLoopReductions();
8102   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8103   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8104 
8105   LLVM_DEBUG(printPlans(dbgs()));
8106   if (!MaxFactors.hasVector())
8107     return VectorizationFactor::Disabled();
8108 
8109   // Select the optimal vectorization factor.
8110   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8111 
8112   // Check if it is profitable to vectorize with runtime checks.
8113   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8114   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8115     bool PragmaThresholdReached =
8116         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8117     bool ThresholdReached =
8118         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8119     if ((ThresholdReached && !Hints.allowReordering()) ||
8120         PragmaThresholdReached) {
8121       ORE->emit([&]() {
8122         return OptimizationRemarkAnalysisAliasing(
8123                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8124                    OrigLoop->getHeader())
8125                << "loop not vectorized: cannot prove it is safe to reorder "
8126                   "memory operations";
8127       });
8128       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8129       Hints.emitRemarkWithHints();
8130       return VectorizationFactor::Disabled();
8131     }
8132   }
8133   return SelectedVF;
8134 }
8135 
8136 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8137   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8138                     << '\n');
8139   BestVF = VF;
8140   BestUF = UF;
8141 
8142   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8143     return !Plan->hasVF(VF);
8144   });
8145   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8146 }
8147 
8148 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8149                                            DominatorTree *DT) {
8150   // Perform the actual loop transformation.
8151 
8152   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8153   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8154   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8155 
8156   VPTransformState State{
8157       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8158   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8159   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8160   State.CanonicalIV = ILV.Induction;
8161 
8162   ILV.printDebugTracesAtStart();
8163 
8164   //===------------------------------------------------===//
8165   //
8166   // Notice: any optimization or new instruction that go
8167   // into the code below should also be implemented in
8168   // the cost-model.
8169   //
8170   //===------------------------------------------------===//
8171 
8172   // 2. Copy and widen instructions from the old loop into the new loop.
8173   VPlans.front()->execute(&State);
8174 
8175   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8176   //    predication, updating analyses.
8177   ILV.fixVectorizedLoop(State);
8178 
8179   ILV.printDebugTracesAtEnd();
8180 }
8181 
8182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8183 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8184   for (const auto &Plan : VPlans)
8185     if (PrintVPlansInDotFormat)
8186       Plan->printDOT(O);
8187     else
8188       Plan->print(O);
8189 }
8190 #endif
8191 
8192 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8193     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8194 
8195   // We create new control-flow for the vectorized loop, so the original exit
8196   // conditions will be dead after vectorization if it's only used by the
8197   // terminator
8198   SmallVector<BasicBlock*> ExitingBlocks;
8199   OrigLoop->getExitingBlocks(ExitingBlocks);
8200   for (auto *BB : ExitingBlocks) {
8201     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8202     if (!Cmp || !Cmp->hasOneUse())
8203       continue;
8204 
8205     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8206     if (!DeadInstructions.insert(Cmp).second)
8207       continue;
8208 
8209     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8210     // TODO: can recurse through operands in general
8211     for (Value *Op : Cmp->operands()) {
8212       if (isa<TruncInst>(Op) && Op->hasOneUse())
8213           DeadInstructions.insert(cast<Instruction>(Op));
8214     }
8215   }
8216 
8217   // We create new "steps" for induction variable updates to which the original
8218   // induction variables map. An original update instruction will be dead if
8219   // all its users except the induction variable are dead.
8220   auto *Latch = OrigLoop->getLoopLatch();
8221   for (auto &Induction : Legal->getInductionVars()) {
8222     PHINode *Ind = Induction.first;
8223     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8224 
8225     // If the tail is to be folded by masking, the primary induction variable,
8226     // if exists, isn't dead: it will be used for masking. Don't kill it.
8227     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8228       continue;
8229 
8230     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8231           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8232         }))
8233       DeadInstructions.insert(IndUpdate);
8234 
8235     // We record as "Dead" also the type-casting instructions we had identified
8236     // during induction analysis. We don't need any handling for them in the
8237     // vectorized loop because we have proven that, under a proper runtime
8238     // test guarding the vectorized loop, the value of the phi, and the casted
8239     // value of the phi, are the same. The last instruction in this casting chain
8240     // will get its scalar/vector/widened def from the scalar/vector/widened def
8241     // of the respective phi node. Any other casts in the induction def-use chain
8242     // have no other uses outside the phi update chain, and will be ignored.
8243     InductionDescriptor &IndDes = Induction.second;
8244     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8245     DeadInstructions.insert(Casts.begin(), Casts.end());
8246   }
8247 }
8248 
8249 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8250 
8251 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8252 
8253 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8254                                         Instruction::BinaryOps BinOp) {
8255   // When unrolling and the VF is 1, we only need to add a simple scalar.
8256   Type *Ty = Val->getType();
8257   assert(!Ty->isVectorTy() && "Val must be a scalar");
8258 
8259   if (Ty->isFloatingPointTy()) {
8260     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8261 
8262     // Floating-point operations inherit FMF via the builder's flags.
8263     Value *MulOp = Builder.CreateFMul(C, Step);
8264     return Builder.CreateBinOp(BinOp, Val, MulOp);
8265   }
8266   Constant *C = ConstantInt::get(Ty, StartIdx);
8267   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8268 }
8269 
8270 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8271   SmallVector<Metadata *, 4> MDs;
8272   // Reserve first location for self reference to the LoopID metadata node.
8273   MDs.push_back(nullptr);
8274   bool IsUnrollMetadata = false;
8275   MDNode *LoopID = L->getLoopID();
8276   if (LoopID) {
8277     // First find existing loop unrolling disable metadata.
8278     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8279       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8280       if (MD) {
8281         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8282         IsUnrollMetadata =
8283             S && S->getString().startswith("llvm.loop.unroll.disable");
8284       }
8285       MDs.push_back(LoopID->getOperand(i));
8286     }
8287   }
8288 
8289   if (!IsUnrollMetadata) {
8290     // Add runtime unroll disable metadata.
8291     LLVMContext &Context = L->getHeader()->getContext();
8292     SmallVector<Metadata *, 1> DisableOperands;
8293     DisableOperands.push_back(
8294         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8295     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8296     MDs.push_back(DisableNode);
8297     MDNode *NewLoopID = MDNode::get(Context, MDs);
8298     // Set operand 0 to refer to the loop id itself.
8299     NewLoopID->replaceOperandWith(0, NewLoopID);
8300     L->setLoopID(NewLoopID);
8301   }
8302 }
8303 
8304 //===--------------------------------------------------------------------===//
8305 // EpilogueVectorizerMainLoop
8306 //===--------------------------------------------------------------------===//
8307 
8308 /// This function is partially responsible for generating the control flow
8309 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8310 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8311   MDNode *OrigLoopID = OrigLoop->getLoopID();
8312   Loop *Lp = createVectorLoopSkeleton("");
8313 
8314   // Generate the code to check the minimum iteration count of the vector
8315   // epilogue (see below).
8316   EPI.EpilogueIterationCountCheck =
8317       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8318   EPI.EpilogueIterationCountCheck->setName("iter.check");
8319 
8320   // Generate the code to check any assumptions that we've made for SCEV
8321   // expressions.
8322   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8323 
8324   // Generate the code that checks at runtime if arrays overlap. We put the
8325   // checks into a separate block to make the more common case of few elements
8326   // faster.
8327   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8328 
8329   // Generate the iteration count check for the main loop, *after* the check
8330   // for the epilogue loop, so that the path-length is shorter for the case
8331   // that goes directly through the vector epilogue. The longer-path length for
8332   // the main loop is compensated for, by the gain from vectorizing the larger
8333   // trip count. Note: the branch will get updated later on when we vectorize
8334   // the epilogue.
8335   EPI.MainLoopIterationCountCheck =
8336       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8337 
8338   // Generate the induction variable.
8339   OldInduction = Legal->getPrimaryInduction();
8340   Type *IdxTy = Legal->getWidestInductionType();
8341   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8342   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8343   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8344   EPI.VectorTripCount = CountRoundDown;
8345   Induction =
8346       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8347                               getDebugLocFromInstOrOperands(OldInduction));
8348 
8349   // Skip induction resume value creation here because they will be created in
8350   // the second pass. If we created them here, they wouldn't be used anyway,
8351   // because the vplan in the second pass still contains the inductions from the
8352   // original loop.
8353 
8354   return completeLoopSkeleton(Lp, OrigLoopID);
8355 }
8356 
8357 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8358   LLVM_DEBUG({
8359     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8360            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8361            << ", Main Loop UF:" << EPI.MainLoopUF
8362            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8363            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8364   });
8365 }
8366 
8367 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8368   DEBUG_WITH_TYPE(VerboseDebug, {
8369     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8370   });
8371 }
8372 
8373 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8374     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8375   assert(L && "Expected valid Loop.");
8376   assert(Bypass && "Expected valid bypass basic block.");
8377   unsigned VFactor =
8378       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8379   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8380   Value *Count = getOrCreateTripCount(L);
8381   // Reuse existing vector loop preheader for TC checks.
8382   // Note that new preheader block is generated for vector loop.
8383   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8384   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8385 
8386   // Generate code to check if the loop's trip count is less than VF * UF of the
8387   // main vector loop.
8388   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8389       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8390 
8391   Value *CheckMinIters = Builder.CreateICmp(
8392       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8393       "min.iters.check");
8394 
8395   if (!ForEpilogue)
8396     TCCheckBlock->setName("vector.main.loop.iter.check");
8397 
8398   // Create new preheader for vector loop.
8399   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8400                                    DT, LI, nullptr, "vector.ph");
8401 
8402   if (ForEpilogue) {
8403     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8404                                  DT->getNode(Bypass)->getIDom()) &&
8405            "TC check is expected to dominate Bypass");
8406 
8407     // Update dominator for Bypass & LoopExit.
