1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 419 bool InvariantCond, VPTransformState &State); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 435 unsigned VF, bool IsPtrLoopInvariant, 436 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 437 438 /// Vectorize a single PHINode in a block. This method handles the induction 439 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 440 /// arbitrary length vectors. 441 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 442 443 /// A helper function to scalarize a single Instruction in the innermost loop. 444 /// Generates a sequence of scalar instances for each lane between \p MinLane 445 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 446 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 447 /// Instr's operands. 448 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 449 const VPIteration &Instance, bool IfPredicateInstr, 450 VPTransformState &State); 451 452 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 453 /// is provided, the integer induction variable will first be truncated to 454 /// the corresponding type. 455 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 456 457 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 458 /// vector or scalar value on-demand if one is not yet available. When 459 /// vectorizing a loop, we visit the definition of an instruction before its 460 /// uses. When visiting the definition, we either vectorize or scalarize the 461 /// instruction, creating an entry for it in the corresponding map. (In some 462 /// cases, such as induction variables, we will create both vector and scalar 463 /// entries.) Then, as we encounter uses of the definition, we derive values 464 /// for each scalar or vector use unless such a value is already available. 465 /// For example, if we scalarize a definition and one of its uses is vector, 466 /// we build the required vector on-demand with an insertelement sequence 467 /// when visiting the use. Otherwise, if the use is scalar, we can use the 468 /// existing scalar definition. 469 /// 470 /// Return a value in the new loop corresponding to \p V from the original 471 /// loop at unroll index \p Part. If the value has already been vectorized, 472 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 473 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 474 /// a new vector value on-demand by inserting the scalar values into a vector 475 /// with an insertelement sequence. If the value has been neither vectorized 476 /// nor scalarized, it must be loop invariant, so we simply broadcast the 477 /// value into a vector. 478 Value *getOrCreateVectorValue(Value *V, unsigned Part); 479 480 /// Return a value in the new loop corresponding to \p V from the original 481 /// loop at unroll and vector indices \p Instance. If the value has been 482 /// vectorized but not scalarized, the necessary extractelement instruction 483 /// will be generated. 484 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 485 486 /// Construct the vector value of a scalarized value \p V one lane at a time. 487 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 488 489 /// Try to vectorize interleaved access group \p Group with the base address 490 /// given in \p Addr, optionally masking the vector operations if \p 491 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 492 /// values in the vectorized loop. 493 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 494 VPTransformState &State, VPValue *Addr, 495 VPValue *BlockInMask = nullptr); 496 497 /// Vectorize Load and Store instructions with the base address given in \p 498 /// Addr, optionally masking the vector operations if \p BlockInMask is 499 /// non-null. Use \p State to translate given VPValues to IR values in the 500 /// vectorized loop. 501 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 502 VPValue *Addr, VPValue *StoredValue, 503 VPValue *BlockInMask); 504 505 /// Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 510 void fixNonInductionPHIs(void); 511 512 protected: 513 friend class LoopVectorizationPlanner; 514 515 /// A small list of PHINodes. 516 using PhiVector = SmallVector<PHINode *, 4>; 517 518 /// A type for scalarized values in the new loop. Each value from the 519 /// original loop, when scalarized, is represented by UF x VF scalar values 520 /// in the new unrolled loop, where UF is the unroll factor and VF is the 521 /// vectorization factor. 522 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 523 524 /// Set up the values of the IVs correctly when exiting the vector loop. 525 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 526 Value *CountRoundDown, Value *EndValue, 527 BasicBlock *MiddleBlock); 528 529 /// Create a new induction variable inside L. 530 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 531 Value *Step, Instruction *DL); 532 533 /// Handle all cross-iteration phis in the header. 534 void fixCrossIterationPHIs(); 535 536 /// Fix a first-order recurrence. This is the second phase of vectorizing 537 /// this phi node. 538 void fixFirstOrderRecurrence(PHINode *Phi); 539 540 /// Fix a reduction cross-iteration phi. This is the second phase of 541 /// vectorizing this phi node. 542 void fixReduction(PHINode *Phi); 543 544 /// Clear NSW/NUW flags from reduction instructions if necessary. 545 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 546 547 /// The Loop exit block may have single value PHI nodes with some 548 /// incoming value. While vectorizing we only handled real values 549 /// that were defined inside the loop and we should have one value for 550 /// each predecessor of its parent basic block. See PR14725. 551 void fixLCSSAPHIs(); 552 553 /// Iteratively sink the scalarized operands of a predicated instruction into 554 /// the block that was created for it. 555 void sinkScalarOperands(Instruction *PredInst); 556 557 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 558 /// represented as. 559 void truncateToMinimalBitwidths(); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 569 /// to each vector element of Val. The sequence starts at StartIndex. 570 /// \p Opcode is relevant for FP induction variable. 571 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 572 Instruction::BinaryOps Opcode = 573 Instruction::BinaryOpsEnd); 574 575 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 576 /// variable on which to base the steps, \p Step is the size of the step, and 577 /// \p EntryVal is the value from the original loop that maps to the steps. 578 /// Note that \p EntryVal doesn't have to be an induction variable - it 579 /// can also be a truncate instruction. 580 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 581 const InductionDescriptor &ID); 582 583 /// Create a vector induction phi node based on an existing scalar one. \p 584 /// EntryVal is the value from the original loop that maps to the vector phi 585 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 586 /// truncate instruction, instead of widening the original IV, we widen a 587 /// version of the IV truncated to \p EntryVal's type. 588 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 589 Value *Step, Instruction *EntryVal); 590 591 /// Returns true if an instruction \p I should be scalarized instead of 592 /// vectorized for the chosen vectorization factor. 593 bool shouldScalarizeInstruction(Instruction *I) const; 594 595 /// Returns true if we should generate a scalar version of \p IV. 596 bool needsScalarInduction(Instruction *IV) const; 597 598 /// If there is a cast involved in the induction variable \p ID, which should 599 /// be ignored in the vectorized loop body, this function records the 600 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 601 /// cast. We had already proved that the casted Phi is equal to the uncasted 602 /// Phi in the vectorized loop (under a runtime guard), and therefore 603 /// there is no need to vectorize the cast - the same value can be used in the 604 /// vector loop for both the Phi and the cast. 605 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 606 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 607 /// 608 /// \p EntryVal is the value from the original loop that maps to the vector 609 /// phi node and is used to distinguish what is the IV currently being 610 /// processed - original one (if \p EntryVal is a phi corresponding to the 611 /// original IV) or the "newly-created" one based on the proof mentioned above 612 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 613 /// latter case \p EntryVal is a TruncInst and we must not record anything for 614 /// that IV, but it's error-prone to expect callers of this routine to care 615 /// about that, hence this explicit parameter. 616 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 617 const Instruction *EntryVal, 618 Value *VectorLoopValue, 619 unsigned Part, 620 unsigned Lane = UINT_MAX); 621 622 /// Generate a shuffle sequence that will reverse the vector Vec. 623 virtual Value *reverseVector(Value *Vec); 624 625 /// Returns (and creates if needed) the original loop trip count. 626 Value *getOrCreateTripCount(Loop *NewLoop); 627 628 /// Returns (and creates if needed) the trip count of the widened loop. 629 Value *getOrCreateVectorTripCount(Loop *NewLoop); 630 631 /// Returns a bitcasted value to the requested vector type. 632 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 633 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 634 const DataLayout &DL); 635 636 /// Emit a bypass check to see if the vector trip count is zero, including if 637 /// it overflows. 638 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 639 640 /// Emit a bypass check to see if all of the SCEV assumptions we've 641 /// had to make are correct. 642 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 643 644 /// Emit bypass checks to check any memory assumptions we may have made. 645 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 646 647 /// Compute the transformed value of Index at offset StartValue using step 648 /// StepValue. 649 /// For integer induction, returns StartValue + Index * StepValue. 650 /// For pointer induction, returns StartValue[Index * StepValue]. 651 /// FIXME: The newly created binary instructions should contain nsw/nuw 652 /// flags, which can be found from the original scalar operations. 653 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 654 const DataLayout &DL, 655 const InductionDescriptor &ID) const; 656 657 /// Add additional metadata to \p To that was not present on \p Orig. 658 /// 659 /// Currently this is used to add the noalias annotations based on the 660 /// inserted memchecks. Use this for instructions that are *cloned* into the 661 /// vector loop. 662 void addNewMetadata(Instruction *To, const Instruction *Orig); 663 664 /// Add metadata from one instruction to another. 665 /// 666 /// This includes both the original MDs from \p From and additional ones (\see 667 /// addNewMetadata). Use this for *newly created* instructions in the vector 668 /// loop. 669 void addMetadata(Instruction *To, Instruction *From); 670 671 /// Similar to the previous function but it adds the metadata to a 672 /// vector of instructions. 673 void addMetadata(ArrayRef<Value *> To, Instruction *From); 674 675 /// The original loop. 676 Loop *OrigLoop; 677 678 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 679 /// dynamic knowledge to simplify SCEV expressions and converts them to a 680 /// more usable form. 681 PredicatedScalarEvolution &PSE; 682 683 /// Loop Info. 684 LoopInfo *LI; 685 686 /// Dominator Tree. 687 DominatorTree *DT; 688 689 /// Alias Analysis. 690 AAResults *AA; 691 692 /// Target Library Info. 693 const TargetLibraryInfo *TLI; 694 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 698 /// Assumption Cache. 699 AssumptionCache *AC; 700 701 /// Interface to emit optimization remarks. 702 OptimizationRemarkEmitter *ORE; 703 704 /// LoopVersioning. It's only set up (non-null) if memchecks were 705 /// used. 706 /// 707 /// This is currently only used to add no-alias metadata based on the 708 /// memchecks. The actually versioning is performed manually. 709 std::unique_ptr<LoopVersioning> LVer; 710 711 /// The vectorization SIMD factor to use. Each vector will have this many 712 /// vector elements. 713 unsigned VF; 714 715 /// The vectorization unroll factor to use. Each scalar is vectorized to this 716 /// many different vector instructions. 717 unsigned UF; 718 719 /// The builder that we use 720 IRBuilder<> Builder; 721 722 // --- Vectorization state --- 723 724 /// The vector-loop preheader. 725 BasicBlock *LoopVectorPreHeader; 726 727 /// The scalar-loop preheader. 728 BasicBlock *LoopScalarPreHeader; 729 730 /// Middle Block between the vector and the scalar. 731 BasicBlock *LoopMiddleBlock; 732 733 /// The ExitBlock of the scalar loop. 734 BasicBlock *LoopExitBlock; 735 736 /// The vector loop body. 737 BasicBlock *LoopVectorBody; 738 739 /// The scalar loop body. 740 BasicBlock *LoopScalarBody; 741 742 /// A list of all bypass blocks. The first block is the entry of the loop. 743 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 744 745 /// The new Induction variable which was added to the new block. 746 PHINode *Induction = nullptr; 747 748 /// The induction variable of the old basic block. 749 PHINode *OldInduction = nullptr; 750 751 /// Maps values from the original loop to their corresponding values in the 752 /// vectorized loop. A key value can map to either vector values, scalar 753 /// values or both kinds of values, depending on whether the key was 754 /// vectorized and scalarized. 755 VectorizerValueMap VectorLoopValueMap; 756 757 /// Store instructions that were predicated. 758 SmallVector<Instruction *, 4> PredicatedInstructions; 759 760 /// Trip count of the original loop. 761 Value *TripCount = nullptr; 762 763 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 764 Value *VectorTripCount = nullptr; 765 766 /// The legality analysis. 767 LoopVectorizationLegality *Legal; 768 769 /// The profitablity analysis. 770 LoopVectorizationCostModel *Cost; 771 772 // Record whether runtime checks are added. 773 bool AddedSafetyChecks = false; 774 775 // Holds the end values for each induction variable. We save the end values 776 // so we can later fix-up the external users of the induction variables. 777 DenseMap<PHINode *, Value *> IVEndValues; 778 779 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 780 // fixed up at the end of vector code generation. 781 SmallVector<PHINode *, 8> OrigPHIsToFix; 782 }; 783 784 class InnerLoopUnroller : public InnerLoopVectorizer { 785 public: 786 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 787 LoopInfo *LI, DominatorTree *DT, 788 const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 791 LoopVectorizationLegality *LVL, 792 LoopVectorizationCostModel *CM) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 794 UnrollFactor, LVL, CM) {} 795 796 private: 797 Value *getBroadcastInstrs(Value *V) override; 798 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 799 Instruction::BinaryOps Opcode = 800 Instruction::BinaryOpsEnd) override; 801 Value *reverseVector(Value *Vec) override; 802 }; 803 804 } // end namespace llvm 805 806 /// Look for a meaningful debug location on the instruction or it's 807 /// operands. 808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 809 if (!I) 810 return I; 811 812 DebugLoc Empty; 813 if (I->getDebugLoc() != Empty) 814 return I; 815 816 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 817 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 818 if (OpInst->getDebugLoc() != Empty) 819 return OpInst; 820 } 821 822 return I; 823 } 824 825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 826 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 827 const DILocation *DIL = Inst->getDebugLoc(); 828 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 829 !isa<DbgInfoIntrinsic>(Inst)) { 830 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 831 if (NewDIL) 832 B.SetCurrentDebugLocation(NewDIL.getValue()); 833 else 834 LLVM_DEBUG(dbgs() 835 << "Failed to create new discriminator: " 836 << DIL->getFilename() << " Line: " << DIL->getLine()); 837 } 838 else 839 B.SetCurrentDebugLocation(DIL); 840 } else 841 B.SetCurrentDebugLocation(DebugLoc()); 842 } 843 844 /// Write a record \p DebugMsg about vectorization failure to the debug 845 /// output stream. If \p I is passed, it is an instruction that prevents 846 /// vectorization. 847 #ifndef NDEBUG 848 static void debugVectorizationFailure(const StringRef DebugMsg, 849 Instruction *I) { 850 dbgs() << "LV: Not vectorizing: " << DebugMsg; 851 if (I != nullptr) 852 dbgs() << " " << *I; 853 else 854 dbgs() << '.'; 855 dbgs() << '\n'; 856 } 857 #endif 858 859 /// Create an analysis remark that explains why vectorization failed 860 /// 861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 862 /// RemarkName is the identifier for the remark. If \p I is passed it is an 863 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 864 /// the location of the remark. \return the remark object that can be 865 /// streamed to. 866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 867 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 868 Value *CodeRegion = TheLoop->getHeader(); 869 DebugLoc DL = TheLoop->getStartLoc(); 870 871 if (I) { 872 CodeRegion = I->getParent(); 873 // If there is no debug location attached to the instruction, revert back to 874 // using the loop's. 875 if (I->getDebugLoc()) 876 DL = I->getDebugLoc(); 877 } 878 879 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 880 R << "loop not vectorized: "; 881 return R; 882 } 883 884 namespace llvm { 885 886 void reportVectorizationFailure(const StringRef DebugMsg, 887 const StringRef OREMsg, const StringRef ORETag, 888 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 889 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 890 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 891 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 892 ORETag, TheLoop, I) << OREMsg); 893 } 894 895 } // end namespace llvm 896 897 #ifndef NDEBUG 898 /// \return string containing a file name and a line # for the given loop. 899 static std::string getDebugLocString(const Loop *L) { 900 std::string Result; 901 if (L) { 902 raw_string_ostream OS(Result); 903 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 904 LoopDbgLoc.print(OS); 905 else 906 // Just print the module name. 907 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 908 OS.flush(); 909 } 910 return Result; 911 } 912 #endif 913 914 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 915 const Instruction *Orig) { 916 // If the loop was versioned with memchecks, add the corresponding no-alias 917 // metadata. 918 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 919 LVer->annotateInstWithNoAlias(To, Orig); 920 } 921 922 void InnerLoopVectorizer::addMetadata(Instruction *To, 923 Instruction *From) { 924 propagateMetadata(To, From); 925 addNewMetadata(To, From); 926 } 927 928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 929 Instruction *From) { 930 for (Value *V : To) { 931 if (Instruction *I = dyn_cast<Instruction>(V)) 932 addMetadata(I, From); 933 } 934 } 935 936 namespace llvm { 937 938 // Loop vectorization cost-model hints how the scalar epilogue loop should be 939 // lowered. 940 enum ScalarEpilogueLowering { 941 942 // The default: allowing scalar epilogues. 943 CM_ScalarEpilogueAllowed, 944 945 // Vectorization with OptForSize: don't allow epilogues. 946 CM_ScalarEpilogueNotAllowedOptSize, 947 948 // A special case of vectorisation with OptForSize: loops with a very small 949 // trip count are considered for vectorization under OptForSize, thereby 950 // making sure the cost of their loop body is dominant, free of runtime 951 // guards and scalar iteration overheads. 952 CM_ScalarEpilogueNotAllowedLowTripLoop, 953 954 // Loop hint predicate indicating an epilogue is undesired. 955 CM_ScalarEpilogueNotNeededUsePredicate 956 }; 957 958 /// LoopVectorizationCostModel - estimates the expected speedups due to 959 /// vectorization. 960 /// In many cases vectorization is not profitable. This can happen because of 961 /// a number of reasons. In this class we mainly attempt to predict the 962 /// expected speedup/slowdowns due to the supported instruction set. We use the 963 /// TargetTransformInfo to query the different backends for the cost of 964 /// different operations. 965 class LoopVectorizationCostModel { 966 public: 967 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 968 PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 LoopVectorizationLegality *Legal, 970 const TargetTransformInfo &TTI, 971 const TargetLibraryInfo *TLI, DemandedBits *DB, 972 AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, const Function *F, 974 const LoopVectorizeHints *Hints, 975 InterleavedAccessInfo &IAI) 976 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 977 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 978 Hints(Hints), InterleaveInfo(IAI) {} 979 980 /// \return An upper bound for the vectorization factor, or None if 981 /// vectorization and interleaving should be avoided up front. 982 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 983 984 /// \return True if runtime checks are required for vectorization, and false 985 /// otherwise. 986 bool runtimeChecksRequired(); 987 988 /// \return The most profitable vectorization factor and the cost of that VF. 989 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 990 /// then this vectorization factor will be selected if vectorization is 991 /// possible. 992 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 993 994 /// Setup cost-based decisions for user vectorization factor. 995 void selectUserVectorizationFactor(unsigned UserVF) { 996 collectUniformsAndScalars(UserVF); 997 collectInstsToScalarize(UserVF); 998 } 999 1000 /// \return The size (in bits) of the smallest and widest types in the code 1001 /// that needs to be vectorized. We ignore values that remain scalar such as 1002 /// 64 bit loop indices. 1003 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1004 1005 /// \return The desired interleave count. 1006 /// If interleave count has been specified by metadata it will be returned. 1007 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1008 /// are the selected vectorization factor and the cost of the selected VF. 1009 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1010 1011 /// Memory access instruction may be vectorized in more than one way. 1012 /// Form of instruction after vectorization depends on cost. 1013 /// This function takes cost-based decisions for Load/Store instructions 1014 /// and collects them in a map. This decisions map is used for building 1015 /// the lists of loop-uniform and loop-scalar instructions. 1016 /// The calculated cost is saved with widening decision in order to 1017 /// avoid redundant calculations. 1018 void setCostBasedWideningDecision(unsigned VF); 1019 1020 /// A struct that represents some properties of the register usage 1021 /// of a loop. 1022 struct RegisterUsage { 1023 /// Holds the number of loop invariant values that are used in the loop. 1024 /// The key is ClassID of target-provided register class. 1025 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1026 /// Holds the maximum number of concurrent live intervals in the loop. 1027 /// The key is ClassID of target-provided register class. 1028 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1029 }; 1030 1031 /// \return Returns information about the register usages of the loop for the 1032 /// given vectorization factors. 1033 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1034 1035 /// Collect values we want to ignore in the cost model. 1036 void collectValuesToIgnore(); 1037 1038 /// \returns The smallest bitwidth each instruction can be represented with. 1039 /// The vector equivalents of these instructions should be truncated to this 1040 /// type. 1041 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1042 return MinBWs; 1043 } 1044 1045 /// \returns True if it is more profitable to scalarize instruction \p I for 1046 /// vectorization factor \p VF. 1047 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1048 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1049 1050 // Cost model is not run in the VPlan-native path - return conservative 1051 // result until this changes. 1052 if (EnableVPlanNativePath) 1053 return false; 1054 1055 auto Scalars = InstsToScalarize.find(VF); 1056 assert(Scalars != InstsToScalarize.end() && 1057 "VF not yet analyzed for scalarization profitability"); 1058 return Scalars->second.find(I) != Scalars->second.end(); 1059 } 1060 1061 /// Returns true if \p I is known to be uniform after vectorization. 1062 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1063 if (VF == 1) 1064 return true; 1065 1066 // Cost model is not run in the VPlan-native path - return conservative 1067 // result until this changes. 1068 if (EnableVPlanNativePath) 1069 return false; 1070 1071 auto UniformsPerVF = Uniforms.find(VF); 1072 assert(UniformsPerVF != Uniforms.end() && 1073 "VF not yet analyzed for uniformity"); 1074 return UniformsPerVF->second.count(I); 1075 } 1076 1077 /// Returns true if \p I is known to be scalar after vectorization. 1078 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1079 if (VF == 1) 1080 return true; 1081 1082 // Cost model is not run in the VPlan-native path - return conservative 1083 // result until this changes. 1084 if (EnableVPlanNativePath) 1085 return false; 1086 1087 auto ScalarsPerVF = Scalars.find(VF); 1088 assert(ScalarsPerVF != Scalars.end() && 1089 "Scalar values are not calculated for VF"); 1090 return ScalarsPerVF->second.count(I); 1091 } 1092 1093 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1094 /// for vectorization factor \p VF. 1095 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1096 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1097 !isProfitableToScalarize(I, VF) && 1098 !isScalarAfterVectorization(I, VF); 1099 } 1100 1101 /// Decision that was taken during cost calculation for memory instruction. 1102 enum InstWidening { 1103 CM_Unknown, 1104 CM_Widen, // For consecutive accesses with stride +1. 1105 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1106 CM_Interleave, 1107 CM_GatherScatter, 1108 CM_Scalarize 1109 }; 1110 1111 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1112 /// instruction \p I and vector width \p VF. 1113 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1114 unsigned Cost) { 1115 assert(VF >= 2 && "Expected VF >=2"); 1116 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1117 } 1118 1119 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1120 /// interleaving group \p Grp and vector width \p VF. 1121 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1122 InstWidening W, unsigned Cost) { 1123 assert(VF >= 2 && "Expected VF >=2"); 1124 /// Broadcast this decicion to all instructions inside the group. 1125 /// But the cost will be assigned to one instruction only. 1126 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1127 if (auto *I = Grp->getMember(i)) { 1128 if (Grp->getInsertPos() == I) 1129 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1130 else 1131 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1132 } 1133 } 1134 } 1135 1136 /// Return the cost model decision for the given instruction \p I and vector 1137 /// width \p VF. Return CM_Unknown if this instruction did not pass 1138 /// through the cost modeling. 1139 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1140 assert(VF >= 2 && "Expected VF >=2"); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return CM_GatherScatter; 1146 1147 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1148 auto Itr = WideningDecisions.find(InstOnVF); 1149 if (Itr == WideningDecisions.end()) 1150 return CM_Unknown; 1151 return Itr->second.first; 1152 } 1153 1154 /// Return the vectorization cost for the given instruction \p I and vector 1155 /// width \p VF. 1156 unsigned getWideningCost(Instruction *I, unsigned VF) { 1157 assert(VF >= 2 && "Expected VF >=2"); 1158 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1159 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1160 "The cost is not calculated"); 1161 return WideningDecisions[InstOnVF].second; 1162 } 1163 1164 /// Return True if instruction \p I is an optimizable truncate whose operand 1165 /// is an induction variable. Such a truncate will be removed by adding a new 1166 /// induction variable with the destination type. 1167 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1168 // If the instruction is not a truncate, return false. 1169 auto *Trunc = dyn_cast<TruncInst>(I); 1170 if (!Trunc) 1171 return false; 1172 1173 // Get the source and destination types of the truncate. 1174 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1175 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1176 1177 // If the truncate is free for the given types, return false. Replacing a 1178 // free truncate with an induction variable would add an induction variable 1179 // update instruction to each iteration of the loop. We exclude from this 1180 // check the primary induction variable since it will need an update 1181 // instruction regardless. 1182 Value *Op = Trunc->getOperand(0); 1183 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1184 return false; 1185 1186 // If the truncated value is not an induction variable, return false. 1187 return Legal->isInductionPhi(Op); 1188 } 1189 1190 /// Collects the instructions to scalarize for each predicated instruction in 1191 /// the loop. 1192 void collectInstsToScalarize(unsigned VF); 1193 1194 /// Collect Uniform and Scalar values for the given \p VF. 1195 /// The sets depend on CM decision for Load/Store instructions 1196 /// that may be vectorized as interleave, gather-scatter or scalarized. 1197 void collectUniformsAndScalars(unsigned VF) { 1198 // Do the analysis once. 1199 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1200 return; 1201 setCostBasedWideningDecision(VF); 1202 collectLoopUniforms(VF); 1203 collectLoopScalars(VF); 1204 } 1205 1206 /// Returns true if the target machine supports masked store operation 1207 /// for the given \p DataType and kind of access to \p Ptr. 1208 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1209 return Legal->isConsecutivePtr(Ptr) && 1210 TTI.isLegalMaskedStore(DataType, Alignment); 1211 } 1212 1213 /// Returns true if the target machine supports masked load operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedLoad(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked scatter operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1223 return TTI.isLegalMaskedScatter(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine supports masked gather operation 1227 /// for the given \p DataType. 1228 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1229 return TTI.isLegalMaskedGather(DataType, Alignment); 1230 } 1231 1232 /// Returns true if the target machine can represent \p V as a masked gather 1233 /// or scatter operation. 1234 bool isLegalGatherOrScatter(Value *V) { 1235 bool LI = isa<LoadInst>(V); 1236 bool SI = isa<StoreInst>(V); 1237 if (!LI && !SI) 1238 return false; 1239 auto *Ty = getMemInstValueType(V); 1240 Align Align = getLoadStoreAlignment(V); 1241 return (LI && isLegalMaskedGather(Ty, Align)) || 1242 (SI && isLegalMaskedScatter(Ty, Align)); 1243 } 1244 1245 /// Returns true if \p I is an instruction that will be scalarized with 1246 /// predication. Such instructions include conditional stores and 1247 /// instructions that may divide by zero. 1248 /// If a non-zero VF has been calculated, we check if I will be scalarized 1249 /// predication for that VF. 1250 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1251 1252 // Returns true if \p I is an instruction that will be predicated either 1253 // through scalar predication or masked load/store or masked gather/scatter. 1254 // Superset of instructions that return true for isScalarWithPredication. 1255 bool isPredicatedInst(Instruction *I) { 1256 if (!blockNeedsPredication(I->getParent())) 1257 return false; 1258 // Loads and stores that need some form of masked operation are predicated 1259 // instructions. 1260 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1261 return Legal->isMaskRequired(I); 1262 return isScalarWithPredication(I); 1263 } 1264 1265 /// Returns true if \p I is a memory instruction with consecutive memory 1266 /// access that can be widened. 1267 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1268 1269 /// Returns true if \p I is a memory instruction in an interleaved-group 1270 /// of memory accesses that can be vectorized with wide vector loads/stores 1271 /// and shuffles. 1272 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1273 1274 /// Check if \p Instr belongs to any interleaved access group. 1275 bool isAccessInterleaved(Instruction *Instr) { 1276 return InterleaveInfo.isInterleaved(Instr); 1277 } 1278 1279 /// Get the interleaved access group that \p Instr belongs to. 1280 const InterleaveGroup<Instruction> * 1281 getInterleavedAccessGroup(Instruction *Instr) { 1282 return InterleaveInfo.getInterleaveGroup(Instr); 1283 } 1284 1285 /// Returns true if an interleaved group requires a scalar iteration 1286 /// to handle accesses with gaps, and there is nothing preventing us from 1287 /// creating a scalar epilogue. 1288 bool requiresScalarEpilogue() const { 1289 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1290 } 1291 1292 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1293 /// loop hint annotation. 1294 bool isScalarEpilogueAllowed() const { 1295 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1296 } 1297 1298 /// Returns true if all loop blocks should be masked to fold tail loop. 1299 bool foldTailByMasking() const { return FoldTailByMasking; } 1300 1301 bool blockNeedsPredication(BasicBlock *BB) { 1302 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1303 } 1304 1305 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1306 /// with factor VF. Return the cost of the instruction, including 1307 /// scalarization overhead if it's needed. 1308 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1309 1310 /// Estimate cost of a call instruction CI if it were vectorized with factor 1311 /// VF. Return the cost of the instruction, including scalarization overhead 1312 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1313 /// scalarized - 1314 /// i.e. either vector version isn't available, or is too expensive. 1315 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1316 1317 /// Invalidates decisions already taken by the cost model. 1318 void invalidateCostModelingDecisions() { 1319 WideningDecisions.clear(); 1320 Uniforms.clear(); 1321 Scalars.clear(); 1322 } 1323 1324 private: 1325 unsigned NumPredStores = 0; 1326 1327 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1328 /// than zero. One is returned if vectorization should best be avoided due 1329 /// to cost. 1330 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1331 1332 /// The vectorization cost is a combination of the cost itself and a boolean 1333 /// indicating whether any of the contributing operations will actually 1334 /// operate on 1335 /// vector values after type legalization in the backend. If this latter value 1336 /// is 1337 /// false, then all operations will be scalarized (i.e. no vectorization has 1338 /// actually taken place). 1339 using VectorizationCostTy = std::pair<unsigned, bool>; 1340 1341 /// Returns the expected execution cost. The unit of the cost does 1342 /// not matter because we use the 'cost' units to compare different 1343 /// vector widths. The cost that is returned is *not* normalized by 1344 /// the factor width. 1345 VectorizationCostTy expectedCost(unsigned VF); 1346 1347 /// Returns the execution time cost of an instruction for a given vector 1348 /// width. Vector width of one means scalar. 1349 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1350 1351 /// The cost-computation logic from getInstructionCost which provides 1352 /// the vector type as an output parameter. 1353 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1354 1355 /// Calculate vectorization cost of memory instruction \p I. 1356 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost computation for scalarized memory instruction. 1359 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1360 1361 /// The cost computation for interleaving group of memory instructions. 1362 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1363 1364 /// The cost computation for Gather/Scatter instruction. 1365 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1366 1367 /// The cost computation for widening instruction \p I with consecutive 1368 /// memory access. 1369 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1370 1371 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1372 /// Load: scalar load + broadcast. 1373 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1374 /// element) 1375 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1376 1377 /// Estimate the overhead of scalarizing an instruction. This is a 1378 /// convenience wrapper for the type-based getScalarizationOverhead API. 1379 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1380 1381 /// Returns whether the instruction is a load or store and will be a emitted 1382 /// as a vector operation. 1383 bool isConsecutiveLoadOrStore(Instruction *I); 1384 1385 /// Returns true if an artificially high cost for emulated masked memrefs 1386 /// should be used. 1387 bool useEmulatedMaskMemRefHack(Instruction *I); 1388 1389 /// Map of scalar integer values to the smallest bitwidth they can be legally 1390 /// represented as. The vector equivalents of these values should be truncated 1391 /// to this type. 1392 MapVector<Instruction *, uint64_t> MinBWs; 1393 1394 /// A type representing the costs for instructions if they were to be 1395 /// scalarized rather than vectorized. The entries are Instruction-Cost 1396 /// pairs. 1397 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1398 1399 /// A set containing all BasicBlocks that are known to present after 1400 /// vectorization as a predicated block. 