1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/SetVector.h" 54 #include "llvm/ADT/SmallPtrSet.h" 55 #include "llvm/ADT/SmallSet.h" 56 #include "llvm/ADT/SmallVector.h" 57 #include "llvm/ADT/Statistic.h" 58 #include "llvm/ADT/StringExtras.h" 59 #include "llvm/Analysis/AliasAnalysis.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/DemandedBits.h" 66 #include "llvm/Analysis/GlobalsModRef.h" 67 #include "llvm/Analysis/LoopAccessAnalysis.h" 68 #include "llvm/Analysis/LoopInfo.h" 69 #include "llvm/Analysis/LoopIterator.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/TargetTransformInfo.h" 75 #include "llvm/Analysis/ValueTracking.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfo.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/DiagnosticInfo.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/IRBuilder.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Module.h" 88 #include "llvm/IR/PatternMatch.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/IR/Verifier.h" 93 #include "llvm/Pass.h" 94 #include "llvm/Support/BranchProbability.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Transforms/Scalar.h" 99 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 100 #include "llvm/Transforms/Utils/Local.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Analysis/VectorUtils.h" 103 #include "llvm/Transforms/Utils/LoopUtils.h" 104 #include <algorithm> 105 #include <functional> 106 #include <map> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define LV_NAME "loop-vectorize" 113 #define DEBUG_TYPE LV_NAME 114 115 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 116 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 117 118 static cl::opt<bool> 119 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 120 cl::desc("Enable if-conversion during vectorization.")); 121 122 /// We don't vectorize loops with a known constant trip count below this number. 123 static cl::opt<unsigned> 124 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 125 cl::Hidden, 126 cl::desc("Don't vectorize loops with a constant " 127 "trip count that is smaller than this " 128 "value.")); 129 130 static cl::opt<bool> MaximizeBandwidth( 131 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 132 cl::desc("Maximize bandwidth when selecting vectorization factor which " 133 "will be determined by the smallest type in loop.")); 134 135 /// This enables versioning on the strides of symbolically striding memory 136 /// accesses in code like the following. 137 /// for (i = 0; i < N; ++i) 138 /// A[i * Stride1] += B[i * Stride2] ... 139 /// 140 /// Will be roughly translated to 141 /// if (Stride1 == 1 && Stride2 == 1) { 142 /// for (i = 0; i < N; i+=4) 143 /// A[i:i+3] += ... 144 /// } else 145 /// ... 146 static cl::opt<bool> EnableMemAccessVersioning( 147 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 148 cl::desc("Enable symbolic stride memory access versioning")); 149 150 static cl::opt<bool> EnableInterleavedMemAccesses( 151 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 152 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 153 154 /// Maximum factor for an interleaved memory access. 155 static cl::opt<unsigned> MaxInterleaveGroupFactor( 156 "max-interleave-group-factor", cl::Hidden, 157 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 158 cl::init(8)); 159 160 /// We don't interleave loops with a known constant trip count below this 161 /// number. 162 static const unsigned TinyTripCountInterleaveThreshold = 128; 163 164 static cl::opt<unsigned> ForceTargetNumScalarRegs( 165 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's number of scalar registers.")); 167 168 static cl::opt<unsigned> ForceTargetNumVectorRegs( 169 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's number of vector registers.")); 171 172 /// Maximum vectorization interleave count. 173 static const unsigned MaxInterleaveFactor = 16; 174 175 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 176 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's max interleave factor for " 178 "scalar loops.")); 179 180 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 181 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 182 cl::desc("A flag that overrides the target's max interleave factor for " 183 "vectorized loops.")); 184 185 static cl::opt<unsigned> ForceTargetInstructionCost( 186 "force-target-instruction-cost", cl::init(0), cl::Hidden, 187 cl::desc("A flag that overrides the target's expected cost for " 188 "an instruction to a single constant value. Mostly " 189 "useful for getting consistent testing.")); 190 191 static cl::opt<unsigned> SmallLoopCost( 192 "small-loop-cost", cl::init(20), cl::Hidden, 193 cl::desc( 194 "The cost of a loop that is considered 'small' by the interleaver.")); 195 196 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 197 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 198 cl::desc("Enable the use of the block frequency analysis to access PGO " 199 "heuristics minimizing code growth in cold regions and being more " 200 "aggressive in hot regions.")); 201 202 // Runtime interleave loops for load/store throughput. 203 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 204 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 205 cl::desc( 206 "Enable runtime interleaving until load/store ports are saturated")); 207 208 /// The number of stores in a loop that are allowed to need predication. 209 static cl::opt<unsigned> NumberOfStoresToPredicate( 210 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 211 cl::desc("Max number of stores to be predicated behind an if.")); 212 213 static cl::opt<bool> EnableIndVarRegisterHeur( 214 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 215 cl::desc("Count the induction variable only once when interleaving")); 216 217 static cl::opt<bool> EnableCondStoresVectorization( 218 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 219 cl::desc("Enable if predication of stores during vectorization.")); 220 221 static cl::opt<unsigned> MaxNestedScalarReductionIC( 222 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 223 cl::desc("The maximum interleave count to use when interleaving a scalar " 224 "reduction in a nested loop.")); 225 226 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 227 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 228 cl::desc("The maximum allowed number of runtime memory checks with a " 229 "vectorize(enable) pragma.")); 230 231 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 232 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 233 cl::desc("The maximum number of SCEV checks allowed.")); 234 235 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 236 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 237 cl::desc("The maximum number of SCEV checks allowed with a " 238 "vectorize(enable) pragma")); 239 240 namespace { 241 242 // Forward declarations. 243 class LoopVectorizeHints; 244 class LoopVectorizationLegality; 245 class LoopVectorizationCostModel; 246 class LoopVectorizationRequirements; 247 248 /// \brief This modifies LoopAccessReport to initialize message with 249 /// loop-vectorizer-specific part. 250 class VectorizationReport : public LoopAccessReport { 251 public: 252 VectorizationReport(Instruction *I = nullptr) 253 : LoopAccessReport("loop not vectorized: ", I) {} 254 255 /// \brief This allows promotion of the loop-access analysis report into the 256 /// loop-vectorizer report. It modifies the message to add the 257 /// loop-vectorizer-specific part of the message. 258 explicit VectorizationReport(const LoopAccessReport &R) 259 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 260 R.getInstr()) {} 261 }; 262 263 /// A helper function for converting Scalar types to vector types. 264 /// If the incoming type is void, we return void. If the VF is 1, we return 265 /// the scalar type. 266 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 267 if (Scalar->isVoidTy() || VF == 1) 268 return Scalar; 269 return VectorType::get(Scalar, VF); 270 } 271 272 /// A helper function that returns GEP instruction and knows to skip a 273 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 274 /// pointee types of the 'bitcast' have the same size. 275 /// For example: 276 /// bitcast double** %var to i64* - can be skipped 277 /// bitcast double** %var to i8* - can not 278 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 279 280 if (isa<GetElementPtrInst>(Ptr)) 281 return cast<GetElementPtrInst>(Ptr); 282 283 if (isa<BitCastInst>(Ptr) && 284 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 285 Type *BitcastTy = Ptr->getType(); 286 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 287 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 288 return nullptr; 289 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 290 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 291 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 292 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 293 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 294 } 295 return nullptr; 296 } 297 298 /// InnerLoopVectorizer vectorizes loops which contain only one basic 299 /// block to a specified vectorization factor (VF). 300 /// This class performs the widening of scalars into vectors, or multiple 301 /// scalars. This class also implements the following features: 302 /// * It inserts an epilogue loop for handling loops that don't have iteration 303 /// counts that are known to be a multiple of the vectorization factor. 304 /// * It handles the code generation for reduction variables. 305 /// * Scalarization (implementation using scalars) of un-vectorizable 306 /// instructions. 307 /// InnerLoopVectorizer does not perform any vectorization-legality 308 /// checks, and relies on the caller to check for the different legality 309 /// aspects. The InnerLoopVectorizer relies on the 310 /// LoopVectorizationLegality class to provide information about the induction 311 /// and reduction variables that were found to a given vectorization factor. 312 class InnerLoopVectorizer { 313 public: 314 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 315 LoopInfo *LI, DominatorTree *DT, 316 const TargetLibraryInfo *TLI, 317 const TargetTransformInfo *TTI, AssumptionCache *AC, 318 unsigned VecWidth, unsigned UnrollFactor) 319 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 320 AC(AC), VF(VecWidth), UF(UnrollFactor), 321 Builder(PSE.getSE()->getContext()), Induction(nullptr), 322 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 323 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 324 325 // Perform the actual loop widening (vectorization). 326 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 327 // can be validly truncated to. The cost model has assumed this truncation 328 // will happen when vectorizing. 329 void vectorize(LoopVectorizationLegality *L, 330 MapVector<Instruction*,uint64_t> MinimumBitWidths) { 331 MinBWs = MinimumBitWidths; 332 Legal = L; 333 // Create a new empty loop. Unlink the old loop and connect the new one. 334 createEmptyLoop(); 335 // Widen each instruction in the old loop to a new one in the new loop. 336 // Use the Legality module to find the induction and reduction variables. 337 vectorizeLoop(); 338 } 339 340 // Return true if any runtime check is added. 341 bool IsSafetyChecksAdded() { 342 return AddedSafetyChecks; 343 } 344 345 virtual ~InnerLoopVectorizer() {} 346 347 protected: 348 /// A small list of PHINodes. 349 typedef SmallVector<PHINode*, 4> PhiVector; 350 /// When we unroll loops we have multiple vector values for each scalar. 351 /// This data structure holds the unrolled and vectorized values that 352 /// originated from one scalar instruction. 353 typedef SmallVector<Value*, 2> VectorParts; 354 355 // When we if-convert we need to create edge masks. We have to cache values 356 // so that we don't end up with exponential recursion/IR. 357 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 358 VectorParts> EdgeMaskCache; 359 360 /// Create an empty loop, based on the loop ranges of the old loop. 361 void createEmptyLoop(); 362 /// Create a new induction variable inside L. 363 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 364 Value *Step, Instruction *DL); 365 /// Copy and widen the instructions from the old loop. 366 virtual void vectorizeLoop(); 367 368 /// Fix a first-order recurrence. This is the second phase of vectorizing 369 /// this phi node. 370 void fixFirstOrderRecurrence(PHINode *Phi); 371 372 /// \brief The Loop exit block may have single value PHI nodes where the 373 /// incoming value is 'Undef'. While vectorizing we only handled real values 374 /// that were defined inside the loop. Here we fix the 'undef case'. 375 /// See PR14725. 376 void fixLCSSAPHIs(); 377 378 /// Shrinks vector element sizes based on information in "MinBWs". 379 void truncateToMinimalBitwidths(); 380 381 /// A helper function that computes the predicate of the block BB, assuming 382 /// that the header block of the loop is set to True. It returns the *entry* 383 /// mask for the block BB. 384 VectorParts createBlockInMask(BasicBlock *BB); 385 /// A helper function that computes the predicate of the edge between SRC 386 /// and DST. 387 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 388 389 /// A helper function to vectorize a single BB within the innermost loop. 390 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 391 392 /// Vectorize a single PHINode in a block. This method handles the induction 393 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 394 /// arbitrary length vectors. 395 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 396 unsigned UF, unsigned VF, PhiVector *PV); 397 398 /// Insert the new loop to the loop hierarchy and pass manager 399 /// and update the analysis passes. 400 void updateAnalysis(); 401 402 /// This instruction is un-vectorizable. Implement it as a sequence 403 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 404 /// scalarized instruction behind an if block predicated on the control 405 /// dependence of the instruction. 406 virtual void scalarizeInstruction(Instruction *Instr, 407 bool IfPredicateStore=false); 408 409 /// Vectorize Load and Store instructions, 410 virtual void vectorizeMemoryInstruction(Instruction *Instr); 411 412 /// Create a broadcast instruction. This method generates a broadcast 413 /// instruction (shuffle) for loop invariant values and for the induction 414 /// value. If this is the induction variable then we extend it to N, N+1, ... 415 /// this is needed because each iteration in the loop corresponds to a SIMD 416 /// element. 417 virtual Value *getBroadcastInstrs(Value *V); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 422 423 /// When we go over instructions in the basic block we rely on previous 424 /// values within the current basic block or on loop invariant values. 425 /// When we widen (vectorize) values we place them in the map. If the values 426 /// are not within the map, they have to be loop invariant, so we simply 427 /// broadcast them into a vector. 428 VectorParts &getVectorValue(Value *V); 429 430 /// Try to vectorize the interleaved access group that \p Instr belongs to. 431 void vectorizeInterleaveGroup(Instruction *Instr); 432 433 /// Generate a shuffle sequence that will reverse the vector Vec. 434 virtual Value *reverseVector(Value *Vec); 435 436 /// Returns (and creates if needed) the original loop trip count. 437 Value *getOrCreateTripCount(Loop *NewLoop); 438 439 /// Returns (and creates if needed) the trip count of the widened loop. 440 Value *getOrCreateVectorTripCount(Loop *NewLoop); 441 442 /// Emit a bypass check to see if the trip count would overflow, or we 443 /// wouldn't have enough iterations to execute one vector loop. 444 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 445 /// Emit a bypass check to see if the vector trip count is nonzero. 446 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 447 /// Emit a bypass check to see if all of the SCEV assumptions we've 448 /// had to make are correct. 449 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 450 /// Emit bypass checks to check any memory assumptions we may have made. 451 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 452 453 /// Add additional metadata to \p To that was not present on \p Orig. 454 /// 455 /// Currently this is used to add the noalias annotations based on the 456 /// inserted memchecks. Use this for instructions that are *cloned* into the 457 /// vector loop. 458 void addNewMetadata(Instruction *To, const Instruction *Orig); 459 460 /// Add metadata from one instruction to another. 461 /// 462 /// This includes both the original MDs from \p From and additional ones (\see 463 /// addNewMetadata). Use this for *newly created* instructions in the vector 464 /// loop. 465 void addMetadata(Instruction *To, const Instruction *From); 466 467 /// \brief Similar to the previous function but it adds the metadata to a 468 /// vector of instructions. 469 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 470 471 /// This is a helper class that holds the vectorizer state. It maps scalar 472 /// instructions to vector instructions. When the code is 'unrolled' then 473 /// then a single scalar value is mapped to multiple vector parts. The parts 474 /// are stored in the VectorPart type. 475 struct ValueMap { 476 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 477 /// are mapped. 478 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 479 480 /// \return True if 'Key' is saved in the Value Map. 481 bool has(Value *Key) const { return MapStorage.count(Key); } 482 483 /// Initializes a new entry in the map. Sets all of the vector parts to the 484 /// save value in 'Val'. 485 /// \return A reference to a vector with splat values. 486 VectorParts &splat(Value *Key, Value *Val) { 487 VectorParts &Entry = MapStorage[Key]; 488 Entry.assign(UF, Val); 489 return Entry; 490 } 491 492 ///\return A reference to the value that is stored at 'Key'. 493 VectorParts &get(Value *Key) { 494 VectorParts &Entry = MapStorage[Key]; 495 if (Entry.empty()) 496 Entry.resize(UF); 497 assert(Entry.size() == UF); 498 return Entry; 499 } 500 501 private: 502 /// The unroll factor. Each entry in the map stores this number of vector 503 /// elements. 504 unsigned UF; 505 506 /// Map storage. We use std::map and not DenseMap because insertions to a 507 /// dense map invalidates its iterators. 508 std::map<Value *, VectorParts> MapStorage; 509 }; 510 511 /// The original loop. 512 Loop *OrigLoop; 513 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 514 /// dynamic knowledge to simplify SCEV expressions and converts them to a 515 /// more usable form. 516 PredicatedScalarEvolution &PSE; 517 /// Loop Info. 518 LoopInfo *LI; 519 /// Dominator Tree. 520 DominatorTree *DT; 521 /// Alias Analysis. 522 AliasAnalysis *AA; 523 /// Target Library Info. 524 const TargetLibraryInfo *TLI; 525 /// Target Transform Info. 526 const TargetTransformInfo *TTI; 527 /// Assumption Cache. 528 AssumptionCache *AC; 529 530 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 531 /// used. 532 /// 533 /// This is currently only used to add no-alias metadata based on the 534 /// memchecks. The actually versioning is performed manually. 535 std::unique_ptr<LoopVersioning> LVer; 536 537 /// The vectorization SIMD factor to use. Each vector will have this many 538 /// vector elements. 539 unsigned VF; 540 541 protected: 542 /// The vectorization unroll factor to use. Each scalar is vectorized to this 543 /// many different vector instructions. 544 unsigned UF; 545 546 /// The builder that we use 547 IRBuilder<> Builder; 548 549 // --- Vectorization state --- 550 551 /// The vector-loop preheader. 552 BasicBlock *LoopVectorPreHeader; 553 /// The scalar-loop preheader. 554 BasicBlock *LoopScalarPreHeader; 555 /// Middle Block between the vector and the scalar. 556 BasicBlock *LoopMiddleBlock; 557 ///The ExitBlock of the scalar loop. 558 BasicBlock *LoopExitBlock; 559 ///The vector loop body. 560 SmallVector<BasicBlock *, 4> LoopVectorBody; 561 ///The scalar loop body. 562 BasicBlock *LoopScalarBody; 563 /// A list of all bypass blocks. The first block is the entry of the loop. 564 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 565 566 /// The new Induction variable which was added to the new block. 567 PHINode *Induction; 568 /// The induction variable of the old basic block. 569 PHINode *OldInduction; 570 /// Maps scalars to widened vectors. 571 ValueMap WidenMap; 572 /// Store instructions that should be predicated, as a pair 573 /// <StoreInst, Predicate> 574 SmallVector<std::pair<StoreInst*,Value*>, 4> PredicatedStores; 575 EdgeMaskCache MaskCache; 576 /// Trip count of the original loop. 577 Value *TripCount; 578 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 579 Value *VectorTripCount; 580 581 /// Map of scalar integer values to the smallest bitwidth they can be legally 582 /// represented as. The vector equivalents of these values should be truncated 583 /// to this type. 584 MapVector<Instruction*,uint64_t> MinBWs; 585 LoopVectorizationLegality *Legal; 586 587 // Record whether runtime check is added. 588 bool AddedSafetyChecks; 589 }; 590 591 class InnerLoopUnroller : public InnerLoopVectorizer { 592 public: 593 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 594 LoopInfo *LI, DominatorTree *DT, 595 const TargetLibraryInfo *TLI, 596 const TargetTransformInfo *TTI, AssumptionCache *AC, 597 unsigned UnrollFactor) 598 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 599 UnrollFactor) {} 600 601 private: 602 void scalarizeInstruction(Instruction *Instr, 603 bool IfPredicateStore = false) override; 604 void vectorizeMemoryInstruction(Instruction *Instr) override; 605 Value *getBroadcastInstrs(Value *V) override; 606 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 607 Value *reverseVector(Value *Vec) override; 608 }; 609 610 /// \brief Look for a meaningful debug location on the instruction or it's 611 /// operands. 612 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 613 if (!I) 614 return I; 615 616 DebugLoc Empty; 617 if (I->getDebugLoc() != Empty) 618 return I; 619 620 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 621 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 622 if (OpInst->getDebugLoc() != Empty) 623 return OpInst; 624 } 625 626 return I; 627 } 628 629 /// \brief Set the debug location in the builder using the debug location in the 630 /// instruction. 631 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 632 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 633 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 634 else 635 B.SetCurrentDebugLocation(DebugLoc()); 636 } 637 638 #ifndef NDEBUG 639 /// \return string containing a file name and a line # for the given loop. 640 static std::string getDebugLocString(const Loop *L) { 641 std::string Result; 642 if (L) { 643 raw_string_ostream OS(Result); 644 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 645 LoopDbgLoc.print(OS); 646 else 647 // Just print the module name. 648 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 649 OS.flush(); 650 } 651 return Result; 652 } 653 #endif 654 655 /// \brief Propagate known metadata from one instruction to another. 656 static void propagateMetadata(Instruction *To, const Instruction *From) { 657 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 658 From->getAllMetadataOtherThanDebugLoc(Metadata); 659 660 for (auto M : Metadata) { 661 unsigned Kind = M.first; 662 663 // These are safe to transfer (this is safe for TBAA, even when we 664 // if-convert, because should that metadata have had a control dependency 665 // on the condition, and thus actually aliased with some other 666 // non-speculated memory access when the condition was false, this would be 667 // caught by the runtime overlap checks). 668 if (Kind != LLVMContext::MD_tbaa && 669 Kind != LLVMContext::MD_alias_scope && 670 Kind != LLVMContext::MD_noalias && 671 Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT) 836 : PSE(PSE), TheLoop(L), DT(DT) {} 837 838 ~InterleavedAccessInfo() { 839 SmallSet<InterleaveGroup *, 4> DelSet; 840 // Avoid releasing a pointer twice. 841 for (auto &I : InterleaveGroupMap) 842 DelSet.insert(I.second); 843 for (auto *Ptr : DelSet) 844 delete Ptr; 845 } 846 847 /// \brief Analyze the interleaved accesses and collect them in interleave 848 /// groups. Substitute symbolic strides using \p Strides. 849 void analyzeInterleaving(const ValueToValueMap &Strides); 850 851 /// \brief Check if \p Instr belongs to any interleave group. 852 bool isInterleaved(Instruction *Instr) const { 853 return InterleaveGroupMap.count(Instr); 854 } 855 856 /// \brief Get the interleave group that \p Instr belongs to. 857 /// 858 /// \returns nullptr if doesn't have such group. 859 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 860 if (InterleaveGroupMap.count(Instr)) 861 return InterleaveGroupMap.find(Instr)->second; 862 return nullptr; 863 } 864 865 private: 866 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 867 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 868 /// The interleaved access analysis can also add new predicates (for example 869 /// by versioning strides of pointers). 870 PredicatedScalarEvolution &PSE; 871 Loop *TheLoop; 872 DominatorTree *DT; 873 874 /// Holds the relationships between the members and the interleave group. 875 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 876 877 /// \brief The descriptor for a strided memory access. 878 struct StrideDescriptor { 879 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 880 unsigned Align) 881 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 882 883 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 884 885 int Stride; // The access's stride. It is negative for a reverse access. 886 const SCEV *Scev; // The scalar expression of this access 887 unsigned Size; // The size of the memory object. 888 unsigned Align; // The alignment of this access. 889 }; 890 891 /// \brief Create a new interleave group with the given instruction \p Instr, 892 /// stride \p Stride and alignment \p Align. 893 /// 894 /// \returns the newly created interleave group. 895 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 896 unsigned Align) { 897 assert(!InterleaveGroupMap.count(Instr) && 898 "Already in an interleaved access group"); 899 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 900 return InterleaveGroupMap[Instr]; 901 } 902 903 /// \brief Release the group and remove all the relationships. 904 void releaseGroup(InterleaveGroup *Group) { 905 for (unsigned i = 0; i < Group->getFactor(); i++) 906 if (Instruction *Member = Group->getMember(i)) 907 InterleaveGroupMap.erase(Member); 908 909 delete Group; 910 } 911 912 /// \brief Collect all the accesses with a constant stride in program order. 913 void collectConstStridedAccesses( 914 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 915 const ValueToValueMap &Strides); 916 }; 917 918 /// Utility class for getting and setting loop vectorizer hints in the form 919 /// of loop metadata. 920 /// This class keeps a number of loop annotations locally (as member variables) 921 /// and can, upon request, write them back as metadata on the loop. It will 922 /// initially scan the loop for existing metadata, and will update the local 923 /// values based on information in the loop. 924 /// We cannot write all values to metadata, as the mere presence of some info, 925 /// for example 'force', means a decision has been made. So, we need to be 926 /// careful NOT to add them if the user hasn't specifically asked so. 927 class LoopVectorizeHints { 928 enum HintKind { 929 HK_WIDTH, 930 HK_UNROLL, 931 HK_FORCE 932 }; 933 934 /// Hint - associates name and validation with the hint value. 935 struct Hint { 936 const char * Name; 937 unsigned Value; // This may have to change for non-numeric values. 938 HintKind Kind; 939 940 Hint(const char * Name, unsigned Value, HintKind Kind) 941 : Name(Name), Value(Value), Kind(Kind) { } 942 943 bool validate(unsigned Val) { 944 switch (Kind) { 945 case HK_WIDTH: 946 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 947 case HK_UNROLL: 948 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 949 case HK_FORCE: 950 return (Val <= 1); 951 } 952 return false; 953 } 954 }; 955 956 /// Vectorization width. 