8408     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8409     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8410       // For loops with multiple exits, there's no edge from the middle block
8411       // to exit blocks (as the epilogue must run) and thus no need to update
8412       // the immediate dominator of the exit blocks.
8413       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8414 
8415     LoopBypassBlocks.push_back(TCCheckBlock);
8416 
8417     // Save the trip count so we don't have to regenerate it in the
8418     // vec.epilog.iter.check. This is safe to do because the trip count
8419     // generated here dominates the vector epilog iter check.
8420     EPI.TripCount = Count;
8421   }
8422 
8423   ReplaceInstWithInst(
8424       TCCheckBlock->getTerminator(),
8425       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8426 
8427   return TCCheckBlock;
8428 }
8429 
8430 //===--------------------------------------------------------------------===//
8431 // EpilogueVectorizerEpilogueLoop
8432 //===--------------------------------------------------------------------===//
8433 
8434 /// This function is partially responsible for generating the control flow
8435 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8436 BasicBlock *
8437 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8438   MDNode *OrigLoopID = OrigLoop->getLoopID();
8439   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8440 
8441   // Now, compare the remaining count and if there aren't enough iterations to
8442   // execute the vectorized epilogue skip to the scalar part.
8443   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8444   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8445   LoopVectorPreHeader =
8446       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8447                  LI, nullptr, "vec.epilog.ph");
8448   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8449                                           VecEpilogueIterationCountCheck);
8450 
8451   // Adjust the control flow taking the state info from the main loop
8452   // vectorization into account.
8453   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8454          "expected this to be saved from the previous pass.");
8455   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8456       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8457 
8458   DT->changeImmediateDominator(LoopVectorPreHeader,
8459                                EPI.MainLoopIterationCountCheck);
8460 
8461   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8462       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8463 
8464   if (EPI.SCEVSafetyCheck)
8465     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8466         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8467   if (EPI.MemSafetyCheck)
8468     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8469         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8470 
8471   DT->changeImmediateDominator(
8472       VecEpilogueIterationCountCheck,
8473       VecEpilogueIterationCountCheck->getSinglePredecessor());
8474 
8475   DT->changeImmediateDominator(LoopScalarPreHeader,
8476                                EPI.EpilogueIterationCountCheck);
8477   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8478     // If there is an epilogue which must run, there's no edge from the
8479     // middle block to exit blocks  and thus no need to update the immediate
8480     // dominator of the exit blocks.
8481     DT->changeImmediateDominator(LoopExitBlock,
8482                                  EPI.EpilogueIterationCountCheck);
8483 
8484   // Keep track of bypass blocks, as they feed start values to the induction
8485   // phis in the scalar loop preheader.
8486   if (EPI.SCEVSafetyCheck)
8487     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8488   if (EPI.MemSafetyCheck)
8489     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8490   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8491 
8492   // Generate a resume induction for the vector epilogue and put it in the
8493   // vector epilogue preheader
8494   Type *IdxTy = Legal->getWidestInductionType();
8495   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8496                                          LoopVectorPreHeader->getFirstNonPHI());
8497   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8498   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8499                            EPI.MainLoopIterationCountCheck);
8500 
8501   // Generate the induction variable.
8502   OldInduction = Legal->getPrimaryInduction();
8503   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8504   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8505   Value *StartIdx = EPResumeVal;
8506   Induction =
8507       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8508                               getDebugLocFromInstOrOperands(OldInduction));
8509 
8510   // Generate induction resume values. These variables save the new starting
8511   // indexes for the scalar loop. They are used to test if there are any tail
8512   // iterations left once the vector loop has completed.
8513   // Note that when the vectorized epilogue is skipped due to iteration count
8514   // check, then the resume value for the induction variable comes from
8515   // the trip count of the main vector loop, hence passing the AdditionalBypass
8516   // argument.
8517   createInductionResumeValues(Lp, CountRoundDown,
8518                               {VecEpilogueIterationCountCheck,
8519                                EPI.VectorTripCount} /* AdditionalBypass */);
8520 
8521   AddRuntimeUnrollDisableMetaData(Lp);
8522   return completeLoopSkeleton(Lp, OrigLoopID);
8523 }
8524 
8525 BasicBlock *
8526 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8527     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8528 
8529   assert(EPI.TripCount &&
8530          "Expected trip count to have been safed in the first pass.");
8531   assert(
8532       (!isa<Instruction>(EPI.TripCount) ||
8533        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8534       "saved trip count does not dominate insertion point.");
8535   Value *TC = EPI.TripCount;
8536   IRBuilder<> Builder(Insert->getTerminator());
8537   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8538 
8539   // Generate code to check if the loop's trip count is less than VF * UF of the
8540   // vector epilogue loop.
8541   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8542       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8543 
8544   Value *CheckMinIters = Builder.CreateICmp(
8545       P, Count,
8546       ConstantInt::get(Count->getType(),
8547                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8548       "min.epilog.iters.check");
8549 
8550   ReplaceInstWithInst(
8551       Insert->getTerminator(),
8552       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8553 
8554   LoopBypassBlocks.push_back(Insert);
8555   return Insert;
8556 }
8557 
8558 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8559   LLVM_DEBUG({
8560     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8561            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8562            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8563   });
8564 }
8565 
8566 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8567   DEBUG_WITH_TYPE(VerboseDebug, {
8568     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8569   });
8570 }
8571 
8572 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8573     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8574   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8575   bool PredicateAtRangeStart = Predicate(Range.Start);
8576 
8577   for (ElementCount TmpVF = Range.Start * 2;
8578        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8579     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8580       Range.End = TmpVF;
8581       break;
8582     }
8583 
8584   return PredicateAtRangeStart;
8585 }
8586 
8587 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8588 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8589 /// of VF's starting at a given VF and extending it as much as possible. Each
8590 /// vectorization decision can potentially shorten this sub-range during
8591 /// buildVPlan().
8592 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8593                                            ElementCount MaxVF) {
8594   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8595   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8596     VFRange SubRange = {VF, MaxVFPlusOne};
8597     VPlans.push_back(buildVPlan(SubRange));
8598     VF = SubRange.End;
8599   }
8600 }
8601 
8602 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8603                                          VPlanPtr &Plan) {
8604   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8605 
8606   // Look for cached value.
8607   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8608   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8609   if (ECEntryIt != EdgeMaskCache.end())
8610     return ECEntryIt->second;
8611 
8612   VPValue *SrcMask = createBlockInMask(Src, Plan);
8613 
8614   // The terminator has to be a branch inst!
8615   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8616   assert(BI && "Unexpected terminator found");
8617 
8618   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8619     return EdgeMaskCache[Edge] = SrcMask;
8620 
8621   // If source is an exiting block, we know the exit edge is dynamically dead
8622   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8623   // adding uses of an otherwise potentially dead instruction.
8624   if (OrigLoop->isLoopExiting(Src))
8625     return EdgeMaskCache[Edge] = SrcMask;
8626 
8627   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8628   assert(EdgeMask && "No Edge Mask found for condition");
8629 
8630   if (BI->getSuccessor(0) != Dst)
8631     EdgeMask = Builder.createNot(EdgeMask);
8632 
8633   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8634     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8635     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8636     // The select version does not introduce new UB if SrcMask is false and
8637     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8638     VPValue *False = Plan->getOrAddVPValue(
8639         ConstantInt::getFalse(BI->getCondition()->getType()));
8640     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8641   }
8642 
8643   return EdgeMaskCache[Edge] = EdgeMask;
8644 }
8645 
8646 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8647   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8648 
8649   // Look for cached value.
8650   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8651   if (BCEntryIt != BlockMaskCache.end())
8652     return BCEntryIt->second;
8653 
8654   // All-one mask is modelled as no-mask following the convention for masked
8655   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8656   VPValue *BlockMask = nullptr;
8657 
8658   if (OrigLoop->getHeader() == BB) {
8659     if (!CM.blockNeedsPredication(BB))
8660       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8661 
8662     // Create the block in mask as the first non-phi instruction in the block.
8663     VPBuilder::InsertPointGuard Guard(Builder);
8664     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8665     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8666 
8667     // Introduce the early-exit compare IV <= BTC to form header block mask.
8668     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8669     // Start by constructing the desired canonical IV.
8670     VPValue *IV = nullptr;
8671     if (Legal->getPrimaryInduction())
8672       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8673     else {
8674       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8675       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8676       IV = IVRecipe->getVPSingleValue();
8677     }
8678     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8679     bool TailFolded = !CM.isScalarEpilogueAllowed();
8680 
8681     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8682       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8683       // as a second argument, we only pass the IV here and extract the
8684       // tripcount from the transform state where codegen of the VP instructions
8685       // happen.
8686       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8687     } else {
8688       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8689     }
8690     return BlockMaskCache[BB] = BlockMask;
8691   }
8692 
8693   // This is the block mask. We OR all incoming edges.
8694   for (auto *Predecessor : predecessors(BB)) {
8695     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8696     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8697       return BlockMaskCache[BB] = EdgeMask;
8698 
8699     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8700       BlockMask = EdgeMask;
8701       continue;
8702     }
8703 
8704     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8705   }
8706 
8707   return BlockMaskCache[BB] = BlockMask;
8708 }
8709 
8710 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8711                                                 ArrayRef<VPValue *> Operands,
8712                                                 VFRange &Range,
8713                                                 VPlanPtr &Plan) {
8714   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8715          "Must be called with either a load or store");
8716 
8717   auto willWiden = [&](ElementCount VF) -> bool {
8718     if (VF.isScalar())
8719       return false;
8720     LoopVectorizationCostModel::InstWidening Decision =
8721         CM.getWideningDecision(I, VF);
8722     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8723            "CM decision should be taken at this point.");
8724     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8725       return true;
8726     if (CM.isScalarAfterVectorization(I, VF) ||
8727         CM.isProfitableToScalarize(I, VF))
8728       return false;
8729     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8730   };
8731 
8732   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8733     return nullptr;
8734 
8735   VPValue *Mask = nullptr;
8736   if (Legal->isMaskRequired(I))
8737     Mask = createBlockInMask(I->getParent(), Plan);
8738 
8739   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8740     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8741 
8742   StoreInst *Store = cast<StoreInst>(I);
8743   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8744                                             Mask);
8745 }
8746 
8747 VPWidenIntOrFpInductionRecipe *
8748 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8749                                            ArrayRef<VPValue *> Operands) const {
8750   // Check if this is an integer or fp induction. If so, build the recipe that
8751   // produces its scalar and vector values.