1401 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1402 1403 /// Records whether it is allowed to have the original scalar loop execute at 1404 /// least once. This may be needed as a fallback loop in case runtime 1405 /// aliasing/dependence checks fail, or to handle the tail/remainder 1406 /// iterations when the trip count is unknown or doesn't divide by the VF, 1407 /// or as a peel-loop to handle gaps in interleave-groups. 1408 /// Under optsize and when the trip count is very small we don't allow any 1409 /// iterations to execute in the scalar loop. 1410 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1411 1412 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1413 bool FoldTailByMasking = false; 1414 1415 /// A map holding scalar costs for different vectorization factors. The 1416 /// presence of a cost for an instruction in the mapping indicates that the 1417 /// instruction will be scalarized when vectorizing with the associated 1418 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1419 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1420 1421 /// Holds the instructions known to be uniform after vectorization. 1422 /// The data is collected per VF. 1423 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1424 1425 /// Holds the instructions known to be scalar after vectorization. 1426 /// The data is collected per VF. 1427 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1428 1429 /// Holds the instructions (address computations) that are forced to be 1430 /// scalarized. 1431 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1432 1433 /// Returns the expected difference in cost from scalarizing the expression 1434 /// feeding a predicated instruction \p PredInst. The instructions to 1435 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1436 /// non-negative return value implies the expression will be scalarized. 1437 /// Currently, only single-use chains are considered for scalarization. 1438 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1439 unsigned VF); 1440 1441 /// Collect the instructions that are uniform after vectorization. An 1442 /// instruction is uniform if we represent it with a single scalar value in 1443 /// the vectorized loop corresponding to each vector iteration. Examples of 1444 /// uniform instructions include pointer operands of consecutive or 1445 /// interleaved memory accesses. Note that although uniformity implies an 1446 /// instruction will be scalar, the reverse is not true. In general, a 1447 /// scalarized instruction will be represented by VF scalar values in the 1448 /// vectorized loop, each corresponding to an iteration of the original 1449 /// scalar loop. 1450 void collectLoopUniforms(unsigned VF); 1451 1452 /// Collect the instructions that are scalar after vectorization. An 1453 /// instruction is scalar if it is known to be uniform or will be scalarized 1454 /// during vectorization. Non-uniform scalarized instructions will be 1455 /// represented by VF values in the vectorized loop, each corresponding to an 1456 /// iteration of the original scalar loop. 1457 void collectLoopScalars(unsigned VF); 1458 1459 /// Keeps cost model vectorization decision and cost for instructions. 1460 /// Right now it is used for memory instructions only. 1461 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1462 std::pair<InstWidening, unsigned>>; 1463 1464 DecisionList WideningDecisions; 1465 1466 /// Returns true if \p V is expected to be vectorized and it needs to be 1467 /// extracted. 1468 bool needsExtract(Value *V, unsigned VF) const { 1469 Instruction *I = dyn_cast<Instruction>(V); 1470 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1471 return false; 1472 1473 // Assume we can vectorize V (and hence we need extraction) if the 1474 // scalars are not computed yet. This can happen, because it is called 1475 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1476 // the scalars are collected. That should be a safe assumption in most 1477 // cases, because we check if the operands have vectorizable types 1478 // beforehand in LoopVectorizationLegality. 1479 return Scalars.find(VF) == Scalars.end() || 1480 !isScalarAfterVectorization(I, VF); 1481 }; 1482 1483 /// Returns a range containing only operands needing to be extracted. 1484 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1485 unsigned VF) { 1486 return SmallVector<Value *, 4>(make_filter_range( 1487 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1488 } 1489 1490 public: 1491 /// The loop that we evaluate. 1492 Loop *TheLoop; 1493 1494 /// Predicated scalar evolution analysis. 1495 PredicatedScalarEvolution &PSE; 1496 1497 /// Loop Info analysis. 1498 LoopInfo *LI; 1499 1500 /// Vectorization legality. 1501 LoopVectorizationLegality *Legal; 1502 1503 /// Vector target information. 1504 const TargetTransformInfo &TTI; 1505 1506 /// Target Library Info. 1507 const TargetLibraryInfo *TLI; 1508 1509 /// Demanded bits analysis. 1510 DemandedBits *DB; 1511 1512 /// Assumption cache. 1513 AssumptionCache *AC; 1514 1515 /// Interface to emit optimization remarks. 1516 OptimizationRemarkEmitter *ORE; 1517 1518 const Function *TheFunction; 1519 1520 /// Loop Vectorize Hint. 1521 const LoopVectorizeHints *Hints; 1522 1523 /// The interleave access information contains groups of interleaved accesses 1524 /// with the same stride and close to each other. 1525 InterleavedAccessInfo &InterleaveInfo; 1526 1527 /// Values to ignore in the cost model. 1528 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1529 1530 /// Values to ignore in the cost model when VF > 1. 1531 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1532 }; 1533 1534 } // end namespace llvm 1535 1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1537 // vectorization. The loop needs to be annotated with #pragma omp simd 1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1539 // vector length information is not provided, vectorization is not considered 1540 // explicit. Interleave hints are not allowed either. These limitations will be 1541 // relaxed in the future. 1542 // Please, note that we are currently forced to abuse the pragma 'clang 1543 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1545 // provides *explicit vectorization hints* (LV can bypass legal checks and 1546 // assume that vectorization is legal). However, both hints are implemented 1547 // using the same metadata (llvm.loop.vectorize, processed by 1548 // LoopVectorizeHints). This will be fixed in the future when the native IR 1549 // representation for pragma 'omp simd' is introduced. 1550 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1551 OptimizationRemarkEmitter *ORE) { 1552 assert(!OuterLp->empty() && "This is not an outer loop"); 1553 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1554 1555 // Only outer loops with an explicit vectorization hint are supported. 1556 // Unannotated outer loops are ignored. 1557 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1558 return false; 1559 1560 Function *Fn = OuterLp->getHeader()->getParent(); 1561 if (!Hints.allowVectorization(Fn, OuterLp, 1562 true /*VectorizeOnlyWhenForced*/)) { 1563 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1564 return false; 1565 } 1566 1567 if (Hints.getInterleave() > 1) { 1568 // TODO: Interleave support is future work. 1569 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1570 "outer loops.\n"); 1571 Hints.emitRemarkWithHints(); 1572 return false; 1573 } 1574 1575 return true; 1576 } 1577 1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1579 OptimizationRemarkEmitter *ORE, 1580 SmallVectorImpl<Loop *> &V) { 1581 // Collect inner loops and outer loops without irreducible control flow. For 1582 // now, only collect outer loops that have explicit vectorization hints. If we 1583 // are stress testing the VPlan H-CFG construction, we collect the outermost 1584 // loop of every loop nest. 1585 if (L.empty() || VPlanBuildStressTest || 1586 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1587 LoopBlocksRPO RPOT(&L); 1588 RPOT.perform(LI); 1589 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1590 V.push_back(&L); 1591 // TODO: Collect inner loops inside marked outer loops in case 1592 // vectorization fails for the outer loop. Do not invoke 1593 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1594 // already known to be reducible. We can use an inherited attribute for 1595 // that. 1596 return; 1597 } 1598 } 1599 for (Loop *InnerL : L) 1600 collectSupportedLoops(*InnerL, LI, ORE, V); 1601 } 1602 1603 namespace { 1604 1605 /// The LoopVectorize Pass. 1606 struct LoopVectorize : public FunctionPass { 1607 /// Pass identification, replacement for typeid 1608 static char ID; 1609 1610 LoopVectorizePass Impl; 1611 1612 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1613 bool VectorizeOnlyWhenForced = false) 1614 : FunctionPass(ID), 1615 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1616 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1617 } 1618 1619 bool runOnFunction(Function &F) override { 1620 if (skipFunction(F)) 1621 return false; 1622 1623 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1624 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1625 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1626 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1627 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1628 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1629 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1630 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1631 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1632 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1633 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1634 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1635 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1636 1637 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1638 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1639 1640 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1641 GetLAA, *ORE, PSI).MadeAnyChange; 1642 } 1643 1644 void getAnalysisUsage(AnalysisUsage &AU) const override { 1645 AU.addRequired<AssumptionCacheTracker>(); 1646 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1647 AU.addRequired<DominatorTreeWrapperPass>(); 1648 AU.addRequired<LoopInfoWrapperPass>(); 1649 AU.addRequired<ScalarEvolutionWrapperPass>(); 1650 AU.addRequired<TargetTransformInfoWrapperPass>(); 1651 AU.addRequired<AAResultsWrapperPass>(); 1652 AU.addRequired<LoopAccessLegacyAnalysis>(); 1653 AU.addRequired<DemandedBitsWrapperPass>(); 1654 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1655 AU.addRequired<InjectTLIMappingsLegacy>(); 1656 1657 // We currently do not preserve loopinfo/dominator analyses with outer loop 1658 // vectorization. Until this is addressed, mark these analyses as preserved 1659 // only for non-VPlan-native path. 1660 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1661 if (!EnableVPlanNativePath) { 1662 AU.addPreserved<LoopInfoWrapperPass>(); 1663 AU.addPreserved<DominatorTreeWrapperPass>(); 1664 } 1665 1666 AU.addPreserved<BasicAAWrapperPass>(); 1667 AU.addPreserved<GlobalsAAWrapperPass>(); 1668 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1669 } 1670 }; 1671 1672 } // end anonymous namespace 1673 1674 //===----------------------------------------------------------------------===// 1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1676 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1677 //===----------------------------------------------------------------------===// 1678 1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1680 // We need to place the broadcast of invariant variables outside the loop, 1681 // but only if it's proven safe to do so. Else, broadcast will be inside 1682 // vector loop body. 1683 Instruction *Instr = dyn_cast<Instruction>(V); 1684 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1685 (!Instr || 1686 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1687 // Place the code for broadcasting invariant variables in the new preheader. 1688 IRBuilder<>::InsertPointGuard Guard(Builder); 1689 if (SafeToHoist) 1690 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1691 1692 // Broadcast the scalar into all locations in the vector. 1693 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1694 1695 return Shuf; 1696 } 1697 1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1699 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1700 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1701 "Expected either an induction phi-node or a truncate of it!"); 1702 Value *Start = II.getStartValue(); 1703 1704 // Construct the initial value of the vector IV in the vector loop preheader 1705 auto CurrIP = Builder.saveIP(); 1706 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1707 if (isa<TruncInst>(EntryVal)) { 1708 assert(Start->getType()->isIntegerTy() && 1709 "Truncation requires an integer type"); 1710 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1711 Step = Builder.CreateTrunc(Step, TruncType); 1712 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1713 } 1714 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1715 Value *SteppedStart = 1716 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1717 1718 // We create vector phi nodes for both integer and floating-point induction 1719 // variables. Here, we determine the kind of arithmetic we will perform. 1720 Instruction::BinaryOps AddOp; 1721 Instruction::BinaryOps MulOp; 1722 if (Step->getType()->isIntegerTy()) { 1723 AddOp = Instruction::Add; 1724 MulOp = Instruction::Mul; 1725 } else { 1726 AddOp = II.getInductionOpcode(); 1727 MulOp = Instruction::FMul; 1728 } 1729 1730 // Multiply the vectorization factor by the step using integer or 1731 // floating-point arithmetic as appropriate. 1732 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1733 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1734 1735 // Create a vector splat to use in the induction update. 1736 // 1737 // FIXME: If the step is non-constant, we create the vector splat with 1738 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1739 // handle a constant vector splat. 1740 Value *SplatVF = 1741 isa<Constant>(Mul) 1742 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1743 : Builder.CreateVectorSplat(VF, Mul); 1744 Builder.restoreIP(CurrIP); 1745 1746 // We may need to add the step a number of times, depending on the unroll 1747 // factor. The last of those goes into the PHI. 1748 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1749 &*LoopVectorBody->getFirstInsertionPt()); 1750 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1751 Instruction *LastInduction = VecInd; 1752 for (unsigned Part = 0; Part < UF; ++Part) { 1753 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1754 1755 if (isa<TruncInst>(EntryVal)) 1756 addMetadata(LastInduction, EntryVal); 1757 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1758 1759 LastInduction = cast<Instruction>(addFastMathFlag( 1760 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1761 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1762 } 1763 1764 // Move the last step to the end of the latch block. This ensures consistent 1765 // placement of all induction updates. 1766 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1767 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1768 auto *ICmp = cast<Instruction>(Br->getCondition()); 1769 LastInduction->moveBefore(ICmp); 1770 LastInduction->setName("vec.ind.next"); 1771 1772 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1773 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1774 } 1775 1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1777 return Cost->isScalarAfterVectorization(I, VF) || 1778 Cost->isProfitableToScalarize(I, VF); 1779 } 1780 1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1782 if (shouldScalarizeInstruction(IV)) 1783 return true; 1784 auto isScalarInst = [&](User *U) -> bool { 1785 auto *I = cast<Instruction>(U); 1786 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1787 }; 1788 return llvm::any_of(IV->users(), isScalarInst); 1789 } 1790 1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1792 const InductionDescriptor &ID, const Instruction *EntryVal, 1793 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1794 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1795 "Expected either an induction phi-node or a truncate of it!"); 1796 1797 // This induction variable is not the phi from the original loop but the 1798 // newly-created IV based on the proof that casted Phi is equal to the 1799 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1800 // re-uses the same InductionDescriptor that original IV uses but we don't 1801 // have to do any recording in this case - that is done when original IV is 1802 // processed. 1803 if (isa<TruncInst>(EntryVal)) 1804 return; 1805 1806 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1807 if (Casts.empty()) 1808 return; 1809 // Only the first Cast instruction in the Casts vector is of interest. 1810 // The rest of the Casts (if exist) have no uses outside the 1811 // induction update chain itself. 1812 Instruction *CastInst = *Casts.begin(); 1813 if (Lane < UINT_MAX) 1814 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1815 else 1816 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1817 } 1818 1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1820 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1821 "Primary induction variable must have an integer type"); 1822 1823 auto II = Legal->getInductionVars().find(IV); 1824 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1825 1826 auto ID = II->second; 1827 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1828 1829 // The value from the original loop to which we are mapping the new induction 1830 // variable. 1831 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1832 1833 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1834 1835 // Generate code for the induction step. Note that induction steps are 1836 // required to be loop-invariant 1837 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1838 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1839 "Induction step should be loop invariant"); 1840 if (PSE.getSE()->isSCEVable(IV->getType())) { 1841 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1842 return Exp.expandCodeFor(Step, Step->getType(), 1843 LoopVectorPreHeader->getTerminator()); 1844 } 1845 return cast<SCEVUnknown>(Step)->getValue(); 1846 }; 1847 1848 // The scalar value to broadcast. This is derived from the canonical 1849 // induction variable. If a truncation type is given, truncate the canonical 1850 // induction variable and step. Otherwise, derive these values from the 1851 // induction descriptor. 1852 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1853 Value *ScalarIV = Induction; 1854 if (IV != OldInduction) { 1855 ScalarIV = IV->getType()->isIntegerTy() 1856 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1857 : Builder.CreateCast(Instruction::SIToFP, Induction, 1858 IV->getType()); 1859 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1860 ScalarIV->setName("offset.idx"); 1861 } 1862 if (Trunc) { 1863 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1864 assert(Step->getType()->isIntegerTy() && 1865 "Truncation requires an integer step"); 1866 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1867 Step = Builder.CreateTrunc(Step, TruncType); 1868 } 1869 return ScalarIV; 1870 }; 1871 1872 // Create the vector values from the scalar IV, in the absence of creating a 1873 // vector IV. 1874 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1875 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1876 for (unsigned Part = 0; Part < UF; ++Part) { 1877 Value *EntryPart = 1878 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1879 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1880 if (Trunc) 1881 addMetadata(EntryPart, Trunc); 1882 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1883 } 1884 }; 1885 1886 // Now do the actual transformations, and start with creating the step value. 1887 Value *Step = CreateStepValue(ID.getStep()); 1888 if (VF <= 1) { 1889 Value *ScalarIV = CreateScalarIV(Step); 1890 CreateSplatIV(ScalarIV, Step); 1891 return; 1892 } 1893 1894 // Determine if we want a scalar version of the induction variable. This is 1895 // true if the induction variable itself is not widened, or if it has at 1896 // least one user in the loop that is not widened. 1897 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1898 if (!NeedsScalarIV) { 1899 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1900 return; 1901 } 1902 1903 // Try to create a new independent vector induction variable. If we can't 1904 // create the phi node, we will splat the scalar induction variable in each 1905 // loop iteration. 1906 if (!shouldScalarizeInstruction(EntryVal)) { 1907 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1908 Value *ScalarIV = CreateScalarIV(Step); 1909 // Create scalar steps that can be used by instructions we will later 1910 // scalarize. Note that the addition of the scalar steps will not increase 1911 // the number of instructions in the loop in the common case prior to 1912 // InstCombine. We will be trading one vector extract for each scalar step. 1913 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1914 return; 1915 } 1916 1917 // All IV users are scalar instructions, so only emit a scalar IV, not a 1918 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1919 // predicate used by the masked loads/stores. 1920 Value *ScalarIV = CreateScalarIV(Step); 1921 if (!Cost->isScalarEpilogueAllowed()) 1922 CreateSplatIV(ScalarIV, Step); 1923 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1924 } 1925 1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1927 Instruction::BinaryOps BinOp) { 1928 // Create and check the types. 1929 auto *ValVTy = cast<VectorType>(Val->getType()); 1930 int VLen = ValVTy->getNumElements(); 1931 1932 Type *STy = Val->getType()->getScalarType(); 1933 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1934 "Induction Step must be an integer or FP"); 1935 assert(Step->getType() == STy && "Step has wrong type"); 1936 1937 SmallVector<Constant *, 8> Indices; 1938 1939 if (STy->isIntegerTy()) { 1940 // Create a vector of consecutive numbers from zero to VF. 1941 for (int i = 0; i < VLen; ++i) 1942 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1943 1944 // Add the consecutive indices to the vector value. 1945 Constant *Cv = ConstantVector::get(Indices); 1946 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1947 Step = Builder.CreateVectorSplat(VLen, Step); 1948 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1949 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1950 // which can be found from the original scalar operations. 1951 Step = Builder.CreateMul(Cv, Step); 1952 return Builder.CreateAdd(Val, Step, "induction"); 1953 } 1954 1955 // Floating point induction. 1956 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1957 "Binary Opcode should be specified for FP induction"); 1958 // Create a vector of consecutive numbers from zero to VF. 1959 for (int i = 0; i < VLen; ++i) 1960 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1961 1962 // Add the consecutive indices to the vector value. 1963 Constant *Cv = ConstantVector::get(Indices); 1964 1965 Step = Builder.CreateVectorSplat(VLen, Step); 1966 1967 // Floating point operations had to be 'fast' to enable the induction. 1968 FastMathFlags Flags; 1969 Flags.setFast(); 1970 1971 Value *MulOp = Builder.CreateFMul(Cv, Step); 1972 if (isa<Instruction>(MulOp)) 1973 // Have to check, MulOp may be a constant 1974 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1975 1976 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1977 if (isa<Instruction>(BOp)) 1978 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1979 return BOp; 1980 } 1981 1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1983 Instruction *EntryVal, 1984 const InductionDescriptor &ID) { 1985 // We shouldn't have to build scalar steps if we aren't vectorizing. 1986 assert(VF > 1 && "VF should be greater than one"); 1987 1988 // Get the value type and ensure it and the step have the same integer type. 1989 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1990 assert(ScalarIVTy == Step->getType() && 1991 "Val and Step should have the same type"); 1992 1993 // We build scalar steps for both integer and floating-point induction 1994 // variables. Here, we determine the kind of arithmetic we will perform. 1995 Instruction::BinaryOps AddOp; 1996 Instruction::BinaryOps MulOp; 1997 if (ScalarIVTy->isIntegerTy()) { 1998 AddOp = Instruction::Add; 1999 MulOp = Instruction::Mul; 2000 } else { 2001 AddOp = ID.getInductionOpcode(); 2002 MulOp = Instruction::FMul; 2003 } 2004 2005 // Determine the number of scalars we need to generate for each unroll 2006 // iteration. If EntryVal is uniform, we only need to generate the first 2007 // lane. Otherwise, we generate all VF values. 2008 unsigned Lanes = 2009 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2010 : VF; 2011 // Compute the scalar steps and save the results in VectorLoopValueMap. 2012 for (unsigned Part = 0; Part < UF; ++Part) { 2013 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2014 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2015 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2016 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2017 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2018 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2019 } 2020 } 2021 } 2022 2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2024 assert(V != Induction && "The new induction variable should not be used."); 2025 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2026 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2027 2028 // If we have a stride that is replaced by one, do it here. Defer this for 2029 // the VPlan-native path until we start running Legal checks in that path. 2030 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2031 V = ConstantInt::get(V->getType(), 1); 2032 2033 // If we have a vector mapped to this value, return it. 2034 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2035 return VectorLoopValueMap.getVectorValue(V, Part); 2036 2037 // If the value has not been vectorized, check if it has been scalarized 2038 // instead. If it has been scalarized, and we actually need the value in 2039 // vector form, we will construct the vector values on demand. 2040 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2041 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2042 2043 // If we've scalarized a value, that value should be an instruction. 2044 auto *I = cast<Instruction>(V); 2045 2046 // If we aren't vectorizing, we can just copy the scalar map values over to 2047 // the vector map. 2048 if (VF == 1) { 2049 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2050 return ScalarValue; 2051 } 2052 2053 // Get the last scalar instruction we generated for V and Part. If the value 2054 // is known to be uniform after vectorization, this corresponds to lane zero 2055 // of the Part unroll iteration. Otherwise, the last instruction is the one 2056 // we created for the last vector lane of the Part unroll iteration. 2057 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2058 auto *LastInst = cast<Instruction>( 2059 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2060 2061 // Set the insert point after the last scalarized instruction. This ensures 2062 // the insertelement sequence will directly follow the scalar definitions. 2063 auto OldIP = Builder.saveIP(); 2064 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2065 Builder.SetInsertPoint(&*NewIP); 2066 2067 // However, if we are vectorizing, we need to construct the vector values. 2068 // If the value is known to be uniform after vectorization, we can just 2069 // broadcast the scalar value corresponding to lane zero for each unroll 2070 // iteration. Otherwise, we construct the vector values using insertelement 2071 // instructions. Since the resulting vectors are stored in 2072 // VectorLoopValueMap, we will only generate the insertelements once. 2073 Value *VectorValue = nullptr; 2074 if (Cost->isUniformAfterVectorization(I, VF)) { 2075 VectorValue = getBroadcastInstrs(ScalarValue); 2076 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2077 } else { 2078 // Initialize packing with insertelements to start from undef. 2079 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2080 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2081 for (unsigned Lane = 0; Lane < VF; ++Lane) 2082 packScalarIntoVectorValue(V, {Part, Lane}); 2083 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2084 } 2085 Builder.restoreIP(OldIP); 2086 return VectorValue; 2087 } 2088 2089 // If this scalar is unknown, assume that it is a constant or that it is 2090 // loop invariant. Broadcast V and save the value for future uses. 2091 Value *B = getBroadcastInstrs(V); 2092 VectorLoopValueMap.setVectorValue(V, Part, B); 2093 return B; 2094 } 2095 2096 Value * 2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2098 const VPIteration &Instance) { 2099 // If the value is not an instruction contained in the loop, it should 2100 // already be scalar. 2101 if (OrigLoop->isLoopInvariant(V)) 2102 return V; 2103 2104 assert(Instance.Lane > 0 2105 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2106 : true && "Uniform values only have lane zero"); 2107 2108 // If the value from the original loop has not been vectorized, it is 2109 // represented by UF x VF scalar values in the new loop. Return the requested 2110 // scalar value. 2111 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2112 return VectorLoopValueMap.getScalarValue(V, Instance); 2113 2114 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2115 // for the given unroll part. If this entry is not a vector type (i.e., the 2116 // vectorization factor is one), there is no need to generate an 2117 // extractelement instruction. 2118 auto *U = getOrCreateVectorValue(V, Instance.Part); 2119 if (!U->getType()->isVectorTy()) { 2120 assert(VF == 1 && "Value not scalarized has non-vector type"); 2121 return U; 2122 } 2123 2124 // Otherwise, the value from the original loop has been vectorized and is 2125 // represented by UF vector values. Extract and return the requested scalar 2126 // value from the appropriate vector lane. 2127 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2128 } 2129 2130 void InnerLoopVectorizer::packScalarIntoVectorValue( 2131 Value *V, const VPIteration &Instance) { 2132 assert(V != Induction && "The new induction variable should not be used."); 2133 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2134 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2135 2136 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2137 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2138 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2139 Builder.getInt32(Instance.Lane)); 2140 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2141 } 2142 2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2144 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2145 SmallVector<int, 8> ShuffleMask; 2146 for (unsigned i = 0; i < VF; ++i) 2147 ShuffleMask.push_back(VF - i - 1); 2148 2149 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2150 ShuffleMask, "reverse"); 2151 } 2152 2153 // Return whether we allow using masked interleave-groups (for dealing with 2154 // strided loads/stores that reside in predicated blocks, or for dealing 2155 // with gaps). 2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2157 // If an override option has been passed in for interleaved accesses, use it. 2158 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2159 return EnableMaskedInterleavedMemAccesses; 2160 2161 return TTI.enableMaskedInterleavedAccessVectorization(); 2162 } 2163 2164 // Try to vectorize the interleave group that \p Instr belongs to. 2165 // 2166 // E.g. Translate following interleaved load group (factor = 3): 2167 // for (i = 0; i < N; i+=3) { 2168 // R = Pic[i]; // Member of index 0 2169 // G = Pic[i+1]; // Member of index 1 2170 // B = Pic[i+2]; // Member of index 2 2171 // ... // do something to R, G, B 2172 // } 2173 // To: 2174 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2175 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2176 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2177 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2178 // 2179 // Or translate following interleaved store group (factor = 3): 2180 // for (i = 0; i < N; i+=3) { 2181 // ... do something to R, G, B 2182 // Pic[i] = R; // Member of index 0 2183 // Pic[i+1] = G; // Member of index 1 2184 // Pic[i+2] = B; // Member of index 2 2185 // } 2186 // To: 2187 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2188 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2189 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2190 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2191 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2192 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2193 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2194 VPValue *Addr, VPValue *BlockInMask) { 2195 Instruction *Instr = Group->getInsertPos(); 2196 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2197 2198 // Prepare for the vector type of the interleaved load/store. 2199 Type *ScalarTy = getMemInstValueType(Instr); 2200 unsigned InterleaveFactor = Group->getFactor(); 2201 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2202 2203 // Prepare for the new pointers. 2204 SmallVector<Value *, 2> AddrParts; 2205 unsigned Index = Group->getIndex(Instr); 2206 2207 // TODO: extend the masked interleaved-group support to reversed access. 2208 assert((!BlockInMask || !Group->isReverse()) && 2209 "Reversed masked interleave-group not supported."); 2210 2211 // If the group is reverse, adjust the index to refer to the last vector lane 2212 // instead of the first. We adjust the index from the first vector lane, 2213 // rather than directly getting the pointer for lane VF - 1, because the 2214 // pointer operand of the interleaved access is supposed to be uniform. For 2215 // uniform instructions, we're only required to generate a value for the 2216 // first vector lane in each unroll iteration. 2217 if (Group->isReverse()) 2218 Index += (VF - 1) * Group->getFactor(); 2219 2220 for (unsigned Part = 0; Part < UF; Part++) { 2221 Value *AddrPart = State.get(Addr, {Part, 0}); 2222 setDebugLocFromInst(Builder, AddrPart); 2223 2224 // Notice current instruction could be any index. Need to adjust the address 2225 // to the member of index 0. 2226 // 2227 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2228 // b = A[i]; // Member of index 0 2229 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2230 // 2231 // E.g. A[i+1] = a; // Member of index 1 2232 // A[i] = b; // Member of index 0 2233 // A[i+2] = c; // Member of index 2 (Current instruction) 2234 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2235 2236 bool InBounds = false; 2237 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2238 InBounds = gep->isInBounds(); 2239 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2240 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2241 2242 // Cast to the vector pointer type. 2243 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2244 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2245 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2246 } 2247 2248 setDebugLocFromInst(Builder, Instr); 2249 Value *UndefVec = UndefValue::get(VecTy); 2250 2251 Value *MaskForGaps = nullptr; 2252 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2253 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2254 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2255 } 2256 2257 // Vectorize the interleaved load group. 2258 if (isa<LoadInst>(Instr)) { 2259 // For each unroll part, create a wide load for the group. 2260 SmallVector<Value *, 2> NewLoads; 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Instruction *NewLoad; 2263 if (BlockInMask || MaskForGaps) { 2264 assert(useMaskedInterleavedAccesses(*TTI) && 2265 "masked interleaved groups are not allowed."); 2266 Value *GroupMask = MaskForGaps; 2267 if (BlockInMask) { 2268 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2269 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2270 Value *ShuffledMask = Builder.CreateShuffleVector( 2271 BlockInMaskPart, Undefs, 2272 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2273 GroupMask = MaskForGaps 2274 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2275 MaskForGaps) 2276 : ShuffledMask; 2277 } 2278 NewLoad = 2279 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2280 GroupMask, UndefVec, "wide.masked.vec"); 2281 } 2282 else 2283 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2284 Group->getAlign(), "wide.vec"); 2285 Group->addMetadata(NewLoad); 2286 NewLoads.push_back(NewLoad); 2287 } 2288 2289 // For each member in the group, shuffle out the appropriate data from the 2290 // wide loads. 2291 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2292 Instruction *Member = Group->getMember(I); 2293 2294 // Skip the gaps in the group. 2295 if (!Member) 2296 continue; 2297 2298 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2299 for (unsigned Part = 0; Part < UF; Part++) { 2300 Value *StridedVec = Builder.CreateShuffleVector( 2301 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2302 2303 // If this member has different type, cast the result type. 2304 if (Member->getType() != ScalarTy) { 2305 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2306 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2307 } 2308 2309 if (Group->isReverse()) 2310 StridedVec = reverseVector(StridedVec); 2311 2312 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2313 } 2314 } 2315 return; 2316 } 2317 2318 // The sub vector type for current instruction. 2319 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2320 2321 // Vectorize the interleaved store group. 2322 for (unsigned Part = 0; Part < UF; Part++) { 2323 // Collect the stored vector from each member. 