1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include <algorithm> 97 #include <map> 98 #include <tuple> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define LV_NAME "loop-vectorize" 104 #define DEBUG_TYPE LV_NAME 105 106 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109 static cl::opt<bool> 110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 111 cl::desc("Enable if-conversion during vectorization.")); 112 113 /// We don't vectorize loops with a known constant trip count below this number. 114 static cl::opt<unsigned> 115 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 116 cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 /// This enables versioning on the strides of symbolically striding memory 122 /// accesses in code like the following. 123 /// for (i = 0; i < N; ++i) 124 /// A[i * Stride1] += B[i * Stride2] ... 125 /// 126 /// Will be roughly translated to 127 /// if (Stride1 == 1 && Stride2 == 1) { 128 /// for (i = 0; i < N; i+=4) 129 /// A[i:i+3] += ... 130 /// } else 131 /// ... 132 static cl::opt<bool> EnableMemAccessVersioning( 133 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 134 cl::desc("Enable symblic stride memory access versioning")); 135 136 /// We don't unroll loops with a known constant trip count below this number. 137 static const unsigned TinyTripCountUnrollThreshold = 128; 138 139 static cl::opt<unsigned> ForceTargetNumScalarRegs( 140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 141 cl::desc("A flag that overrides the target's number of scalar registers.")); 142 143 static cl::opt<unsigned> ForceTargetNumVectorRegs( 144 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of vector registers.")); 146 147 /// Maximum vectorization interleave count. 148 static const unsigned MaxInterleaveFactor = 16; 149 150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's max interleave factor for " 153 "scalar loops.")); 154 155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "vectorized loops.")); 159 160 static cl::opt<unsigned> ForceTargetInstructionCost( 161 "force-target-instruction-cost", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's expected cost for " 163 "an instruction to a single constant value. Mostly " 164 "useful for getting consistent testing.")); 165 166 static cl::opt<unsigned> SmallLoopCost( 167 "small-loop-cost", cl::init(20), cl::Hidden, 168 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 169 170 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 171 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 172 cl::desc("Enable the use of the block frequency analysis to access PGO " 173 "heuristics minimizing code growth in cold regions and being more " 174 "aggressive in hot regions.")); 175 176 // Runtime unroll loops for load/store throughput. 177 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 178 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 179 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 180 181 /// The number of stores in a loop that are allowed to need predication. 182 static cl::opt<unsigned> NumberOfStoresToPredicate( 183 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 184 cl::desc("Max number of stores to be predicated behind an if.")); 185 186 static cl::opt<bool> EnableIndVarRegisterHeur( 187 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 188 cl::desc("Count the induction variable only once when unrolling")); 189 190 static cl::opt<bool> EnableCondStoresVectorization( 191 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 192 cl::desc("Enable if predication of stores during vectorization.")); 193 194 static cl::opt<unsigned> MaxNestedScalarReductionUF( 195 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 196 cl::desc("The maximum unroll factor to use when unrolling a scalar " 197 "reduction in a nested loop.")); 198 199 namespace { 200 201 // Forward declarations. 202 class LoopVectorizationLegality; 203 class LoopVectorizationCostModel; 204 class LoopVectorizeHints; 205 206 /// \brief This modifies LoopAccessReport to initialize message with 207 /// loop-vectorizer-specific part. 208 class VectorizationReport : public LoopAccessReport { 209 public: 210 VectorizationReport(Instruction *I = nullptr) 211 : LoopAccessReport("loop not vectorized: ", I) {} 212 213 /// \brief This allows promotion of the loop-access analysis report into the 214 /// loop-vectorizer report. It modifies the message to add the 215 /// loop-vectorizer-specific part of the message. 216 explicit VectorizationReport(const LoopAccessReport &R) 217 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 218 R.getInstr()) {} 219 }; 220 221 /// A helper function for converting Scalar types to vector types. 222 /// If the incoming type is void, we return void. If the VF is 1, we return 223 /// the scalar type. 224 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 225 if (Scalar->isVoidTy() || VF == 1) 226 return Scalar; 227 return VectorType::get(Scalar, VF); 228 } 229 230 /// InnerLoopVectorizer vectorizes loops which contain only one basic 231 /// block to a specified vectorization factor (VF). 232 /// This class performs the widening of scalars into vectors, or multiple 233 /// scalars. This class also implements the following features: 234 /// * It inserts an epilogue loop for handling loops that don't have iteration 235 /// counts that are known to be a multiple of the vectorization factor. 236 /// * It handles the code generation for reduction variables. 237 /// * Scalarization (implementation using scalars) of un-vectorizable 238 /// instructions. 239 /// InnerLoopVectorizer does not perform any vectorization-legality 240 /// checks, and relies on the caller to check for the different legality 241 /// aspects. The InnerLoopVectorizer relies on the 242 /// LoopVectorizationLegality class to provide information about the induction 243 /// and reduction variables that were found to a given vectorization factor. 244 class InnerLoopVectorizer { 245 public: 246 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 247 DominatorTree *DT, const DataLayout *DL, 248 const TargetLibraryInfo *TLI, unsigned VecWidth, 249 unsigned UnrollFactor) 250 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 251 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 252 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 253 Legal(nullptr) {} 254 255 // Perform the actual loop widening (vectorization). 256 void vectorize(LoopVectorizationLegality *L) { 257 Legal = L; 258 // Create a new empty loop. Unlink the old loop and connect the new one. 259 createEmptyLoop(); 260 // Widen each instruction in the old loop to a new one in the new loop. 261 // Use the Legality module to find the induction and reduction variables. 262 vectorizeLoop(); 263 // Register the new loop and update the analysis passes. 264 updateAnalysis(); 265 } 266 267 virtual ~InnerLoopVectorizer() {} 268 269 protected: 270 /// A small list of PHINodes. 271 typedef SmallVector<PHINode*, 4> PhiVector; 272 /// When we unroll loops we have multiple vector values for each scalar. 273 /// This data structure holds the unrolled and vectorized values that 274 /// originated from one scalar instruction. 275 typedef SmallVector<Value*, 2> VectorParts; 276 277 // When we if-convert we need create edge masks. We have to cache values so 278 // that we don't end up with exponential recursion/IR. 279 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 280 VectorParts> EdgeMaskCache; 281 282 /// \brief Add checks for strides that where assumed to be 1. 283 /// 284 /// Returns the last check instruction and the first check instruction in the 285 /// pair as (first, last). 286 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 287 288 /// Create an empty loop, based on the loop ranges of the old loop. 289 void createEmptyLoop(); 290 /// Copy and widen the instructions from the old loop. 291 virtual void vectorizeLoop(); 292 293 /// \brief The Loop exit block may have single value PHI nodes where the 294 /// incoming value is 'Undef'. While vectorizing we only handled real values 295 /// that were defined inside the loop. Here we fix the 'undef case'. 296 /// See PR14725. 297 void fixLCSSAPHIs(); 298 299 /// A helper function that computes the predicate of the block BB, assuming 300 /// that the header block of the loop is set to True. It returns the *entry* 301 /// mask for the block BB. 302 VectorParts createBlockInMask(BasicBlock *BB); 303 /// A helper function that computes the predicate of the edge between SRC 304 /// and DST. 305 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 306 307 /// A helper function to vectorize a single BB within the innermost loop. 308 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 309 310 /// Vectorize a single PHINode in a block. This method handles the induction 311 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 312 /// arbitrary length vectors. 313 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 314 unsigned UF, unsigned VF, PhiVector *PV); 315 316 /// Insert the new loop to the loop hierarchy and pass manager 317 /// and update the analysis passes. 318 void updateAnalysis(); 319 320 /// This instruction is un-vectorizable. Implement it as a sequence 321 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 322 /// scalarized instruction behind an if block predicated on the control 323 /// dependence of the instruction. 324 virtual void scalarizeInstruction(Instruction *Instr, 325 bool IfPredicateStore=false); 326 327 /// Vectorize Load and Store instructions, 328 virtual void vectorizeMemoryInstruction(Instruction *Instr); 329 330 /// Create a broadcast instruction. This method generates a broadcast 331 /// instruction (shuffle) for loop invariant values and for the induction 332 /// value. If this is the induction variable then we extend it to N, N+1, ... 333 /// this is needed because each iteration in the loop corresponds to a SIMD 334 /// element. 335 virtual Value *getBroadcastInstrs(Value *V); 336 337 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 338 /// to each vector element of Val. The sequence starts at StartIndex. 339 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 340 341 /// When we go over instructions in the basic block we rely on previous 342 /// values within the current basic block or on loop invariant values. 343 /// When we widen (vectorize) values we place them in the map. If the values 344 /// are not within the map, they have to be loop invariant, so we simply 345 /// broadcast them into a vector. 346 VectorParts &getVectorValue(Value *V); 347 348 /// Generate a shuffle sequence that will reverse the vector Vec. 349 virtual Value *reverseVector(Value *Vec); 350 351 /// This is a helper class that holds the vectorizer state. It maps scalar 352 /// instructions to vector instructions. When the code is 'unrolled' then 353 /// then a single scalar value is mapped to multiple vector parts. The parts 354 /// are stored in the VectorPart type. 355 struct ValueMap { 356 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 357 /// are mapped. 358 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 359 360 /// \return True if 'Key' is saved in the Value Map. 361 bool has(Value *Key) const { return MapStorage.count(Key); } 362 363 /// Initializes a new entry in the map. Sets all of the vector parts to the 364 /// save value in 'Val'. 365 /// \return A reference to a vector with splat values. 366 VectorParts &splat(Value *Key, Value *Val) { 367 VectorParts &Entry = MapStorage[Key]; 368 Entry.assign(UF, Val); 369 return Entry; 370 } 371 372 ///\return A reference to the value that is stored at 'Key'. 373 VectorParts &get(Value *Key) { 374 VectorParts &Entry = MapStorage[Key]; 375 if (Entry.empty()) 376 Entry.resize(UF); 377 assert(Entry.size() == UF); 378 return Entry; 379 } 380 381 private: 382 /// The unroll factor. Each entry in the map stores this number of vector 383 /// elements. 384 unsigned UF; 385 386 /// Map storage. We use std::map and not DenseMap because insertions to a 387 /// dense map invalidates its iterators. 388 std::map<Value *, VectorParts> MapStorage; 389 }; 390 391 /// The original loop. 392 Loop *OrigLoop; 393 /// Scev analysis to use. 394 ScalarEvolution *SE; 395 /// Loop Info. 396 LoopInfo *LI; 397 /// Dominator Tree. 398 DominatorTree *DT; 399 /// Alias Analysis. 400 AliasAnalysis *AA; 401 /// Data Layout. 402 const DataLayout *DL; 403 /// Target Library Info. 404 const TargetLibraryInfo *TLI; 405 406 /// The vectorization SIMD factor to use. Each vector will have this many 407 /// vector elements. 408 unsigned VF; 409 410 protected: 411 /// The vectorization unroll factor to use. Each scalar is vectorized to this 412 /// many different vector instructions. 413 unsigned UF; 414 415 /// The builder that we use 416 IRBuilder<> Builder; 417 418 // --- Vectorization state --- 419 420 /// The vector-loop preheader. 421 BasicBlock *LoopVectorPreHeader; 422 /// The scalar-loop preheader. 423 BasicBlock *LoopScalarPreHeader; 424 /// Middle Block between the vector and the scalar. 425 BasicBlock *LoopMiddleBlock; 426 ///The ExitBlock of the scalar loop. 427 BasicBlock *LoopExitBlock; 428 ///The vector loop body. 429 SmallVector<BasicBlock *, 4> LoopVectorBody; 430 ///The scalar loop body. 431 BasicBlock *LoopScalarBody; 432 /// A list of all bypass blocks. The first block is the entry of the loop. 433 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 434 435 /// The new Induction variable which was added to the new block. 436 PHINode *Induction; 437 /// The induction variable of the old basic block. 438 PHINode *OldInduction; 439 /// Holds the extended (to the widest induction type) start index. 440 Value *ExtendedIdx; 441 /// Maps scalars to widened vectors. 442 ValueMap WidenMap; 443 EdgeMaskCache MaskCache; 444 445 LoopVectorizationLegality *Legal; 446 }; 447 448 class InnerLoopUnroller : public InnerLoopVectorizer { 449 public: 450 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 451 DominatorTree *DT, const DataLayout *DL, 452 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 453 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 454 455 private: 456 void scalarizeInstruction(Instruction *Instr, 457 bool IfPredicateStore = false) override; 458 void vectorizeMemoryInstruction(Instruction *Instr) override; 459 Value *getBroadcastInstrs(Value *V) override; 460 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 461 Value *reverseVector(Value *Vec) override; 462 }; 463 464 /// \brief Look for a meaningful debug location on the instruction or it's 465 /// operands. 466 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 467 if (!I) 468 return I; 469 470 DebugLoc Empty; 471 if (I->getDebugLoc() != Empty) 472 return I; 473 474 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 475 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 476 if (OpInst->getDebugLoc() != Empty) 477 return OpInst; 478 } 479 480 return I; 481 } 482 483 /// \brief Set the debug location in the builder using the debug location in the 484 /// instruction. 485 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 486 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 487 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 488 else 489 B.SetCurrentDebugLocation(DebugLoc()); 490 } 491 492 #ifndef NDEBUG 493 /// \return string containing a file name and a line # for the given loop. 494 static std::string getDebugLocString(const Loop *L) { 495 std::string Result; 496 if (L) { 497 raw_string_ostream OS(Result); 498 const DebugLoc LoopDbgLoc = L->getStartLoc(); 499 if (!LoopDbgLoc.isUnknown()) 500 LoopDbgLoc.print(OS); 501 else 502 // Just print the module name. 503 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 504 OS.flush(); 505 } 506 return Result; 507 } 508 #endif 509 510 /// \brief Propagate known metadata from one instruction to another. 511 static void propagateMetadata(Instruction *To, const Instruction *From) { 512 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 513 From->getAllMetadataOtherThanDebugLoc(Metadata); 514 515 for (auto M : Metadata) { 516 unsigned Kind = M.first; 517 518 // These are safe to transfer (this is safe for TBAA, even when we 519 // if-convert, because should that metadata have had a control dependency 520 // on the condition, and thus actually aliased with some other 521 // non-speculated memory access when the condition was false, this would be 522 // caught by the runtime overlap checks). 523 if (Kind != LLVMContext::MD_tbaa && 524 Kind != LLVMContext::MD_alias_scope && 525 Kind != LLVMContext::MD_noalias && 526 Kind != LLVMContext::MD_fpmath) 527 continue; 528 529 To->setMetadata(Kind, M.second); 530 } 531 } 532 533 /// \brief Propagate known metadata from one instruction to a vector of others. 534 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 535 for (Value *V : To) 536 if (Instruction *I = dyn_cast<Instruction>(V)) 537 propagateMetadata(I, From); 538 } 539 540 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 541 /// to what vectorization factor. 542 /// This class does not look at the profitability of vectorization, only the 543 /// legality. This class has two main kinds of checks: 544 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 545 /// will change the order of memory accesses in a way that will change the 546 /// correctness of the program. 547 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 548 /// checks for a number of different conditions, such as the availability of a 549 /// single induction variable, that all types are supported and vectorize-able, 550 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 551 /// This class is also used by InnerLoopVectorizer for identifying 552 /// induction variable and the different reduction variables. 553 class LoopVectorizationLegality { 554 public: 555 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 556 DominatorTree *DT, TargetLibraryInfo *TLI, 557 AliasAnalysis *AA, Function *F, 558 const TargetTransformInfo *TTI, 559 LoopAccessAnalysis *LAA) 560 : NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 561 TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 562 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 563 564 /// This enum represents the kinds of reductions that we support. 565 enum ReductionKind { 566 RK_NoReduction, ///< Not a reduction. 567 RK_IntegerAdd, ///< Sum of integers. 568 RK_IntegerMult, ///< Product of integers. 569 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 570 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 571 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 572 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 573 RK_FloatAdd, ///< Sum of floats. 574 RK_FloatMult, ///< Product of floats. 575 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 576 }; 577 578 /// This enum represents the kinds of inductions that we support. 579 enum InductionKind { 580 IK_NoInduction, ///< Not an induction variable. 581 IK_IntInduction, ///< Integer induction variable. Step = C. 582 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 583 }; 584 585 // This enum represents the kind of minmax reduction. 586 enum MinMaxReductionKind { 587 MRK_Invalid, 588 MRK_UIntMin, 589 MRK_UIntMax, 590 MRK_SIntMin, 591 MRK_SIntMax, 592 MRK_FloatMin, 593 MRK_FloatMax 594 }; 595 596 /// This struct holds information about reduction variables. 597 struct ReductionDescriptor { 598 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 599 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 600 601 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 602 MinMaxReductionKind MK) 603 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 604 605 // The starting value of the reduction. 606 // It does not have to be zero! 607 TrackingVH<Value> StartValue; 608 // The instruction who's value is used outside the loop. 609 Instruction *LoopExitInstr; 610 // The kind of the reduction. 611 ReductionKind Kind; 612 // If this a min/max reduction the kind of reduction. 613 MinMaxReductionKind MinMaxKind; 614 }; 615 616 /// This POD struct holds information about a potential reduction operation. 617 struct ReductionInstDesc { 618 ReductionInstDesc(bool IsRedux, Instruction *I) : 619 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 620 621 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 622 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 623 624 // Is this instruction a reduction candidate. 625 bool IsReduction; 626 // The last instruction in a min/max pattern (select of the select(icmp()) 627 // pattern), or the current reduction instruction otherwise. 628 Instruction *PatternLastInst; 629 // If this is a min/max pattern the comparison predicate. 630 MinMaxReductionKind MinMaxKind; 631 }; 632 633 /// A struct for saving information about induction variables. 634 struct InductionInfo { 635 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 636 : StartValue(Start), IK(K), StepValue(Step) { 637 assert(IK != IK_NoInduction && "Not an induction"); 638 assert(StartValue && "StartValue is null"); 639 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 640 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 641 "StartValue is not a pointer for pointer induction"); 642 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 643 "StartValue is not an integer for integer induction"); 644 assert(StepValue->getType()->isIntegerTy() && 645 "StepValue is not an integer"); 646 } 647 InductionInfo() 648 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 649 650 /// Get the consecutive direction. Returns: 651 /// 0 - unknown or non-consecutive. 652 /// 1 - consecutive and increasing. 653 /// -1 - consecutive and decreasing. 654 int getConsecutiveDirection() const { 655 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 656 return StepValue->getSExtValue(); 657 return 0; 658 } 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *transform(IRBuilder<> &B, Value *Index) const { 667 switch (IK) { 668 case IK_IntInduction: 669 assert(Index->getType() == StartValue->getType() && 670 "Index type does not match StartValue type"); 671 if (StepValue->isMinusOne()) 672 return B.CreateSub(StartValue, Index); 673 if (!StepValue->isOne()) 674 Index = B.CreateMul(Index, StepValue); 675 return B.CreateAdd(StartValue, Index); 676 677 case IK_PtrInduction: 678 if (StepValue->isMinusOne()) 679 Index = B.CreateNeg(Index); 680 else if (!StepValue->isOne()) 681 Index = B.CreateMul(Index, StepValue); 682 return B.CreateGEP(StartValue, Index); 683 684 case IK_NoInduction: 685 return nullptr; 686 } 687 llvm_unreachable("invalid enum"); 688 } 689 690 /// Start value. 691 TrackingVH<Value> StartValue; 692 /// Induction kind. 693 InductionKind IK; 694 /// Step value. 695 ConstantInt *StepValue; 696 }; 697 698 /// ReductionList contains the reduction descriptors for all 699 /// of the reductions that were found in the loop. 700 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 701 702 /// InductionList saves induction variables and maps them to the 703 /// induction descriptor. 704 typedef MapVector<PHINode*, InductionInfo> InductionList; 705 706 /// Returns true if it is legal to vectorize this loop. 707 /// This does not mean that it is profitable to vectorize this 708 /// loop, only that it is legal to do so. 709 bool canVectorize(); 710 711 /// Returns the Induction variable. 