1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, const InductionDescriptor &ID, 514 Value *Start, TruncInst *Trunc, VPValue *Def, 515 VPTransformState &State, Value *CanonicalIV); 516 517 /// Construct the vector value of a scalarized value \p V one lane at a time. 518 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 519 VPTransformState &State); 520 521 /// Try to vectorize interleaved access group \p Group with the base address 522 /// given in \p Addr, optionally masking the vector operations if \p 523 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 524 /// values in the vectorized loop. 525 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 526 ArrayRef<VPValue *> VPDefs, 527 VPTransformState &State, VPValue *Addr, 528 ArrayRef<VPValue *> StoredValues, 529 VPValue *BlockInMask = nullptr); 530 531 /// Set the debug location in the builder \p Ptr using the debug location in 532 /// \p V. If \p Ptr is None then it uses the class member's Builder. 533 void setDebugLocFromInst(const Value *V, 534 Optional<IRBuilder<> *> CustomBuilder = None); 535 536 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 537 void fixNonInductionPHIs(VPTransformState &State); 538 539 /// Returns true if the reordering of FP operations is not allowed, but we are 540 /// able to vectorize with strict in-order reductions for the given RdxDesc. 541 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 542 543 /// Create a broadcast instruction. This method generates a broadcast 544 /// instruction (shuffle) for loop invariant values and for the induction 545 /// value. If this is the induction variable then we extend it to N, N+1, ... 546 /// this is needed because each iteration in the loop corresponds to a SIMD 547 /// element. 548 virtual Value *getBroadcastInstrs(Value *V); 549 550 /// Add metadata from one instruction to another. 551 /// 552 /// This includes both the original MDs from \p From and additional ones (\see 553 /// addNewMetadata). Use this for *newly created* instructions in the vector 554 /// loop. 555 void addMetadata(Instruction *To, Instruction *From); 556 557 /// Similar to the previous function but it adds the metadata to a 558 /// vector of instructions. 559 void addMetadata(ArrayRef<Value *> To, Instruction *From); 560 561 protected: 562 friend class LoopVectorizationPlanner; 563 564 /// A small list of PHINodes. 565 using PhiVector = SmallVector<PHINode *, 4>; 566 567 /// A type for scalarized values in the new loop. Each value from the 568 /// original loop, when scalarized, is represented by UF x VF scalar values 569 /// in the new unrolled loop, where UF is the unroll factor and VF is the 570 /// vectorization factor. 571 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 572 573 /// Set up the values of the IVs correctly when exiting the vector loop. 574 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 575 Value *CountRoundDown, Value *EndValue, 576 BasicBlock *MiddleBlock); 577 578 /// Introduce a conditional branch (on true, condition to be set later) at the 579 /// end of the header=latch connecting it to itself (across the backedge) and 580 /// to the exit block of \p L. 581 void createHeaderBranch(Loop *L); 582 583 /// Handle all cross-iteration phis in the header. 584 void fixCrossIterationPHIs(VPTransformState &State); 585 586 /// Create the exit value of first order recurrences in the middle block and 587 /// update their users. 588 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 589 VPTransformState &State); 590 591 /// Create code for the loop exit value of the reduction. 592 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 593 594 /// Clear NSW/NUW flags from reduction instructions if necessary. 595 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 596 VPTransformState &State); 597 598 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 599 /// means we need to add the appropriate incoming value from the middle 600 /// block as exiting edges from the scalar epilogue loop (if present) are 601 /// already in place, and we exit the vector loop exclusively to the middle 602 /// block. 603 void fixLCSSAPHIs(VPTransformState &State); 604 605 /// Iteratively sink the scalarized operands of a predicated instruction into 606 /// the block that was created for it. 607 void sinkScalarOperands(Instruction *PredInst); 608 609 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 610 /// represented as. 611 void truncateToMinimalBitwidths(VPTransformState &State); 612 613 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 614 /// variable on which to base the steps, \p Step is the size of the step, and 615 /// \p EntryVal is the value from the original loop that maps to the steps. 616 /// Note that \p EntryVal doesn't have to be an induction variable - it 617 /// can also be a truncate instruction. 