2324 SmallVector<Value *, 4> StoredVecs; 2325 for (unsigned i = 0; i < InterleaveFactor; i++) { 2326 // Interleaved store group doesn't allow a gap, so each index has a member 2327 Instruction *Member = Group->getMember(i); 2328 assert(Member && "Fail to get a member from an interleaved store group"); 2329 2330 Value *StoredVec = getOrCreateVectorValue( 2331 cast<StoreInst>(Member)->getValueOperand(), Part); 2332 if (Group->isReverse()) 2333 StoredVec = reverseVector(StoredVec); 2334 2335 // If this member has different type, cast it to a unified type. 2336 2337 if (StoredVec->getType() != SubVT) 2338 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2339 2340 StoredVecs.push_back(StoredVec); 2341 } 2342 2343 // Concatenate all vectors into a wide vector. 2344 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2345 2346 // Interleave the elements in the wide vector. 2347 Value *IVec = Builder.CreateShuffleVector( 2348 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2349 "interleaved.vec"); 2350 2351 Instruction *NewStoreInstr; 2352 if (BlockInMask) { 2353 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2354 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2355 Value *ShuffledMask = Builder.CreateShuffleVector( 2356 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2357 "interleaved.mask"); 2358 NewStoreInstr = Builder.CreateMaskedStore( 2359 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2360 } 2361 else 2362 NewStoreInstr = 2363 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2364 2365 Group->addMetadata(NewStoreInstr); 2366 } 2367 } 2368 2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2370 VPTransformState &State, 2371 VPValue *Addr, 2372 VPValue *StoredValue, 2373 VPValue *BlockInMask) { 2374 // Attempt to issue a wide load. 2375 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2376 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2377 2378 assert((LI || SI) && "Invalid Load/Store instruction"); 2379 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2380 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2381 2382 LoopVectorizationCostModel::InstWidening Decision = 2383 Cost->getWideningDecision(Instr, VF); 2384 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2385 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2386 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2387 "CM decision is not to widen the memory instruction"); 2388 2389 Type *ScalarDataTy = getMemInstValueType(Instr); 2390 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2391 const Align Alignment = getLoadStoreAlignment(Instr); 2392 2393 // Determine if the pointer operand of the access is either consecutive or 2394 // reverse consecutive. 2395 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2396 bool ConsecutiveStride = 2397 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2398 bool CreateGatherScatter = 2399 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2400 2401 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2402 // gather/scatter. Otherwise Decision should have been to Scalarize. 2403 assert((ConsecutiveStride || CreateGatherScatter) && 2404 "The instruction should be scalarized"); 2405 (void)ConsecutiveStride; 2406 2407 VectorParts BlockInMaskParts(UF); 2408 bool isMaskRequired = BlockInMask; 2409 if (isMaskRequired) 2410 for (unsigned Part = 0; Part < UF; ++Part) 2411 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2412 2413 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2414 // Calculate the pointer for the specific unroll-part. 2415 GetElementPtrInst *PartPtr = nullptr; 2416 2417 bool InBounds = false; 2418 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2419 InBounds = gep->isInBounds(); 2420 2421 if (Reverse) { 2422 // If the address is consecutive but reversed, then the 2423 // wide store needs to start at the last vector element. 2424 PartPtr = cast<GetElementPtrInst>( 2425 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2426 PartPtr->setIsInBounds(InBounds); 2427 PartPtr = cast<GetElementPtrInst>( 2428 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2429 PartPtr->setIsInBounds(InBounds); 2430 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2431 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2432 } else { 2433 PartPtr = cast<GetElementPtrInst>( 2434 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2435 PartPtr->setIsInBounds(InBounds); 2436 } 2437 2438 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2439 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2440 }; 2441 2442 // Handle Stores: 2443 if (SI) { 2444 setDebugLocFromInst(Builder, SI); 2445 2446 for (unsigned Part = 0; Part < UF; ++Part) { 2447 Instruction *NewSI = nullptr; 2448 Value *StoredVal = State.get(StoredValue, Part); 2449 if (CreateGatherScatter) { 2450 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2451 Value *VectorGep = State.get(Addr, Part); 2452 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2453 MaskPart); 2454 } else { 2455 if (Reverse) { 2456 // If we store to reverse consecutive memory locations, then we need 2457 // to reverse the order of elements in the stored value. 2458 StoredVal = reverseVector(StoredVal); 2459 // We don't want to update the value in the map as it might be used in 2460 // another expression. So don't call resetVectorValue(StoredVal). 2461 } 2462 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2463 if (isMaskRequired) 2464 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2465 BlockInMaskParts[Part]); 2466 else 2467 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2468 } 2469 addMetadata(NewSI, SI); 2470 } 2471 return; 2472 } 2473 2474 // Handle loads. 2475 assert(LI && "Must have a load instruction"); 2476 setDebugLocFromInst(Builder, LI); 2477 for (unsigned Part = 0; Part < UF; ++Part) { 2478 Value *NewLI; 2479 if (CreateGatherScatter) { 2480 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2481 Value *VectorGep = State.get(Addr, Part); 2482 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2483 nullptr, "wide.masked.gather"); 2484 addMetadata(NewLI, LI); 2485 } else { 2486 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2487 if (isMaskRequired) 2488 NewLI = Builder.CreateMaskedLoad( 2489 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2490 "wide.masked.load"); 2491 else 2492 NewLI = 2493 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2494 2495 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2496 addMetadata(NewLI, LI); 2497 if (Reverse) 2498 NewLI = reverseVector(NewLI); 2499 } 2500 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2501 } 2502 } 2503 2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2505 const VPIteration &Instance, 2506 bool IfPredicateInstr, 2507 VPTransformState &State) { 2508 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2509 2510 setDebugLocFromInst(Builder, Instr); 2511 2512 // Does this instruction return a value ? 2513 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2514 2515 Instruction *Cloned = Instr->clone(); 2516 if (!IsVoidRetTy) 2517 Cloned->setName(Instr->getName() + ".cloned"); 2518 2519 // Replace the operands of the cloned instructions with their scalar 2520 // equivalents in the new loop. 2521 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2522 auto *NewOp = State.get(User.getOperand(op), Instance); 2523 Cloned->setOperand(op, NewOp); 2524 } 2525 addNewMetadata(Cloned, Instr); 2526 2527 // Place the cloned scalar in the new loop. 2528 Builder.Insert(Cloned); 2529 2530 // Add the cloned scalar to the scalar map entry. 2531 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2532 2533 // If we just cloned a new assumption, add it the assumption cache. 2534 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2535 if (II->getIntrinsicID() == Intrinsic::assume) 2536 AC->registerAssumption(II); 2537 2538 // End if-block. 2539 if (IfPredicateInstr) 2540 PredicatedInstructions.push_back(Cloned); 2541 } 2542 2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2544 Value *End, Value *Step, 2545 Instruction *DL) { 2546 BasicBlock *Header = L->getHeader(); 2547 BasicBlock *Latch = L->getLoopLatch(); 2548 // As we're just creating this loop, it's possible no latch exists 2549 // yet. If so, use the header as this will be a single block loop. 2550 if (!Latch) 2551 Latch = Header; 2552 2553 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2554 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2555 setDebugLocFromInst(Builder, OldInst); 2556 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2557 2558 Builder.SetInsertPoint(Latch->getTerminator()); 2559 setDebugLocFromInst(Builder, OldInst); 2560 2561 // Create i+1 and fill the PHINode. 2562 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2563 Induction->addIncoming(Start, L->getLoopPreheader()); 2564 Induction->addIncoming(Next, Latch); 2565 // Create the compare. 2566 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2567 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2568 2569 // Now we have two terminators. Remove the old one from the block. 2570 Latch->getTerminator()->eraseFromParent(); 2571 2572 return Induction; 2573 } 2574 2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2576 if (TripCount) 2577 return TripCount; 2578 2579 assert(L && "Create Trip Count for null loop."); 2580 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2581 // Find the loop boundaries. 2582 ScalarEvolution *SE = PSE.getSE(); 2583 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2584 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2585 "Invalid loop count"); 2586 2587 Type *IdxTy = Legal->getWidestInductionType(); 2588 assert(IdxTy && "No type for induction"); 2589 2590 // The exit count might have the type of i64 while the phi is i32. This can 2591 // happen if we have an induction variable that is sign extended before the 2592 // compare. The only way that we get a backedge taken count is that the 2593 // induction variable was signed and as such will not overflow. In such a case 2594 // truncation is legal. 2595 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2596 IdxTy->getPrimitiveSizeInBits()) 2597 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2598 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2599 2600 // Get the total trip count from the count by adding 1. 2601 const SCEV *ExitCount = SE->getAddExpr( 2602 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2603 2604 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2605 2606 // Expand the trip count and place the new instructions in the preheader. 2607 // Notice that the pre-header does not change, only the loop body. 2608 SCEVExpander Exp(*SE, DL, "induction"); 2609 2610 // Count holds the overall loop count (N). 2611 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2612 L->getLoopPreheader()->getTerminator()); 2613 2614 if (TripCount->getType()->isPointerTy()) 2615 TripCount = 2616 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2617 L->getLoopPreheader()->getTerminator()); 2618 2619 return TripCount; 2620 } 2621 2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2623 if (VectorTripCount) 2624 return VectorTripCount; 2625 2626 Value *TC = getOrCreateTripCount(L); 2627 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2628 2629 Type *Ty = TC->getType(); 2630 Constant *Step = ConstantInt::get(Ty, VF * UF); 2631 2632 // If the tail is to be folded by masking, round the number of iterations N 2633 // up to a multiple of Step instead of rounding down. This is done by first 2634 // adding Step-1 and then rounding down. Note that it's ok if this addition 2635 // overflows: the vector induction variable will eventually wrap to zero given 2636 // that it starts at zero and its Step is a power of two; the loop will then 2637 // exit, with the last early-exit vector comparison also producing all-true. 2638 if (Cost->foldTailByMasking()) { 2639 assert(isPowerOf2_32(VF * UF) && 2640 "VF*UF must be a power of 2 when folding tail by masking"); 2641 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2642 } 2643 2644 // Now we need to generate the expression for the part of the loop that the 2645 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2646 // iterations are not required for correctness, or N - Step, otherwise. Step 2647 // is equal to the vectorization factor (number of SIMD elements) times the 2648 // unroll factor (number of SIMD instructions). 2649 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2650 2651 // If there is a non-reversed interleaved group that may speculatively access 2652 // memory out-of-bounds, we need to ensure that there will be at least one 2653 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2654 // the trip count, we set the remainder to be equal to the step. If the step 2655 // does not evenly divide the trip count, no adjustment is necessary since 2656 // there will already be scalar iterations. Note that the minimum iterations 2657 // check ensures that N >= Step. 2658 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2659 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2660 R = Builder.CreateSelect(IsZero, Step, R); 2661 } 2662 2663 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2664 2665 return VectorTripCount; 2666 } 2667 2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2669 const DataLayout &DL) { 2670 // Verify that V is a vector type with same number of elements as DstVTy. 2671 unsigned VF = DstVTy->getNumElements(); 2672 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2673 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2674 Type *SrcElemTy = SrcVecTy->getElementType(); 2675 Type *DstElemTy = DstVTy->getElementType(); 2676 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2677 "Vector elements must have same size"); 2678 2679 // Do a direct cast if element types are castable. 2680 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2681 return Builder.CreateBitOrPointerCast(V, DstVTy); 2682 } 2683 // V cannot be directly casted to desired vector type. 2684 // May happen when V is a floating point vector but DstVTy is a vector of 2685 // pointers or vice-versa. Handle this using a two-step bitcast using an 2686 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2687 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2688 "Only one type should be a pointer type"); 2689 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2690 "Only one type should be a floating point type"); 2691 Type *IntTy = 2692 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2693 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2694 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2695 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2696 } 2697 2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2699 BasicBlock *Bypass) { 2700 Value *Count = getOrCreateTripCount(L); 2701 // Reuse existing vector loop preheader for TC checks. 2702 // Note that new preheader block is generated for vector loop. 2703 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2704 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 2714 // If tail is to be folded, vector loop takes care of all iterations. 2715 Value *CheckMinIters = Builder.getFalse(); 2716 if (!Cost->foldTailByMasking()) 2717 CheckMinIters = Builder.CreateICmp( 2718 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2719 "min.iters.check"); 2720 2721 // Create new preheader for vector loop. 2722 LoopVectorPreHeader = 2723 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2724 "vector.ph"); 2725 2726 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2727 DT->getNode(Bypass)->getIDom()) && 2728 "TC check is expected to dominate Bypass"); 2729 2730 // Update dominator for Bypass & LoopExit. 2731 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2732 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2733 2734 ReplaceInstWithInst( 2735 TCCheckBlock->getTerminator(), 2736 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2737 LoopBypassBlocks.push_back(TCCheckBlock); 2738 } 2739 2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2741 // Reuse existing vector loop preheader for SCEV checks. 2742 // Note that new preheader block is generated for vector loop. 2743 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2744 2745 // Generate the code to check that the SCEV assumptions that we made. 2746 // We want the new basic block to start at the first instruction in a 2747 // sequence of instructions that form a check. 2748 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2749 "scev.check"); 2750 Value *SCEVCheck = Exp.expandCodeForPredicate( 2751 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2752 2753 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2754 if (C->isZero()) 2755 return; 2756 2757 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2758 "Cannot SCEV check stride or overflow when optimizing for size"); 2759 2760 SCEVCheckBlock->setName("vector.scevcheck"); 2761 // Create new preheader for vector loop. 2762 LoopVectorPreHeader = 2763 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2764 nullptr, "vector.ph"); 2765 2766 // Update dominator only if this is first RT check. 2767 if (LoopBypassBlocks.empty()) { 2768 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2769 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2770 } 2771 2772 ReplaceInstWithInst( 2773 SCEVCheckBlock->getTerminator(), 2774 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2775 LoopBypassBlocks.push_back(SCEVCheckBlock); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2780 // VPlan-native path does not do any analysis for runtime checks currently. 2781 if (EnableVPlanNativePath) 2782 return; 2783 2784 // Reuse existing vector loop preheader for runtime memory checks. 2785 // Note that new preheader block is generated for vector loop. 2786 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2787 2788 // Generate the code that checks in runtime if arrays overlap. We put the 2789 // checks into a separate block to make the more common case of few elements 2790 // faster. 2791 auto *LAI = Legal->getLAI(); 2792 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2793 if (!RtPtrChecking.Need) 2794 return; 2795 Instruction *FirstCheckInst; 2796 Instruction *MemRuntimeCheck; 2797 std::tie(FirstCheckInst, MemRuntimeCheck) = 2798 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2799 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2800 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2801 "claimed checks are required"); 2802 2803 if (MemCheckBlock->getParent()->hasOptSize()) { 2804 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2805 "Cannot emit memory checks when optimizing for size, unless forced " 2806 "to vectorize."); 2807 ORE->emit([&]() { 2808 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2809 L->getStartLoc(), L->getHeader()) 2810 << "Code-size may be reduced by not forcing " 2811 "vectorization, or by source-code modifications " 2812 "eliminating the need for runtime checks " 2813 "(e.g., adding 'restrict')."; 2814 }); 2815 } 2816 2817 MemCheckBlock->setName("vector.memcheck"); 2818 // Create new preheader for vector loop. 2819 LoopVectorPreHeader = 2820 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2821 "vector.ph"); 2822 2823 // Update dominator only if this is first RT check. 2824 if (LoopBypassBlocks.empty()) { 2825 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2826 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2827 } 2828 2829 ReplaceInstWithInst( 2830 MemCheckBlock->getTerminator(), 2831 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2832 LoopBypassBlocks.push_back(MemCheckBlock); 2833 AddedSafetyChecks = true; 2834 2835 // We currently don't use LoopVersioning for the actual loop cloning but we 2836 // still use it to add the noalias metadata. 2837 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2838 PSE.getSE()); 2839 LVer->prepareNoAliasMetadata(); 2840 } 2841 2842 Value *InnerLoopVectorizer::emitTransformedIndex( 2843 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2844 const InductionDescriptor &ID) const { 2845 2846 SCEVExpander Exp(*SE, DL, "induction"); 2847 auto Step = ID.getStep(); 2848 auto StartValue = ID.getStartValue(); 2849 assert(Index->getType() == Step->getType() && 2850 "Index type does not match StepValue type"); 2851 2852 // Note: the IR at this point is broken. We cannot use SE to create any new 2853 // SCEV and then expand it, hoping that SCEV's simplification will give us 2854 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2855 // lead to various SCEV crashes. So all we can do is to use builder and rely 2856 // on InstCombine for future simplifications. Here we handle some trivial 2857 // cases only. 2858 auto CreateAdd = [&B](Value *X, Value *Y) { 2859 assert(X->getType() == Y->getType() && "Types don't match!"); 2860 if (auto *CX = dyn_cast<ConstantInt>(X)) 2861 if (CX->isZero()) 2862 return Y; 2863 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2864 if (CY->isZero()) 2865 return X; 2866 return B.CreateAdd(X, Y); 2867 }; 2868 2869 auto CreateMul = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isOne()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isOne()) 2876 return X; 2877 return B.CreateMul(X, Y); 2878 }; 2879 2880 // Get a suitable insert point for SCEV expansion. For blocks in the vector 2881 // loop, choose the end of the vector loop header (=LoopVectorBody), because 2882 // the DomTree is not kept up-to-date for additional blocks generated in the 2883 // vector loop. By using the header as insertion point, we guarantee that the 2884 // expanded instructions dominate all their uses. 2885 auto GetInsertPoint = [this, &B]() { 2886 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 2887 if (InsertBB != LoopVectorBody && 2888 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 2889 return LoopVectorBody->getTerminator(); 2890 return &*B.GetInsertPoint(); 2891 }; 2892 switch (ID.getKind()) { 2893 case InductionDescriptor::IK_IntInduction: { 2894 assert(Index->getType() == StartValue->getType() && 2895 "Index type does not match StartValue type"); 2896 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2897 return B.CreateSub(StartValue, Index); 2898 auto *Offset = CreateMul( 2899 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 2900 return CreateAdd(StartValue, Offset); 2901 } 2902 case InductionDescriptor::IK_PtrInduction: { 2903 assert(isa<SCEVConstant>(Step) && 2904 "Expected constant step for pointer induction"); 2905 return B.CreateGEP( 2906 StartValue->getType()->getPointerElementType(), StartValue, 2907 CreateMul(Index, 2908 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 2909 } 2910 case InductionDescriptor::IK_FpInduction: { 2911 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2912 auto InductionBinOp = ID.getInductionBinOp(); 2913 assert(InductionBinOp && 2914 (InductionBinOp->getOpcode() == Instruction::FAdd || 2915 InductionBinOp->getOpcode() == Instruction::FSub) && 2916 "Original bin op should be defined for FP induction"); 2917 2918 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2919 2920 // Floating point operations had to be 'fast' to enable the induction. 2921 FastMathFlags Flags; 2922 Flags.setFast(); 2923 2924 Value *MulExp = B.CreateFMul(StepValue, Index); 2925 if (isa<Instruction>(MulExp)) 2926 // We have to check, the MulExp may be a constant. 2927 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2928 2929 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2930 "induction"); 2931 if (isa<Instruction>(BOp)) 2932 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2933 2934 return BOp; 2935 } 2936 case InductionDescriptor::IK_NoInduction: 2937 return nullptr; 2938 } 2939 llvm_unreachable("invalid enum"); 2940 } 2941 2942 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2943 /* 2944 In this function we generate a new loop. The new loop will contain 2945 the vectorized instructions while the old loop will continue to run the 2946 scalar remainder. 2947 2948 [ ] <-- loop iteration number check. 2949 / | 2950 / v 2951 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2952 | / | 2953 | / v 2954 || [ ] <-- vector pre header. 2955 |/ | 2956 | v 2957 | [ ] \ 2958 | [ ]_| <-- vector loop. 2959 | | 2960 | v 2961 | -[ ] <--- middle-block. 2962 | / | 2963 | / v 2964 -|- >[ ] <--- new preheader. 2965 | | 2966 | v 2967 | [ ] \ 2968 | [ ]_| <-- old scalar loop to handle remainder. 2969 \ | 2970 \ v 2971 >[ ] <-- exit block. 2972 ... 2973 */ 2974 2975 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2976 2977 // Some loops have a single integer induction variable, while other loops 2978 // don't. One example is c++ iterators that often have multiple pointer 2979 // induction variables. In the code below we also support a case where we 2980 // don't have a single induction variable. 2981 // 2982 // We try to obtain an induction variable from the original loop as hard 2983 // as possible. However if we don't find one that: 2984 // - is an integer 2985 // - counts from zero, stepping by one 2986 // - is the size of the widest induction variable type 2987 // then we create a new one. 2988 OldInduction = Legal->getPrimaryInduction(); 2989 Type *IdxTy = Legal->getWidestInductionType(); 2990 2991 // Split the single block loop into the two loop structure described above. 2992 LoopScalarBody = OrigLoop->getHeader(); 2993 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2994 LoopExitBlock = OrigLoop->getExitBlock(); 2995 assert(LoopExitBlock && "Must have an exit block"); 2996 assert(LoopVectorPreHeader && "Invalid loop structure"); 2997 2998 LoopMiddleBlock = 2999 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3000 LI, nullptr, "middle.block"); 3001 LoopScalarPreHeader = 3002 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3003 nullptr, "scalar.ph"); 3004 // We intentionally don't let SplitBlock to update LoopInfo since 3005 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3006 // LoopVectorBody is explicitly added to the correct place few lines later. 3007 LoopVectorBody = 3008 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3009 nullptr, nullptr, "vector.body"); 3010 3011 // Update dominator for loop exit. 3012 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3013 3014 // Create and register the new vector loop. 3015 Loop *Lp = LI->AllocateLoop(); 3016 Loop *ParentLoop = OrigLoop->getParentLoop(); 3017 3018 // Insert the new loop into the loop nest and register the new basic blocks 3019 // before calling any utilities such as SCEV that require valid LoopInfo. 3020 if (ParentLoop) { 3021 ParentLoop->addChildLoop(Lp); 3022 } else { 3023 LI->addTopLevelLoop(Lp); 3024 } 3025 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3026 3027 // Find the loop boundaries. 3028 Value *Count = getOrCreateTripCount(Lp); 3029 3030 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3031 3032 // Now, compare the new count to zero. If it is zero skip the vector loop and 3033 // jump to the scalar loop. This check also covers the case where the 3034 // backedge-taken count is uint##_max: adding one to it will overflow leading 3035 // to an incorrect trip count of zero. In this (rare) case we will also jump 3036 // to the scalar loop. 3037 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3038 3039 // Generate the code to check any assumptions that we've made for SCEV 3040 // expressions. 3041 emitSCEVChecks(Lp, LoopScalarPreHeader); 3042 3043 // Generate the code that checks in runtime if arrays overlap. We put the 3044 // checks into a separate block to make the more common case of few elements 3045 // faster. 3046 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3047 3048 // Generate the induction variable. 3049 // The loop step is equal to the vectorization factor (num of SIMD elements) 3050 // times the unroll factor (num of SIMD instructions). 3051 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3052 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3053 Induction = 3054 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3055 getDebugLocFromInstOrOperands(OldInduction)); 3056 3057 // We are going to resume the execution of the scalar loop. 3058 // Go over all of the induction variables that we found and fix the 3059 // PHIs that are left in the scalar version of the loop. 3060 // The starting values of PHI nodes depend on the counter of the last 3061 // iteration in the vectorized loop. 3062 // If we come from a bypass edge then we need to start from the original 3063 // start value. 3064 3065 // This variable saves the new starting index for the scalar loop. It is used 3066 // to test if there are any tail iterations left once the vector loop has 3067 // completed. 3068 for (auto &InductionEntry : Legal->getInductionVars()) { 3069 PHINode *OrigPhi = InductionEntry.first; 3070 InductionDescriptor II = InductionEntry.second; 3071 3072 // Create phi nodes to merge from the backedge-taken check block. 3073 PHINode *BCResumeVal = 3074 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3075 LoopScalarPreHeader->getTerminator()); 3076 // Copy original phi DL over to the new one. 3077 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3078 Value *&EndValue = IVEndValues[OrigPhi]; 3079 if (OrigPhi == OldInduction) { 3080 // We know what the end value is. 3081 EndValue = CountRoundDown; 3082 } else { 3083 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3084 Type *StepType = II.getStep()->getType(); 3085 Instruction::CastOps CastOp = 3086 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3087 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3088 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3089 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3090 EndValue->setName("ind.end"); 3091 } 3092 3093 // The new PHI merges the original incoming value, in case of a bypass, 3094 // or the value at the end of the vectorized loop. 3095 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3096 3097 // Fix the scalar body counter (PHI node). 3098 // The old induction's phi node in the scalar body needs the truncated 3099 // value. 3100 for (BasicBlock *BB : LoopBypassBlocks) 3101 BCResumeVal->addIncoming(II.getStartValue(), BB); 3102 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3103 } 3104 3105 // We need the OrigLoop (scalar loop part) latch terminator to help 3106 // produce correct debug info for the middle block BB instructions. 3107 // The legality check stage guarantees that the loop will have a single 3108 // latch. 3109 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3110 "Scalar loop latch terminator isn't a branch"); 3111 BranchInst *ScalarLatchBr = 3112 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3113 3114 // Add a check in the middle block to see if we have completed 3115 // all of the iterations in the first vector loop. 3116 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3117 // If tail is to be folded, we know we don't need to run the remainder. 3118 Value *CmpN = Builder.getTrue(); 3119 if (!Cost->foldTailByMasking()) { 3120 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3121 CountRoundDown, "cmp.n", 3122 LoopMiddleBlock->getTerminator()); 3123 3124 // Here we use the same DebugLoc as the scalar loop latch branch instead 3125 // of the corresponding compare because they may have ended up with 3126 // different line numbers and we want to avoid awkward line stepping while 3127 // debugging. Eg. if the compare has got a line number inside the loop. 3128 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3129 } 3130 3131 BranchInst *BrInst = 3132 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3133 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3134 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3135 3136 // Get ready to start creating new instructions into the vectorized body. 3137 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3138 "Inconsistent vector loop preheader"); 3139 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3140 3141 Optional<MDNode *> VectorizedLoopID = 3142 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3143 LLVMLoopVectorizeFollowupVectorized}); 3144 if (VectorizedLoopID.hasValue()) { 3145 Lp->setLoopID(VectorizedLoopID.getValue()); 3146 3147 // Do not setAlreadyVectorized if loop attributes have been defined 3148 // explicitly. 3149 return LoopVectorPreHeader; 3150 } 3151 3152 // Keep all loop hints from the original loop on the vector loop (we'll 3153 // replace the vectorizer-specific hints below). 3154 if (MDNode *LID = OrigLoop->getLoopID()) 3155 Lp->setLoopID(LID); 3156 3157 LoopVectorizeHints Hints(Lp, true, *ORE); 3158 Hints.setAlreadyVectorized(); 3159 3160 #ifdef EXPENSIVE_CHECKS 3161 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3162 LI->verify(*DT); 3163 #endif 3164 3165 return LoopVectorPreHeader; 3166 } 3167 3168 // Fix up external users of the induction variable. At this point, we are 3169 // in LCSSA form, with all external PHIs that use the IV having one input value, 3170 // coming from the remainder loop. We need those PHIs to also have a correct 3171 // value for the IV when arriving directly from the middle block. 3172 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3173 const InductionDescriptor &II, 3174 Value *CountRoundDown, Value *EndValue, 3175 BasicBlock *MiddleBlock) { 3176 // There are two kinds of external IV usages - those that use the value 3177 // computed in the last iteration (the PHI) and those that use the penultimate 3178 // value (the value that feeds into the phi from the loop latch). 3179 // We allow both, but they, obviously, have different values. 3180 3181 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3182 3183 DenseMap<Value *, Value *> MissingVals; 3184 3185 // An external user of the last iteration's value should see the value that 3186 // the remainder loop uses to initialize its own IV. 3187 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3188 for (User *U : PostInc->users()) { 3189 Instruction *UI = cast<Instruction>(U); 3190 if (!OrigLoop->contains(UI)) { 3191 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3192 MissingVals[UI] = EndValue; 3193 } 3194 } 3195 3196 // An external user of the penultimate value need to see EndValue - Step. 3197 // The simplest way to get this is to recompute it from the constituent SCEVs, 3198 // that is Start + (Step * (CRD - 1)). 3199 for (User *U : OrigPhi->users()) { 3200 auto *UI = cast<Instruction>(U); 3201 if (!OrigLoop->contains(UI)) { 3202 const DataLayout &DL = 3203 OrigLoop->getHeader()->getModule()->getDataLayout(); 3204 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3205 3206 IRBuilder<> B(MiddleBlock->getTerminator()); 3207 Value *CountMinusOne = B.CreateSub( 3208 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3209 Value *CMO = 3210 !II.getStep()->getType()->isIntegerTy() 3211 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3212 II.getStep()->getType()) 3213 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3214 CMO->setName("cast.cmo"); 3215 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3216 Escape->setName("ind.escape"); 3217 MissingVals[UI] = Escape; 3218 } 3219 } 3220 3221 for (auto &I : MissingVals) { 3222 PHINode *PHI = cast<PHINode>(I.first); 3223 // One corner case we have to handle is two IVs "chasing" each-other, 3224 // that is %IV2 = phi [...], [ %IV1, %latch ] 3225 // In this case, if IV1 has an external use, we need to avoid adding both 3226 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3227 // don't already have an incoming value for the middle block. 3228 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3229 PHI->addIncoming(I.second, MiddleBlock); 3230 } 3231 } 3232 3233 namespace { 3234 3235 struct CSEDenseMapInfo { 3236 static bool canHandle(const Instruction *I) { 3237 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3238 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3239 } 3240 3241 static inline Instruction *getEmptyKey() { 3242 return DenseMapInfo<Instruction *>::getEmptyKey(); 3243 } 3244 3245 static inline Instruction *getTombstoneKey() { 3246 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3247 } 3248 3249 static unsigned getHashValue(const Instruction *I) { 3250 assert(canHandle(I) && "Unknown instruction!"); 3251 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3252 I->value_op_end())); 3253 } 3254 3255 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3256 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3257 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3258 return LHS == RHS; 3259 return LHS->isIdenticalTo(RHS); 3260 } 3261 }; 3262 3263 } // end anonymous namespace 3264 3265 ///Perform cse of induction variable instructions. 3266 static void cse(BasicBlock *BB) { 3267 // Perform simple cse. 3268 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3269 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3270 Instruction *In = &*I++; 3271 3272 if (!CSEDenseMapInfo::canHandle(In)) 3273 continue; 3274 3275 // Check if we can replace this instruction with any of the 3276 // visited instructions. 3277 if (Instruction *V = CSEMap.lookup(In)) { 3278 In->replaceAllUsesWith(V); 3279 In->eraseFromParent(); 3280 continue; 3281 } 3282 3283 CSEMap[In] = In; 3284 } 3285 } 3286 3287 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3288 unsigned VF, 3289 bool &NeedToScalarize) { 3290 Function *F = CI->getCalledFunction(); 3291 Type *ScalarRetTy = CI->getType(); 3292 SmallVector<Type *, 4> Tys, ScalarTys; 3293 for (auto &ArgOp : CI->arg_operands()) 3294 ScalarTys.push_back(ArgOp->getType()); 3295 3296 // Estimate cost of scalarized vector call. The source operands are assumed 3297 // to be vectors, so we need to extract individual elements from there, 3298 // execute VF scalar calls, and then gather the result into the vector return 3299 // value. 3300 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3301 TTI::TCK_RecipThroughput); 3302 if (VF == 1) 3303 return ScalarCallCost; 3304 3305 // Compute corresponding vector type for return value and arguments. 3306 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3307 for (Type *ScalarTy : ScalarTys) 3308 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3309 3310 // Compute costs of unpacking argument values for the scalar calls and 3311 // packing the return values to a vector. 