8752   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8753   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8754       II.getKind() == InductionDescriptor::IK_FpInduction) {
8755     assert(II.getStartValue() ==
8756            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8757     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8758     return new VPWidenIntOrFpInductionRecipe(
8759         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8760   }
8761 
8762   return nullptr;
8763 }
8764 
8765 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8766     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8767     VPlan &Plan) const {
8768   // Optimize the special case where the source is a constant integer
8769   // induction variable. Notice that we can only optimize the 'trunc' case
8770   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8771   // (c) other casts depend on pointer size.
8772 
8773   // Determine whether \p K is a truncation based on an induction variable that
8774   // can be optimized.
8775   auto isOptimizableIVTruncate =
8776       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8777     return [=](ElementCount VF) -> bool {
8778       return CM.isOptimizableIVTruncate(K, VF);
8779     };
8780   };
8781 
8782   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8783           isOptimizableIVTruncate(I), Range)) {
8784 
8785     InductionDescriptor II =
8786         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8787     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8788     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8789                                              Start, nullptr, I);
8790   }
8791   return nullptr;
8792 }
8793 
8794 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8795                                                 ArrayRef<VPValue *> Operands,
8796                                                 VPlanPtr &Plan) {
8797   // If all incoming values are equal, the incoming VPValue can be used directly
8798   // instead of creating a new VPBlendRecipe.
8799   VPValue *FirstIncoming = Operands[0];
8800   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8801         return FirstIncoming == Inc;
8802       })) {
8803     return Operands[0];
8804   }
8805 
8806   // We know that all PHIs in non-header blocks are converted into selects, so
8807   // we don't have to worry about the insertion order and we can just use the
8808   // builder. At this point we generate the predication tree. There may be
8809   // duplications since this is a simple recursive scan, but future
8810   // optimizations will clean it up.
8811   SmallVector<VPValue *, 2> OperandsWithMask;
8812   unsigned NumIncoming = Phi->getNumIncomingValues();
8813 
8814   for (unsigned In = 0; In < NumIncoming; In++) {
8815     VPValue *EdgeMask =
8816       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8817     assert((EdgeMask || NumIncoming == 1) &&
8818            "Multiple predecessors with one having a full mask");
8819     OperandsWithMask.push_back(Operands[In]);
8820     if (EdgeMask)
8821       OperandsWithMask.push_back(EdgeMask);
8822   }
8823   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8824 }
8825 
8826 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8827                                                    ArrayRef<VPValue *> Operands,
8828                                                    VFRange &Range) const {
8829 
8830   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8831       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8832       Range);
8833 
8834   if (IsPredicated)
8835     return nullptr;
8836 
8837   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8838   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8839              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8840              ID == Intrinsic::pseudoprobe ||
8841              ID == Intrinsic::experimental_noalias_scope_decl))
8842     return nullptr;
8843 
8844   auto willWiden = [&](ElementCount VF) -> bool {
8845     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8846     // The following case may be scalarized depending on the VF.
8847     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8848     // version of the instruction.
8849     // Is it beneficial to perform intrinsic call compared to lib call?
8850     bool NeedToScalarize = false;
8851     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8852     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8853     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8854     return UseVectorIntrinsic || !NeedToScalarize;
8855   };
8856 
8857   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8858     return nullptr;
8859 
8860   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8861   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8862 }
8863 
8864 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8865   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8866          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8867   // Instruction should be widened, unless it is scalar after vectorization,
8868   // scalarization is profitable or it is predicated.
8869   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8870     return CM.isScalarAfterVectorization(I, VF) ||
8871            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8872   };
8873   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8874                                                              Range);
8875 }
8876 
8877 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8878                                            ArrayRef<VPValue *> Operands) const {
8879   auto IsVectorizableOpcode = [](unsigned Opcode) {
8880     switch (Opcode) {
8881     case Instruction::Add:
8882     case Instruction::And:
8883     case Instruction::AShr:
8884     case Instruction::BitCast:
8885     case Instruction::FAdd:
8886     case Instruction::FCmp:
8887     case Instruction::FDiv:
8888     case Instruction::FMul:
8889     case Instruction::FNeg:
8890     case Instruction::FPExt:
8891     case Instruction::FPToSI:
8892     case Instruction::FPToUI:
8893     case Instruction::FPTrunc:
8894     case Instruction::FRem:
8895     case Instruction::FSub:
8896     case Instruction::ICmp:
8897     case Instruction::IntToPtr:
8898     case Instruction::LShr:
8899     case Instruction::Mul:
8900     case Instruction::Or:
8901     case Instruction::PtrToInt:
8902     case Instruction::SDiv:
8903     case Instruction::Select:
8904     case Instruction::SExt:
8905     case Instruction::Shl:
8906     case Instruction::SIToFP:
8907     case Instruction::SRem:
8908     case Instruction::Sub:
8909     case Instruction::Trunc:
8910     case Instruction::UDiv:
8911     case Instruction::UIToFP:
8912     case Instruction::URem:
8913     case Instruction::Xor:
8914     case Instruction::ZExt:
8915       return true;
8916     }
8917     return false;
8918   };
8919 
8920   if (!IsVectorizableOpcode(I->getOpcode()))
8921     return nullptr;
8922 
8923   // Success: widen this instruction.
8924   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8925 }
8926 
8927 void VPRecipeBuilder::fixHeaderPhis() {
8928   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8929   for (VPWidenPHIRecipe *R : PhisToFix) {
8930     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8931     VPRecipeBase *IncR =
8932         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8933     R->addOperand(IncR->getVPSingleValue());
8934   }
8935 }
8936 
8937 VPBasicBlock *VPRecipeBuilder::handleReplication(
8938     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8939     VPlanPtr &Plan) {
8940   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8941       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8942       Range);
8943 
8944   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8945       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8946 
8947   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8948                                        IsUniform, IsPredicated);
8949   setRecipe(I, Recipe);
8950   Plan->addVPValue(I, Recipe);
8951 
8952   // Find if I uses a predicated instruction. If so, it will use its scalar
8953   // value. Avoid hoisting the insert-element which packs the scalar value into
8954   // a vector value, as that happens iff all users use the vector value.
8955   for (VPValue *Op : Recipe->operands()) {
8956     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8957     if (!PredR)
8958       continue;
8959     auto *RepR =
8960         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8961     assert(RepR->isPredicated() &&
8962            "expected Replicate recipe to be predicated");
8963     RepR->setAlsoPack(false);
8964   }
8965 
8966   // Finalize the recipe for Instr, first if it is not predicated.
8967   if (!IsPredicated) {
8968     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8969     VPBB->appendRecipe(Recipe);
8970     return VPBB;
8971   }
8972   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8973   assert(VPBB->getSuccessors().empty() &&
8974          "VPBB has successors when handling predicated replication.");
8975   // Record predicated instructions for above packing optimizations.
8976   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8977   VPBlockUtils::insertBlockAfter(Region, VPBB);
8978   auto *RegSucc = new VPBasicBlock();
8979   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8980   return RegSucc;
8981 }
8982 
8983 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8984                                                       VPRecipeBase *PredRecipe,
8985                                                       VPlanPtr &Plan) {
8986   // Instructions marked for predication are replicated and placed under an
8987   // if-then construct to prevent side-effects.
8988 
8989   // Generate recipes to compute the block mask for this region.
8990   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8991 
8992   // Build the triangular if-then region.
8993   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8994   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8995   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8996   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8997   auto *PHIRecipe = Instr->getType()->isVoidTy()
8998                         ? nullptr
8999                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9000   if (PHIRecipe) {
9001     Plan->removeVPValueFor(Instr);
9002     Plan->addVPValue(Instr, PHIRecipe);
9003   }
9004   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9005   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9006   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9007 
9008   // Note: first set Entry as region entry and then connect successors starting
9009   // from it in order, to propagate the "parent" of each VPBasicBlock.
9010   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9011   VPBlockUtils::connectBlocks(Pred, Exit);
9012 
9013   return Region;
9014 }
9015 
9016 VPRecipeOrVPValueTy
9017 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9018                                         ArrayRef<VPValue *> Operands,
9019                                         VFRange &Range, VPlanPtr &Plan) {
9020   // First, check for specific widening recipes that deal with calls, memory
9021   // operations, inductions and Phi nodes.
9022   if (auto *CI = dyn_cast<CallInst>(Instr))
9023     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9024 
9025   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9026     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9027 
9028   VPRecipeBase *Recipe;
9029   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9030     if (Phi->getParent() != OrigLoop->getHeader())
9031       return tryToBlend(Phi, Operands, Plan);
9032     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9033       return toVPRecipeResult(Recipe);
9034 
9035     VPWidenPHIRecipe *PhiRecipe = nullptr;
9036     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9037       VPValue *StartV = Operands[0];
9038       if (Legal->isReductionVariable(Phi)) {
9039         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9040         assert(RdxDesc.getRecurrenceStartValue() ==
9041                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9042         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9043                                              CM.isInLoopReduction(Phi),
9044                                              CM.useOrderedReductions(RdxDesc));
9045       } else {
9046         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9047       }
9048 
9049       // Record the incoming value from the backedge, so we can add the incoming
9050       // value from the backedge after all recipes have been created.