957 Hint Width; 958 /// Vectorization interleave factor. 959 Hint Interleave; 960 /// Vectorization forced 961 Hint Force; 962 963 /// Return the loop metadata prefix. 964 static StringRef Prefix() { return "llvm.loop."; } 965 966 /// True if there is any unsafe math in the loop. 967 bool PotentiallyUnsafe; 968 969 public: 970 enum ForceKind { 971 FK_Undefined = -1, ///< Not selected. 972 FK_Disabled = 0, ///< Forcing disabled. 973 FK_Enabled = 1, ///< Forcing enabled. 974 }; 975 976 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 977 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 978 HK_WIDTH), 979 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 980 Force("vectorize.enable", FK_Undefined, HK_FORCE), 981 PotentiallyUnsafe(false), TheLoop(L) { 982 // Populate values with existing loop metadata. 983 getHintsFromMetadata(); 984 985 // force-vector-interleave overrides DisableInterleaving. 986 if (VectorizerParams::isInterleaveForced()) 987 Interleave.Value = VectorizerParams::VectorizationInterleave; 988 989 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 990 << "LV: Interleaving disabled by the pass manager\n"); 991 } 992 993 /// Mark the loop L as already vectorized by setting the width to 1. 994 void setAlreadyVectorized() { 995 Width.Value = Interleave.Value = 1; 996 Hint Hints[] = {Width, Interleave}; 997 writeHintsToMetadata(Hints); 998 } 999 1000 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1001 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1002 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1003 emitOptimizationRemarkAnalysis(F->getContext(), 1004 vectorizeAnalysisPassName(), *F, 1005 L->getStartLoc(), emitRemark()); 1006 return false; 1007 } 1008 1009 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1010 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1011 emitOptimizationRemarkAnalysis(F->getContext(), 1012 vectorizeAnalysisPassName(), *F, 1013 L->getStartLoc(), emitRemark()); 1014 return false; 1015 } 1016 1017 if (getWidth() == 1 && getInterleave() == 1) { 1018 // FIXME: Add a separate metadata to indicate when the loop has already 1019 // been vectorized instead of setting width and count to 1. 1020 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1021 // FIXME: Add interleave.disable metadata. This will allow 1022 // vectorize.disable to be used without disabling the pass and errors 1023 // to differentiate between disabled vectorization and a width of 1. 1024 emitOptimizationRemarkAnalysis( 1025 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1026 "loop not vectorized: vectorization and interleaving are explicitly " 1027 "disabled, or vectorize width and interleave count are both set to " 1028 "1"); 1029 return false; 1030 } 1031 1032 return true; 1033 } 1034 1035 /// Dumps all the hint information. 1036 std::string emitRemark() const { 1037 VectorizationReport R; 1038 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1039 R << "vectorization is explicitly disabled"; 1040 else { 1041 R << "use -Rpass-analysis=loop-vectorize for more info"; 1042 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1043 R << " (Force=true"; 1044 if (Width.Value != 0) 1045 R << ", Vector Width=" << Width.Value; 1046 if (Interleave.Value != 0) 1047 R << ", Interleave Count=" << Interleave.Value; 1048 R << ")"; 1049 } 1050 } 1051 1052 return R.str(); 1053 } 1054 1055 unsigned getWidth() const { return Width.Value; } 1056 unsigned getInterleave() const { return Interleave.Value; } 1057 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1058 const char *vectorizeAnalysisPassName() const { 1059 // If hints are provided that don't disable vectorization use the 1060 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1061 if (getWidth() == 1) 1062 return LV_NAME; 1063 if (getForce() == LoopVectorizeHints::FK_Disabled) 1064 return LV_NAME; 1065 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1066 return LV_NAME; 1067 return DiagnosticInfo::AlwaysPrint; 1068 } 1069 1070 bool allowReordering() const { 1071 // When enabling loop hints are provided we allow the vectorizer to change 1072 // the order of operations that is given by the scalar loop. This is not 1073 // enabled by default because can be unsafe or inefficient. For example, 1074 // reordering floating-point operations will change the way round-off 1075 // error accumulates in the loop. 1076 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1077 } 1078 1079 bool isPotentiallyUnsafe() const { 1080 // Avoid FP vectorization if the target is unsure about proper support. 1081 // This may be related to the SIMD unit in the target not handling 1082 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1083 // Otherwise, a sequence of vectorized loops, even without reduction, 1084 // could lead to different end results on the destination vectors. 1085 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1086 } 1087 1088 void setPotentiallyUnsafe() { 1089 PotentiallyUnsafe = true; 1090 } 1091 1092 private: 1093 /// Find hints specified in the loop metadata and update local values. 1094 void getHintsFromMetadata() { 1095 MDNode *LoopID = TheLoop->getLoopID(); 1096 if (!LoopID) 1097 return; 1098 1099 // First operand should refer to the loop id itself. 1100 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1101 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1102 1103 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1104 const MDString *S = nullptr; 1105 SmallVector<Metadata *, 4> Args; 1106 1107 // The expected hint is either a MDString or a MDNode with the first 1108 // operand a MDString. 1109 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1110 if (!MD || MD->getNumOperands() == 0) 1111 continue; 1112 S = dyn_cast<MDString>(MD->getOperand(0)); 1113 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1114 Args.push_back(MD->getOperand(i)); 1115 } else { 1116 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1117 assert(Args.size() == 0 && "too many arguments for MDString"); 1118 } 1119 1120 if (!S) 1121 continue; 1122 1123 // Check if the hint starts with the loop metadata prefix. 1124 StringRef Name = S->getString(); 1125 if (Args.size() == 1) 1126 setHint(Name, Args[0]); 1127 } 1128 } 1129 1130 /// Checks string hint with one operand and set value if valid. 1131 void setHint(StringRef Name, Metadata *Arg) { 1132 if (!Name.startswith(Prefix())) 1133 return; 1134 Name = Name.substr(Prefix().size(), StringRef::npos); 1135 1136 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1137 if (!C) return; 1138 unsigned Val = C->getZExtValue(); 1139 1140 Hint *Hints[] = {&Width, &Interleave, &Force}; 1141 for (auto H : Hints) { 1142 if (Name == H->Name) { 1143 if (H->validate(Val)) 1144 H->Value = Val; 1145 else 1146 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1147 break; 1148 } 1149 } 1150 } 1151 1152 /// Create a new hint from name / value pair. 1153 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1154 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1155 Metadata *MDs[] = {MDString::get(Context, Name), 1156 ConstantAsMetadata::get( 1157 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1158 return MDNode::get(Context, MDs); 1159 } 1160 1161 /// Matches metadata with hint name. 1162 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1163 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1164 if (!Name) 1165 return false; 1166 1167 for (auto H : HintTypes) 1168 if (Name->getString().endswith(H.Name)) 1169 return true; 1170 return false; 1171 } 1172 1173 /// Sets current hints into loop metadata, keeping other values intact. 1174 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1175 if (HintTypes.size() == 0) 1176 return; 1177 1178 // Reserve the first element to LoopID (see below). 1179 SmallVector<Metadata *, 4> MDs(1); 1180 // If the loop already has metadata, then ignore the existing operands. 1181 MDNode *LoopID = TheLoop->getLoopID(); 1182 if (LoopID) { 1183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1184 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1185 // If node in update list, ignore old value. 1186 if (!matchesHintMetadataName(Node, HintTypes)) 1187 MDs.push_back(Node); 1188 } 1189 } 1190 1191 // Now, add the missing hints. 1192 for (auto H : HintTypes) 1193 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1194 1195 // Replace current metadata node with new one. 1196 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1197 MDNode *NewLoopID = MDNode::get(Context, MDs); 1198 // Set operand 0 to refer to the loop id itself. 1199 NewLoopID->replaceOperandWith(0, NewLoopID); 1200 1201 TheLoop->setLoopID(NewLoopID); 1202 } 1203 1204 /// The loop these hints belong to. 1205 const Loop *TheLoop; 1206 }; 1207 1208 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1209 const LoopVectorizeHints &Hints, 1210 const LoopAccessReport &Message) { 1211 const char *Name = Hints.vectorizeAnalysisPassName(); 1212 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1213 } 1214 1215 static void emitMissedWarning(Function *F, Loop *L, 1216 const LoopVectorizeHints &LH) { 1217 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1218 LH.emitRemark()); 1219 1220 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1221 if (LH.getWidth() != 1) 1222 emitLoopVectorizeWarning( 1223 F->getContext(), *F, L->getStartLoc(), 1224 "failed explicitly specified loop vectorization"); 1225 else if (LH.getInterleave() != 1) 1226 emitLoopInterleaveWarning( 1227 F->getContext(), *F, L->getStartLoc(), 1228 "failed explicitly specified loop interleaving"); 1229 } 1230 } 1231 1232 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1233 /// to what vectorization factor. 1234 /// This class does not look at the profitability of vectorization, only the 1235 /// legality. This class has two main kinds of checks: 1236 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1237 /// will change the order of memory accesses in a way that will change the 1238 /// correctness of the program. 1239 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1240 /// checks for a number of different conditions, such as the availability of a 1241 /// single induction variable, that all types are supported and vectorize-able, 1242 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1243 /// This class is also used by InnerLoopVectorizer for identifying 1244 /// induction variable and the different reduction variables. 1245 class LoopVectorizationLegality { 1246 public: 1247 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1248 DominatorTree *DT, TargetLibraryInfo *TLI, 1249 AliasAnalysis *AA, Function *F, 1250 const TargetTransformInfo *TTI, 1251 LoopAccessAnalysis *LAA, 1252 LoopVectorizationRequirements *R, 1253 LoopVectorizeHints *H) 1254 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1255 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1256 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1257 Requirements(R), Hints(H) {} 1258 1259 /// ReductionList contains the reduction descriptors for all 1260 /// of the reductions that were found in the loop. 1261 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1262 1263 /// InductionList saves induction variables and maps them to the 1264 /// induction descriptor. 1265 typedef MapVector<PHINode*, InductionDescriptor> InductionList; 1266 1267 /// RecurrenceSet contains the phi nodes that are recurrences other than 1268 /// inductions and reductions. 1269 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1270 1271 /// Returns true if it is legal to vectorize this loop. 1272 /// This does not mean that it is profitable to vectorize this 1273 /// loop, only that it is legal to do so. 1274 bool canVectorize(); 1275 1276 /// Returns the Induction variable. 1277 PHINode *getInduction() { return Induction; } 1278 1279 /// Returns the reduction variables found in the loop. 1280 ReductionList *getReductionVars() { return &Reductions; } 1281 1282 /// Returns the induction variables found in the loop. 1283 InductionList *getInductionVars() { return &Inductions; } 1284 1285 /// Return the first-order recurrences found in the loop. 1286 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1287 1288 /// Returns the widest induction type. 1289 Type *getWidestInductionType() { return WidestIndTy; } 1290 1291 /// Returns True if V is an induction variable in this loop. 1292 bool isInductionVariable(const Value *V); 1293 1294 /// Returns True if PN is a reduction variable in this loop. 1295 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1296 1297 /// Returns True if Phi is a first-order recurrence in this loop. 1298 bool isFirstOrderRecurrence(const PHINode *Phi); 1299 1300 /// Return true if the block BB needs to be predicated in order for the loop 1301 /// to be vectorized. 1302 bool blockNeedsPredication(BasicBlock *BB); 1303 1304 /// Check if this pointer is consecutive when vectorizing. This happens 1305 /// when the last index of the GEP is the induction variable, or that the 1306 /// pointer itself is an induction variable. 1307 /// This check allows us to vectorize A[idx] into a wide load/store. 1308 /// Returns: 1309 /// 0 - Stride is unknown or non-consecutive. 1310 /// 1 - Address is consecutive. 1311 /// -1 - Address is consecutive, and decreasing. 1312 int isConsecutivePtr(Value *Ptr); 1313 1314 /// Returns true if the value V is uniform within the loop. 1315 bool isUniform(Value *V); 1316 1317 /// Returns true if this instruction will remain scalar after vectorization. 1318 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 1319 1320 /// Returns the information that we collected about runtime memory check. 1321 const RuntimePointerChecking *getRuntimePointerChecking() const { 1322 return LAI->getRuntimePointerChecking(); 1323 } 1324 1325 const LoopAccessInfo *getLAI() const { 1326 return LAI; 1327 } 1328 1329 /// \brief Check if \p Instr belongs to any interleaved access group. 1330 bool isAccessInterleaved(Instruction *Instr) { 1331 return InterleaveInfo.isInterleaved(Instr); 1332 } 1333 1334 /// \brief Get the interleaved access group that \p Instr belongs to. 1335 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1336 return InterleaveInfo.getInterleaveGroup(Instr); 1337 } 1338 1339 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1340 1341 bool hasStride(Value *V) { return StrideSet.count(V); } 1342 bool mustCheckStrides() { return !StrideSet.empty(); } 1343 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1344 return StrideSet.begin(); 1345 } 1346 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1347 1348 /// Returns true if the target machine supports masked store operation 1349 /// for the given \p DataType and kind of access to \p Ptr. 1350 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1351 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1352 } 1353 /// Returns true if the target machine supports masked load operation 1354 /// for the given \p DataType and kind of access to \p Ptr. 1355 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1356 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1357 } 1358 /// Returns true if the target machine supports masked scatter operation 1359 /// for the given \p DataType. 1360 bool isLegalMaskedScatter(Type *DataType) { 1361 return TTI->isLegalMaskedScatter(DataType); 1362 } 1363 /// Returns true if the target machine supports masked gather operation 1364 /// for the given \p DataType. 1365 bool isLegalMaskedGather(Type *DataType) { 1366 return TTI->isLegalMaskedGather(DataType); 1367 } 1368 1369 /// Returns true if vector representation of the instruction \p I 1370 /// requires mask. 1371 bool isMaskRequired(const Instruction* I) { 1372 return (MaskedOp.count(I) != 0); 1373 } 1374 unsigned getNumStores() const { 1375 return LAI->getNumStores(); 1376 } 1377 unsigned getNumLoads() const { 1378 return LAI->getNumLoads(); 1379 } 1380 unsigned getNumPredStores() const { 1381 return NumPredStores; 1382 } 1383 private: 1384 /// Check if a single basic block loop is vectorizable. 1385 /// At this point we know that this is a loop with a constant trip count 1386 /// and we only need to check individual instructions. 1387 bool canVectorizeInstrs(); 1388 1389 /// When we vectorize loops we may change the order in which 1390 /// we read and write from memory. This method checks if it is 1391 /// legal to vectorize the code, considering only memory constrains. 1392 /// Returns true if the loop is vectorizable 1393 bool canVectorizeMemory(); 1394 1395 /// Return true if we can vectorize this loop using the IF-conversion 1396 /// transformation. 1397 bool canVectorizeWithIfConvert(); 1398 1399 /// Collect the variables that need to stay uniform after vectorization. 1400 void collectLoopUniforms(); 1401 1402 /// Return true if all of the instructions in the block can be speculatively 1403 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1404 /// and we know that we can read from them without segfault. 1405 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1406 1407 /// \brief Collect memory access with loop invariant strides. 1408 /// 1409 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1410 /// invariant. 1411 void collectStridedAccess(Value *LoadOrStoreInst); 1412 1413 /// Report an analysis message to assist the user in diagnosing loops that are 1414 /// not vectorized. These are handled as LoopAccessReport rather than 1415 /// VectorizationReport because the << operator of VectorizationReport returns 1416 /// LoopAccessReport. 1417 void emitAnalysis(const LoopAccessReport &Message) const { 1418 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1419 } 1420 1421 unsigned NumPredStores; 1422 1423 /// The loop that we evaluate. 1424 Loop *TheLoop; 1425 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1426 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1427 /// of existing SCEV assumptions. The analysis will also add a minimal set 1428 /// of new predicates if this is required to enable vectorization and 1429 /// unrolling. 1430 PredicatedScalarEvolution &PSE; 1431 /// Target Library Info. 1432 TargetLibraryInfo *TLI; 1433 /// Parent function 1434 Function *TheFunction; 1435 /// Target Transform Info 1436 const TargetTransformInfo *TTI; 1437 /// Dominator Tree. 1438 DominatorTree *DT; 1439 // LoopAccess analysis. 1440 LoopAccessAnalysis *LAA; 1441 // And the loop-accesses info corresponding to this loop. This pointer is 1442 // null until canVectorizeMemory sets it up. 1443 const LoopAccessInfo *LAI; 1444 1445 /// The interleave access information contains groups of interleaved accesses 1446 /// with the same stride and close to each other. 1447 InterleavedAccessInfo InterleaveInfo; 1448 1449 // --- vectorization state --- // 1450 1451 /// Holds the integer induction variable. This is the counter of the 1452 /// loop. 1453 PHINode *Induction; 1454 /// Holds the reduction variables. 1455 ReductionList Reductions; 1456 /// Holds all of the induction variables that we found in the loop. 1457 /// Notice that inductions don't need to start at zero and that induction 1458 /// variables can be pointers. 1459 InductionList Inductions; 1460 /// Holds the phi nodes that are first-order recurrences. 1461 RecurrenceSet FirstOrderRecurrences; 1462 /// Holds the widest induction type encountered. 1463 Type *WidestIndTy; 1464 1465 /// Allowed outside users. This holds the reduction 1466 /// vars which can be accessed from outside the loop. 1467 SmallPtrSet<Value*, 4> AllowedExit; 1468 /// This set holds the variables which are known to be uniform after 1469 /// vectorization. 1470 SmallPtrSet<Instruction*, 4> Uniforms; 1471 1472 /// Can we assume the absence of NaNs. 1473 bool HasFunNoNaNAttr; 1474 1475 /// Vectorization requirements that will go through late-evaluation. 1476 LoopVectorizationRequirements *Requirements; 1477 1478 /// Used to emit an analysis of any legality issues. 1479 LoopVectorizeHints *Hints; 1480 1481 ValueToValueMap Strides; 1482 SmallPtrSet<Value *, 8> StrideSet; 1483 1484 /// While vectorizing these instructions we have to generate a 1485 /// call to the appropriate masked intrinsic 1486 SmallPtrSet<const Instruction *, 8> MaskedOp; 1487 }; 1488 1489 /// LoopVectorizationCostModel - estimates the expected speedups due to 1490 /// vectorization. 1491 /// In many cases vectorization is not profitable. This can happen because of 1492 /// a number of reasons. In this class we mainly attempt to predict the 1493 /// expected speedup/slowdowns due to the supported instruction set. We use the 1494 /// TargetTransformInfo to query the different backends for the cost of 1495 /// different operations. 1496 class LoopVectorizationCostModel { 1497 public: 1498 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1499 LoopVectorizationLegality *Legal, 1500 const TargetTransformInfo &TTI, 1501 const TargetLibraryInfo *TLI, 1502 DemandedBits *DB, AssumptionCache *AC, 1503 const Function *F, const LoopVectorizeHints *Hints, 1504 SmallPtrSetImpl<const Value *> &ValuesToIgnore) 1505 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1506 TheFunction(F), Hints(Hints), ValuesToIgnore(ValuesToIgnore) {} 1507 1508 /// Information about vectorization costs 1509 struct VectorizationFactor { 1510 unsigned Width; // Vector width with best cost 1511 unsigned Cost; // Cost of the loop with that width 1512 }; 1513 /// \return The most profitable vectorization factor and the cost of that VF. 1514 /// This method checks every power of two up to VF. If UserVF is not ZERO 1515 /// then this vectorization factor will be selected if vectorization is 1516 /// possible. 1517 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1518 1519 /// \return The size (in bits) of the smallest and widest types in the code 1520 /// that needs to be vectorized. We ignore values that remain scalar such as 1521 /// 64 bit loop indices. 1522 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1523 1524 /// \return The desired interleave count. 1525 /// If interleave count has been specified by metadata it will be returned. 1526 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1527 /// are the selected vectorization factor and the cost of the selected VF. 1528 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1529 unsigned LoopCost); 1530 1531 /// \return The most profitable unroll factor. 1532 /// This method finds the best unroll-factor based on register pressure and 1533 /// other parameters. VF and LoopCost are the selected vectorization factor 1534 /// and the cost of the selected VF. 1535 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1536 unsigned LoopCost); 1537 1538 /// \brief A struct that represents some properties of the register usage 1539 /// of a loop. 1540 struct RegisterUsage { 1541 /// Holds the number of loop invariant values that are used in the loop. 1542 unsigned LoopInvariantRegs; 1543 /// Holds the maximum number of concurrent live intervals in the loop. 1544 unsigned MaxLocalUsers; 1545 /// Holds the number of instructions in the loop. 1546 unsigned NumInstructions; 1547 }; 1548 1549 /// \return Returns information about the register usages of the loop for the 1550 /// given vectorization factors. 1551 SmallVector<RegisterUsage, 8> 1552 calculateRegisterUsage(const SmallVector<unsigned, 8> &VFs); 1553 1554 private: 1555 /// The vectorization cost is a combination of the cost itself and a boolean 1556 /// indicating whether any of the contributing operations will actually operate on 1557 /// vector values after type legalization in the backend. If this latter value is 1558 /// false, then all operations will be scalarized (i.e. no vectorization has 1559 /// actually taken place). 1560 typedef std::pair<unsigned, bool> VectorizationCostTy; 1561 1562 /// Returns the expected execution cost. The unit of the cost does 1563 /// not matter because we use the 'cost' units to compare different 1564 /// vector widths. The cost that is returned is *not* normalized by 1565 /// the factor width. 1566 VectorizationCostTy expectedCost(unsigned VF); 1567 1568 /// Returns the execution time cost of an instruction for a given vector 1569 /// width. Vector width of one means scalar. 1570 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1571 1572 /// The cost-computation logic from getInstructionCost which provides 1573 /// the vector type as an output parameter. 1574 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1575 1576 /// Returns whether the instruction is a load or store and will be a emitted 1577 /// as a vector operation. 1578 bool isConsecutiveLoadOrStore(Instruction *I); 1579 1580 /// Report an analysis message to assist the user in diagnosing loops that are 1581 /// not vectorized. These are handled as LoopAccessReport rather than 1582 /// VectorizationReport because the << operator of VectorizationReport returns 1583 /// LoopAccessReport. 1584 void emitAnalysis(const LoopAccessReport &Message) const { 1585 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1586 } 1587 1588 public: 1589 /// Map of scalar integer values to the smallest bitwidth they can be legally 1590 /// represented as. The vector equivalents of these values should be truncated 1591 /// to this type. 1592 MapVector<Instruction*,uint64_t> MinBWs; 1593 1594 /// The loop that we evaluate. 1595 Loop *TheLoop; 1596 /// Scev analysis. 1597 ScalarEvolution *SE; 1598 /// Loop Info analysis. 1599 LoopInfo *LI; 1600 /// Vectorization legality. 1601 LoopVectorizationLegality *Legal; 1602 /// Vector target information. 1603 const TargetTransformInfo &TTI; 1604 /// Target Library Info. 1605 const TargetLibraryInfo *TLI; 1606 /// Demanded bits analysis 1607 DemandedBits *DB; 1608 const Function *TheFunction; 1609 // Loop Vectorize Hint. 1610 const LoopVectorizeHints *Hints; 1611 // Values to ignore in the cost model. 1612 const SmallPtrSetImpl<const Value *> &ValuesToIgnore; 1613 }; 1614 1615 /// \brief This holds vectorization requirements that must be verified late in 1616 /// the process. The requirements are set by legalize and costmodel. Once 1617 /// vectorization has been determined to be possible and profitable the 1618 /// requirements can be verified by looking for metadata or compiler options. 1619 /// For example, some loops require FP commutativity which is only allowed if 1620 /// vectorization is explicitly specified or if the fast-math compiler option 1621 /// has been provided. 1622 /// Late evaluation of these requirements allows helpful diagnostics to be 1623 /// composed that tells the user what need to be done to vectorize the loop. For 1624 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1625 /// evaluation should be used only when diagnostics can generated that can be 1626 /// followed by a non-expert user. 1627 class LoopVectorizationRequirements { 1628 public: 1629 LoopVectorizationRequirements() 1630 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1631 1632 void addUnsafeAlgebraInst(Instruction *I) { 1633 // First unsafe algebra instruction. 1634 if (!UnsafeAlgebraInst) 1635 UnsafeAlgebraInst = I; 1636 } 1637 1638 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1639 1640 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1641 const char *Name = Hints.vectorizeAnalysisPassName(); 1642 bool Failed = false; 1643 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1644 emitOptimizationRemarkAnalysisFPCommute( 1645 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1646 VectorizationReport() << "cannot prove it is safe to reorder " 1647 "floating-point operations"); 1648 Failed = true; 1649 } 1650 1651 // Test if runtime memcheck thresholds are exceeded. 