3312 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3313 3314 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3315 3316 // If we can't emit a vector call for this function, then the currently found 3317 // cost is the cost we need to return. 3318 NeedToScalarize = true; 3319 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3320 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3321 3322 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3323 return Cost; 3324 3325 // If the corresponding vector cost is cheaper, return its cost. 3326 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3327 TTI::TCK_RecipThroughput); 3328 if (VectorCallCost < Cost) { 3329 NeedToScalarize = false; 3330 return VectorCallCost; 3331 } 3332 return Cost; 3333 } 3334 3335 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3336 unsigned VF) { 3337 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3338 assert(ID && "Expected intrinsic call!"); 3339 3340 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3341 return TTI.getIntrinsicInstrCost(CostAttrs, 3342 TargetTransformInfo::TCK_RecipThroughput); 3343 } 3344 3345 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3346 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3347 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3348 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3349 } 3350 3351 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3352 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3353 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3354 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3355 } 3356 3357 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3358 // For every instruction `I` in MinBWs, truncate the operands, create a 3359 // truncated version of `I` and reextend its result. InstCombine runs 3360 // later and will remove any ext/trunc pairs. 3361 SmallPtrSet<Value *, 4> Erased; 3362 for (const auto &KV : Cost->getMinimalBitwidths()) { 3363 // If the value wasn't vectorized, we must maintain the original scalar 3364 // type. The absence of the value from VectorLoopValueMap indicates that it 3365 // wasn't vectorized. 3366 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3367 continue; 3368 for (unsigned Part = 0; Part < UF; ++Part) { 3369 Value *I = getOrCreateVectorValue(KV.first, Part); 3370 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3371 continue; 3372 Type *OriginalTy = I->getType(); 3373 Type *ScalarTruncatedTy = 3374 IntegerType::get(OriginalTy->getContext(), KV.second); 3375 auto *TruncatedTy = FixedVectorType::get( 3376 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3377 if (TruncatedTy == OriginalTy) 3378 continue; 3379 3380 IRBuilder<> B(cast<Instruction>(I)); 3381 auto ShrinkOperand = [&](Value *V) -> Value * { 3382 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3383 if (ZI->getSrcTy() == TruncatedTy) 3384 return ZI->getOperand(0); 3385 return B.CreateZExtOrTrunc(V, TruncatedTy); 3386 }; 3387 3388 // The actual instruction modification depends on the instruction type, 3389 // unfortunately. 3390 Value *NewI = nullptr; 3391 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3392 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3393 ShrinkOperand(BO->getOperand(1))); 3394 3395 // Any wrapping introduced by shrinking this operation shouldn't be 3396 // considered undefined behavior. So, we can't unconditionally copy 3397 // arithmetic wrapping flags to NewI. 3398 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3399 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3400 NewI = 3401 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3402 ShrinkOperand(CI->getOperand(1))); 3403 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3404 NewI = B.CreateSelect(SI->getCondition(), 3405 ShrinkOperand(SI->getTrueValue()), 3406 ShrinkOperand(SI->getFalseValue())); 3407 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3408 switch (CI->getOpcode()) { 3409 default: 3410 llvm_unreachable("Unhandled cast!"); 3411 case Instruction::Trunc: 3412 NewI = ShrinkOperand(CI->getOperand(0)); 3413 break; 3414 case Instruction::SExt: 3415 NewI = B.CreateSExtOrTrunc( 3416 CI->getOperand(0), 3417 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3418 break; 3419 case Instruction::ZExt: 3420 NewI = B.CreateZExtOrTrunc( 3421 CI->getOperand(0), 3422 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3423 break; 3424 } 3425 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3426 auto Elements0 = 3427 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3428 auto *O0 = B.CreateZExtOrTrunc( 3429 SI->getOperand(0), 3430 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3431 auto Elements1 = 3432 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3433 auto *O1 = B.CreateZExtOrTrunc( 3434 SI->getOperand(1), 3435 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3436 3437 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3438 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3439 // Don't do anything with the operands, just extend the result. 3440 continue; 3441 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3442 auto Elements = 3443 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3444 auto *O0 = B.CreateZExtOrTrunc( 3445 IE->getOperand(0), 3446 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3447 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3448 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3449 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3450 auto Elements = 3451 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3452 auto *O0 = B.CreateZExtOrTrunc( 3453 EE->getOperand(0), 3454 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3455 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3456 } else { 3457 // If we don't know what to do, be conservative and don't do anything. 3458 continue; 3459 } 3460 3461 // Lastly, extend the result. 3462 NewI->takeName(cast<Instruction>(I)); 3463 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3464 I->replaceAllUsesWith(Res); 3465 cast<Instruction>(I)->eraseFromParent(); 3466 Erased.insert(I); 3467 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3468 } 3469 } 3470 3471 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3472 for (const auto &KV : Cost->getMinimalBitwidths()) { 3473 // If the value wasn't vectorized, we must maintain the original scalar 3474 // type. The absence of the value from VectorLoopValueMap indicates that it 3475 // wasn't vectorized. 3476 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3477 continue; 3478 for (unsigned Part = 0; Part < UF; ++Part) { 3479 Value *I = getOrCreateVectorValue(KV.first, Part); 3480 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3481 if (Inst && Inst->use_empty()) { 3482 Value *NewI = Inst->getOperand(0); 3483 Inst->eraseFromParent(); 3484 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3485 } 3486 } 3487 } 3488 } 3489 3490 void InnerLoopVectorizer::fixVectorizedLoop() { 3491 // Insert truncates and extends for any truncated instructions as hints to 3492 // InstCombine. 3493 if (VF > 1) 3494 truncateToMinimalBitwidths(); 3495 3496 // Fix widened non-induction PHIs by setting up the PHI operands. 3497 if (OrigPHIsToFix.size()) { 3498 assert(EnableVPlanNativePath && 3499 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3500 fixNonInductionPHIs(); 3501 } 3502 3503 // At this point every instruction in the original loop is widened to a 3504 // vector form. Now we need to fix the recurrences in the loop. These PHI 3505 // nodes are currently empty because we did not want to introduce cycles. 3506 // This is the second stage of vectorizing recurrences. 3507 fixCrossIterationPHIs(); 3508 3509 // Forget the original basic block. 3510 PSE.getSE()->forgetLoop(OrigLoop); 3511 3512 // Fix-up external users of the induction variables. 3513 for (auto &Entry : Legal->getInductionVars()) 3514 fixupIVUsers(Entry.first, Entry.second, 3515 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3516 IVEndValues[Entry.first], LoopMiddleBlock); 3517 3518 fixLCSSAPHIs(); 3519 for (Instruction *PI : PredicatedInstructions) 3520 sinkScalarOperands(&*PI); 3521 3522 // Remove redundant induction instructions. 3523 cse(LoopVectorBody); 3524 3525 // Set/update profile weights for the vector and remainder loops as original 3526 // loop iterations are now distributed among them. Note that original loop 3527 // represented by LoopScalarBody becomes remainder loop after vectorization. 3528 // 3529 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3530 // end up getting slightly roughened result but that should be OK since 3531 // profile is not inherently precise anyway. Note also possible bypass of 3532 // vector code caused by legality checks is ignored, assigning all the weight 3533 // to the vector loop, optimistically. 3534 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3535 LI->getLoopFor(LoopVectorBody), 3536 LI->getLoopFor(LoopScalarBody), VF * UF); 3537 } 3538 3539 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3540 // In order to support recurrences we need to be able to vectorize Phi nodes. 3541 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3542 // stage #2: We now need to fix the recurrences by adding incoming edges to 3543 // the currently empty PHI nodes. At this point every instruction in the 3544 // original loop is widened to a vector form so we can use them to construct 3545 // the incoming edges. 3546 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3547 // Handle first-order recurrences and reductions that need to be fixed. 3548 if (Legal->isFirstOrderRecurrence(&Phi)) 3549 fixFirstOrderRecurrence(&Phi); 3550 else if (Legal->isReductionVariable(&Phi)) 3551 fixReduction(&Phi); 3552 } 3553 } 3554 3555 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3556 // This is the second phase of vectorizing first-order recurrences. An 3557 // overview of the transformation is described below. Suppose we have the 3558 // following loop. 3559 // 3560 // for (int i = 0; i < n; ++i) 3561 // b[i] = a[i] - a[i - 1]; 3562 // 3563 // There is a first-order recurrence on "a". For this loop, the shorthand 3564 // scalar IR looks like: 3565 // 3566 // scalar.ph: 3567 // s_init = a[-1] 3568 // br scalar.body 3569 // 3570 // scalar.body: 3571 // i = phi [0, scalar.ph], [i+1, scalar.body] 3572 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3573 // s2 = a[i] 3574 // b[i] = s2 - s1 3575 // br cond, scalar.body, ... 3576 // 3577 // In this example, s1 is a recurrence because it's value depends on the 3578 // previous iteration. In the first phase of vectorization, we created a 3579 // temporary value for s1. We now complete the vectorization and produce the 3580 // shorthand vector IR shown below (for VF = 4, UF = 1). 3581 // 3582 // vector.ph: 3583 // v_init = vector(..., ..., ..., a[-1]) 3584 // br vector.body 3585 // 3586 // vector.body 3587 // i = phi [0, vector.ph], [i+4, vector.body] 3588 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3589 // v2 = a[i, i+1, i+2, i+3]; 3590 // v3 = vector(v1(3), v2(0, 1, 2)) 3591 // b[i, i+1, i+2, i+3] = v2 - v3 3592 // br cond, vector.body, middle.block 3593 // 3594 // middle.block: 3595 // x = v2(3) 3596 // br scalar.ph 3597 // 3598 // scalar.ph: 3599 // s_init = phi [x, middle.block], [a[-1], otherwise] 3600 // br scalar.body 3601 // 3602 // After execution completes the vector loop, we extract the next value of 3603 // the recurrence (x) to use as the initial value in the scalar loop. 3604 3605 // Get the original loop preheader and single loop latch. 3606 auto *Preheader = OrigLoop->getLoopPreheader(); 3607 auto *Latch = OrigLoop->getLoopLatch(); 3608 3609 // Get the initial and previous values of the scalar recurrence. 3610 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3611 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3612 3613 // Create a vector from the initial value. 3614 auto *VectorInit = ScalarInit; 3615 if (VF > 1) { 3616 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3617 VectorInit = Builder.CreateInsertElement( 3618 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3619 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3620 } 3621 3622 // We constructed a temporary phi node in the first phase of vectorization. 3623 // This phi node will eventually be deleted. 3624 Builder.SetInsertPoint( 3625 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3626 3627 // Create a phi node for the new recurrence. The current value will either be 3628 // the initial value inserted into a vector or loop-varying vector value. 3629 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3630 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3631 3632 // Get the vectorized previous value of the last part UF - 1. It appears last 3633 // among all unrolled iterations, due to the order of their construction. 3634 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3635 3636 // Find and set the insertion point after the previous value if it is an 3637 // instruction. 3638 BasicBlock::iterator InsertPt; 3639 // Note that the previous value may have been constant-folded so it is not 3640 // guaranteed to be an instruction in the vector loop. 3641 // FIXME: Loop invariant values do not form recurrences. We should deal with 3642 // them earlier. 3643 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3644 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3645 else { 3646 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3647 if (isa<PHINode>(PreviousLastPart)) 3648 // If the previous value is a phi node, we should insert after all the phi 3649 // nodes in the block containing the PHI to avoid breaking basic block 3650 // verification. Note that the basic block may be different to 3651 // LoopVectorBody, in case we predicate the loop. 3652 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3653 else 3654 InsertPt = ++PreviousInst->getIterator(); 3655 } 3656 Builder.SetInsertPoint(&*InsertPt); 3657 3658 // We will construct a vector for the recurrence by combining the values for 3659 // the current and previous iterations. This is the required shuffle mask. 3660 SmallVector<int, 8> ShuffleMask(VF); 3661 ShuffleMask[0] = VF - 1; 3662 for (unsigned I = 1; I < VF; ++I) 3663 ShuffleMask[I] = I + VF - 1; 3664 3665 // The vector from which to take the initial value for the current iteration 3666 // (actual or unrolled). Initially, this is the vector phi node. 3667 Value *Incoming = VecPhi; 3668 3669 // Shuffle the current and previous vector and update the vector parts. 3670 for (unsigned Part = 0; Part < UF; ++Part) { 3671 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3672 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3673 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3674 ShuffleMask) 3675 : Incoming; 3676 PhiPart->replaceAllUsesWith(Shuffle); 3677 cast<Instruction>(PhiPart)->eraseFromParent(); 3678 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3679 Incoming = PreviousPart; 3680 } 3681 3682 // Fix the latch value of the new recurrence in the vector loop. 3683 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3684 3685 // Extract the last vector element in the middle block. This will be the 3686 // initial value for the recurrence when jumping to the scalar loop. 3687 auto *ExtractForScalar = Incoming; 3688 if (VF > 1) { 3689 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3690 ExtractForScalar = Builder.CreateExtractElement( 3691 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3692 } 3693 // Extract the second last element in the middle block if the 3694 // Phi is used outside the loop. We need to extract the phi itself 3695 // and not the last element (the phi update in the current iteration). This 3696 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3697 // when the scalar loop is not run at all. 3698 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3699 if (VF > 1) 3700 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3701 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3702 // When loop is unrolled without vectorizing, initialize 3703 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3704 // `Incoming`. This is analogous to the vectorized case above: extracting the 3705 // second last element when VF > 1. 3706 else if (UF > 1) 3707 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3708 3709 // Fix the initial value of the original recurrence in the scalar loop. 3710 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3711 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3712 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3713 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3714 Start->addIncoming(Incoming, BB); 3715 } 3716 3717 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3718 Phi->setName("scalar.recur"); 3719 3720 // Finally, fix users of the recurrence outside the loop. The users will need 3721 // either the last value of the scalar recurrence or the last value of the 3722 // vector recurrence we extracted in the middle block. Since the loop is in 3723 // LCSSA form, we just need to find all the phi nodes for the original scalar 3724 // recurrence in the exit block, and then add an edge for the middle block. 3725 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3726 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3727 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3728 } 3729 } 3730 } 3731 3732 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3733 Constant *Zero = Builder.getInt32(0); 3734 3735 // Get it's reduction variable descriptor. 3736 assert(Legal->isReductionVariable(Phi) && 3737 "Unable to find the reduction variable"); 3738 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3739 3740 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3741 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3742 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3743 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3744 RdxDesc.getMinMaxRecurrenceKind(); 3745 setDebugLocFromInst(Builder, ReductionStartValue); 3746 3747 // We need to generate a reduction vector from the incoming scalar. 3748 // To do so, we need to generate the 'identity' vector and override 3749 // one of the elements with the incoming scalar reduction. We need 3750 // to do it in the vector-loop preheader. 3751 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3752 3753 // This is the vector-clone of the value that leaves the loop. 3754 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3755 3756 // Find the reduction identity variable. Zero for addition, or, xor, 3757 // one for multiplication, -1 for And. 3758 Value *Identity; 3759 Value *VectorStart; 3760 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3761 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3762 // MinMax reduction have the start value as their identify. 3763 if (VF == 1) { 3764 VectorStart = Identity = ReductionStartValue; 3765 } else { 3766 VectorStart = Identity = 3767 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3768 } 3769 } else { 3770 // Handle other reduction kinds: 3771 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3772 RK, VecTy->getScalarType()); 3773 if (VF == 1) { 3774 Identity = Iden; 3775 // This vector is the Identity vector where the first element is the 3776 // incoming scalar reduction. 3777 VectorStart = ReductionStartValue; 3778 } else { 3779 Identity = ConstantVector::getSplat({VF, false}, Iden); 3780 3781 // This vector is the Identity vector where the first element is the 3782 // incoming scalar reduction. 3783 VectorStart = 3784 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3785 } 3786 } 3787 3788 // Wrap flags are in general invalid after vectorization, clear them. 3789 clearReductionWrapFlags(RdxDesc); 3790 3791 // Fix the vector-loop phi. 3792 3793 // Reductions do not have to start at zero. They can start with 3794 // any loop invariant values. 3795 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3796 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3797 3798 for (unsigned Part = 0; Part < UF; ++Part) { 3799 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3800 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3801 // Make sure to add the reduction start value only to the 3802 // first unroll part. 3803 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3804 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3805 cast<PHINode>(VecRdxPhi) 3806 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3807 } 3808 3809 // Before each round, move the insertion point right between 3810 // the PHIs and the values we are going to write. 3811 // This allows us to write both PHINodes and the extractelement 3812 // instructions. 3813 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3814 3815 setDebugLocFromInst(Builder, LoopExitInst); 3816 3817 // If tail is folded by masking, the vector value to leave the loop should be 3818 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3819 // instead of the former. 3820 if (Cost->foldTailByMasking()) { 3821 for (unsigned Part = 0; Part < UF; ++Part) { 3822 Value *VecLoopExitInst = 3823 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3824 Value *Sel = nullptr; 3825 for (User *U : VecLoopExitInst->users()) { 3826 if (isa<SelectInst>(U)) { 3827 assert(!Sel && "Reduction exit feeding two selects"); 3828 Sel = U; 3829 } else 3830 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3831 } 3832 assert(Sel && "Reduction exit feeds no select"); 3833 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3834 } 3835 } 3836 3837 // If the vector reduction can be performed in a smaller type, we truncate 3838 // then extend the loop exit value to enable InstCombine to evaluate the 3839 // entire expression in the smaller type. 3840 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3841 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3842 Builder.SetInsertPoint( 3843 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3844 VectorParts RdxParts(UF); 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3847 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3848 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3849 : Builder.CreateZExt(Trunc, VecTy); 3850 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3851 UI != RdxParts[Part]->user_end();) 3852 if (*UI != Trunc) { 3853 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3854 RdxParts[Part] = Extnd; 3855 } else { 3856 ++UI; 3857 } 3858 } 3859 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3860 for (unsigned Part = 0; Part < UF; ++Part) { 3861 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3862 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3863 } 3864 } 3865 3866 // Reduce all of the unrolled parts into a single vector. 3867 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3868 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3869 3870 // The middle block terminator has already been assigned a DebugLoc here (the 3871 // OrigLoop's single latch terminator). We want the whole middle block to 3872 // appear to execute on this line because: (a) it is all compiler generated, 3873 // (b) these instructions are always executed after evaluating the latch 3874 // conditional branch, and (c) other passes may add new predecessors which 3875 // terminate on this line. This is the easiest way to ensure we don't 3876 // accidentally cause an extra step back into the loop while debugging. 3877 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3878 for (unsigned Part = 1; Part < UF; ++Part) { 3879 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3880 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3881 // Floating point operations had to be 'fast' to enable the reduction. 3882 ReducedPartRdx = addFastMathFlag( 3883 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3884 ReducedPartRdx, "bin.rdx"), 3885 RdxDesc.getFastMathFlags()); 3886 else 3887 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3888 RdxPart); 3889 } 3890 3891 if (VF > 1) { 3892 bool NoNaN = Legal->hasFunNoNaNAttr(); 3893 ReducedPartRdx = 3894 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3895 // If the reduction can be performed in a smaller type, we need to extend 3896 // the reduction to the wider type before we branch to the original loop. 3897 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3898 ReducedPartRdx = 3899 RdxDesc.isSigned() 3900 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3901 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3902 } 3903 3904 // Create a phi node that merges control-flow from the backedge-taken check 3905 // block and the middle block. 3906 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3907 LoopScalarPreHeader->getTerminator()); 3908 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3909 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3910 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3911 3912 // Now, we need to fix the users of the reduction variable 3913 // inside and outside of the scalar remainder loop. 3914 // We know that the loop is in LCSSA form. We need to update the 3915 // PHI nodes in the exit blocks. 3916 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3917 // All PHINodes need to have a single entry edge, or two if 3918 // we already fixed them. 3919 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3920 3921 // We found a reduction value exit-PHI. Update it with the 3922 // incoming bypass edge. 3923 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3924 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3925 } // end of the LCSSA phi scan. 3926 3927 // Fix the scalar loop reduction variable with the incoming reduction sum 3928 // from the vector body and from the backedge value. 3929 int IncomingEdgeBlockIdx = 3930 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3931 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3932 // Pick the other block. 3933 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3934 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3935 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3936 } 3937 3938 void InnerLoopVectorizer::clearReductionWrapFlags( 3939 RecurrenceDescriptor &RdxDesc) { 3940 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3941 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3942 RK != RecurrenceDescriptor::RK_IntegerMult) 3943 return; 3944 3945 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3946 assert(LoopExitInstr && "null loop exit instruction"); 3947 SmallVector<Instruction *, 8> Worklist; 3948 SmallPtrSet<Instruction *, 8> Visited; 3949 Worklist.push_back(LoopExitInstr); 3950 Visited.insert(LoopExitInstr); 3951 3952 while (!Worklist.empty()) { 3953 Instruction *Cur = Worklist.pop_back_val(); 3954 if (isa<OverflowingBinaryOperator>(Cur)) 3955 for (unsigned Part = 0; Part < UF; ++Part) { 3956 Value *V = getOrCreateVectorValue(Cur, Part); 3957 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3958 } 3959 3960 for (User *U : Cur->users()) { 3961 Instruction *UI = cast<Instruction>(U); 3962 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3963 Visited.insert(UI).second) 3964 Worklist.push_back(UI); 3965 } 3966 } 3967 } 3968 3969 void InnerLoopVectorizer::fixLCSSAPHIs() { 3970 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3971 if (LCSSAPhi.getNumIncomingValues() == 1) { 3972 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3973 // Non-instruction incoming values will have only one value. 3974 unsigned LastLane = 0; 3975 if (isa<Instruction>(IncomingValue)) 3976 LastLane = Cost->isUniformAfterVectorization( 3977 cast<Instruction>(IncomingValue), VF) 3978 ? 0 3979 : VF - 1; 3980 // Can be a loop invariant incoming value or the last scalar value to be 3981 // extracted from the vectorized loop. 3982 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3983 Value *lastIncomingValue = 3984 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3985 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3986 } 3987 } 3988 } 3989 3990 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3991 // The basic block and loop containing the predicated instruction. 3992 auto *PredBB = PredInst->getParent(); 3993 auto *VectorLoop = LI->getLoopFor(PredBB); 3994 3995 // Initialize a worklist with the operands of the predicated instruction. 3996 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3997 3998 // Holds instructions that we need to analyze again. An instruction may be 3999 // reanalyzed if we don't yet know if we can sink it or not. 4000 SmallVector<Instruction *, 8> InstsToReanalyze; 4001 4002 // Returns true if a given use occurs in the predicated block. Phi nodes use 4003 // their operands in their corresponding predecessor blocks. 4004 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4005 auto *I = cast<Instruction>(U.getUser()); 4006 BasicBlock *BB = I->getParent(); 4007 if (auto *Phi = dyn_cast<PHINode>(I)) 4008 BB = Phi->getIncomingBlock( 4009 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4010 return BB == PredBB; 4011 }; 4012 4013 // Iteratively sink the scalarized operands of the predicated instruction 4014 // into the block we created for it. When an instruction is sunk, it's 4015 // operands are then added to the worklist. The algorithm ends after one pass 4016 // through the worklist doesn't sink a single instruction. 4017 bool Changed; 4018 do { 4019 // Add the instructions that need to be reanalyzed to the worklist, and 4020 // reset the changed indicator. 4021 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4022 InstsToReanalyze.clear(); 4023 Changed = false; 4024 4025 while (!Worklist.empty()) { 4026 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4027 4028 // We can't sink an instruction if it is a phi node, is already in the 4029 // predicated block, is not in the loop, or may have side effects. 4030 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4031 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4032 continue; 4033 4034 // It's legal to sink the instruction if all its uses occur in the 4035 // predicated block. Otherwise, there's nothing to do yet, and we may 4036 // need to reanalyze the instruction. 4037 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4038 InstsToReanalyze.push_back(I); 4039 continue; 4040 } 4041 4042 // Move the instruction to the beginning of the predicated block, and add 4043 // it's operands to the worklist. 4044 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4045 Worklist.insert(I->op_begin(), I->op_end()); 4046 4047 // The sinking may have enabled other instructions to be sunk, so we will 4048 // need to iterate. 4049 Changed = true; 4050 } 4051 } while (Changed); 4052 } 4053 4054 void InnerLoopVectorizer::fixNonInductionPHIs() { 4055 for (PHINode *OrigPhi : OrigPHIsToFix) { 4056 PHINode *NewPhi = 4057 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4058 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4059 4060 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4061 predecessors(OrigPhi->getParent())); 4062 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4063 predecessors(NewPhi->getParent())); 4064 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4065 "Scalar and Vector BB should have the same number of predecessors"); 4066 4067 // The insertion point in Builder may be invalidated by the time we get 4068 // here. Force the Builder insertion point to something valid so that we do 4069 // not run into issues during insertion point restore in 4070 // getOrCreateVectorValue calls below. 4071 Builder.SetInsertPoint(NewPhi); 4072 4073 // The predecessor order is preserved and we can rely on mapping between 4074 // scalar and vector block predecessors. 4075 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4076 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4077 4078 // When looking up the new scalar/vector values to fix up, use incoming 4079 // values from original phi. 4080 Value *ScIncV = 4081 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4082 4083 // Scalar incoming value may need a broadcast 4084 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4085 NewPhi->addIncoming(NewIncV, NewPredBB); 4086 } 4087 } 4088 } 4089 4090 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4091 unsigned UF, unsigned VF, 4092 bool IsPtrLoopInvariant, 4093 SmallBitVector &IsIndexLoopInvariant, 4094 VPTransformState &State) { 4095 // Construct a vector GEP by widening the operands of the scalar GEP as 4096 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4097 // results in a vector of pointers when at least one operand of the GEP 4098 // is vector-typed. Thus, to keep the representation compact, we only use 4099 // vector-typed operands for loop-varying values. 4100 4101 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4102 // If we are vectorizing, but the GEP has only loop-invariant operands, 4103 // the GEP we build (by only using vector-typed operands for 4104 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4105 // produce a vector of pointers, we need to either arbitrarily pick an 4106 // operand to broadcast, or broadcast a clone of the original GEP. 4107 // Here, we broadcast a clone of the original. 4108 // 4109 // TODO: If at some point we decide to scalarize instructions having 4110 // loop-invariant operands, this special case will no longer be 4111 // required. We would add the scalarization decision to 4112 // collectLoopScalars() and teach getVectorValue() to broadcast 4113 // the lane-zero scalar value. 4114 auto *Clone = Builder.Insert(GEP->clone()); 4115 for (unsigned Part = 0; Part < UF; ++Part) { 4116 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4117 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4118 addMetadata(EntryPart, GEP); 4119 } 4120 } else { 4121 // If the GEP has at least one loop-varying operand, we are sure to 4122 // produce a vector of pointers. But if we are only unrolling, we want 4123 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4124 // produce with the code below will be scalar (if VF == 1) or vector 4125 // (otherwise). Note that for the unroll-only case, we still maintain 4126 // values in the vector mapping with initVector, as we do for other 4127 // instructions. 4128 for (unsigned Part = 0; Part < UF; ++Part) { 4129 // The pointer operand of the new GEP. If it's loop-invariant, we 4130 // won't broadcast it. 4131 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4132 : State.get(Operands.getOperand(0), Part); 4133 4134 // Collect all the indices for the new GEP. If any index is 4135 // loop-invariant, we won't broadcast it. 4136 SmallVector<Value *, 4> Indices; 4137 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4138 VPValue *Operand = Operands.getOperand(I); 4139 if (IsIndexLoopInvariant[I - 1]) 4140 Indices.push_back(State.get(Operand, {0, 0})); 4141 else 4142 Indices.push_back(State.get(Operand, Part)); 4143 } 4144 4145 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4146 // but it should be a vector, otherwise. 4147 auto *NewGEP = 4148 GEP->isInBounds() 4149 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4150 Indices) 4151 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4152 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4153 "NewGEP is not a pointer vector"); 4154 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4155 addMetadata(NewGEP, GEP); 4156 } 4157 } 4158 } 4159 4160 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4161 unsigned VF) { 4162 PHINode *P = cast<PHINode>(PN); 4163 if (EnableVPlanNativePath) { 4164 // Currently we enter here in the VPlan-native path for non-induction 4165 // PHIs where all control flow is uniform. We simply widen these PHIs. 4166 // Create a vector phi with no operands - the vector phi operands will be 4167 // set at the end of vector code generation. 4168 Type *VecTy = 4169 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4170 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4171 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4172 OrigPHIsToFix.push_back(P); 4173 4174 return; 4175 } 4176 4177 assert(PN->getParent() == OrigLoop->getHeader() && 4178 "Non-header phis should have been handled elsewhere"); 4179 4180 // In order to support recurrences we need to be able to vectorize Phi nodes. 4181 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4182 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4183 // this value when we vectorize all of the instructions that use the PHI. 4184 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4185 for (unsigned Part = 0; Part < UF; ++Part) { 4186 // This is phase one of vectorizing PHIs. 4187 Type *VecTy = 4188 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4189 Value *EntryPart = PHINode::Create( 4190 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4191 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4192 } 4193 return; 4194 } 4195 4196 setDebugLocFromInst(Builder, P); 4197 4198 // This PHINode must be an induction variable. 4199 // Make sure that we know about it. 4200 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4201 4202 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4203 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4204 4205 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4206 // which can be found from the original scalar operations. 4207 switch (II.getKind()) { 4208 case InductionDescriptor::IK_NoInduction: 4209 llvm_unreachable("Unknown induction"); 4210 case InductionDescriptor::IK_IntInduction: 4211 case InductionDescriptor::IK_FpInduction: 4212 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4213 case InductionDescriptor::IK_PtrInduction: { 4214 // Handle the pointer induction variable case. 4215 assert(P->getType()->isPointerTy() && "Unexpected type."); 4216 4217 if (Cost->isScalarAfterVectorization(P, VF)) { 4218 // This is the normalized GEP that starts counting at zero. 4219 Value *PtrInd = 4220 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4221 // Determine the number of scalars we need to generate for each unroll 4222 // iteration. If the instruction is uniform, we only need to generate the 4223 // first lane. Otherwise, we generate all VF values. 