618 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 619 const InductionDescriptor &ID, VPValue *Def, 620 VPTransformState &State); 621 622 /// Create a vector induction phi node based on an existing scalar one. \p 623 /// EntryVal is the value from the original loop that maps to the vector phi 624 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 625 /// truncate instruction, instead of widening the original IV, we widen a 626 /// version of the IV truncated to \p EntryVal's type. 627 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 628 Value *Step, Value *Start, 629 Instruction *EntryVal, VPValue *Def, 630 VPTransformState &State); 631 632 /// Returns true if an instruction \p I should be scalarized instead of 633 /// vectorized for the chosen vectorization factor. 634 bool shouldScalarizeInstruction(Instruction *I) const; 635 636 /// Returns true if we should generate a scalar version of \p IV. 637 bool needsScalarInduction(Instruction *IV) const; 638 639 /// Returns (and creates if needed) the original loop trip count. 640 Value *getOrCreateTripCount(Loop *NewLoop); 641 642 /// Returns (and creates if needed) the trip count of the widened loop. 643 Value *getOrCreateVectorTripCount(Loop *NewLoop); 644 645 /// Returns a bitcasted value to the requested vector type. 646 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 647 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 648 const DataLayout &DL); 649 650 /// Emit a bypass check to see if the vector trip count is zero, including if 651 /// it overflows. 652 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 653 654 /// Emit a bypass check to see if all of the SCEV assumptions we've 655 /// had to make are correct. Returns the block containing the checks or 656 /// nullptr if no checks have been added. 657 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 658 659 /// Emit bypass checks to check any memory assumptions we may have made. 660 /// Returns the block containing the checks or nullptr if no checks have been 661 /// added. 662 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 663 664 /// Compute the transformed value of Index at offset StartValue using step 665 /// StepValue. 666 /// For integer induction, returns StartValue + Index * StepValue. 667 /// For pointer induction, returns StartValue[Index * StepValue]. 668 /// FIXME: The newly created binary instructions should contain nsw/nuw 669 /// flags, which can be found from the original scalar operations. 670 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 671 const DataLayout &DL, 672 const InductionDescriptor &ID, 673 BasicBlock *VectorHeader) const; 674 675 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 676 /// vector loop preheader, middle block and scalar preheader. Also 677 /// allocate a loop object for the new vector loop and return it. 678 Loop *createVectorLoopSkeleton(StringRef Prefix); 679 680 /// Create new phi nodes for the induction variables to resume iteration count 681 /// in the scalar epilogue, from where the vectorized loop left off. 682 /// In cases where the loop skeleton is more complicated (eg. epilogue 683 /// vectorization) and the resume values can come from an additional bypass 684 /// block, the \p AdditionalBypass pair provides information about the bypass 685 /// block and the end value on the edge from bypass to this loop. 686 void createInductionResumeValues( 687 Loop *L, 688 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 689 690 /// Complete the loop skeleton by adding debug MDs, creating appropriate 691 /// conditional branches in the middle block, preparing the builder and 692 /// running the verifier. Take in the vector loop \p L as argument, and return 693 /// the preheader of the completed vector loop. 694 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 695 696 /// Add additional metadata to \p To that was not present on \p Orig. 697 /// 698 /// Currently this is used to add the noalias annotations based on the 699 /// inserted memchecks. Use this for instructions that are *cloned* into the 700 /// vector loop. 701 void addNewMetadata(Instruction *To, const Instruction *Orig); 702 703 /// Collect poison-generating recipes that may generate a poison value that is 704 /// used after vectorization, even when their operands are not poison. Those 705 /// recipes meet the following conditions: 706 /// * Contribute to the address computation of a recipe generating a widen 707 /// memory load/store (VPWidenMemoryInstructionRecipe or 708 /// VPInterleaveRecipe). 709 /// * Such a widen memory load/store has at least one underlying Instruction 710 /// that is in a basic block that needs predication and after vectorization 711 /// the generated instruction won't be predicated. 712 void collectPoisonGeneratingRecipes(VPTransformState &State); 713 714 /// Allow subclasses to override and print debug traces before/after vplan 715 /// execution, when trace information is requested. 716 virtual void printDebugTracesAtStart(){}; 717 virtual void printDebugTracesAtEnd(){}; 718 719 /// The original loop. 720 Loop *OrigLoop; 721 722 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 723 /// dynamic knowledge to simplify SCEV expressions and converts them to a 724 /// more usable form. 725 PredicatedScalarEvolution &PSE; 726 727 /// Loop Info. 728 LoopInfo *LI; 729 730 /// Dominator Tree. 731 DominatorTree *DT; 732 733 /// Alias Analysis. 