9051       recordRecipeOf(cast<Instruction>(
9052           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9053       PhisToFix.push_back(PhiRecipe);
9054     } else {
9055       // TODO: record start and backedge value for remaining pointer induction
9056       // phis.
9057       assert(Phi->getType()->isPointerTy() &&
9058              "only pointer phis should be handled here");
9059       PhiRecipe = new VPWidenPHIRecipe(Phi);
9060     }
9061 
9062     return toVPRecipeResult(PhiRecipe);
9063   }
9064 
9065   if (isa<TruncInst>(Instr) &&
9066       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9067                                                Range, *Plan)))
9068     return toVPRecipeResult(Recipe);
9069 
9070   if (!shouldWiden(Instr, Range))
9071     return nullptr;
9072 
9073   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9074     return toVPRecipeResult(new VPWidenGEPRecipe(
9075         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9076 
9077   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9078     bool InvariantCond =
9079         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9080     return toVPRecipeResult(new VPWidenSelectRecipe(
9081         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9082   }
9083 
9084   return toVPRecipeResult(tryToWiden(Instr, Operands));
9085 }
9086 
9087 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9088                                                         ElementCount MaxVF) {
9089   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9090 
9091   // Collect instructions from the original loop that will become trivially dead
9092   // in the vectorized loop. We don't need to vectorize these instructions. For
9093   // example, original induction update instructions can become dead because we
9094   // separately emit induction "steps" when generating code for the new loop.
9095   // Similarly, we create a new latch condition when setting up the structure
9096   // of the new loop, so the old one can become dead.
9097   SmallPtrSet<Instruction *, 4> DeadInstructions;
9098   collectTriviallyDeadInstructions(DeadInstructions);
9099 
9100   // Add assume instructions we need to drop to DeadInstructions, to prevent
9101   // them from being added to the VPlan.
9102   // TODO: We only need to drop assumes in blocks that get flattend. If the
9103   // control flow is preserved, we should keep them.
9104   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9105   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9106 
9107   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9108   // Dead instructions do not need sinking. Remove them from SinkAfter.
9109   for (Instruction *I : DeadInstructions)
9110     SinkAfter.erase(I);
9111 
9112   // Cannot sink instructions after dead instructions (there won't be any
9113   // recipes for them). Instead, find the first non-dead previous instruction.
9114   for (auto &P : Legal->getSinkAfter()) {
9115     Instruction *SinkTarget = P.second;
9116     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9117     (void)FirstInst;
9118     while (DeadInstructions.contains(SinkTarget)) {
9119       assert(
9120           SinkTarget != FirstInst &&
9121           "Must find a live instruction (at least the one feeding the "
9122           "first-order recurrence PHI) before reaching beginning of the block");
9123       SinkTarget = SinkTarget->getPrevNode();
9124       assert(SinkTarget != P.first &&
9125              "sink source equals target, no sinking required");
9126     }
9127     P.second = SinkTarget;
9128   }
9129 
9130   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9131   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9132     VFRange SubRange = {VF, MaxVFPlusOne};
9133     VPlans.push_back(
9134         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9135     VF = SubRange.End;
9136   }
9137 }
9138 
9139 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9140     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9141     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9142 
9143   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9144 
9145   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9146 
9147   // ---------------------------------------------------------------------------
9148   // Pre-construction: record ingredients whose recipes we'll need to further
9149   // process after constructing the initial VPlan.
9150   // ---------------------------------------------------------------------------
9151 
9152   // Mark instructions we'll need to sink later and their targets as
9153   // ingredients whose recipe we'll need to record.
9154   for (auto &Entry : SinkAfter) {
9155     RecipeBuilder.recordRecipeOf(Entry.first);
9156     RecipeBuilder.recordRecipeOf(Entry.second);
9157   }
9158   for (auto &Reduction : CM.getInLoopReductionChains()) {
9159     PHINode *Phi = Reduction.first;
9160     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9161     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9162 
9163     RecipeBuilder.recordRecipeOf(Phi);
9164     for (auto &R : ReductionOperations) {
9165       RecipeBuilder.recordRecipeOf(R);
9166       // For min/max reducitons, where we have a pair of icmp/select, we also
9167       // need to record the ICmp recipe, so it can be removed later.
9168       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9169         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9170     }
9171   }
9172 
9173   // For each interleave group which is relevant for this (possibly trimmed)
9174   // Range, add it to the set of groups to be later applied to the VPlan and add
9175   // placeholders for its members' Recipes which we'll be replacing with a
9176   // single VPInterleaveRecipe.
9177   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9178     auto applyIG = [IG, this](ElementCount VF) -> bool {
9179       return (VF.isVector() && // Query is illegal for VF == 1
9180               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9181                   LoopVectorizationCostModel::CM_Interleave);
9182     };
9183     if (!getDecisionAndClampRange(applyIG, Range))
9184       continue;
9185     InterleaveGroups.insert(IG);
9186     for (unsigned i = 0; i < IG->getFactor(); i++)
9187       if (Instruction *Member = IG->getMember(i))
9188         RecipeBuilder.recordRecipeOf(Member);
9189   };
9190 
9191   // ---------------------------------------------------------------------------
9192   // Build initial VPlan: Scan the body of the loop in a topological order to
9193   // visit each basic block after having visited its predecessor basic blocks.
9194   // ---------------------------------------------------------------------------
9195 
9196   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9197   auto Plan = std::make_unique<VPlan>();
9198   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9199   Plan->setEntry(VPBB);
9200 
9201   // Scan the body of the loop in a topological order to visit each basic block
9202   // after having visited its predecessor basic blocks.
9203   LoopBlocksDFS DFS(OrigLoop);
9204   DFS.perform(LI);
9205 
9206   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9207     // Relevant instructions from basic block BB will be grouped into VPRecipe
9208     // ingredients and fill a new VPBasicBlock.
9209     unsigned VPBBsForBB = 0;
9210     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9211     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9212     VPBB = FirstVPBBForBB;
9213     Builder.setInsertPoint(VPBB);
9214 
9215     // Introduce each ingredient into VPlan.
9216     // TODO: Model and preserve debug instrinsics in VPlan.
9217     for (Instruction &I : BB->instructionsWithoutDebug()) {
9218       Instruction *Instr = &I;
9219 
9220       // First filter out irrelevant instructions, to ensure no recipes are
9221       // built for them.
9222       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9223         continue;
9224 
9225       SmallVector<VPValue *, 4> Operands;
9226       auto *Phi = dyn_cast<PHINode>(Instr);
9227       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9228         Operands.push_back(Plan->getOrAddVPValue(
9229             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9230       } else {
9231         auto OpRange = Plan->mapToVPValues(Instr->operands());
9232         Operands = {OpRange.begin(), OpRange.end()};
9233       }
9234       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9235               Instr, Operands, Range, Plan)) {
9236         // If Instr can be simplified to an existing VPValue, use it.
9237         if (RecipeOrValue.is<VPValue *>()) {
9238           auto *VPV = RecipeOrValue.get<VPValue *>();
9239           Plan->addVPValue(Instr, VPV);
9240           // If the re-used value is a recipe, register the recipe for the
9241           // instruction, in case the recipe for Instr needs to be recorded.
9242           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9243             RecipeBuilder.setRecipe(Instr, R);
9244           continue;
9245         }
9246         // Otherwise, add the new recipe.
9247         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9248         for (auto *Def : Recipe->definedValues()) {
9249           auto *UV = Def->getUnderlyingValue();
9250           Plan->addVPValue(UV, Def);
9251         }
9252 
9253         RecipeBuilder.setRecipe(Instr, Recipe);
9254         VPBB->appendRecipe(Recipe);
9255         continue;
9256       }
9257 
9258       // Otherwise, if all widening options failed, Instruction is to be
9259       // replicated. This may create a successor for VPBB.
9260       VPBasicBlock *NextVPBB =
9261           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9262       if (NextVPBB != VPBB) {
9263         VPBB = NextVPBB;
9264         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9265                                     : "");
9266       }
9267     }
9268   }
9269 
9270   RecipeBuilder.fixHeaderPhis();
9271 
9272   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9273   // may also be empty, such as the last one VPBB, reflecting original
9274   // basic-blocks with no recipes.
9275   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9276   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9277   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9278   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9279   delete PreEntry;
9280 
9281   // ---------------------------------------------------------------------------
9282   // Transform initial VPlan: Apply previously taken decisions, in order, to
9283   // bring the VPlan to its final state.
9284   // ---------------------------------------------------------------------------
9285 
9286   // Apply Sink-After legal constraints.
9287   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9288     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9289     if (Region && Region->isReplicator()) {
9290       assert(Region->getNumSuccessors() == 1 &&
9291              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9292       assert(R->getParent()->size() == 1 &&
9293              "A recipe in an original replicator region must be the only "
9294              "recipe in its block");
9295       return Region;
9296     }
9297     return nullptr;
9298   };
9299   for (auto &Entry : SinkAfter) {
9300     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9301     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9302 
9303     auto *TargetRegion = GetReplicateRegion(Target);
9304     auto *SinkRegion = GetReplicateRegion(Sink);
9305     if (!SinkRegion) {
9306       // If the sink source is not a replicate region, sink the recipe directly.
9307       if (TargetRegion) {
9308         // The target is in a replication region, make sure to move Sink to
9309         // the block after it, not into the replication region itself.
9310         VPBasicBlock *NextBlock =
9311             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9312         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9313       } else
9314         Sink->moveAfter(Target);
9315       continue;
9316     }
9317 
9318     // The sink source is in a replicate region. Unhook the region from the CFG.
9319     auto *SinkPred = SinkRegion->getSinglePredecessor();
9320     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9321     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9322     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9323     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9324 
9325     if (TargetRegion) {
9326       // The target recipe is also in a replicate region, move the sink region
9327       // after the target region.