4224 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4225 for (unsigned Part = 0; Part < UF; ++Part) { 4226 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4227 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4228 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4229 Value *SclrGep = 4230 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4231 SclrGep->setName("next.gep"); 4232 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4233 } 4234 } 4235 return; 4236 } 4237 assert(isa<SCEVConstant>(II.getStep()) && 4238 "Induction step not a SCEV constant!"); 4239 Type *PhiType = II.getStep()->getType(); 4240 4241 // Build a pointer phi 4242 Value *ScalarStartValue = II.getStartValue(); 4243 Type *ScStValueType = ScalarStartValue->getType(); 4244 PHINode *NewPointerPhi = 4245 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4246 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4247 4248 // A pointer induction, performed by using a gep 4249 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4250 Instruction *InductionLoc = LoopLatch->getTerminator(); 4251 const SCEV *ScalarStep = II.getStep(); 4252 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4253 Value *ScalarStepValue = 4254 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4255 Value *InductionGEP = GetElementPtrInst::Create( 4256 ScStValueType->getPointerElementType(), NewPointerPhi, 4257 Builder.CreateMul(ScalarStepValue, ConstantInt::get(PhiType, VF * UF)), 4258 "ptr.ind", InductionLoc); 4259 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4260 4261 // Create UF many actual address geps that use the pointer 4262 // phi as base and a vectorized version of the step value 4263 // (<step*0, ..., step*N>) as offset. 4264 for (unsigned Part = 0; Part < UF; ++Part) { 4265 SmallVector<Constant *, 8> Indices; 4266 // Create a vector of consecutive numbers from zero to VF. 4267 for (unsigned i = 0; i < VF; ++i) 4268 Indices.push_back(ConstantInt::get(PhiType, i + Part * VF)); 4269 Constant *StartOffset = ConstantVector::get(Indices); 4270 4271 Value *GEP = Builder.CreateGEP( 4272 ScStValueType->getPointerElementType(), NewPointerPhi, 4273 Builder.CreateMul(StartOffset, 4274 Builder.CreateVectorSplat(VF, ScalarStepValue), 4275 "vector.gep")); 4276 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4277 } 4278 } 4279 } 4280 } 4281 4282 /// A helper function for checking whether an integer division-related 4283 /// instruction may divide by zero (in which case it must be predicated if 4284 /// executed conditionally in the scalar code). 4285 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4286 /// Non-zero divisors that are non compile-time constants will not be 4287 /// converted into multiplication, so we will still end up scalarizing 4288 /// the division, but can do so w/o predication. 4289 static bool mayDivideByZero(Instruction &I) { 4290 assert((I.getOpcode() == Instruction::UDiv || 4291 I.getOpcode() == Instruction::SDiv || 4292 I.getOpcode() == Instruction::URem || 4293 I.getOpcode() == Instruction::SRem) && 4294 "Unexpected instruction"); 4295 Value *Divisor = I.getOperand(1); 4296 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4297 return !CInt || CInt->isZero(); 4298 } 4299 4300 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4301 VPTransformState &State) { 4302 switch (I.getOpcode()) { 4303 case Instruction::Call: 4304 case Instruction::Br: 4305 case Instruction::PHI: 4306 case Instruction::GetElementPtr: 4307 case Instruction::Select: 4308 llvm_unreachable("This instruction is handled by a different recipe."); 4309 case Instruction::UDiv: 4310 case Instruction::SDiv: 4311 case Instruction::SRem: 4312 case Instruction::URem: 4313 case Instruction::Add: 4314 case Instruction::FAdd: 4315 case Instruction::Sub: 4316 case Instruction::FSub: 4317 case Instruction::FNeg: 4318 case Instruction::Mul: 4319 case Instruction::FMul: 4320 case Instruction::FDiv: 4321 case Instruction::FRem: 4322 case Instruction::Shl: 4323 case Instruction::LShr: 4324 case Instruction::AShr: 4325 case Instruction::And: 4326 case Instruction::Or: 4327 case Instruction::Xor: { 4328 // Just widen unops and binops. 4329 setDebugLocFromInst(Builder, &I); 4330 4331 for (unsigned Part = 0; Part < UF; ++Part) { 4332 SmallVector<Value *, 2> Ops; 4333 for (VPValue *VPOp : User.operands()) 4334 Ops.push_back(State.get(VPOp, Part)); 4335 4336 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4337 4338 if (auto *VecOp = dyn_cast<Instruction>(V)) 4339 VecOp->copyIRFlags(&I); 4340 4341 // Use this vector value for all users of the original instruction. 4342 VectorLoopValueMap.setVectorValue(&I, Part, V); 4343 addMetadata(V, &I); 4344 } 4345 4346 break; 4347 } 4348 case Instruction::ICmp: 4349 case Instruction::FCmp: { 4350 // Widen compares. Generate vector compares. 4351 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4352 auto *Cmp = cast<CmpInst>(&I); 4353 setDebugLocFromInst(Builder, Cmp); 4354 for (unsigned Part = 0; Part < UF; ++Part) { 4355 Value *A = State.get(User.getOperand(0), Part); 4356 Value *B = State.get(User.getOperand(1), Part); 4357 Value *C = nullptr; 4358 if (FCmp) { 4359 // Propagate fast math flags. 4360 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4361 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4362 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4363 } else { 4364 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4365 } 4366 VectorLoopValueMap.setVectorValue(&I, Part, C); 4367 addMetadata(C, &I); 4368 } 4369 4370 break; 4371 } 4372 4373 case Instruction::ZExt: 4374 case Instruction::SExt: 4375 case Instruction::FPToUI: 4376 case Instruction::FPToSI: 4377 case Instruction::FPExt: 4378 case Instruction::PtrToInt: 4379 case Instruction::IntToPtr: 4380 case Instruction::SIToFP: 4381 case Instruction::UIToFP: 4382 case Instruction::Trunc: 4383 case Instruction::FPTrunc: 4384 case Instruction::BitCast: { 4385 auto *CI = cast<CastInst>(&I); 4386 setDebugLocFromInst(Builder, CI); 4387 4388 /// Vectorize casts. 4389 Type *DestTy = 4390 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4391 4392 for (unsigned Part = 0; Part < UF; ++Part) { 4393 Value *A = State.get(User.getOperand(0), Part); 4394 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4395 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4396 addMetadata(Cast, &I); 4397 } 4398 break; 4399 } 4400 default: 4401 // This instruction is not vectorized by simple widening. 4402 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4403 llvm_unreachable("Unhandled instruction!"); 4404 } // end of switch. 4405 } 4406 4407 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4408 VPTransformState &State) { 4409 assert(!isa<DbgInfoIntrinsic>(I) && 4410 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4411 setDebugLocFromInst(Builder, &I); 4412 4413 Module *M = I.getParent()->getParent()->getParent(); 4414 auto *CI = cast<CallInst>(&I); 4415 4416 SmallVector<Type *, 4> Tys; 4417 for (Value *ArgOperand : CI->arg_operands()) 4418 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4419 4420 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4421 4422 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4423 // version of the instruction. 4424 // Is it beneficial to perform intrinsic call compared to lib call? 4425 bool NeedToScalarize = false; 4426 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4427 bool UseVectorIntrinsic = 4428 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4429 assert((UseVectorIntrinsic || !NeedToScalarize) && 4430 "Instruction should be scalarized elsewhere."); 4431 4432 for (unsigned Part = 0; Part < UF; ++Part) { 4433 SmallVector<Value *, 4> Args; 4434 for (auto &I : enumerate(ArgOperands.operands())) { 4435 // Some intrinsics have a scalar argument - don't replace it with a 4436 // vector. 4437 Value *Arg; 4438 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4439 Arg = State.get(I.value(), Part); 4440 else 4441 Arg = State.get(I.value(), {0, 0}); 4442 Args.push_back(Arg); 4443 } 4444 4445 Function *VectorF; 4446 if (UseVectorIntrinsic) { 4447 // Use vector version of the intrinsic. 4448 Type *TysForDecl[] = {CI->getType()}; 4449 if (VF > 1) 4450 TysForDecl[0] = 4451 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4452 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4453 assert(VectorF && "Can't retrieve vector intrinsic."); 4454 } else { 4455 // Use vector version of the function call. 4456 const VFShape Shape = 4457 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4458 #ifndef NDEBUG 4459 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4460 "Can't create vector function."); 4461 #endif 4462 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4463 } 4464 SmallVector<OperandBundleDef, 1> OpBundles; 4465 CI->getOperandBundlesAsDefs(OpBundles); 4466 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4467 4468 if (isa<FPMathOperator>(V)) 4469 V->copyFastMathFlags(CI); 4470 4471 VectorLoopValueMap.setVectorValue(&I, Part, V); 4472 addMetadata(V, &I); 4473 } 4474 } 4475 4476 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4477 VPUser &Operands, 4478 bool InvariantCond, 4479 VPTransformState &State) { 4480 setDebugLocFromInst(Builder, &I); 4481 4482 // The condition can be loop invariant but still defined inside the 4483 // loop. This means that we can't just use the original 'cond' value. 4484 // We have to take the 'vectorized' value and pick the first lane. 4485 // Instcombine will make this a no-op. 4486 auto *InvarCond = 4487 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4488 4489 for (unsigned Part = 0; Part < UF; ++Part) { 4490 Value *Cond = 4491 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4492 Value *Op0 = State.get(Operands.getOperand(1), Part); 4493 Value *Op1 = State.get(Operands.getOperand(2), Part); 4494 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4495 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4496 addMetadata(Sel, &I); 4497 } 4498 } 4499 4500 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4501 // We should not collect Scalars more than once per VF. Right now, this 4502 // function is called from collectUniformsAndScalars(), which already does 4503 // this check. Collecting Scalars for VF=1 does not make any sense. 4504 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4505 "This function should not be visited twice for the same VF"); 4506 4507 SmallSetVector<Instruction *, 8> Worklist; 4508 4509 // These sets are used to seed the analysis with pointers used by memory 4510 // accesses that will remain scalar. 4511 SmallSetVector<Instruction *, 8> ScalarPtrs; 4512 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4513 auto *Latch = TheLoop->getLoopLatch(); 4514 4515 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4516 // The pointer operands of loads and stores will be scalar as long as the 4517 // memory access is not a gather or scatter operation. The value operand of a 4518 // store will remain scalar if the store is scalarized. 4519 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4520 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4521 assert(WideningDecision != CM_Unknown && 4522 "Widening decision should be ready at this moment"); 4523 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4524 if (Ptr == Store->getValueOperand()) 4525 return WideningDecision == CM_Scalarize; 4526 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4527 "Ptr is neither a value or pointer operand"); 4528 return WideningDecision != CM_GatherScatter; 4529 }; 4530 4531 // A helper that returns true if the given value is a bitcast or 4532 // getelementptr instruction contained in the loop. 4533 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4534 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4535 isa<GetElementPtrInst>(V)) && 4536 !TheLoop->isLoopInvariant(V); 4537 }; 4538 4539 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4540 if (!isa<PHINode>(Ptr) || 4541 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4542 return false; 4543 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4544 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4545 return false; 4546 return isScalarUse(MemAccess, Ptr); 4547 }; 4548 4549 // A helper that evaluates a memory access's use of a pointer. If the 4550 // pointer is actually the pointer induction of a loop, it is being 4551 // inserted into Worklist. If the use will be a scalar use, and the 4552 // pointer is only used by memory accesses, we place the pointer in 4553 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4554 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4555 if (isScalarPtrInduction(MemAccess, Ptr)) { 4556 Worklist.insert(cast<Instruction>(Ptr)); 4557 Instruction *Update = cast<Instruction>( 4558 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4559 Worklist.insert(Update); 4560 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4561 << "\n"); 4562 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4563 << "\n"); 4564 return; 4565 } 4566 // We only care about bitcast and getelementptr instructions contained in 4567 // the loop. 4568 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4569 return; 4570 4571 // If the pointer has already been identified as scalar (e.g., if it was 4572 // also identified as uniform), there's nothing to do. 4573 auto *I = cast<Instruction>(Ptr); 4574 if (Worklist.count(I)) 4575 return; 4576 4577 // If the use of the pointer will be a scalar use, and all users of the 4578 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4579 // place the pointer in PossibleNonScalarPtrs. 4580 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4581 return isa<LoadInst>(U) || isa<StoreInst>(U); 4582 })) 4583 ScalarPtrs.insert(I); 4584 else 4585 PossibleNonScalarPtrs.insert(I); 4586 }; 4587 4588 // We seed the scalars analysis with three classes of instructions: (1) 4589 // instructions marked uniform-after-vectorization and (2) bitcast, 4590 // getelementptr and (pointer) phi instructions used by memory accesses 4591 // requiring a scalar use. 4592 // 4593 // (1) Add to the worklist all instructions that have been identified as 4594 // uniform-after-vectorization. 4595 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4596 4597 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4598 // memory accesses requiring a scalar use. The pointer operands of loads and 4599 // stores will be scalar as long as the memory accesses is not a gather or 4600 // scatter operation. The value operand of a store will remain scalar if the 4601 // store is scalarized. 4602 for (auto *BB : TheLoop->blocks()) 4603 for (auto &I : *BB) { 4604 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4605 evaluatePtrUse(Load, Load->getPointerOperand()); 4606 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4607 evaluatePtrUse(Store, Store->getPointerOperand()); 4608 evaluatePtrUse(Store, Store->getValueOperand()); 4609 } 4610 } 4611 for (auto *I : ScalarPtrs) 4612 if (!PossibleNonScalarPtrs.count(I)) { 4613 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4614 Worklist.insert(I); 4615 } 4616 4617 // Insert the forced scalars. 4618 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4619 // induction variable when the PHI user is scalarized. 4620 auto ForcedScalar = ForcedScalars.find(VF); 4621 if (ForcedScalar != ForcedScalars.end()) 4622 for (auto *I : ForcedScalar->second) 4623 Worklist.insert(I); 4624 4625 // Expand the worklist by looking through any bitcasts and getelementptr 4626 // instructions we've already identified as scalar. This is similar to the 4627 // expansion step in collectLoopUniforms(); however, here we're only 4628 // expanding to include additional bitcasts and getelementptr instructions. 4629 unsigned Idx = 0; 4630 while (Idx != Worklist.size()) { 4631 Instruction *Dst = Worklist[Idx++]; 4632 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4633 continue; 4634 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4635 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4636 auto *J = cast<Instruction>(U); 4637 return !TheLoop->contains(J) || Worklist.count(J) || 4638 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4639 isScalarUse(J, Src)); 4640 })) { 4641 Worklist.insert(Src); 4642 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4643 } 4644 } 4645 4646 // An induction variable will remain scalar if all users of the induction 4647 // variable and induction variable update remain scalar. 4648 for (auto &Induction : Legal->getInductionVars()) { 4649 auto *Ind = Induction.first; 4650 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4651 4652 // If tail-folding is applied, the primary induction variable will be used 4653 // to feed a vector compare. 4654 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4655 continue; 4656 4657 // Determine if all users of the induction variable are scalar after 4658 // vectorization. 4659 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4660 auto *I = cast<Instruction>(U); 4661 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4662 }); 4663 if (!ScalarInd) 4664 continue; 4665 4666 // Determine if all users of the induction variable update instruction are 4667 // scalar after vectorization. 4668 auto ScalarIndUpdate = 4669 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4670 auto *I = cast<Instruction>(U); 4671 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4672 }); 4673 if (!ScalarIndUpdate) 4674 continue; 4675 4676 // The induction variable and its update instruction will remain scalar. 4677 Worklist.insert(Ind); 4678 Worklist.insert(IndUpdate); 4679 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4680 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4681 << "\n"); 4682 } 4683 4684 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4685 } 4686 4687 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4688 if (!blockNeedsPredication(I->getParent())) 4689 return false; 4690 switch(I->getOpcode()) { 4691 default: 4692 break; 4693 case Instruction::Load: 4694 case Instruction::Store: { 4695 if (!Legal->isMaskRequired(I)) 4696 return false; 4697 auto *Ptr = getLoadStorePointerOperand(I); 4698 auto *Ty = getMemInstValueType(I); 4699 // We have already decided how to vectorize this instruction, get that 4700 // result. 4701 if (VF > 1) { 4702 InstWidening WideningDecision = getWideningDecision(I, VF); 4703 assert(WideningDecision != CM_Unknown && 4704 "Widening decision should be ready at this moment"); 4705 return WideningDecision == CM_Scalarize; 4706 } 4707 const Align Alignment = getLoadStoreAlignment(I); 4708 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4709 isLegalMaskedGather(Ty, Alignment)) 4710 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4711 isLegalMaskedScatter(Ty, Alignment)); 4712 } 4713 case Instruction::UDiv: 4714 case Instruction::SDiv: 4715 case Instruction::SRem: 4716 case Instruction::URem: 4717 return mayDivideByZero(*I); 4718 } 4719 return false; 4720 } 4721 4722 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4723 unsigned VF) { 4724 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4725 assert(getWideningDecision(I, VF) == CM_Unknown && 4726 "Decision should not be set yet."); 4727 auto *Group = getInterleavedAccessGroup(I); 4728 assert(Group && "Must have a group."); 4729 4730 // If the instruction's allocated size doesn't equal it's type size, it 4731 // requires padding and will be scalarized. 4732 auto &DL = I->getModule()->getDataLayout(); 4733 auto *ScalarTy = getMemInstValueType(I); 4734 if (hasIrregularType(ScalarTy, DL, VF)) 4735 return false; 4736 4737 // Check if masking is required. 4738 // A Group may need masking for one of two reasons: it resides in a block that 4739 // needs predication, or it was decided to use masking to deal with gaps. 4740 bool PredicatedAccessRequiresMasking = 4741 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4742 bool AccessWithGapsRequiresMasking = 4743 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4744 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4745 return true; 4746 4747 // If masked interleaving is required, we expect that the user/target had 4748 // enabled it, because otherwise it either wouldn't have been created or 4749 // it should have been invalidated by the CostModel. 4750 assert(useMaskedInterleavedAccesses(TTI) && 4751 "Masked interleave-groups for predicated accesses are not enabled."); 4752 4753 auto *Ty = getMemInstValueType(I); 4754 const Align Alignment = getLoadStoreAlignment(I); 4755 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4756 : TTI.isLegalMaskedStore(Ty, Alignment); 4757 } 4758 4759 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4760 unsigned VF) { 4761 // Get and ensure we have a valid memory instruction. 4762 LoadInst *LI = dyn_cast<LoadInst>(I); 4763 StoreInst *SI = dyn_cast<StoreInst>(I); 4764 assert((LI || SI) && "Invalid memory instruction"); 4765 4766 auto *Ptr = getLoadStorePointerOperand(I); 4767 4768 // In order to be widened, the pointer should be consecutive, first of all. 4769 if (!Legal->isConsecutivePtr(Ptr)) 4770 return false; 4771 4772 // If the instruction is a store located in a predicated block, it will be 4773 // scalarized. 4774 if (isScalarWithPredication(I)) 4775 return false; 4776 4777 // If the instruction's allocated size doesn't equal it's type size, it 4778 // requires padding and will be scalarized. 4779 auto &DL = I->getModule()->getDataLayout(); 4780 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4781 if (hasIrregularType(ScalarTy, DL, VF)) 4782 return false; 4783 4784 return true; 4785 } 4786 4787 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4788 // We should not collect Uniforms more than once per VF. Right now, 4789 // this function is called from collectUniformsAndScalars(), which 4790 // already does this check. Collecting Uniforms for VF=1 does not make any 4791 // sense. 4792 4793 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4794 "This function should not be visited twice for the same VF"); 4795 4796 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4797 // not analyze again. Uniforms.count(VF) will return 1. 4798 Uniforms[VF].clear(); 4799 4800 // We now know that the loop is vectorizable! 4801 // Collect instructions inside the loop that will remain uniform after 4802 // vectorization. 4803 4804 // Global values, params and instructions outside of current loop are out of 4805 // scope. 4806 auto isOutOfScope = [&](Value *V) -> bool { 4807 Instruction *I = dyn_cast<Instruction>(V); 4808 return (!I || !TheLoop->contains(I)); 4809 }; 4810 4811 SetVector<Instruction *> Worklist; 4812 BasicBlock *Latch = TheLoop->getLoopLatch(); 4813 4814 // Instructions that are scalar with predication must not be considered 4815 // uniform after vectorization, because that would create an erroneous 4816 // replicating region where only a single instance out of VF should be formed. 4817 // TODO: optimize such seldom cases if found important, see PR40816. 4818 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4819 if (isScalarWithPredication(I, VF)) { 4820 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4821 << *I << "\n"); 4822 return; 4823 } 4824 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4825 Worklist.insert(I); 4826 }; 4827 4828 // Start with the conditional branch. If the branch condition is an 4829 // instruction contained in the loop that is only used by the branch, it is 4830 // uniform. 4831 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4832 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4833 addToWorklistIfAllowed(Cmp); 4834 4835 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4836 // are pointers that are treated like consecutive pointers during 4837 // vectorization. The pointer operands of interleaved accesses are an 4838 // example. 4839 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4840 4841 // Holds pointer operands of instructions that are possibly non-uniform. 4842 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4843 4844 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4845 InstWidening WideningDecision = getWideningDecision(I, VF); 4846 assert(WideningDecision != CM_Unknown && 4847 "Widening decision should be ready at this moment"); 4848 4849 return (WideningDecision == CM_Widen || 4850 WideningDecision == CM_Widen_Reverse || 4851 WideningDecision == CM_Interleave); 4852 }; 4853 // Iterate over the instructions in the loop, and collect all 4854 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4855 // that a consecutive-like pointer operand will be scalarized, we collect it 4856 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4857 // getelementptr instruction can be used by both vectorized and scalarized 4858 // memory instructions. For example, if a loop loads and stores from the same 4859 // location, but the store is conditional, the store will be scalarized, and 4860 // the getelementptr won't remain uniform. 4861 for (auto *BB : TheLoop->blocks()) 4862 for (auto &I : *BB) { 4863 // If there's no pointer operand, there's nothing to do. 4864 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4865 if (!Ptr) 4866 continue; 4867 4868 // True if all users of Ptr are memory accesses that have Ptr as their 4869 // pointer operand. 4870 auto UsersAreMemAccesses = 4871 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4872 return getLoadStorePointerOperand(U) == Ptr; 4873 }); 4874 4875 // Ensure the memory instruction will not be scalarized or used by 4876 // gather/scatter, making its pointer operand non-uniform. If the pointer 4877 // operand is used by any instruction other than a memory access, we 4878 // conservatively assume the pointer operand may be non-uniform. 4879 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4880 PossibleNonUniformPtrs.insert(Ptr); 4881 4882 // If the memory instruction will be vectorized and its pointer operand 4883 // is consecutive-like, or interleaving - the pointer operand should 4884 // remain uniform. 4885 else 4886 ConsecutiveLikePtrs.insert(Ptr); 4887 } 4888 4889 // Add to the Worklist all consecutive and consecutive-like pointers that 4890 // aren't also identified as possibly non-uniform. 4891 for (auto *V : ConsecutiveLikePtrs) 4892 if (!PossibleNonUniformPtrs.count(V)) 4893 addToWorklistIfAllowed(V); 4894 4895 // Expand Worklist in topological order: whenever a new instruction 4896 // is added , its users should be already inside Worklist. It ensures 4897 // a uniform instruction will only be used by uniform instructions. 4898 unsigned idx = 0; 4899 while (idx != Worklist.size()) { 4900 Instruction *I = Worklist[idx++]; 4901 4902 for (auto OV : I->operand_values()) { 4903 // isOutOfScope operands cannot be uniform instructions. 4904 if (isOutOfScope(OV)) 4905 continue; 4906 // First order recurrence Phi's should typically be considered 4907 // non-uniform. 4908 auto *OP = dyn_cast<PHINode>(OV); 4909 if (OP && Legal->isFirstOrderRecurrence(OP)) 4910 continue; 4911 // If all the users of the operand are uniform, then add the 4912 // operand into the uniform worklist. 4913 auto *OI = cast<Instruction>(OV); 4914 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4915 auto *J = cast<Instruction>(U); 4916 return Worklist.count(J) || 4917 (OI == getLoadStorePointerOperand(J) && 4918 isUniformDecision(J, VF)); 4919 })) 4920 addToWorklistIfAllowed(OI); 4921 } 4922 } 4923 4924 // Returns true if Ptr is the pointer operand of a memory access instruction 4925 // I, and I is known to not require scalarization. 4926 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4927 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4928 }; 4929 4930 // For an instruction to be added into Worklist above, all its users inside 4931 // the loop should also be in Worklist. However, this condition cannot be 4932 // true for phi nodes that form a cyclic dependence. We must process phi 4933 // nodes separately. An induction variable will remain uniform if all users 4934 // of the induction variable and induction variable update remain uniform. 4935 // The code below handles both pointer and non-pointer induction variables. 4936 for (auto &Induction : Legal->getInductionVars()) { 4937 auto *Ind = Induction.first; 4938 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4939 4940 // Determine if all users of the induction variable are uniform after 4941 // vectorization. 4942 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4943 auto *I = cast<Instruction>(U); 4944 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4945 isVectorizedMemAccessUse(I, Ind); 4946 }); 4947 if (!UniformInd) 4948 continue; 4949 4950 // Determine if all users of the induction variable update instruction are 4951 // uniform after vectorization. 4952 auto UniformIndUpdate = 4953 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4954 auto *I = cast<Instruction>(U); 4955 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4956 isVectorizedMemAccessUse(I, IndUpdate); 4957 }); 4958 if (!UniformIndUpdate) 4959 continue; 4960 4961 // The induction variable and its update instruction will remain uniform. 4962 addToWorklistIfAllowed(Ind); 4963 addToWorklistIfAllowed(IndUpdate); 4964 } 4965 4966 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4967 } 4968 4969 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4970 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4971 4972 if (Legal->getRuntimePointerChecking()->Need) { 4973 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4974 "runtime pointer checks needed. Enable vectorization of this " 4975 "loop with '#pragma clang loop vectorize(enable)' when " 4976 "compiling with -Os/-Oz", 4977 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4978 return true; 4979 } 4980 4981 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4982 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4983 "runtime SCEV checks needed. Enable vectorization of this " 4984 "loop with '#pragma clang loop vectorize(enable)' when " 4985 "compiling with -Os/-Oz", 4986 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4987 return true; 4988 } 4989 4990 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4991 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4992 reportVectorizationFailure("Runtime stride check for small trip count", 4993 "runtime stride == 1 checks needed. Enable vectorization of " 4994 "this loop without such check by compiling with -Os/-Oz", 4995 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4996 return true; 4997 } 4998 4999 return false; 5000 } 5001 5002 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 5003 unsigned UserIC) { 5004 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5005 // TODO: It may by useful to do since it's still likely to be dynamically 5006 // uniform if the target can skip. 5007 reportVectorizationFailure( 5008 "Not inserting runtime ptr check for divergent target", 5009 "runtime pointer checks needed. Not enabled for divergent target", 5010 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5011 return None; 5012 } 5013 5014 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5015 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5016 if (TC == 1) { 5017 reportVectorizationFailure("Single iteration (non) loop", 5018 "loop trip count is one, irrelevant for vectorization", 5019 "SingleIterationLoop", ORE, TheLoop); 5020 return None; 5021 } 5022 5023 switch (ScalarEpilogueStatus) { 5024 case CM_ScalarEpilogueAllowed: 5025 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5026 case CM_ScalarEpilogueNotNeededUsePredicate: 5027 LLVM_DEBUG( 5028 dbgs() << "LV: vector predicate hint/switch found.\n" 5029 << "LV: Not allowing scalar epilogue, creating predicated " 5030 << "vector loop.\n"); 5031 break; 5032 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5033 // fallthrough as a special case of OptForSize 5034 case CM_ScalarEpilogueNotAllowedOptSize: 5035 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5036 LLVM_DEBUG( 5037 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5038 else 5039 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5040 << "count.\n"); 5041 5042 // Bail if runtime checks are required, which are not good when optimising 5043 // for size. 5044 if (runtimeChecksRequired()) 5045 return None; 5046 break; 5047 } 5048 5049 // Now try the tail folding 5050 5051 // Invalidate interleave groups that require an epilogue if we can't mask 5052 // the interleave-group. 5053 if (!useMaskedInterleavedAccesses(TTI)) { 5054 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5055 "No decisions should have been taken at this point"); 5056 // Note: There is no need to invalidate any cost modeling decisions here, as 5057 // non where taken so far. 5058 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5059 } 5060 5061 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5062 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5063 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5064 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5065 // Accept MaxVF if we do not have a tail. 5066 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5067 return MaxVF; 5068 } 5069 5070 // If we don't know the precise trip count, or if the trip count that we 5071 // found modulo the vectorization factor is not zero, try to fold the tail 5072 // by masking. 5073 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5074 if (Legal->prepareToFoldTailByMasking()) { 5075 FoldTailByMasking = true; 5076 return MaxVF; 5077 } 5078 5079 if (TC == 0) { 5080 reportVectorizationFailure( 5081 "Unable to calculate the loop count due to complex control flow", 5082 "unable to calculate the loop count due to complex control flow", 5083 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5084 return None; 5085 } 5086 5087 reportVectorizationFailure( 5088 "Cannot optimize for size and vectorize at the same time.", 5089 "cannot optimize for size and vectorize at the same time. " 5090 "Enable vectorization of this loop with '#pragma clang loop " 5091 "vectorize(enable)' when compiling with -Os/-Oz", 5092 "NoTailLoopWithOptForSize", ORE, TheLoop); 5093 return None; 5094 } 5095 5096 unsigned 5097 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5098 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5099 unsigned SmallestType, WidestType; 5100 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5101 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5102 5103 // Get the maximum safe dependence distance in bits computed by LAA. 5104 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5105 // the memory accesses that is most restrictive (involved in the smallest 5106 // dependence distance). 5107 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5108 5109 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5110 5111 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5112 // Note that both WidestRegister and WidestType may not be a powers of 2. 5113 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5114 5115 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5116 << " / " << WidestType << " bits.\n"); 5117 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5118 << WidestRegister << " bits.\n"); 5119 5120 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5121 " into one vector!"); 5122 if (MaxVectorSize == 0) { 5123 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5124 MaxVectorSize = 1; 5125 return MaxVectorSize; 5126 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5127 isPowerOf2_32(ConstTripCount)) { 5128 // We need to clamp the VF to be the ConstTripCount. There is no point in 5129 // choosing a higher viable VF as done in the loop below. 5130 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5131 << ConstTripCount << "\n"); 5132 MaxVectorSize = ConstTripCount; 5133 return MaxVectorSize; 5134 } 5135 5136 unsigned MaxVF = MaxVectorSize; 5137 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5138 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5139 // Collect all viable vectorization factors larger than the default MaxVF 5140 // (i.e. MaxVectorSize). 5141 SmallVector<unsigned, 8> VFs; 5142 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5143 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5144 VFs.push_back(VS); 5145 5146 // For each VF calculate its register usage. 5147 auto RUs = calculateRegisterUsage(VFs); 5148 5149 // Select the largest VF which doesn't require more registers than existing 5150 // ones. 5151 for (int i = RUs.size() - 1; i >= 0; --i) { 5152 bool Selected = true; 5153 for (auto& pair : RUs[i].MaxLocalUsers) { 5154 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5155 if (pair.second > TargetNumRegisters) 5156 Selected = false; 5157 } 5158 if (Selected) { 5159 MaxVF = VFs[i]; 5160 break; 5161 } 5162 } 5163 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5164 if (MaxVF < MinVF) { 5165 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5166 << ") with target's minimum: " << MinVF << '\n'); 5167 MaxVF = MinVF; 5168 } 5169 } 5170 } 5171 return MaxVF; 5172 } 5173 5174 VectorizationFactor 5175 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5176 float Cost = expectedCost(1).first; 5177 const float ScalarCost = Cost; 5178 unsigned Width = 1; 5179 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5180 5181 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5182 if (ForceVectorization && MaxVF > 1) { 5183 // Ignore scalar width, because the user explicitly wants vectorization. 5184 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5185 // evaluation. 5186 Cost = std::numeric_limits<float>::max(); 5187 } 5188 5189 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5190 // Notice that the vector loop needs to be executed less times, so 5191 // we need to divide the cost of the vector loops by the width of 5192 // the vector elements. 5193 VectorizationCostTy C = expectedCost(i); 5194 float VectorCost = C.first / (float)i; 5195 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5196 << " costs: " << (int)VectorCost << ".\n"); 5197 if (!C.second && !ForceVectorization) { 5198 LLVM_DEBUG( 5199 dbgs() << "LV: Not considering vector loop of width " << i 5200 << " because it will not generate any vector instructions.