712 PHINode *getInduction() { return Induction; } 713 714 /// Returns the reduction variables found in the loop. 715 ReductionList *getReductionVars() { return &Reductions; } 716 717 /// Returns the induction variables found in the loop. 718 InductionList *getInductionVars() { return &Inductions; } 719 720 /// Returns the widest induction type. 721 Type *getWidestInductionType() { return WidestIndTy; } 722 723 /// Returns True if V is an induction variable in this loop. 724 bool isInductionVariable(const Value *V); 725 726 /// Return true if the block BB needs to be predicated in order for the loop 727 /// to be vectorized. 728 bool blockNeedsPredication(BasicBlock *BB); 729 730 /// Check if this pointer is consecutive when vectorizing. This happens 731 /// when the last index of the GEP is the induction variable, or that the 732 /// pointer itself is an induction variable. 733 /// This check allows us to vectorize A[idx] into a wide load/store. 734 /// Returns: 735 /// 0 - Stride is unknown or non-consecutive. 736 /// 1 - Address is consecutive. 737 /// -1 - Address is consecutive, and decreasing. 738 int isConsecutivePtr(Value *Ptr); 739 740 /// Returns true if the value V is uniform within the loop. 741 bool isUniform(Value *V); 742 743 /// Returns true if this instruction will remain scalar after vectorization. 744 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 745 746 /// Returns the information that we collected about runtime memory check. 747 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 748 return LAI->getRuntimePointerCheck(); 749 } 750 751 const LoopAccessInfo *getLAI() const { 752 return LAI; 753 } 754 755 /// This function returns the identity element (or neutral element) for 756 /// the operation K. 757 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 758 759 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 760 761 bool hasStride(Value *V) { return StrideSet.count(V); } 762 bool mustCheckStrides() { return !StrideSet.empty(); } 763 SmallPtrSet<Value *, 8>::iterator strides_begin() { 764 return StrideSet.begin(); 765 } 766 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 767 768 /// Returns true if the target machine supports masked store operation 769 /// for the given \p DataType and kind of access to \p Ptr. 770 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 771 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 772 } 773 /// Returns true if the target machine supports masked load operation 774 /// for the given \p DataType and kind of access to \p Ptr. 775 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 776 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 777 } 778 /// Returns true if vector representation of the instruction \p I 779 /// requires mask. 780 bool isMaskRequired(const Instruction* I) { 781 return (MaskedOp.count(I) != 0); 782 } 783 unsigned getNumStores() const { 784 return LAI->getNumStores(); 785 } 786 unsigned getNumLoads() const { 787 return LAI->getNumLoads(); 788 } 789 unsigned getNumPredStores() const { 790 return NumPredStores; 791 } 792 private: 793 /// Check if a single basic block loop is vectorizable. 794 /// At this point we know that this is a loop with a constant trip count 795 /// and we only need to check individual instructions. 796 bool canVectorizeInstrs(); 797 798 /// When we vectorize loops we may change the order in which 799 /// we read and write from memory. This method checks if it is 800 /// legal to vectorize the code, considering only memory constrains. 801 /// Returns true if the loop is vectorizable 802 bool canVectorizeMemory(); 803 804 /// Return true if we can vectorize this loop using the IF-conversion 805 /// transformation. 806 bool canVectorizeWithIfConvert(); 807 808 /// Collect the variables that need to stay uniform after vectorization. 809 void collectLoopUniforms(); 810 811 /// Return true if all of the instructions in the block can be speculatively 812 /// executed. \p SafePtrs is a list of addresses that are known to be legal 813 /// and we know that we can read from them without segfault. 814 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 815 816 /// Returns True, if 'Phi' is the kind of reduction variable for type 817 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 818 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 819 /// Returns a struct describing if the instruction 'I' can be a reduction 820 /// variable of type 'Kind'. If the reduction is a min/max pattern of 821 /// select(icmp()) this function advances the instruction pointer 'I' from the 822 /// compare instruction to the select instruction and stores this pointer in 823 /// 'PatternLastInst' member of the returned struct. 824 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 825 ReductionInstDesc &Desc); 826 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 827 /// pattern corresponding to a min(X, Y) or max(X, Y). 828 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 829 ReductionInstDesc &Prev); 830 /// Returns the induction kind of Phi and record the step. This function may 831 /// return NoInduction if the PHI is not an induction variable. 832 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 833 834 /// \brief Collect memory access with loop invariant strides. 835 /// 836 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 837 /// invariant. 838 void collectStridedAccess(Value *LoadOrStoreInst); 839 840 /// Report an analysis message to assist the user in diagnosing loops that are 841 /// not vectorized. These are handled as LoopAccessReport rather than 842 /// VectorizationReport because the << operator of VectorizationReport returns 843 /// LoopAccessReport. 844 void emitAnalysis(const LoopAccessReport &Message) { 845 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 846 } 847 848 unsigned NumPredStores; 849 850 /// The loop that we evaluate. 851 Loop *TheLoop; 852 /// Scev analysis. 853 ScalarEvolution *SE; 854 /// DataLayout analysis. 855 const DataLayout *DL; 856 /// Target Library Info. 857 TargetLibraryInfo *TLI; 858 /// Parent function 859 Function *TheFunction; 860 /// Target Transform Info 861 const TargetTransformInfo *TTI; 862 /// Dominator Tree. 863 DominatorTree *DT; 864 // LoopAccess analysis. 865 LoopAccessAnalysis *LAA; 866 // And the loop-accesses info corresponding to this loop. This pointer is 867 // null until canVectorizeMemory sets it up. 868 const LoopAccessInfo *LAI; 869 870 // --- vectorization state --- // 871 872 /// Holds the integer induction variable. This is the counter of the 873 /// loop. 874 PHINode *Induction; 875 /// Holds the reduction variables. 876 ReductionList Reductions; 877 /// Holds all of the induction variables that we found in the loop. 878 /// Notice that inductions don't need to start at zero and that induction 879 /// variables can be pointers. 880 InductionList Inductions; 881 /// Holds the widest induction type encountered. 882 Type *WidestIndTy; 883 884 /// Allowed outside users. This holds the reduction 885 /// vars which can be accessed from outside the loop. 886 SmallPtrSet<Value*, 4> AllowedExit; 887 /// This set holds the variables which are known to be uniform after 888 /// vectorization. 889 SmallPtrSet<Instruction*, 4> Uniforms; 890 891 /// Can we assume the absence of NaNs. 892 bool HasFunNoNaNAttr; 893 894 ValueToValueMap Strides; 895 SmallPtrSet<Value *, 8> StrideSet; 896 897 /// While vectorizing these instructions we have to generate a 898 /// call to the appropriate masked intrinsic 899 SmallPtrSet<const Instruction*, 8> MaskedOp; 900 }; 901 902 /// LoopVectorizationCostModel - estimates the expected speedups due to 903 /// vectorization. 904 /// In many cases vectorization is not profitable. This can happen because of 905 /// a number of reasons. In this class we mainly attempt to predict the 906 /// expected speedup/slowdowns due to the supported instruction set. We use the 907 /// TargetTransformInfo to query the different backends for the cost of 908 /// different operations. 909 class LoopVectorizationCostModel { 910 public: 911 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 912 LoopVectorizationLegality *Legal, 913 const TargetTransformInfo &TTI, 914 const DataLayout *DL, const TargetLibraryInfo *TLI, 915 AssumptionCache *AC, const Function *F, 916 const LoopVectorizeHints *Hints) 917 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 918 TheFunction(F), Hints(Hints) { 919 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 920 } 921 922 /// Information about vectorization costs 923 struct VectorizationFactor { 924 unsigned Width; // Vector width with best cost 925 unsigned Cost; // Cost of the loop with that width 926 }; 927 /// \return The most profitable vectorization factor and the cost of that VF. 928 /// This method checks every power of two up to VF. If UserVF is not ZERO 929 /// then this vectorization factor will be selected if vectorization is 930 /// possible. 931 VectorizationFactor selectVectorizationFactor(bool OptForSize); 932 933 /// \return The size (in bits) of the widest type in the code that 934 /// needs to be vectorized. We ignore values that remain scalar such as 935 /// 64 bit loop indices. 936 unsigned getWidestType(); 937 938 /// \return The most profitable unroll factor. 939 /// If UserUF is non-zero then this method finds the best unroll-factor 940 /// based on register pressure and other parameters. 941 /// VF and LoopCost are the selected vectorization factor and the cost of the 942 /// selected VF. 943 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 944 945 /// \brief A struct that represents some properties of the register usage 946 /// of a loop. 947 struct RegisterUsage { 948 /// Holds the number of loop invariant values that are used in the loop. 949 unsigned LoopInvariantRegs; 950 /// Holds the maximum number of concurrent live intervals in the loop. 951 unsigned MaxLocalUsers; 952 /// Holds the number of instructions in the loop. 953 unsigned NumInstructions; 954 }; 955 956 /// \return information about the register usage of the loop. 957 RegisterUsage calculateRegisterUsage(); 958 959 private: 960 /// Returns the expected execution cost. The unit of the cost does 961 /// not matter because we use the 'cost' units to compare different 962 /// vector widths. The cost that is returned is *not* normalized by 963 /// the factor width. 964 unsigned expectedCost(unsigned VF); 965 966 /// Returns the execution time cost of an instruction for a given vector 967 /// width. Vector width of one means scalar. 968 unsigned getInstructionCost(Instruction *I, unsigned VF); 969 970 /// Returns whether the instruction is a load or store and will be a emitted 971 /// as a vector operation. 972 bool isConsecutiveLoadOrStore(Instruction *I); 973 974 /// Report an analysis message to assist the user in diagnosing loops that are 975 /// not vectorized. These are handled as LoopAccessReport rather than 976 /// VectorizationReport because the << operator of VectorizationReport returns 977 /// LoopAccessReport. 978 void emitAnalysis(const LoopAccessReport &Message) { 979 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 980 } 981 982 /// Values used only by @llvm.assume calls. 983 SmallPtrSet<const Value *, 32> EphValues; 984 985 /// The loop that we evaluate. 986 Loop *TheLoop; 987 /// Scev analysis. 988 ScalarEvolution *SE; 989 /// Loop Info analysis. 990 LoopInfo *LI; 991 /// Vectorization legality. 992 LoopVectorizationLegality *Legal; 993 /// Vector target information. 994 const TargetTransformInfo &TTI; 995 /// Target data layout information. 996 const DataLayout *DL; 997 /// Target Library Info. 998 const TargetLibraryInfo *TLI; 999 const Function *TheFunction; 1000 // Loop Vectorize Hint. 1001 const LoopVectorizeHints *Hints; 1002 }; 1003 1004 /// Utility class for getting and setting loop vectorizer hints in the form 1005 /// of loop metadata. 1006 /// This class keeps a number of loop annotations locally (as member variables) 1007 /// and can, upon request, write them back as metadata on the loop. It will 1008 /// initially scan the loop for existing metadata, and will update the local 1009 /// values based on information in the loop. 1010 /// We cannot write all values to metadata, as the mere presence of some info, 1011 /// for example 'force', means a decision has been made. So, we need to be 1012 /// careful NOT to add them if the user hasn't specifically asked so. 1013 class LoopVectorizeHints { 1014 enum HintKind { 1015 HK_WIDTH, 1016 HK_UNROLL, 1017 HK_FORCE 1018 }; 1019 1020 /// Hint - associates name and validation with the hint value. 1021 struct Hint { 1022 const char * Name; 1023 unsigned Value; // This may have to change for non-numeric values. 1024 HintKind Kind; 1025 1026 Hint(const char * Name, unsigned Value, HintKind Kind) 1027 : Name(Name), Value(Value), Kind(Kind) { } 1028 1029 bool validate(unsigned Val) { 1030 switch (Kind) { 1031 case HK_WIDTH: 1032 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1033 case HK_UNROLL: 1034 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1035 case HK_FORCE: 1036 return (Val <= 1); 1037 } 1038 return false; 1039 } 1040 }; 1041 1042 /// Vectorization width. 1043 Hint Width; 1044 /// Vectorization interleave factor. 1045 Hint Interleave; 1046 /// Vectorization forced 1047 Hint Force; 1048 1049 /// Return the loop metadata prefix. 1050 static StringRef Prefix() { return "llvm.loop."; } 1051 1052 public: 1053 enum ForceKind { 1054 FK_Undefined = -1, ///< Not selected. 1055 FK_Disabled = 0, ///< Forcing disabled. 1056 FK_Enabled = 1, ///< Forcing enabled. 1057 }; 1058 1059 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1060 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1061 HK_WIDTH), 1062 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1063 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1064 TheLoop(L) { 1065 // Populate values with existing loop metadata. 1066 getHintsFromMetadata(); 1067 1068 // force-vector-interleave overrides DisableInterleaving. 1069 if (VectorizerParams::isInterleaveForced()) 1070 Interleave.Value = VectorizerParams::VectorizationInterleave; 1071 1072 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1073 << "LV: Interleaving disabled by the pass manager\n"); 1074 } 1075 1076 /// Mark the loop L as already vectorized by setting the width to 1. 1077 void setAlreadyVectorized() { 1078 Width.Value = Interleave.Value = 1; 1079 Hint Hints[] = {Width, Interleave}; 1080 writeHintsToMetadata(Hints); 1081 } 1082 1083 /// Dumps all the hint information. 1084 std::string emitRemark() const { 1085 VectorizationReport R; 1086 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1087 R << "vectorization is explicitly disabled"; 1088 else { 1089 R << "use -Rpass-analysis=loop-vectorize for more info"; 1090 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1091 R << " (Force=true"; 1092 if (Width.Value != 0) 1093 R << ", Vector Width=" << Width.Value; 1094 if (Interleave.Value != 0) 1095 R << ", Interleave Count=" << Interleave.Value; 1096 R << ")"; 1097 } 1098 } 1099 1100 return R.str(); 1101 } 1102 1103 unsigned getWidth() const { return Width.Value; } 1104 unsigned getInterleave() const { return Interleave.Value; } 1105 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1106 1107 private: 1108 /// Find hints specified in the loop metadata and update local values. 1109 void getHintsFromMetadata() { 1110 MDNode *LoopID = TheLoop->getLoopID(); 1111 if (!LoopID) 1112 return; 1113 1114 // First operand should refer to the loop id itself. 1115 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1116 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1117 1118 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1119 const MDString *S = nullptr; 1120 SmallVector<Metadata *, 4> Args; 1121 1122 // The expected hint is either a MDString or a MDNode with the first 1123 // operand a MDString. 1124 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1125 if (!MD || MD->getNumOperands() == 0) 1126 continue; 1127 S = dyn_cast<MDString>(MD->getOperand(0)); 1128 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1129 Args.push_back(MD->getOperand(i)); 1130 } else { 1131 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1132 assert(Args.size() == 0 && "too many arguments for MDString"); 1133 } 1134 1135 if (!S) 1136 continue; 1137 1138 // Check if the hint starts with the loop metadata prefix. 1139 StringRef Name = S->getString(); 1140 if (Args.size() == 1) 1141 setHint(Name, Args[0]); 1142 } 1143 } 1144 1145 /// Checks string hint with one operand and set value if valid. 1146 void setHint(StringRef Name, Metadata *Arg) { 1147 if (!Name.startswith(Prefix())) 1148 return; 1149 Name = Name.substr(Prefix().size(), StringRef::npos); 1150 1151 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1152 if (!C) return; 1153 unsigned Val = C->getZExtValue(); 1154 1155 Hint *Hints[] = {&Width, &Interleave, &Force}; 1156 for (auto H : Hints) { 1157 if (Name == H->Name) { 1158 if (H->validate(Val)) 1159 H->Value = Val; 1160 else 1161 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1162 break; 1163 } 1164 } 1165 } 1166 1167 /// Create a new hint from name / value pair. 1168 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1169 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1170 Metadata *MDs[] = {MDString::get(Context, Name), 1171 ConstantAsMetadata::get( 1172 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1173 return MDNode::get(Context, MDs); 1174 } 1175 1176 /// Matches metadata with hint name. 1177 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1178 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1179 if (!Name) 1180 return false; 1181 1182 for (auto H : HintTypes) 1183 if (Name->getString().endswith(H.Name)) 1184 return true; 1185 return false; 1186 } 1187 1188 /// Sets current hints into loop metadata, keeping other values intact. 1189 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1190 if (HintTypes.size() == 0) 1191 return; 1192 1193 // Reserve the first element to LoopID (see below). 1194 SmallVector<Metadata *, 4> MDs(1); 1195 // If the loop already has metadata, then ignore the existing operands. 1196 MDNode *LoopID = TheLoop->getLoopID(); 1197 if (LoopID) { 1198 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1199 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1200 // If node in update list, ignore old value. 1201 if (!matchesHintMetadataName(Node, HintTypes)) 1202 MDs.push_back(Node); 1203 } 1204 } 1205 1206 // Now, add the missing hints. 1207 for (auto H : HintTypes) 1208 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1209 1210 // Replace current metadata node with new one. 1211 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1212 MDNode *NewLoopID = MDNode::get(Context, MDs); 1213 // Set operand 0 to refer to the loop id itself. 1214 NewLoopID->replaceOperandWith(0, NewLoopID); 1215 1216 TheLoop->setLoopID(NewLoopID); 1217 } 1218 1219 /// The loop these hints belong to. 1220 const Loop *TheLoop; 1221 }; 1222 1223 static void emitMissedWarning(Function *F, Loop *L, 1224 const LoopVectorizeHints &LH) { 1225 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1226 L->getStartLoc(), LH.emitRemark()); 1227 1228 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1229 if (LH.getWidth() != 1) 1230 emitLoopVectorizeWarning( 1231 F->getContext(), *F, L->getStartLoc(), 1232 "failed explicitly specified loop vectorization"); 1233 else if (LH.getInterleave() != 1) 1234 emitLoopInterleaveWarning( 1235 F->getContext(), *F, L->getStartLoc(), 1236 "failed explicitly specified loop interleaving"); 1237 } 1238 } 1239 1240 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1241 if (L.empty()) 1242 return V.push_back(&L); 1243 1244 for (Loop *InnerL : L) 1245 addInnerLoop(*InnerL, V); 1246 } 1247 1248 /// The LoopVectorize Pass. 1249 struct LoopVectorize : public FunctionPass { 1250 /// Pass identification, replacement for typeid 1251 static char ID; 1252 1253 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1254 : FunctionPass(ID), 1255 DisableUnrolling(NoUnrolling), 1256 AlwaysVectorize(AlwaysVectorize) { 1257 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1258 } 1259 1260 ScalarEvolution *SE; 1261 const DataLayout *DL; 1262 LoopInfo *LI; 1263 TargetTransformInfo *TTI; 1264 DominatorTree *DT; 1265 BlockFrequencyInfo *BFI; 1266 TargetLibraryInfo *TLI; 1267 AliasAnalysis *AA; 1268 AssumptionCache *AC; 1269 LoopAccessAnalysis *LAA; 1270 bool DisableUnrolling; 1271 bool AlwaysVectorize; 1272 1273 BlockFrequency ColdEntryFreq; 1274 1275 bool runOnFunction(Function &F) override { 1276 SE = &getAnalysis<ScalarEvolution>(); 1277 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1278 DL = DLP ? &DLP->getDataLayout() : nullptr; 1279 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1280 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1281 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1282 BFI = &getAnalysis<BlockFrequencyInfo>(); 1283 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1284 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1285 AA = &getAnalysis<AliasAnalysis>(); 1286 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1287 LAA = &getAnalysis<LoopAccessAnalysis>(); 1288 1289 // Compute some weights outside of the loop over the loops. Compute this 1290 // using a BranchProbability to re-use its scaling math. 1291 const BranchProbability ColdProb(1, 5); // 20% 1292 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1293 1294 // If the target claims to have no vector registers don't attempt 1295 // vectorization. 1296 if (!TTI->getNumberOfRegisters(true)) 1297 return false; 1298 1299 if (!DL) { 1300 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1301 << ": Missing data layout\n"); 1302 return false; 1303 } 1304 1305 // Build up a worklist of inner-loops to vectorize. This is necessary as 1306 // the act of vectorizing or partially unrolling a loop creates new loops 1307 // and can invalidate iterators across the loops. 1308 SmallVector<Loop *, 8> Worklist; 1309 1310 for (Loop *L : *LI) 1311 addInnerLoop(*L, Worklist); 1312 1313 LoopsAnalyzed += Worklist.size(); 1314 1315 // Now walk the identified inner loops. 1316 bool Changed = false; 1317 while (!Worklist.empty()) 1318 Changed |= processLoop(Worklist.pop_back_val()); 1319 1320 // Process each loop nest in the function. 1321 return Changed; 1322 } 1323 1324 bool processLoop(Loop *L) { 1325 assert(L->empty() && "Only process inner loops."); 1326 1327 #ifndef NDEBUG 1328 const std::string DebugLocStr = getDebugLocString(L); 1329 #endif /* NDEBUG */ 1330 1331 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1332 << L->getHeader()->getParent()->getName() << "\" from " 1333 << DebugLocStr << "\n"); 1334 1335 LoopVectorizeHints Hints(L, DisableUnrolling); 1336 1337 DEBUG(dbgs() << "LV: Loop hints:" 1338 << " force=" 1339 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1340 ? "disabled" 1341 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1342 ? "enabled" 1343 : "?")) << " width=" << Hints.getWidth() 1344 << " unroll=" << Hints.getInterleave() << "\n"); 1345 1346 // Function containing loop 1347 Function *F = L->getHeader()->getParent(); 1348 1349 // Looking at the diagnostic output is the only way to determine if a loop 1350 // was vectorized (other than looking at the IR or machine code), so it 1351 // is important to generate an optimization remark for each loop. Most of 1352 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1353 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1354 // less verbose reporting vectorized loops and unvectorized loops that may 1355 // benefit from vectorization, respectively. 