9328       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9329       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9330       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9331       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9332     } else {
9333       // The sink source is in a replicate region, we need to move the whole
9334       // replicate region, which should only contain a single recipe in the
9335       // main block.
9336       auto *SplitBlock =
9337           Target->getParent()->splitAt(std::next(Target->getIterator()));
9338 
9339       auto *SplitPred = SplitBlock->getSinglePredecessor();
9340 
9341       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9342       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9343       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9344       if (VPBB == SplitPred)
9345         VPBB = SplitBlock;
9346     }
9347   }
9348 
9349   // Introduce a recipe to combine the incoming and previous values of a
9350   // first-order recurrence.
9351   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9352     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9353     if (!RecurPhi)
9354       continue;
9355 
9356     auto *RecurSplice = cast<VPInstruction>(
9357         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9358                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9359 
9360     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9361     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9362       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9363       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9364     } else
9365       RecurSplice->moveAfter(PrevRecipe);
9366     RecurPhi->replaceAllUsesWith(RecurSplice);
9367     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9368     // all users.
9369     RecurSplice->setOperand(0, RecurPhi);
9370   }
9371 
9372   // Interleave memory: for each Interleave Group we marked earlier as relevant
9373   // for this VPlan, replace the Recipes widening its memory instructions with a
9374   // single VPInterleaveRecipe at its insertion point.
9375   for (auto IG : InterleaveGroups) {
9376     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9377         RecipeBuilder.getRecipe(IG->getInsertPos()));
9378     SmallVector<VPValue *, 4> StoredValues;
9379     for (unsigned i = 0; i < IG->getFactor(); ++i)
9380       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9381         auto *StoreR =
9382             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9383         StoredValues.push_back(StoreR->getStoredValue());
9384       }
9385 
9386     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9387                                         Recipe->getMask());
9388     VPIG->insertBefore(Recipe);
9389     unsigned J = 0;
9390     for (unsigned i = 0; i < IG->getFactor(); ++i)
9391       if (Instruction *Member = IG->getMember(i)) {
9392         if (!Member->getType()->isVoidTy()) {
9393           VPValue *OriginalV = Plan->getVPValue(Member);
9394           Plan->removeVPValueFor(Member);
9395           Plan->addVPValue(Member, VPIG->getVPValue(J));
9396           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9397           J++;
9398         }
9399         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9400       }
9401   }
9402 
9403   // Adjust the recipes for any inloop reductions.
9404   adjustRecipesForInLoopReductions(Plan, RecipeBuilder, Range.Start);
9405 
9406   // Finally, if tail is folded by masking, introduce selects between the phi
9407   // and the live-out instruction of each reduction, at the end of the latch.
9408   if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) {
9409     Builder.setInsertPoint(VPBB);
9410     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9411     for (auto &Reduction : Legal->getReductionVars()) {
9412       if (CM.isInLoopReduction(Reduction.first))
9413         continue;
9414       VPValue *Phi = Plan->getOrAddVPValue(Reduction.first);
9415       VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr());
9416       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
9417     }
9418   }
9419 
9420   VPlanTransforms::sinkScalarOperands(*Plan);
9421   VPlanTransforms::mergeReplicateRegions(*Plan);
9422 
9423   std::string PlanName;
9424   raw_string_ostream RSO(PlanName);
9425   ElementCount VF = Range.Start;
9426   Plan->addVF(VF);
9427   RSO << "Initial VPlan for VF={" << VF;
9428   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9429     Plan->addVF(VF);
9430     RSO << "," << VF;
9431   }
9432   RSO << "},UF>=1";
9433   RSO.flush();
9434   Plan->setName(PlanName);
9435 
9436   return Plan;
9437 }
9438 
9439 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9440   // Outer loop handling: They may require CFG and instruction level
9441   // transformations before even evaluating whether vectorization is profitable.
9442   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9443   // the vectorization pipeline.
9444   assert(!OrigLoop->isInnermost());
9445   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9446 
9447   // Create new empty VPlan
9448   auto Plan = std::make_unique<VPlan>();
9449 
9450   // Build hierarchical CFG
9451   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9452   HCFGBuilder.buildHierarchicalCFG();
9453 
9454   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9455        VF *= 2)
9456     Plan->addVF(VF);
9457 
9458   if (EnableVPlanPredication) {
9459     VPlanPredicator VPP(*Plan);
9460     VPP.predicate();
9461 
9462     // Avoid running transformation to recipes until masked code generation in
9463     // VPlan-native path is in place.
9464     return Plan;
9465   }
9466 
9467   SmallPtrSet<Instruction *, 1> DeadInstructions;
9468   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9469                                              Legal->getInductionVars(),
9470                                              DeadInstructions, *PSE.getSE());
9471   return Plan;
9472 }
9473 
9474 // Adjust the recipes for any inloop reductions. The chain of instructions
9475 // leading from the loop exit instr to the phi need to be converted to
9476 // reductions, with one operand being vector and the other being the scalar
9477 // reduction chain.
9478 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions(
9479     VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, ElementCount MinVF) {
9480   for (auto &Reduction : CM.getInLoopReductionChains()) {
9481     PHINode *Phi = Reduction.first;
9482     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9483     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9484 
9485     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9486       continue;
9487 
9488     // ReductionOperations are orders top-down from the phi's use to the
9489     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9490     // which of the two operands will remain scalar and which will be reduced.
9491     // For minmax the chain will be the select instructions.
9492     Instruction *Chain = Phi;
9493     for (Instruction *R : ReductionOperations) {
9494       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9495       RecurKind Kind = RdxDesc.getRecurrenceKind();
9496 
9497       VPValue *ChainOp = Plan->getVPValue(Chain);
9498       unsigned FirstOpId;
9499       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9500         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9501                "Expected to replace a VPWidenSelectSC");
9502         FirstOpId = 1;
9503       } else {
9504         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9505                "Expected to replace a VPWidenSC");
9506         FirstOpId = 0;
9507       }
9508       unsigned VecOpId =
9509           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9510       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9511 
9512       auto *CondOp = CM.foldTailByMasking()
9513                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9514                          : nullptr;
9515       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9516           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9517       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9518       Plan->removeVPValueFor(R);
9519       Plan->addVPValue(R, RedRecipe);
9520       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9521       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9522       WidenRecipe->eraseFromParent();
9523 
9524       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9525         VPRecipeBase *CompareRecipe =
9526             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9527         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9528                "Expected to replace a VPWidenSC");
9529         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9530                "Expected no remaining users");
9531         CompareRecipe->eraseFromParent();
9532       }
9533       Chain = R;
9534     }
9535   }
9536 }
9537 
9538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9539 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9540                                VPSlotTracker &SlotTracker) const {
9541   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9542   IG->getInsertPos()->printAsOperand(O, false);
9543   O << ", ";
9544   getAddr()->printAsOperand(O, SlotTracker);
9545   VPValue *Mask = getMask();
9546   if (Mask) {
9547     O << ", ";
9548     Mask->printAsOperand(O, SlotTracker);
9549   }
9550 
9551   unsigned OpIdx = 0;
9552   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9553     if (!IG->getMember(i))
9554       continue;
9555     if (getNumStoreOperands() > 0) {
9556       O << "\n" << Indent << "  store ";
9557       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9558       O << " to index " << i;
9559     } else {
9560       O << "\n" << Indent << "  ";
9561       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9562       O << " = load from index " << i;
9563     }
9564     ++OpIdx;
9565   }
9566 }
9567 #endif
9568 
9569 void VPWidenCallRecipe::execute(VPTransformState &State) {
9570   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9571                                   *this, State);
9572 }
9573 
9574 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9575   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9576                                     this, *this, InvariantCond, State);
9577 }
9578 
9579 void VPWidenRecipe::execute(VPTransformState &State) {
9580   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9581 }
9582 
9583 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9584   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9585                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9586                       IsIndexLoopInvariant, State);
9587 }
9588 
9589 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9590   assert(!State.Instance && "Int or FP induction being replicated.");
9591   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9592                                    getTruncInst(), getVPValue(0),
9593                                    getCastValue(), State);
9594 }
9595 
9596 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9597   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9598                                  State);
9599 }
9600 
9601 void VPBlendRecipe::execute(VPTransformState &State) {
9602   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9603   // We know that all PHIs in non-header blocks are converted into
9604   // selects, so we don't have to worry about the insertion order and we
9605   // can just use the builder.
9606   // At this point we generate the predication tree. There may be
9607   // duplications since this is a simple recursive scan, but future
9608   // optimizations will clean it up.
9609 
9610   unsigned NumIncoming = getNumIncomingValues();
9611 
9612   // Generate a sequence of selects of the form:
9613   // SELECT(Mask3, In3,
9614   //        SELECT(Mask2, In2,
9615   //               SELECT(Mask1, In1,
9616   //                      In0)))
9617   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9618   // are essentially undef are taken from In0.
9619   InnerLoopVectorizer::VectorParts Entry(State.UF);
9620   for (unsigned In = 0; In < NumIncoming; ++In) {
9621     for (unsigned Part = 0; Part < State.UF; ++Part) {
9622       // We might have single edge PHIs (blocks) - use an identity
9623       // 'select' for the first PHI operand.
9624       Value *In0 = State.get(getIncomingValue(In), Part);
9625       if (In == 0)
9626         Entry[Part] = In0; // Initialize with the first incoming value.
9627       else {
9628         // Select between the current value and the previous incoming edge
9629         // based on the incoming mask.