\n"); 5201 continue; 5202 } 5203 if (VectorCost < Cost) { 5204 Cost = VectorCost; 5205 Width = i; 5206 } 5207 } 5208 5209 if (!EnableCondStoresVectorization && NumPredStores) { 5210 reportVectorizationFailure("There are conditional stores.", 5211 "store that is conditionally executed prevents vectorization", 5212 "ConditionalStore", ORE, TheLoop); 5213 Width = 1; 5214 Cost = ScalarCost; 5215 } 5216 5217 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5218 << "LV: Vectorization seems to be not beneficial, " 5219 << "but was forced by a user.\n"); 5220 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5221 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5222 return Factor; 5223 } 5224 5225 std::pair<unsigned, unsigned> 5226 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5227 unsigned MinWidth = -1U; 5228 unsigned MaxWidth = 8; 5229 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5230 5231 // For each block. 5232 for (BasicBlock *BB : TheLoop->blocks()) { 5233 // For each instruction in the loop. 5234 for (Instruction &I : BB->instructionsWithoutDebug()) { 5235 Type *T = I.getType(); 5236 5237 // Skip ignored values. 5238 if (ValuesToIgnore.count(&I)) 5239 continue; 5240 5241 // Only examine Loads, Stores and PHINodes. 5242 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5243 continue; 5244 5245 // Examine PHI nodes that are reduction variables. Update the type to 5246 // account for the recurrence type. 5247 if (auto *PN = dyn_cast<PHINode>(&I)) { 5248 if (!Legal->isReductionVariable(PN)) 5249 continue; 5250 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5251 T = RdxDesc.getRecurrenceType(); 5252 } 5253 5254 // Examine the stored values. 5255 if (auto *ST = dyn_cast<StoreInst>(&I)) 5256 T = ST->getValueOperand()->getType(); 5257 5258 // Ignore loaded pointer types and stored pointer types that are not 5259 // vectorizable. 5260 // 5261 // FIXME: The check here attempts to predict whether a load or store will 5262 // be vectorized. We only know this for certain after a VF has 5263 // been selected. Here, we assume that if an access can be 5264 // vectorized, it will be. We should also look at extending this 5265 // optimization to non-pointer types. 5266 // 5267 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5268 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5269 continue; 5270 5271 MinWidth = std::min(MinWidth, 5272 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5273 MaxWidth = std::max(MaxWidth, 5274 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5275 } 5276 } 5277 5278 return {MinWidth, MaxWidth}; 5279 } 5280 5281 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5282 unsigned LoopCost) { 5283 // -- The interleave heuristics -- 5284 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5285 // There are many micro-architectural considerations that we can't predict 5286 // at this level. For example, frontend pressure (on decode or fetch) due to 5287 // code size, or the number and capabilities of the execution ports. 5288 // 5289 // We use the following heuristics to select the interleave count: 5290 // 1. If the code has reductions, then we interleave to break the cross 5291 // iteration dependency. 5292 // 2. If the loop is really small, then we interleave to reduce the loop 5293 // overhead. 5294 // 3. We don't interleave if we think that we will spill registers to memory 5295 // due to the increased register pressure. 5296 5297 if (!isScalarEpilogueAllowed()) 5298 return 1; 5299 5300 // We used the distance for the interleave count. 5301 if (Legal->getMaxSafeDepDistBytes() != -1U) 5302 return 1; 5303 5304 // Do not interleave loops with a relatively small known or estimated trip 5305 // count. 5306 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5307 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5308 return 1; 5309 5310 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5311 // We divide by these constants so assume that we have at least one 5312 // instruction that uses at least one register. 5313 for (auto& pair : R.MaxLocalUsers) { 5314 pair.second = std::max(pair.second, 1U); 5315 } 5316 5317 // We calculate the interleave count using the following formula. 5318 // Subtract the number of loop invariants from the number of available 5319 // registers. These registers are used by all of the interleaved instances. 5320 // Next, divide the remaining registers by the number of registers that is 5321 // required by the loop, in order to estimate how many parallel instances 5322 // fit without causing spills. All of this is rounded down if necessary to be 5323 // a power of two. We want power of two interleave count to simplify any 5324 // addressing operations or alignment considerations. 5325 // We also want power of two interleave counts to ensure that the induction 5326 // variable of the vector loop wraps to zero, when tail is folded by masking; 5327 // this currently happens when OptForSize, in which case IC is set to 1 above. 5328 unsigned IC = UINT_MAX; 5329 5330 for (auto& pair : R.MaxLocalUsers) { 5331 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5332 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5333 << " registers of " 5334 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5335 if (VF == 1) { 5336 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5337 TargetNumRegisters = ForceTargetNumScalarRegs; 5338 } else { 5339 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5340 TargetNumRegisters = ForceTargetNumVectorRegs; 5341 } 5342 unsigned MaxLocalUsers = pair.second; 5343 unsigned LoopInvariantRegs = 0; 5344 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5345 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5346 5347 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5348 // Don't count the induction variable as interleaved. 5349 if (EnableIndVarRegisterHeur) { 5350 TmpIC = 5351 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5352 std::max(1U, (MaxLocalUsers - 1))); 5353 } 5354 5355 IC = std::min(IC, TmpIC); 5356 } 5357 5358 // Clamp the interleave ranges to reasonable counts. 5359 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5360 5361 // Check if the user has overridden the max. 5362 if (VF == 1) { 5363 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5364 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5365 } else { 5366 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5367 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5368 } 5369 5370 // If trip count is known or estimated compile time constant, limit the 5371 // interleave count to be less than the trip count divided by VF. 5372 if (BestKnownTC) { 5373 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5374 } 5375 5376 // If we did not calculate the cost for VF (because the user selected the VF) 5377 // then we calculate the cost of VF here. 5378 if (LoopCost == 0) 5379 LoopCost = expectedCost(VF).first; 5380 5381 assert(LoopCost && "Non-zero loop cost expected"); 5382 5383 // Clamp the calculated IC to be between the 1 and the max interleave count 5384 // that the target and trip count allows. 5385 if (IC > MaxInterleaveCount) 5386 IC = MaxInterleaveCount; 5387 else if (IC < 1) 5388 IC = 1; 5389 5390 // Interleave if we vectorized this loop and there is a reduction that could 5391 // benefit from interleaving. 5392 if (VF > 1 && !Legal->getReductionVars().empty()) { 5393 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5394 return IC; 5395 } 5396 5397 // Note that if we've already vectorized the loop we will have done the 5398 // runtime check and so interleaving won't require further checks. 5399 bool InterleavingRequiresRuntimePointerCheck = 5400 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5401 5402 // We want to interleave small loops in order to reduce the loop overhead and 5403 // potentially expose ILP opportunities. 5404 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5405 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5406 // We assume that the cost overhead is 1 and we use the cost model 5407 // to estimate the cost of the loop and interleave until the cost of the 5408 // loop overhead is about 5% of the cost of the loop. 5409 unsigned SmallIC = 5410 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5411 5412 // Interleave until store/load ports (estimated by max interleave count) are 5413 // saturated. 5414 unsigned NumStores = Legal->getNumStores(); 5415 unsigned NumLoads = Legal->getNumLoads(); 5416 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5417 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5418 5419 // If we have a scalar reduction (vector reductions are already dealt with 5420 // by this point), we can increase the critical path length if the loop 5421 // we're interleaving is inside another loop. Limit, by default to 2, so the 5422 // critical path only gets increased by one reduction operation. 5423 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5424 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5425 SmallIC = std::min(SmallIC, F); 5426 StoresIC = std::min(StoresIC, F); 5427 LoadsIC = std::min(LoadsIC, F); 5428 } 5429 5430 if (EnableLoadStoreRuntimeInterleave && 5431 std::max(StoresIC, LoadsIC) > SmallIC) { 5432 LLVM_DEBUG( 5433 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5434 return std::max(StoresIC, LoadsIC); 5435 } 5436 5437 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5438 return SmallIC; 5439 } 5440 5441 // Interleave if this is a large loop (small loops are already dealt with by 5442 // this point) that could benefit from interleaving. 5443 bool HasReductions = !Legal->getReductionVars().empty(); 5444 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5445 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5446 return IC; 5447 } 5448 5449 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5450 return 1; 5451 } 5452 5453 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5454 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5455 // This function calculates the register usage by measuring the highest number 5456 // of values that are alive at a single location. Obviously, this is a very 5457 // rough estimation. We scan the loop in a topological order in order and 5458 // assign a number to each instruction. We use RPO to ensure that defs are 5459 // met before their users. We assume that each instruction that has in-loop 5460 // users starts an interval. We record every time that an in-loop value is 5461 // used, so we have a list of the first and last occurrences of each 5462 // instruction. Next, we transpose this data structure into a multi map that 5463 // holds the list of intervals that *end* at a specific location. This multi 5464 // map allows us to perform a linear search. We scan the instructions linearly 5465 // and record each time that a new interval starts, by placing it in a set. 5466 // If we find this value in the multi-map then we remove it from the set. 5467 // The max register usage is the maximum size of the set. 5468 // We also search for instructions that are defined outside the loop, but are 5469 // used inside the loop. We need this number separately from the max-interval 5470 // usage number because when we unroll, loop-invariant values do not take 5471 // more register. 5472 LoopBlocksDFS DFS(TheLoop); 5473 DFS.perform(LI); 5474 5475 RegisterUsage RU; 5476 5477 // Each 'key' in the map opens a new interval. The values 5478 // of the map are the index of the 'last seen' usage of the 5479 // instruction that is the key. 5480 using IntervalMap = DenseMap<Instruction *, unsigned>; 5481 5482 // Maps instruction to its index. 5483 SmallVector<Instruction *, 64> IdxToInstr; 5484 // Marks the end of each interval. 5485 IntervalMap EndPoint; 5486 // Saves the list of instruction indices that are used in the loop. 5487 SmallPtrSet<Instruction *, 8> Ends; 5488 // Saves the list of values that are used in the loop but are 5489 // defined outside the loop, such as arguments and constants. 5490 SmallPtrSet<Value *, 8> LoopInvariants; 5491 5492 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5493 for (Instruction &I : BB->instructionsWithoutDebug()) { 5494 IdxToInstr.push_back(&I); 5495 5496 // Save the end location of each USE. 5497 for (Value *U : I.operands()) { 5498 auto *Instr = dyn_cast<Instruction>(U); 5499 5500 // Ignore non-instruction values such as arguments, constants, etc. 5501 if (!Instr) 5502 continue; 5503 5504 // If this instruction is outside the loop then record it and continue. 5505 if (!TheLoop->contains(Instr)) { 5506 LoopInvariants.insert(Instr); 5507 continue; 5508 } 5509 5510 // Overwrite previous end points. 5511 EndPoint[Instr] = IdxToInstr.size(); 5512 Ends.insert(Instr); 5513 } 5514 } 5515 } 5516 5517 // Saves the list of intervals that end with the index in 'key'. 5518 using InstrList = SmallVector<Instruction *, 2>; 5519 DenseMap<unsigned, InstrList> TransposeEnds; 5520 5521 // Transpose the EndPoints to a list of values that end at each index. 5522 for (auto &Interval : EndPoint) 5523 TransposeEnds[Interval.second].push_back(Interval.first); 5524 5525 SmallPtrSet<Instruction *, 8> OpenIntervals; 5526 5527 // Get the size of the widest register. 5528 unsigned MaxSafeDepDist = -1U; 5529 if (Legal->getMaxSafeDepDistBytes() != -1U) 5530 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5531 unsigned WidestRegister = 5532 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5533 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5534 5535 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5536 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5537 5538 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5539 5540 // A lambda that gets the register usage for the given type and VF. 5541 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5542 if (Ty->isTokenTy()) 5543 return 0U; 5544 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5545 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5546 }; 5547 5548 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5549 Instruction *I = IdxToInstr[i]; 5550 5551 // Remove all of the instructions that end at this location. 5552 InstrList &List = TransposeEnds[i]; 5553 for (Instruction *ToRemove : List) 5554 OpenIntervals.erase(ToRemove); 5555 5556 // Ignore instructions that are never used within the loop. 5557 if (!Ends.count(I)) 5558 continue; 5559 5560 // Skip ignored values. 5561 if (ValuesToIgnore.count(I)) 5562 continue; 5563 5564 // For each VF find the maximum usage of registers. 5565 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5566 // Count the number of live intervals. 5567 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5568 5569 if (VFs[j] == 1) { 5570 for (auto Inst : OpenIntervals) { 5571 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5572 if (RegUsage.find(ClassID) == RegUsage.end()) 5573 RegUsage[ClassID] = 1; 5574 else 5575 RegUsage[ClassID] += 1; 5576 } 5577 } else { 5578 collectUniformsAndScalars(VFs[j]); 5579 for (auto Inst : OpenIntervals) { 5580 // Skip ignored values for VF > 1. 5581 if (VecValuesToIgnore.count(Inst)) 5582 continue; 5583 if (isScalarAfterVectorization(Inst, VFs[j])) { 5584 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5585 if (RegUsage.find(ClassID) == RegUsage.end()) 5586 RegUsage[ClassID] = 1; 5587 else 5588 RegUsage[ClassID] += 1; 5589 } else { 5590 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5591 if (RegUsage.find(ClassID) == RegUsage.end()) 5592 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5593 else 5594 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5595 } 5596 } 5597 } 5598 5599 for (auto& pair : RegUsage) { 5600 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5601 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5602 else 5603 MaxUsages[j][pair.first] = pair.second; 5604 } 5605 } 5606 5607 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5608 << OpenIntervals.size() << '\n'); 5609 5610 // Add the current instruction to the list of open intervals. 5611 OpenIntervals.insert(I); 5612 } 5613 5614 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5615 SmallMapVector<unsigned, unsigned, 4> Invariant; 5616 5617 for (auto Inst : LoopInvariants) { 5618 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5619 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5620 if (Invariant.find(ClassID) == Invariant.end()) 5621 Invariant[ClassID] = Usage; 5622 else 5623 Invariant[ClassID] += Usage; 5624 } 5625 5626 LLVM_DEBUG({ 5627 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5628 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5629 << " item\n"; 5630 for (const auto &pair : MaxUsages[i]) { 5631 dbgs() << "LV(REG): RegisterClass: " 5632 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5633 << " registers\n"; 5634 } 5635 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5636 << " item\n"; 5637 for (const auto &pair : Invariant) { 5638 dbgs() << "LV(REG): RegisterClass: " 5639 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5640 << " registers\n"; 5641 } 5642 }); 5643 5644 RU.LoopInvariantRegs = Invariant; 5645 RU.MaxLocalUsers = MaxUsages[i]; 5646 RUs[i] = RU; 5647 } 5648 5649 return RUs; 5650 } 5651 5652 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5653 // TODO: Cost model for emulated masked load/store is completely 5654 // broken. This hack guides the cost model to use an artificially 5655 // high enough value to practically disable vectorization with such 5656 // operations, except where previously deployed legality hack allowed 5657 // using very low cost values. This is to avoid regressions coming simply 5658 // from moving "masked load/store" check from legality to cost model. 5659 // Masked Load/Gather emulation was previously never allowed. 5660 // Limited number of Masked Store/Scatter emulation was allowed. 5661 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5662 return isa<LoadInst>(I) || 5663 (isa<StoreInst>(I) && 5664 NumPredStores > NumberOfStoresToPredicate); 5665 } 5666 5667 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5668 // If we aren't vectorizing the loop, or if we've already collected the 5669 // instructions to scalarize, there's nothing to do. Collection may already 5670 // have occurred if we have a user-selected VF and are now computing the 5671 // expected cost for interleaving. 5672 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5673 return; 5674 5675 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5676 // not profitable to scalarize any instructions, the presence of VF in the 5677 // map will indicate that we've analyzed it already. 5678 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5679 5680 // Find all the instructions that are scalar with predication in the loop and 5681 // determine if it would be better to not if-convert the blocks they are in. 5682 // If so, we also record the instructions to scalarize. 5683 for (BasicBlock *BB : TheLoop->blocks()) { 5684 if (!blockNeedsPredication(BB)) 5685 continue; 5686 for (Instruction &I : *BB) 5687 if (isScalarWithPredication(&I)) { 5688 ScalarCostsTy ScalarCosts; 5689 // Do not apply discount logic if hacked cost is needed 5690 // for emulated masked memrefs. 5691 if (!useEmulatedMaskMemRefHack(&I) && 5692 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5693 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5694 // Remember that BB will remain after vectorization. 5695 PredicatedBBsAfterVectorization.insert(BB); 5696 } 5697 } 5698 } 5699 5700 int LoopVectorizationCostModel::computePredInstDiscount( 5701 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5702 unsigned VF) { 5703 assert(!isUniformAfterVectorization(PredInst, VF) && 5704 "Instruction marked uniform-after-vectorization will be predicated"); 5705 5706 // Initialize the discount to zero, meaning that the scalar version and the 5707 // vector version cost the same. 5708 int Discount = 0; 5709 5710 // Holds instructions to analyze. The instructions we visit are mapped in 5711 // ScalarCosts. Those instructions are the ones that would be scalarized if 5712 // we find that the scalar version costs less. 5713 SmallVector<Instruction *, 8> Worklist; 5714 5715 // Returns true if the given instruction can be scalarized. 5716 auto canBeScalarized = [&](Instruction *I) -> bool { 5717 // We only attempt to scalarize instructions forming a single-use chain 5718 // from the original predicated block that would otherwise be vectorized. 5719 // Although not strictly necessary, we give up on instructions we know will 5720 // already be scalar to avoid traversing chains that are unlikely to be 5721 // beneficial. 5722 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5723 isScalarAfterVectorization(I, VF)) 5724 return false; 5725 5726 // If the instruction is scalar with predication, it will be analyzed 5727 // separately. We ignore it within the context of PredInst. 5728 if (isScalarWithPredication(I)) 5729 return false; 5730 5731 // If any of the instruction's operands are uniform after vectorization, 5732 // the instruction cannot be scalarized. This prevents, for example, a 5733 // masked load from being scalarized. 5734 // 5735 // We assume we will only emit a value for lane zero of an instruction 5736 // marked uniform after vectorization, rather than VF identical values. 5737 // Thus, if we scalarize an instruction that uses a uniform, we would 5738 // create uses of values corresponding to the lanes we aren't emitting code 5739 // for. This behavior can be changed by allowing getScalarValue to clone 5740 // the lane zero values for uniforms rather than asserting. 5741 for (Use &U : I->operands()) 5742 if (auto *J = dyn_cast<Instruction>(U.get())) 5743 if (isUniformAfterVectorization(J, VF)) 5744 return false; 5745 5746 // Otherwise, we can scalarize the instruction. 5747 return true; 5748 }; 5749 5750 // Compute the expected cost discount from scalarizing the entire expression 5751 // feeding the predicated instruction. We currently only consider expressions 5752 // that are single-use instruction chains. 5753 Worklist.push_back(PredInst); 5754 while (!Worklist.empty()) { 5755 Instruction *I = Worklist.pop_back_val(); 5756 5757 // If we've already analyzed the instruction, there's nothing to do. 5758 if (ScalarCosts.find(I) != ScalarCosts.end()) 5759 continue; 5760 5761 // Compute the cost of the vector instruction. Note that this cost already 5762 // includes the scalarization overhead of the predicated instruction. 5763 unsigned VectorCost = getInstructionCost(I, VF).first; 5764 5765 // Compute the cost of the scalarized instruction. This cost is the cost of 5766 // the instruction as if it wasn't if-converted and instead remained in the 5767 // predicated block. We will scale this cost by block probability after 5768 // computing the scalarization overhead. 5769 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5770 5771 // Compute the scalarization overhead of needed insertelement instructions 5772 // and phi nodes. 5773 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5774 ScalarCost += TTI.getScalarizationOverhead( 5775 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5776 APInt::getAllOnesValue(VF), true, false); 5777 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5778 TTI::TCK_RecipThroughput); 5779 } 5780 5781 // Compute the scalarization overhead of needed extractelement 5782 // instructions. For each of the instruction's operands, if the operand can 5783 // be scalarized, add it to the worklist; otherwise, account for the 5784 // overhead. 5785 for (Use &U : I->operands()) 5786 if (auto *J = dyn_cast<Instruction>(U.get())) { 5787 assert(VectorType::isValidElementType(J->getType()) && 5788 "Instruction has non-scalar type"); 5789 if (canBeScalarized(J)) 5790 Worklist.push_back(J); 5791 else if (needsExtract(J, VF)) 5792 ScalarCost += TTI.getScalarizationOverhead( 5793 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5794 APInt::getAllOnesValue(VF), false, true); 5795 } 5796 5797 // Scale the total scalar cost by block probability. 5798 ScalarCost /= getReciprocalPredBlockProb(); 5799 5800 // Compute the discount. A non-negative discount means the vector version 5801 // of the instruction costs more, and scalarizing would be beneficial. 5802 Discount += VectorCost - ScalarCost; 5803 ScalarCosts[I] = ScalarCost; 5804 } 5805 5806 return Discount; 5807 } 5808 5809 LoopVectorizationCostModel::VectorizationCostTy 5810 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5811 VectorizationCostTy Cost; 5812 5813 // For each block. 5814 for (BasicBlock *BB : TheLoop->blocks()) { 5815 VectorizationCostTy BlockCost; 5816 5817 // For each instruction in the old loop. 5818 for (Instruction &I : BB->instructionsWithoutDebug()) { 5819 // Skip ignored values. 5820 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5821 continue; 5822 5823 VectorizationCostTy C = getInstructionCost(&I, VF); 5824 5825 // Check if we should override the cost. 5826 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5827 C.first = ForceTargetInstructionCost; 5828 5829 BlockCost.first += C.first; 5830 BlockCost.second |= C.second; 5831 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5832 << " for VF " << VF << " For instruction: " << I 5833 << '\n'); 5834 } 5835 5836 // If we are vectorizing a predicated block, it will have been 5837 // if-converted. This means that the block's instructions (aside from 5838 // stores and instructions that may divide by zero) will now be 5839 // unconditionally executed. For the scalar case, we may not always execute 5840 // the predicated block. Thus, scale the block's cost by the probability of 5841 // executing it. 5842 if (VF == 1 && blockNeedsPredication(BB)) 5843 BlockCost.first /= getReciprocalPredBlockProb(); 5844 5845 Cost.first += BlockCost.first; 5846 Cost.second |= BlockCost.second; 5847 } 5848 5849 return Cost; 5850 } 5851 5852 /// Gets Address Access SCEV after verifying that the access pattern 5853 /// is loop invariant except the induction variable dependence. 5854 /// 5855 /// This SCEV can be sent to the Target in order to estimate the address 5856 /// calculation cost. 5857 static const SCEV *getAddressAccessSCEV( 5858 Value *Ptr, 5859 LoopVectorizationLegality *Legal, 5860 PredicatedScalarEvolution &PSE, 5861 const Loop *TheLoop) { 5862 5863 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5864 if (!Gep) 5865 return nullptr; 5866 5867 // We are looking for a gep with all loop invariant indices except for one 5868 // which should be an induction variable. 5869 auto SE = PSE.getSE(); 5870 unsigned NumOperands = Gep->getNumOperands(); 5871 for (unsigned i = 1; i < NumOperands; ++i) { 5872 Value *Opd = Gep->getOperand(i); 5873 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5874 !Legal->isInductionVariable(Opd)) 5875 return nullptr; 5876 } 5877 5878 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5879 return PSE.getSCEV(Ptr); 5880 } 5881 5882 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5883 return Legal->hasStride(I->getOperand(0)) || 5884 Legal->hasStride(I->getOperand(1)); 5885 } 5886 5887 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5888 unsigned VF) { 5889 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5890 Type *ValTy = getMemInstValueType(I); 5891 auto SE = PSE.getSE(); 5892 5893 unsigned AS = getLoadStoreAddressSpace(I); 5894 Value *Ptr = getLoadStorePointerOperand(I); 5895 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5896 5897 // Figure out whether the access is strided and get the stride value 5898 // if it's known in compile time 5899 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5900 5901 // Get the cost of the scalar memory instruction and address computation. 5902 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5903 5904 // Don't pass *I here, since it is scalar but will actually be part of a 5905 // vectorized loop where the user of it is a vectorized instruction. 5906 const Align Alignment = getLoadStoreAlignment(I); 5907 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5908 Alignment, AS, 5909 TTI::TCK_RecipThroughput); 5910 5911 // Get the overhead of the extractelement and insertelement instructions 5912 // we might create due to scalarization. 5913 Cost += getScalarizationOverhead(I, VF); 5914 5915 // If we have a predicated store, it may not be executed for each vector 5916 // lane. Scale the cost by the probability of executing the predicated 5917 // block. 5918 if (isPredicatedInst(I)) { 5919 Cost /= getReciprocalPredBlockProb(); 5920 5921 if (useEmulatedMaskMemRefHack(I)) 5922 // Artificially setting to a high enough value to practically disable 5923 // vectorization with such operations. 5924 Cost = 3000000; 5925 } 5926 5927 return Cost; 5928 } 5929 5930 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5931 unsigned VF) { 5932 Type *ValTy = getMemInstValueType(I); 5933 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5934 Value *Ptr = getLoadStorePointerOperand(I); 5935 unsigned AS = getLoadStoreAddressSpace(I); 5936 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5937 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5938 5939 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5940 "Stride should be 1 or -1 for consecutive memory access"); 5941 const Align Alignment = getLoadStoreAlignment(I); 5942 unsigned Cost = 0; 5943 if (Legal->isMaskRequired(I)) 5944 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5945 CostKind); 5946 else 5947 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5948 CostKind, I); 5949 5950 bool Reverse = ConsecutiveStride < 0; 5951 if (Reverse) 5952 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5953 return Cost; 5954 } 5955 5956 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5957 unsigned VF) { 5958 Type *ValTy = getMemInstValueType(I); 5959 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5960 const Align Alignment = getLoadStoreAlignment(I); 5961 unsigned AS = getLoadStoreAddressSpace(I); 5962 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5963 if (isa<LoadInst>(I)) { 5964 return TTI.getAddressComputationCost(ValTy) + 5965 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5966 CostKind) + 5967 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5968 } 5969 StoreInst *SI = cast<StoreInst>(I); 5970 5971 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5972 return TTI.getAddressComputationCost(ValTy) + 5973 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5974 CostKind) + 5975 (isLoopInvariantStoreValue 5976 ? 0 5977 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5978 VF - 1)); 5979 } 5980 5981 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5982 unsigned VF) { 5983 Type *ValTy = getMemInstValueType(I); 5984 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5985 const Align Alignment = getLoadStoreAlignment(I); 5986 const Value *Ptr = getLoadStorePointerOperand(I); 5987 5988 return TTI.getAddressComputationCost(VectorTy) + 5989 TTI.getGatherScatterOpCost( 5990 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5991 TargetTransformInfo::TCK_RecipThroughput, I); 5992 } 5993 5994 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5995 unsigned VF) { 5996 Type *ValTy = getMemInstValueType(I); 5997 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5998 unsigned AS = getLoadStoreAddressSpace(I); 5999 6000 auto Group = getInterleavedAccessGroup(I); 6001 assert(Group && "Fail to get an interleaved access group."); 6002 6003 unsigned InterleaveFactor = Group->getFactor(); 6004 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 6005 6006 // Holds the indices of existing members in an interleaved load group. 6007 // An interleaved store group doesn't need this as it doesn't allow gaps. 6008 SmallVector<unsigned, 4> Indices; 6009 if (isa<LoadInst>(I)) { 6010 for (unsigned i = 0; i < InterleaveFactor; i++) 6011 if (Group->getMember(i)) 6012 Indices.push_back(i); 6013 } 6014 6015 // Calculate the cost of the whole interleaved group. 6016 bool UseMaskForGaps = 6017 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6018 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6019 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6020 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6021 6022 if (Group->isReverse()) { 6023 // TODO: Add support for reversed masked interleaved access. 6024 assert(!Legal->isMaskRequired(I) && 6025 "Reverse masked interleaved access not supported."); 6026 Cost += Group->getNumMembers() * 6027 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6028 } 6029 return Cost; 6030 } 6031 6032 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6033 unsigned VF) { 6034 // Calculate scalar cost only. Vectorization cost should be ready at this 6035 // moment. 6036 if (VF == 1) { 6037 Type *ValTy = getMemInstValueType(I); 6038 const Align Alignment = getLoadStoreAlignment(I); 6039 unsigned AS = getLoadStoreAddressSpace(I); 6040 6041 return TTI.getAddressComputationCost(ValTy) + 6042 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6043 TTI::TCK_RecipThroughput, I); 6044 } 6045 return getWideningCost(I, VF); 6046 } 6047 6048 LoopVectorizationCostModel::VectorizationCostTy 6049 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6050 // If we know that this instruction will remain uniform, check the cost of 6051 // the scalar version. 6052 if (isUniformAfterVectorization(I, VF)) 6053 VF = 1; 6054 6055 if (VF > 1 && isProfitableToScalarize(I, VF)) 6056 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6057 6058 // Forced scalars do not have any scalarization overhead. 6059 auto ForcedScalar = ForcedScalars.find(VF); 6060 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6061 auto InstSet = ForcedScalar->second; 6062 if (InstSet.count(I)) 6063 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6064 } 6065 6066 Type *VectorTy; 6067 unsigned C = getInstructionCost(I, VF, VectorTy); 6068 6069 bool TypeNotScalarized = 6070 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6071 return VectorizationCostTy(C, TypeNotScalarized); 6072 } 6073 6074 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6075 unsigned VF) { 6076 6077 if (VF == 1) 6078 return 0; 6079 6080 unsigned Cost = 0; 6081 Type *RetTy = ToVectorTy(I->getType(), VF); 6082 if (!RetTy->isVoidTy() && 6083 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6084 Cost += TTI.getScalarizationOverhead( 6085 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6086 6087 // Some targets keep addresses scalar. 6088 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6089 return Cost; 6090 6091 // Some targets support efficient element stores. 6092 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6093 return Cost; 6094 6095 // Collect operands to consider. 6096 CallInst *CI = dyn_cast<CallInst>(I); 6097 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6098 6099 // Skip operands that do not require extraction/scalarization and do not incur 6100 // any overhead. 6101 return Cost + TTI.getOperandsScalarizationOverhead( 6102 filterExtractingOperands(Ops, VF), VF); 6103 } 6104 6105 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6106 if (VF == 1) 6107 return; 6108 NumPredStores = 0; 6109 for (BasicBlock *BB : TheLoop->blocks()) { 6110 // For each instruction in the old loop. 6111 for (Instruction &I : *BB) { 6112 Value *Ptr = getLoadStorePointerOperand(&I); 6113 if (!Ptr) 6114 continue; 6115 6116 // TODO: We should generate better code and update the cost model for 6117 // predicated uniform stores. Today they are treated as any other 6118 // predicated store (see added test cases in 6119 // invariant-store-vectorization.ll). 6120 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6121 NumPredStores++; 6122 6123 if (Legal->isUniform(Ptr) && 6124 // Conditional loads and stores should be scalarized and predicated. 6125 // isScalarWithPredication cannot be used here since masked 6126 // gather/scatters are not considered scalar with predication. 6127 !Legal->blockNeedsPredication(I.getParent())) { 6128 // TODO: Avoid replicating loads and stores instead of 6129 // relying on instcombine to remove them. 6130 // Load: Scalar load + broadcast 6131 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6132 unsigned Cost = getUniformMemOpCost(&I, VF); 6133 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6134 continue; 6135 } 6136 6137 // We assume that widening is the best solution when possible. 6138 if (memoryInstructionCanBeWidened(&I, VF)) { 6139 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6140 int ConsecutiveStride = 6141 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6142 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6143 "Expected consecutive stride."); 6144 InstWidening Decision = 6145 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6146 setWideningDecision(&I, VF, Decision, Cost); 6147 continue; 6148 } 6149 6150 // Choose between Interleaving, Gather/Scatter or Scalarization. 6151 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6152 unsigned NumAccesses = 1; 6153 if (isAccessInterleaved(&I)) { 6154 auto Group = getInterleavedAccessGroup(&I); 6155 assert(Group && "Fail to get an interleaved access group."); 6156 6157 // Make one decision for the whole group. 6158 if (getWideningDecision(&I, VF) != CM_Unknown) 6159 continue; 6160 6161 NumAccesses = Group->getNumMembers(); 6162 if (interleavedAccessCanBeWidened(&I, VF)) 6163 InterleaveCost = getInterleaveGroupCost(&I, VF); 6164 } 6165 6166 unsigned GatherScatterCost = 6167 isLegalGatherOrScatter(&I) 6168 ? getGatherScatterCost(&I, VF) * NumAccesses 6169 : std::numeric_limits<unsigned>::max(); 6170 6171 unsigned ScalarizationCost = 6172 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6173 6174 // Choose better solution for the current VF, 6175 // write down this decision and use it during vectorization. 6176 unsigned Cost; 6177 InstWidening Decision; 6178 if (InterleaveCost <= GatherScatterCost && 6179 InterleaveCost < ScalarizationCost) { 6180 Decision = CM_Interleave; 6181 Cost = InterleaveCost; 6182 } else if (GatherScatterCost < ScalarizationCost) { 6183 Decision = CM_GatherScatter; 6184 Cost = GatherScatterCost; 6185 } else { 6186 Decision = CM_Scalarize; 6187 Cost = ScalarizationCost; 6188 } 6189 // If the instructions belongs to an interleave group, the whole group 6190 // receives the same decision. The whole group receives the cost, but 6191 // the cost will actually be assigned to one instruction. 