1652 bool PragmaThresholdReached = 1653 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1654 bool ThresholdReached = 1655 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1656 if ((ThresholdReached && !Hints.allowReordering()) || 1657 PragmaThresholdReached) { 1658 emitOptimizationRemarkAnalysisAliasing( 1659 F->getContext(), Name, *F, L->getStartLoc(), 1660 VectorizationReport() 1661 << "cannot prove it is safe to reorder memory operations"); 1662 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1663 Failed = true; 1664 } 1665 1666 return Failed; 1667 } 1668 1669 private: 1670 unsigned NumRuntimePointerChecks; 1671 Instruction *UnsafeAlgebraInst; 1672 }; 1673 1674 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1675 if (L.empty()) 1676 return V.push_back(&L); 1677 1678 for (Loop *InnerL : L) 1679 addInnerLoop(*InnerL, V); 1680 } 1681 1682 /// The LoopVectorize Pass. 1683 struct LoopVectorize : public FunctionPass { 1684 /// Pass identification, replacement for typeid 1685 static char ID; 1686 1687 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1688 : FunctionPass(ID), 1689 DisableUnrolling(NoUnrolling), 1690 AlwaysVectorize(AlwaysVectorize) { 1691 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1692 } 1693 1694 ScalarEvolution *SE; 1695 LoopInfo *LI; 1696 TargetTransformInfo *TTI; 1697 DominatorTree *DT; 1698 BlockFrequencyInfo *BFI; 1699 TargetLibraryInfo *TLI; 1700 DemandedBits *DB; 1701 AliasAnalysis *AA; 1702 AssumptionCache *AC; 1703 LoopAccessAnalysis *LAA; 1704 bool DisableUnrolling; 1705 bool AlwaysVectorize; 1706 1707 BlockFrequency ColdEntryFreq; 1708 1709 bool runOnFunction(Function &F) override { 1710 if (skipFunction(F)) 1711 return false; 1712 1713 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1714 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1715 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1716 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1717 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1718 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1719 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1720 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1721 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1722 LAA = &getAnalysis<LoopAccessAnalysis>(); 1723 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1724 1725 // Compute some weights outside of the loop over the loops. Compute this 1726 // using a BranchProbability to re-use its scaling math. 1727 const BranchProbability ColdProb(1, 5); // 20% 1728 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1729 1730 // Don't attempt if 1731 // 1. the target claims to have no vector registers, and 1732 // 2. interleaving won't help ILP. 1733 // 1734 // The second condition is necessary because, even if the target has no 1735 // vector registers, loop vectorization may still enable scalar 1736 // interleaving. 1737 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1738 return false; 1739 1740 // Build up a worklist of inner-loops to vectorize. This is necessary as 1741 // the act of vectorizing or partially unrolling a loop creates new loops 1742 // and can invalidate iterators across the loops. 1743 SmallVector<Loop *, 8> Worklist; 1744 1745 for (Loop *L : *LI) 1746 addInnerLoop(*L, Worklist); 1747 1748 LoopsAnalyzed += Worklist.size(); 1749 1750 // Now walk the identified inner loops. 1751 bool Changed = false; 1752 while (!Worklist.empty()) 1753 Changed |= processLoop(Worklist.pop_back_val()); 1754 1755 // Process each loop nest in the function. 1756 return Changed; 1757 } 1758 1759 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1760 SmallVector<Metadata *, 4> MDs; 1761 // Reserve first location for self reference to the LoopID metadata node. 1762 MDs.push_back(nullptr); 1763 bool IsUnrollMetadata = false; 1764 MDNode *LoopID = L->getLoopID(); 1765 if (LoopID) { 1766 // First find existing loop unrolling disable metadata. 1767 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1768 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1769 if (MD) { 1770 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1771 IsUnrollMetadata = 1772 S && S->getString().startswith("llvm.loop.unroll.disable"); 1773 } 1774 MDs.push_back(LoopID->getOperand(i)); 1775 } 1776 } 1777 1778 if (!IsUnrollMetadata) { 1779 // Add runtime unroll disable metadata. 1780 LLVMContext &Context = L->getHeader()->getContext(); 1781 SmallVector<Metadata *, 1> DisableOperands; 1782 DisableOperands.push_back( 1783 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1784 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1785 MDs.push_back(DisableNode); 1786 MDNode *NewLoopID = MDNode::get(Context, MDs); 1787 // Set operand 0 to refer to the loop id itself. 1788 NewLoopID->replaceOperandWith(0, NewLoopID); 1789 L->setLoopID(NewLoopID); 1790 } 1791 } 1792 1793 bool processLoop(Loop *L) { 1794 assert(L->empty() && "Only process inner loops."); 1795 1796 #ifndef NDEBUG 1797 const std::string DebugLocStr = getDebugLocString(L); 1798 #endif /* NDEBUG */ 1799 1800 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1801 << L->getHeader()->getParent()->getName() << "\" from " 1802 << DebugLocStr << "\n"); 1803 1804 LoopVectorizeHints Hints(L, DisableUnrolling); 1805 1806 DEBUG(dbgs() << "LV: Loop hints:" 1807 << " force=" 1808 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1809 ? "disabled" 1810 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1811 ? "enabled" 1812 : "?")) << " width=" << Hints.getWidth() 1813 << " unroll=" << Hints.getInterleave() << "\n"); 1814 1815 // Function containing loop 1816 Function *F = L->getHeader()->getParent(); 1817 1818 // Looking at the diagnostic output is the only way to determine if a loop 1819 // was vectorized (other than looking at the IR or machine code), so it 1820 // is important to generate an optimization remark for each loop. Most of 1821 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1822 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1823 // less verbose reporting vectorized loops and unvectorized loops that may 1824 // benefit from vectorization, respectively. 1825 1826 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1827 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1828 return false; 1829 } 1830 1831 // Check the loop for a trip count threshold: 1832 // do not vectorize loops with a tiny trip count. 1833 const unsigned TC = SE->getSmallConstantTripCount(L); 1834 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1835 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1836 << "This loop is not worth vectorizing."); 1837 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1838 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1839 else { 1840 DEBUG(dbgs() << "\n"); 1841 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1842 << "vectorization is not beneficial " 1843 "and is not explicitly forced"); 1844 return false; 1845 } 1846 } 1847 1848 PredicatedScalarEvolution PSE(*SE, *L); 1849 1850 // Check if it is legal to vectorize the loop. 1851 LoopVectorizationRequirements Requirements; 1852 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1853 &Requirements, &Hints); 1854 if (!LVL.canVectorize()) { 1855 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1856 emitMissedWarning(F, L, Hints); 1857 return false; 1858 } 1859 1860 // Collect values we want to ignore in the cost model. This includes 1861 // type-promoting instructions we identified during reduction detection. 1862 SmallPtrSet<const Value *, 32> ValuesToIgnore; 1863 CodeMetrics::collectEphemeralValues(L, AC, ValuesToIgnore); 1864 for (auto &Reduction : *LVL.getReductionVars()) { 1865 RecurrenceDescriptor &RedDes = Reduction.second; 1866 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 1867 ValuesToIgnore.insert(Casts.begin(), Casts.end()); 1868 } 1869 1870 // Use the cost model. 1871 LoopVectorizationCostModel CM(L, PSE.getSE(), LI, &LVL, *TTI, TLI, DB, AC, 1872 F, &Hints, ValuesToIgnore); 1873 1874 // Check the function attributes to find out if this function should be 1875 // optimized for size. 1876 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1877 F->optForSize(); 1878 1879 // Compute the weighted frequency of this loop being executed and see if it 1880 // is less than 20% of the function entry baseline frequency. Note that we 1881 // always have a canonical loop here because we think we *can* vectorize. 1882 // FIXME: This is hidden behind a flag due to pervasive problems with 1883 // exactly what block frequency models. 1884 if (LoopVectorizeWithBlockFrequency) { 1885 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1886 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1887 LoopEntryFreq < ColdEntryFreq) 1888 OptForSize = true; 1889 } 1890 1891 // Check the function attributes to see if implicit floats are allowed. 1892 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1893 // an integer loop and the vector instructions selected are purely integer 1894 // vector instructions? 1895 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1896 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1897 "attribute is used.\n"); 1898 emitAnalysisDiag( 1899 F, L, Hints, 1900 VectorizationReport() 1901 << "loop not vectorized due to NoImplicitFloat attribute"); 1902 emitMissedWarning(F, L, Hints); 1903 return false; 1904 } 1905 1906 // Check if the target supports potentially unsafe FP vectorization. 1907 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1908 // for the target we're vectorizing for, to make sure none of the 1909 // additional fp-math flags can help. 1910 if (Hints.isPotentiallyUnsafe() && 1911 TTI->isFPVectorizationPotentiallyUnsafe()) { 1912 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1913 emitAnalysisDiag( 1914 F, L, Hints, 1915 VectorizationReport() 1916 << "loop not vectorized due to unsafe FP support."); 1917 emitMissedWarning(F, L, Hints); 1918 return false; 1919 } 1920 1921 // Select the optimal vectorization factor. 1922 const LoopVectorizationCostModel::VectorizationFactor VF = 1923 CM.selectVectorizationFactor(OptForSize); 1924 1925 // Select the interleave count. 1926 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1927 1928 // Get user interleave count. 1929 unsigned UserIC = Hints.getInterleave(); 1930 1931 // Identify the diagnostic messages that should be produced. 1932 std::string VecDiagMsg, IntDiagMsg; 1933 bool VectorizeLoop = true, InterleaveLoop = true; 1934 1935 if (Requirements.doesNotMeet(F, L, Hints)) { 1936 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1937 "requirements.\n"); 1938 emitMissedWarning(F, L, Hints); 1939 return false; 1940 } 1941 1942 if (VF.Width == 1) { 1943 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1944 VecDiagMsg = 1945 "the cost-model indicates that vectorization is not beneficial"; 1946 VectorizeLoop = false; 1947 } 1948 1949 if (IC == 1 && UserIC <= 1) { 1950 // Tell the user interleaving is not beneficial. 1951 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1952 IntDiagMsg = 1953 "the cost-model indicates that interleaving is not beneficial"; 1954 InterleaveLoop = false; 1955 if (UserIC == 1) 1956 IntDiagMsg += 1957 " and is explicitly disabled or interleave count is set to 1"; 1958 } else if (IC > 1 && UserIC == 1) { 1959 // Tell the user interleaving is beneficial, but it explicitly disabled. 1960 DEBUG(dbgs() 1961 << "LV: Interleaving is beneficial but is explicitly disabled."); 1962 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1963 "but is explicitly disabled or interleave count is set to 1"; 1964 InterleaveLoop = false; 1965 } 1966 1967 // Override IC if user provided an interleave count. 1968 IC = UserIC > 0 ? UserIC : IC; 1969 1970 // Emit diagnostic messages, if any. 1971 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 1972 if (!VectorizeLoop && !InterleaveLoop) { 1973 // Do not vectorize or interleaving the loop. 1974 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1975 L->getStartLoc(), VecDiagMsg); 1976 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1977 L->getStartLoc(), IntDiagMsg); 1978 return false; 1979 } else if (!VectorizeLoop && InterleaveLoop) { 1980 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1981 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 1982 L->getStartLoc(), VecDiagMsg); 1983 } else if (VectorizeLoop && !InterleaveLoop) { 1984 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1985 << DebugLocStr << '\n'); 1986 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 1987 L->getStartLoc(), IntDiagMsg); 1988 } else if (VectorizeLoop && InterleaveLoop) { 1989 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1990 << DebugLocStr << '\n'); 1991 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1992 } 1993 1994 if (!VectorizeLoop) { 1995 assert(IC > 1 && "interleave count should not be 1 or 0"); 1996 // If we decided that it is not legal to vectorize the loop then 1997 // interleave it. 1998 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 1999 Unroller.vectorize(&LVL, CM.MinBWs); 2000 2001 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2002 Twine("interleaved loop (interleaved count: ") + 2003 Twine(IC) + ")"); 2004 } else { 2005 // If we decided that it is *legal* to vectorize the loop then do it. 2006 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2007 LB.vectorize(&LVL, CM.MinBWs); 2008 ++LoopsVectorized; 2009 2010 // Add metadata to disable runtime unrolling scalar loop when there's no 2011 // runtime check about strides and memory. Because at this situation, 2012 // scalar loop is rarely used not worthy to be unrolled. 2013 if (!LB.IsSafetyChecksAdded()) 2014 AddRuntimeUnrollDisableMetaData(L); 2015 2016 // Report the vectorization decision. 2017 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2018 Twine("vectorized loop (vectorization width: ") + 2019 Twine(VF.Width) + ", interleaved count: " + 2020 Twine(IC) + ")"); 2021 } 2022 2023 // Mark the loop as already vectorized to avoid vectorizing again. 2024 Hints.setAlreadyVectorized(); 2025 2026 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2027 return true; 2028 } 2029 2030 void getAnalysisUsage(AnalysisUsage &AU) const override { 2031 AU.addRequired<AssumptionCacheTracker>(); 2032 AU.addRequiredID(LoopSimplifyID); 2033 AU.addRequiredID(LCSSAID); 2034 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2035 AU.addRequired<DominatorTreeWrapperPass>(); 2036 AU.addRequired<LoopInfoWrapperPass>(); 2037 AU.addRequired<ScalarEvolutionWrapperPass>(); 2038 AU.addRequired<TargetTransformInfoWrapperPass>(); 2039 AU.addRequired<AAResultsWrapperPass>(); 2040 AU.addRequired<LoopAccessAnalysis>(); 2041 AU.addRequired<DemandedBitsWrapperPass>(); 2042 AU.addPreserved<LoopInfoWrapperPass>(); 2043 AU.addPreserved<DominatorTreeWrapperPass>(); 2044 AU.addPreserved<BasicAAWrapperPass>(); 2045 AU.addPreserved<AAResultsWrapperPass>(); 2046 AU.addPreserved<GlobalsAAWrapperPass>(); 2047 } 2048 2049 }; 2050 2051 } // end anonymous namespace 2052 2053 //===----------------------------------------------------------------------===// 2054 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2055 // LoopVectorizationCostModel. 2056 //===----------------------------------------------------------------------===// 2057 2058 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2059 // We need to place the broadcast of invariant variables outside the loop. 2060 Instruction *Instr = dyn_cast<Instruction>(V); 2061 bool NewInstr = 2062 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 2063 Instr->getParent()) != LoopVectorBody.end()); 2064 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2065 2066 // Place the code for broadcasting invariant variables in the new preheader. 2067 IRBuilder<>::InsertPointGuard Guard(Builder); 2068 if (Invariant) 2069 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2070 2071 // Broadcast the scalar into all locations in the vector. 2072 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2073 2074 return Shuf; 2075 } 2076 2077 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2078 Value *Step) { 2079 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2080 assert(Val->getType()->getScalarType()->isIntegerTy() && 2081 "Elem must be an integer"); 2082 assert(Step->getType() == Val->getType()->getScalarType() && 2083 "Step has wrong type"); 2084 // Create the types. 2085 Type *ITy = Val->getType()->getScalarType(); 2086 VectorType *Ty = cast<VectorType>(Val->getType()); 2087 int VLen = Ty->getNumElements(); 2088 SmallVector<Constant*, 8> Indices; 2089 2090 // Create a vector of consecutive numbers from zero to VF. 2091 for (int i = 0; i < VLen; ++i) 2092 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2093 2094 // Add the consecutive indices to the vector value. 2095 Constant *Cv = ConstantVector::get(Indices); 2096 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2097 Step = Builder.CreateVectorSplat(VLen, Step); 2098 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2099 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2100 // which can be found from the original scalar operations. 2101 Step = Builder.CreateMul(Cv, Step); 2102 return Builder.CreateAdd(Val, Step, "induction"); 2103 } 2104 2105 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2106 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2107 auto *SE = PSE.getSE(); 2108 // Make sure that the pointer does not point to structs. 2109 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2110 return 0; 2111 2112 // If this value is a pointer induction variable we know it is consecutive. 2113 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2114 if (Phi && Inductions.count(Phi)) { 2115 InductionDescriptor II = Inductions[Phi]; 2116 return II.getConsecutiveDirection(); 2117 } 2118 2119 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2120 if (!Gep) 2121 return 0; 2122 2123 unsigned NumOperands = Gep->getNumOperands(); 2124 Value *GpPtr = Gep->getPointerOperand(); 2125 // If this GEP value is a consecutive pointer induction variable and all of 2126 // the indices are constant then we know it is consecutive. We can 2127 Phi = dyn_cast<PHINode>(GpPtr); 2128 if (Phi && Inductions.count(Phi)) { 2129 2130 // Make sure that the pointer does not point to structs. 2131 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2132 if (GepPtrType->getElementType()->isAggregateType()) 2133 return 0; 2134 2135 // Make sure that all of the index operands are loop invariant. 2136 for (unsigned i = 1; i < NumOperands; ++i) 2137 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2138 return 0; 2139 2140 InductionDescriptor II = Inductions[Phi]; 2141 return II.getConsecutiveDirection(); 2142 } 2143 2144 unsigned InductionOperand = getGEPInductionOperand(Gep); 2145 2146 // Check that all of the gep indices are uniform except for our induction 2147 // operand. 2148 for (unsigned i = 0; i != NumOperands; ++i) 2149 if (i != InductionOperand && 2150 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2151 return 0; 2152 2153 // We can emit wide load/stores only if the last non-zero index is the 2154 // induction variable. 2155 const SCEV *Last = nullptr; 2156 if (!Strides.count(Gep)) 2157 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2158 else { 2159 // Because of the multiplication by a stride we can have a s/zext cast. 2160 // We are going to replace this stride by 1 so the cast is safe to ignore. 2161 // 2162 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2163 // %0 = trunc i64 %indvars.iv to i32 2164 // %mul = mul i32 %0, %Stride1 2165 // %idxprom = zext i32 %mul to i64 << Safe cast. 2166 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2167 // 2168 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2169 Gep->getOperand(InductionOperand), Gep); 2170 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2171 Last = 2172 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2173 ? C->getOperand() 2174 : Last; 2175 } 2176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2177 const SCEV *Step = AR->getStepRecurrence(*SE); 2178 2179 // The memory is consecutive because the last index is consecutive 2180 // and all other indices are loop invariant. 2181 if (Step->isOne()) 2182 return 1; 2183 if (Step->isAllOnesValue()) 2184 return -1; 2185 } 2186 2187 return 0; 2188 } 2189 2190 bool LoopVectorizationLegality::isUniform(Value *V) { 2191 return LAI->isUniform(V); 2192 } 2193 2194 InnerLoopVectorizer::VectorParts& 2195 InnerLoopVectorizer::getVectorValue(Value *V) { 2196 assert(V != Induction && "The new induction variable should not be used."); 2197 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2198 2199 // If we have a stride that is replaced by one, do it here. 2200 if (Legal->hasStride(V)) 2201 V = ConstantInt::get(V->getType(), 1); 2202 2203 // If we have this scalar in the map, return it. 2204 if (WidenMap.has(V)) 2205 return WidenMap.get(V); 2206 2207 // If this scalar is unknown, assume that it is a constant or that it is 2208 // loop invariant. Broadcast V and save the value for future uses. 2209 Value *B = getBroadcastInstrs(V); 2210 return WidenMap.splat(V, B); 2211 } 2212 2213 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2214 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2215 SmallVector<Constant*, 8> ShuffleMask; 2216 for (unsigned i = 0; i < VF; ++i) 2217 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2218 2219 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2220 ConstantVector::get(ShuffleMask), 2221 "reverse"); 2222 } 2223 2224 // Get a mask to interleave \p NumVec vectors into a wide vector. 2225 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2226 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2227 // <0, 4, 1, 5, 2, 6, 3, 7> 2228 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2229 unsigned NumVec) { 2230 SmallVector<Constant *, 16> Mask; 2231 for (unsigned i = 0; i < VF; i++) 2232 for (unsigned j = 0; j < NumVec; j++) 2233 Mask.push_back(Builder.getInt32(j * VF + i)); 2234 2235 return ConstantVector::get(Mask); 2236 } 2237 2238 // Get the strided mask starting from index \p Start. 2239 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2240 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2241 unsigned Stride, unsigned VF) { 2242 SmallVector<Constant *, 16> Mask; 2243 for (unsigned i = 0; i < VF; i++) 2244 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2245 2246 return ConstantVector::get(Mask); 2247 } 2248 2249 // Get a mask of two parts: The first part consists of sequential integers 2250 // starting from 0, The second part consists of UNDEFs. 2251 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2252 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2253 unsigned NumUndef) { 2254 SmallVector<Constant *, 16> Mask; 2255 for (unsigned i = 0; i < NumInt; i++) 2256 Mask.push_back(Builder.getInt32(i)); 2257 2258 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2259 for (unsigned i = 0; i < NumUndef; i++) 2260 Mask.push_back(Undef); 2261 2262 return ConstantVector::get(Mask); 2263 } 2264 2265 // Concatenate two vectors with the same element type. The 2nd vector should 2266 // not have more elements than the 1st vector. If the 2nd vector has less 2267 // elements, extend it with UNDEFs. 2268 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2269 Value *V2) { 2270 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2271 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2272 assert(VecTy1 && VecTy2 && 2273 VecTy1->getScalarType() == VecTy2->getScalarType() && 2274 "Expect two vectors with the same element type"); 2275 2276 unsigned NumElts1 = VecTy1->getNumElements(); 2277 unsigned NumElts2 = VecTy2->getNumElements(); 2278 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2279 2280 if (NumElts1 > NumElts2) { 2281 // Extend with UNDEFs. 2282 Constant *ExtMask = 2283 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2284 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2285 } 2286 2287 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2288 return Builder.CreateShuffleVector(V1, V2, Mask); 2289 } 2290 2291 // Concatenate vectors in the given list. All vectors have the same type. 2292 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2293 ArrayRef<Value *> InputList) { 2294 unsigned NumVec = InputList.size(); 2295 assert(NumVec > 1 && "Should be at least two vectors"); 2296 2297 SmallVector<Value *, 8> ResList; 2298 ResList.append(InputList.begin(), InputList.end()); 2299 do { 2300 SmallVector<Value *, 8> TmpList; 2301 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2302 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2303 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2304 "Only the last vector may have a different type"); 2305 2306 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2307 } 2308 2309 // Push the last vector if the total number of vectors is odd. 2310 if (NumVec % 2 != 0) 2311 TmpList.push_back(ResList[NumVec - 1]); 2312 2313 ResList = TmpList; 2314 NumVec = ResList.size(); 2315 } while (NumVec > 1); 2316 2317 return ResList[0]; 2318 } 2319 2320 // Try to vectorize the interleave group that \p Instr belongs to. 2321 // 2322 // E.g. Translate following interleaved load group (factor = 3): 2323 // for (i = 0; i < N; i+=3) { 2324 // R = Pic[i]; // Member of index 0 2325 // G = Pic[i+1]; // Member of index 1 2326 // B = Pic[i+2]; // Member of index 2 2327 // ... // do something to R, G, B 2328 // } 2329 // To: 2330 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2331 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2332 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2333 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2334 // 2335 // Or translate following interleaved store group (factor = 3): 2336 // for (i = 0; i < N; i+=3) { 2337 // ... do something to R, G, B 2338 // Pic[i] = R; // Member of index 0 2339 // Pic[i+1] = G; // Member of index 1 2340 // Pic[i+2] = B; // Member of index 2 2341 // } 2342 // To: 2343 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2344 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2345 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2346 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2347 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2348 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2349 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2350 assert(Group && "Fail to get an interleaved access group."); 2351 2352 // Skip if current instruction is not the insert position. 2353 if (Instr != Group->getInsertPos()) 2354 return; 2355 2356 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2357 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2358 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2359 2360 // Prepare for the vector type of the interleaved load/store. 2361 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2362 unsigned InterleaveFactor = Group->getFactor(); 2363 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2364 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2365 2366 // Prepare for the new pointers. 2367 setDebugLocFromInst(Builder, Ptr); 2368 VectorParts &PtrParts = getVectorValue(Ptr); 2369 SmallVector<Value *, 2> NewPtrs; 2370 unsigned Index = Group->getIndex(Instr); 2371 for (unsigned Part = 0; Part < UF; Part++) { 2372 // Extract the pointer for current instruction from the pointer vector. A 2373 // reverse access uses the pointer in the last lane. 2374 Value *NewPtr = Builder.CreateExtractElement( 2375 PtrParts[Part], 2376 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2377 2378 // Notice current instruction could be any index. Need to adjust the address 2379 // to the member of index 0. 2380 // 2381 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2382 // b = A[i]; // Member of index 0 2383 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2384 // 2385 // E.g. A[i+1] = a; // Member of index 1 2386 // A[i] = b; // Member of index 0 2387 // A[i+2] = c; // Member of index 2 (Current instruction) 2388 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2389 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2390 2391 // Cast to the vector pointer type. 2392 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2393 } 2394 2395 setDebugLocFromInst(Builder, Instr); 2396 Value *UndefVec = UndefValue::get(VecTy); 2397 2398 // Vectorize the interleaved load group. 2399 if (LI) { 2400 for (unsigned Part = 0; Part < UF; Part++) { 2401 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2402 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2403 2404 for (unsigned i = 0; i < InterleaveFactor; i++) { 2405 Instruction *Member = Group->getMember(i); 2406 2407 // Skip the gaps in the group. 