9630         Value *Cond = State.get(getMask(In), Part);
9631         Entry[Part] =
9632             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9633       }
9634     }
9635   }
9636   for (unsigned Part = 0; Part < State.UF; ++Part)
9637     State.set(this, Entry[Part], Part);
9638 }
9639 
9640 void VPInterleaveRecipe::execute(VPTransformState &State) {
9641   assert(!State.Instance && "Interleave group being replicated.");
9642   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9643                                       getStoredValues(), getMask());
9644 }
9645 
9646 void VPReductionRecipe::execute(VPTransformState &State) {
9647   assert(!State.Instance && "Reduction being replicated.");
9648   Value *PrevInChain = State.get(getChainOp(), 0);
9649   for (unsigned Part = 0; Part < State.UF; ++Part) {
9650     RecurKind Kind = RdxDesc->getRecurrenceKind();
9651     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9652     Value *NewVecOp = State.get(getVecOp(), Part);
9653     if (VPValue *Cond = getCondOp()) {
9654       Value *NewCond = State.get(Cond, Part);
9655       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9656       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9657           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9658       Constant *IdenVec =
9659           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9660       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9661       NewVecOp = Select;
9662     }
9663     Value *NewRed;
9664     Value *NextInChain;
9665     if (IsOrdered) {
9666       if (State.VF.isVector())
9667         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9668                                         PrevInChain);
9669       else
9670         NewRed = State.Builder.CreateBinOp(
9671             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9672             PrevInChain, NewVecOp);
9673       PrevInChain = NewRed;
9674     } else {
9675       PrevInChain = State.get(getChainOp(), Part);
9676       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9677     }
9678     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9679       NextInChain =
9680           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9681                          NewRed, PrevInChain);
9682     } else if (IsOrdered)
9683       NextInChain = NewRed;
9684     else {
9685       NextInChain = State.Builder.CreateBinOp(
9686           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9687           PrevInChain);
9688     }
9689     State.set(this, NextInChain, Part);
9690   }
9691 }
9692 
9693 void VPReplicateRecipe::execute(VPTransformState &State) {
9694   if (State.Instance) { // Generate a single instance.
9695     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9696     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9697                                     *State.Instance, IsPredicated, State);
9698     // Insert scalar instance packing it into a vector.
9699     if (AlsoPack && State.VF.isVector()) {
9700       // If we're constructing lane 0, initialize to start from poison.
9701       if (State.Instance->Lane.isFirstLane()) {
9702         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9703         Value *Poison = PoisonValue::get(
9704             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9705         State.set(this, Poison, State.Instance->Part);
9706       }
9707       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9708     }
9709     return;
9710   }
9711 
9712   // Generate scalar instances for all VF lanes of all UF parts, unless the
9713   // instruction is uniform inwhich case generate only the first lane for each
9714   // of the UF parts.
9715   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9716   assert((!State.VF.isScalable() || IsUniform) &&
9717          "Can't scalarize a scalable vector");
9718   for (unsigned Part = 0; Part < State.UF; ++Part)
9719     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9720       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9721                                       VPIteration(Part, Lane), IsPredicated,
9722                                       State);
9723 }
9724 
9725 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9726   assert(State.Instance && "Branch on Mask works only on single instance.");
9727 
9728   unsigned Part = State.Instance->Part;
9729   unsigned Lane = State.Instance->Lane.getKnownLane();
9730 
9731   Value *ConditionBit = nullptr;
9732   VPValue *BlockInMask = getMask();
9733   if (BlockInMask) {
9734     ConditionBit = State.get(BlockInMask, Part);
9735     if (ConditionBit->getType()->isVectorTy())
9736       ConditionBit = State.Builder.CreateExtractElement(
9737           ConditionBit, State.Builder.getInt32(Lane));
9738   } else // Block in mask is all-one.
9739     ConditionBit = State.Builder.getTrue();
9740 
9741   // Replace the temporary unreachable terminator with a new conditional branch,
9742   // whose two destinations will be set later when they are created.
9743   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9744   assert(isa<UnreachableInst>(CurrentTerminator) &&
9745          "Expected to replace unreachable terminator with conditional branch.");
9746   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9747   CondBr->setSuccessor(0, nullptr);
9748   ReplaceInstWithInst(CurrentTerminator, CondBr);
9749 }
9750 
9751 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9752   assert(State.Instance && "Predicated instruction PHI works per instance.");
9753   Instruction *ScalarPredInst =
9754       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9755   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9756   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9757   assert(PredicatingBB && "Predicated block has no single predecessor.");
9758   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9759          "operand must be VPReplicateRecipe");
9760 
9761   // By current pack/unpack logic we need to generate only a single phi node: if
9762   // a vector value for the predicated instruction exists at this point it means
9763   // the instruction has vector users only, and a phi for the vector value is
9764   // needed. In this case the recipe of the predicated instruction is marked to
9765   // also do that packing, thereby "hoisting" the insert-element sequence.
9766   // Otherwise, a phi node for the scalar value is needed.
9767   unsigned Part = State.Instance->Part;
9768   if (State.hasVectorValue(getOperand(0), Part)) {
9769     Value *VectorValue = State.get(getOperand(0), Part);
9770     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9771     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9772     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9773     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9774     if (State.hasVectorValue(this, Part))
9775       State.reset(this, VPhi, Part);
9776     else
9777       State.set(this, VPhi, Part);
9778     // NOTE: Currently we need to update the value of the operand, so the next
9779     // predicated iteration inserts its generated value in the correct vector.
9780     State.reset(getOperand(0), VPhi, Part);
9781   } else {
9782     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9783     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9784     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9785                      PredicatingBB);
9786     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9787     if (State.hasScalarValue(this, *State.Instance))
9788       State.reset(this, Phi, *State.Instance);
9789     else
9790       State.set(this, Phi, *State.Instance);
9791     // NOTE: Currently we need to update the value of the operand, so the next
9792     // predicated iteration inserts its generated value in the correct vector.
9793     State.reset(getOperand(0), Phi, *State.Instance);
9794   }
9795 }
9796 
9797 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9798   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9799   State.ILV->vectorizeMemoryInstruction(
9800       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9801       StoredValue, getMask());
9802 }
9803 
9804 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9805 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9806 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9807 // for predication.
9808 static ScalarEpilogueLowering getScalarEpilogueLowering(
9809     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9810     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9811     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9812     LoopVectorizationLegality &LVL) {
9813   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9814   // don't look at hints or options, and don't request a scalar epilogue.
9815   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9816   // LoopAccessInfo (due to code dependency and not being able to reliably get
9817   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9818   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9819   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9820   // back to the old way and vectorize with versioning when forced. See D81345.)
9821   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9822                                                       PGSOQueryType::IRPass) &&
9823                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9824     return CM_ScalarEpilogueNotAllowedOptSize;
9825 
9826   // 2) If set, obey the directives
9827   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9828     switch (PreferPredicateOverEpilogue) {
9829     case PreferPredicateTy::ScalarEpilogue:
9830       return CM_ScalarEpilogueAllowed;
9831     case PreferPredicateTy::PredicateElseScalarEpilogue:
9832       return CM_ScalarEpilogueNotNeededUsePredicate;
9833     case PreferPredicateTy::PredicateOrDontVectorize:
9834       return CM_ScalarEpilogueNotAllowedUsePredicate;
9835     };
9836   }
9837 
9838   // 3) If set, obey the hints
9839   switch (Hints.getPredicate()) {
9840   case LoopVectorizeHints::FK_Enabled:
9841     return CM_ScalarEpilogueNotNeededUsePredicate;
9842   case LoopVectorizeHints::FK_Disabled:
9843     return CM_ScalarEpilogueAllowed;
9844   };
9845 
9846   // 4) if the TTI hook indicates this is profitable, request predication.
9847   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9848                                        LVL.getLAI()))
9849     return CM_ScalarEpilogueNotNeededUsePredicate;
9850 
9851   return CM_ScalarEpilogueAllowed;
9852 }
9853 
9854 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9855   // If Values have been set for this Def return the one relevant for \p Part.
9856   if (hasVectorValue(Def, Part))
9857     return Data.PerPartOutput[Def][Part];
9858 
9859   if (!hasScalarValue(Def, {Part, 0})) {
9860     Value *IRV = Def->getLiveInIRValue();
9861     Value *B = ILV->getBroadcastInstrs(IRV);
9862     set(Def, B, Part);
9863     return B;
9864   }
9865 
9866   Value *ScalarValue = get(Def, {Part, 0});
9867   // If we aren't vectorizing, we can just copy the scalar map values over
9868   // to the vector map.
9869   if (VF.isScalar()) {
9870     set(Def, ScalarValue, Part);
9871     return ScalarValue;
9872   }
9873 
9874   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9875   bool IsUniform = RepR && RepR->isUniform();
9876 
9877   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9878   // Check if there is a scalar value for the selected lane.
9879   if (!hasScalarValue(Def, {Part, LastLane})) {
9880     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9881     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9882            "unexpected recipe found to be invariant");
9883     IsUniform = true;
9884     LastLane = 0;
9885   }
9886 
9887   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9888   // Set the insert point after the last scalarized instruction or after the
9889   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9890   // will directly follow the scalar definitions.
9891   auto OldIP = Builder.saveIP();
9892   auto NewIP =
9893       isa<PHINode>(LastInst)
9894           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9895           : std::next(BasicBlock::iterator(LastInst));
9896   Builder.SetInsertPoint(&*NewIP);
9897 
9898   // However, if we are vectorizing, we need to construct the vector values.
9899   // If the value is known to be uniform after vectorization, we can just
9900   // broadcast the scalar value corresponding to lane zero for each unroll
9901   // iteration. Otherwise, we construct the vector values using
9902   // insertelement instructions. Since the resulting vectors are stored in
9903   // State, we will only generate the insertelements once.
9904   Value *VectorValue = nullptr;
9905   if (IsUniform) {
9906     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9907     set(Def, VectorValue, Part);
9908   } else {
9909     // Initialize packing with insertelements to start from undef.