6192 if (auto Group = getInterleavedAccessGroup(&I)) 6193 setWideningDecision(Group, VF, Decision, Cost); 6194 else 6195 setWideningDecision(&I, VF, Decision, Cost); 6196 } 6197 } 6198 6199 // Make sure that any load of address and any other address computation 6200 // remains scalar unless there is gather/scatter support. This avoids 6201 // inevitable extracts into address registers, and also has the benefit of 6202 // activating LSR more, since that pass can't optimize vectorized 6203 // addresses. 6204 if (TTI.prefersVectorizedAddressing()) 6205 return; 6206 6207 // Start with all scalar pointer uses. 6208 SmallPtrSet<Instruction *, 8> AddrDefs; 6209 for (BasicBlock *BB : TheLoop->blocks()) 6210 for (Instruction &I : *BB) { 6211 Instruction *PtrDef = 6212 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6213 if (PtrDef && TheLoop->contains(PtrDef) && 6214 getWideningDecision(&I, VF) != CM_GatherScatter) 6215 AddrDefs.insert(PtrDef); 6216 } 6217 6218 // Add all instructions used to generate the addresses. 6219 SmallVector<Instruction *, 4> Worklist; 6220 for (auto *I : AddrDefs) 6221 Worklist.push_back(I); 6222 while (!Worklist.empty()) { 6223 Instruction *I = Worklist.pop_back_val(); 6224 for (auto &Op : I->operands()) 6225 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6226 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6227 AddrDefs.insert(InstOp).second) 6228 Worklist.push_back(InstOp); 6229 } 6230 6231 for (auto *I : AddrDefs) { 6232 if (isa<LoadInst>(I)) { 6233 // Setting the desired widening decision should ideally be handled in 6234 // by cost functions, but since this involves the task of finding out 6235 // if the loaded register is involved in an address computation, it is 6236 // instead changed here when we know this is the case. 6237 InstWidening Decision = getWideningDecision(I, VF); 6238 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6239 // Scalarize a widened load of address. 6240 setWideningDecision(I, VF, CM_Scalarize, 6241 (VF * getMemoryInstructionCost(I, 1))); 6242 else if (auto Group = getInterleavedAccessGroup(I)) { 6243 // Scalarize an interleave group of address loads. 6244 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6245 if (Instruction *Member = Group->getMember(I)) 6246 setWideningDecision(Member, VF, CM_Scalarize, 6247 (VF * getMemoryInstructionCost(Member, 1))); 6248 } 6249 } 6250 } else 6251 // Make sure I gets scalarized and a cost estimate without 6252 // scalarization overhead. 6253 ForcedScalars[VF].insert(I); 6254 } 6255 } 6256 6257 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6258 unsigned VF, 6259 Type *&VectorTy) { 6260 Type *RetTy = I->getType(); 6261 if (canTruncateToMinimalBitwidth(I, VF)) 6262 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6263 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6264 auto SE = PSE.getSE(); 6265 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6266 6267 // TODO: We need to estimate the cost of intrinsic calls. 6268 switch (I->getOpcode()) { 6269 case Instruction::GetElementPtr: 6270 // We mark this instruction as zero-cost because the cost of GEPs in 6271 // vectorized code depends on whether the corresponding memory instruction 6272 // is scalarized or not. Therefore, we handle GEPs with the memory 6273 // instruction cost. 6274 return 0; 6275 case Instruction::Br: { 6276 // In cases of scalarized and predicated instructions, there will be VF 6277 // predicated blocks in the vectorized loop. Each branch around these 6278 // blocks requires also an extract of its vector compare i1 element. 6279 bool ScalarPredicatedBB = false; 6280 BranchInst *BI = cast<BranchInst>(I); 6281 if (VF > 1 && BI->isConditional() && 6282 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6283 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6284 ScalarPredicatedBB = true; 6285 6286 if (ScalarPredicatedBB) { 6287 // Return cost for branches around scalarized and predicated blocks. 6288 auto *Vec_i1Ty = 6289 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6290 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6291 false, true) + 6292 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6293 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6294 // The back-edge branch will remain, as will all scalar branches. 6295 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6296 else 6297 // This branch will be eliminated by if-conversion. 6298 return 0; 6299 // Note: We currently assume zero cost for an unconditional branch inside 6300 // a predicated block since it will become a fall-through, although we 6301 // may decide in the future to call TTI for all branches. 6302 } 6303 case Instruction::PHI: { 6304 auto *Phi = cast<PHINode>(I); 6305 6306 // First-order recurrences are replaced by vector shuffles inside the loop. 6307 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6308 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6309 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6310 cast<VectorType>(VectorTy), VF - 1, 6311 FixedVectorType::get(RetTy, 1)); 6312 6313 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6314 // converted into select instructions. We require N - 1 selects per phi 6315 // node, where N is the number of incoming values. 6316 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6317 return (Phi->getNumIncomingValues() - 1) * 6318 TTI.getCmpSelInstrCost( 6319 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6320 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6321 CostKind); 6322 6323 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6324 } 6325 case Instruction::UDiv: 6326 case Instruction::SDiv: 6327 case Instruction::URem: 6328 case Instruction::SRem: 6329 // If we have a predicated instruction, it may not be executed for each 6330 // vector lane. Get the scalarization cost and scale this amount by the 6331 // probability of executing the predicated block. If the instruction is not 6332 // predicated, we fall through to the next case. 6333 if (VF > 1 && isScalarWithPredication(I)) { 6334 unsigned Cost = 0; 6335 6336 // These instructions have a non-void type, so account for the phi nodes 6337 // that we will create. This cost is likely to be zero. The phi node 6338 // cost, if any, should be scaled by the block probability because it 6339 // models a copy at the end of each predicated block. 6340 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6341 6342 // The cost of the non-predicated instruction. 6343 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6344 6345 // The cost of insertelement and extractelement instructions needed for 6346 // scalarization. 6347 Cost += getScalarizationOverhead(I, VF); 6348 6349 // Scale the cost by the probability of executing the predicated blocks. 6350 // This assumes the predicated block for each vector lane is equally 6351 // likely. 6352 return Cost / getReciprocalPredBlockProb(); 6353 } 6354 LLVM_FALLTHROUGH; 6355 case Instruction::Add: 6356 case Instruction::FAdd: 6357 case Instruction::Sub: 6358 case Instruction::FSub: 6359 case Instruction::Mul: 6360 case Instruction::FMul: 6361 case Instruction::FDiv: 6362 case Instruction::FRem: 6363 case Instruction::Shl: 6364 case Instruction::LShr: 6365 case Instruction::AShr: 6366 case Instruction::And: 6367 case Instruction::Or: 6368 case Instruction::Xor: { 6369 // Since we will replace the stride by 1 the multiplication should go away. 6370 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6371 return 0; 6372 // Certain instructions can be cheaper to vectorize if they have a constant 6373 // second vector operand. One example of this are shifts on x86. 6374 Value *Op2 = I->getOperand(1); 6375 TargetTransformInfo::OperandValueProperties Op2VP; 6376 TargetTransformInfo::OperandValueKind Op2VK = 6377 TTI.getOperandInfo(Op2, Op2VP); 6378 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6379 Op2VK = TargetTransformInfo::OK_UniformValue; 6380 6381 SmallVector<const Value *, 4> Operands(I->operand_values()); 6382 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6383 return N * TTI.getArithmeticInstrCost( 6384 I->getOpcode(), VectorTy, CostKind, 6385 TargetTransformInfo::OK_AnyValue, 6386 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6387 } 6388 case Instruction::FNeg: { 6389 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6390 return N * TTI.getArithmeticInstrCost( 6391 I->getOpcode(), VectorTy, CostKind, 6392 TargetTransformInfo::OK_AnyValue, 6393 TargetTransformInfo::OK_AnyValue, 6394 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6395 I->getOperand(0), I); 6396 } 6397 case Instruction::Select: { 6398 SelectInst *SI = cast<SelectInst>(I); 6399 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6400 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6401 Type *CondTy = SI->getCondition()->getType(); 6402 if (!ScalarCond) 6403 CondTy = FixedVectorType::get(CondTy, VF); 6404 6405 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6406 CostKind, I); 6407 } 6408 case Instruction::ICmp: 6409 case Instruction::FCmp: { 6410 Type *ValTy = I->getOperand(0)->getType(); 6411 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6412 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6413 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6414 VectorTy = ToVectorTy(ValTy, VF); 6415 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6416 I); 6417 } 6418 case Instruction::Store: 6419 case Instruction::Load: { 6420 unsigned Width = VF; 6421 if (Width > 1) { 6422 InstWidening Decision = getWideningDecision(I, Width); 6423 assert(Decision != CM_Unknown && 6424 "CM decision should be taken at this point"); 6425 if (Decision == CM_Scalarize) 6426 Width = 1; 6427 } 6428 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6429 return getMemoryInstructionCost(I, VF); 6430 } 6431 case Instruction::ZExt: 6432 case Instruction::SExt: 6433 case Instruction::FPToUI: 6434 case Instruction::FPToSI: 6435 case Instruction::FPExt: 6436 case Instruction::PtrToInt: 6437 case Instruction::IntToPtr: 6438 case Instruction::SIToFP: 6439 case Instruction::UIToFP: 6440 case Instruction::Trunc: 6441 case Instruction::FPTrunc: 6442 case Instruction::BitCast: { 6443 // We optimize the truncation of induction variables having constant 6444 // integer steps. The cost of these truncations is the same as the scalar 6445 // operation. 6446 if (isOptimizableIVTruncate(I, VF)) { 6447 auto *Trunc = cast<TruncInst>(I); 6448 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6449 Trunc->getSrcTy(), CostKind, Trunc); 6450 } 6451 6452 Type *SrcScalarTy = I->getOperand(0)->getType(); 6453 Type *SrcVecTy = 6454 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6455 if (canTruncateToMinimalBitwidth(I, VF)) { 6456 // This cast is going to be shrunk. This may remove the cast or it might 6457 // turn it into slightly different cast. For example, if MinBW == 16, 6458 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6459 // 6460 // Calculate the modified src and dest types. 6461 Type *MinVecTy = VectorTy; 6462 if (I->getOpcode() == Instruction::Trunc) { 6463 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6464 VectorTy = 6465 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6466 } else if (I->getOpcode() == Instruction::ZExt || 6467 I->getOpcode() == Instruction::SExt) { 6468 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6469 VectorTy = 6470 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6471 } 6472 } 6473 6474 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6475 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6476 CostKind, I); 6477 } 6478 case Instruction::Call: { 6479 bool NeedToScalarize; 6480 CallInst *CI = cast<CallInst>(I); 6481 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6482 if (getVectorIntrinsicIDForCall(CI, TLI)) 6483 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6484 return CallCost; 6485 } 6486 default: 6487 // The cost of executing VF copies of the scalar instruction. This opcode 6488 // is unknown. Assume that it is the same as 'mul'. 6489 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6490 CostKind) + 6491 getScalarizationOverhead(I, VF); 6492 } // end of switch. 6493 } 6494 6495 char LoopVectorize::ID = 0; 6496 6497 static const char lv_name[] = "Loop Vectorization"; 6498 6499 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6500 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6501 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6502 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6503 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6504 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6505 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6506 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6507 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6508 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6509 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6510 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6511 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6512 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6513 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6514 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6515 6516 namespace llvm { 6517 6518 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6519 6520 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6521 bool VectorizeOnlyWhenForced) { 6522 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6523 } 6524 6525 } // end namespace llvm 6526 6527 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6528 // Check if the pointer operand of a load or store instruction is 6529 // consecutive. 6530 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6531 return Legal->isConsecutivePtr(Ptr); 6532 return false; 6533 } 6534 6535 void LoopVectorizationCostModel::collectValuesToIgnore() { 6536 // Ignore ephemeral values. 6537 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6538 6539 // Ignore type-promoting instructions we identified during reduction 6540 // detection. 6541 for (auto &Reduction : Legal->getReductionVars()) { 6542 RecurrenceDescriptor &RedDes = Reduction.second; 6543 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6544 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6545 } 6546 // Ignore type-casting instructions we identified during induction 6547 // detection. 6548 for (auto &Induction : Legal->getInductionVars()) { 6549 InductionDescriptor &IndDes = Induction.second; 6550 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6551 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6552 } 6553 } 6554 6555 // TODO: we could return a pair of values that specify the max VF and 6556 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6557 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6558 // doesn't have a cost model that can choose which plan to execute if 6559 // more than one is generated. 6560 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6561 LoopVectorizationCostModel &CM) { 6562 unsigned WidestType; 6563 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6564 return WidestVectorRegBits / WidestType; 6565 } 6566 6567 VectorizationFactor 6568 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6569 unsigned VF = UserVF; 6570 // Outer loop handling: They may require CFG and instruction level 6571 // transformations before even evaluating whether vectorization is profitable. 6572 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6573 // the vectorization pipeline. 6574 if (!OrigLoop->empty()) { 6575 // If the user doesn't provide a vectorization factor, determine a 6576 // reasonable one. 6577 if (!UserVF) { 6578 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6579 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6580 6581 // Make sure we have a VF > 1 for stress testing. 6582 if (VPlanBuildStressTest && VF < 2) { 6583 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6584 << "overriding computed VF.\n"); 6585 VF = 4; 6586 } 6587 } 6588 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6589 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6590 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6591 << " to build VPlans.\n"); 6592 buildVPlans(VF, VF); 6593 6594 // For VPlan build stress testing, we bail out after VPlan construction. 6595 if (VPlanBuildStressTest) 6596 return VectorizationFactor::Disabled(); 6597 6598 return {VF, 0}; 6599 } 6600 6601 LLVM_DEBUG( 6602 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6603 "VPlan-native path.\n"); 6604 return VectorizationFactor::Disabled(); 6605 } 6606 6607 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6608 unsigned UserIC) { 6609 assert(OrigLoop->empty() && "Inner loop expected."); 6610 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6611 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6612 return None; 6613 6614 // Invalidate interleave groups if all blocks of loop will be predicated. 6615 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6616 !useMaskedInterleavedAccesses(*TTI)) { 6617 LLVM_DEBUG( 6618 dbgs() 6619 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6620 "which requires masked-interleaved support.\n"); 6621 if (CM.InterleaveInfo.invalidateGroups()) 6622 // Invalidating interleave groups also requires invalidating all decisions 6623 // based on them, which includes widening decisions and uniform and scalar 6624 // values. 6625 CM.invalidateCostModelingDecisions(); 6626 } 6627 6628 if (UserVF) { 6629 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6630 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6631 // Collect the instructions (and their associated costs) that will be more 6632 // profitable to scalarize. 6633 CM.selectUserVectorizationFactor(UserVF); 6634 buildVPlansWithVPRecipes(UserVF, UserVF); 6635 LLVM_DEBUG(printPlans(dbgs())); 6636 return {{UserVF, 0}}; 6637 } 6638 6639 unsigned MaxVF = MaybeMaxVF.getValue(); 6640 assert(MaxVF != 0 && "MaxVF is zero."); 6641 6642 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6643 // Collect Uniform and Scalar instructions after vectorization with VF. 6644 CM.collectUniformsAndScalars(VF); 6645 6646 // Collect the instructions (and their associated costs) that will be more 6647 // profitable to scalarize. 6648 if (VF > 1) 6649 CM.collectInstsToScalarize(VF); 6650 } 6651 6652 buildVPlansWithVPRecipes(1, MaxVF); 6653 LLVM_DEBUG(printPlans(dbgs())); 6654 if (MaxVF == 1) 6655 return VectorizationFactor::Disabled(); 6656 6657 // Select the optimal vectorization factor. 6658 return CM.selectVectorizationFactor(MaxVF); 6659 } 6660 6661 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6662 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6663 << '\n'); 6664 BestVF = VF; 6665 BestUF = UF; 6666 6667 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6668 return !Plan->hasVF(VF); 6669 }); 6670 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6671 } 6672 6673 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6674 DominatorTree *DT) { 6675 // Perform the actual loop transformation. 6676 6677 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6678 VPCallbackILV CallbackILV(ILV); 6679 6680 VPTransformState State{BestVF, BestUF, LI, 6681 DT, ILV.Builder, ILV.VectorLoopValueMap, 6682 &ILV, CallbackILV}; 6683 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6684 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6685 State.CanonicalIV = ILV.Induction; 6686 6687 //===------------------------------------------------===// 6688 // 6689 // Notice: any optimization or new instruction that go 6690 // into the code below should also be implemented in 6691 // the cost-model. 6692 // 6693 //===------------------------------------------------===// 6694 6695 // 2. Copy and widen instructions from the old loop into the new loop. 6696 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6697 VPlans.front()->execute(&State); 6698 6699 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6700 // predication, updating analyses. 6701 ILV.fixVectorizedLoop(); 6702 } 6703 6704 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6705 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6706 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6707 6708 // We create new control-flow for the vectorized loop, so the original 6709 // condition will be dead after vectorization if it's only used by the 6710 // branch. 6711 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6712 if (Cmp && Cmp->hasOneUse()) 6713 DeadInstructions.insert(Cmp); 6714 6715 // We create new "steps" for induction variable updates to which the original 6716 // induction variables map. An original update instruction will be dead if 6717 // all its users except the induction variable are dead. 6718 for (auto &Induction : Legal->getInductionVars()) { 6719 PHINode *Ind = Induction.first; 6720 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6721 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6722 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6723 })) 6724 DeadInstructions.insert(IndUpdate); 6725 6726 // We record as "Dead" also the type-casting instructions we had identified 6727 // during induction analysis. We don't need any handling for them in the 6728 // vectorized loop because we have proven that, under a proper runtime 6729 // test guarding the vectorized loop, the value of the phi, and the casted 6730 // value of the phi, are the same. The last instruction in this casting chain 6731 // will get its scalar/vector/widened def from the scalar/vector/widened def 6732 // of the respective phi node. Any other casts in the induction def-use chain 6733 // have no other uses outside the phi update chain, and will be ignored. 6734 InductionDescriptor &IndDes = Induction.second; 6735 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6736 DeadInstructions.insert(Casts.begin(), Casts.end()); 6737 } 6738 } 6739 6740 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6741 6742 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6743 6744 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6745 Instruction::BinaryOps BinOp) { 6746 // When unrolling and the VF is 1, we only need to add a simple scalar. 6747 Type *Ty = Val->getType(); 6748 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6749 6750 if (Ty->isFloatingPointTy()) { 6751 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6752 6753 // Floating point operations had to be 'fast' to enable the unrolling. 6754 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6755 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6756 } 6757 Constant *C = ConstantInt::get(Ty, StartIdx); 6758 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6759 } 6760 6761 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6762 SmallVector<Metadata *, 4> MDs; 6763 // Reserve first location for self reference to the LoopID metadata node. 6764 MDs.push_back(nullptr); 6765 bool IsUnrollMetadata = false; 6766 MDNode *LoopID = L->getLoopID(); 6767 if (LoopID) { 6768 // First find existing loop unrolling disable metadata. 6769 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6770 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6771 if (MD) { 6772 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6773 IsUnrollMetadata = 6774 S && S->getString().startswith("llvm.loop.unroll.disable"); 6775 } 6776 MDs.push_back(LoopID->getOperand(i)); 6777 } 6778 } 6779 6780 if (!IsUnrollMetadata) { 6781 // Add runtime unroll disable metadata. 6782 LLVMContext &Context = L->getHeader()->getContext(); 6783 SmallVector<Metadata *, 1> DisableOperands; 6784 DisableOperands.push_back( 6785 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6786 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6787 MDs.push_back(DisableNode); 6788 MDNode *NewLoopID = MDNode::get(Context, MDs); 6789 // Set operand 0 to refer to the loop id itself. 6790 NewLoopID->replaceOperandWith(0, NewLoopID); 6791 L->setLoopID(NewLoopID); 6792 } 6793 } 6794 6795 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6796 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6797 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6798 bool PredicateAtRangeStart = Predicate(Range.Start); 6799 6800 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6801 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6802 Range.End = TmpVF; 6803 break; 6804 } 6805 6806 return PredicateAtRangeStart; 6807 } 6808 6809 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6810 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6811 /// of VF's starting at a given VF and extending it as much as possible. Each 6812 /// vectorization decision can potentially shorten this sub-range during 6813 /// buildVPlan(). 6814 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6815 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6816 VFRange SubRange = {VF, MaxVF + 1}; 6817 VPlans.push_back(buildVPlan(SubRange)); 6818 VF = SubRange.End; 6819 } 6820 } 6821 6822 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6823 VPlanPtr &Plan) { 6824 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6825 6826 // Look for cached value. 6827 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6828 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6829 if (ECEntryIt != EdgeMaskCache.end()) 6830 return ECEntryIt->second; 6831 6832 VPValue *SrcMask = createBlockInMask(Src, Plan); 6833 6834 // The terminator has to be a branch inst! 6835 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6836 assert(BI && "Unexpected terminator found"); 6837 6838 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6839 return EdgeMaskCache[Edge] = SrcMask; 6840 6841 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6842 assert(EdgeMask && "No Edge Mask found for condition"); 6843 6844 if (BI->getSuccessor(0) != Dst) 6845 EdgeMask = Builder.createNot(EdgeMask); 6846 6847 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6848 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6849 6850 return EdgeMaskCache[Edge] = EdgeMask; 6851 } 6852 6853 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6854 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6855 6856 // Look for cached value. 6857 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6858 if (BCEntryIt != BlockMaskCache.end()) 6859 return BCEntryIt->second; 6860 6861 // All-one mask is modelled as no-mask following the convention for masked 6862 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6863 VPValue *BlockMask = nullptr; 6864 6865 if (OrigLoop->getHeader() == BB) { 6866 if (!CM.blockNeedsPredication(BB)) 6867 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6868 6869 // Introduce the early-exit compare IV <= BTC to form header block mask. 6870 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6871 // Start by constructing the desired canonical IV. 6872 VPValue *IV = nullptr; 6873 if (Legal->getPrimaryInduction()) 6874 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6875 else { 6876 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6877 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6878 IV = IVRecipe->getVPValue(); 6879 } 6880 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6881 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6882 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6883 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6884 else 6885 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6886 return BlockMaskCache[BB] = BlockMask; 6887 } 6888 6889 // This is the block mask. We OR all incoming edges. 6890 for (auto *Predecessor : predecessors(BB)) { 6891 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6892 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6893 return BlockMaskCache[BB] = EdgeMask; 6894 6895 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6896 BlockMask = EdgeMask; 6897 continue; 6898 } 6899 6900 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6901 } 6902 6903 return BlockMaskCache[BB] = BlockMask; 6904 } 6905 6906 VPWidenMemoryInstructionRecipe * 6907 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6908 VPlanPtr &Plan) { 6909 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6910 "Must be called with either a load or store"); 6911 6912 auto willWiden = [&](unsigned VF) -> bool { 6913 if (VF == 1) 6914 return false; 6915 LoopVectorizationCostModel::InstWidening Decision = 6916 CM.getWideningDecision(I, VF); 6917 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6918 "CM decision should be taken at this point."); 6919 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6920 return true; 6921 if (CM.isScalarAfterVectorization(I, VF) || 6922 CM.isProfitableToScalarize(I, VF)) 6923 return false; 6924 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6925 }; 6926 6927 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6928 return nullptr; 6929 6930 VPValue *Mask = nullptr; 6931 if (Legal->isMaskRequired(I)) 6932 Mask = createBlockInMask(I->getParent(), Plan); 6933 6934 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6935 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6936 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6937 6938 StoreInst *Store = cast<StoreInst>(I); 6939 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6940 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6941 } 6942 6943 VPWidenIntOrFpInductionRecipe * 6944 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6945 // Check if this is an integer or fp induction. If so, build the recipe that 6946 // produces its scalar and vector values. 6947 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6948 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6949 II.getKind() == InductionDescriptor::IK_FpInduction) 6950 return new VPWidenIntOrFpInductionRecipe(Phi); 6951 6952 return nullptr; 6953 } 6954 6955 VPWidenIntOrFpInductionRecipe * 6956 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6957 VFRange &Range) const { 6958 // Optimize the special case where the source is a constant integer 6959 // induction variable. Notice that we can only optimize the 'trunc' case 6960 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6961 // (c) other casts depend on pointer size. 6962 6963 // Determine whether \p K is a truncation based on an induction variable that 6964 // can be optimized. 6965 auto isOptimizableIVTruncate = 6966 [&](Instruction *K) -> std::function<bool(unsigned)> { 6967 return 6968 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6969 }; 6970 6971 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6972 isOptimizableIVTruncate(I), Range)) 6973 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6974 I); 6975 return nullptr; 6976 } 6977 6978 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6979 // We know that all PHIs in non-header blocks are converted into selects, so 6980 // we don't have to worry about the insertion order and we can just use the 6981 // builder. At this point we generate the predication tree. There may be 6982 // duplications since this is a simple recursive scan, but future 6983 // optimizations will clean it up. 6984 6985 SmallVector<VPValue *, 2> Operands; 6986 unsigned NumIncoming = Phi->getNumIncomingValues(); 6987 for (unsigned In = 0; In < NumIncoming; In++) { 6988 VPValue *EdgeMask = 6989 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6990 assert((EdgeMask || NumIncoming == 1) && 6991 "Multiple predecessors with one having a full mask"); 6992 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6993 if (EdgeMask) 6994 Operands.push_back(EdgeMask); 6995 } 6996 return new VPBlendRecipe(Phi, Operands); 6997 } 6998 6999 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7000 VPlan &Plan) const { 7001 7002 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7003 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 7004 Range); 7005 7006 if (IsPredicated) 7007 return nullptr; 7008 7009 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7010 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7011 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7012 return nullptr; 7013 7014 auto willWiden = [&](unsigned VF) -> bool { 7015 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7016 // The following case may be scalarized depending on the VF. 7017 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7018 // version of the instruction. 7019 // Is it beneficial to perform intrinsic call compared to lib call? 7020 bool NeedToScalarize = false; 7021 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7022 bool UseVectorIntrinsic = 7023 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7024 return UseVectorIntrinsic || !NeedToScalarize; 7025 }; 7026 7027 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7028 return nullptr; 7029 7030 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7031 } 7032 7033 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7034 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7035 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7036 // Instruction should be widened, unless it is scalar after vectorization, 7037 // scalarization is profitable or it is predicated. 7038 auto WillScalarize = [this, I](unsigned VF) -> bool { 7039 return CM.isScalarAfterVectorization(I, VF) || 7040 CM.isProfitableToScalarize(I, VF) || 7041 CM.isScalarWithPredication(I, VF); 7042 }; 7043 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7044 Range); 7045 } 7046 7047 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7048 auto IsVectorizableOpcode = [](unsigned Opcode) { 7049 switch (Opcode) { 7050 case Instruction::Add: 7051 case Instruction::And: 7052 case Instruction::AShr: 7053 case Instruction::BitCast: 7054 case Instruction::FAdd: 7055 case Instruction::FCmp: 7056 case Instruction::FDiv: 7057 case Instruction::FMul: 7058 case Instruction::FNeg: 7059 case Instruction::FPExt: 7060 case Instruction::FPToSI: 7061 case Instruction::FPToUI: 7062 case Instruction::FPTrunc: 7063 case Instruction::FRem: 7064 case Instruction::FSub: 7065 case Instruction::ICmp: 7066 case Instruction::IntToPtr: 7067 case Instruction::LShr: 7068 case Instruction::Mul: 7069 case Instruction::Or: 7070 case Instruction::PtrToInt: 7071 case Instruction::SDiv: 7072 case Instruction::Select: 7073 case Instruction::SExt: 7074 case Instruction::Shl: 7075 case Instruction::SIToFP: 7076 case Instruction::SRem: 7077 case Instruction::Sub: 7078 case Instruction::Trunc: 7079 case Instruction::UDiv: 7080 case Instruction::UIToFP: 7081 case Instruction::URem: 7082 case Instruction::Xor: 7083 case Instruction::ZExt: 7084 return true; 7085 } 7086 return false; 7087 }; 7088 7089 if (!IsVectorizableOpcode(I->getOpcode())) 7090 return nullptr; 7091 7092 // Success: widen this instruction. 7093 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7094 } 7095 7096 VPBasicBlock *VPRecipeBuilder::handleReplication( 7097 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7098 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7099 VPlanPtr &Plan) { 7100 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7101 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7102 Range); 7103 7104 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7105 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7106 7107 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7108 IsUniform, IsPredicated); 7109 setRecipe(I, Recipe); 7110 7111 // Find if I uses a predicated instruction. If so, it will use its scalar 7112 // value. Avoid hoisting the insert-element which packs the scalar value into 7113 // a vector value, as that happens iff all users use the vector value. 7114 for (auto &Op : I->operands()) 7115 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7116 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7117 PredInst2Recipe[PredInst]->setAlsoPack(false); 7118 7119 // Finalize the recipe for Instr, first if it is not predicated. 7120 if (!IsPredicated) { 7121 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7122 VPBB->appendRecipe(Recipe); 7123 return VPBB; 7124 } 7125 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7126 assert(VPBB->getSuccessors().empty() && 7127 "VPBB has successors when handling predicated replication."); 7128 // Record predicated instructions for above packing optimizations. 7129 PredInst2Recipe[I] = Recipe; 7130 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7131 VPBlockUtils::insertBlockAfter(Region, VPBB); 7132 auto *RegSucc = new VPBasicBlock(); 7133 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7134 return RegSucc; 7135 } 7136 7137 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7138 VPRecipeBase *PredRecipe, 7139 VPlanPtr &Plan) { 7140 // Instructions marked for predication are replicated and placed under an 7141 // if-then construct to prevent side-effects. 7142 7143 // Generate recipes to compute the block mask for this region. 7144 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7145 7146 // Build the triangular if-then region. 7147 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7148 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7149 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7150 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7151 auto *PHIRecipe = 7152 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7153 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7154 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7155 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7156 7157 // Note: first set Entry as region entry and then connect successors starting 7158 // from it in order, to propagate the "parent" of each VPBasicBlock. 7159 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7160 VPBlockUtils::connectBlocks(Pred, Exit); 7161 7162 return Region; 7163 } 7164 7165 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7166 VFRange &Range, 7167 VPlanPtr &Plan) { 7168 // First, check for specific widening recipes that deal with calls, memory 7169 // operations, inductions and Phi nodes. 