2408 if (!Member) 2409 continue; 2410 2411 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2412 Value *StridedVec = Builder.CreateShuffleVector( 2413 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2414 2415 // If this member has different type, cast the result type. 2416 if (Member->getType() != ScalarTy) { 2417 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2418 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2419 } 2420 2421 VectorParts &Entry = WidenMap.get(Member); 2422 Entry[Part] = 2423 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2424 } 2425 2426 addMetadata(NewLoadInstr, Instr); 2427 } 2428 return; 2429 } 2430 2431 // The sub vector type for current instruction. 2432 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2433 2434 // Vectorize the interleaved store group. 2435 for (unsigned Part = 0; Part < UF; Part++) { 2436 // Collect the stored vector from each member. 2437 SmallVector<Value *, 4> StoredVecs; 2438 for (unsigned i = 0; i < InterleaveFactor; i++) { 2439 // Interleaved store group doesn't allow a gap, so each index has a member 2440 Instruction *Member = Group->getMember(i); 2441 assert(Member && "Fail to get a member from an interleaved store group"); 2442 2443 Value *StoredVec = 2444 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2445 if (Group->isReverse()) 2446 StoredVec = reverseVector(StoredVec); 2447 2448 // If this member has different type, cast it to an unified type. 2449 if (StoredVec->getType() != SubVT) 2450 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2451 2452 StoredVecs.push_back(StoredVec); 2453 } 2454 2455 // Concatenate all vectors into a wide vector. 2456 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2457 2458 // Interleave the elements in the wide vector. 2459 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2460 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2461 "interleaved.vec"); 2462 2463 Instruction *NewStoreInstr = 2464 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2465 addMetadata(NewStoreInstr, Instr); 2466 } 2467 } 2468 2469 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2470 // Attempt to issue a wide load. 2471 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2472 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2473 2474 assert((LI || SI) && "Invalid Load/Store instruction"); 2475 2476 // Try to vectorize the interleave group if this access is interleaved. 2477 if (Legal->isAccessInterleaved(Instr)) 2478 return vectorizeInterleaveGroup(Instr); 2479 2480 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2481 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2482 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2483 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2484 // An alignment of 0 means target abi alignment. We need to use the scalar's 2485 // target abi alignment in such a case. 2486 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2487 if (!Alignment) 2488 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2489 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2490 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2491 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2492 2493 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2494 !Legal->isMaskRequired(SI)) 2495 return scalarizeInstruction(Instr, true); 2496 2497 if (ScalarAllocatedSize != VectorElementSize) 2498 return scalarizeInstruction(Instr); 2499 2500 // If the pointer is loop invariant scalarize the load. 2501 if (LI && Legal->isUniform(Ptr)) 2502 return scalarizeInstruction(Instr); 2503 2504 // If the pointer is non-consecutive and gather/scatter is not supported 2505 // scalarize the instruction. 2506 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2507 bool Reverse = ConsecutiveStride < 0; 2508 bool CreateGatherScatter = !ConsecutiveStride && 2509 ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2510 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2511 2512 if (!ConsecutiveStride && !CreateGatherScatter) 2513 return scalarizeInstruction(Instr); 2514 2515 Constant *Zero = Builder.getInt32(0); 2516 VectorParts &Entry = WidenMap.get(Instr); 2517 VectorParts VectorGep; 2518 2519 // Handle consecutive loads/stores. 2520 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2521 if (ConsecutiveStride) { 2522 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2523 setDebugLocFromInst(Builder, Gep); 2524 Value *PtrOperand = Gep->getPointerOperand(); 2525 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2526 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2527 2528 // Create the new GEP with the new induction variable. 2529 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2530 Gep2->setOperand(0, FirstBasePtr); 2531 Gep2->setName("gep.indvar.base"); 2532 Ptr = Builder.Insert(Gep2); 2533 } else if (Gep) { 2534 setDebugLocFromInst(Builder, Gep); 2535 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2536 OrigLoop) && 2537 "Base ptr must be invariant"); 2538 // The last index does not have to be the induction. It can be 2539 // consecutive and be a function of the index. For example A[I+1]; 2540 unsigned NumOperands = Gep->getNumOperands(); 2541 unsigned InductionOperand = getGEPInductionOperand(Gep); 2542 // Create the new GEP with the new induction variable. 2543 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2544 2545 for (unsigned i = 0; i < NumOperands; ++i) { 2546 Value *GepOperand = Gep->getOperand(i); 2547 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2548 2549 // Update last index or loop invariant instruction anchored in loop. 2550 if (i == InductionOperand || 2551 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2552 assert((i == InductionOperand || 2553 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2554 OrigLoop)) && 2555 "Must be last index or loop invariant"); 2556 2557 VectorParts &GEPParts = getVectorValue(GepOperand); 2558 Value *Index = GEPParts[0]; 2559 Index = Builder.CreateExtractElement(Index, Zero); 2560 Gep2->setOperand(i, Index); 2561 Gep2->setName("gep.indvar.idx"); 2562 } 2563 } 2564 Ptr = Builder.Insert(Gep2); 2565 } else { // No GEP 2566 // Use the induction element ptr. 2567 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2568 setDebugLocFromInst(Builder, Ptr); 2569 VectorParts &PtrVal = getVectorValue(Ptr); 2570 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2571 } 2572 } else { 2573 // At this point we should vector version of GEP for Gather or Scatter 2574 assert(CreateGatherScatter && "The instruction should be scalarized"); 2575 if (Gep) { 2576 SmallVector<VectorParts, 4> OpsV; 2577 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2578 // base or index of GEP scalar 2579 for (Value *Op : Gep->operands()) { 2580 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2581 OpsV.push_back(VectorParts(UF, Op)); 2582 else 2583 OpsV.push_back(getVectorValue(Op)); 2584 } 2585 2586 for (unsigned Part = 0; Part < UF; ++Part) { 2587 SmallVector<Value*, 4> Ops; 2588 Value *GEPBasePtr = OpsV[0][Part]; 2589 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2590 Ops.push_back(OpsV[i][Part]); 2591 Value *NewGep = Builder.CreateGEP(nullptr, GEPBasePtr, Ops, 2592 "VectorGep"); 2593 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2594 NewGep = Builder.CreateBitCast(NewGep, 2595 VectorType::get(Ptr->getType(), VF)); 2596 VectorGep.push_back(NewGep); 2597 } 2598 } else 2599 VectorGep = getVectorValue(Ptr); 2600 } 2601 2602 VectorParts Mask = createBlockInMask(Instr->getParent()); 2603 // Handle Stores: 2604 if (SI) { 2605 assert(!Legal->isUniform(SI->getPointerOperand()) && 2606 "We do not allow storing to uniform addresses"); 2607 setDebugLocFromInst(Builder, SI); 2608 // We don't want to update the value in the map as it might be used in 2609 // another expression. So don't use a reference type for "StoredVal". 2610 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2611 2612 for (unsigned Part = 0; Part < UF; ++Part) { 2613 Instruction *NewSI = nullptr; 2614 if (CreateGatherScatter) { 2615 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2616 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2617 Alignment, MaskPart); 2618 } else { 2619 // Calculate the pointer for the specific unroll-part. 2620 Value *PartPtr = 2621 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2622 2623 if (Reverse) { 2624 // If we store to reverse consecutive memory locations, then we need 2625 // to reverse the order of elements in the stored value. 2626 StoredVal[Part] = reverseVector(StoredVal[Part]); 2627 // If the address is consecutive but reversed, then the 2628 // wide store needs to start at the last vector element. 2629 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2630 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2631 Mask[Part] = reverseVector(Mask[Part]); 2632 } 2633 2634 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2635 DataTy->getPointerTo(AddressSpace)); 2636 2637 if (Legal->isMaskRequired(SI)) 2638 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2639 Mask[Part]); 2640 else 2641 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, 2642 Alignment); 2643 } 2644 addMetadata(NewSI, SI); 2645 } 2646 return; 2647 } 2648 2649 // Handle loads. 2650 assert(LI && "Must have a load instruction"); 2651 setDebugLocFromInst(Builder, LI); 2652 for (unsigned Part = 0; Part < UF; ++Part) { 2653 Instruction* NewLI; 2654 if (CreateGatherScatter) { 2655 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2656 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, 2657 MaskPart, 0, "wide.masked.gather"); 2658 Entry[Part] = NewLI; 2659 } else { 2660 // Calculate the pointer for the specific unroll-part. 2661 Value *PartPtr = 2662 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2663 2664 if (Reverse) { 2665 // If the address is consecutive but reversed, then the 2666 // wide load needs to start at the last vector element. 2667 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2668 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2669 Mask[Part] = reverseVector(Mask[Part]); 2670 } 2671 2672 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2673 DataTy->getPointerTo(AddressSpace)); 2674 if (Legal->isMaskRequired(LI)) 2675 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2676 UndefValue::get(DataTy), 2677 "wide.masked.load"); 2678 else 2679 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2680 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2681 } 2682 addMetadata(NewLI, LI); 2683 } 2684 } 2685 2686 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2687 bool IfPredicateStore) { 2688 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2689 // Holds vector parameters or scalars, in case of uniform vals. 2690 SmallVector<VectorParts, 4> Params; 2691 2692 setDebugLocFromInst(Builder, Instr); 2693 2694 // Find all of the vectorized parameters. 2695 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2696 Value *SrcOp = Instr->getOperand(op); 2697 2698 // If we are accessing the old induction variable, use the new one. 2699 if (SrcOp == OldInduction) { 2700 Params.push_back(getVectorValue(SrcOp)); 2701 continue; 2702 } 2703 2704 // Try using previously calculated values. 2705 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2706 2707 // If the src is an instruction that appeared earlier in the basic block, 2708 // then it should already be vectorized. 2709 if (SrcInst && OrigLoop->contains(SrcInst)) { 2710 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2711 // The parameter is a vector value from earlier. 2712 Params.push_back(WidenMap.get(SrcInst)); 2713 } else { 2714 // The parameter is a scalar from outside the loop. Maybe even a constant. 2715 VectorParts Scalars; 2716 Scalars.append(UF, SrcOp); 2717 Params.push_back(Scalars); 2718 } 2719 } 2720 2721 assert(Params.size() == Instr->getNumOperands() && 2722 "Invalid number of operands"); 2723 2724 // Does this instruction return a value ? 2725 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2726 2727 Value *UndefVec = IsVoidRetTy ? nullptr : 2728 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2729 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2730 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2731 2732 VectorParts Cond; 2733 if (IfPredicateStore) { 2734 assert(Instr->getParent()->getSinglePredecessor() && 2735 "Only support single predecessor blocks"); 2736 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2737 Instr->getParent()); 2738 } 2739 2740 // For each vector unroll 'part': 2741 for (unsigned Part = 0; Part < UF; ++Part) { 2742 // For each scalar that we create: 2743 for (unsigned Width = 0; Width < VF; ++Width) { 2744 2745 // Start if-block. 2746 Value *Cmp = nullptr; 2747 if (IfPredicateStore) { 2748 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2749 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2750 ConstantInt::get(Cmp->getType(), 1)); 2751 } 2752 2753 Instruction *Cloned = Instr->clone(); 2754 if (!IsVoidRetTy) 2755 Cloned->setName(Instr->getName() + ".cloned"); 2756 // Replace the operands of the cloned instructions with extracted scalars. 2757 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2758 Value *Op = Params[op][Part]; 2759 // Param is a vector. Need to extract the right lane. 2760 if (Op->getType()->isVectorTy()) 2761 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2762 Cloned->setOperand(op, Op); 2763 } 2764 addNewMetadata(Cloned, Instr); 2765 2766 // Place the cloned scalar in the new loop. 2767 Builder.Insert(Cloned); 2768 2769 // If we just cloned a new assumption, add it the assumption cache. 2770 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2771 if (II->getIntrinsicID() == Intrinsic::assume) 2772 AC->registerAssumption(II); 2773 2774 // If the original scalar returns a value we need to place it in a vector 2775 // so that future users will be able to use it. 2776 if (!IsVoidRetTy) 2777 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2778 Builder.getInt32(Width)); 2779 // End if-block. 2780 if (IfPredicateStore) 2781 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 2782 Cmp)); 2783 } 2784 } 2785 } 2786 2787 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2788 Value *End, Value *Step, 2789 Instruction *DL) { 2790 BasicBlock *Header = L->getHeader(); 2791 BasicBlock *Latch = L->getLoopLatch(); 2792 // As we're just creating this loop, it's possible no latch exists 2793 // yet. If so, use the header as this will be a single block loop. 2794 if (!Latch) 2795 Latch = Header; 2796 2797 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2798 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2799 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2800 2801 Builder.SetInsertPoint(Latch->getTerminator()); 2802 2803 // Create i+1 and fill the PHINode. 2804 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2805 Induction->addIncoming(Start, L->getLoopPreheader()); 2806 Induction->addIncoming(Next, Latch); 2807 // Create the compare. 2808 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2809 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2810 2811 // Now we have two terminators. Remove the old one from the block. 2812 Latch->getTerminator()->eraseFromParent(); 2813 2814 return Induction; 2815 } 2816 2817 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2818 if (TripCount) 2819 return TripCount; 2820 2821 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2822 // Find the loop boundaries. 2823 ScalarEvolution *SE = PSE.getSE(); 2824 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2825 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2826 "Invalid loop count"); 2827 2828 Type *IdxTy = Legal->getWidestInductionType(); 2829 2830 // The exit count might have the type of i64 while the phi is i32. This can 2831 // happen if we have an induction variable that is sign extended before the 2832 // compare. The only way that we get a backedge taken count is that the 2833 // induction variable was signed and as such will not overflow. In such a case 2834 // truncation is legal. 2835 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2836 IdxTy->getPrimitiveSizeInBits()) 2837 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2838 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2839 2840 // Get the total trip count from the count by adding 1. 2841 const SCEV *ExitCount = SE->getAddExpr( 2842 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2843 2844 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2845 2846 // Expand the trip count and place the new instructions in the preheader. 2847 // Notice that the pre-header does not change, only the loop body. 2848 SCEVExpander Exp(*SE, DL, "induction"); 2849 2850 // Count holds the overall loop count (N). 2851 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2852 L->getLoopPreheader()->getTerminator()); 2853 2854 if (TripCount->getType()->isPointerTy()) 2855 TripCount = 2856 CastInst::CreatePointerCast(TripCount, IdxTy, 2857 "exitcount.ptrcnt.to.int", 2858 L->getLoopPreheader()->getTerminator()); 2859 2860 return TripCount; 2861 } 2862 2863 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2864 if (VectorTripCount) 2865 return VectorTripCount; 2866 2867 Value *TC = getOrCreateTripCount(L); 2868 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2869 2870 // Now we need to generate the expression for N - (N % VF), which is 2871 // the part that the vectorized body will execute. 2872 // The loop step is equal to the vectorization factor (num of SIMD elements) 2873 // times the unroll factor (num of SIMD instructions). 2874 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2875 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2876 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2877 2878 return VectorTripCount; 2879 } 2880 2881 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2882 BasicBlock *Bypass) { 2883 Value *Count = getOrCreateTripCount(L); 2884 BasicBlock *BB = L->getLoopPreheader(); 2885 IRBuilder<> Builder(BB->getTerminator()); 2886 2887 // Generate code to check that the loop's trip count that we computed by 2888 // adding one to the backedge-taken count will not overflow. 2889 Value *CheckMinIters = 2890 Builder.CreateICmpULT(Count, 2891 ConstantInt::get(Count->getType(), VF * UF), 2892 "min.iters.check"); 2893 2894 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2895 "min.iters.checked"); 2896 // Update dominator tree immediately if the generated block is a 2897 // LoopBypassBlock because SCEV expansions to generate loop bypass 2898 // checks may query it before the current function is finished. 2899 DT->addNewBlock(NewBB, BB); 2900 if (L->getParentLoop()) 2901 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2902 ReplaceInstWithInst(BB->getTerminator(), 2903 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2904 LoopBypassBlocks.push_back(BB); 2905 } 2906 2907 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2908 BasicBlock *Bypass) { 2909 Value *TC = getOrCreateVectorTripCount(L); 2910 BasicBlock *BB = L->getLoopPreheader(); 2911 IRBuilder<> Builder(BB->getTerminator()); 2912 2913 // Now, compare the new count to zero. If it is zero skip the vector loop and 2914 // jump to the scalar loop. 2915 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2916 "cmp.zero"); 2917 2918 // Generate code to check that the loop's trip count that we computed by 2919 // adding one to the backedge-taken count will not overflow. 2920 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), 2921 "vector.ph"); 2922 // Update dominator tree immediately if the generated block is a 2923 // LoopBypassBlock because SCEV expansions to generate loop bypass 2924 // checks may query it before the current function is finished. 2925 DT->addNewBlock(NewBB, BB); 2926 if (L->getParentLoop()) 2927 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2928 ReplaceInstWithInst(BB->getTerminator(), 2929 BranchInst::Create(Bypass, NewBB, Cmp)); 2930 LoopBypassBlocks.push_back(BB); 2931 } 2932 2933 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2934 BasicBlock *BB = L->getLoopPreheader(); 2935 2936 // Generate the code to check that the SCEV assumptions that we made. 2937 // We want the new basic block to start at the first instruction in a 2938 // sequence of instructions that form a check. 2939 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2940 "scev.check"); 2941 Value *SCEVCheck = 2942 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2943 2944 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2945 if (C->isZero()) 2946 return; 2947 2948 // Create a new block containing the stride check. 2949 BB->setName("vector.scevcheck"); 2950 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2951 // Update dominator tree immediately if the generated block is a 2952 // LoopBypassBlock because SCEV expansions to generate loop bypass 2953 // checks may query it before the current function is finished. 2954 DT->addNewBlock(NewBB, BB); 2955 if (L->getParentLoop()) 2956 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2957 ReplaceInstWithInst(BB->getTerminator(), 2958 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2959 LoopBypassBlocks.push_back(BB); 2960 AddedSafetyChecks = true; 2961 } 2962 2963 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 2964 BasicBlock *Bypass) { 2965 BasicBlock *BB = L->getLoopPreheader(); 2966 2967 // Generate the code that checks in runtime if arrays overlap. We put the 2968 // checks into a separate block to make the more common case of few elements 2969 // faster. 2970 Instruction *FirstCheckInst; 2971 Instruction *MemRuntimeCheck; 2972 std::tie(FirstCheckInst, MemRuntimeCheck) = 2973 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2974 if (!MemRuntimeCheck) 2975 return; 2976 2977 // Create a new block containing the memory check. 2978 BB->setName("vector.memcheck"); 2979 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2980 // Update dominator tree immediately if the generated block is a 2981 // LoopBypassBlock because SCEV expansions to generate loop bypass 2982 // checks may query it before the current function is finished. 2983 DT->addNewBlock(NewBB, BB); 2984 if (L->getParentLoop()) 2985 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2986 ReplaceInstWithInst(BB->getTerminator(), 2987 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2988 LoopBypassBlocks.push_back(BB); 2989 AddedSafetyChecks = true; 2990 2991 // We currently don't use LoopVersioning for the actual loop cloning but we 2992 // still use it to add the noalias metadata. 2993 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2994 PSE.getSE()); 2995 LVer->prepareNoAliasMetadata(); 2996 } 2997 2998 2999 void InnerLoopVectorizer::createEmptyLoop() { 3000 /* 3001 In this function we generate a new loop. The new loop will contain 3002 the vectorized instructions while the old loop will continue to run the 3003 scalar remainder. 3004 3005 [ ] <-- loop iteration number check. 3006 / | 3007 / v 3008 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3009 | / | 3010 | / v 3011 || [ ] <-- vector pre header. 3012 |/ | 3013 | v 3014 | [ ] \ 3015 | [ ]_| <-- vector loop. 3016 | | 3017 | v 3018 | -[ ] <--- middle-block. 3019 | / | 3020 | / v 3021 -|- >[ ] <--- new preheader. 3022 | | 3023 | v 3024 | [ ] \ 3025 | [ ]_| <-- old scalar loop to handle remainder. 3026 \ | 3027 \ v 3028 >[ ] <-- exit block. 3029 ... 3030 */ 3031 3032 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3033 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3034 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3035 assert(VectorPH && "Invalid loop structure"); 3036 assert(ExitBlock && "Must have an exit block"); 3037 3038 // Some loops have a single integer induction variable, while other loops 3039 // don't. One example is c++ iterators that often have multiple pointer 3040 // induction variables. In the code below we also support a case where we 3041 // don't have a single induction variable. 3042 // 3043 // We try to obtain an induction variable from the original loop as hard 3044 // as possible. However if we don't find one that: 3045 // - is an integer 3046 // - counts from zero, stepping by one 3047 // - is the size of the widest induction variable type 3048 // then we create a new one. 3049 OldInduction = Legal->getInduction(); 3050 Type *IdxTy = Legal->getWidestInductionType(); 3051 3052 // Split the single block loop into the two loop structure described above. 3053 BasicBlock *VecBody = 3054 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3055 BasicBlock *MiddleBlock = 3056 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3057 BasicBlock *ScalarPH = 3058 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3059 3060 // Create and register the new vector loop. 3061 Loop* Lp = new Loop(); 3062 Loop *ParentLoop = OrigLoop->getParentLoop(); 3063 3064 // Insert the new loop into the loop nest and register the new basic blocks 3065 // before calling any utilities such as SCEV that require valid LoopInfo. 3066 if (ParentLoop) { 3067 ParentLoop->addChildLoop(Lp); 3068 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3069 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3070 } else { 3071 LI->addTopLevelLoop(Lp); 3072 } 3073 Lp->addBasicBlockToLoop(VecBody, *LI); 3074 3075 // Find the loop boundaries. 3076 Value *Count = getOrCreateTripCount(Lp); 3077 3078 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3079 3080 // We need to test whether the backedge-taken count is uint##_max. Adding one 3081 // to it will cause overflow and an incorrect loop trip count in the vector 3082 // body. In case of overflow we want to directly jump to the scalar remainder 3083 // loop. 3084 emitMinimumIterationCountCheck(Lp, ScalarPH); 3085 // Now, compare the new count to zero. If it is zero skip the vector loop and 3086 // jump to the scalar loop. 3087 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3088 // Generate the code to check any assumptions that we've made for SCEV 3089 // expressions. 3090 emitSCEVChecks(Lp, ScalarPH); 3091 3092 // Generate the code that checks in runtime if arrays overlap. We put the 3093 // checks into a separate block to make the more common case of few elements 3094 // faster. 3095 emitMemRuntimeChecks(Lp, ScalarPH); 3096 3097 // Generate the induction variable. 3098 // The loop step is equal to the vectorization factor (num of SIMD elements) 3099 // times the unroll factor (num of SIMD instructions). 3100 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3101 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3102 Induction = 3103 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3104 getDebugLocFromInstOrOperands(OldInduction)); 3105 3106 // We are going to resume the execution of the scalar loop. 3107 // Go over all of the induction variables that we found and fix the 3108 // PHIs that are left in the scalar version of the loop. 3109 // The starting values of PHI nodes depend on the counter of the last 3110 // iteration in the vectorized loop. 3111 // If we come from a bypass edge then we need to start from the original 3112 // start value. 3113 3114 // This variable saves the new starting index for the scalar loop. It is used 3115 // to test if there are any tail iterations left once the vector loop has 3116 // completed. 3117 LoopVectorizationLegality::InductionList::iterator I, E; 3118 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3119 for (I = List->begin(), E = List->end(); I != E; ++I) { 3120 PHINode *OrigPhi = I->first; 3121 InductionDescriptor II = I->second; 3122 3123 // Create phi nodes to merge from the backedge-taken check block. 3124 PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, 3125 "bc.resume.val", 3126 ScalarPH->getTerminator()); 3127 Value *EndValue; 3128 if (OrigPhi == OldInduction) { 3129 // We know what the end value is. 3130 EndValue = CountRoundDown; 3131 } else { 3132 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3133 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3134 II.getStepValue()->getType(), 3135 "cast.crd"); 3136 EndValue = II.transform(B, CRD); 3137 EndValue->setName("ind.end"); 3138 } 3139 3140 // The new PHI merges the original incoming value, in case of a bypass, 3141 // or the value at the end of the vectorized loop. 3142 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3143 3144 // Fix the scalar body counter (PHI node). 3145 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3146 3147 // The old induction's phi node in the scalar body needs the truncated 3148 // value. 