9910     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9911     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9912     set(Def, Undef, Part);
9913     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9914       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9915     VectorValue = get(Def, Part);
9916   }
9917   Builder.restoreIP(OldIP);
9918   return VectorValue;
9919 }
9920 
9921 // Process the loop in the VPlan-native vectorization path. This path builds
9922 // VPlan upfront in the vectorization pipeline, which allows to apply
9923 // VPlan-to-VPlan transformations from the very beginning without modifying the
9924 // input LLVM IR.
9925 static bool processLoopInVPlanNativePath(
9926     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9927     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9928     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9929     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9930     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9931     LoopVectorizationRequirements &Requirements) {
9932 
9933   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9934     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9935     return false;
9936   }
9937   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9938   Function *F = L->getHeader()->getParent();
9939   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9940 
9941   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9942       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9943 
9944   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9945                                 &Hints, IAI);
9946   // Use the planner for outer loop vectorization.
9947   // TODO: CM is not used at this point inside the planner. Turn CM into an
9948   // optional argument if we don't need it in the future.
9949   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
9950                                Requirements, ORE);
9951 
9952   // Get user vectorization factor.
9953   ElementCount UserVF = Hints.getWidth();
9954 
9955   CM.collectElementTypesForWidening();
9956 
9957   // Plan how to best vectorize, return the best VF and its cost.
9958   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9959 
9960   // If we are stress testing VPlan builds, do not attempt to generate vector
9961   // code. Masked vector code generation support will follow soon.
9962   // Also, do not attempt to vectorize if no vector code will be produced.
9963   if (VPlanBuildStressTest || EnableVPlanPredication ||
9964       VectorizationFactor::Disabled() == VF)
9965     return false;
9966 
9967   LVP.setBestPlan(VF.Width, 1);
9968 
9969   {
9970     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
9971                              F->getParent()->getDataLayout());
9972     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
9973                            &CM, BFI, PSI, Checks);
9974     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9975                       << L->getHeader()->getParent()->getName() << "\"\n");
9976     LVP.executePlan(LB, DT);
9977   }
9978 
9979   // Mark the loop as already vectorized to avoid vectorizing again.
9980   Hints.setAlreadyVectorized();
9981   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9982   return true;
9983 }
9984 
9985 // Emit a remark if there are stores to floats that required a floating point
9986 // extension. If the vectorized loop was generated with floating point there
9987 // will be a performance penalty from the conversion overhead and the change in
9988 // the vector width.
9989 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9990   SmallVector<Instruction *, 4> Worklist;
9991   for (BasicBlock *BB : L->getBlocks()) {
9992     for (Instruction &Inst : *BB) {
9993       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9994         if (S->getValueOperand()->getType()->isFloatTy())
9995           Worklist.push_back(S);
9996       }
9997     }
9998   }
9999 
10000   // Traverse the floating point stores upwards searching, for floating point
10001   // conversions.
10002   SmallPtrSet<const Instruction *, 4> Visited;
10003   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10004   while (!Worklist.empty()) {
10005     auto *I = Worklist.pop_back_val();
10006     if (!L->contains(I))
10007       continue;
10008     if (!Visited.insert(I).second)
10009       continue;
10010 
10011     // Emit a remark if the floating point store required a floating
10012     // point conversion.
10013     // TODO: More work could be done to identify the root cause such as a
10014     // constant or a function return type and point the user to it.
10015     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10016       ORE->emit([&]() {
10017         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10018                                           I->getDebugLoc(), L->getHeader())
10019                << "floating point conversion changes vector width. "
10020                << "Mixed floating point precision requires an up/down "
10021                << "cast that will negatively impact performance.";
10022       });
10023 
10024     for (Use &Op : I->operands())
10025       if (auto *OpI = dyn_cast<Instruction>(Op))
10026         Worklist.push_back(OpI);
10027   }
10028 }
10029 
10030 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10031     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10032                                !EnableLoopInterleaving),
10033       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10034                               !EnableLoopVectorization) {}
10035 
10036 bool LoopVectorizePass::processLoop(Loop *L) {
10037   assert((EnableVPlanNativePath || L->isInnermost()) &&
10038          "VPlan-native path is not enabled. Only process inner loops.");
10039 
10040 #ifndef NDEBUG
10041   const std::string DebugLocStr = getDebugLocString(L);
10042 #endif /* NDEBUG */
10043 
10044   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10045                     << L->getHeader()->getParent()->getName() << "\" from "
10046                     << DebugLocStr << "\n");
10047 
10048   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10049 
10050   LLVM_DEBUG(
10051       dbgs() << "LV: Loop hints:"
10052              << " force="
10053              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10054                      ? "disabled"
10055                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10056                             ? "enabled"
10057                             : "?"))
10058              << " width=" << Hints.getWidth()
10059              << " interleave=" << Hints.getInterleave() << "\n");
10060 
10061   // Function containing loop
10062   Function *F = L->getHeader()->getParent();
10063 
10064   // Looking at the diagnostic output is the only way to determine if a loop
10065   // was vectorized (other than looking at the IR or machine code), so it
10066   // is important to generate an optimization remark for each loop. Most of
10067   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10068   // generated as OptimizationRemark and OptimizationRemarkMissed are
10069   // less verbose reporting vectorized loops and unvectorized loops that may
10070   // benefit from vectorization, respectively.
10071 
10072   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10073     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10074     return false;
10075   }
10076 
10077   PredicatedScalarEvolution PSE(*SE, *L);
10078 
10079   // Check if it is legal to vectorize the loop.
10080   LoopVectorizationRequirements Requirements;
10081   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10082                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10083   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10084     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10085     Hints.emitRemarkWithHints();
10086     return false;
10087   }
10088 
10089   // Check the function attributes and profiles to find out if this function
10090   // should be optimized for size.
10091   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10092       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10093 
10094   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10095   // here. They may require CFG and instruction level transformations before
10096   // even evaluating whether vectorization is profitable. Since we cannot modify
10097   // the incoming IR, we need to build VPlan upfront in the vectorization
10098   // pipeline.
10099   if (!L->isInnermost())
10100     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10101                                         ORE, BFI, PSI, Hints, Requirements);
10102 
10103   assert(L->isInnermost() && "Inner loop expected.");
10104 
10105   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10106   // count by optimizing for size, to minimize overheads.
10107   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10108   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10109     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10110                       << "This loop is worth vectorizing only if no scalar "
10111                       << "iteration overheads are incurred.");
10112     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10113       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10114     else {
10115       LLVM_DEBUG(dbgs() << "\n");
10116       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10117     }
10118   }
10119 
10120   // Check the function attributes to see if implicit floats are allowed.
10121   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10122   // an integer loop and the vector instructions selected are purely integer
10123   // vector instructions?
10124   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10125     reportVectorizationFailure(
10126         "Can't vectorize when the NoImplicitFloat attribute is used",
10127         "loop not vectorized due to NoImplicitFloat attribute",
10128         "NoImplicitFloat", ORE, L);
10129     Hints.emitRemarkWithHints();
10130     return false;
10131   }
10132 
10133   // Check if the target supports potentially unsafe FP vectorization.
10134   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10135   // for the target we're vectorizing for, to make sure none of the
10136   // additional fp-math flags can help.
10137   if (Hints.isPotentiallyUnsafe() &&
10138       TTI->isFPVectorizationPotentiallyUnsafe()) {
10139     reportVectorizationFailure(
10140         "Potentially unsafe FP op prevents vectorization",
10141         "loop not vectorized due to unsafe FP support.",
10142         "UnsafeFP", ORE, L);
10143     Hints.emitRemarkWithHints();
10144     return false;
10145   }
10146 
10147   if (!LVL.canVectorizeFPMath(ForceOrderedReductions)) {
10148     ORE->emit([&]() {
10149       auto *ExactFPMathInst = Requirements.getExactFPInst();
10150       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10151                                                  ExactFPMathInst->getDebugLoc(),
10152                                                  ExactFPMathInst->getParent())
10153              << "loop not vectorized: cannot prove it is safe to reorder "
10154                 "floating-point operations";
10155     });
10156     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10157                          "reorder floating-point operations\n");
10158     Hints.emitRemarkWithHints();
10159     return false;
10160   }
10161 
10162   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10163   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10164 
10165   // If an override option has been passed in for interleaved accesses, use it.
10166   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10167     UseInterleaved = EnableInterleavedMemAccesses;
10168 
10169   // Analyze interleaved memory accesses.
10170   if (UseInterleaved) {
10171     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10172   }
10173 
10174   // Use the cost model.
10175   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10176                                 F, &Hints, IAI);
10177   CM.collectValuesToIgnore();
10178   CM.collectElementTypesForWidening();
10179 
10180   // Use the planner for vectorization.
10181   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10182                                Requirements, ORE);
10183 
10184   // Get user vectorization factor and interleave count.
10185   ElementCount UserVF = Hints.getWidth();
10186   unsigned UserIC = Hints.getInterleave();
10187 
10188   // Plan how to best vectorize, return the best VF and its cost.
10189   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10190 
10191   VectorizationFactor VF = VectorizationFactor::Disabled();
10192   unsigned IC = 1;
10193 
10194   if (MaybeVF) {
10195     VF = *MaybeVF;
10196     // Select the interleave count.
10197     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10198   }
10199 
10200   // Identify the diagnostic messages that should be produced.
10201   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10202   bool VectorizeLoop = true, InterleaveLoop = true;
10203   if (VF.Width.isScalar()) {
10204     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10205     VecDiagMsg = std::make_pair(
10206         "VectorizationNotBeneficial",
10207         "the cost-model indicates that vectorization is not beneficial");
10208     VectorizeLoop = false;
10209   }
10210 
10211   if (!MaybeVF && UserIC > 1) {
10212     // Tell the user interleaving was avoided up-front, despite being explicitly
10213     // requested.
10214     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10215                          "interleaving should be avoided up front\n");
10216     IntDiagMsg = std::make_pair(
10217         "InterleavingAvoided",
10218         "Ignoring UserIC, because interleaving was avoided up front");
10219     InterleaveLoop = false;
10220   } else if (IC == 1 && UserIC <= 1) {
10221     // Tell the user interleaving is not beneficial.