1356 1357 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1358 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1359 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1360 L->getStartLoc(), Hints.emitRemark()); 1361 return false; 1362 } 1363 1364 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1365 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1366 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1367 L->getStartLoc(), Hints.emitRemark()); 1368 return false; 1369 } 1370 1371 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1372 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1373 emitOptimizationRemarkAnalysis( 1374 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1375 "loop not vectorized: vector width and interleave count are " 1376 "explicitly set to 1"); 1377 return false; 1378 } 1379 1380 // Check the loop for a trip count threshold: 1381 // do not vectorize loops with a tiny trip count. 1382 const unsigned TC = SE->getSmallConstantTripCount(L); 1383 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1384 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1385 << "This loop is not worth vectorizing."); 1386 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1387 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1388 else { 1389 DEBUG(dbgs() << "\n"); 1390 emitOptimizationRemarkAnalysis( 1391 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1392 "vectorization is not beneficial and is not explicitly forced"); 1393 return false; 1394 } 1395 } 1396 1397 // Check if it is legal to vectorize the loop. 1398 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA); 1399 if (!LVL.canVectorize()) { 1400 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1401 emitMissedWarning(F, L, Hints); 1402 return false; 1403 } 1404 1405 // Use the cost model. 1406 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1407 &Hints); 1408 1409 // Check the function attributes to find out if this function should be 1410 // optimized for size. 1411 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1412 F->hasFnAttribute(Attribute::OptimizeForSize); 1413 1414 // Compute the weighted frequency of this loop being executed and see if it 1415 // is less than 20% of the function entry baseline frequency. Note that we 1416 // always have a canonical loop here because we think we *can* vectoriez. 1417 // FIXME: This is hidden behind a flag due to pervasive problems with 1418 // exactly what block frequency models. 1419 if (LoopVectorizeWithBlockFrequency) { 1420 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1421 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1422 LoopEntryFreq < ColdEntryFreq) 1423 OptForSize = true; 1424 } 1425 1426 // Check the function attributes to see if implicit floats are allowed.a 1427 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1428 // an integer loop and the vector instructions selected are purely integer 1429 // vector instructions? 1430 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1431 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1432 "attribute is used.\n"); 1433 emitOptimizationRemarkAnalysis( 1434 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1435 "loop not vectorized due to NoImplicitFloat attribute"); 1436 emitMissedWarning(F, L, Hints); 1437 return false; 1438 } 1439 1440 // Select the optimal vectorization factor. 1441 const LoopVectorizationCostModel::VectorizationFactor VF = 1442 CM.selectVectorizationFactor(OptForSize); 1443 1444 // Select the unroll factor. 1445 const unsigned UF = 1446 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1447 1448 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1449 << DebugLocStr << '\n'); 1450 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1451 1452 if (VF.Width == 1) { 1453 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1454 1455 if (UF == 1) { 1456 emitOptimizationRemarkAnalysis( 1457 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1458 "not beneficial to vectorize and user disabled interleaving"); 1459 return false; 1460 } 1461 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1462 1463 // Report the unrolling decision. 1464 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1465 Twine("unrolled with interleaving factor " + 1466 Twine(UF) + 1467 " (vectorization not beneficial)")); 1468 1469 // We decided not to vectorize, but we may want to unroll. 1470 1471 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1472 Unroller.vectorize(&LVL); 1473 } else { 1474 // If we decided that it is *legal* to vectorize the loop then do it. 1475 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1476 LB.vectorize(&LVL); 1477 ++LoopsVectorized; 1478 1479 // Report the vectorization decision. 1480 emitOptimizationRemark( 1481 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1482 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1483 ", unrolling interleave factor: " + Twine(UF) + ")"); 1484 } 1485 1486 // Mark the loop as already vectorized to avoid vectorizing again. 1487 Hints.setAlreadyVectorized(); 1488 1489 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1490 return true; 1491 } 1492 1493 void getAnalysisUsage(AnalysisUsage &AU) const override { 1494 AU.addRequired<AssumptionCacheTracker>(); 1495 AU.addRequiredID(LoopSimplifyID); 1496 AU.addRequiredID(LCSSAID); 1497 AU.addRequired<BlockFrequencyInfo>(); 1498 AU.addRequired<DominatorTreeWrapperPass>(); 1499 AU.addRequired<LoopInfoWrapperPass>(); 1500 AU.addRequired<ScalarEvolution>(); 1501 AU.addRequired<TargetTransformInfoWrapperPass>(); 1502 AU.addRequired<AliasAnalysis>(); 1503 AU.addRequired<LoopAccessAnalysis>(); 1504 AU.addPreserved<LoopInfoWrapperPass>(); 1505 AU.addPreserved<DominatorTreeWrapperPass>(); 1506 AU.addPreserved<AliasAnalysis>(); 1507 } 1508 1509 }; 1510 1511 } // end anonymous namespace 1512 1513 //===----------------------------------------------------------------------===// 1514 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1515 // LoopVectorizationCostModel. 1516 //===----------------------------------------------------------------------===// 1517 1518 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1519 // We need to place the broadcast of invariant variables outside the loop. 1520 Instruction *Instr = dyn_cast<Instruction>(V); 1521 bool NewInstr = 1522 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1523 Instr->getParent()) != LoopVectorBody.end()); 1524 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1525 1526 // Place the code for broadcasting invariant variables in the new preheader. 1527 IRBuilder<>::InsertPointGuard Guard(Builder); 1528 if (Invariant) 1529 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1530 1531 // Broadcast the scalar into all locations in the vector. 1532 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1533 1534 return Shuf; 1535 } 1536 1537 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1538 Value *Step) { 1539 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1540 assert(Val->getType()->getScalarType()->isIntegerTy() && 1541 "Elem must be an integer"); 1542 assert(Step->getType() == Val->getType()->getScalarType() && 1543 "Step has wrong type"); 1544 // Create the types. 1545 Type *ITy = Val->getType()->getScalarType(); 1546 VectorType *Ty = cast<VectorType>(Val->getType()); 1547 int VLen = Ty->getNumElements(); 1548 SmallVector<Constant*, 8> Indices; 1549 1550 // Create a vector of consecutive numbers from zero to VF. 1551 for (int i = 0; i < VLen; ++i) 1552 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1553 1554 // Add the consecutive indices to the vector value. 1555 Constant *Cv = ConstantVector::get(Indices); 1556 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1557 Step = Builder.CreateVectorSplat(VLen, Step); 1558 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1559 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1560 // which can be found from the original scalar operations. 1561 Step = Builder.CreateMul(Cv, Step); 1562 return Builder.CreateAdd(Val, Step, "induction"); 1563 } 1564 1565 /// \brief Find the operand of the GEP that should be checked for consecutive 1566 /// stores. This ignores trailing indices that have no effect on the final 1567 /// pointer. 1568 static unsigned getGEPInductionOperand(const DataLayout *DL, 1569 const GetElementPtrInst *Gep) { 1570 unsigned LastOperand = Gep->getNumOperands() - 1; 1571 unsigned GEPAllocSize = DL->getTypeAllocSize( 1572 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1573 1574 // Walk backwards and try to peel off zeros. 1575 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1576 // Find the type we're currently indexing into. 1577 gep_type_iterator GEPTI = gep_type_begin(Gep); 1578 std::advance(GEPTI, LastOperand - 1); 1579 1580 // If it's a type with the same allocation size as the result of the GEP we 1581 // can peel off the zero index. 1582 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1583 break; 1584 --LastOperand; 1585 } 1586 1587 return LastOperand; 1588 } 1589 1590 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1591 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1592 // Make sure that the pointer does not point to structs. 1593 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1594 return 0; 1595 1596 // If this value is a pointer induction variable we know it is consecutive. 1597 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1598 if (Phi && Inductions.count(Phi)) { 1599 InductionInfo II = Inductions[Phi]; 1600 return II.getConsecutiveDirection(); 1601 } 1602 1603 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1604 if (!Gep) 1605 return 0; 1606 1607 unsigned NumOperands = Gep->getNumOperands(); 1608 Value *GpPtr = Gep->getPointerOperand(); 1609 // If this GEP value is a consecutive pointer induction variable and all of 1610 // the indices are constant then we know it is consecutive. We can 1611 Phi = dyn_cast<PHINode>(GpPtr); 1612 if (Phi && Inductions.count(Phi)) { 1613 1614 // Make sure that the pointer does not point to structs. 1615 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1616 if (GepPtrType->getElementType()->isAggregateType()) 1617 return 0; 1618 1619 // Make sure that all of the index operands are loop invariant. 1620 for (unsigned i = 1; i < NumOperands; ++i) 1621 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1622 return 0; 1623 1624 InductionInfo II = Inductions[Phi]; 1625 return II.getConsecutiveDirection(); 1626 } 1627 1628 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1629 1630 // Check that all of the gep indices are uniform except for our induction 1631 // operand. 1632 for (unsigned i = 0; i != NumOperands; ++i) 1633 if (i != InductionOperand && 1634 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1635 return 0; 1636 1637 // We can emit wide load/stores only if the last non-zero index is the 1638 // induction variable. 1639 const SCEV *Last = nullptr; 1640 if (!Strides.count(Gep)) 1641 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1642 else { 1643 // Because of the multiplication by a stride we can have a s/zext cast. 1644 // We are going to replace this stride by 1 so the cast is safe to ignore. 1645 // 1646 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1647 // %0 = trunc i64 %indvars.iv to i32 1648 // %mul = mul i32 %0, %Stride1 1649 // %idxprom = zext i32 %mul to i64 << Safe cast. 1650 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1651 // 1652 Last = replaceSymbolicStrideSCEV(SE, Strides, 1653 Gep->getOperand(InductionOperand), Gep); 1654 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1655 Last = 1656 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1657 ? C->getOperand() 1658 : Last; 1659 } 1660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1661 const SCEV *Step = AR->getStepRecurrence(*SE); 1662 1663 // The memory is consecutive because the last index is consecutive 1664 // and all other indices are loop invariant. 1665 if (Step->isOne()) 1666 return 1; 1667 if (Step->isAllOnesValue()) 1668 return -1; 1669 } 1670 1671 return 0; 1672 } 1673 1674 bool LoopVectorizationLegality::isUniform(Value *V) { 1675 return LAI->isUniform(V); 1676 } 1677 1678 InnerLoopVectorizer::VectorParts& 1679 InnerLoopVectorizer::getVectorValue(Value *V) { 1680 assert(V != Induction && "The new induction variable should not be used."); 1681 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1682 1683 // If we have a stride that is replaced by one, do it here. 1684 if (Legal->hasStride(V)) 1685 V = ConstantInt::get(V->getType(), 1); 1686 1687 // If we have this scalar in the map, return it. 1688 if (WidenMap.has(V)) 1689 return WidenMap.get(V); 1690 1691 // If this scalar is unknown, assume that it is a constant or that it is 1692 // loop invariant. Broadcast V and save the value for future uses. 1693 Value *B = getBroadcastInstrs(V); 1694 return WidenMap.splat(V, B); 1695 } 1696 1697 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1698 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1699 SmallVector<Constant*, 8> ShuffleMask; 1700 for (unsigned i = 0; i < VF; ++i) 1701 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1702 1703 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1704 ConstantVector::get(ShuffleMask), 1705 "reverse"); 1706 } 1707 1708 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1709 // Attempt to issue a wide load. 1710 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1711 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1712 1713 assert((LI || SI) && "Invalid Load/Store instruction"); 1714 1715 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1716 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1717 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1718 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1719 // An alignment of 0 means target abi alignment. We need to use the scalar's 1720 // target abi alignment in such a case. 1721 if (!Alignment) 1722 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1723 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1724 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1725 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1726 1727 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1728 !Legal->isMaskRequired(SI)) 1729 return scalarizeInstruction(Instr, true); 1730 1731 if (ScalarAllocatedSize != VectorElementSize) 1732 return scalarizeInstruction(Instr); 1733 1734 // If the pointer is loop invariant or if it is non-consecutive, 1735 // scalarize the load. 1736 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1737 bool Reverse = ConsecutiveStride < 0; 1738 bool UniformLoad = LI && Legal->isUniform(Ptr); 1739 if (!ConsecutiveStride || UniformLoad) 1740 return scalarizeInstruction(Instr); 1741 1742 Constant *Zero = Builder.getInt32(0); 1743 VectorParts &Entry = WidenMap.get(Instr); 1744 1745 // Handle consecutive loads/stores. 1746 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1747 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1748 setDebugLocFromInst(Builder, Gep); 1749 Value *PtrOperand = Gep->getPointerOperand(); 1750 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1751 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1752 1753 // Create the new GEP with the new induction variable. 1754 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1755 Gep2->setOperand(0, FirstBasePtr); 1756 Gep2->setName("gep.indvar.base"); 1757 Ptr = Builder.Insert(Gep2); 1758 } else if (Gep) { 1759 setDebugLocFromInst(Builder, Gep); 1760 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1761 OrigLoop) && "Base ptr must be invariant"); 1762 1763 // The last index does not have to be the induction. It can be 1764 // consecutive and be a function of the index. For example A[I+1]; 1765 unsigned NumOperands = Gep->getNumOperands(); 1766 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1767 // Create the new GEP with the new induction variable. 1768 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1769 1770 for (unsigned i = 0; i < NumOperands; ++i) { 1771 Value *GepOperand = Gep->getOperand(i); 1772 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1773 1774 // Update last index or loop invariant instruction anchored in loop. 1775 if (i == InductionOperand || 1776 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1777 assert((i == InductionOperand || 1778 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1779 "Must be last index or loop invariant"); 1780 1781 VectorParts &GEPParts = getVectorValue(GepOperand); 1782 Value *Index = GEPParts[0]; 1783 Index = Builder.CreateExtractElement(Index, Zero); 1784 Gep2->setOperand(i, Index); 1785 Gep2->setName("gep.indvar.idx"); 1786 } 1787 } 1788 Ptr = Builder.Insert(Gep2); 1789 } else { 1790 // Use the induction element ptr. 1791 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1792 setDebugLocFromInst(Builder, Ptr); 1793 VectorParts &PtrVal = getVectorValue(Ptr); 1794 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1795 } 1796 1797 VectorParts Mask = createBlockInMask(Instr->getParent()); 1798 // Handle Stores: 1799 if (SI) { 1800 assert(!Legal->isUniform(SI->getPointerOperand()) && 1801 "We do not allow storing to uniform addresses"); 1802 setDebugLocFromInst(Builder, SI); 1803 // We don't want to update the value in the map as it might be used in 1804 // another expression. So don't use a reference type for "StoredVal". 1805 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1806 1807 for (unsigned Part = 0; Part < UF; ++Part) { 1808 // Calculate the pointer for the specific unroll-part. 1809 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1810 1811 if (Reverse) { 1812 // If we store to reverse consecutive memory locations then we need 1813 // to reverse the order of elements in the stored value. 1814 StoredVal[Part] = reverseVector(StoredVal[Part]); 1815 // If the address is consecutive but reversed, then the 1816 // wide store needs to start at the last vector element. 1817 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1818 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1819 Mask[Part] = reverseVector(Mask[Part]); 1820 } 1821 1822 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1823 DataTy->getPointerTo(AddressSpace)); 1824 1825 Instruction *NewSI; 1826 if (Legal->isMaskRequired(SI)) 1827 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1828 Mask[Part]); 1829 else 1830 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1831 propagateMetadata(NewSI, SI); 1832 } 1833 return; 1834 } 1835 1836 // Handle loads. 1837 assert(LI && "Must have a load instruction"); 1838 setDebugLocFromInst(Builder, LI); 1839 for (unsigned Part = 0; Part < UF; ++Part) { 1840 // Calculate the pointer for the specific unroll-part. 1841 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1842 1843 if (Reverse) { 1844 // If the address is consecutive but reversed, then the 1845 // wide load needs to start at the last vector element. 1846 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1847 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1848 Mask[Part] = reverseVector(Mask[Part]); 1849 } 1850 1851 Instruction* NewLI; 1852 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1853 DataTy->getPointerTo(AddressSpace)); 1854 if (Legal->isMaskRequired(LI)) 1855 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1856 UndefValue::get(DataTy), 1857 "wide.masked.load"); 1858 else 1859 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1860 propagateMetadata(NewLI, LI); 1861 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1862 } 1863 } 1864 1865 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1866 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1867 // Holds vector parameters or scalars, in case of uniform vals. 1868 SmallVector<VectorParts, 4> Params; 1869 1870 setDebugLocFromInst(Builder, Instr); 1871 1872 // Find all of the vectorized parameters. 1873 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1874 Value *SrcOp = Instr->getOperand(op); 1875 1876 // If we are accessing the old induction variable, use the new one. 1877 if (SrcOp == OldInduction) { 1878 Params.push_back(getVectorValue(SrcOp)); 1879 continue; 1880 } 1881 1882 // Try using previously calculated values. 1883 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1884 1885 // If the src is an instruction that appeared earlier in the basic block 1886 // then it should already be vectorized. 1887 if (SrcInst && OrigLoop->contains(SrcInst)) { 1888 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1889 // The parameter is a vector value from earlier. 1890 Params.push_back(WidenMap.get(SrcInst)); 1891 } else { 1892 // The parameter is a scalar from outside the loop. Maybe even a constant. 1893 VectorParts Scalars; 1894 Scalars.append(UF, SrcOp); 1895 Params.push_back(Scalars); 1896 } 1897 } 1898 1899 assert(Params.size() == Instr->getNumOperands() && 1900 "Invalid number of operands"); 1901 1902 // Does this instruction return a value ? 1903 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1904 1905 Value *UndefVec = IsVoidRetTy ? nullptr : 1906 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1907 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1908 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1909 1910 Instruction *InsertPt = Builder.GetInsertPoint(); 1911 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1912 BasicBlock *CondBlock = nullptr; 1913 1914 VectorParts Cond; 1915 Loop *VectorLp = nullptr; 1916 if (IfPredicateStore) { 1917 assert(Instr->getParent()->getSinglePredecessor() && 1918 "Only support single predecessor blocks"); 1919 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1920 Instr->getParent()); 1921 VectorLp = LI->getLoopFor(IfBlock); 1922 assert(VectorLp && "Must have a loop for this block"); 1923 } 1924 1925 // For each vector unroll 'part': 1926 for (unsigned Part = 0; Part < UF; ++Part) { 1927 // For each scalar that we create: 1928 for (unsigned Width = 0; Width < VF; ++Width) { 1929 1930 // Start if-block. 1931 Value *Cmp = nullptr; 1932 if (IfPredicateStore) { 1933 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1934 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1935 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1936 LoopVectorBody.push_back(CondBlock); 1937 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1938 // Update Builder with newly created basic block. 1939 Builder.SetInsertPoint(InsertPt); 1940 } 1941 1942 Instruction *Cloned = Instr->clone(); 1943 if (!IsVoidRetTy) 1944 Cloned->setName(Instr->getName() + ".cloned"); 1945 // Replace the operands of the cloned instructions with extracted scalars. 1946 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1947 Value *Op = Params[op][Part]; 1948 // Param is a vector. Need to extract the right lane. 1949 if (Op->getType()->isVectorTy()) 1950 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1951 Cloned->setOperand(op, Op); 1952 } 1953 1954 // Place the cloned scalar in the new loop. 1955 Builder.Insert(Cloned); 1956 1957 // If the original scalar returns a value we need to place it in a vector 1958 // so that future users will be able to use it. 1959 if (!IsVoidRetTy) 1960 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1961 Builder.getInt32(Width)); 1962 // End if-block. 