3149 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3150 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3151 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3152 } 3153 3154 // Add a check in the middle block to see if we have completed 3155 // all of the iterations in the first vector loop. 3156 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3157 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3158 CountRoundDown, "cmp.n", 3159 MiddleBlock->getTerminator()); 3160 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3161 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3162 3163 // Get ready to start creating new instructions into the vectorized body. 3164 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3165 3166 // Save the state. 3167 LoopVectorPreHeader = Lp->getLoopPreheader(); 3168 LoopScalarPreHeader = ScalarPH; 3169 LoopMiddleBlock = MiddleBlock; 3170 LoopExitBlock = ExitBlock; 3171 LoopVectorBody.push_back(VecBody); 3172 LoopScalarBody = OldBasicBlock; 3173 3174 LoopVectorizeHints Hints(Lp, true); 3175 Hints.setAlreadyVectorized(); 3176 } 3177 3178 namespace { 3179 struct CSEDenseMapInfo { 3180 static bool canHandle(Instruction *I) { 3181 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3182 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3183 } 3184 static inline Instruction *getEmptyKey() { 3185 return DenseMapInfo<Instruction *>::getEmptyKey(); 3186 } 3187 static inline Instruction *getTombstoneKey() { 3188 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3189 } 3190 static unsigned getHashValue(Instruction *I) { 3191 assert(canHandle(I) && "Unknown instruction!"); 3192 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3193 I->value_op_end())); 3194 } 3195 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3196 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3197 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3198 return LHS == RHS; 3199 return LHS->isIdenticalTo(RHS); 3200 } 3201 }; 3202 } 3203 3204 /// \brief Check whether this block is a predicated block. 3205 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 3206 /// = ...; " blocks. We start with one vectorized basic block. For every 3207 /// conditional block we split this vectorized block. Therefore, every second 3208 /// block will be a predicated one. 3209 static bool isPredicatedBlock(unsigned BlockNum) { 3210 return BlockNum % 2; 3211 } 3212 3213 ///\brief Perform cse of induction variable instructions. 3214 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 3215 // Perform simple cse. 3216 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3217 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 3218 BasicBlock *BB = BBs[i]; 3219 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3220 Instruction *In = &*I++; 3221 3222 if (!CSEDenseMapInfo::canHandle(In)) 3223 continue; 3224 3225 // Check if we can replace this instruction with any of the 3226 // visited instructions. 3227 if (Instruction *V = CSEMap.lookup(In)) { 3228 In->replaceAllUsesWith(V); 3229 In->eraseFromParent(); 3230 continue; 3231 } 3232 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 3233 // ...;" blocks for predicated stores. Every second block is a predicated 3234 // block. 3235 if (isPredicatedBlock(i)) 3236 continue; 3237 3238 CSEMap[In] = In; 3239 } 3240 } 3241 } 3242 3243 /// \brief Adds a 'fast' flag to floating point operations. 3244 static Value *addFastMathFlag(Value *V) { 3245 if (isa<FPMathOperator>(V)){ 3246 FastMathFlags Flags; 3247 Flags.setUnsafeAlgebra(); 3248 cast<Instruction>(V)->setFastMathFlags(Flags); 3249 } 3250 return V; 3251 } 3252 3253 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3254 /// the result needs to be inserted and/or extracted from vectors. 3255 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3256 const TargetTransformInfo &TTI) { 3257 if (Ty->isVoidTy()) 3258 return 0; 3259 3260 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3261 unsigned Cost = 0; 3262 3263 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3264 if (Insert) 3265 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3266 if (Extract) 3267 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3268 } 3269 3270 return Cost; 3271 } 3272 3273 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3274 // Return the cost of the instruction, including scalarization overhead if it's 3275 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3276 // i.e. either vector version isn't available, or is too expensive. 3277 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3278 const TargetTransformInfo &TTI, 3279 const TargetLibraryInfo *TLI, 3280 bool &NeedToScalarize) { 3281 Function *F = CI->getCalledFunction(); 3282 StringRef FnName = CI->getCalledFunction()->getName(); 3283 Type *ScalarRetTy = CI->getType(); 3284 SmallVector<Type *, 4> Tys, ScalarTys; 3285 for (auto &ArgOp : CI->arg_operands()) 3286 ScalarTys.push_back(ArgOp->getType()); 3287 3288 // Estimate cost of scalarized vector call. The source operands are assumed 3289 // to be vectors, so we need to extract individual elements from there, 3290 // execute VF scalar calls, and then gather the result into the vector return 3291 // value. 3292 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3293 if (VF == 1) 3294 return ScalarCallCost; 3295 3296 // Compute corresponding vector type for return value and arguments. 3297 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3298 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3299 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3300 3301 // Compute costs of unpacking argument values for the scalar calls and 3302 // packing the return values to a vector. 3303 unsigned ScalarizationCost = 3304 getScalarizationOverhead(RetTy, true, false, TTI); 3305 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3306 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3307 3308 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3309 3310 // If we can't emit a vector call for this function, then the currently found 3311 // cost is the cost we need to return. 3312 NeedToScalarize = true; 3313 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3314 return Cost; 3315 3316 // If the corresponding vector cost is cheaper, return its cost. 3317 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3318 if (VectorCallCost < Cost) { 3319 NeedToScalarize = false; 3320 return VectorCallCost; 3321 } 3322 return Cost; 3323 } 3324 3325 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3326 // factor VF. Return the cost of the instruction, including scalarization 3327 // overhead if it's needed. 3328 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3329 const TargetTransformInfo &TTI, 3330 const TargetLibraryInfo *TLI) { 3331 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3332 assert(ID && "Expected intrinsic call!"); 3333 3334 Type *RetTy = ToVectorTy(CI->getType(), VF); 3335 SmallVector<Type *, 4> Tys; 3336 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3337 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3338 3339 FastMathFlags FMF; 3340 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3341 FMF = FPMO->getFastMathFlags(); 3342 3343 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3344 } 3345 3346 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3347 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3348 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3349 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3350 } 3351 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3352 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3353 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3354 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3355 } 3356 3357 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3358 // For every instruction `I` in MinBWs, truncate the operands, create a 3359 // truncated version of `I` and reextend its result. InstCombine runs 3360 // later and will remove any ext/trunc pairs. 3361 // 3362 for (auto &KV : MinBWs) { 3363 VectorParts &Parts = WidenMap.get(KV.first); 3364 for (Value *&I : Parts) { 3365 if (I->use_empty()) 3366 continue; 3367 Type *OriginalTy = I->getType(); 3368 Type *ScalarTruncatedTy = IntegerType::get(OriginalTy->getContext(), 3369 KV.second); 3370 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3371 OriginalTy->getVectorNumElements()); 3372 if (TruncatedTy == OriginalTy) 3373 continue; 3374 3375 if (!isa<Instruction>(I)) 3376 continue; 3377 3378 IRBuilder<> B(cast<Instruction>(I)); 3379 auto ShrinkOperand = [&](Value *V) -> Value* { 3380 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3381 if (ZI->getSrcTy() == TruncatedTy) 3382 return ZI->getOperand(0); 3383 return B.CreateZExtOrTrunc(V, TruncatedTy); 3384 }; 3385 3386 // The actual instruction modification depends on the instruction type, 3387 // unfortunately. 3388 Value *NewI = nullptr; 3389 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3390 NewI = B.CreateBinOp(BO->getOpcode(), 3391 ShrinkOperand(BO->getOperand(0)), 3392 ShrinkOperand(BO->getOperand(1))); 3393 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3394 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3395 NewI = B.CreateICmp(CI->getPredicate(), 3396 ShrinkOperand(CI->getOperand(0)), 3397 ShrinkOperand(CI->getOperand(1))); 3398 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3399 NewI = B.CreateSelect(SI->getCondition(), 3400 ShrinkOperand(SI->getTrueValue()), 3401 ShrinkOperand(SI->getFalseValue())); 3402 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3403 switch (CI->getOpcode()) { 3404 default: llvm_unreachable("Unhandled cast!"); 3405 case Instruction::Trunc: 3406 NewI = ShrinkOperand(CI->getOperand(0)); 3407 break; 3408 case Instruction::SExt: 3409 NewI = B.CreateSExtOrTrunc(CI->getOperand(0), 3410 smallestIntegerVectorType(OriginalTy, 3411 TruncatedTy)); 3412 break; 3413 case Instruction::ZExt: 3414 NewI = B.CreateZExtOrTrunc(CI->getOperand(0), 3415 smallestIntegerVectorType(OriginalTy, 3416 TruncatedTy)); 3417 break; 3418 } 3419 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3420 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3421 auto *O0 = 3422 B.CreateZExtOrTrunc(SI->getOperand(0), 3423 VectorType::get(ScalarTruncatedTy, Elements0)); 3424 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3425 auto *O1 = 3426 B.CreateZExtOrTrunc(SI->getOperand(1), 3427 VectorType::get(ScalarTruncatedTy, Elements1)); 3428 3429 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3430 } else if (isa<LoadInst>(I)) { 3431 // Don't do anything with the operands, just extend the result. 3432 continue; 3433 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3434 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3435 auto *O0 = B.CreateZExtOrTrunc( 3436 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3437 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3438 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3439 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3440 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3441 auto *O0 = B.CreateZExtOrTrunc( 3442 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3443 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3444 } else { 3445 llvm_unreachable("Unhandled instruction type!"); 3446 } 3447 3448 // Lastly, extend the result. 3449 NewI->takeName(cast<Instruction>(I)); 3450 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3451 I->replaceAllUsesWith(Res); 3452 cast<Instruction>(I)->eraseFromParent(); 3453 I = Res; 3454 } 3455 } 3456 3457 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3458 for (auto &KV : MinBWs) { 3459 VectorParts &Parts = WidenMap.get(KV.first); 3460 for (Value *&I : Parts) { 3461 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3462 if (Inst && Inst->use_empty()) { 3463 Value *NewI = Inst->getOperand(0); 3464 Inst->eraseFromParent(); 3465 I = NewI; 3466 } 3467 } 3468 } 3469 } 3470 3471 void InnerLoopVectorizer::vectorizeLoop() { 3472 //===------------------------------------------------===// 3473 // 3474 // Notice: any optimization or new instruction that go 3475 // into the code below should be also be implemented in 3476 // the cost-model. 3477 // 3478 //===------------------------------------------------===// 3479 Constant *Zero = Builder.getInt32(0); 3480 3481 // In order to support recurrences we need to be able to vectorize Phi nodes. 3482 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3483 // we create a new vector PHI node with no incoming edges. We use this value 3484 // when we vectorize all of the instructions that use the PHI. Next, after 3485 // all of the instructions in the block are complete we add the new incoming 3486 // edges to the PHI. At this point all of the instructions in the basic block 3487 // are vectorized, so we can use them to construct the PHI. 3488 PhiVector PHIsToFix; 3489 3490 // Scan the loop in a topological order to ensure that defs are vectorized 3491 // before users. 3492 LoopBlocksDFS DFS(OrigLoop); 3493 DFS.perform(LI); 3494 3495 // Vectorize all of the blocks in the original loop. 3496 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3497 be = DFS.endRPO(); bb != be; ++bb) 3498 vectorizeBlockInLoop(*bb, &PHIsToFix); 3499 3500 // Insert truncates and extends for any truncated instructions as hints to 3501 // InstCombine. 3502 if (VF > 1) 3503 truncateToMinimalBitwidths(); 3504 3505 // At this point every instruction in the original loop is widened to a 3506 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3507 // nodes are currently empty because we did not want to introduce cycles. 3508 // This is the second stage of vectorizing recurrences. 3509 for (PHINode *Phi : PHIsToFix) { 3510 assert(Phi && "Unable to recover vectorized PHI"); 3511 3512 // Handle first-order recurrences that need to be fixed. 3513 if (Legal->isFirstOrderRecurrence(Phi)) { 3514 fixFirstOrderRecurrence(Phi); 3515 continue; 3516 } 3517 3518 // If the phi node is not a first-order recurrence, it must be a reduction. 3519 // Get it's reduction variable descriptor. 3520 assert(Legal->isReductionVariable(Phi) && 3521 "Unable to find the reduction variable"); 3522 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3523 3524 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3525 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3526 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3527 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3528 RdxDesc.getMinMaxRecurrenceKind(); 3529 setDebugLocFromInst(Builder, ReductionStartValue); 3530 3531 // We need to generate a reduction vector from the incoming scalar. 3532 // To do so, we need to generate the 'identity' vector and override 3533 // one of the elements with the incoming scalar reduction. We need 3534 // to do it in the vector-loop preheader. 3535 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3536 3537 // This is the vector-clone of the value that leaves the loop. 3538 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3539 Type *VecTy = VectorExit[0]->getType(); 3540 3541 // Find the reduction identity variable. Zero for addition, or, xor, 3542 // one for multiplication, -1 for And. 3543 Value *Identity; 3544 Value *VectorStart; 3545 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3546 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3547 // MinMax reduction have the start value as their identify. 3548 if (VF == 1) { 3549 VectorStart = Identity = ReductionStartValue; 3550 } else { 3551 VectorStart = Identity = 3552 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3553 } 3554 } else { 3555 // Handle other reduction kinds: 3556 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3557 RK, VecTy->getScalarType()); 3558 if (VF == 1) { 3559 Identity = Iden; 3560 // This vector is the Identity vector where the first element is the 3561 // incoming scalar reduction. 3562 VectorStart = ReductionStartValue; 3563 } else { 3564 Identity = ConstantVector::getSplat(VF, Iden); 3565 3566 // This vector is the Identity vector where the first element is the 3567 // incoming scalar reduction. 3568 VectorStart = 3569 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3570 } 3571 } 3572 3573 // Fix the vector-loop phi. 3574 3575 // Reductions do not have to start at zero. They can start with 3576 // any loop invariant values. 3577 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3578 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3579 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3580 VectorParts &Val = getVectorValue(LoopVal); 3581 for (unsigned part = 0; part < UF; ++part) { 3582 // Make sure to add the reduction stat value only to the 3583 // first unroll part. 3584 Value *StartVal = (part == 0) ? VectorStart : Identity; 3585 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3586 LoopVectorPreHeader); 3587 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3588 LoopVectorBody.back()); 3589 } 3590 3591 // Before each round, move the insertion point right between 3592 // the PHIs and the values we are going to write. 3593 // This allows us to write both PHINodes and the extractelement 3594 // instructions. 3595 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3596 3597 VectorParts RdxParts = getVectorValue(LoopExitInst); 3598 setDebugLocFromInst(Builder, LoopExitInst); 3599 3600 // If the vector reduction can be performed in a smaller type, we truncate 3601 // then extend the loop exit value to enable InstCombine to evaluate the 3602 // entire expression in the smaller type. 3603 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3604 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3605 Builder.SetInsertPoint(LoopVectorBody.back()->getTerminator()); 3606 for (unsigned part = 0; part < UF; ++part) { 3607 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3608 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3609 : Builder.CreateZExt(Trunc, VecTy); 3610 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3611 UI != RdxParts[part]->user_end();) 3612 if (*UI != Trunc) { 3613 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3614 RdxParts[part] = Extnd; 3615 } else { 3616 ++UI; 3617 } 3618 } 3619 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3620 for (unsigned part = 0; part < UF; ++part) 3621 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3622 } 3623 3624 // Reduce all of the unrolled parts into a single vector. 3625 Value *ReducedPartRdx = RdxParts[0]; 3626 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3627 setDebugLocFromInst(Builder, ReducedPartRdx); 3628 for (unsigned part = 1; part < UF; ++part) { 3629 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3630 // Floating point operations had to be 'fast' to enable the reduction. 3631 ReducedPartRdx = addFastMathFlag( 3632 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3633 ReducedPartRdx, "bin.rdx")); 3634 else 3635 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3636 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3637 } 3638 3639 if (VF > 1) { 3640 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3641 // and vector ops, reducing the set of values being computed by half each 3642 // round. 3643 assert(isPowerOf2_32(VF) && 3644 "Reduction emission only supported for pow2 vectors!"); 3645 Value *TmpVec = ReducedPartRdx; 3646 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3647 for (unsigned i = VF; i != 1; i >>= 1) { 3648 // Move the upper half of the vector to the lower half. 3649 for (unsigned j = 0; j != i/2; ++j) 3650 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3651 3652 // Fill the rest of the mask with undef. 3653 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3654 UndefValue::get(Builder.getInt32Ty())); 3655 3656 Value *Shuf = 3657 Builder.CreateShuffleVector(TmpVec, 3658 UndefValue::get(TmpVec->getType()), 3659 ConstantVector::get(ShuffleMask), 3660 "rdx.shuf"); 3661 3662 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3663 // Floating point operations had to be 'fast' to enable the reduction. 3664 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3665 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3666 else 3667 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3668 TmpVec, Shuf); 3669 } 3670 3671 // The result is in the first element of the vector. 3672 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3673 Builder.getInt32(0)); 3674 3675 // If the reduction can be performed in a smaller type, we need to extend 3676 // the reduction to the wider type before we branch to the original loop. 3677 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3678 ReducedPartRdx = 3679 RdxDesc.isSigned() 3680 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3681 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3682 } 3683 3684 // Create a phi node that merges control-flow from the backedge-taken check 3685 // block and the middle block. 3686 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3687 LoopScalarPreHeader->getTerminator()); 3688 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3689 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3690 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3691 3692 // Now, we need to fix the users of the reduction variable 3693 // inside and outside of the scalar remainder loop. 3694 // We know that the loop is in LCSSA form. We need to update the 3695 // PHI nodes in the exit blocks. 3696 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3697 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3698 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3699 if (!LCSSAPhi) break; 3700 3701 // All PHINodes need to have a single entry edge, or two if 3702 // we already fixed them. 3703 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3704 3705 // We found our reduction value exit-PHI. Update it with the 3706 // incoming bypass edge. 3707 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3708 // Add an edge coming from the bypass. 3709 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3710 break; 3711 } 3712 }// end of the LCSSA phi scan. 3713 3714 // Fix the scalar loop reduction variable with the incoming reduction sum 3715 // from the vector body and from the backedge value. 3716 int IncomingEdgeBlockIdx = 3717 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3718 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3719 // Pick the other block. 3720 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3721 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3722 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3723 } // end of for each Phi in PHIsToFix. 3724 3725 fixLCSSAPHIs(); 3726 3727 // Make sure DomTree is updated. 3728 updateAnalysis(); 3729 3730 // Predicate any stores. 3731 for (auto KV : PredicatedStores) { 3732 BasicBlock::iterator I(KV.first); 3733 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3734 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3735 /*BranchWeights=*/nullptr, DT, LI); 3736 I->moveBefore(T); 3737 I->getParent()->setName("pred.store.if"); 3738 BB->setName("pred.store.continue"); 3739 } 3740 DEBUG(DT->verifyDomTree()); 3741 // Remove redundant induction instructions. 3742 cse(LoopVectorBody); 3743 } 3744 3745 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3746 3747 // This is the second phase of vectorizing first-order rececurrences. An 3748 // overview of the transformation is described below. Suppose we have the 3749 // following loop. 3750 // 3751 // for (int i = 0; i < n; ++i) 3752 // b[i] = a[i] - a[i - 1]; 3753 // 3754 // There is a first-order recurrence on "a". For this loop, the shorthand 3755 // scalar IR looks like: 3756 // 3757 // scalar.ph: 3758 // s_init = a[-1] 3759 // br scalar.body 3760 // 3761 // scalar.body: 3762 // i = phi [0, scalar.ph], [i+1, scalar.body] 3763 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3764 // s2 = a[i] 3765 // b[i] = s2 - s1 3766 // br cond, scalar.body, ... 3767 // 3768 // In this example, s1 is a recurrence because it's value depends on the 3769 // previous iteration. In the first phase of vectorization, we created a 3770 // temporary value for s1. We now complete the vectorization and produce the 3771 // shorthand vector IR shown below (for VF = 4, UF = 1). 3772 // 3773 // vector.ph: 3774 // v_init = vector(..., ..., ..., a[-1]) 3775 // br vector.body 3776 // 3777 // vector.body 3778 // i = phi [0, vector.ph], [i+4, vector.body] 3779 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3780 // v2 = a[i, i+1, i+2, i+3]; 3781 // v3 = vector(v1(3), v2(0, 1, 2)) 3782 // b[i, i+1, i+2, i+3] = v2 - v3 3783 // br cond, vector.body, middle.block 3784 // 3785 // middle.block: 3786 // x = v2(3) 3787 // br scalar.ph 3788 // 3789 // scalar.ph: 3790 // s_init = phi [x, middle.block], [a[-1], otherwise] 3791 // br scalar.body 3792 // 3793 // After execution completes the vector loop, we extract the next value of 3794 // the recurrence (x) to use as the initial value in the scalar loop. 3795 3796 // Get the original loop preheader and single loop latch. 3797 auto *Preheader = OrigLoop->getLoopPreheader(); 3798 auto *Latch = OrigLoop->getLoopLatch(); 3799 3800 // Get the initial and previous values of the scalar recurrence. 3801 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3802 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3803 3804 // Create a vector from the initial value. 3805 auto *VectorInit = ScalarInit; 3806 if (VF > 1) { 3807 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3808 VectorInit = Builder.CreateInsertElement( 3809 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3810 Builder.getInt32(VF - 1), "vector.recur.init"); 3811 } 3812 3813 // We constructed a temporary phi node in the first phase of vectorization. 3814 // This phi node will eventually be deleted. 3815 auto &PhiParts = getVectorValue(Phi); 3816 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3817 3818 // Create a phi node for the new recurrence. The current value will either be 3819 // the initial value inserted into a vector or loop-varying vector value. 3820 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3821 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3822 3823 // Get the vectorized previous value. We ensured the previous values was an 3824 // instruction when detecting the recurrence. 3825 auto &PreviousParts = getVectorValue(Previous); 3826 3827 // Set the insertion point to be after this instruction. We ensured the 3828 // previous value dominated all uses of the phi when detecting the 3829 // recurrence. 3830 Builder.SetInsertPoint( 3831 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3832 3833 // We will construct a vector for the recurrence by combining the values for 3834 // the current and previous iterations. This is the required shuffle mask. 3835 SmallVector<Constant *, 8> ShuffleMask(VF); 3836 ShuffleMask[0] = Builder.getInt32(VF - 1); 3837 for (unsigned I = 1; I < VF; ++I) 3838 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3839 3840 // The vector from which to take the initial value for the current iteration 3841 // (actual or unrolled). Initially, this is the vector phi node. 3842 Value *Incoming = VecPhi; 3843 3844 // Shuffle the current and previous vector and update the vector parts. 3845 for (unsigned Part = 0; Part < UF; ++Part) { 3846 auto *Shuffle = 3847 VF > 1 3848 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3849 ConstantVector::get(ShuffleMask)) 3850 : Incoming; 3851 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3852 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3853 PhiParts[Part] = Shuffle; 3854 Incoming = PreviousParts[Part]; 3855 } 3856 3857 // Fix the latch value of the new recurrence in the vector loop. 3858 VecPhi->addIncoming(Incoming, 3859 LI->getLoopFor(LoopVectorBody[0])->getLoopLatch()); 3860 3861 // Extract the last vector element in the middle block. This will be the 3862 // initial value for the recurrence when jumping to the scalar loop. 3863 auto *Extract = Incoming; 3864 if (VF > 1) { 3865 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3866 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3867 "vector.recur.extract"); 3868 } 3869 3870 // Fix the initial value of the original recurrence in the scalar loop. 3871 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3872 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3873 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3874 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3875 Start->addIncoming(Incoming, BB); 3876 } 3877 3878 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3879 Phi->setName("scalar.recur"); 3880 3881 // Finally, fix users of the recurrence outside the loop. The users will need 3882 // either the last value of the scalar recurrence or the last value of the 3883 // vector recurrence we extracted in the middle block. Since the loop is in 3884 // LCSSA form, we just need to find the phi node for the original scalar 3885 // recurrence in the exit block, and then add an edge for the middle block. 