10222     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10223     IntDiagMsg = std::make_pair(
10224         "InterleavingNotBeneficial",
10225         "the cost-model indicates that interleaving is not beneficial");
10226     InterleaveLoop = false;
10227     if (UserIC == 1) {
10228       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10229       IntDiagMsg.second +=
10230           " and is explicitly disabled or interleave count is set to 1";
10231     }
10232   } else if (IC > 1 && UserIC == 1) {
10233     // Tell the user interleaving is beneficial, but it explicitly disabled.
10234     LLVM_DEBUG(
10235         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10236     IntDiagMsg = std::make_pair(
10237         "InterleavingBeneficialButDisabled",
10238         "the cost-model indicates that interleaving is beneficial "
10239         "but is explicitly disabled or interleave count is set to 1");
10240     InterleaveLoop = false;
10241   }
10242 
10243   // Override IC if user provided an interleave count.
10244   IC = UserIC > 0 ? UserIC : IC;
10245 
10246   // Emit diagnostic messages, if any.
10247   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10248   if (!VectorizeLoop && !InterleaveLoop) {
10249     // Do not vectorize or interleaving the loop.
10250     ORE->emit([&]() {
10251       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10252                                       L->getStartLoc(), L->getHeader())
10253              << VecDiagMsg.second;
10254     });
10255     ORE->emit([&]() {
10256       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10257                                       L->getStartLoc(), L->getHeader())
10258              << IntDiagMsg.second;
10259     });
10260     return false;
10261   } else if (!VectorizeLoop && InterleaveLoop) {
10262     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10263     ORE->emit([&]() {
10264       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10265                                         L->getStartLoc(), L->getHeader())
10266              << VecDiagMsg.second;
10267     });
10268   } else if (VectorizeLoop && !InterleaveLoop) {
10269     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10270                       << ") in " << DebugLocStr << '\n');
10271     ORE->emit([&]() {
10272       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10273                                         L->getStartLoc(), L->getHeader())
10274              << IntDiagMsg.second;
10275     });
10276   } else if (VectorizeLoop && InterleaveLoop) {
10277     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10278                       << ") in " << DebugLocStr << '\n');
10279     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10280   }
10281 
10282   bool DisableRuntimeUnroll = false;
10283   MDNode *OrigLoopID = L->getLoopID();
10284   {
10285     // Optimistically generate runtime checks. Drop them if they turn out to not
10286     // be profitable. Limit the scope of Checks, so the cleanup happens
10287     // immediately after vector codegeneration is done.
10288     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10289                              F->getParent()->getDataLayout());
10290     if (!VF.Width.isScalar() || IC > 1)
10291       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10292     LVP.setBestPlan(VF.Width, IC);
10293 
10294     using namespace ore;
10295     if (!VectorizeLoop) {
10296       assert(IC > 1 && "interleave count should not be 1 or 0");
10297       // If we decided that it is not legal to vectorize the loop, then
10298       // interleave it.
10299       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10300                                  &CM, BFI, PSI, Checks);
10301       LVP.executePlan(Unroller, DT);
10302 
10303       ORE->emit([&]() {
10304         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10305                                   L->getHeader())
10306                << "interleaved loop (interleaved count: "
10307                << NV("InterleaveCount", IC) << ")";
10308       });
10309     } else {
10310       // If we decided that it is *legal* to vectorize the loop, then do it.
10311 
10312       // Consider vectorizing the epilogue too if it's profitable.
10313       VectorizationFactor EpilogueVF =
10314           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10315       if (EpilogueVF.Width.isVector()) {
10316 
10317         // The first pass vectorizes the main loop and creates a scalar epilogue
10318         // to be vectorized by executing the plan (potentially with a different
10319         // factor) again shortly afterwards.
10320         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10321                                           EpilogueVF.Width.getKnownMinValue(),
10322                                           1);
10323         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10324                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10325 
10326         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10327         LVP.executePlan(MainILV, DT);
10328         ++LoopsVectorized;
10329 
10330         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10331         formLCSSARecursively(*L, *DT, LI, SE);
10332 
10333         // Second pass vectorizes the epilogue and adjusts the control flow
10334         // edges from the first pass.
10335         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10336         EPI.MainLoopVF = EPI.EpilogueVF;
10337         EPI.MainLoopUF = EPI.EpilogueUF;
10338         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10339                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10340                                                  Checks);
10341         LVP.executePlan(EpilogILV, DT);
10342         ++LoopsEpilogueVectorized;
10343 
10344         if (!MainILV.areSafetyChecksAdded())
10345           DisableRuntimeUnroll = true;
10346       } else {
10347         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10348                                &LVL, &CM, BFI, PSI, Checks);
10349         LVP.executePlan(LB, DT);
10350         ++LoopsVectorized;
10351 
10352         // Add metadata to disable runtime unrolling a scalar loop when there
10353         // are no runtime checks about strides and memory. A scalar loop that is
10354         // rarely used is not worth unrolling.
10355         if (!LB.areSafetyChecksAdded())
10356           DisableRuntimeUnroll = true;
10357       }
10358       // Report the vectorization decision.
10359       ORE->emit([&]() {
10360         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10361                                   L->getHeader())
10362                << "vectorized loop (vectorization width: "
10363                << NV("VectorizationFactor", VF.Width)
10364                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10365       });
10366     }
10367 
10368     if (ORE->allowExtraAnalysis(LV_NAME))
10369       checkMixedPrecision(L, ORE);
10370   }
10371 
10372   Optional<MDNode *> RemainderLoopID =
10373       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10374                                       LLVMLoopVectorizeFollowupEpilogue});
10375   if (RemainderLoopID.hasValue()) {
10376     L->setLoopID(RemainderLoopID.getValue());
10377   } else {
10378     if (DisableRuntimeUnroll)
10379       AddRuntimeUnrollDisableMetaData(L);
10380 
10381     // Mark the loop as already vectorized to avoid vectorizing again.
10382     Hints.setAlreadyVectorized();
10383   }
10384 
10385   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10386   return true;
10387 }
10388 
10389 LoopVectorizeResult LoopVectorizePass::runImpl(
10390     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10391     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10392     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10393     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10394     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10395   SE = &SE_;
10396   LI = &LI_;
10397   TTI = &TTI_;
10398   DT = &DT_;
10399   BFI = &BFI_;
10400   TLI = TLI_;
10401   AA = &AA_;
10402   AC = &AC_;
10403   GetLAA = &GetLAA_;
10404   DB = &DB_;
10405   ORE = &ORE_;
10406   PSI = PSI_;
10407 
10408   // Don't attempt if
10409   // 1. the target claims to have no vector registers, and
10410   // 2. interleaving won't help ILP.
10411   //
10412   // The second condition is necessary because, even if the target has no
10413   // vector registers, loop vectorization may still enable scalar
10414   // interleaving.
10415   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10416       TTI->getMaxInterleaveFactor(1) < 2)
10417     return LoopVectorizeResult(false, false);
10418 
10419   bool Changed = false, CFGChanged = false;
10420 
10421   // The vectorizer requires loops to be in simplified form.
10422   // Since simplification may add new inner loops, it has to run before the
10423   // legality and profitability checks. This means running the loop vectorizer
10424   // will simplify all loops, regardless of whether anything end up being
10425   // vectorized.
10426   for (auto &L : *LI)
10427     Changed |= CFGChanged |=
10428         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10429 
10430   // Build up a worklist of inner-loops to vectorize. This is necessary as
10431   // the act of vectorizing or partially unrolling a loop creates new loops
10432   // and can invalidate iterators across the loops.
10433   SmallVector<Loop *, 8> Worklist;
10434 
10435   for (Loop *L : *LI)
10436     collectSupportedLoops(*L, LI, ORE, Worklist);
10437 
10438   LoopsAnalyzed += Worklist.size();
10439 
10440   // Now walk the identified inner loops.
10441   while (!Worklist.empty()) {
10442     Loop *L = Worklist.pop_back_val();
10443 
10444     // For the inner loops we actually process, form LCSSA to simplify the
10445     // transform.
10446     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10447 
10448     Changed |= CFGChanged |= processLoop(L);
10449   }
10450 
10451   // Process each loop nest in the function.
10452   return LoopVectorizeResult(Changed, CFGChanged);
10453 }
10454 
10455 PreservedAnalyses LoopVectorizePass::run(Function &F,
10456                                          FunctionAnalysisManager &AM) {
10457     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10458     auto &LI = AM.getResult<LoopAnalysis>(F);
10459     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10460     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10461     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10462     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10463     auto &AA = AM.getResult<AAManager>(F);
10464     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10465     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10466     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10467     MemorySSA *MSSA = EnableMSSALoopDependency
10468                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
10469                           : nullptr;
10470 
10471     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10472     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10473         [&](Loop &L) -> const LoopAccessInfo & {
10474       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10475                                         TLI, TTI, nullptr, MSSA};
10476       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10477     };
10478     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10479     ProfileSummaryInfo *PSI =
10480         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10481     LoopVectorizeResult Result =
10482         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10483     if (!Result.MadeAnyChange)
10484       return PreservedAnalyses::all();
10485     PreservedAnalyses PA;
10486 
10487     // We currently do not preserve loopinfo/dominator analyses with outer loop
10488     // vectorization. Until this is addressed, mark these analyses as preserved
10489     // only for non-VPlan-native path.
10490     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10491     if (!EnableVPlanNativePath) {
10492       PA.preserve<LoopAnalysis>();
10493       PA.preserve<DominatorTreeAnalysis>();
10494     }
10495     if (!Result.MadeCFGChange)
10496       PA.preserveSet<CFGAnalyses>();
10497     return PA;
10498 }
10499