1963 if (IfPredicateStore) { 1964 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1965 LoopVectorBody.push_back(NewIfBlock); 1966 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 1967 Builder.SetInsertPoint(InsertPt); 1968 Instruction *OldBr = IfBlock->getTerminator(); 1969 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1970 OldBr->eraseFromParent(); 1971 IfBlock = NewIfBlock; 1972 } 1973 } 1974 } 1975 } 1976 1977 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1978 Instruction *Loc) { 1979 if (FirstInst) 1980 return FirstInst; 1981 if (Instruction *I = dyn_cast<Instruction>(V)) 1982 return I->getParent() == Loc->getParent() ? I : nullptr; 1983 return nullptr; 1984 } 1985 1986 std::pair<Instruction *, Instruction *> 1987 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1988 Instruction *tnullptr = nullptr; 1989 if (!Legal->mustCheckStrides()) 1990 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1991 1992 IRBuilder<> ChkBuilder(Loc); 1993 1994 // Emit checks. 1995 Value *Check = nullptr; 1996 Instruction *FirstInst = nullptr; 1997 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1998 SE = Legal->strides_end(); 1999 SI != SE; ++SI) { 2000 Value *Ptr = stripIntegerCast(*SI); 2001 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2002 "stride.chk"); 2003 // Store the first instruction we create. 2004 FirstInst = getFirstInst(FirstInst, C, Loc); 2005 if (Check) 2006 Check = ChkBuilder.CreateOr(Check, C); 2007 else 2008 Check = C; 2009 } 2010 2011 // We have to do this trickery because the IRBuilder might fold the check to a 2012 // constant expression in which case there is no Instruction anchored in a 2013 // the block. 2014 LLVMContext &Ctx = Loc->getContext(); 2015 Instruction *TheCheck = 2016 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2017 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2018 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2019 2020 return std::make_pair(FirstInst, TheCheck); 2021 } 2022 2023 void InnerLoopVectorizer::createEmptyLoop() { 2024 /* 2025 In this function we generate a new loop. The new loop will contain 2026 the vectorized instructions while the old loop will continue to run the 2027 scalar remainder. 2028 2029 [ ] <-- Back-edge taken count overflow check. 2030 / | 2031 / v 2032 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2033 | / | 2034 | / v 2035 || [ ] <-- vector pre header. 2036 || | 2037 || v 2038 || [ ] \ 2039 || [ ]_| <-- vector loop. 2040 || | 2041 | \ v 2042 | >[ ] <--- middle-block. 2043 | / | 2044 | / v 2045 -|- >[ ] <--- new preheader. 2046 | | 2047 | v 2048 | [ ] \ 2049 | [ ]_| <-- old scalar loop to handle remainder. 2050 \ | 2051 \ v 2052 >[ ] <-- exit block. 2053 ... 2054 */ 2055 2056 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2057 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2058 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2059 assert(BypassBlock && "Invalid loop structure"); 2060 assert(ExitBlock && "Must have an exit block"); 2061 2062 // Some loops have a single integer induction variable, while other loops 2063 // don't. One example is c++ iterators that often have multiple pointer 2064 // induction variables. In the code below we also support a case where we 2065 // don't have a single induction variable. 2066 OldInduction = Legal->getInduction(); 2067 Type *IdxTy = Legal->getWidestInductionType(); 2068 2069 // Find the loop boundaries. 2070 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2071 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2072 2073 // The exit count might have the type of i64 while the phi is i32. This can 2074 // happen if we have an induction variable that is sign extended before the 2075 // compare. The only way that we get a backedge taken count is that the 2076 // induction variable was signed and as such will not overflow. In such a case 2077 // truncation is legal. 2078 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2079 IdxTy->getPrimitiveSizeInBits()) 2080 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2081 2082 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2083 // Get the total trip count from the count by adding 1. 2084 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2085 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2086 2087 // Expand the trip count and place the new instructions in the preheader. 2088 // Notice that the pre-header does not change, only the loop body. 2089 SCEVExpander Exp(*SE, "induction"); 2090 2091 // We need to test whether the backedge-taken count is uint##_max. Adding one 2092 // to it will cause overflow and an incorrect loop trip count in the vector 2093 // body. In case of overflow we want to directly jump to the scalar remainder 2094 // loop. 2095 Value *BackedgeCount = 2096 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2097 BypassBlock->getTerminator()); 2098 if (BackedgeCount->getType()->isPointerTy()) 2099 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2100 "backedge.ptrcnt.to.int", 2101 BypassBlock->getTerminator()); 2102 Instruction *CheckBCOverflow = 2103 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2104 Constant::getAllOnesValue(BackedgeCount->getType()), 2105 "backedge.overflow", BypassBlock->getTerminator()); 2106 2107 // The loop index does not have to start at Zero. Find the original start 2108 // value from the induction PHI node. If we don't have an induction variable 2109 // then we know that it starts at zero. 2110 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2111 Value *StartIdx = ExtendedIdx = OldInduction ? 2112 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2113 IdxTy): 2114 ConstantInt::get(IdxTy, 0); 2115 2116 // We need an instruction to anchor the overflow check on. StartIdx needs to 2117 // be defined before the overflow check branch. Because the scalar preheader 2118 // is going to merge the start index and so the overflow branch block needs to 2119 // contain a definition of the start index. 2120 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2121 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2122 BypassBlock->getTerminator()); 2123 2124 // Count holds the overall loop count (N). 2125 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2126 BypassBlock->getTerminator()); 2127 2128 LoopBypassBlocks.push_back(BypassBlock); 2129 2130 // Split the single block loop into the two loop structure described above. 2131 BasicBlock *VectorPH = 2132 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2133 BasicBlock *VecBody = 2134 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2135 BasicBlock *MiddleBlock = 2136 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2137 BasicBlock *ScalarPH = 2138 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2139 2140 // Create and register the new vector loop. 2141 Loop* Lp = new Loop(); 2142 Loop *ParentLoop = OrigLoop->getParentLoop(); 2143 2144 // Insert the new loop into the loop nest and register the new basic blocks 2145 // before calling any utilities such as SCEV that require valid LoopInfo. 2146 if (ParentLoop) { 2147 ParentLoop->addChildLoop(Lp); 2148 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2149 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2150 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2151 } else { 2152 LI->addTopLevelLoop(Lp); 2153 } 2154 Lp->addBasicBlockToLoop(VecBody, *LI); 2155 2156 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2157 // inside the loop. 2158 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2159 2160 // Generate the induction variable. 2161 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2162 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2163 // The loop step is equal to the vectorization factor (num of SIMD elements) 2164 // times the unroll factor (num of SIMD instructions). 2165 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2166 2167 // This is the IR builder that we use to add all of the logic for bypassing 2168 // the new vector loop. 2169 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2170 setDebugLocFromInst(BypassBuilder, 2171 getDebugLocFromInstOrOperands(OldInduction)); 2172 2173 // We may need to extend the index in case there is a type mismatch. 2174 // We know that the count starts at zero and does not overflow. 2175 if (Count->getType() != IdxTy) { 2176 // The exit count can be of pointer type. Convert it to the correct 2177 // integer type. 2178 if (ExitCount->getType()->isPointerTy()) 2179 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2180 else 2181 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2182 } 2183 2184 // Add the start index to the loop count to get the new end index. 2185 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2186 2187 // Now we need to generate the expression for N - (N % VF), which is 2188 // the part that the vectorized body will execute. 2189 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2190 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2191 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2192 "end.idx.rnd.down"); 2193 2194 // Now, compare the new count to zero. If it is zero skip the vector loop and 2195 // jump to the scalar loop. 2196 Value *Cmp = 2197 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2198 2199 BasicBlock *LastBypassBlock = BypassBlock; 2200 2201 // Generate code to check that the loops trip count that we computed by adding 2202 // one to the backedge-taken count will not overflow. 2203 { 2204 auto PastOverflowCheck = 2205 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2206 BasicBlock *CheckBlock = 2207 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2208 if (ParentLoop) 2209 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2210 LoopBypassBlocks.push_back(CheckBlock); 2211 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2212 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2213 OldTerm->eraseFromParent(); 2214 LastBypassBlock = CheckBlock; 2215 } 2216 2217 // Generate the code to check that the strides we assumed to be one are really 2218 // one. We want the new basic block to start at the first instruction in a 2219 // sequence of instructions that form a check. 2220 Instruction *StrideCheck; 2221 Instruction *FirstCheckInst; 2222 std::tie(FirstCheckInst, StrideCheck) = 2223 addStrideCheck(LastBypassBlock->getTerminator()); 2224 if (StrideCheck) { 2225 // Create a new block containing the stride check. 2226 BasicBlock *CheckBlock = 2227 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2228 if (ParentLoop) 2229 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2230 LoopBypassBlocks.push_back(CheckBlock); 2231 2232 // Replace the branch into the memory check block with a conditional branch 2233 // for the "few elements case". 2234 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2235 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2236 OldTerm->eraseFromParent(); 2237 2238 Cmp = StrideCheck; 2239 LastBypassBlock = CheckBlock; 2240 } 2241 2242 // Generate the code that checks in runtime if arrays overlap. We put the 2243 // checks into a separate block to make the more common case of few elements 2244 // faster. 2245 Instruction *MemRuntimeCheck; 2246 std::tie(FirstCheckInst, MemRuntimeCheck) = 2247 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2248 if (MemRuntimeCheck) { 2249 // Create a new block containing the memory check. 2250 BasicBlock *CheckBlock = 2251 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2252 if (ParentLoop) 2253 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2254 LoopBypassBlocks.push_back(CheckBlock); 2255 2256 // Replace the branch into the memory check block with a conditional branch 2257 // for the "few elements case". 2258 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2259 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2260 OldTerm->eraseFromParent(); 2261 2262 Cmp = MemRuntimeCheck; 2263 LastBypassBlock = CheckBlock; 2264 } 2265 2266 LastBypassBlock->getTerminator()->eraseFromParent(); 2267 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2268 LastBypassBlock); 2269 2270 // We are going to resume the execution of the scalar loop. 2271 // Go over all of the induction variables that we found and fix the 2272 // PHIs that are left in the scalar version of the loop. 2273 // The starting values of PHI nodes depend on the counter of the last 2274 // iteration in the vectorized loop. 2275 // If we come from a bypass edge then we need to start from the original 2276 // start value. 2277 2278 // This variable saves the new starting index for the scalar loop. 2279 PHINode *ResumeIndex = nullptr; 2280 LoopVectorizationLegality::InductionList::iterator I, E; 2281 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2282 // Set builder to point to last bypass block. 2283 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2284 for (I = List->begin(), E = List->end(); I != E; ++I) { 2285 PHINode *OrigPhi = I->first; 2286 LoopVectorizationLegality::InductionInfo II = I->second; 2287 2288 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2289 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2290 MiddleBlock->getTerminator()); 2291 // We might have extended the type of the induction variable but we need a 2292 // truncated version for the scalar loop. 2293 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2294 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2295 MiddleBlock->getTerminator()) : nullptr; 2296 2297 // Create phi nodes to merge from the backedge-taken check block. 2298 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2299 ScalarPH->getTerminator()); 2300 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2301 2302 PHINode *BCTruncResumeVal = nullptr; 2303 if (OrigPhi == OldInduction) { 2304 BCTruncResumeVal = 2305 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2306 ScalarPH->getTerminator()); 2307 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2308 } 2309 2310 Value *EndValue = nullptr; 2311 switch (II.IK) { 2312 case LoopVectorizationLegality::IK_NoInduction: 2313 llvm_unreachable("Unknown induction"); 2314 case LoopVectorizationLegality::IK_IntInduction: { 2315 // Handle the integer induction counter. 2316 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2317 2318 // We have the canonical induction variable. 2319 if (OrigPhi == OldInduction) { 2320 // Create a truncated version of the resume value for the scalar loop, 2321 // we might have promoted the type to a larger width. 2322 EndValue = 2323 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2324 // The new PHI merges the original incoming value, in case of a bypass, 2325 // or the value at the end of the vectorized loop. 2326 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2327 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2328 TruncResumeVal->addIncoming(EndValue, VecBody); 2329 2330 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2331 2332 // We know what the end value is. 2333 EndValue = IdxEndRoundDown; 2334 // We also know which PHI node holds it. 2335 ResumeIndex = ResumeVal; 2336 break; 2337 } 2338 2339 // Not the canonical induction variable - add the vector loop count to the 2340 // start value. 2341 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2342 II.StartValue->getType(), 2343 "cast.crd"); 2344 EndValue = II.transform(BypassBuilder, CRD); 2345 EndValue->setName("ind.end"); 2346 break; 2347 } 2348 case LoopVectorizationLegality::IK_PtrInduction: { 2349 EndValue = II.transform(BypassBuilder, CountRoundDown); 2350 EndValue->setName("ptr.ind.end"); 2351 break; 2352 } 2353 }// end of case 2354 2355 // The new PHI merges the original incoming value, in case of a bypass, 2356 // or the value at the end of the vectorized loop. 2357 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2358 if (OrigPhi == OldInduction) 2359 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2360 else 2361 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2362 } 2363 ResumeVal->addIncoming(EndValue, VecBody); 2364 2365 // Fix the scalar body counter (PHI node). 2366 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2367 2368 // The old induction's phi node in the scalar body needs the truncated 2369 // value. 2370 if (OrigPhi == OldInduction) { 2371 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2372 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2373 } else { 2374 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2375 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2376 } 2377 } 2378 2379 // If we are generating a new induction variable then we also need to 2380 // generate the code that calculates the exit value. This value is not 2381 // simply the end of the counter because we may skip the vectorized body 2382 // in case of a runtime check. 2383 if (!OldInduction){ 2384 assert(!ResumeIndex && "Unexpected resume value found"); 2385 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2386 MiddleBlock->getTerminator()); 2387 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2388 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2389 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2390 } 2391 2392 // Make sure that we found the index where scalar loop needs to continue. 2393 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2394 "Invalid resume Index"); 2395 2396 // Add a check in the middle block to see if we have completed 2397 // all of the iterations in the first vector loop. 2398 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2399 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2400 ResumeIndex, "cmp.n", 2401 MiddleBlock->getTerminator()); 2402 2403 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2404 // Remove the old terminator. 2405 MiddleBlock->getTerminator()->eraseFromParent(); 2406 2407 // Create i+1 and fill the PHINode. 2408 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2409 Induction->addIncoming(StartIdx, VectorPH); 2410 Induction->addIncoming(NextIdx, VecBody); 2411 // Create the compare. 2412 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2413 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2414 2415 // Now we have two terminators. Remove the old one from the block. 2416 VecBody->getTerminator()->eraseFromParent(); 2417 2418 // Get ready to start creating new instructions into the vectorized body. 2419 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2420 2421 // Save the state. 2422 LoopVectorPreHeader = VectorPH; 2423 LoopScalarPreHeader = ScalarPH; 2424 LoopMiddleBlock = MiddleBlock; 2425 LoopExitBlock = ExitBlock; 2426 LoopVectorBody.push_back(VecBody); 2427 LoopScalarBody = OldBasicBlock; 2428 2429 LoopVectorizeHints Hints(Lp, true); 2430 Hints.setAlreadyVectorized(); 2431 } 2432 2433 /// This function returns the identity element (or neutral element) for 2434 /// the operation K. 2435 Constant* 2436 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2437 switch (K) { 2438 case RK_IntegerXor: 2439 case RK_IntegerAdd: 2440 case RK_IntegerOr: 2441 // Adding, Xoring, Oring zero to a number does not change it. 2442 return ConstantInt::get(Tp, 0); 2443 case RK_IntegerMult: 2444 // Multiplying a number by 1 does not change it. 2445 return ConstantInt::get(Tp, 1); 2446 case RK_IntegerAnd: 2447 // AND-ing a number with an all-1 value does not change it. 2448 return ConstantInt::get(Tp, -1, true); 2449 case RK_FloatMult: 2450 // Multiplying a number by 1 does not change it. 2451 return ConstantFP::get(Tp, 1.0L); 2452 case RK_FloatAdd: 2453 // Adding zero to a number does not change it. 2454 return ConstantFP::get(Tp, 0.0L); 2455 default: 2456 llvm_unreachable("Unknown reduction kind"); 2457 } 2458 } 2459 2460 /// This function translates the reduction kind to an LLVM binary operator. 2461 static unsigned 2462 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2463 switch (Kind) { 2464 case LoopVectorizationLegality::RK_IntegerAdd: 2465 return Instruction::Add; 2466 case LoopVectorizationLegality::RK_IntegerMult: 2467 return Instruction::Mul; 2468 case LoopVectorizationLegality::RK_IntegerOr: 2469 return Instruction::Or; 2470 case LoopVectorizationLegality::RK_IntegerAnd: 2471 return Instruction::And; 2472 case LoopVectorizationLegality::RK_IntegerXor: 2473 return Instruction::Xor; 2474 case LoopVectorizationLegality::RK_FloatMult: 2475 return Instruction::FMul; 2476 case LoopVectorizationLegality::RK_FloatAdd: 2477 return Instruction::FAdd; 2478 case LoopVectorizationLegality::RK_IntegerMinMax: 2479 return Instruction::ICmp; 2480 case LoopVectorizationLegality::RK_FloatMinMax: 2481 return Instruction::FCmp; 2482 default: 2483 llvm_unreachable("Unknown reduction operation"); 2484 } 2485 } 2486 2487 Value *createMinMaxOp(IRBuilder<> &Builder, 2488 LoopVectorizationLegality::MinMaxReductionKind RK, 2489 Value *Left, 2490 Value *Right) { 2491 CmpInst::Predicate P = CmpInst::ICMP_NE; 2492 switch (RK) { 2493 default: 2494 llvm_unreachable("Unknown min/max reduction kind"); 2495 case LoopVectorizationLegality::MRK_UIntMin: 2496 P = CmpInst::ICMP_ULT; 2497 break; 2498 case LoopVectorizationLegality::MRK_UIntMax: 2499 P = CmpInst::ICMP_UGT; 2500 break; 2501 case LoopVectorizationLegality::MRK_SIntMin: 2502 P = CmpInst::ICMP_SLT; 2503 break; 2504 case LoopVectorizationLegality::MRK_SIntMax: 2505 P = CmpInst::ICMP_SGT; 2506 break; 2507 case LoopVectorizationLegality::MRK_FloatMin: 2508 P = CmpInst::FCMP_OLT; 2509 break; 2510 case LoopVectorizationLegality::MRK_FloatMax: 2511 P = CmpInst::FCMP_OGT; 2512 break; 2513 } 2514 2515 Value *Cmp; 2516 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2517 RK == LoopVectorizationLegality::MRK_FloatMax) 2518 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2519 else 2520 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2521 2522 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2523 return Select; 2524 } 2525 2526 namespace { 2527 struct CSEDenseMapInfo { 2528 static bool canHandle(Instruction *I) { 2529 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2530 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2531 } 2532 static inline Instruction *getEmptyKey() { 2533 return DenseMapInfo<Instruction *>::getEmptyKey(); 2534 } 2535 static inline Instruction *getTombstoneKey() { 2536 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2537 } 2538 static unsigned getHashValue(Instruction *I) { 2539 assert(canHandle(I) && "Unknown instruction!"); 2540 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2541 I->value_op_end())); 2542 } 2543 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2544 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2545 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2546 return LHS == RHS; 2547 return LHS->isIdenticalTo(RHS); 2548 } 2549 }; 2550 } 2551 2552 /// \brief Check whether this block is a predicated block. 2553 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2554 /// = ...; " blocks. We start with one vectorized basic block. For every 2555 /// conditional block we split this vectorized block. Therefore, every second 2556 /// block will be a predicated one. 2557 static bool isPredicatedBlock(unsigned BlockNum) { 2558 return BlockNum % 2; 2559 } 2560 2561 ///\brief Perform cse of induction variable instructions. 2562 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2563 // Perform simple cse. 2564 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2565 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2566 BasicBlock *BB = BBs[i]; 2567 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2568 Instruction *In = I++; 2569 2570 if (!CSEDenseMapInfo::canHandle(In)) 2571 continue; 2572 2573 // Check if we can replace this instruction with any of the 2574 // visited instructions. 