3886 for (auto &I : *LoopExitBlock) { 3887 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3888 if (!LCSSAPhi) 3889 break; 3890 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3891 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3892 break; 3893 } 3894 } 3895 } 3896 3897 void InnerLoopVectorizer::fixLCSSAPHIs() { 3898 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3899 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3900 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3901 if (!LCSSAPhi) break; 3902 if (LCSSAPhi->getNumIncomingValues() == 1) 3903 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3904 LoopMiddleBlock); 3905 } 3906 } 3907 3908 InnerLoopVectorizer::VectorParts 3909 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3910 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3911 "Invalid edge"); 3912 3913 // Look for cached value. 3914 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3915 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3916 if (ECEntryIt != MaskCache.end()) 3917 return ECEntryIt->second; 3918 3919 VectorParts SrcMask = createBlockInMask(Src); 3920 3921 // The terminator has to be a branch inst! 3922 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3923 assert(BI && "Unexpected terminator found"); 3924 3925 if (BI->isConditional()) { 3926 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3927 3928 if (BI->getSuccessor(0) != Dst) 3929 for (unsigned part = 0; part < UF; ++part) 3930 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3931 3932 for (unsigned part = 0; part < UF; ++part) 3933 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3934 3935 MaskCache[Edge] = EdgeMask; 3936 return EdgeMask; 3937 } 3938 3939 MaskCache[Edge] = SrcMask; 3940 return SrcMask; 3941 } 3942 3943 InnerLoopVectorizer::VectorParts 3944 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3945 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3946 3947 // Loop incoming mask is all-one. 3948 if (OrigLoop->getHeader() == BB) { 3949 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3950 return getVectorValue(C); 3951 } 3952 3953 // This is the block mask. We OR all incoming edges, and with zero. 3954 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3955 VectorParts BlockMask = getVectorValue(Zero); 3956 3957 // For each pred: 3958 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3959 VectorParts EM = createEdgeMask(*it, BB); 3960 for (unsigned part = 0; part < UF; ++part) 3961 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3962 } 3963 3964 return BlockMask; 3965 } 3966 3967 void InnerLoopVectorizer::widenPHIInstruction( 3968 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 3969 unsigned VF, PhiVector *PV) { 3970 PHINode* P = cast<PHINode>(PN); 3971 // Handle recurrences. 3972 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3973 for (unsigned part = 0; part < UF; ++part) { 3974 // This is phase one of vectorizing PHIs. 3975 Type *VecTy = (VF == 1) ? PN->getType() : 3976 VectorType::get(PN->getType(), VF); 3977 Entry[part] = PHINode::Create( 3978 VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt()); 3979 } 3980 PV->push_back(P); 3981 return; 3982 } 3983 3984 setDebugLocFromInst(Builder, P); 3985 // Check for PHI nodes that are lowered to vector selects. 3986 if (P->getParent() != OrigLoop->getHeader()) { 3987 // We know that all PHIs in non-header blocks are converted into 3988 // selects, so we don't have to worry about the insertion order and we 3989 // can just use the builder. 3990 // At this point we generate the predication tree. There may be 3991 // duplications since this is a simple recursive scan, but future 3992 // optimizations will clean it up. 3993 3994 unsigned NumIncoming = P->getNumIncomingValues(); 3995 3996 // Generate a sequence of selects of the form: 3997 // SELECT(Mask3, In3, 3998 // SELECT(Mask2, In2, 3999 // ( ...))) 4000 for (unsigned In = 0; In < NumIncoming; In++) { 4001 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 4002 P->getParent()); 4003 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4004 4005 for (unsigned part = 0; part < UF; ++part) { 4006 // We might have single edge PHIs (blocks) - use an identity 4007 // 'select' for the first PHI operand. 4008 if (In == 0) 4009 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4010 In0[part]); 4011 else 4012 // Select between the current value and the previous incoming edge 4013 // based on the incoming mask. 4014 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 4015 Entry[part], "predphi"); 4016 } 4017 } 4018 return; 4019 } 4020 4021 // This PHINode must be an induction variable. 4022 // Make sure that we know about it. 4023 assert(Legal->getInductionVars()->count(P) && 4024 "Not an induction variable"); 4025 4026 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4027 4028 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4029 // which can be found from the original scalar operations. 4030 switch (II.getKind()) { 4031 case InductionDescriptor::IK_NoInduction: 4032 llvm_unreachable("Unknown induction"); 4033 case InductionDescriptor::IK_IntInduction: { 4034 assert(P->getType() == II.getStartValue()->getType() && 4035 "Types must match"); 4036 // Handle other induction variables that are now based on the 4037 // canonical one. 4038 Value *V = Induction; 4039 if (P != OldInduction) { 4040 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4041 V = II.transform(Builder, V); 4042 V->setName("offset.idx"); 4043 } 4044 Value *Broadcasted = getBroadcastInstrs(V); 4045 // After broadcasting the induction variable we need to make the vector 4046 // consecutive by adding 0, 1, 2, etc. 4047 for (unsigned part = 0; part < UF; ++part) 4048 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStepValue()); 4049 return; 4050 } 4051 case InductionDescriptor::IK_PtrInduction: 4052 // Handle the pointer induction variable case. 4053 assert(P->getType()->isPointerTy() && "Unexpected type."); 4054 // This is the normalized GEP that starts counting at zero. 4055 Value *PtrInd = Induction; 4056 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStepValue()->getType()); 4057 // This is the vector of results. Notice that we don't generate 4058 // vector geps because scalar geps result in better code. 4059 for (unsigned part = 0; part < UF; ++part) { 4060 if (VF == 1) { 4061 int EltIndex = part; 4062 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4063 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4064 Value *SclrGep = II.transform(Builder, GlobalIdx); 4065 SclrGep->setName("next.gep"); 4066 Entry[part] = SclrGep; 4067 continue; 4068 } 4069 4070 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4071 for (unsigned int i = 0; i < VF; ++i) { 4072 int EltIndex = i + part * VF; 4073 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4074 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4075 Value *SclrGep = II.transform(Builder, GlobalIdx); 4076 SclrGep->setName("next.gep"); 4077 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4078 Builder.getInt32(i), 4079 "insert.gep"); 4080 } 4081 Entry[part] = VecVal; 4082 } 4083 return; 4084 } 4085 } 4086 4087 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4088 // For each instruction in the old loop. 4089 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4090 VectorParts &Entry = WidenMap.get(&*it); 4091 4092 switch (it->getOpcode()) { 4093 case Instruction::Br: 4094 // Nothing to do for PHIs and BR, since we already took care of the 4095 // loop control flow instructions. 4096 continue; 4097 case Instruction::PHI: { 4098 // Vectorize PHINodes. 4099 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4100 continue; 4101 }// End of PHI. 4102 4103 case Instruction::Add: 4104 case Instruction::FAdd: 4105 case Instruction::Sub: 4106 case Instruction::FSub: 4107 case Instruction::Mul: 4108 case Instruction::FMul: 4109 case Instruction::UDiv: 4110 case Instruction::SDiv: 4111 case Instruction::FDiv: 4112 case Instruction::URem: 4113 case Instruction::SRem: 4114 case Instruction::FRem: 4115 case Instruction::Shl: 4116 case Instruction::LShr: 4117 case Instruction::AShr: 4118 case Instruction::And: 4119 case Instruction::Or: 4120 case Instruction::Xor: { 4121 // Just widen binops. 4122 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4123 setDebugLocFromInst(Builder, BinOp); 4124 VectorParts &A = getVectorValue(it->getOperand(0)); 4125 VectorParts &B = getVectorValue(it->getOperand(1)); 4126 4127 // Use this vector value for all users of the original instruction. 4128 for (unsigned Part = 0; Part < UF; ++Part) { 4129 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4130 4131 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4132 VecOp->copyIRFlags(BinOp); 4133 4134 Entry[Part] = V; 4135 } 4136 4137 addMetadata(Entry, &*it); 4138 break; 4139 } 4140 case Instruction::Select: { 4141 // Widen selects. 4142 // If the selector is loop invariant we can create a select 4143 // instruction with a scalar condition. Otherwise, use vector-select. 4144 auto *SE = PSE.getSE(); 4145 bool InvariantCond = 4146 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4147 setDebugLocFromInst(Builder, &*it); 4148 4149 // The condition can be loop invariant but still defined inside the 4150 // loop. This means that we can't just use the original 'cond' value. 4151 // We have to take the 'vectorized' value and pick the first lane. 4152 // Instcombine will make this a no-op. 4153 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4154 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4155 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4156 4157 Value *ScalarCond = (VF == 1) ? Cond[0] : 4158 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4159 4160 for (unsigned Part = 0; Part < UF; ++Part) { 4161 Entry[Part] = Builder.CreateSelect( 4162 InvariantCond ? ScalarCond : Cond[Part], 4163 Op0[Part], 4164 Op1[Part]); 4165 } 4166 4167 addMetadata(Entry, &*it); 4168 break; 4169 } 4170 4171 case Instruction::ICmp: 4172 case Instruction::FCmp: { 4173 // Widen compares. Generate vector compares. 4174 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4175 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4176 setDebugLocFromInst(Builder, &*it); 4177 VectorParts &A = getVectorValue(it->getOperand(0)); 4178 VectorParts &B = getVectorValue(it->getOperand(1)); 4179 for (unsigned Part = 0; Part < UF; ++Part) { 4180 Value *C = nullptr; 4181 if (FCmp) { 4182 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4183 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4184 } else { 4185 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4186 } 4187 Entry[Part] = C; 4188 } 4189 4190 addMetadata(Entry, &*it); 4191 break; 4192 } 4193 4194 case Instruction::Store: 4195 case Instruction::Load: 4196 vectorizeMemoryInstruction(&*it); 4197 break; 4198 case Instruction::ZExt: 4199 case Instruction::SExt: 4200 case Instruction::FPToUI: 4201 case Instruction::FPToSI: 4202 case Instruction::FPExt: 4203 case Instruction::PtrToInt: 4204 case Instruction::IntToPtr: 4205 case Instruction::SIToFP: 4206 case Instruction::UIToFP: 4207 case Instruction::Trunc: 4208 case Instruction::FPTrunc: 4209 case Instruction::BitCast: { 4210 CastInst *CI = dyn_cast<CastInst>(it); 4211 setDebugLocFromInst(Builder, &*it); 4212 /// Optimize the special case where the source is the induction 4213 /// variable. Notice that we can only optimize the 'trunc' case 4214 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4215 /// c. other casts depend on pointer size. 4216 if (CI->getOperand(0) == OldInduction && 4217 it->getOpcode() == Instruction::Trunc) { 4218 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 4219 CI->getType()); 4220 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4221 InductionDescriptor II = 4222 Legal->getInductionVars()->lookup(OldInduction); 4223 Constant *Step = ConstantInt::getSigned( 4224 CI->getType(), II.getStepValue()->getSExtValue()); 4225 for (unsigned Part = 0; Part < UF; ++Part) 4226 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 4227 addMetadata(Entry, &*it); 4228 break; 4229 } 4230 /// Vectorize casts. 4231 Type *DestTy = (VF == 1) ? CI->getType() : 4232 VectorType::get(CI->getType(), VF); 4233 4234 VectorParts &A = getVectorValue(it->getOperand(0)); 4235 for (unsigned Part = 0; Part < UF; ++Part) 4236 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4237 addMetadata(Entry, &*it); 4238 break; 4239 } 4240 4241 case Instruction::Call: { 4242 // Ignore dbg intrinsics. 4243 if (isa<DbgInfoIntrinsic>(it)) 4244 break; 4245 setDebugLocFromInst(Builder, &*it); 4246 4247 Module *M = BB->getParent()->getParent(); 4248 CallInst *CI = cast<CallInst>(it); 4249 4250 StringRef FnName = CI->getCalledFunction()->getName(); 4251 Function *F = CI->getCalledFunction(); 4252 Type *RetTy = ToVectorTy(CI->getType(), VF); 4253 SmallVector<Type *, 4> Tys; 4254 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4255 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4256 4257 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4258 if (ID && 4259 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4260 ID == Intrinsic::lifetime_start)) { 4261 scalarizeInstruction(&*it); 4262 break; 4263 } 4264 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4265 // version of the instruction. 4266 // Is it beneficial to perform intrinsic call compared to lib call? 4267 bool NeedToScalarize; 4268 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4269 bool UseVectorIntrinsic = 4270 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4271 if (!UseVectorIntrinsic && NeedToScalarize) { 4272 scalarizeInstruction(&*it); 4273 break; 4274 } 4275 4276 for (unsigned Part = 0; Part < UF; ++Part) { 4277 SmallVector<Value *, 4> Args; 4278 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4279 Value *Arg = CI->getArgOperand(i); 4280 // Some intrinsics have a scalar argument - don't replace it with a 4281 // vector. 4282 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4283 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4284 Arg = VectorArg[Part]; 4285 } 4286 Args.push_back(Arg); 4287 } 4288 4289 Function *VectorF; 4290 if (UseVectorIntrinsic) { 4291 // Use vector version of the intrinsic. 4292 Type *TysForDecl[] = {CI->getType()}; 4293 if (VF > 1) 4294 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4295 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4296 } else { 4297 // Use vector version of the library call. 4298 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4299 assert(!VFnName.empty() && "Vector function name is empty."); 4300 VectorF = M->getFunction(VFnName); 4301 if (!VectorF) { 4302 // Generate a declaration 4303 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4304 VectorF = 4305 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4306 VectorF->copyAttributesFrom(F); 4307 } 4308 } 4309 assert(VectorF && "Can't create vector function."); 4310 4311 CallInst *V = Builder.CreateCall(VectorF, Args); 4312 4313 if (isa<FPMathOperator>(V)) 4314 V->copyFastMathFlags(CI); 4315 4316 Entry[Part] = V; 4317 } 4318 4319 addMetadata(Entry, &*it); 4320 break; 4321 } 4322 4323 default: 4324 // All other instructions are unsupported. Scalarize them. 4325 scalarizeInstruction(&*it); 4326 break; 4327 }// end of switch. 4328 }// end of for_each instr. 4329 } 4330 4331 void InnerLoopVectorizer::updateAnalysis() { 4332 // Forget the original basic block. 4333 PSE.getSE()->forgetLoop(OrigLoop); 4334 4335 // Update the dominator tree information. 4336 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4337 "Entry does not dominate exit."); 4338 4339 // We don't predicate stores by this point, so the vector body should be a 4340 // single loop. 4341 assert(LoopVectorBody.size() == 1 && "Expected single block loop!"); 4342 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 4343 4344 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody.back()); 4345 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4346 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4347 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4348 4349 DEBUG(DT->verifyDomTree()); 4350 } 4351 4352 /// \brief Check whether it is safe to if-convert this phi node. 4353 /// 4354 /// Phi nodes with constant expressions that can trap are not safe to if 4355 /// convert. 4356 static bool canIfConvertPHINodes(BasicBlock *BB) { 4357 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4358 PHINode *Phi = dyn_cast<PHINode>(I); 4359 if (!Phi) 4360 return true; 4361 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4362 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4363 if (C->canTrap()) 4364 return false; 4365 } 4366 return true; 4367 } 4368 4369 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4370 if (!EnableIfConversion) { 4371 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4372 return false; 4373 } 4374 4375 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4376 4377 // A list of pointers that we can safely read and write to. 4378 SmallPtrSet<Value *, 8> SafePointes; 4379 4380 // Collect safe addresses. 4381 for (Loop::block_iterator BI = TheLoop->block_begin(), 4382 BE = TheLoop->block_end(); BI != BE; ++BI) { 4383 BasicBlock *BB = *BI; 4384 4385 if (blockNeedsPredication(BB)) 4386 continue; 4387 4388 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4389 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4390 SafePointes.insert(LI->getPointerOperand()); 4391 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4392 SafePointes.insert(SI->getPointerOperand()); 4393 } 4394 } 4395 4396 // Collect the blocks that need predication. 4397 BasicBlock *Header = TheLoop->getHeader(); 4398 for (Loop::block_iterator BI = TheLoop->block_begin(), 4399 BE = TheLoop->block_end(); BI != BE; ++BI) { 4400 BasicBlock *BB = *BI; 4401 4402 // We don't support switch statements inside loops. 4403 if (!isa<BranchInst>(BB->getTerminator())) { 4404 emitAnalysis(VectorizationReport(BB->getTerminator()) 4405 << "loop contains a switch statement"); 4406 return false; 4407 } 4408 4409 // We must be able to predicate all blocks that need to be predicated. 4410 if (blockNeedsPredication(BB)) { 4411 if (!blockCanBePredicated(BB, SafePointes)) { 4412 emitAnalysis(VectorizationReport(BB->getTerminator()) 4413 << "control flow cannot be substituted for a select"); 4414 return false; 4415 } 4416 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4417 emitAnalysis(VectorizationReport(BB->getTerminator()) 4418 << "control flow cannot be substituted for a select"); 4419 return false; 4420 } 4421 } 4422 4423 // We can if-convert this loop. 4424 return true; 4425 } 4426 4427 bool LoopVectorizationLegality::canVectorize() { 4428 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4429 // be canonicalized. 4430 if (!TheLoop->getLoopPreheader()) { 4431 emitAnalysis( 4432 VectorizationReport() << 4433 "loop control flow is not understood by vectorizer"); 4434 return false; 4435 } 4436 4437 // We can only vectorize innermost loops. 4438 if (!TheLoop->empty()) { 4439 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4440 return false; 4441 } 4442 4443 // We must have a single backedge. 4444 if (TheLoop->getNumBackEdges() != 1) { 4445 emitAnalysis( 4446 VectorizationReport() << 4447 "loop control flow is not understood by vectorizer"); 4448 return false; 4449 } 4450 4451 // We must have a single exiting block. 4452 if (!TheLoop->getExitingBlock()) { 4453 emitAnalysis( 4454 VectorizationReport() << 4455 "loop control flow is not understood by vectorizer"); 4456 return false; 4457 } 4458 4459 // We only handle bottom-tested loops, i.e. loop in which the condition is 4460 // checked at the end of each iteration. With that we can assume that all 4461 // instructions in the loop are executed the same number of times. 4462 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4463 emitAnalysis( 4464 VectorizationReport() << 4465 "loop control flow is not understood by vectorizer"); 4466 return false; 4467 } 4468 4469 // We need to have a loop header. 4470 DEBUG(dbgs() << "LV: Found a loop: " << 4471 TheLoop->getHeader()->getName() << '\n'); 4472 4473 // Check if we can if-convert non-single-bb loops. 4474 unsigned NumBlocks = TheLoop->getNumBlocks(); 4475 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4476 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4477 return false; 4478 } 4479 4480 // ScalarEvolution needs to be able to find the exit count. 4481 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4482 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4483 emitAnalysis(VectorizationReport() 4484 << "could not determine number of loop iterations"); 4485 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4486 return false; 4487 } 4488 4489 // Check if we can vectorize the instructions and CFG in this loop. 4490 if (!canVectorizeInstrs()) { 4491 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4492 return false; 4493 } 4494 4495 // Go over each instruction and look at memory deps. 4496 if (!canVectorizeMemory()) { 4497 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4498 return false; 4499 } 4500 4501 // Collect all of the variables that remain uniform after vectorization. 4502 collectLoopUniforms(); 4503 4504 DEBUG(dbgs() << "LV: We can vectorize this loop" 4505 << (LAI->getRuntimePointerChecking()->Need 4506 ? " (with a runtime bound check)" 4507 : "") 4508 << "!\n"); 4509 4510 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4511 4512 // If an override option has been passed in for interleaved accesses, use it. 4513 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4514 UseInterleaved = EnableInterleavedMemAccesses; 4515 4516 // Analyze interleaved memory accesses. 4517 if (UseInterleaved) 4518 InterleaveInfo.analyzeInterleaving(Strides); 4519 4520 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4521 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4522 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4523 4524 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4525 emitAnalysis(VectorizationReport() 4526 << "Too many SCEV assumptions need to be made and checked " 4527 << "at runtime"); 4528 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4529 return false; 4530 } 4531 4532 // Okay! We can vectorize. At this point we don't have any other mem analysis 4533 // which may limit our maximum vectorization factor, so just return true with 4534 // no restrictions. 4535 return true; 4536 } 4537 4538 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4539 if (Ty->isPointerTy()) 4540 return DL.getIntPtrType(Ty); 4541 4542 // It is possible that char's or short's overflow when we ask for the loop's 4543 // trip count, work around this by changing the type size. 4544 if (Ty->getScalarSizeInBits() < 32) 4545 return Type::getInt32Ty(Ty->getContext()); 4546 4547 return Ty; 4548 } 4549 4550 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4551 Ty0 = convertPointerToIntegerType(DL, Ty0); 4552 Ty1 = convertPointerToIntegerType(DL, Ty1); 4553 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4554 return Ty0; 4555 return Ty1; 4556 } 4557 4558 /// \brief Check that the instruction has outside loop users and is not an 4559 /// identified reduction variable. 4560 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4561 SmallPtrSetImpl<Value *> &Reductions) { 4562 // Reduction instructions are allowed to have exit users. All other 4563 // instructions must not have external users. 4564 if (!Reductions.count(Inst)) 4565 //Check that all of the users of the loop are inside the BB. 4566 for (User *U : Inst->users()) { 4567 Instruction *UI = cast<Instruction>(U); 4568 // This user may be a reduction exit value. 4569 if (!TheLoop->contains(UI)) { 4570 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4571 return true; 4572 } 4573 } 4574 return false; 4575 } 4576 4577 bool LoopVectorizationLegality::canVectorizeInstrs() { 4578 BasicBlock *Header = TheLoop->getHeader(); 4579 4580 // Look for the attribute signaling the absence of NaNs. 4581 Function &F = *Header->getParent(); 4582 const DataLayout &DL = F.getParent()->getDataLayout(); 4583 HasFunNoNaNAttr = 4584 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4585 4586 // For each block in the loop. 4587 for (Loop::block_iterator bb = TheLoop->block_begin(), 4588 be = TheLoop->block_end(); bb != be; ++bb) { 4589 4590 // Scan the instructions in the block and look for hazards. 4591 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4592 ++it) { 4593 4594 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4595 Type *PhiTy = Phi->getType(); 4596 // Check that this PHI type is allowed. 4597 if (!PhiTy->isIntegerTy() && 4598 !PhiTy->isFloatingPointTy() && 4599 !PhiTy->isPointerTy()) { 4600 emitAnalysis(VectorizationReport(&*it) 4601 << "loop control flow is not understood by vectorizer"); 4602 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4603 return false; 4604 } 4605 4606 // If this PHINode is not in the header block, then we know that we 4607 // can convert it to select during if-conversion. No need to check if 4608 // the PHIs in this block are induction or reduction variables. 4609 if (*bb != Header) { 4610 // Check that this instruction has no outside users or is an 4611 // identified reduction value with an outside user. 4612 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4613 continue; 4614 emitAnalysis(VectorizationReport(&*it) << 4615 "value could not be identified as " 4616 "an induction or reduction variable"); 4617 return false; 4618 } 4619 4620 // We only allow if-converted PHIs with exactly two incoming values. 4621 if (Phi->getNumIncomingValues() != 2) { 4622 emitAnalysis(VectorizationReport(&*it) 4623 << "control flow not understood by vectorizer"); 4624 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4625 return false; 4626 } 4627 4628 InductionDescriptor ID; 4629 if (InductionDescriptor::isInductionPHI(Phi, PSE.getSE(), ID)) { 4630 Inductions[Phi] = ID; 4631 // Get the widest type. 4632 if (!WidestIndTy) 4633 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4634 else 4635 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4636 4637 // Int inductions are special because we only allow one IV. 4638 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4639 ID.getStepValue()->isOne() && 4640 isa<Constant>(ID.getStartValue()) && 4641 cast<Constant>(ID.getStartValue())->isNullValue()) { 4642 // Use the phi node with the widest type as induction. Use the last 4643 // one if there are multiple (no good reason for doing this other 4644 // than it is expedient). We've checked that it begins at zero and 4645 // steps by one, so this is a canonical induction variable. 4646 if (!Induction || PhiTy == WidestIndTy) 4647 Induction = Phi; 4648 } 4649 4650 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4651 4652 // Until we explicitly handle the case of an induction variable with 4653 // an outside loop user we have to give up vectorizing this loop. 4654 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4655 emitAnalysis(VectorizationReport(&*it) << 4656 "use of induction value outside of the " 4657 "loop is not handled by vectorizer"); 4658 return false; 4659 } 4660 4661 continue; 4662 } 4663 4664 RecurrenceDescriptor RedDes; 4665 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4666 if (RedDes.hasUnsafeAlgebra()) 4667 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4668 AllowedExit.insert(RedDes.getLoopExitInstr()); 4669 Reductions[Phi] = RedDes; 4670 continue; 4671 } 4672 4673 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4674 FirstOrderRecurrences.insert(Phi); 4675 continue; 4676 } 4677 4678 emitAnalysis(VectorizationReport(&*it) << 4679 "value that could not be identified as " 4680 "reduction is used outside the loop"); 4681 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4682 return false; 4683 }// end of PHI handling 4684 4685 // We handle calls that: 4686 // * Are debug info intrinsics. 