734 AAResults *AA; 735 736 /// Target Library Info. 737 const TargetLibraryInfo *TLI; 738 739 /// Target Transform Info. 740 const TargetTransformInfo *TTI; 741 742 /// Assumption Cache. 743 AssumptionCache *AC; 744 745 /// Interface to emit optimization remarks. 746 OptimizationRemarkEmitter *ORE; 747 748 /// LoopVersioning. It's only set up (non-null) if memchecks were 749 /// used. 750 /// 751 /// This is currently only used to add no-alias metadata based on the 752 /// memchecks. The actually versioning is performed manually. 753 std::unique_ptr<LoopVersioning> LVer; 754 755 /// The vectorization SIMD factor to use. Each vector will have this many 756 /// vector elements. 757 ElementCount VF; 758 759 /// The vectorization unroll factor to use. Each scalar is vectorized to this 760 /// many different vector instructions. 761 unsigned UF; 762 763 /// The builder that we use 764 IRBuilder<> Builder; 765 766 // --- Vectorization state --- 767 768 /// The vector-loop preheader. 769 BasicBlock *LoopVectorPreHeader; 770 771 /// The scalar-loop preheader. 772 BasicBlock *LoopScalarPreHeader; 773 774 /// Middle Block between the vector and the scalar. 775 BasicBlock *LoopMiddleBlock; 776 777 /// The unique ExitBlock of the scalar loop if one exists. Note that 778 /// there can be multiple exiting edges reaching this block. 779 BasicBlock *LoopExitBlock; 780 781 /// The vector loop body. 782 BasicBlock *LoopVectorBody; 783 784 /// The scalar loop body. 785 BasicBlock *LoopScalarBody; 786 787 /// A list of all bypass blocks. The first block is the entry of the loop. 788 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 789 790 /// Store instructions that were predicated. 791 SmallVector<Instruction *, 4> PredicatedInstructions; 792 793 /// Trip count of the original loop. 794 Value *TripCount = nullptr; 795 796 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 797 Value *VectorTripCount = nullptr; 798 799 /// The legality analysis. 800 LoopVectorizationLegality *Legal; 801 802 /// The profitablity analysis. 803 LoopVectorizationCostModel *Cost; 804 805 // Record whether runtime checks are added. 806 bool AddedSafetyChecks = false; 807 808 // Holds the end values for each induction variable. We save the end values 809 // so we can later fix-up the external users of the induction variables. 810 DenseMap<PHINode *, Value *> IVEndValues; 811 812 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 813 // fixed up at the end of vector code generation. 814 SmallVector<PHINode *, 8> OrigPHIsToFix; 815 816 /// BFI and PSI are used to check for profile guided size optimizations. 817 BlockFrequencyInfo *BFI; 818 ProfileSummaryInfo *PSI; 819 820 // Whether this loop should be optimized for size based on profile guided size 821 // optimizatios. 822 bool OptForSizeBasedOnProfile; 823 824 /// Structure to hold information about generated runtime checks, responsible 825 /// for cleaning the checks, if vectorization turns out unprofitable. 826 GeneratedRTChecks &RTChecks; 827 }; 828 829 class InnerLoopUnroller : public InnerLoopVectorizer { 830 public: 831 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, DominatorTree *DT, 833 const TargetLibraryInfo *TLI, 834 const TargetTransformInfo *TTI, AssumptionCache *AC, 835 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 836 LoopVectorizationLegality *LVL, 837 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 838 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 839 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 840 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 841 BFI, PSI, Check) {} 842 843 private: 844 Value *getBroadcastInstrs(Value *V) override; 845 }; 846 847 /// Encapsulate information regarding vectorization of a loop and its epilogue. 848 /// This information is meant to be updated and used across two stages of 849 /// epilogue vectorization. 850 struct EpilogueLoopVectorizationInfo { 851 ElementCount MainLoopVF = ElementCount::getFixed(0); 852 unsigned MainLoopUF = 0; 853 ElementCount EpilogueVF = ElementCount::getFixed(0); 854 unsigned EpilogueUF = 0; 855 BasicBlock *MainLoopIterationCountCheck = nullptr; 856 BasicBlock *EpilogueIterationCountCheck = nullptr; 857 BasicBlock *SCEVSafetyCheck = nullptr; 858 BasicBlock *MemSafetyCheck = nullptr; 859 Value *TripCount = nullptr; 860 Value *VectorTripCount = nullptr; 861 862 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 863 ElementCount EVF, unsigned EUF) 864 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 865 assert(EUF == 1 && 866 "A high UF for the epilogue loop is likely not beneficial."); 867 } 868 }; 869 870 /// An extension of the inner loop vectorizer that creates a skeleton for a 871 /// vectorized loop that has its epilogue (residual) also vectorized. 