2575 if (Instruction *V = CSEMap.lookup(In)) { 2576 In->replaceAllUsesWith(V); 2577 In->eraseFromParent(); 2578 continue; 2579 } 2580 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2581 // ...;" blocks for predicated stores. Every second block is a predicated 2582 // block. 2583 if (isPredicatedBlock(i)) 2584 continue; 2585 2586 CSEMap[In] = In; 2587 } 2588 } 2589 } 2590 2591 /// \brief Adds a 'fast' flag to floating point operations. 2592 static Value *addFastMathFlag(Value *V) { 2593 if (isa<FPMathOperator>(V)){ 2594 FastMathFlags Flags; 2595 Flags.setUnsafeAlgebra(); 2596 cast<Instruction>(V)->setFastMathFlags(Flags); 2597 } 2598 return V; 2599 } 2600 2601 void InnerLoopVectorizer::vectorizeLoop() { 2602 //===------------------------------------------------===// 2603 // 2604 // Notice: any optimization or new instruction that go 2605 // into the code below should be also be implemented in 2606 // the cost-model. 2607 // 2608 //===------------------------------------------------===// 2609 Constant *Zero = Builder.getInt32(0); 2610 2611 // In order to support reduction variables we need to be able to vectorize 2612 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2613 // stages. First, we create a new vector PHI node with no incoming edges. 2614 // We use this value when we vectorize all of the instructions that use the 2615 // PHI. Next, after all of the instructions in the block are complete we 2616 // add the new incoming edges to the PHI. At this point all of the 2617 // instructions in the basic block are vectorized, so we can use them to 2618 // construct the PHI. 2619 PhiVector RdxPHIsToFix; 2620 2621 // Scan the loop in a topological order to ensure that defs are vectorized 2622 // before users. 2623 LoopBlocksDFS DFS(OrigLoop); 2624 DFS.perform(LI); 2625 2626 // Vectorize all of the blocks in the original loop. 2627 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2628 be = DFS.endRPO(); bb != be; ++bb) 2629 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2630 2631 // At this point every instruction in the original loop is widened to 2632 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2633 // that we vectorized. The PHI nodes are currently empty because we did 2634 // not want to introduce cycles. Notice that the remaining PHI nodes 2635 // that we need to fix are reduction variables. 2636 2637 // Create the 'reduced' values for each of the induction vars. 2638 // The reduced values are the vector values that we scalarize and combine 2639 // after the loop is finished. 2640 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2641 it != e; ++it) { 2642 PHINode *RdxPhi = *it; 2643 assert(RdxPhi && "Unable to recover vectorized PHI"); 2644 2645 // Find the reduction variable descriptor. 2646 assert(Legal->getReductionVars()->count(RdxPhi) && 2647 "Unable to find the reduction variable"); 2648 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2649 (*Legal->getReductionVars())[RdxPhi]; 2650 2651 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2652 2653 // We need to generate a reduction vector from the incoming scalar. 2654 // To do so, we need to generate the 'identity' vector and override 2655 // one of the elements with the incoming scalar reduction. We need 2656 // to do it in the vector-loop preheader. 2657 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2658 2659 // This is the vector-clone of the value that leaves the loop. 2660 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2661 Type *VecTy = VectorExit[0]->getType(); 2662 2663 // Find the reduction identity variable. Zero for addition, or, xor, 2664 // one for multiplication, -1 for And. 2665 Value *Identity; 2666 Value *VectorStart; 2667 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2668 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2669 // MinMax reduction have the start value as their identify. 2670 if (VF == 1) { 2671 VectorStart = Identity = RdxDesc.StartValue; 2672 } else { 2673 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2674 RdxDesc.StartValue, 2675 "minmax.ident"); 2676 } 2677 } else { 2678 // Handle other reduction kinds: 2679 Constant *Iden = 2680 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2681 VecTy->getScalarType()); 2682 if (VF == 1) { 2683 Identity = Iden; 2684 // This vector is the Identity vector where the first element is the 2685 // incoming scalar reduction. 2686 VectorStart = RdxDesc.StartValue; 2687 } else { 2688 Identity = ConstantVector::getSplat(VF, Iden); 2689 2690 // This vector is the Identity vector where the first element is the 2691 // incoming scalar reduction. 2692 VectorStart = Builder.CreateInsertElement(Identity, 2693 RdxDesc.StartValue, Zero); 2694 } 2695 } 2696 2697 // Fix the vector-loop phi. 2698 2699 // Reductions do not have to start at zero. They can start with 2700 // any loop invariant values. 2701 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2702 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2703 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2704 VectorParts &Val = getVectorValue(LoopVal); 2705 for (unsigned part = 0; part < UF; ++part) { 2706 // Make sure to add the reduction stat value only to the 2707 // first unroll part. 2708 Value *StartVal = (part == 0) ? VectorStart : Identity; 2709 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2710 LoopVectorPreHeader); 2711 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2712 LoopVectorBody.back()); 2713 } 2714 2715 // Before each round, move the insertion point right between 2716 // the PHIs and the values we are going to write. 2717 // This allows us to write both PHINodes and the extractelement 2718 // instructions. 2719 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2720 2721 VectorParts RdxParts; 2722 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2723 for (unsigned part = 0; part < UF; ++part) { 2724 // This PHINode contains the vectorized reduction variable, or 2725 // the initial value vector, if we bypass the vector loop. 2726 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2727 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2728 Value *StartVal = (part == 0) ? VectorStart : Identity; 2729 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2730 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2731 NewPhi->addIncoming(RdxExitVal[part], 2732 LoopVectorBody.back()); 2733 RdxParts.push_back(NewPhi); 2734 } 2735 2736 // Reduce all of the unrolled parts into a single vector. 2737 Value *ReducedPartRdx = RdxParts[0]; 2738 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2739 setDebugLocFromInst(Builder, ReducedPartRdx); 2740 for (unsigned part = 1; part < UF; ++part) { 2741 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2742 // Floating point operations had to be 'fast' to enable the reduction. 2743 ReducedPartRdx = addFastMathFlag( 2744 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2745 ReducedPartRdx, "bin.rdx")); 2746 else 2747 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2748 ReducedPartRdx, RdxParts[part]); 2749 } 2750 2751 if (VF > 1) { 2752 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2753 // and vector ops, reducing the set of values being computed by half each 2754 // round. 2755 assert(isPowerOf2_32(VF) && 2756 "Reduction emission only supported for pow2 vectors!"); 2757 Value *TmpVec = ReducedPartRdx; 2758 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2759 for (unsigned i = VF; i != 1; i >>= 1) { 2760 // Move the upper half of the vector to the lower half. 2761 for (unsigned j = 0; j != i/2; ++j) 2762 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2763 2764 // Fill the rest of the mask with undef. 2765 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2766 UndefValue::get(Builder.getInt32Ty())); 2767 2768 Value *Shuf = 2769 Builder.CreateShuffleVector(TmpVec, 2770 UndefValue::get(TmpVec->getType()), 2771 ConstantVector::get(ShuffleMask), 2772 "rdx.shuf"); 2773 2774 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2775 // Floating point operations had to be 'fast' to enable the reduction. 2776 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2777 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2778 else 2779 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2780 } 2781 2782 // The result is in the first element of the vector. 2783 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2784 Builder.getInt32(0)); 2785 } 2786 2787 // Create a phi node that merges control-flow from the backedge-taken check 2788 // block and the middle block. 2789 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2790 LoopScalarPreHeader->getTerminator()); 2791 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2792 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2793 2794 // Now, we need to fix the users of the reduction variable 2795 // inside and outside of the scalar remainder loop. 2796 // We know that the loop is in LCSSA form. We need to update the 2797 // PHI nodes in the exit blocks. 2798 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2799 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2800 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2801 if (!LCSSAPhi) break; 2802 2803 // All PHINodes need to have a single entry edge, or two if 2804 // we already fixed them. 2805 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2806 2807 // We found our reduction value exit-PHI. Update it with the 2808 // incoming bypass edge. 2809 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2810 // Add an edge coming from the bypass. 2811 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2812 break; 2813 } 2814 }// end of the LCSSA phi scan. 2815 2816 // Fix the scalar loop reduction variable with the incoming reduction sum 2817 // from the vector body and from the backedge value. 2818 int IncomingEdgeBlockIdx = 2819 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2820 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2821 // Pick the other block. 2822 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2823 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2824 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2825 }// end of for each redux variable. 2826 2827 fixLCSSAPHIs(); 2828 2829 // Remove redundant induction instructions. 2830 cse(LoopVectorBody); 2831 } 2832 2833 void InnerLoopVectorizer::fixLCSSAPHIs() { 2834 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2835 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2836 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2837 if (!LCSSAPhi) break; 2838 if (LCSSAPhi->getNumIncomingValues() == 1) 2839 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2840 LoopMiddleBlock); 2841 } 2842 } 2843 2844 InnerLoopVectorizer::VectorParts 2845 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2846 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2847 "Invalid edge"); 2848 2849 // Look for cached value. 2850 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2851 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2852 if (ECEntryIt != MaskCache.end()) 2853 return ECEntryIt->second; 2854 2855 VectorParts SrcMask = createBlockInMask(Src); 2856 2857 // The terminator has to be a branch inst! 2858 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2859 assert(BI && "Unexpected terminator found"); 2860 2861 if (BI->isConditional()) { 2862 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2863 2864 if (BI->getSuccessor(0) != Dst) 2865 for (unsigned part = 0; part < UF; ++part) 2866 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2867 2868 for (unsigned part = 0; part < UF; ++part) 2869 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2870 2871 MaskCache[Edge] = EdgeMask; 2872 return EdgeMask; 2873 } 2874 2875 MaskCache[Edge] = SrcMask; 2876 return SrcMask; 2877 } 2878 2879 InnerLoopVectorizer::VectorParts 2880 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2881 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2882 2883 // Loop incoming mask is all-one. 2884 if (OrigLoop->getHeader() == BB) { 2885 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2886 return getVectorValue(C); 2887 } 2888 2889 // This is the block mask. We OR all incoming edges, and with zero. 2890 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2891 VectorParts BlockMask = getVectorValue(Zero); 2892 2893 // For each pred: 2894 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2895 VectorParts EM = createEdgeMask(*it, BB); 2896 for (unsigned part = 0; part < UF; ++part) 2897 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2898 } 2899 2900 return BlockMask; 2901 } 2902 2903 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2904 InnerLoopVectorizer::VectorParts &Entry, 2905 unsigned UF, unsigned VF, PhiVector *PV) { 2906 PHINode* P = cast<PHINode>(PN); 2907 // Handle reduction variables: 2908 if (Legal->getReductionVars()->count(P)) { 2909 for (unsigned part = 0; part < UF; ++part) { 2910 // This is phase one of vectorizing PHIs. 2911 Type *VecTy = (VF == 1) ? PN->getType() : 2912 VectorType::get(PN->getType(), VF); 2913 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2914 LoopVectorBody.back()-> getFirstInsertionPt()); 2915 } 2916 PV->push_back(P); 2917 return; 2918 } 2919 2920 setDebugLocFromInst(Builder, P); 2921 // Check for PHI nodes that are lowered to vector selects. 2922 if (P->getParent() != OrigLoop->getHeader()) { 2923 // We know that all PHIs in non-header blocks are converted into 2924 // selects, so we don't have to worry about the insertion order and we 2925 // can just use the builder. 2926 // At this point we generate the predication tree. There may be 2927 // duplications since this is a simple recursive scan, but future 2928 // optimizations will clean it up. 2929 2930 unsigned NumIncoming = P->getNumIncomingValues(); 2931 2932 // Generate a sequence of selects of the form: 2933 // SELECT(Mask3, In3, 2934 // SELECT(Mask2, In2, 2935 // ( ...))) 2936 for (unsigned In = 0; In < NumIncoming; In++) { 2937 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2938 P->getParent()); 2939 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2940 2941 for (unsigned part = 0; part < UF; ++part) { 2942 // We might have single edge PHIs (blocks) - use an identity 2943 // 'select' for the first PHI operand. 2944 if (In == 0) 2945 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2946 In0[part]); 2947 else 2948 // Select between the current value and the previous incoming edge 2949 // based on the incoming mask. 2950 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2951 Entry[part], "predphi"); 2952 } 2953 } 2954 return; 2955 } 2956 2957 // This PHINode must be an induction variable. 2958 // Make sure that we know about it. 2959 assert(Legal->getInductionVars()->count(P) && 2960 "Not an induction variable"); 2961 2962 LoopVectorizationLegality::InductionInfo II = 2963 Legal->getInductionVars()->lookup(P); 2964 2965 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2966 // which can be found from the original scalar operations. 2967 switch (II.IK) { 2968 case LoopVectorizationLegality::IK_NoInduction: 2969 llvm_unreachable("Unknown induction"); 2970 case LoopVectorizationLegality::IK_IntInduction: { 2971 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2972 Type *PhiTy = P->getType(); 2973 Value *Broadcasted; 2974 if (P == OldInduction) { 2975 // Handle the canonical induction variable. We might have had to 2976 // extend the type. 2977 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2978 } else { 2979 // Handle other induction variables that are now based on the 2980 // canonical one. 2981 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2982 "normalized.idx"); 2983 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2984 Broadcasted = II.transform(Builder, NormalizedIdx); 2985 Broadcasted->setName("offset.idx"); 2986 } 2987 Broadcasted = getBroadcastInstrs(Broadcasted); 2988 // After broadcasting the induction variable we need to make the vector 2989 // consecutive by adding 0, 1, 2, etc. 2990 for (unsigned part = 0; part < UF; ++part) 2991 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 2992 return; 2993 } 2994 case LoopVectorizationLegality::IK_PtrInduction: 2995 // Handle the pointer induction variable case. 2996 assert(P->getType()->isPointerTy() && "Unexpected type."); 2997 // This is the normalized GEP that starts counting at zero. 2998 Value *NormalizedIdx = 2999 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3000 // This is the vector of results. Notice that we don't generate 3001 // vector geps because scalar geps result in better code. 3002 for (unsigned part = 0; part < UF; ++part) { 3003 if (VF == 1) { 3004 int EltIndex = part; 3005 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3006 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3007 Value *SclrGep = II.transform(Builder, GlobalIdx); 3008 SclrGep->setName("next.gep"); 3009 Entry[part] = SclrGep; 3010 continue; 3011 } 3012 3013 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3014 for (unsigned int i = 0; i < VF; ++i) { 3015 int EltIndex = i + part * VF; 3016 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3017 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3018 Value *SclrGep = II.transform(Builder, GlobalIdx); 3019 SclrGep->setName("next.gep"); 3020 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3021 Builder.getInt32(i), 3022 "insert.gep"); 3023 } 3024 Entry[part] = VecVal; 3025 } 3026 return; 3027 } 3028 } 3029 3030 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3031 // For each instruction in the old loop. 3032 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3033 VectorParts &Entry = WidenMap.get(it); 3034 switch (it->getOpcode()) { 3035 case Instruction::Br: 3036 // Nothing to do for PHIs and BR, since we already took care of the 3037 // loop control flow instructions. 3038 continue; 3039 case Instruction::PHI: { 3040 // Vectorize PHINodes. 3041 widenPHIInstruction(it, Entry, UF, VF, PV); 3042 continue; 3043 }// End of PHI. 3044 3045 case Instruction::Add: 3046 case Instruction::FAdd: 3047 case Instruction::Sub: 3048 case Instruction::FSub: 3049 case Instruction::Mul: 3050 case Instruction::FMul: 3051 case Instruction::UDiv: 3052 case Instruction::SDiv: 3053 case Instruction::FDiv: 3054 case Instruction::URem: 3055 case Instruction::SRem: 3056 case Instruction::FRem: 3057 case Instruction::Shl: 3058 case Instruction::LShr: 3059 case Instruction::AShr: 3060 case Instruction::And: 3061 case Instruction::Or: 3062 case Instruction::Xor: { 3063 // Just widen binops. 3064 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3065 setDebugLocFromInst(Builder, BinOp); 3066 VectorParts &A = getVectorValue(it->getOperand(0)); 3067 VectorParts &B = getVectorValue(it->getOperand(1)); 3068 3069 // Use this vector value for all users of the original instruction. 3070 for (unsigned Part = 0; Part < UF; ++Part) { 3071 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3072 3073 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3074 VecOp->copyIRFlags(BinOp); 3075 3076 Entry[Part] = V; 3077 } 3078 3079 propagateMetadata(Entry, it); 3080 break; 3081 } 3082 case Instruction::Select: { 3083 // Widen selects. 3084 // If the selector is loop invariant we can create a select 3085 // instruction with a scalar condition. Otherwise, use vector-select. 3086 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3087 OrigLoop); 3088 setDebugLocFromInst(Builder, it); 3089 3090 // The condition can be loop invariant but still defined inside the 3091 // loop. This means that we can't just use the original 'cond' value. 3092 // We have to take the 'vectorized' value and pick the first lane. 3093 // Instcombine will make this a no-op. 3094 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3095 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3096 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3097 3098 Value *ScalarCond = (VF == 1) ? Cond[0] : 3099 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3100 3101 for (unsigned Part = 0; Part < UF; ++Part) { 3102 Entry[Part] = Builder.CreateSelect( 3103 InvariantCond ? ScalarCond : Cond[Part], 3104 Op0[Part], 3105 Op1[Part]); 3106 } 3107 3108 propagateMetadata(Entry, it); 3109 break; 3110 } 3111 3112 case Instruction::ICmp: 3113 case Instruction::FCmp: { 3114 // Widen compares. Generate vector compares. 3115 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3116 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3117 setDebugLocFromInst(Builder, it); 3118 VectorParts &A = getVectorValue(it->getOperand(0)); 3119 VectorParts &B = getVectorValue(it->getOperand(1)); 3120 for (unsigned Part = 0; Part < UF; ++Part) { 3121 Value *C = nullptr; 3122 if (FCmp) 3123 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3124 else 3125 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3126 Entry[Part] = C; 3127 } 3128 3129 propagateMetadata(Entry, it); 3130 break; 3131 } 3132 3133 case Instruction::Store: 3134 case Instruction::Load: 3135 vectorizeMemoryInstruction(it); 3136 break; 3137 case Instruction::ZExt: 3138 case Instruction::SExt: 3139 case Instruction::FPToUI: 3140 case Instruction::FPToSI: 3141 case Instruction::FPExt: 3142 case Instruction::PtrToInt: 3143 case Instruction::IntToPtr: 3144 case Instruction::SIToFP: 3145 case Instruction::UIToFP: 3146 case Instruction::Trunc: 3147 case Instruction::FPTrunc: 3148 case Instruction::BitCast: { 3149 CastInst *CI = dyn_cast<CastInst>(it); 3150 setDebugLocFromInst(Builder, it); 3151 /// Optimize the special case where the source is the induction 3152 /// variable. Notice that we can only optimize the 'trunc' case 3153 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3154 /// c. other casts depend on pointer size. 3155 if (CI->getOperand(0) == OldInduction && 3156 it->getOpcode() == Instruction::Trunc) { 3157 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3158 CI->getType()); 3159 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3160 LoopVectorizationLegality::InductionInfo II = 3161 Legal->getInductionVars()->lookup(OldInduction); 3162 Constant *Step = 3163 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3164 for (unsigned Part = 0; Part < UF; ++Part) 3165 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3166 propagateMetadata(Entry, it); 3167 break; 3168 } 3169 /// Vectorize casts. 3170 Type *DestTy = (VF == 1) ? CI->getType() : 3171 VectorType::get(CI->getType(), VF); 3172 3173 VectorParts &A = getVectorValue(it->getOperand(0)); 3174 for (unsigned Part = 0; Part < UF; ++Part) 3175 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3176 propagateMetadata(Entry, it); 3177 break; 3178 } 3179 3180 case Instruction::Call: { 3181 // Ignore dbg intrinsics. 3182 if (isa<DbgInfoIntrinsic>(it)) 3183 break; 3184 setDebugLocFromInst(Builder, it); 3185 3186 Module *M = BB->getParent()->getParent(); 3187 CallInst *CI = cast<CallInst>(it); 3188 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3189 assert(ID && "Not an intrinsic call!"); 3190 switch (ID) { 3191 case Intrinsic::assume: 3192 case Intrinsic::lifetime_end: 3193 case Intrinsic::lifetime_start: 3194 scalarizeInstruction(it); 3195 break; 3196 default: 3197 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3198 for (unsigned Part = 0; Part < UF; ++Part) { 3199 SmallVector<Value *, 4> Args; 3200 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3201 if (HasScalarOpd && i == 1) { 3202 Args.push_back(CI->getArgOperand(i)); 3203 continue; 3204 } 3205 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3206 Args.push_back(Arg[Part]); 3207 } 3208 Type *Tys[] = {CI->getType()}; 3209 if (VF > 1) 3210 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3211 3212 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3213 Entry[Part] = Builder.CreateCall(F, Args); 3214 } 3215 3216 propagateMetadata(Entry, it); 3217 break; 3218 } 3219 break; 3220 } 3221 3222 default: 3223 // All other instructions are unsupported. Scalarize them. 3224 scalarizeInstruction(it); 3225 break; 3226 }// end of switch. 