4687 // * Have a mapping to an IR intrinsic. 4688 // * Have a vector version available. 4689 CallInst *CI = dyn_cast<CallInst>(it); 4690 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4691 !(CI->getCalledFunction() && TLI && 4692 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4693 emitAnalysis(VectorizationReport(&*it) 4694 << "call instruction cannot be vectorized"); 4695 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4696 return false; 4697 } 4698 4699 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4700 // second argument is the same (i.e. loop invariant) 4701 if (CI && 4702 hasVectorInstrinsicScalarOpd(getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4703 auto *SE = PSE.getSE(); 4704 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4705 emitAnalysis(VectorizationReport(&*it) 4706 << "intrinsic instruction cannot be vectorized"); 4707 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4708 return false; 4709 } 4710 } 4711 4712 // Check that the instruction return type is vectorizable. 4713 // Also, we can't vectorize extractelement instructions. 4714 if ((!VectorType::isValidElementType(it->getType()) && 4715 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4716 emitAnalysis(VectorizationReport(&*it) 4717 << "instruction return type cannot be vectorized"); 4718 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4719 return false; 4720 } 4721 4722 // Check that the stored type is vectorizable. 4723 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4724 Type *T = ST->getValueOperand()->getType(); 4725 if (!VectorType::isValidElementType(T)) { 4726 emitAnalysis(VectorizationReport(ST) << 4727 "store instruction cannot be vectorized"); 4728 return false; 4729 } 4730 if (EnableMemAccessVersioning) 4731 collectStridedAccess(ST); 4732 4733 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4734 if (EnableMemAccessVersioning) 4735 collectStridedAccess(LI); 4736 4737 // FP instructions can allow unsafe algebra, thus vectorizable by 4738 // non-IEEE-754 compliant SIMD units. 4739 // This applies to floating-point math operations and calls, not memory 4740 // operations, shuffles, or casts, as they don't change precision or 4741 // semantics. 4742 } else if (it->getType()->isFloatingPointTy() && 4743 (CI || it->isBinaryOp()) && 4744 !it->hasUnsafeAlgebra()) { 4745 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4746 Hints->setPotentiallyUnsafe(); 4747 } 4748 4749 // Reduction instructions are allowed to have exit users. 4750 // All other instructions must not have external users. 4751 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4752 emitAnalysis(VectorizationReport(&*it) << 4753 "value cannot be used outside the loop"); 4754 return false; 4755 } 4756 4757 } // next instr. 4758 4759 } 4760 4761 if (!Induction) { 4762 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4763 if (Inductions.empty()) { 4764 emitAnalysis(VectorizationReport() 4765 << "loop induction variable could not be identified"); 4766 return false; 4767 } 4768 } 4769 4770 // Now we know the widest induction type, check if our found induction 4771 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4772 // will create another. 4773 if (Induction && WidestIndTy != Induction->getType()) 4774 Induction = nullptr; 4775 4776 return true; 4777 } 4778 4779 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4780 Value *Ptr = nullptr; 4781 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4782 Ptr = LI->getPointerOperand(); 4783 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4784 Ptr = SI->getPointerOperand(); 4785 else 4786 return; 4787 4788 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4789 if (!Stride) 4790 return; 4791 4792 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4793 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4794 Strides[Ptr] = Stride; 4795 StrideSet.insert(Stride); 4796 } 4797 4798 void LoopVectorizationLegality::collectLoopUniforms() { 4799 // We now know that the loop is vectorizable! 4800 // Collect variables that will remain uniform after vectorization. 4801 std::vector<Value*> Worklist; 4802 BasicBlock *Latch = TheLoop->getLoopLatch(); 4803 4804 // Start with the conditional branch and walk up the block. 4805 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4806 4807 // Also add all consecutive pointer values; these values will be uniform 4808 // after vectorization (and subsequent cleanup) and, until revectorization is 4809 // supported, all dependencies must also be uniform. 4810 for (Loop::block_iterator B = TheLoop->block_begin(), 4811 BE = TheLoop->block_end(); B != BE; ++B) 4812 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4813 I != IE; ++I) 4814 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4815 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4816 4817 while (!Worklist.empty()) { 4818 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4819 Worklist.pop_back(); 4820 4821 // Look at instructions inside this loop. 4822 // Stop when reaching PHI nodes. 4823 // TODO: we need to follow values all over the loop, not only in this block. 4824 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4825 continue; 4826 4827 // This is a known uniform. 4828 Uniforms.insert(I); 4829 4830 // Insert all operands. 4831 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4832 } 4833 } 4834 4835 bool LoopVectorizationLegality::canVectorizeMemory() { 4836 LAI = &LAA->getInfo(TheLoop, Strides); 4837 auto &OptionalReport = LAI->getReport(); 4838 if (OptionalReport) 4839 emitAnalysis(VectorizationReport(*OptionalReport)); 4840 if (!LAI->canVectorizeMemory()) 4841 return false; 4842 4843 if (LAI->hasStoreToLoopInvariantAddress()) { 4844 emitAnalysis( 4845 VectorizationReport() 4846 << "write to a loop invariant address could not be vectorized"); 4847 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4848 return false; 4849 } 4850 4851 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4852 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4853 4854 return true; 4855 } 4856 4857 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4858 Value *In0 = const_cast<Value*>(V); 4859 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4860 if (!PN) 4861 return false; 4862 4863 return Inductions.count(PN); 4864 } 4865 4866 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4867 return FirstOrderRecurrences.count(Phi); 4868 } 4869 4870 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4871 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4872 } 4873 4874 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4875 SmallPtrSetImpl<Value *> &SafePtrs) { 4876 4877 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4878 // Check that we don't have a constant expression that can trap as operand. 4879 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4880 OI != OE; ++OI) { 4881 if (Constant *C = dyn_cast<Constant>(*OI)) 4882 if (C->canTrap()) 4883 return false; 4884 } 4885 // We might be able to hoist the load. 4886 if (it->mayReadFromMemory()) { 4887 LoadInst *LI = dyn_cast<LoadInst>(it); 4888 if (!LI) 4889 return false; 4890 if (!SafePtrs.count(LI->getPointerOperand())) { 4891 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4892 isLegalMaskedGather(LI->getType())) { 4893 MaskedOp.insert(LI); 4894 continue; 4895 } 4896 return false; 4897 } 4898 } 4899 4900 // We don't predicate stores at the moment. 4901 if (it->mayWriteToMemory()) { 4902 StoreInst *SI = dyn_cast<StoreInst>(it); 4903 // We only support predication of stores in basic blocks with one 4904 // predecessor. 4905 if (!SI) 4906 return false; 4907 4908 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4909 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4910 4911 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4912 !isSinglePredecessor) { 4913 // Build a masked store if it is legal for the target, otherwise 4914 // scalarize the block. 4915 bool isLegalMaskedOp = 4916 isLegalMaskedStore(SI->getValueOperand()->getType(), 4917 SI->getPointerOperand()) || 4918 isLegalMaskedScatter(SI->getValueOperand()->getType()); 4919 if (isLegalMaskedOp) { 4920 --NumPredStores; 4921 MaskedOp.insert(SI); 4922 continue; 4923 } 4924 return false; 4925 } 4926 } 4927 if (it->mayThrow()) 4928 return false; 4929 4930 // The instructions below can trap. 4931 switch (it->getOpcode()) { 4932 default: continue; 4933 case Instruction::UDiv: 4934 case Instruction::SDiv: 4935 case Instruction::URem: 4936 case Instruction::SRem: 4937 return false; 4938 } 4939 } 4940 4941 return true; 4942 } 4943 4944 void InterleavedAccessInfo::collectConstStridedAccesses( 4945 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4946 const ValueToValueMap &Strides) { 4947 // Holds load/store instructions in program order. 4948 SmallVector<Instruction *, 16> AccessList; 4949 4950 for (auto *BB : TheLoop->getBlocks()) { 4951 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4952 4953 for (auto &I : *BB) { 4954 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4955 continue; 4956 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4957 if (IsPred) 4958 return; 4959 4960 AccessList.push_back(&I); 4961 } 4962 } 4963 4964 if (AccessList.empty()) 4965 return; 4966 4967 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4968 for (auto I : AccessList) { 4969 LoadInst *LI = dyn_cast<LoadInst>(I); 4970 StoreInst *SI = dyn_cast<StoreInst>(I); 4971 4972 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4973 int Stride = isStridedPtr(PSE, Ptr, TheLoop, Strides); 4974 4975 // The factor of the corresponding interleave group. 4976 unsigned Factor = std::abs(Stride); 4977 4978 // Ignore the access if the factor is too small or too large. 4979 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4980 continue; 4981 4982 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 4983 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4984 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4985 4986 // An alignment of 0 means target ABI alignment. 4987 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4988 if (!Align) 4989 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4990 4991 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4992 } 4993 } 4994 4995 // Analyze interleaved accesses and collect them into interleave groups. 4996 // 4997 // Notice that the vectorization on interleaved groups will change instruction 4998 // orders and may break dependences. But the memory dependence check guarantees 4999 // that there is no overlap between two pointers of different strides, element 5000 // sizes or underlying bases. 5001 // 5002 // For pointers sharing the same stride, element size and underlying base, no 5003 // need to worry about Read-After-Write dependences and Write-After-Read 5004 // dependences. 5005 // 5006 // E.g. The RAW dependence: A[i] = a; 5007 // b = A[i]; 5008 // This won't exist as it is a store-load forwarding conflict, which has 5009 // already been checked and forbidden in the dependence check. 5010 // 5011 // E.g. The WAR dependence: a = A[i]; // (1) 5012 // A[i] = b; // (2) 5013 // The store group of (2) is always inserted at or below (2), and the load group 5014 // of (1) is always inserted at or above (1). The dependence is safe. 5015 void InterleavedAccessInfo::analyzeInterleaving( 5016 const ValueToValueMap &Strides) { 5017 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5018 5019 // Holds all the stride accesses. 5020 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5021 collectConstStridedAccesses(StrideAccesses, Strides); 5022 5023 if (StrideAccesses.empty()) 5024 return; 5025 5026 // Holds all interleaved store groups temporarily. 5027 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5028 // Holds all interleaved load groups temporarily. 5029 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5030 5031 // Search the load-load/write-write pair B-A in bottom-up order and try to 5032 // insert B into the interleave group of A according to 3 rules: 5033 // 1. A and B have the same stride. 5034 // 2. A and B have the same memory object size. 5035 // 3. B belongs to the group according to the distance. 5036 // 5037 // The bottom-up order can avoid breaking the Write-After-Write dependences 5038 // between two pointers of the same base. 5039 // E.g. A[i] = a; (1) 5040 // A[i] = b; (2) 5041 // A[i+1] = c (3) 5042 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5043 // above (1), which guarantees that (1) is always above (2). 5044 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5045 ++I) { 5046 Instruction *A = I->first; 5047 StrideDescriptor DesA = I->second; 5048 5049 InterleaveGroup *Group = getInterleaveGroup(A); 5050 if (!Group) { 5051 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5052 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5053 } 5054 5055 if (A->mayWriteToMemory()) 5056 StoreGroups.insert(Group); 5057 else 5058 LoadGroups.insert(Group); 5059 5060 for (auto II = std::next(I); II != E; ++II) { 5061 Instruction *B = II->first; 5062 StrideDescriptor DesB = II->second; 5063 5064 // Ignore if B is already in a group or B is a different memory operation. 5065 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5066 continue; 5067 5068 // Check the rule 1 and 2. 5069 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5070 continue; 5071 5072 // Calculate the distance and prepare for the rule 3. 5073 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5074 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5075 if (!DistToA) 5076 continue; 5077 5078 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5079 5080 // Skip if the distance is not multiple of size as they are not in the 5081 // same group. 5082 if (DistanceToA % static_cast<int>(DesA.Size)) 5083 continue; 5084 5085 // The index of B is the index of A plus the related index to A. 5086 int IndexB = 5087 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5088 5089 // Try to insert B into the group. 5090 if (Group->insertMember(B, IndexB, DesB.Align)) { 5091 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5092 << " into the interleave group with" << *A << '\n'); 5093 InterleaveGroupMap[B] = Group; 5094 5095 // Set the first load in program order as the insert position. 5096 if (B->mayReadFromMemory()) 5097 Group->setInsertPos(B); 5098 } 5099 } // Iteration on instruction B 5100 } // Iteration on instruction A 5101 5102 // Remove interleaved store groups with gaps. 5103 for (InterleaveGroup *Group : StoreGroups) 5104 if (Group->getNumMembers() != Group->getFactor()) 5105 releaseGroup(Group); 5106 5107 // Remove interleaved load groups that don't have the first and last member. 5108 // This guarantees that we won't do speculative out of bounds loads. 5109 for (InterleaveGroup *Group : LoadGroups) 5110 if (!Group->getMember(0) || !Group->getMember(Group->getFactor() - 1)) 5111 releaseGroup(Group); 5112 } 5113 5114 LoopVectorizationCostModel::VectorizationFactor 5115 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5116 // Width 1 means no vectorize 5117 VectorizationFactor Factor = { 1U, 0U }; 5118 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5119 emitAnalysis(VectorizationReport() << 5120 "runtime pointer checks needed. Enable vectorization of this " 5121 "loop with '#pragma clang loop vectorize(enable)' when " 5122 "compiling with -Os/-Oz"); 5123 DEBUG(dbgs() << 5124 "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5125 return Factor; 5126 } 5127 5128 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5129 emitAnalysis(VectorizationReport() << 5130 "store that is conditionally executed prevents vectorization"); 5131 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5132 return Factor; 5133 } 5134 5135 // Find the trip count. 5136 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5137 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5138 5139 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5140 unsigned SmallestType, WidestType; 5141 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5142 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5143 unsigned MaxSafeDepDist = -1U; 5144 if (Legal->getMaxSafeDepDistBytes() != -1U) 5145 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5146 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5147 WidestRegister : MaxSafeDepDist); 5148 unsigned MaxVectorSize = WidestRegister / WidestType; 5149 5150 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5151 << WidestType << " bits.\n"); 5152 DEBUG(dbgs() << "LV: The Widest register is: " 5153 << WidestRegister << " bits.\n"); 5154 5155 if (MaxVectorSize == 0) { 5156 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5157 MaxVectorSize = 1; 5158 } 5159 5160 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5161 " into one vector!"); 5162 5163 unsigned VF = MaxVectorSize; 5164 if (MaximizeBandwidth && !OptForSize) { 5165 // Collect all viable vectorization factors. 5166 SmallVector<unsigned, 8> VFs; 5167 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5168 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5169 VFs.push_back(VS); 5170 5171 // For each VF calculate its register usage. 5172 auto RUs = calculateRegisterUsage(VFs); 5173 5174 // Select the largest VF which doesn't require more registers than existing 5175 // ones. 5176 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5177 for (int i = RUs.size() - 1; i >= 0; --i) { 5178 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5179 VF = VFs[i]; 5180 break; 5181 } 5182 } 5183 } 5184 5185 // If we optimize the program for size, avoid creating the tail loop. 5186 if (OptForSize) { 5187 // If we are unable to calculate the trip count then don't try to vectorize. 5188 if (TC < 2) { 5189 emitAnalysis 5190 (VectorizationReport() << 5191 "unable to calculate the loop count due to complex control flow"); 5192 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5193 return Factor; 5194 } 5195 5196 // Find the maximum SIMD width that can fit within the trip count. 5197 VF = TC % MaxVectorSize; 5198 5199 if (VF == 0) 5200 VF = MaxVectorSize; 5201 else { 5202 // If the trip count that we found modulo the vectorization factor is not 5203 // zero then we require a tail. 5204 emitAnalysis(VectorizationReport() << 5205 "cannot optimize for size and vectorize at the " 5206 "same time. Enable vectorization of this loop " 5207 "with '#pragma clang loop vectorize(enable)' " 5208 "when compiling with -Os/-Oz"); 5209 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5210 return Factor; 5211 } 5212 } 5213 5214 int UserVF = Hints->getWidth(); 5215 if (UserVF != 0) { 5216 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5217 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5218 5219 Factor.Width = UserVF; 5220 return Factor; 5221 } 5222 5223 float Cost = expectedCost(1).first; 5224 #ifndef NDEBUG 5225 const float ScalarCost = Cost; 5226 #endif /* NDEBUG */ 5227 unsigned Width = 1; 5228 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5229 5230 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5231 // Ignore scalar width, because the user explicitly wants vectorization. 5232 if (ForceVectorization && VF > 1) { 5233 Width = 2; 5234 Cost = expectedCost(Width).first / (float)Width; 5235 } 5236 5237 for (unsigned i=2; i <= VF; i*=2) { 5238 // Notice that the vector loop needs to be executed less times, so 5239 // we need to divide the cost of the vector loops by the width of 5240 // the vector elements. 5241 VectorizationCostTy C = expectedCost(i); 5242 float VectorCost = C.first / (float)i; 5243 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5244 (int)VectorCost << ".\n"); 5245 if (!C.second && !ForceVectorization) { 5246 DEBUG(dbgs() << "LV: Not considering vector loop of width " << i << 5247 " because it will not generate any vector instructions.\n"); 5248 continue; 5249 } 5250 if (VectorCost < Cost) { 5251 Cost = VectorCost; 5252 Width = i; 5253 } 5254 } 5255 5256 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5257 << "LV: Vectorization seems to be not beneficial, " 5258 << "but was forced by a user.\n"); 5259 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5260 Factor.Width = Width; 5261 Factor.Cost = Width * Cost; 5262 return Factor; 5263 } 5264 5265 std::pair<unsigned, unsigned> 5266 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5267 unsigned MinWidth = -1U; 5268 unsigned MaxWidth = 8; 5269 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5270 5271 // For each block. 5272 for (Loop::block_iterator bb = TheLoop->block_begin(), 5273 be = TheLoop->block_end(); bb != be; ++bb) { 5274 BasicBlock *BB = *bb; 5275 5276 // For each instruction in the loop. 5277 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5278 Type *T = it->getType(); 5279 5280 // Skip ignored values. 5281 if (ValuesToIgnore.count(&*it)) 5282 continue; 5283 5284 // Only examine Loads, Stores and PHINodes. 5285 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5286 continue; 5287 5288 // Examine PHI nodes that are reduction variables. Update the type to 5289 // account for the recurrence type. 5290 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5291 if (!Legal->isReductionVariable(PN)) 5292 continue; 5293 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5294 T = RdxDesc.getRecurrenceType(); 5295 } 5296 5297 // Examine the stored values. 5298 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5299 T = ST->getValueOperand()->getType(); 5300 5301 // Ignore loaded pointer types and stored pointer types that are not 5302 // consecutive. However, we do want to take consecutive stores/loads of 5303 // pointer vectors into account. 5304 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5305 continue; 5306 5307 MinWidth = std::min(MinWidth, 5308 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5309 MaxWidth = std::max(MaxWidth, 5310 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5311 } 5312 } 5313 5314 return {MinWidth, MaxWidth}; 5315 } 5316 5317 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5318 unsigned VF, 5319 unsigned LoopCost) { 5320 5321 // -- The interleave heuristics -- 5322 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5323 // There are many micro-architectural considerations that we can't predict 5324 // at this level. For example, frontend pressure (on decode or fetch) due to 5325 // code size, or the number and capabilities of the execution ports. 5326 // 5327 // We use the following heuristics to select the interleave count: 5328 // 1. If the code has reductions, then we interleave to break the cross 5329 // iteration dependency. 5330 // 2. If the loop is really small, then we interleave to reduce the loop 5331 // overhead. 5332 // 3. We don't interleave if we think that we will spill registers to memory 5333 // due to the increased register pressure. 5334 5335 // When we optimize for size, we don't interleave. 5336 if (OptForSize) 5337 return 1; 5338 5339 // We used the distance for the interleave count. 5340 if (Legal->getMaxSafeDepDistBytes() != -1U) 5341 return 1; 5342 5343 // Do not interleave loops with a relatively small trip count. 5344 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5345 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5346 return 1; 5347 5348 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5349 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5350 " registers\n"); 5351 5352 if (VF == 1) { 5353 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5354 TargetNumRegisters = ForceTargetNumScalarRegs; 5355 } else { 5356 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5357 TargetNumRegisters = ForceTargetNumVectorRegs; 5358 } 5359 5360 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5361 // We divide by these constants so assume that we have at least one 5362 // instruction that uses at least one register. 5363 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5364 R.NumInstructions = std::max(R.NumInstructions, 1U); 5365 5366 // We calculate the interleave count using the following formula. 5367 // Subtract the number of loop invariants from the number of available 5368 // registers. These registers are used by all of the interleaved instances. 5369 // Next, divide the remaining registers by the number of registers that is 5370 // required by the loop, in order to estimate how many parallel instances 5371 // fit without causing spills. All of this is rounded down if necessary to be 5372 // a power of two. We want power of two interleave count to simplify any 5373 // addressing operations or alignment considerations. 5374 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5375 R.MaxLocalUsers); 5376 5377 // Don't count the induction variable as interleaved. 5378 if (EnableIndVarRegisterHeur) 5379 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5380 std::max(1U, (R.MaxLocalUsers - 1))); 5381 5382 // Clamp the interleave ranges to reasonable counts. 5383 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5384 5385 // Check if the user has overridden the max. 5386 if (VF == 1) { 5387 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5388 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5389 } else { 5390 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5391 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5392 } 5393 5394 // If we did not calculate the cost for VF (because the user selected the VF) 5395 // then we calculate the cost of VF here. 5396 if (LoopCost == 0) 5397 LoopCost = expectedCost(VF).first; 5398 5399 // Clamp the calculated IC to be between the 1 and the max interleave count 5400 // that the target allows. 5401 if (IC > MaxInterleaveCount) 5402 IC = MaxInterleaveCount; 5403 else if (IC < 1) 5404 IC = 1; 5405 5406 // Interleave if we vectorized this loop and there is a reduction that could 5407 // benefit from interleaving. 5408 if (VF > 1 && Legal->getReductionVars()->size()) { 5409 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5410 return IC; 5411 } 5412 5413 // Note that if we've already vectorized the loop we will have done the 5414 // runtime check and so interleaving won't require further checks. 5415 bool InterleavingRequiresRuntimePointerCheck = 5416 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5417 5418 // We want to interleave small loops in order to reduce the loop overhead and 5419 // potentially expose ILP opportunities. 5420 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5421 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5422 // We assume that the cost overhead is 1 and we use the cost model 5423 // to estimate the cost of the loop and interleave until the cost of the 5424 // loop overhead is about 5% of the cost of the loop. 5425 unsigned SmallIC = 5426 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5427 5428 // Interleave until store/load ports (estimated by max interleave count) are 5429 // saturated. 5430 unsigned NumStores = Legal->getNumStores(); 5431 unsigned NumLoads = Legal->getNumLoads(); 5432 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5433 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5434 5435 // If we have a scalar reduction (vector reductions are already dealt with 5436 // by this point), we can increase the critical path length if the loop 5437 // we're interleaving is inside another loop. Limit, by default to 2, so the 5438 // critical path only gets increased by one reduction operation. 5439 if (Legal->getReductionVars()->size() && 5440 TheLoop->getLoopDepth() > 1) { 5441 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5442 SmallIC = std::min(SmallIC, F); 5443 StoresIC = std::min(StoresIC, F); 5444 LoadsIC = std::min(LoadsIC, F); 5445 } 5446 5447 if (EnableLoadStoreRuntimeInterleave && 5448 std::max(StoresIC, LoadsIC) > SmallIC) { 5449 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5450 return std::max(StoresIC, LoadsIC); 5451 } 5452 5453 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5454 return SmallIC; 5455 } 5456 5457 // Interleave if this is a large loop (small loops are already dealt with by 5458 // this point) that could benefit from interleaving. 