7170 if (auto *CI = dyn_cast<CallInst>(Instr)) 7171 return tryToWidenCall(CI, Range, *Plan); 7172 7173 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7174 return tryToWidenMemory(Instr, Range, Plan); 7175 7176 VPRecipeBase *Recipe; 7177 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7178 if (Phi->getParent() != OrigLoop->getHeader()) 7179 return tryToBlend(Phi, Plan); 7180 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7181 return Recipe; 7182 return new VPWidenPHIRecipe(Phi); 7183 } 7184 7185 if (isa<TruncInst>(Instr) && 7186 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7187 return Recipe; 7188 7189 if (!shouldWiden(Instr, Range)) 7190 return nullptr; 7191 7192 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7193 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7194 OrigLoop); 7195 7196 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7197 bool InvariantCond = 7198 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7199 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7200 InvariantCond); 7201 } 7202 7203 return tryToWiden(Instr, *Plan); 7204 } 7205 7206 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7207 unsigned MaxVF) { 7208 assert(OrigLoop->empty() && "Inner loop expected."); 7209 7210 // Collect conditions feeding internal conditional branches; they need to be 7211 // represented in VPlan for it to model masking. 7212 SmallPtrSet<Value *, 1> NeedDef; 7213 7214 auto *Latch = OrigLoop->getLoopLatch(); 7215 for (BasicBlock *BB : OrigLoop->blocks()) { 7216 if (BB == Latch) 7217 continue; 7218 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7219 if (Branch && Branch->isConditional()) 7220 NeedDef.insert(Branch->getCondition()); 7221 } 7222 7223 // If the tail is to be folded by masking, the primary induction variable, if 7224 // exists needs to be represented in VPlan for it to model early-exit masking. 7225 // Also, both the Phi and the live-out instruction of each reduction are 7226 // required in order to introduce a select between them in VPlan. 7227 if (CM.foldTailByMasking()) { 7228 if (Legal->getPrimaryInduction()) 7229 NeedDef.insert(Legal->getPrimaryInduction()); 7230 for (auto &Reduction : Legal->getReductionVars()) { 7231 NeedDef.insert(Reduction.first); 7232 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7233 } 7234 } 7235 7236 // Collect instructions from the original loop that will become trivially dead 7237 // in the vectorized loop. We don't need to vectorize these instructions. For 7238 // example, original induction update instructions can become dead because we 7239 // separately emit induction "steps" when generating code for the new loop. 7240 // Similarly, we create a new latch condition when setting up the structure 7241 // of the new loop, so the old one can become dead. 7242 SmallPtrSet<Instruction *, 4> DeadInstructions; 7243 collectTriviallyDeadInstructions(DeadInstructions); 7244 7245 // Add assume instructions we need to drop to DeadInstructions, to prevent 7246 // them from being added to the VPlan. 7247 // TODO: We only need to drop assumes in blocks that get flattend. If the 7248 // control flow is preserved, we should keep them. 7249 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7250 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7251 7252 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7253 // Dead instructions do not need sinking. Remove them from SinkAfter. 7254 for (Instruction *I : DeadInstructions) 7255 SinkAfter.erase(I); 7256 7257 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7258 VFRange SubRange = {VF, MaxVF + 1}; 7259 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7260 DeadInstructions, SinkAfter)); 7261 VF = SubRange.End; 7262 } 7263 } 7264 7265 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7266 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7267 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7268 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7269 7270 // Hold a mapping from predicated instructions to their recipes, in order to 7271 // fix their AlsoPack behavior if a user is determined to replicate and use a 7272 // scalar instead of vector value. 7273 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7274 7275 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7276 7277 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7278 7279 // --------------------------------------------------------------------------- 7280 // Pre-construction: record ingredients whose recipes we'll need to further 7281 // process after constructing the initial VPlan. 7282 // --------------------------------------------------------------------------- 7283 7284 // Mark instructions we'll need to sink later and their targets as 7285 // ingredients whose recipe we'll need to record. 7286 for (auto &Entry : SinkAfter) { 7287 RecipeBuilder.recordRecipeOf(Entry.first); 7288 RecipeBuilder.recordRecipeOf(Entry.second); 7289 } 7290 7291 // For each interleave group which is relevant for this (possibly trimmed) 7292 // Range, add it to the set of groups to be later applied to the VPlan and add 7293 // placeholders for its members' Recipes which we'll be replacing with a 7294 // single VPInterleaveRecipe. 7295 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7296 auto applyIG = [IG, this](unsigned VF) -> bool { 7297 return (VF >= 2 && // Query is illegal for VF == 1 7298 CM.getWideningDecision(IG->getInsertPos(), VF) == 7299 LoopVectorizationCostModel::CM_Interleave); 7300 }; 7301 if (!getDecisionAndClampRange(applyIG, Range)) 7302 continue; 7303 InterleaveGroups.insert(IG); 7304 for (unsigned i = 0; i < IG->getFactor(); i++) 7305 if (Instruction *Member = IG->getMember(i)) 7306 RecipeBuilder.recordRecipeOf(Member); 7307 }; 7308 7309 // --------------------------------------------------------------------------- 7310 // Build initial VPlan: Scan the body of the loop in a topological order to 7311 // visit each basic block after having visited its predecessor basic blocks. 7312 // --------------------------------------------------------------------------- 7313 7314 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7315 auto Plan = std::make_unique<VPlan>(); 7316 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7317 Plan->setEntry(VPBB); 7318 7319 // Represent values that will have defs inside VPlan. 7320 for (Value *V : NeedDef) 7321 Plan->addVPValue(V); 7322 7323 // Scan the body of the loop in a topological order to visit each basic block 7324 // after having visited its predecessor basic blocks. 7325 LoopBlocksDFS DFS(OrigLoop); 7326 DFS.perform(LI); 7327 7328 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7329 // Relevant instructions from basic block BB will be grouped into VPRecipe 7330 // ingredients and fill a new VPBasicBlock. 7331 unsigned VPBBsForBB = 0; 7332 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7333 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7334 VPBB = FirstVPBBForBB; 7335 Builder.setInsertPoint(VPBB); 7336 7337 // Introduce each ingredient into VPlan. 7338 // TODO: Model and preserve debug instrinsics in VPlan. 7339 for (Instruction &I : BB->instructionsWithoutDebug()) { 7340 Instruction *Instr = &I; 7341 7342 // First filter out irrelevant instructions, to ensure no recipes are 7343 // built for them. 7344 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7345 continue; 7346 7347 if (auto Recipe = 7348 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7349 RecipeBuilder.setRecipe(Instr, Recipe); 7350 VPBB->appendRecipe(Recipe); 7351 continue; 7352 } 7353 7354 // Otherwise, if all widening options failed, Instruction is to be 7355 // replicated. This may create a successor for VPBB. 7356 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7357 Instr, Range, VPBB, PredInst2Recipe, Plan); 7358 if (NextVPBB != VPBB) { 7359 VPBB = NextVPBB; 7360 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7361 : ""); 7362 } 7363 } 7364 } 7365 7366 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7367 // may also be empty, such as the last one VPBB, reflecting original 7368 // basic-blocks with no recipes. 7369 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7370 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7371 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7372 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7373 delete PreEntry; 7374 7375 // --------------------------------------------------------------------------- 7376 // Transform initial VPlan: Apply previously taken decisions, in order, to 7377 // bring the VPlan to its final state. 7378 // --------------------------------------------------------------------------- 7379 7380 // Apply Sink-After legal constraints. 7381 for (auto &Entry : SinkAfter) { 7382 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7383 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7384 Sink->moveAfter(Target); 7385 } 7386 7387 // Interleave memory: for each Interleave Group we marked earlier as relevant 7388 // for this VPlan, replace the Recipes widening its memory instructions with a 7389 // single VPInterleaveRecipe at its insertion point. 7390 for (auto IG : InterleaveGroups) { 7391 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7392 RecipeBuilder.getRecipe(IG->getInsertPos())); 7393 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7394 ->insertBefore(Recipe); 7395 7396 for (unsigned i = 0; i < IG->getFactor(); ++i) 7397 if (Instruction *Member = IG->getMember(i)) { 7398 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7399 } 7400 } 7401 7402 // Finally, if tail is folded by masking, introduce selects between the phi 7403 // and the live-out instruction of each reduction, at the end of the latch. 7404 if (CM.foldTailByMasking()) { 7405 Builder.setInsertPoint(VPBB); 7406 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7407 for (auto &Reduction : Legal->getReductionVars()) { 7408 VPValue *Phi = Plan->getVPValue(Reduction.first); 7409 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7410 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7411 } 7412 } 7413 7414 std::string PlanName; 7415 raw_string_ostream RSO(PlanName); 7416 unsigned VF = Range.Start; 7417 Plan->addVF(VF); 7418 RSO << "Initial VPlan for VF={" << VF; 7419 for (VF *= 2; VF < Range.End; VF *= 2) { 7420 Plan->addVF(VF); 7421 RSO << "," << VF; 7422 } 7423 RSO << "},UF>=1"; 7424 RSO.flush(); 7425 Plan->setName(PlanName); 7426 7427 return Plan; 7428 } 7429 7430 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7431 // Outer loop handling: They may require CFG and instruction level 7432 // transformations before even evaluating whether vectorization is profitable. 7433 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7434 // the vectorization pipeline. 7435 assert(!OrigLoop->empty()); 7436 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7437 7438 // Create new empty VPlan 7439 auto Plan = std::make_unique<VPlan>(); 7440 7441 // Build hierarchical CFG 7442 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7443 HCFGBuilder.buildHierarchicalCFG(); 7444 7445 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7446 Plan->addVF(VF); 7447 7448 if (EnableVPlanPredication) { 7449 VPlanPredicator VPP(*Plan); 7450 VPP.predicate(); 7451 7452 // Avoid running transformation to recipes until masked code generation in 7453 // VPlan-native path is in place. 7454 return Plan; 7455 } 7456 7457 SmallPtrSet<Instruction *, 1> DeadInstructions; 7458 VPlanTransforms::VPInstructionsToVPRecipes( 7459 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7460 return Plan; 7461 } 7462 7463 Value* LoopVectorizationPlanner::VPCallbackILV:: 7464 getOrCreateVectorValues(Value *V, unsigned Part) { 7465 return ILV.getOrCreateVectorValue(V, Part); 7466 } 7467 7468 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7469 Value *V, const VPIteration &Instance) { 7470 return ILV.getOrCreateScalarValue(V, Instance); 7471 } 7472 7473 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7474 VPSlotTracker &SlotTracker) const { 7475 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7476 IG->getInsertPos()->printAsOperand(O, false); 7477 O << ", "; 7478 getAddr()->printAsOperand(O, SlotTracker); 7479 VPValue *Mask = getMask(); 7480 if (Mask) { 7481 O << ", "; 7482 Mask->printAsOperand(O, SlotTracker); 7483 } 7484 for (unsigned i = 0; i < IG->getFactor(); ++i) 7485 if (Instruction *I = IG->getMember(i)) 7486 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7487 } 7488 7489 void VPWidenCallRecipe::execute(VPTransformState &State) { 7490 State.ILV->widenCallInstruction(Ingredient, User, State); 7491 } 7492 7493 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7494 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7495 } 7496 7497 void VPWidenRecipe::execute(VPTransformState &State) { 7498 State.ILV->widenInstruction(Ingredient, User, State); 7499 } 7500 7501 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7502 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7503 IsIndexLoopInvariant, State); 7504 } 7505 7506 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7507 assert(!State.Instance && "Int or FP induction being replicated."); 7508 State.ILV->widenIntOrFpInduction(IV, Trunc); 7509 } 7510 7511 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7512 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7513 } 7514 7515 void VPBlendRecipe::execute(VPTransformState &State) { 7516 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7517 // We know that all PHIs in non-header blocks are converted into 7518 // selects, so we don't have to worry about the insertion order and we 7519 // can just use the builder. 7520 // At this point we generate the predication tree. There may be 7521 // duplications since this is a simple recursive scan, but future 7522 // optimizations will clean it up. 7523 7524 unsigned NumIncoming = getNumIncomingValues(); 7525 7526 // Generate a sequence of selects of the form: 7527 // SELECT(Mask3, In3, 7528 // SELECT(Mask2, In2, 7529 // SELECT(Mask1, In1, 7530 // In0))) 7531 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7532 // are essentially undef are taken from In0. 7533 InnerLoopVectorizer::VectorParts Entry(State.UF); 7534 for (unsigned In = 0; In < NumIncoming; ++In) { 7535 for (unsigned Part = 0; Part < State.UF; ++Part) { 7536 // We might have single edge PHIs (blocks) - use an identity 7537 // 'select' for the first PHI operand. 7538 Value *In0 = State.get(getIncomingValue(In), Part); 7539 if (In == 0) 7540 Entry[Part] = In0; // Initialize with the first incoming value. 7541 else { 7542 // Select between the current value and the previous incoming edge 7543 // based on the incoming mask. 7544 Value *Cond = State.get(getMask(In), Part); 7545 Entry[Part] = 7546 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7547 } 7548 } 7549 } 7550 for (unsigned Part = 0; Part < State.UF; ++Part) 7551 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7552 } 7553 7554 void VPInterleaveRecipe::execute(VPTransformState &State) { 7555 assert(!State.Instance && "Interleave group being replicated."); 7556 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7557 } 7558 7559 void VPReplicateRecipe::execute(VPTransformState &State) { 7560 if (State.Instance) { // Generate a single instance. 7561 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7562 IsPredicated, State); 7563 // Insert scalar instance packing it into a vector. 7564 if (AlsoPack && State.VF > 1) { 7565 // If we're constructing lane 0, initialize to start from undef. 7566 if (State.Instance->Lane == 0) { 7567 Value *Undef = UndefValue::get( 7568 FixedVectorType::get(Ingredient->getType(), State.VF)); 7569 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7570 } 7571 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7572 } 7573 return; 7574 } 7575 7576 // Generate scalar instances for all VF lanes of all UF parts, unless the 7577 // instruction is uniform inwhich case generate only the first lane for each 7578 // of the UF parts. 7579 unsigned EndLane = IsUniform ? 1 : State.VF; 7580 for (unsigned Part = 0; Part < State.UF; ++Part) 7581 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7582 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7583 IsPredicated, State); 7584 } 7585 7586 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7587 assert(State.Instance && "Branch on Mask works only on single instance."); 7588 7589 unsigned Part = State.Instance->Part; 7590 unsigned Lane = State.Instance->Lane; 7591 7592 Value *ConditionBit = nullptr; 7593 VPValue *BlockInMask = getMask(); 7594 if (BlockInMask) { 7595 ConditionBit = State.get(BlockInMask, Part); 7596 if (ConditionBit->getType()->isVectorTy()) 7597 ConditionBit = State.Builder.CreateExtractElement( 7598 ConditionBit, State.Builder.getInt32(Lane)); 7599 } else // Block in mask is all-one. 7600 ConditionBit = State.Builder.getTrue(); 7601 7602 // Replace the temporary unreachable terminator with a new conditional branch, 7603 // whose two destinations will be set later when they are created. 7604 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7605 assert(isa<UnreachableInst>(CurrentTerminator) && 7606 "Expected to replace unreachable terminator with conditional branch."); 7607 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7608 CondBr->setSuccessor(0, nullptr); 7609 ReplaceInstWithInst(CurrentTerminator, CondBr); 7610 } 7611 7612 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7613 assert(State.Instance && "Predicated instruction PHI works per instance."); 7614 Instruction *ScalarPredInst = cast<Instruction>( 7615 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7616 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7617 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7618 assert(PredicatingBB && "Predicated block has no single predecessor."); 7619 7620 // By current pack/unpack logic we need to generate only a single phi node: if 7621 // a vector value for the predicated instruction exists at this point it means 7622 // the instruction has vector users only, and a phi for the vector value is 7623 // needed. In this case the recipe of the predicated instruction is marked to 7624 // also do that packing, thereby "hoisting" the insert-element sequence. 7625 // Otherwise, a phi node for the scalar value is needed. 7626 unsigned Part = State.Instance->Part; 7627 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7628 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7629 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7630 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7631 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7632 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7633 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7634 } else { 7635 Type *PredInstType = PredInst->getType(); 7636 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7637 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7638 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7639 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7640 } 7641 } 7642 7643 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7644 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7645 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7646 getMask()); 7647 } 7648 7649 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7650 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7651 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7652 // for predication. 7653 static ScalarEpilogueLowering getScalarEpilogueLowering( 7654 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7655 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7656 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7657 LoopVectorizationLegality &LVL) { 7658 bool OptSize = 7659 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7660 PGSOQueryType::IRPass); 7661 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7662 // don't look at hints or options, and don't request a scalar epilogue. 7663 if (OptSize) 7664 return CM_ScalarEpilogueNotAllowedOptSize; 7665 7666 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7667 !PreferPredicateOverEpilog; 7668 7669 // 2) Next, if disabling predication is requested on the command line, honour 7670 // this and request a scalar epilogue. 7671 if (PredicateOptDisabled) 7672 return CM_ScalarEpilogueAllowed; 7673 7674 // 3) and 4) look if enabling predication is requested on the command line, 7675 // with a loop hint, or if the TTI hook indicates this is profitable, request 7676 // predication . 7677 if (PreferPredicateOverEpilog || 7678 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7679 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7680 LVL.getLAI()) && 7681 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7682 return CM_ScalarEpilogueNotNeededUsePredicate; 7683 7684 return CM_ScalarEpilogueAllowed; 7685 } 7686 7687 // Process the loop in the VPlan-native vectorization path. This path builds 7688 // VPlan upfront in the vectorization pipeline, which allows to apply 7689 // VPlan-to-VPlan transformations from the very beginning without modifying the 7690 // input LLVM IR. 7691 static bool processLoopInVPlanNativePath( 7692 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7693 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7694 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7695 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7696 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7697 7698 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7699 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7700 return false; 7701 } 7702 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7703 Function *F = L->getHeader()->getParent(); 7704 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7705 7706 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7707 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7708 7709 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7710 &Hints, IAI); 7711 // Use the planner for outer loop vectorization. 7712 // TODO: CM is not used at this point inside the planner. Turn CM into an 7713 // optional argument if we don't need it in the future. 7714 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7715 7716 // Get user vectorization factor. 7717 const unsigned UserVF = Hints.getWidth(); 7718 7719 // Plan how to best vectorize, return the best VF and its cost. 7720 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7721 7722 // If we are stress testing VPlan builds, do not attempt to generate vector 7723 // code. Masked vector code generation support will follow soon. 7724 // Also, do not attempt to vectorize if no vector code will be produced. 7725 if (VPlanBuildStressTest || EnableVPlanPredication || 7726 VectorizationFactor::Disabled() == VF) 7727 return false; 7728 7729 LVP.setBestPlan(VF.Width, 1); 7730 7731 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7732 &CM); 7733 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7734 << L->getHeader()->getParent()->getName() << "\"\n"); 7735 LVP.executePlan(LB, DT); 7736 7737 // Mark the loop as already vectorized to avoid vectorizing again. 7738 Hints.setAlreadyVectorized(); 7739 7740 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7741 return true; 7742 } 7743 7744 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7745 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7746 !EnableLoopInterleaving), 7747 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7748 !EnableLoopVectorization) {} 7749 7750 bool LoopVectorizePass::processLoop(Loop *L) { 7751 assert((EnableVPlanNativePath || L->empty()) && 7752 "VPlan-native path is not enabled. Only process inner loops."); 7753 7754 #ifndef NDEBUG 7755 const std::string DebugLocStr = getDebugLocString(L); 7756 #endif /* NDEBUG */ 7757 7758 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7759 << L->getHeader()->getParent()->getName() << "\" from " 7760 << DebugLocStr << "\n"); 7761 7762 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7763 7764 LLVM_DEBUG( 7765 dbgs() << "LV: Loop hints:" 7766 << " force=" 7767 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7768 ? "disabled" 7769 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7770 ? "enabled" 7771 : "?")) 7772 << " width=" << Hints.getWidth() 7773 << " unroll=" << Hints.getInterleave() << "\n"); 7774 7775 // Function containing loop 7776 Function *F = L->getHeader()->getParent(); 7777 7778 // Looking at the diagnostic output is the only way to determine if a loop 7779 // was vectorized (other than looking at the IR or machine code), so it 7780 // is important to generate an optimization remark for each loop. Most of 7781 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7782 // generated as OptimizationRemark and OptimizationRemarkMissed are 7783 // less verbose reporting vectorized loops and unvectorized loops that may 7784 // benefit from vectorization, respectively. 7785 7786 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7787 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7788 return false; 7789 } 7790 7791 PredicatedScalarEvolution PSE(*SE, *L); 7792 7793 // Check if it is legal to vectorize the loop. 7794 LoopVectorizationRequirements Requirements(*ORE); 7795 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7796 &Requirements, &Hints, DB, AC); 7797 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7798 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7799 Hints.emitRemarkWithHints(); 7800 return false; 7801 } 7802 7803 // Check the function attributes and profiles to find out if this function 7804 // should be optimized for size. 7805 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7806 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7807 7808 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7809 // here. They may require CFG and instruction level transformations before 7810 // even evaluating whether vectorization is profitable. Since we cannot modify 7811 // the incoming IR, we need to build VPlan upfront in the vectorization 7812 // pipeline. 7813 if (!L->empty()) 7814 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7815 ORE, BFI, PSI, Hints); 7816 7817 assert(L->empty() && "Inner loop expected."); 7818 7819 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7820 // count by optimizing for size, to minimize overheads. 7821 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7822 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7823 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7824 << "This loop is worth vectorizing only if no scalar " 7825 << "iteration overheads are incurred."); 7826 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7827 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7828 else { 7829 LLVM_DEBUG(dbgs() << "\n"); 7830 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7831 } 7832 } 7833 7834 // Check the function attributes to see if implicit floats are allowed. 7835 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7836 // an integer loop and the vector instructions selected are purely integer 7837 // vector instructions? 7838 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7839 reportVectorizationFailure( 7840 "Can't vectorize when the NoImplicitFloat attribute is used", 7841 "loop not vectorized due to NoImplicitFloat attribute", 7842 "NoImplicitFloat", ORE, L); 7843 Hints.emitRemarkWithHints(); 7844 return false; 7845 } 7846 7847 // Check if the target supports potentially unsafe FP vectorization. 7848 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7849 // for the target we're vectorizing for, to make sure none of the 7850 // additional fp-math flags can help. 7851 if (Hints.isPotentiallyUnsafe() && 7852 TTI->isFPVectorizationPotentiallyUnsafe()) { 7853 reportVectorizationFailure( 7854 "Potentially unsafe FP op prevents vectorization", 7855 "loop not vectorized due to unsafe FP support.", 7856 "UnsafeFP", ORE, L); 7857 Hints.emitRemarkWithHints(); 7858 return false; 7859 } 7860 7861 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7862 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7863 7864 // If an override option has been passed in for interleaved accesses, use it. 7865 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7866 UseInterleaved = EnableInterleavedMemAccesses; 7867 7868 // Analyze interleaved memory accesses. 7869 if (UseInterleaved) { 7870 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7871 } 7872 7873 // Use the cost model. 7874 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7875 F, &Hints, IAI); 7876 CM.collectValuesToIgnore(); 7877 7878 // Use the planner for vectorization. 7879 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7880 7881 // Get user vectorization factor and interleave count. 7882 unsigned UserVF = Hints.getWidth(); 7883 unsigned UserIC = Hints.getInterleave(); 7884 7885 // Plan how to best vectorize, return the best VF and its cost. 7886 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7887 7888 VectorizationFactor VF = VectorizationFactor::Disabled(); 7889 unsigned IC = 1; 7890 7891 if (MaybeVF) { 7892 VF = *MaybeVF; 7893 // Select the interleave count. 7894 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7895 } 7896 7897 // Identify the diagnostic messages that should be produced. 7898 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7899 bool VectorizeLoop = true, InterleaveLoop = true; 7900 if (Requirements.doesNotMeet(F, L, Hints)) { 7901 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7902 "requirements.\n"); 7903 Hints.emitRemarkWithHints(); 7904 return false; 7905 } 7906 7907 if (VF.Width == 1) { 7908 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7909 VecDiagMsg = std::make_pair( 7910 "VectorizationNotBeneficial", 7911 "the cost-model indicates that vectorization is not beneficial"); 7912 VectorizeLoop = false; 7913 } 7914 7915 if (!MaybeVF && UserIC > 1) { 7916 // Tell the user interleaving was avoided up-front, despite being explicitly 7917 // requested. 7918 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7919 "interleaving should be avoided up front\n"); 7920 IntDiagMsg = std::make_pair( 7921 "InterleavingAvoided", 7922 "Ignoring UserIC, because interleaving was avoided up front"); 7923 InterleaveLoop = false; 7924 } else if (IC == 1 && UserIC <= 1) { 7925 // Tell the user interleaving is not beneficial. 7926 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7927 IntDiagMsg = std::make_pair( 7928 "InterleavingNotBeneficial", 7929 "the cost-model indicates that interleaving is not beneficial"); 7930 InterleaveLoop = false; 7931 if (UserIC == 1) { 7932 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7933 IntDiagMsg.second += 7934 " and is explicitly disabled or interleave count is set to 1"; 7935 } 7936 } else if (IC > 1 && UserIC == 1) { 7937 // Tell the user interleaving is beneficial, but it explicitly disabled. 7938 LLVM_DEBUG( 7939 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7940 IntDiagMsg = std::make_pair( 7941 "InterleavingBeneficialButDisabled", 7942 "the cost-model indicates that interleaving is beneficial " 7943 "but is explicitly disabled or interleave count is set to 1"); 7944 InterleaveLoop = false; 7945 } 7946 7947 // Override IC if user provided an interleave count. 7948 IC = UserIC > 0 ? UserIC : IC; 7949 7950 // Emit diagnostic messages, if any. 7951 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7952 if (!VectorizeLoop && !InterleaveLoop) { 7953 // Do not vectorize or interleaving the loop. 7954 ORE->emit([&]() { 7955 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7956 L->getStartLoc(), L->getHeader()) 7957 << VecDiagMsg.second; 7958 }); 7959 ORE->emit([&]() { 7960 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7961 L->getStartLoc(), L->getHeader()) 7962 << IntDiagMsg.second; 7963 }); 7964 return false; 7965 } else if (!VectorizeLoop && InterleaveLoop) { 7966 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7967 ORE->emit([&]() { 7968 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7969 L->getStartLoc(), L->getHeader()) 7970 << VecDiagMsg.second; 7971 }); 7972 } else if (VectorizeLoop && !InterleaveLoop) { 7973 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7974 << ") in " << DebugLocStr << '\n'); 7975 ORE->emit([&]() { 7976 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7977 L->getStartLoc(), L->getHeader()) 7978 << IntDiagMsg.second; 7979 }); 7980 } else if (VectorizeLoop && InterleaveLoop) { 7981 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7982 << ") in " << DebugLocStr << '\n'); 7983 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7984 } 7985 7986 LVP.setBestPlan(VF.Width, IC); 7987 7988 using namespace ore; 7989 bool DisableRuntimeUnroll = false; 7990 MDNode *OrigLoopID = L->getLoopID(); 7991 7992 if (!VectorizeLoop) { 7993 assert(IC > 1 && "interleave count should not be 1 or 0"); 7994 // If we decided that it is not legal to vectorize the loop, then 7995 // interleave it. 7996 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7997 &CM); 7998 LVP.executePlan(Unroller, DT); 7999 8000 ORE->emit([&]() { 8001 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8002 L->getHeader()) 8003 << "interleaved loop (interleaved count: " 8004 << NV("InterleaveCount", IC) << ")"; 8005 }); 8006 } else { 8007 // If we decided that it is *legal* to vectorize the loop, then do it. 8008 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8009 &LVL, &CM); 8010 LVP.executePlan(LB, DT); 8011 ++LoopsVectorized; 8012 8013 // Add metadata to disable runtime unrolling a scalar loop when there are 8014 // no runtime checks about strides and memory. A scalar loop that is 8015 // rarely used is not worth unrolling. 8016 if (!LB.areSafetyChecksAdded()) 8017 DisableRuntimeUnroll = true; 8018 8019 // Report the vectorization decision. 8020 ORE->emit([&]() { 8021 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8022 L->getHeader()) 8023 << "vectorized loop (vectorization width: " 8024 << NV("VectorizationFactor", VF.Width) 8025 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8026 }); 8027 } 8028 8029 Optional<MDNode *> RemainderLoopID = 8030 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8031 LLVMLoopVectorizeFollowupEpilogue}); 8032 if (RemainderLoopID.hasValue()) { 8033 L->setLoopID(RemainderLoopID.getValue()); 8034 } else { 8035 if (DisableRuntimeUnroll) 8036 AddRuntimeUnrollDisableMetaData(L); 8037 8038 // Mark the loop as already vectorized to avoid vectorizing again. 8039 Hints.setAlreadyVectorized(); 8040 } 8041 8042 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8043 return true; 8044 } 8045 8046 LoopVectorizeResult LoopVectorizePass::runImpl( 8047 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8048 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8049 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8050 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8051 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8052 SE = &SE_; 8053 LI = &LI_; 8054 TTI = &TTI_; 8055 DT = &DT_; 8056 BFI = &BFI_; 8057 TLI = TLI_; 8058 AA = &AA_; 8059 AC = &AC_; 8060 GetLAA = &GetLAA_; 8061 DB = &DB_; 8062 ORE = &ORE_; 8063 PSI = PSI_; 8064 8065 // Don't attempt if 8066 // 1. the target claims to have no vector registers, and 8067 // 2. interleaving won't help ILP. 8068 // 8069 // The second condition is necessary because, even if the target has no 8070 // vector registers, loop vectorization may still enable scalar 8071 // interleaving. 8072 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8073 TTI->getMaxInterleaveFactor(1) < 2) 8074 return LoopVectorizeResult(false, false); 8075 8076 bool Changed = false, CFGChanged = false; 8077 8078 // The vectorizer requires loops to be in simplified form. 8079 // Since simplification may add new inner loops, it has to run before the 8080 // legality and profitability checks. This means running the loop vectorizer 8081 // will simplify all loops, regardless of whether anything end up being 8082 // vectorized. 8083 for (auto &L : *LI) 8084 Changed |= CFGChanged |= 8085 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8086 8087 // Build up a worklist of inner-loops to vectorize. This is necessary as 8088 // the act of vectorizing or partially unrolling a loop creates new loops 8089 // and can invalidate iterators across the loops. 8090 SmallVector<Loop *, 8> Worklist; 8091 8092 for (Loop *L : *LI) 8093 collectSupportedLoops(*L, LI, ORE, Worklist); 8094 8095 LoopsAnalyzed += Worklist.size(); 8096 8097 // Now walk the identified inner loops. 8098 while (!Worklist.empty()) { 8099 Loop *L = Worklist.pop_back_val(); 8100 8101 // For the inner loops we actually process, form LCSSA to simplify the 8102 // transform. 8103 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8104 8105 Changed |= CFGChanged |= processLoop(L); 8106 } 8107 8108 // Process each loop nest in the function. 8109 return LoopVectorizeResult(Changed, CFGChanged); 8110 } 8111 8112 PreservedAnalyses LoopVectorizePass::run(Function &F, 8113 FunctionAnalysisManager &AM) { 8114 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8115 auto &LI = AM.getResult<LoopAnalysis>(F); 8116 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8117 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8118 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8119 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8120 auto &AA = AM.getResult<AAManager>(F); 8121 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8122 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8123 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8124 MemorySSA *MSSA = EnableMSSALoopDependency 8125 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8126 : nullptr; 8127 8128 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8129 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8130 [&](Loop &L) -> const LoopAccessInfo & { 8131 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8132 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8133 }; 8134 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8135 ProfileSummaryInfo *PSI = 8136 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8137 LoopVectorizeResult Result = 8138 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8139 if (!Result.MadeAnyChange) 8140 return PreservedAnalyses::all(); 8141 PreservedAnalyses PA; 8142 8143 // We currently do not preserve loopinfo/dominator analyses with outer loop 8144 // vectorization. Until this is addressed, mark these analyses as preserved 8145 // only for non-VPlan-native path. 8146 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8147 if (!EnableVPlanNativePath) { 8148 PA.preserve<LoopAnalysis>(); 8149 PA.preserve<DominatorTreeAnalysis>(); 8150 } 8151 PA.preserve<BasicAA>(); 8152 PA.preserve<GlobalsAA>(); 8153 if (!Result.MadeCFGChange) 8154 PA.preserveSet<CFGAnalyses>(); 8155 return PA; 8156 } 8157