3227 }// end of for_each instr. 3228 } 3229 3230 void InnerLoopVectorizer::updateAnalysis() { 3231 // Forget the original basic block. 3232 SE->forgetLoop(OrigLoop); 3233 3234 // Update the dominator tree information. 3235 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3236 "Entry does not dominate exit."); 3237 3238 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3239 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3240 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3241 3242 // Due to if predication of stores we might create a sequence of "if(pred) 3243 // a[i] = ...; " blocks. 3244 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3245 if (i == 0) 3246 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3247 else if (isPredicatedBlock(i)) { 3248 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3249 } else { 3250 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3251 } 3252 } 3253 3254 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3255 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3256 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3257 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3258 3259 DEBUG(DT->verifyDomTree()); 3260 } 3261 3262 /// \brief Check whether it is safe to if-convert this phi node. 3263 /// 3264 /// Phi nodes with constant expressions that can trap are not safe to if 3265 /// convert. 3266 static bool canIfConvertPHINodes(BasicBlock *BB) { 3267 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3268 PHINode *Phi = dyn_cast<PHINode>(I); 3269 if (!Phi) 3270 return true; 3271 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3272 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3273 if (C->canTrap()) 3274 return false; 3275 } 3276 return true; 3277 } 3278 3279 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3280 if (!EnableIfConversion) { 3281 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3282 return false; 3283 } 3284 3285 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3286 3287 // A list of pointers that we can safely read and write to. 3288 SmallPtrSet<Value *, 8> SafePointes; 3289 3290 // Collect safe addresses. 3291 for (Loop::block_iterator BI = TheLoop->block_begin(), 3292 BE = TheLoop->block_end(); BI != BE; ++BI) { 3293 BasicBlock *BB = *BI; 3294 3295 if (blockNeedsPredication(BB)) 3296 continue; 3297 3298 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3299 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3300 SafePointes.insert(LI->getPointerOperand()); 3301 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3302 SafePointes.insert(SI->getPointerOperand()); 3303 } 3304 } 3305 3306 // Collect the blocks that need predication. 3307 BasicBlock *Header = TheLoop->getHeader(); 3308 for (Loop::block_iterator BI = TheLoop->block_begin(), 3309 BE = TheLoop->block_end(); BI != BE; ++BI) { 3310 BasicBlock *BB = *BI; 3311 3312 // We don't support switch statements inside loops. 3313 if (!isa<BranchInst>(BB->getTerminator())) { 3314 emitAnalysis(VectorizationReport(BB->getTerminator()) 3315 << "loop contains a switch statement"); 3316 return false; 3317 } 3318 3319 // We must be able to predicate all blocks that need to be predicated. 3320 if (blockNeedsPredication(BB)) { 3321 if (!blockCanBePredicated(BB, SafePointes)) { 3322 emitAnalysis(VectorizationReport(BB->getTerminator()) 3323 << "control flow cannot be substituted for a select"); 3324 return false; 3325 } 3326 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3327 emitAnalysis(VectorizationReport(BB->getTerminator()) 3328 << "control flow cannot be substituted for a select"); 3329 return false; 3330 } 3331 } 3332 3333 // We can if-convert this loop. 3334 return true; 3335 } 3336 3337 bool LoopVectorizationLegality::canVectorize() { 3338 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3339 // be canonicalized. 3340 if (!TheLoop->getLoopPreheader()) { 3341 emitAnalysis( 3342 VectorizationReport() << 3343 "loop control flow is not understood by vectorizer"); 3344 return false; 3345 } 3346 3347 // We can only vectorize innermost loops. 3348 if (!TheLoop->getSubLoopsVector().empty()) { 3349 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3350 return false; 3351 } 3352 3353 // We must have a single backedge. 3354 if (TheLoop->getNumBackEdges() != 1) { 3355 emitAnalysis( 3356 VectorizationReport() << 3357 "loop control flow is not understood by vectorizer"); 3358 return false; 3359 } 3360 3361 // We must have a single exiting block. 3362 if (!TheLoop->getExitingBlock()) { 3363 emitAnalysis( 3364 VectorizationReport() << 3365 "loop control flow is not understood by vectorizer"); 3366 return false; 3367 } 3368 3369 // We only handle bottom-tested loops, i.e. loop in which the condition is 3370 // checked at the end of each iteration. With that we can assume that all 3371 // instructions in the loop are executed the same number of times. 3372 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3373 emitAnalysis( 3374 VectorizationReport() << 3375 "loop control flow is not understood by vectorizer"); 3376 return false; 3377 } 3378 3379 // We need to have a loop header. 3380 DEBUG(dbgs() << "LV: Found a loop: " << 3381 TheLoop->getHeader()->getName() << '\n'); 3382 3383 // Check if we can if-convert non-single-bb loops. 3384 unsigned NumBlocks = TheLoop->getNumBlocks(); 3385 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3386 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3387 return false; 3388 } 3389 3390 // ScalarEvolution needs to be able to find the exit count. 3391 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3392 if (ExitCount == SE->getCouldNotCompute()) { 3393 emitAnalysis(VectorizationReport() << 3394 "could not determine number of loop iterations"); 3395 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3396 return false; 3397 } 3398 3399 // Check if we can vectorize the instructions and CFG in this loop. 3400 if (!canVectorizeInstrs()) { 3401 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3402 return false; 3403 } 3404 3405 // Go over each instruction and look at memory deps. 3406 if (!canVectorizeMemory()) { 3407 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3408 return false; 3409 } 3410 3411 // Collect all of the variables that remain uniform after vectorization. 3412 collectLoopUniforms(); 3413 3414 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3415 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3416 "") 3417 <<"!\n"); 3418 3419 // Okay! We can vectorize. At this point we don't have any other mem analysis 3420 // which may limit our maximum vectorization factor, so just return true with 3421 // no restrictions. 3422 return true; 3423 } 3424 3425 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3426 if (Ty->isPointerTy()) 3427 return DL.getIntPtrType(Ty); 3428 3429 // It is possible that char's or short's overflow when we ask for the loop's 3430 // trip count, work around this by changing the type size. 3431 if (Ty->getScalarSizeInBits() < 32) 3432 return Type::getInt32Ty(Ty->getContext()); 3433 3434 return Ty; 3435 } 3436 3437 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3438 Ty0 = convertPointerToIntegerType(DL, Ty0); 3439 Ty1 = convertPointerToIntegerType(DL, Ty1); 3440 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3441 return Ty0; 3442 return Ty1; 3443 } 3444 3445 /// \brief Check that the instruction has outside loop users and is not an 3446 /// identified reduction variable. 3447 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3448 SmallPtrSetImpl<Value *> &Reductions) { 3449 // Reduction instructions are allowed to have exit users. All other 3450 // instructions must not have external users. 3451 if (!Reductions.count(Inst)) 3452 //Check that all of the users of the loop are inside the BB. 3453 for (User *U : Inst->users()) { 3454 Instruction *UI = cast<Instruction>(U); 3455 // This user may be a reduction exit value. 3456 if (!TheLoop->contains(UI)) { 3457 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3458 return true; 3459 } 3460 } 3461 return false; 3462 } 3463 3464 bool LoopVectorizationLegality::canVectorizeInstrs() { 3465 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3466 BasicBlock *Header = TheLoop->getHeader(); 3467 3468 // Look for the attribute signaling the absence of NaNs. 3469 Function &F = *Header->getParent(); 3470 if (F.hasFnAttribute("no-nans-fp-math")) 3471 HasFunNoNaNAttr = 3472 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3473 3474 // For each block in the loop. 3475 for (Loop::block_iterator bb = TheLoop->block_begin(), 3476 be = TheLoop->block_end(); bb != be; ++bb) { 3477 3478 // Scan the instructions in the block and look for hazards. 3479 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3480 ++it) { 3481 3482 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3483 Type *PhiTy = Phi->getType(); 3484 // Check that this PHI type is allowed. 3485 if (!PhiTy->isIntegerTy() && 3486 !PhiTy->isFloatingPointTy() && 3487 !PhiTy->isPointerTy()) { 3488 emitAnalysis(VectorizationReport(it) 3489 << "loop control flow is not understood by vectorizer"); 3490 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3491 return false; 3492 } 3493 3494 // If this PHINode is not in the header block, then we know that we 3495 // can convert it to select during if-conversion. No need to check if 3496 // the PHIs in this block are induction or reduction variables. 3497 if (*bb != Header) { 3498 // Check that this instruction has no outside users or is an 3499 // identified reduction value with an outside user. 3500 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3501 continue; 3502 emitAnalysis(VectorizationReport(it) << 3503 "value could not be identified as " 3504 "an induction or reduction variable"); 3505 return false; 3506 } 3507 3508 // We only allow if-converted PHIs with exactly two incoming values. 3509 if (Phi->getNumIncomingValues() != 2) { 3510 emitAnalysis(VectorizationReport(it) 3511 << "control flow not understood by vectorizer"); 3512 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3513 return false; 3514 } 3515 3516 // This is the value coming from the preheader. 3517 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3518 ConstantInt *StepValue = nullptr; 3519 // Check if this is an induction variable. 3520 InductionKind IK = isInductionVariable(Phi, StepValue); 3521 3522 if (IK_NoInduction != IK) { 3523 // Get the widest type. 3524 if (!WidestIndTy) 3525 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3526 else 3527 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3528 3529 // Int inductions are special because we only allow one IV. 3530 if (IK == IK_IntInduction && StepValue->isOne()) { 3531 // Use the phi node with the widest type as induction. Use the last 3532 // one if there are multiple (no good reason for doing this other 3533 // than it is expedient). 3534 if (!Induction || PhiTy == WidestIndTy) 3535 Induction = Phi; 3536 } 3537 3538 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3539 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3540 3541 // Until we explicitly handle the case of an induction variable with 3542 // an outside loop user we have to give up vectorizing this loop. 3543 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3544 emitAnalysis(VectorizationReport(it) << 3545 "use of induction value outside of the " 3546 "loop is not handled by vectorizer"); 3547 return false; 3548 } 3549 3550 continue; 3551 } 3552 3553 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3554 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3555 continue; 3556 } 3557 if (AddReductionVar(Phi, RK_IntegerMult)) { 3558 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3559 continue; 3560 } 3561 if (AddReductionVar(Phi, RK_IntegerOr)) { 3562 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3563 continue; 3564 } 3565 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3566 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3567 continue; 3568 } 3569 if (AddReductionVar(Phi, RK_IntegerXor)) { 3570 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3571 continue; 3572 } 3573 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3574 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3575 continue; 3576 } 3577 if (AddReductionVar(Phi, RK_FloatMult)) { 3578 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3579 continue; 3580 } 3581 if (AddReductionVar(Phi, RK_FloatAdd)) { 3582 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3583 continue; 3584 } 3585 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3586 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3587 "\n"); 3588 continue; 3589 } 3590 3591 emitAnalysis(VectorizationReport(it) << 3592 "value that could not be identified as " 3593 "reduction is used outside the loop"); 3594 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3595 return false; 3596 }// end of PHI handling 3597 3598 // We still don't handle functions. However, we can ignore dbg intrinsic 3599 // calls and we do handle certain intrinsic and libm functions. 3600 CallInst *CI = dyn_cast<CallInst>(it); 3601 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3602 emitAnalysis(VectorizationReport(it) << 3603 "call instruction cannot be vectorized"); 3604 DEBUG(dbgs() << "LV: Found a call site.\n"); 3605 return false; 3606 } 3607 3608 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3609 // second argument is the same (i.e. loop invariant) 3610 if (CI && 3611 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3612 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3613 emitAnalysis(VectorizationReport(it) 3614 << "intrinsic instruction cannot be vectorized"); 3615 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3616 return false; 3617 } 3618 } 3619 3620 // Check that the instruction return type is vectorizable. 3621 // Also, we can't vectorize extractelement instructions. 3622 if ((!VectorType::isValidElementType(it->getType()) && 3623 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3624 emitAnalysis(VectorizationReport(it) 3625 << "instruction return type cannot be vectorized"); 3626 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3627 return false; 3628 } 3629 3630 // Check that the stored type is vectorizable. 3631 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3632 Type *T = ST->getValueOperand()->getType(); 3633 if (!VectorType::isValidElementType(T)) { 3634 emitAnalysis(VectorizationReport(ST) << 3635 "store instruction cannot be vectorized"); 3636 return false; 3637 } 3638 if (EnableMemAccessVersioning) 3639 collectStridedAccess(ST); 3640 } 3641 3642 if (EnableMemAccessVersioning) 3643 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3644 collectStridedAccess(LI); 3645 3646 // Reduction instructions are allowed to have exit users. 3647 // All other instructions must not have external users. 3648 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3649 emitAnalysis(VectorizationReport(it) << 3650 "value cannot be used outside the loop"); 3651 return false; 3652 } 3653 3654 } // next instr. 3655 3656 } 3657 3658 if (!Induction) { 3659 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3660 if (Inductions.empty()) { 3661 emitAnalysis(VectorizationReport() 3662 << "loop induction variable could not be identified"); 3663 return false; 3664 } 3665 } 3666 3667 return true; 3668 } 3669 3670 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3671 /// return the induction operand of the gep pointer. 3672 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3673 const DataLayout *DL, Loop *Lp) { 3674 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3675 if (!GEP) 3676 return Ptr; 3677 3678 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3679 3680 // Check that all of the gep indices are uniform except for our induction 3681 // operand. 3682 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3683 if (i != InductionOperand && 3684 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3685 return Ptr; 3686 return GEP->getOperand(InductionOperand); 3687 } 3688 3689 ///\brief Look for a cast use of the passed value. 3690 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3691 Value *UniqueCast = nullptr; 3692 for (User *U : Ptr->users()) { 3693 CastInst *CI = dyn_cast<CastInst>(U); 3694 if (CI && CI->getType() == Ty) { 3695 if (!UniqueCast) 3696 UniqueCast = CI; 3697 else 3698 return nullptr; 3699 } 3700 } 3701 return UniqueCast; 3702 } 3703 3704 ///\brief Get the stride of a pointer access in a loop. 3705 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3706 /// pointer to the Value, or null otherwise. 3707 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3708 const DataLayout *DL, Loop *Lp) { 3709 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3710 if (!PtrTy || PtrTy->isAggregateType()) 3711 return nullptr; 3712 3713 // Try to remove a gep instruction to make the pointer (actually index at this 3714 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3715 // pointer, otherwise, we are analyzing the index. 3716 Value *OrigPtr = Ptr; 3717 3718 // The size of the pointer access. 3719 int64_t PtrAccessSize = 1; 3720 3721 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3722 const SCEV *V = SE->getSCEV(Ptr); 3723 3724 if (Ptr != OrigPtr) 3725 // Strip off casts. 3726 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3727 V = C->getOperand(); 3728 3729 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3730 if (!S) 3731 return nullptr; 3732 3733 V = S->getStepRecurrence(*SE); 3734 if (!V) 3735 return nullptr; 3736 3737 // Strip off the size of access multiplication if we are still analyzing the 3738 // pointer. 3739 if (OrigPtr == Ptr) { 3740 DL->getTypeAllocSize(PtrTy->getElementType()); 3741 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3742 if (M->getOperand(0)->getSCEVType() != scConstant) 3743 return nullptr; 3744 3745 const APInt &APStepVal = 3746 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3747 3748 // Huge step value - give up. 3749 if (APStepVal.getBitWidth() > 64) 3750 return nullptr; 3751 3752 int64_t StepVal = APStepVal.getSExtValue(); 3753 if (PtrAccessSize != StepVal) 3754 return nullptr; 3755 V = M->getOperand(1); 3756 } 3757 } 3758 3759 // Strip off casts. 3760 Type *StripedOffRecurrenceCast = nullptr; 3761 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3762 StripedOffRecurrenceCast = C->getType(); 3763 V = C->getOperand(); 3764 } 3765 3766 // Look for the loop invariant symbolic value. 3767 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3768 if (!U) 3769 return nullptr; 3770 3771 Value *Stride = U->getValue(); 3772 if (!Lp->isLoopInvariant(Stride)) 3773 return nullptr; 3774 3775 // If we have stripped off the recurrence cast we have to make sure that we 3776 // return the value that is used in this loop so that we can replace it later. 3777 if (StripedOffRecurrenceCast) 3778 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3779 3780 return Stride; 3781 } 3782 3783 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3784 Value *Ptr = nullptr; 3785 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3786 Ptr = LI->getPointerOperand(); 3787 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3788 Ptr = SI->getPointerOperand(); 3789 else 3790 return; 3791 3792 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3793 if (!Stride) 3794 return; 3795 3796 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3797 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3798 Strides[Ptr] = Stride; 3799 StrideSet.insert(Stride); 3800 } 3801 3802 void LoopVectorizationLegality::collectLoopUniforms() { 3803 // We now know that the loop is vectorizable! 3804 // Collect variables that will remain uniform after vectorization. 3805 std::vector<Value*> Worklist; 3806 BasicBlock *Latch = TheLoop->getLoopLatch(); 3807 3808 // Start with the conditional branch and walk up the block. 3809 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3810 3811 // Also add all consecutive pointer values; these values will be uniform 3812 // after vectorization (and subsequent cleanup) and, until revectorization is 3813 // supported, all dependencies must also be uniform. 3814 for (Loop::block_iterator B = TheLoop->block_begin(), 3815 BE = TheLoop->block_end(); B != BE; ++B) 3816 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3817 I != IE; ++I) 3818 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3819 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3820 3821 while (!Worklist.empty()) { 3822 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3823 Worklist.pop_back(); 3824 3825 // Look at instructions inside this loop. 3826 // Stop when reaching PHI nodes. 3827 // TODO: we need to follow values all over the loop, not only in this block. 3828 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3829 continue; 3830 3831 // This is a known uniform. 3832 Uniforms.insert(I); 3833 3834 // Insert all operands. 3835 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3836 } 3837 } 3838 3839 bool LoopVectorizationLegality::canVectorizeMemory() { 3840 LAI = &LAA->getInfo(TheLoop, Strides); 3841 auto &OptionalReport = LAI->getReport(); 3842 if (OptionalReport) 3843 emitAnalysis(VectorizationReport(*OptionalReport)); 3844 return LAI->canVectorizeMemory(); 3845 } 3846 3847 static bool hasMultipleUsesOf(Instruction *I, 3848 SmallPtrSetImpl<Instruction *> &Insts) { 3849 unsigned NumUses = 0; 3850 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3851 if (Insts.count(dyn_cast<Instruction>(*Use))) 3852 ++NumUses; 3853 if (NumUses > 1) 3854 return true; 3855 } 3856 3857 return false; 3858 } 3859 3860 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 3861 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3862 if (!Set.count(dyn_cast<Instruction>(*Use))) 3863 return false; 3864 return true; 3865 } 3866 3867 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3868 ReductionKind Kind) { 3869 if (Phi->getNumIncomingValues() != 2) 3870 return false; 3871 3872 // Reduction variables are only found in the loop header block. 3873 if (Phi->getParent() != TheLoop->getHeader()) 3874 return false; 3875 3876 // Obtain the reduction start value from the value that comes from the loop 3877 // preheader. 3878 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3879 3880 // ExitInstruction is the single value which is used outside the loop. 3881 // We only allow for a single reduction value to be used outside the loop. 3882 // This includes users of the reduction, variables (which form a cycle 3883 // which ends in the phi node). 3884 Instruction *ExitInstruction = nullptr; 3885 // Indicates that we found a reduction operation in our scan. 3886 bool FoundReduxOp = false; 3887 3888 // We start with the PHI node and scan for all of the users of this 3889 // instruction. All users must be instructions that can be used as reduction 3890 // variables (such as ADD). We must have a single out-of-block user. The cycle 3891 // must include the original PHI. 3892 bool FoundStartPHI = false; 3893 3894 // To recognize min/max patterns formed by a icmp select sequence, we store 3895 // the number of instruction we saw from the recognized min/max pattern, 3896 // to make sure we only see exactly the two instructions. 