872 /// The idea is to run the vplan on a given loop twice, firstly to setup the 873 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 874 /// from the first step and vectorize the epilogue. This is achieved by 875 /// deriving two concrete strategy classes from this base class and invoking 876 /// them in succession from the loop vectorizer planner. 877 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 878 public: 879 InnerLoopAndEpilogueVectorizer( 880 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 881 DominatorTree *DT, const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 884 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 885 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 886 GeneratedRTChecks &Checks) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 889 Checks), 890 EPI(EPI) {} 891 892 // Override this function to handle the more complex control flow around the 893 // three loops. 894 std::pair<BasicBlock *, Value *> 895 createVectorizedLoopSkeleton() final override { 896 return createEpilogueVectorizedLoopSkeleton(); 897 } 898 899 /// The interface for creating a vectorized skeleton using one of two 900 /// different strategies, each corresponding to one execution of the vplan 901 /// as described above. 902 virtual std::pair<BasicBlock *, Value *> 903 createEpilogueVectorizedLoopSkeleton() = 0; 904 905 /// Holds and updates state information required to vectorize the main loop 906 /// and its epilogue in two separate passes. This setup helps us avoid 907 /// regenerating and recomputing runtime safety checks. It also helps us to 908 /// shorten the iteration-count-check path length for the cases where the 909 /// iteration count of the loop is so small that the main vector loop is 910 /// completely skipped. 911 EpilogueLoopVectorizationInfo &EPI; 912 }; 913 914 /// A specialized derived class of inner loop vectorizer that performs 915 /// vectorization of *main* loops in the process of vectorizing loops and their 916 /// epilogues. 917 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 918 public: 919 EpilogueVectorizerMainLoop( 920 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 921 DominatorTree *DT, const TargetLibraryInfo *TLI, 922 const TargetTransformInfo *TTI, AssumptionCache *AC, 923 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 924 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 925 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 926 GeneratedRTChecks &Check) 927 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 928 EPI, LVL, CM, BFI, PSI, Check) {} 929 /// Implements the interface for creating a vectorized skeleton using the 930 /// *main loop* strategy (ie the first pass of vplan execution). 931 std::pair<BasicBlock *, Value *> 932 createEpilogueVectorizedLoopSkeleton() final override; 933 934 protected: 935 /// Emits an iteration count bypass check once for the main loop (when \p 936 /// ForEpilogue is false) and once for the epilogue loop (when \p 937 /// ForEpilogue is true). 938 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 939 bool ForEpilogue); 940 void printDebugTracesAtStart() override; 941 void printDebugTracesAtEnd() override; 942 }; 943 944 // A specialized derived class of inner loop vectorizer that performs 945 // vectorization of *epilogue* loops in the process of vectorizing loops and 946 // their epilogues. 947 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 948 public: 949 EpilogueVectorizerEpilogueLoop( 950 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 951 DominatorTree *DT, const TargetLibraryInfo *TLI, 952 const TargetTransformInfo *TTI, AssumptionCache *AC, 953 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 954 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 955 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 956 GeneratedRTChecks &Checks) 957 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 958 EPI, LVL, CM, BFI, PSI, Checks) {} 959 /// Implements the interface for creating a vectorized skeleton using the 960 /// *epilogue loop* strategy (ie the second pass of vplan execution). 961 std::pair<BasicBlock *, Value *> 962 createEpilogueVectorizedLoopSkeleton() final override; 963 964 protected: 965 /// Emits an iteration count bypass check after the main vector loop has 966 /// finished to see if there are any iterations left to execute by either 967 /// the vector epilogue or the scalar epilogue. 968 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 969 BasicBlock *Bypass, 970 BasicBlock *Insert); 971 void printDebugTracesAtStart() override; 972 void printDebugTracesAtEnd() override; 973 }; 974 } // end namespace llvm 975 976 /// Look for a meaningful debug location on the instruction or it's 977 /// operands. 978 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 979 if (!I) 980 return I; 981 982 DebugLoc Empty; 983 if (I->getDebugLoc() != Empty) 984 return I; 985 986 for (Use &Op : I->operands()) { 987 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 988 if (OpInst->getDebugLoc() != Empty) 989 return OpInst; 990 } 991 992 return I; 993 } 994 995 void InnerLoopVectorizer::setDebugLocFromInst( 996 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 997 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 998 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 999 const DILocation *DIL = Inst->getDebugLoc(); 1000 1001 // When a FSDiscriminator is enabled, we don't need to add the multiply 1002 // factors to the discriminators. 