5459 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5460 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5461 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5462 return IC; 5463 } 5464 5465 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5466 return 1; 5467 } 5468 5469 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5470 LoopVectorizationCostModel::calculateRegisterUsage( 5471 const SmallVector<unsigned, 8> &VFs) { 5472 // This function calculates the register usage by measuring the highest number 5473 // of values that are alive at a single location. Obviously, this is a very 5474 // rough estimation. We scan the loop in a topological order in order and 5475 // assign a number to each instruction. We use RPO to ensure that defs are 5476 // met before their users. We assume that each instruction that has in-loop 5477 // users starts an interval. We record every time that an in-loop value is 5478 // used, so we have a list of the first and last occurrences of each 5479 // instruction. Next, we transpose this data structure into a multi map that 5480 // holds the list of intervals that *end* at a specific location. This multi 5481 // map allows us to perform a linear search. We scan the instructions linearly 5482 // and record each time that a new interval starts, by placing it in a set. 5483 // If we find this value in the multi-map then we remove it from the set. 5484 // The max register usage is the maximum size of the set. 5485 // We also search for instructions that are defined outside the loop, but are 5486 // used inside the loop. We need this number separately from the max-interval 5487 // usage number because when we unroll, loop-invariant values do not take 5488 // more register. 5489 LoopBlocksDFS DFS(TheLoop); 5490 DFS.perform(LI); 5491 5492 RegisterUsage RU; 5493 RU.NumInstructions = 0; 5494 5495 // Each 'key' in the map opens a new interval. The values 5496 // of the map are the index of the 'last seen' usage of the 5497 // instruction that is the key. 5498 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5499 // Maps instruction to its index. 5500 DenseMap<unsigned, Instruction*> IdxToInstr; 5501 // Marks the end of each interval. 5502 IntervalMap EndPoint; 5503 // Saves the list of instruction indices that are used in the loop. 5504 SmallSet<Instruction*, 8> Ends; 5505 // Saves the list of values that are used in the loop but are 5506 // defined outside the loop, such as arguments and constants. 5507 SmallPtrSet<Value*, 8> LoopInvariants; 5508 5509 unsigned Index = 0; 5510 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5511 be = DFS.endRPO(); bb != be; ++bb) { 5512 RU.NumInstructions += (*bb)->size(); 5513 for (Instruction &I : **bb) { 5514 IdxToInstr[Index++] = &I; 5515 5516 // Save the end location of each USE. 5517 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5518 Value *U = I.getOperand(i); 5519 Instruction *Instr = dyn_cast<Instruction>(U); 5520 5521 // Ignore non-instruction values such as arguments, constants, etc. 5522 if (!Instr) continue; 5523 5524 // If this instruction is outside the loop then record it and continue. 5525 if (!TheLoop->contains(Instr)) { 5526 LoopInvariants.insert(Instr); 5527 continue; 5528 } 5529 5530 // Overwrite previous end points. 5531 EndPoint[Instr] = Index; 5532 Ends.insert(Instr); 5533 } 5534 } 5535 } 5536 5537 // Saves the list of intervals that end with the index in 'key'. 5538 typedef SmallVector<Instruction*, 2> InstrList; 5539 DenseMap<unsigned, InstrList> TransposeEnds; 5540 5541 // Transpose the EndPoints to a list of values that end at each index. 5542 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5543 it != e; ++it) 5544 TransposeEnds[it->second].push_back(it->first); 5545 5546 SmallSet<Instruction*, 8> OpenIntervals; 5547 5548 // Get the size of the widest register. 5549 unsigned MaxSafeDepDist = -1U; 5550 if (Legal->getMaxSafeDepDistBytes() != -1U) 5551 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5552 unsigned WidestRegister = 5553 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5554 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5555 5556 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5557 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5558 5559 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5560 5561 // A lambda that gets the register usage for the given type and VF. 5562 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5563 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5564 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5565 }; 5566 5567 for (unsigned int i = 0; i < Index; ++i) { 5568 Instruction *I = IdxToInstr[i]; 5569 // Ignore instructions that are never used within the loop. 5570 if (!Ends.count(I)) continue; 5571 5572 // Skip ignored values. 5573 if (ValuesToIgnore.count(I)) 5574 continue; 5575 5576 // Remove all of the instructions that end at this location. 5577 InstrList &List = TransposeEnds[i]; 5578 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5579 OpenIntervals.erase(List[j]); 5580 5581 // For each VF find the maximum usage of registers. 5582 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5583 if (VFs[j] == 1) { 5584 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5585 continue; 5586 } 5587 5588 // Count the number of live intervals. 5589 unsigned RegUsage = 0; 5590 for (auto Inst : OpenIntervals) 5591 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5592 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5593 } 5594 5595 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5596 << OpenIntervals.size() << '\n'); 5597 5598 // Add the current instruction to the list of open intervals. 5599 OpenIntervals.insert(I); 5600 } 5601 5602 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5603 unsigned Invariant = 0; 5604 if (VFs[i] == 1) 5605 Invariant = LoopInvariants.size(); 5606 else { 5607 for (auto Inst : LoopInvariants) 5608 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5609 } 5610 5611 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5612 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5613 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5614 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5615 5616 RU.LoopInvariantRegs = Invariant; 5617 RU.MaxLocalUsers = MaxUsages[i]; 5618 RUs[i] = RU; 5619 } 5620 5621 return RUs; 5622 } 5623 5624 LoopVectorizationCostModel::VectorizationCostTy 5625 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5626 VectorizationCostTy Cost; 5627 5628 // For each block. 5629 for (Loop::block_iterator bb = TheLoop->block_begin(), 5630 be = TheLoop->block_end(); bb != be; ++bb) { 5631 VectorizationCostTy BlockCost; 5632 BasicBlock *BB = *bb; 5633 5634 // For each instruction in the old loop. 5635 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5636 // Skip dbg intrinsics. 5637 if (isa<DbgInfoIntrinsic>(it)) 5638 continue; 5639 5640 // Skip ignored values. 5641 if (ValuesToIgnore.count(&*it)) 5642 continue; 5643 5644 VectorizationCostTy C = getInstructionCost(&*it, VF); 5645 5646 // Check if we should override the cost. 5647 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5648 C.first = ForceTargetInstructionCost; 5649 5650 BlockCost.first += C.first; 5651 BlockCost.second |= C.second; 5652 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << 5653 " for VF " << VF << " For instruction: " << *it << '\n'); 5654 } 5655 5656 // We assume that if-converted blocks have a 50% chance of being executed. 5657 // When the code is scalar then some of the blocks are avoided due to CF. 5658 // When the code is vectorized we execute all code paths. 5659 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5660 BlockCost.first /= 2; 5661 5662 Cost.first += BlockCost.first; 5663 Cost.second |= BlockCost.second; 5664 } 5665 5666 return Cost; 5667 } 5668 5669 /// \brief Check if the load/store instruction \p I may be translated into 5670 /// gather/scatter during vectorization. 5671 /// 5672 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5673 /// instruction. We need it to retrieve data type. 5674 /// Using gather/scatter is possible when it is supported by target. 5675 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5676 LoopVectorizationLegality *Legal) { 5677 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5678 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5679 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5680 } 5681 5682 /// \brief Check whether the address computation for a non-consecutive memory 5683 /// access looks like an unlikely candidate for being merged into the indexing 5684 /// mode. 5685 /// 5686 /// We look for a GEP which has one index that is an induction variable and all 5687 /// other indices are loop invariant. If the stride of this access is also 5688 /// within a small bound we decide that this address computation can likely be 5689 /// merged into the addressing mode. 5690 /// In all other cases, we identify the address computation as complex. 5691 static bool isLikelyComplexAddressComputation(Value *Ptr, 5692 LoopVectorizationLegality *Legal, 5693 ScalarEvolution *SE, 5694 const Loop *TheLoop) { 5695 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5696 if (!Gep) 5697 return true; 5698 5699 // We are looking for a gep with all loop invariant indices except for one 5700 // which should be an induction variable. 5701 unsigned NumOperands = Gep->getNumOperands(); 5702 for (unsigned i = 1; i < NumOperands; ++i) { 5703 Value *Opd = Gep->getOperand(i); 5704 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5705 !Legal->isInductionVariable(Opd)) 5706 return true; 5707 } 5708 5709 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5710 // can likely be merged into the address computation. 5711 unsigned MaxMergeDistance = 64; 5712 5713 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5714 if (!AddRec) 5715 return true; 5716 5717 // Check the step is constant. 5718 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5719 // Calculate the pointer stride and check if it is consecutive. 5720 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5721 if (!C) 5722 return true; 5723 5724 const APInt &APStepVal = C->getAPInt(); 5725 5726 // Huge step value - give up. 5727 if (APStepVal.getBitWidth() > 64) 5728 return true; 5729 5730 int64_t StepVal = APStepVal.getSExtValue(); 5731 5732 return StepVal > MaxMergeDistance; 5733 } 5734 5735 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5736 return Legal->hasStride(I->getOperand(0)) || 5737 Legal->hasStride(I->getOperand(1)); 5738 } 5739 5740 LoopVectorizationCostModel::VectorizationCostTy 5741 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5742 // If we know that this instruction will remain uniform, check the cost of 5743 // the scalar version. 5744 if (Legal->isUniformAfterVectorization(I)) 5745 VF = 1; 5746 5747 Type *VectorTy; 5748 unsigned C = getInstructionCost(I, VF, VectorTy); 5749 5750 bool TypeNotScalarized = VF > 1 && !VectorTy->isVoidTy() && 5751 TTI.getNumberOfParts(VectorTy) < VF; 5752 return VectorizationCostTy(C, TypeNotScalarized); 5753 } 5754 5755 unsigned 5756 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF, 5757 Type *&VectorTy) { 5758 Type *RetTy = I->getType(); 5759 if (VF > 1 && MinBWs.count(I)) 5760 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5761 VectorTy = ToVectorTy(RetTy, VF); 5762 5763 // TODO: We need to estimate the cost of intrinsic calls. 5764 switch (I->getOpcode()) { 5765 case Instruction::GetElementPtr: 5766 // We mark this instruction as zero-cost because the cost of GEPs in 5767 // vectorized code depends on whether the corresponding memory instruction 5768 // is scalarized or not. Therefore, we handle GEPs with the memory 5769 // instruction cost. 5770 return 0; 5771 case Instruction::Br: { 5772 return TTI.getCFInstrCost(I->getOpcode()); 5773 } 5774 case Instruction::PHI: { 5775 auto *Phi = cast<PHINode>(I); 5776 5777 // First-order recurrences are replaced by vector shuffles inside the loop. 5778 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5779 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5780 VectorTy, VF - 1, VectorTy); 5781 5782 // TODO: IF-converted IFs become selects. 5783 return 0; 5784 } 5785 case Instruction::Add: 5786 case Instruction::FAdd: 5787 case Instruction::Sub: 5788 case Instruction::FSub: 5789 case Instruction::Mul: 5790 case Instruction::FMul: 5791 case Instruction::UDiv: 5792 case Instruction::SDiv: 5793 case Instruction::FDiv: 5794 case Instruction::URem: 5795 case Instruction::SRem: 5796 case Instruction::FRem: 5797 case Instruction::Shl: 5798 case Instruction::LShr: 5799 case Instruction::AShr: 5800 case Instruction::And: 5801 case Instruction::Or: 5802 case Instruction::Xor: { 5803 // Since we will replace the stride by 1 the multiplication should go away. 5804 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5805 return 0; 5806 // Certain instructions can be cheaper to vectorize if they have a constant 5807 // second vector operand. One example of this are shifts on x86. 5808 TargetTransformInfo::OperandValueKind Op1VK = 5809 TargetTransformInfo::OK_AnyValue; 5810 TargetTransformInfo::OperandValueKind Op2VK = 5811 TargetTransformInfo::OK_AnyValue; 5812 TargetTransformInfo::OperandValueProperties Op1VP = 5813 TargetTransformInfo::OP_None; 5814 TargetTransformInfo::OperandValueProperties Op2VP = 5815 TargetTransformInfo::OP_None; 5816 Value *Op2 = I->getOperand(1); 5817 5818 // Check for a splat of a constant or for a non uniform vector of constants. 5819 if (isa<ConstantInt>(Op2)) { 5820 ConstantInt *CInt = cast<ConstantInt>(Op2); 5821 if (CInt && CInt->getValue().isPowerOf2()) 5822 Op2VP = TargetTransformInfo::OP_PowerOf2; 5823 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5824 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5825 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5826 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5827 if (SplatValue) { 5828 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5829 if (CInt && CInt->getValue().isPowerOf2()) 5830 Op2VP = TargetTransformInfo::OP_PowerOf2; 5831 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5832 } 5833 } 5834 5835 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5836 Op1VP, Op2VP); 5837 } 5838 case Instruction::Select: { 5839 SelectInst *SI = cast<SelectInst>(I); 5840 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5841 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5842 Type *CondTy = SI->getCondition()->getType(); 5843 if (!ScalarCond) 5844 CondTy = VectorType::get(CondTy, VF); 5845 5846 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5847 } 5848 case Instruction::ICmp: 5849 case Instruction::FCmp: { 5850 Type *ValTy = I->getOperand(0)->getType(); 5851 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5852 auto It = MinBWs.find(Op0AsInstruction); 5853 if (VF > 1 && It != MinBWs.end()) 5854 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5855 VectorTy = ToVectorTy(ValTy, VF); 5856 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5857 } 5858 case Instruction::Store: 5859 case Instruction::Load: { 5860 StoreInst *SI = dyn_cast<StoreInst>(I); 5861 LoadInst *LI = dyn_cast<LoadInst>(I); 5862 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5863 LI->getType()); 5864 VectorTy = ToVectorTy(ValTy, VF); 5865 5866 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5867 unsigned AS = SI ? SI->getPointerAddressSpace() : 5868 LI->getPointerAddressSpace(); 5869 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5870 // We add the cost of address computation here instead of with the gep 5871 // instruction because only here we know whether the operation is 5872 // scalarized. 5873 if (VF == 1) 5874 return TTI.getAddressComputationCost(VectorTy) + 5875 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5876 5877 if (LI && Legal->isUniform(Ptr)) { 5878 // Scalar load + broadcast 5879 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 5880 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5881 Alignment, AS); 5882 return Cost + TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, 5883 ValTy); 5884 } 5885 5886 // For an interleaved access, calculate the total cost of the whole 5887 // interleave group. 5888 if (Legal->isAccessInterleaved(I)) { 5889 auto Group = Legal->getInterleavedAccessGroup(I); 5890 assert(Group && "Fail to get an interleaved access group."); 5891 5892 // Only calculate the cost once at the insert position. 5893 if (Group->getInsertPos() != I) 5894 return 0; 5895 5896 unsigned InterleaveFactor = Group->getFactor(); 5897 Type *WideVecTy = 5898 VectorType::get(VectorTy->getVectorElementType(), 5899 VectorTy->getVectorNumElements() * InterleaveFactor); 5900 5901 // Holds the indices of existing members in an interleaved load group. 5902 // An interleaved store group doesn't need this as it dones't allow gaps. 5903 SmallVector<unsigned, 4> Indices; 5904 if (LI) { 5905 for (unsigned i = 0; i < InterleaveFactor; i++) 5906 if (Group->getMember(i)) 5907 Indices.push_back(i); 5908 } 5909 5910 // Calculate the cost of the whole interleaved group. 5911 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5912 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5913 Group->getAlignment(), AS); 5914 5915 if (Group->isReverse()) 5916 Cost += 5917 Group->getNumMembers() * 5918 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5919 5920 // FIXME: The interleaved load group with a huge gap could be even more 5921 // expensive than scalar operations. Then we could ignore such group and 5922 // use scalar operations instead. 5923 return Cost; 5924 } 5925 5926 // Scalarized loads/stores. 5927 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5928 bool UseGatherOrScatter = (ConsecutiveStride == 0) && 5929 isGatherOrScatterLegal(I, Ptr, Legal); 5930 5931 bool Reverse = ConsecutiveStride < 0; 5932 const DataLayout &DL = I->getModule()->getDataLayout(); 5933 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5934 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5935 if ((!ConsecutiveStride && !UseGatherOrScatter) || 5936 ScalarAllocatedSize != VectorElementSize) { 5937 bool IsComplexComputation = 5938 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5939 unsigned Cost = 0; 5940 // The cost of extracting from the value vector and pointer vector. 5941 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5942 for (unsigned i = 0; i < VF; ++i) { 5943 // The cost of extracting the pointer operand. 5944 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5945 // In case of STORE, the cost of ExtractElement from the vector. 5946 // In case of LOAD, the cost of InsertElement into the returned 5947 // vector. 5948 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5949 Instruction::InsertElement, 5950 VectorTy, i); 5951 } 5952 5953 // The cost of the scalar loads/stores. 5954 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5955 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5956 Alignment, AS); 5957 return Cost; 5958 } 5959 5960 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5961 if (UseGatherOrScatter) { 5962 assert(ConsecutiveStride == 0 && 5963 "Gather/Scatter are not used for consecutive stride"); 5964 return Cost + 5965 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5966 Legal->isMaskRequired(I), Alignment); 5967 } 5968 // Wide load/stores. 5969 if (Legal->isMaskRequired(I)) 5970 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5971 AS); 5972 else 5973 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5974 5975 if (Reverse) 5976 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5977 VectorTy, 0); 5978 return Cost; 5979 } 5980 case Instruction::ZExt: 5981 case Instruction::SExt: 5982 case Instruction::FPToUI: 5983 case Instruction::FPToSI: 5984 case Instruction::FPExt: 5985 case Instruction::PtrToInt: 5986 case Instruction::IntToPtr: 5987 case Instruction::SIToFP: 5988 case Instruction::UIToFP: 5989 case Instruction::Trunc: 5990 case Instruction::FPTrunc: 5991 case Instruction::BitCast: { 5992 // We optimize the truncation of induction variable. 5993 // The cost of these is the same as the scalar operation. 5994 if (I->getOpcode() == Instruction::Trunc && 5995 Legal->isInductionVariable(I->getOperand(0))) 5996 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5997 I->getOperand(0)->getType()); 5998 5999 Type *SrcScalarTy = I->getOperand(0)->getType(); 6000 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6001 if (VF > 1 && MinBWs.count(I)) { 6002 // This cast is going to be shrunk. This may remove the cast or it might 6003 // turn it into slightly different cast. For example, if MinBW == 16, 6004 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6005 // 6006 // Calculate the modified src and dest types. 6007 Type *MinVecTy = VectorTy; 6008 if (I->getOpcode() == Instruction::Trunc) { 6009 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6010 VectorTy = largestIntegerVectorType(ToVectorTy(I->getType(), VF), 6011 MinVecTy); 6012 } else if (I->getOpcode() == Instruction::ZExt || 6013 I->getOpcode() == Instruction::SExt) { 6014 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6015 VectorTy = smallestIntegerVectorType(ToVectorTy(I->getType(), VF), 6016 MinVecTy); 6017 } 6018 } 6019 6020 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6021 } 6022 case Instruction::Call: { 6023 bool NeedToScalarize; 6024 CallInst *CI = cast<CallInst>(I); 6025 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6026 if (getVectorIntrinsicIDForCall(CI, TLI)) 6027 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6028 return CallCost; 6029 } 6030 default: { 6031 // We are scalarizing the instruction. Return the cost of the scalar 6032 // instruction, plus the cost of insert and extract into vector 6033 // elements, times the vector width. 6034 unsigned Cost = 0; 6035 6036 if (!RetTy->isVoidTy() && VF != 1) { 6037 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6038 VectorTy); 6039 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6040 VectorTy); 6041 6042 // The cost of inserting the results plus extracting each one of the 6043 // operands. 6044 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6045 } 6046 6047 // The cost of executing VF copies of the scalar instruction. This opcode 6048 // is unknown. Assume that it is the same as 'mul'. 6049 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6050 return Cost; 6051 } 6052 }// end of switch. 6053 } 6054 6055 char LoopVectorize::ID = 0; 6056 static const char lv_name[] = "Loop Vectorization"; 6057 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6058 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6059 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6060 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6061 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6062 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6063 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6064 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6065 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6066 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6067 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6068 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6069 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6070 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6071 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6072 6073 namespace llvm { 6074 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6075 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6076 } 6077 } 6078 6079 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6080 // Check for a store. 6081 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6082 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6083 6084 // Check for a load. 6085 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6086 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6087 6088 return false; 6089 } 6090 6091 6092 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6093 bool IfPredicateStore) { 6094 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6095 // Holds vector parameters or scalars, in case of uniform vals. 6096 SmallVector<VectorParts, 4> Params; 6097 6098 setDebugLocFromInst(Builder, Instr); 6099 6100 // Find all of the vectorized parameters. 6101 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6102 Value *SrcOp = Instr->getOperand(op); 6103 6104 // If we are accessing the old induction variable, use the new one. 6105 if (SrcOp == OldInduction) { 6106 Params.push_back(getVectorValue(SrcOp)); 6107 continue; 6108 } 6109 6110 // Try using previously calculated values. 6111 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6112 6113 // If the src is an instruction that appeared earlier in the basic block 6114 // then it should already be vectorized. 6115 if (SrcInst && OrigLoop->contains(SrcInst)) { 6116 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6117 // The parameter is a vector value from earlier. 6118 Params.push_back(WidenMap.get(SrcInst)); 6119 } else { 6120 // The parameter is a scalar from outside the loop. Maybe even a constant. 6121 VectorParts Scalars; 6122 Scalars.append(UF, SrcOp); 6123 Params.push_back(Scalars); 6124 } 6125 } 6126 6127 assert(Params.size() == Instr->getNumOperands() && 6128 "Invalid number of operands"); 6129 6130 // Does this instruction return a value ? 6131 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6132 6133 Value *UndefVec = IsVoidRetTy ? nullptr : 6134 UndefValue::get(Instr->getType()); 6135 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6136 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6137 6138 VectorParts Cond; 6139 if (IfPredicateStore) { 6140 assert(Instr->getParent()->getSinglePredecessor() && 6141 "Only support single predecessor blocks"); 6142 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6143 Instr->getParent()); 6144 } 6145 6146 // For each vector unroll 'part': 6147 for (unsigned Part = 0; Part < UF; ++Part) { 6148 // For each scalar that we create: 6149 6150 // Start an "if (pred) a[i] = ..." block. 6151 Value *Cmp = nullptr; 6152 if (IfPredicateStore) { 6153 if (Cond[Part]->getType()->isVectorTy()) 6154 Cond[Part] = 6155 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6156 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6157 ConstantInt::get(Cond[Part]->getType(), 1)); 6158 } 6159 6160 Instruction *Cloned = Instr->clone(); 6161 if (!IsVoidRetTy) 6162 Cloned->setName(Instr->getName() + ".cloned"); 6163 // Replace the operands of the cloned instructions with extracted scalars. 6164 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6165 Value *Op = Params[op][Part]; 6166 Cloned->setOperand(op, Op); 6167 } 6168 6169 // Place the cloned scalar in the new loop. 6170 Builder.Insert(Cloned); 6171 6172 // If we just cloned a new assumption, add it the assumption cache. 6173 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6174 if (II->getIntrinsicID() == Intrinsic::assume) 6175 AC->registerAssumption(II); 6176 6177 // If the original scalar returns a value we need to place it in a vector 6178 // so that future users will be able to use it. 6179 if (!IsVoidRetTy) 6180 VecResults[Part] = Cloned; 6181 6182 // End if-block. 6183 if (IfPredicateStore) 6184 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), 6185 Cmp)); 6186 } 6187 } 6188 6189 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6190 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6191 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6192 6193 return scalarizeInstruction(Instr, IfPredicateStore); 6194 } 6195 6196 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6197 return Vec; 6198 } 6199 6200 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6201 return V; 6202 } 6203 6204 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6205 // When unrolling and the VF is 1, we only need to add a simple scalar. 6206 Type *ITy = Val->getType(); 6207 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6208 Constant *C = ConstantInt::get(ITy, StartIdx); 6209 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6210 } 6211