3897 unsigned NumCmpSelectPatternInst = 0; 3898 ReductionInstDesc ReduxDesc(false, nullptr); 3899 3900 SmallPtrSet<Instruction *, 8> VisitedInsts; 3901 SmallVector<Instruction *, 8> Worklist; 3902 Worklist.push_back(Phi); 3903 VisitedInsts.insert(Phi); 3904 3905 // A value in the reduction can be used: 3906 // - By the reduction: 3907 // - Reduction operation: 3908 // - One use of reduction value (safe). 3909 // - Multiple use of reduction value (not safe). 3910 // - PHI: 3911 // - All uses of the PHI must be the reduction (safe). 3912 // - Otherwise, not safe. 3913 // - By one instruction outside of the loop (safe). 3914 // - By further instructions outside of the loop (not safe). 3915 // - By an instruction that is not part of the reduction (not safe). 3916 // This is either: 3917 // * An instruction type other than PHI or the reduction operation. 3918 // * A PHI in the header other than the initial PHI. 3919 while (!Worklist.empty()) { 3920 Instruction *Cur = Worklist.back(); 3921 Worklist.pop_back(); 3922 3923 // No Users. 3924 // If the instruction has no users then this is a broken chain and can't be 3925 // a reduction variable. 3926 if (Cur->use_empty()) 3927 return false; 3928 3929 bool IsAPhi = isa<PHINode>(Cur); 3930 3931 // A header PHI use other than the original PHI. 3932 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3933 return false; 3934 3935 // Reductions of instructions such as Div, and Sub is only possible if the 3936 // LHS is the reduction variable. 3937 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3938 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3939 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3940 return false; 3941 3942 // Any reduction instruction must be of one of the allowed kinds. 3943 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3944 if (!ReduxDesc.IsReduction) 3945 return false; 3946 3947 // A reduction operation must only have one use of the reduction value. 3948 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3949 hasMultipleUsesOf(Cur, VisitedInsts)) 3950 return false; 3951 3952 // All inputs to a PHI node must be a reduction value. 3953 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3954 return false; 3955 3956 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3957 isa<SelectInst>(Cur))) 3958 ++NumCmpSelectPatternInst; 3959 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3960 isa<SelectInst>(Cur))) 3961 ++NumCmpSelectPatternInst; 3962 3963 // Check whether we found a reduction operator. 3964 FoundReduxOp |= !IsAPhi; 3965 3966 // Process users of current instruction. Push non-PHI nodes after PHI nodes 3967 // onto the stack. This way we are going to have seen all inputs to PHI 3968 // nodes once we get to them. 3969 SmallVector<Instruction *, 8> NonPHIs; 3970 SmallVector<Instruction *, 8> PHIs; 3971 for (User *U : Cur->users()) { 3972 Instruction *UI = cast<Instruction>(U); 3973 3974 // Check if we found the exit user. 3975 BasicBlock *Parent = UI->getParent(); 3976 if (!TheLoop->contains(Parent)) { 3977 // Exit if you find multiple outside users or if the header phi node is 3978 // being used. In this case the user uses the value of the previous 3979 // iteration, in which case we would loose "VF-1" iterations of the 3980 // reduction operation if we vectorize. 3981 if (ExitInstruction != nullptr || Cur == Phi) 3982 return false; 3983 3984 // The instruction used by an outside user must be the last instruction 3985 // before we feed back to the reduction phi. Otherwise, we loose VF-1 3986 // operations on the value. 3987 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 3988 return false; 3989 3990 ExitInstruction = Cur; 3991 continue; 3992 } 3993 3994 // Process instructions only once (termination). Each reduction cycle 3995 // value must only be used once, except by phi nodes and min/max 3996 // reductions which are represented as a cmp followed by a select. 3997 ReductionInstDesc IgnoredVal(false, nullptr); 3998 if (VisitedInsts.insert(UI).second) { 3999 if (isa<PHINode>(UI)) 4000 PHIs.push_back(UI); 4001 else 4002 NonPHIs.push_back(UI); 4003 } else if (!isa<PHINode>(UI) && 4004 ((!isa<FCmpInst>(UI) && 4005 !isa<ICmpInst>(UI) && 4006 !isa<SelectInst>(UI)) || 4007 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4008 return false; 4009 4010 // Remember that we completed the cycle. 4011 if (UI == Phi) 4012 FoundStartPHI = true; 4013 } 4014 Worklist.append(PHIs.begin(), PHIs.end()); 4015 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4016 } 4017 4018 // This means we have seen one but not the other instruction of the 4019 // pattern or more than just a select and cmp. 4020 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4021 NumCmpSelectPatternInst != 2) 4022 return false; 4023 4024 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4025 return false; 4026 4027 // We found a reduction var if we have reached the original phi node and we 4028 // only have a single instruction with out-of-loop users. 4029 4030 // This instruction is allowed to have out-of-loop users. 4031 AllowedExit.insert(ExitInstruction); 4032 4033 // Save the description of this reduction variable. 4034 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4035 ReduxDesc.MinMaxKind); 4036 Reductions[Phi] = RD; 4037 // We've ended the cycle. This is a reduction variable if we have an 4038 // outside user and it has a binary op. 4039 4040 return true; 4041 } 4042 4043 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4044 /// pattern corresponding to a min(X, Y) or max(X, Y). 4045 LoopVectorizationLegality::ReductionInstDesc 4046 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4047 ReductionInstDesc &Prev) { 4048 4049 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4050 "Expect a select instruction"); 4051 Instruction *Cmp = nullptr; 4052 SelectInst *Select = nullptr; 4053 4054 // We must handle the select(cmp()) as a single instruction. Advance to the 4055 // select. 4056 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4057 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4058 return ReductionInstDesc(false, I); 4059 return ReductionInstDesc(Select, Prev.MinMaxKind); 4060 } 4061 4062 // Only handle single use cases for now. 4063 if (!(Select = dyn_cast<SelectInst>(I))) 4064 return ReductionInstDesc(false, I); 4065 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4066 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4067 return ReductionInstDesc(false, I); 4068 if (!Cmp->hasOneUse()) 4069 return ReductionInstDesc(false, I); 4070 4071 Value *CmpLeft; 4072 Value *CmpRight; 4073 4074 // Look for a min/max pattern. 4075 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4076 return ReductionInstDesc(Select, MRK_UIntMin); 4077 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4078 return ReductionInstDesc(Select, MRK_UIntMax); 4079 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4080 return ReductionInstDesc(Select, MRK_SIntMax); 4081 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4082 return ReductionInstDesc(Select, MRK_SIntMin); 4083 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4084 return ReductionInstDesc(Select, MRK_FloatMin); 4085 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4086 return ReductionInstDesc(Select, MRK_FloatMax); 4087 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4088 return ReductionInstDesc(Select, MRK_FloatMin); 4089 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4090 return ReductionInstDesc(Select, MRK_FloatMax); 4091 4092 return ReductionInstDesc(false, I); 4093 } 4094 4095 LoopVectorizationLegality::ReductionInstDesc 4096 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4097 ReductionKind Kind, 4098 ReductionInstDesc &Prev) { 4099 bool FP = I->getType()->isFloatingPointTy(); 4100 bool FastMath = FP && I->hasUnsafeAlgebra(); 4101 switch (I->getOpcode()) { 4102 default: 4103 return ReductionInstDesc(false, I); 4104 case Instruction::PHI: 4105 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4106 Kind != RK_FloatMinMax)) 4107 return ReductionInstDesc(false, I); 4108 return ReductionInstDesc(I, Prev.MinMaxKind); 4109 case Instruction::Sub: 4110 case Instruction::Add: 4111 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4112 case Instruction::Mul: 4113 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4114 case Instruction::And: 4115 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4116 case Instruction::Or: 4117 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4118 case Instruction::Xor: 4119 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4120 case Instruction::FMul: 4121 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4122 case Instruction::FSub: 4123 case Instruction::FAdd: 4124 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4125 case Instruction::FCmp: 4126 case Instruction::ICmp: 4127 case Instruction::Select: 4128 if (Kind != RK_IntegerMinMax && 4129 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4130 return ReductionInstDesc(false, I); 4131 return isMinMaxSelectCmpPattern(I, Prev); 4132 } 4133 } 4134 4135 LoopVectorizationLegality::InductionKind 4136 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4137 ConstantInt *&StepValue) { 4138 Type *PhiTy = Phi->getType(); 4139 // We only handle integer and pointer inductions variables. 4140 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4141 return IK_NoInduction; 4142 4143 // Check that the PHI is consecutive. 4144 const SCEV *PhiScev = SE->getSCEV(Phi); 4145 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4146 if (!AR) { 4147 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4148 return IK_NoInduction; 4149 } 4150 4151 const SCEV *Step = AR->getStepRecurrence(*SE); 4152 // Calculate the pointer stride and check if it is consecutive. 4153 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4154 if (!C) 4155 return IK_NoInduction; 4156 4157 ConstantInt *CV = C->getValue(); 4158 if (PhiTy->isIntegerTy()) { 4159 StepValue = CV; 4160 return IK_IntInduction; 4161 } 4162 4163 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4164 Type *PointerElementType = PhiTy->getPointerElementType(); 4165 // The pointer stride cannot be determined if the pointer element type is not 4166 // sized. 4167 if (!PointerElementType->isSized()) 4168 return IK_NoInduction; 4169 4170 int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType)); 4171 int64_t CVSize = CV->getSExtValue(); 4172 if (CVSize % Size) 4173 return IK_NoInduction; 4174 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 4175 return IK_PtrInduction; 4176 } 4177 4178 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4179 Value *In0 = const_cast<Value*>(V); 4180 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4181 if (!PN) 4182 return false; 4183 4184 return Inductions.count(PN); 4185 } 4186 4187 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4188 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4189 } 4190 4191 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4192 SmallPtrSetImpl<Value *> &SafePtrs) { 4193 4194 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4195 // Check that we don't have a constant expression that can trap as operand. 4196 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4197 OI != OE; ++OI) { 4198 if (Constant *C = dyn_cast<Constant>(*OI)) 4199 if (C->canTrap()) 4200 return false; 4201 } 4202 // We might be able to hoist the load. 4203 if (it->mayReadFromMemory()) { 4204 LoadInst *LI = dyn_cast<LoadInst>(it); 4205 if (!LI) 4206 return false; 4207 if (!SafePtrs.count(LI->getPointerOperand())) { 4208 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4209 MaskedOp.insert(LI); 4210 continue; 4211 } 4212 return false; 4213 } 4214 } 4215 4216 // We don't predicate stores at the moment. 4217 if (it->mayWriteToMemory()) { 4218 StoreInst *SI = dyn_cast<StoreInst>(it); 4219 // We only support predication of stores in basic blocks with one 4220 // predecessor. 4221 if (!SI) 4222 return false; 4223 4224 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4225 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4226 4227 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4228 !isSinglePredecessor) { 4229 // Build a masked store if it is legal for the target, otherwise scalarize 4230 // the block. 4231 bool isLegalMaskedOp = 4232 isLegalMaskedStore(SI->getValueOperand()->getType(), 4233 SI->getPointerOperand()); 4234 if (isLegalMaskedOp) { 4235 --NumPredStores; 4236 MaskedOp.insert(SI); 4237 continue; 4238 } 4239 return false; 4240 } 4241 } 4242 if (it->mayThrow()) 4243 return false; 4244 4245 // The instructions below can trap. 4246 switch (it->getOpcode()) { 4247 default: continue; 4248 case Instruction::UDiv: 4249 case Instruction::SDiv: 4250 case Instruction::URem: 4251 case Instruction::SRem: 4252 return false; 4253 } 4254 } 4255 4256 return true; 4257 } 4258 4259 LoopVectorizationCostModel::VectorizationFactor 4260 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4261 // Width 1 means no vectorize 4262 VectorizationFactor Factor = { 1U, 0U }; 4263 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4264 emitAnalysis(VectorizationReport() << 4265 "runtime pointer checks needed. Enable vectorization of this " 4266 "loop with '#pragma clang loop vectorize(enable)' when " 4267 "compiling with -Os"); 4268 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4269 return Factor; 4270 } 4271 4272 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4273 emitAnalysis(VectorizationReport() << 4274 "store that is conditionally executed prevents vectorization"); 4275 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4276 return Factor; 4277 } 4278 4279 // Find the trip count. 4280 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4281 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4282 4283 unsigned WidestType = getWidestType(); 4284 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4285 unsigned MaxSafeDepDist = -1U; 4286 if (Legal->getMaxSafeDepDistBytes() != -1U) 4287 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4288 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4289 WidestRegister : MaxSafeDepDist); 4290 unsigned MaxVectorSize = WidestRegister / WidestType; 4291 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4292 DEBUG(dbgs() << "LV: The Widest register is: " 4293 << WidestRegister << " bits.\n"); 4294 4295 if (MaxVectorSize == 0) { 4296 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4297 MaxVectorSize = 1; 4298 } 4299 4300 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4301 " into one vector!"); 4302 4303 unsigned VF = MaxVectorSize; 4304 4305 // If we optimize the program for size, avoid creating the tail loop. 4306 if (OptForSize) { 4307 // If we are unable to calculate the trip count then don't try to vectorize. 4308 if (TC < 2) { 4309 emitAnalysis 4310 (VectorizationReport() << 4311 "unable to calculate the loop count due to complex control flow"); 4312 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4313 return Factor; 4314 } 4315 4316 // Find the maximum SIMD width that can fit within the trip count. 4317 VF = TC % MaxVectorSize; 4318 4319 if (VF == 0) 4320 VF = MaxVectorSize; 4321 4322 // If the trip count that we found modulo the vectorization factor is not 4323 // zero then we require a tail. 4324 if (VF < 2) { 4325 emitAnalysis(VectorizationReport() << 4326 "cannot optimize for size and vectorize at the " 4327 "same time. Enable vectorization of this loop " 4328 "with '#pragma clang loop vectorize(enable)' " 4329 "when compiling with -Os"); 4330 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4331 return Factor; 4332 } 4333 } 4334 4335 int UserVF = Hints->getWidth(); 4336 if (UserVF != 0) { 4337 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4338 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4339 4340 Factor.Width = UserVF; 4341 return Factor; 4342 } 4343 4344 float Cost = expectedCost(1); 4345 #ifndef NDEBUG 4346 const float ScalarCost = Cost; 4347 #endif /* NDEBUG */ 4348 unsigned Width = 1; 4349 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4350 4351 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4352 // Ignore scalar width, because the user explicitly wants vectorization. 4353 if (ForceVectorization && VF > 1) { 4354 Width = 2; 4355 Cost = expectedCost(Width) / (float)Width; 4356 } 4357 4358 for (unsigned i=2; i <= VF; i*=2) { 4359 // Notice that the vector loop needs to be executed less times, so 4360 // we need to divide the cost of the vector loops by the width of 4361 // the vector elements. 4362 float VectorCost = expectedCost(i) / (float)i; 4363 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4364 (int)VectorCost << ".\n"); 4365 if (VectorCost < Cost) { 4366 Cost = VectorCost; 4367 Width = i; 4368 } 4369 } 4370 4371 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4372 << "LV: Vectorization seems to be not beneficial, " 4373 << "but was forced by a user.\n"); 4374 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4375 Factor.Width = Width; 4376 Factor.Cost = Width * Cost; 4377 return Factor; 4378 } 4379 4380 unsigned LoopVectorizationCostModel::getWidestType() { 4381 unsigned MaxWidth = 8; 4382 4383 // For each block. 4384 for (Loop::block_iterator bb = TheLoop->block_begin(), 4385 be = TheLoop->block_end(); bb != be; ++bb) { 4386 BasicBlock *BB = *bb; 4387 4388 // For each instruction in the loop. 4389 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4390 Type *T = it->getType(); 4391 4392 // Ignore ephemeral values. 4393 if (EphValues.count(it)) 4394 continue; 4395 4396 // Only examine Loads, Stores and PHINodes. 4397 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4398 continue; 4399 4400 // Examine PHI nodes that are reduction variables. 4401 if (PHINode *PN = dyn_cast<PHINode>(it)) 4402 if (!Legal->getReductionVars()->count(PN)) 4403 continue; 4404 4405 // Examine the stored values. 4406 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4407 T = ST->getValueOperand()->getType(); 4408 4409 // Ignore loaded pointer types and stored pointer types that are not 4410 // consecutive. However, we do want to take consecutive stores/loads of 4411 // pointer vectors into account. 4412 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4413 continue; 4414 4415 MaxWidth = std::max(MaxWidth, 4416 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4417 } 4418 } 4419 4420 return MaxWidth; 4421 } 4422 4423 unsigned 4424 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4425 unsigned VF, 4426 unsigned LoopCost) { 4427 4428 // -- The unroll heuristics -- 4429 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4430 // There are many micro-architectural considerations that we can't predict 4431 // at this level. For example, frontend pressure (on decode or fetch) due to 4432 // code size, or the number and capabilities of the execution ports. 4433 // 4434 // We use the following heuristics to select the unroll factor: 4435 // 1. If the code has reductions, then we unroll in order to break the cross 4436 // iteration dependency. 4437 // 2. If the loop is really small, then we unroll in order to reduce the loop 4438 // overhead. 4439 // 3. We don't unroll if we think that we will spill registers to memory due 4440 // to the increased register pressure. 4441 4442 // Use the user preference, unless 'auto' is selected. 4443 int UserUF = Hints->getInterleave(); 4444 if (UserUF != 0) 4445 return UserUF; 4446 4447 // When we optimize for size, we don't unroll. 4448 if (OptForSize) 4449 return 1; 4450 4451 // We used the distance for the unroll factor. 4452 if (Legal->getMaxSafeDepDistBytes() != -1U) 4453 return 1; 4454 4455 // Do not unroll loops with a relatively small trip count. 4456 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4457 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4458 return 1; 4459 4460 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4461 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4462 " registers\n"); 4463 4464 if (VF == 1) { 4465 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4466 TargetNumRegisters = ForceTargetNumScalarRegs; 4467 } else { 4468 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4469 TargetNumRegisters = ForceTargetNumVectorRegs; 4470 } 4471 4472 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4473 // We divide by these constants so assume that we have at least one 4474 // instruction that uses at least one register. 4475 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4476 R.NumInstructions = std::max(R.NumInstructions, 1U); 4477 4478 // We calculate the unroll factor using the following formula. 4479 // Subtract the number of loop invariants from the number of available 4480 // registers. These registers are used by all of the unrolled instances. 4481 // Next, divide the remaining registers by the number of registers that is 4482 // required by the loop, in order to estimate how many parallel instances 4483 // fit without causing spills. All of this is rounded down if necessary to be 4484 // a power of two. We want power of two unroll factors to simplify any 4485 // addressing operations or alignment considerations. 4486 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4487 R.MaxLocalUsers); 4488 4489 // Don't count the induction variable as unrolled. 4490 if (EnableIndVarRegisterHeur) 4491 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4492 std::max(1U, (R.MaxLocalUsers - 1))); 4493 4494 // Clamp the unroll factor ranges to reasonable factors. 4495 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 4496 4497 // Check if the user has overridden the unroll max. 4498 if (VF == 1) { 4499 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4500 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4501 } else { 4502 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4503 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4504 } 4505 4506 // If we did not calculate the cost for VF (because the user selected the VF) 4507 // then we calculate the cost of VF here. 4508 if (LoopCost == 0) 4509 LoopCost = expectedCost(VF); 4510 4511 // Clamp the calculated UF to be between the 1 and the max unroll factor 4512 // that the target allows. 4513 if (UF > MaxInterleaveSize) 4514 UF = MaxInterleaveSize; 4515 else if (UF < 1) 4516 UF = 1; 4517 4518 // Unroll if we vectorized this loop and there is a reduction that could 4519 // benefit from unrolling. 4520 if (VF > 1 && Legal->getReductionVars()->size()) { 4521 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4522 return UF; 4523 } 4524 4525 // Note that if we've already vectorized the loop we will have done the 4526 // runtime check and so unrolling won't require further checks. 4527 bool UnrollingRequiresRuntimePointerCheck = 4528 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4529 4530 // We want to unroll small loops in order to reduce the loop overhead and 4531 // potentially expose ILP opportunities. 4532 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4533 if (!UnrollingRequiresRuntimePointerCheck && 4534 LoopCost < SmallLoopCost) { 4535 // We assume that the cost overhead is 1 and we use the cost model 4536 // to estimate the cost of the loop and unroll until the cost of the 4537 // loop overhead is about 5% of the cost of the loop. 4538 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4539 4540 // Unroll until store/load ports (estimated by max unroll factor) are 4541 // saturated. 4542 unsigned NumStores = Legal->getNumStores(); 4543 unsigned NumLoads = Legal->getNumLoads(); 4544 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4545 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4546 4547 // If we have a scalar reduction (vector reductions are already dealt with 4548 // by this point), we can increase the critical path length if the loop 4549 // we're unrolling is inside another loop. Limit, by default to 2, so the 4550 // critical path only gets increased by one reduction operation. 4551 if (Legal->getReductionVars()->size() && 4552 TheLoop->getLoopDepth() > 1) { 4553 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4554 SmallUF = std::min(SmallUF, F); 4555 StoresUF = std::min(StoresUF, F); 4556 LoadsUF = std::min(LoadsUF, F); 4557 } 4558 4559 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4560 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4561 return std::max(StoresUF, LoadsUF); 4562 } 4563 4564 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4565 return SmallUF; 4566 } 4567 4568 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4569 return 1; 4570 } 4571 4572 LoopVectorizationCostModel::RegisterUsage 4573 LoopVectorizationCostModel::calculateRegisterUsage() { 4574 // This function calculates the register usage by measuring the highest number 4575 // of values that are alive at a single location. Obviously, this is a very 4576 // rough estimation. We scan the loop in a topological order in order and 4577 // assign a number to each instruction. We use RPO to ensure that defs are 4578 // met before their users. We assume that each instruction that has in-loop 4579 // users starts an interval. We record every time that an in-loop value is 4580 // used, so we have a list of the first and last occurrences of each 4581 // instruction. Next, we transpose this data structure into a multi map that 4582 // holds the list of intervals that *end* at a specific location. This multi 4583 // map allows us to perform a linear search. We scan the instructions linearly 4584 // and record each time that a new interval starts, by placing it in a set. 4585 // If we find this value in the multi-map then we remove it from the set. 4586 // The max register usage is the maximum size of the set. 4587 // We also search for instructions that are defined outside the loop, but are 4588 // used inside the loop. We need this number separately from the max-interval 4589 // usage number because when we unroll, loop-invariant values do not take 4590 // more register. 4591 LoopBlocksDFS DFS(TheLoop); 4592 DFS.perform(LI); 4593 4594 RegisterUsage R; 4595 R.NumInstructions = 0; 4596 4597 // Each 'key' in the map opens a new interval. The values 4598 // of the map are the index of the 'last seen' usage of the 4599 // instruction that is the key. 4600 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4601 // Maps instruction to its index. 4602 DenseMap<unsigned, Instruction*> IdxToInstr; 4603 // Marks the end of each interval. 4604 IntervalMap EndPoint; 4605 // Saves the list of instruction indices that are used in the loop. 4606 SmallSet<Instruction*, 8> Ends; 4607 // Saves the list of values that are used in the loop but are 4608 // defined outside the loop, such as arguments and constants. 4609 SmallPtrSet<Value*, 8> LoopInvariants; 4610 4611 unsigned Index = 0; 4612 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4613 be = DFS.endRPO(); bb != be; ++bb) { 4614 R.NumInstructions += (*bb)->size(); 4615 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4616 ++it) { 4617 Instruction *I = it; 4618 IdxToInstr[Index++] = I; 4619 4620 // Save the end location of each USE. 4621 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4622 Value *U = I->getOperand(i); 4623 Instruction *Instr = dyn_cast<Instruction>(U); 4624 4625 // Ignore non-instruction values such as arguments, constants, etc. 4626 if (!Instr) continue; 4627 4628 // If this instruction is outside the loop then record it and continue. 4629 if (!TheLoop->contains(Instr)) { 4630 LoopInvariants.insert(Instr); 4631 continue; 4632 } 4633 4634 // Overwrite previous end points. 4635 EndPoint[Instr] = Index; 4636 Ends.insert(Instr); 4637 } 4638 } 4639 } 4640 4641 // Saves the list of intervals that end with the index in 'key'. 4642 typedef SmallVector<Instruction*, 2> InstrList; 4643 DenseMap<unsigned, InstrList> TransposeEnds; 4644 4645 // Transpose the EndPoints to a list of values that end at each index. 4646 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4647 it != e; ++it) 4648 TransposeEnds[it->second].push_back(it->first); 4649 4650 SmallSet<Instruction*, 8> OpenIntervals; 4651 unsigned MaxUsage = 0; 4652 4653 4654 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4655 for (unsigned int i = 0; i < Index; ++i) { 4656 Instruction *I = IdxToInstr[i]; 4657 // Ignore instructions that are never used within the loop. 4658 if (!Ends.count(I)) continue; 4659 4660 // Ignore ephemeral values. 4661 if (EphValues.count(I)) 4662 continue; 4663 4664 // Remove all of the instructions that end at this location. 4665 InstrList &List = TransposeEnds[i]; 4666 for (unsigned int j=0, e = List.size(); j < e; ++j) 4667 OpenIntervals.erase(List[j]); 4668 4669 // Count the number of live interals. 4670 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4671 4672 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4673 OpenIntervals.size() << '\n'); 4674 4675 // Add the current instruction to the list of open intervals. 4676 OpenIntervals.insert(I); 4677 } 4678 4679 unsigned Invariant = LoopInvariants.size(); 4680 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4681 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4682 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4683 4684 R.LoopInvariantRegs = Invariant; 4685 R.MaxLocalUsers = MaxUsage; 4686 return R; 4687 } 4688 4689 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4690 unsigned Cost = 0; 4691 4692 // For each block. 4693 for (Loop::block_iterator bb = TheLoop->block_begin(), 4694 be = TheLoop->block_end(); bb != be; ++bb) { 4695 unsigned BlockCost = 0; 4696 BasicBlock *BB = *bb; 4697 4698 // For each instruction in the old loop. 4699 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4700 // Skip dbg intrinsics. 4701 if (isa<DbgInfoIntrinsic>(it)) 4702 continue; 4703 4704 // Ignore ephemeral values. 4705 if (EphValues.count(it)) 4706 continue; 4707 4708 unsigned C = getInstructionCost(it, VF); 4709 4710 // Check if we should override the cost. 4711 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4712 C = ForceTargetInstructionCost; 4713 4714 BlockCost += C; 4715 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4716 VF << " For instruction: " << *it << '\n'); 4717 } 4718 4719 // We assume that if-converted blocks have a 50% chance of being executed. 4720 // When the code is scalar then some of the blocks are avoided due to CF. 4721 // When the code is vectorized we execute all code paths. 4722 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4723 BlockCost /= 2; 4724 4725 Cost += BlockCost; 4726 } 4727 4728 return Cost; 4729 } 4730 4731 /// \brief Check whether the address computation for a non-consecutive memory 4732 /// access looks like an unlikely candidate for being merged into the indexing 4733 /// mode. 4734 /// 4735 /// We look for a GEP which has one index that is an induction variable and all 4736 /// other indices are loop invariant. If the stride of this access is also 4737 /// within a small bound we decide that this address computation can likely be 4738 /// merged into the addressing mode. 4739 /// In all other cases, we identify the address computation as complex. 4740 static bool isLikelyComplexAddressComputation(Value *Ptr, 4741 LoopVectorizationLegality *Legal, 4742 ScalarEvolution *SE, 4743 const Loop *TheLoop) { 4744 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4745 if (!Gep) 4746 return true; 4747 4748 // We are looking for a gep with all loop invariant indices except for one 4749 // which should be an induction variable. 4750 unsigned NumOperands = Gep->getNumOperands(); 4751 for (unsigned i = 1; i < NumOperands; ++i) { 4752 Value *Opd = Gep->getOperand(i); 4753 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4754 !Legal->isInductionVariable(Opd)) 4755 return true; 4756 } 4757 4758 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4759 // can likely be merged into the address computation. 4760 unsigned MaxMergeDistance = 64; 4761 4762 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4763 if (!AddRec) 4764 return true; 4765 4766 // Check the step is constant. 4767 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4768 // Calculate the pointer stride and check if it is consecutive. 4769 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4770 if (!C) 4771 return true; 4772 4773 const APInt &APStepVal = C->getValue()->getValue(); 4774 4775 // Huge step value - give up. 4776 if (APStepVal.getBitWidth() > 64) 4777 return true; 4778 4779 int64_t StepVal = APStepVal.getSExtValue(); 4780 4781 return StepVal > MaxMergeDistance; 4782 } 4783 4784 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4785 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4786 return true; 4787 return false; 4788 } 4789 4790 unsigned 4791 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4792 // If we know that this instruction will remain uniform, check the cost of 4793 // the scalar version. 4794 if (Legal->isUniformAfterVectorization(I)) 4795 VF = 1; 4796 4797 Type *RetTy = I->getType(); 4798 Type *VectorTy = ToVectorTy(RetTy, VF); 4799 4800 // TODO: We need to estimate the cost of intrinsic calls. 4801 switch (I->getOpcode()) { 4802 case Instruction::GetElementPtr: 4803 // We mark this instruction as zero-cost because the cost of GEPs in 4804 // vectorized code depends on whether the corresponding memory instruction 4805 // is scalarized or not. Therefore, we handle GEPs with the memory 4806 // instruction cost. 4807 return 0; 4808 case Instruction::Br: { 4809 return TTI.getCFInstrCost(I->getOpcode()); 4810 } 4811 case Instruction::PHI: 4812 //TODO: IF-converted IFs become selects. 4813 return 0; 4814 case Instruction::Add: 4815 case Instruction::FAdd: 4816 case Instruction::Sub: 4817 case Instruction::FSub: 4818 case Instruction::Mul: 4819 case Instruction::FMul: 4820 case Instruction::UDiv: 4821 case Instruction::SDiv: 4822 case Instruction::FDiv: 4823 case Instruction::URem: 4824 case Instruction::SRem: 4825 case Instruction::FRem: 4826 case Instruction::Shl: 4827 case Instruction::LShr: 4828 case Instruction::AShr: 4829 case Instruction::And: 4830 case Instruction::Or: 4831 case Instruction::Xor: { 4832 // Since we will replace the stride by 1 the multiplication should go away. 4833 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 4834 return 0; 4835 // Certain instructions can be cheaper to vectorize if they have a constant 4836 // second vector operand. One example of this are shifts on x86. 4837 TargetTransformInfo::OperandValueKind Op1VK = 4838 TargetTransformInfo::OK_AnyValue; 4839 TargetTransformInfo::OperandValueKind Op2VK = 4840 TargetTransformInfo::OK_AnyValue; 4841 TargetTransformInfo::OperandValueProperties Op1VP = 4842 TargetTransformInfo::OP_None; 4843 TargetTransformInfo::OperandValueProperties Op2VP = 4844 TargetTransformInfo::OP_None; 4845 Value *Op2 = I->getOperand(1); 4846 4847 // Check for a splat of a constant or for a non uniform vector of constants. 4848 if (isa<ConstantInt>(Op2)) { 4849 ConstantInt *CInt = cast<ConstantInt>(Op2); 4850 if (CInt && CInt->getValue().isPowerOf2()) 4851 Op2VP = TargetTransformInfo::OP_PowerOf2; 4852 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4853 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 4854 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4855 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 4856 if (SplatValue) { 4857 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 4858 if (CInt && CInt->getValue().isPowerOf2()) 4859 Op2VP = TargetTransformInfo::OP_PowerOf2; 4860 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4861 } 4862 } 4863 4864 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 4865 Op1VP, Op2VP); 4866 } 4867 case Instruction::Select: { 4868 SelectInst *SI = cast<SelectInst>(I); 4869 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4870 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4871 Type *CondTy = SI->getCondition()->getType(); 4872 if (!ScalarCond) 4873 CondTy = VectorType::get(CondTy, VF); 4874 4875 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4876 } 4877 case Instruction::ICmp: 4878 case Instruction::FCmp: { 4879 Type *ValTy = I->getOperand(0)->getType(); 4880 VectorTy = ToVectorTy(ValTy, VF); 4881 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4882 } 4883 case Instruction::Store: 4884 case Instruction::Load: { 4885 StoreInst *SI = dyn_cast<StoreInst>(I); 4886 LoadInst *LI = dyn_cast<LoadInst>(I); 4887 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4888 LI->getType()); 4889 VectorTy = ToVectorTy(ValTy, VF); 4890 4891 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4892 unsigned AS = SI ? SI->getPointerAddressSpace() : 4893 LI->getPointerAddressSpace(); 4894 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4895 // We add the cost of address computation here instead of with the gep 4896 // instruction because only here we know whether the operation is 4897 // scalarized. 4898 if (VF == 1) 4899 return TTI.getAddressComputationCost(VectorTy) + 4900 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4901 4902 // Scalarized loads/stores. 4903 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4904 bool Reverse = ConsecutiveStride < 0; 4905 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4906 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4907 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4908 bool IsComplexComputation = 4909 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4910 unsigned Cost = 0; 4911 // The cost of extracting from the value vector and pointer vector. 4912 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4913 for (unsigned i = 0; i < VF; ++i) { 4914 // The cost of extracting the pointer operand. 4915 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4916 // In case of STORE, the cost of ExtractElement from the vector. 4917 // In case of LOAD, the cost of InsertElement into the returned 4918 // vector. 4919 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4920 Instruction::InsertElement, 4921 VectorTy, i); 4922 } 4923 4924 // The cost of the scalar loads/stores. 4925 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4926 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4927 Alignment, AS); 4928 return Cost; 4929 } 4930 4931 // Wide load/stores. 4932 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4933 if (Legal->isMaskRequired(I)) 4934 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 4935 AS); 4936 else 4937 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4938 4939 if (Reverse) 4940 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4941 VectorTy, 0); 4942 return Cost; 4943 } 4944 case Instruction::ZExt: 4945 case Instruction::SExt: 4946 case Instruction::FPToUI: 4947 case Instruction::FPToSI: 4948 case Instruction::FPExt: 4949 case Instruction::PtrToInt: 4950 case Instruction::IntToPtr: 4951 case Instruction::SIToFP: 4952 case Instruction::UIToFP: 4953 case Instruction::Trunc: 4954 case Instruction::FPTrunc: 4955 case Instruction::BitCast: { 4956 // We optimize the truncation of induction variable. 4957 // The cost of these is the same as the scalar operation. 4958 if (I->getOpcode() == Instruction::Trunc && 4959 Legal->isInductionVariable(I->getOperand(0))) 4960 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4961 I->getOperand(0)->getType()); 4962 4963 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4964 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4965 } 4966 case Instruction::Call: { 4967 CallInst *CI = cast<CallInst>(I); 4968 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4969 assert(ID && "Not an intrinsic call!"); 4970 Type *RetTy = ToVectorTy(CI->getType(), VF); 4971 SmallVector<Type*, 4> Tys; 4972 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4973 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4974 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4975 } 4976 default: { 4977 // We are scalarizing the instruction. Return the cost of the scalar 4978 // instruction, plus the cost of insert and extract into vector 4979 // elements, times the vector width. 4980 unsigned Cost = 0; 4981 4982 if (!RetTy->isVoidTy() && VF != 1) { 4983 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4984 VectorTy); 4985 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4986 VectorTy); 4987 4988 // The cost of inserting the results plus extracting each one of the 4989 // operands. 4990 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4991 } 4992 4993 // The cost of executing VF copies of the scalar instruction. This opcode 4994 // is unknown. Assume that it is the same as 'mul'. 4995 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4996 return Cost; 4997 } 4998 }// end of switch. 4999 } 5000 5001 char LoopVectorize::ID = 0; 5002 static const char lv_name[] = "Loop Vectorization"; 5003 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5004 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5005 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5006 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5007 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5008 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5009 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5010 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5011 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5012 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5013 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5014 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5015 5016 namespace llvm { 5017 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5018 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5019 } 5020 } 5021 5022 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5023 // Check for a store. 5024 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5025 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5026 5027 // Check for a load. 5028 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5029 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5030 5031 return false; 5032 } 5033 5034 5035 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5036 bool IfPredicateStore) { 5037 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5038 // Holds vector parameters or scalars, in case of uniform vals. 5039 SmallVector<VectorParts, 4> Params; 5040 5041 setDebugLocFromInst(Builder, Instr); 5042 5043 // Find all of the vectorized parameters. 5044 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5045 Value *SrcOp = Instr->getOperand(op); 5046 5047 // If we are accessing the old induction variable, use the new one. 5048 if (SrcOp == OldInduction) { 5049 Params.push_back(getVectorValue(SrcOp)); 5050 continue; 5051 } 5052 5053 // Try using previously calculated values. 5054 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5055 5056 // If the src is an instruction that appeared earlier in the basic block 5057 // then it should already be vectorized. 5058 if (SrcInst && OrigLoop->contains(SrcInst)) { 5059 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5060 // The parameter is a vector value from earlier. 5061 Params.push_back(WidenMap.get(SrcInst)); 5062 } else { 5063 // The parameter is a scalar from outside the loop. Maybe even a constant. 5064 VectorParts Scalars; 5065 Scalars.append(UF, SrcOp); 5066 Params.push_back(Scalars); 5067 } 5068 } 5069 5070 assert(Params.size() == Instr->getNumOperands() && 5071 "Invalid number of operands"); 5072 5073 // Does this instruction return a value ? 5074 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5075 5076 Value *UndefVec = IsVoidRetTy ? nullptr : 5077 UndefValue::get(Instr->getType()); 5078 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5079 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5080 5081 Instruction *InsertPt = Builder.GetInsertPoint(); 5082 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5083 BasicBlock *CondBlock = nullptr; 5084 5085 VectorParts Cond; 5086 Loop *VectorLp = nullptr; 5087 if (IfPredicateStore) { 5088 assert(Instr->getParent()->getSinglePredecessor() && 5089 "Only support single predecessor blocks"); 5090 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5091 Instr->getParent()); 5092 VectorLp = LI->getLoopFor(IfBlock); 5093 assert(VectorLp && "Must have a loop for this block"); 5094 } 5095 5096 // For each vector unroll 'part': 5097 for (unsigned Part = 0; Part < UF; ++Part) { 5098 // For each scalar that we create: 5099 5100 // Start an "if (pred) a[i] = ..." block. 5101 Value *Cmp = nullptr; 5102 if (IfPredicateStore) { 5103 if (Cond[Part]->getType()->isVectorTy()) 5104 Cond[Part] = 5105 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5106 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5107 ConstantInt::get(Cond[Part]->getType(), 1)); 5108 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5109 LoopVectorBody.push_back(CondBlock); 5110 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5111 // Update Builder with newly created basic block. 5112 Builder.SetInsertPoint(InsertPt); 5113 } 5114 5115 Instruction *Cloned = Instr->clone(); 5116 if (!IsVoidRetTy) 5117 Cloned->setName(Instr->getName() + ".cloned"); 5118 // Replace the operands of the cloned instructions with extracted scalars. 5119 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5120 Value *Op = Params[op][Part]; 5121 Cloned->setOperand(op, Op); 5122 } 5123 5124 // Place the cloned scalar in the new loop. 5125 Builder.Insert(Cloned); 5126 5127 // If the original scalar returns a value we need to place it in a vector 5128 // so that future users will be able to use it. 5129 if (!IsVoidRetTy) 5130 VecResults[Part] = Cloned; 5131 5132 // End if-block. 5133 if (IfPredicateStore) { 5134 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5135 LoopVectorBody.push_back(NewIfBlock); 5136 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5137 Builder.SetInsertPoint(InsertPt); 5138 Instruction *OldBr = IfBlock->getTerminator(); 5139 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5140 OldBr->eraseFromParent(); 5141 IfBlock = NewIfBlock; 5142 } 5143 } 5144 } 5145 5146 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5147 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5148 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5149 5150 return scalarizeInstruction(Instr, IfPredicateStore); 5151 } 5152 5153 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5154 return Vec; 5155 } 5156 5157 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5158 return V; 5159 } 5160 5161 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5162 // When unrolling and the VF is 1, we only need to add a simple scalar. 5163 Type *ITy = Val->getType(); 5164 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5165 Constant *C = ConstantInt::get(ITy, StartIdx); 5166 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5167 } 5168