1003 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1004 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1005 // FIXME: For scalable vectors, assume vscale=1. 1006 auto NewDIL = 1007 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1008 if (NewDIL) 1009 B->SetCurrentDebugLocation(NewDIL.getValue()); 1010 else 1011 LLVM_DEBUG(dbgs() 1012 << "Failed to create new discriminator: " 1013 << DIL->getFilename() << " Line: " << DIL->getLine()); 1014 } else 1015 B->SetCurrentDebugLocation(DIL); 1016 } else 1017 B->SetCurrentDebugLocation(DebugLoc()); 1018 } 1019 1020 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1021 /// is passed, the message relates to that particular instruction. 1022 #ifndef NDEBUG 1023 static void debugVectorizationMessage(const StringRef Prefix, 1024 const StringRef DebugMsg, 1025 Instruction *I) { 1026 dbgs() << "LV: " << Prefix << DebugMsg; 1027 if (I != nullptr) 1028 dbgs() << " " << *I; 1029 else 1030 dbgs() << '.'; 1031 dbgs() << '\n'; 1032 } 1033 #endif 1034 1035 /// Create an analysis remark that explains why vectorization failed 1036 /// 1037 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1038 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1039 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1040 /// the location of the remark. \return the remark object that can be 1041 /// streamed to. 1042 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1043 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1044 Value *CodeRegion = TheLoop->getHeader(); 1045 DebugLoc DL = TheLoop->getStartLoc(); 1046 1047 if (I) { 1048 CodeRegion = I->getParent(); 1049 // If there is no debug location attached to the instruction, revert back to 1050 // using the loop's. 1051 if (I->getDebugLoc()) 1052 DL = I->getDebugLoc(); 1053 } 1054 1055 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1056 } 1057 1058 namespace llvm { 1059 1060 /// Return a value for Step multiplied by VF. 1061 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1062 int64_t Step) { 1063 assert(Ty->isIntegerTy() && "Expected an integer step"); 1064 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1065 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1066 } 1067 1068 /// Return the runtime value for VF. 1069 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1070 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1071 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1072 } 1073 1074 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1075 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1076 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1077 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1078 return B.CreateUIToFP(RuntimeVF, FTy); 1079 } 1080 1081 void reportVectorizationFailure(const StringRef DebugMsg, 1082 const StringRef OREMsg, const StringRef ORETag, 1083 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1084 Instruction *I) { 1085 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1086 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1087 ORE->emit( 1088 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1089 << "loop not vectorized: " << OREMsg); 1090 } 1091 1092 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1093 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1094 Instruction *I) { 1095 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1096 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1097 ORE->emit( 1098 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1099 << Msg); 1100 } 1101 1102 } // end namespace llvm 1103 1104 #ifndef NDEBUG 1105 /// \return string containing a file name and a line # for the given loop. 1106 static std::string getDebugLocString(const Loop *L) { 1107 std::string Result; 1108 if (L) { 1109 raw_string_ostream OS(Result); 1110 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1111 LoopDbgLoc.print(OS); 1112 else 1113 // Just print the module name. 1114 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1115 OS.flush(); 1116 } 1117 return Result; 1118 } 1119 #endif 1120 1121 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1122 const Instruction *Orig) { 1123 // If the loop was versioned with memchecks, add the corresponding no-alias 1124 // metadata. 1125 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1126 LVer->annotateInstWithNoAlias(To, Orig); 1127 } 1128 1129 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1130 VPTransformState &State) { 1131 1132 // Collect recipes in the backward slice of `Root` that may generate a poison 1133 // value that is used after vectorization. 1134 SmallPtrSet<VPRecipeBase *, 16> Visited; 1135 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1136 SmallVector<VPRecipeBase *, 16> Worklist; 1137 Worklist.push_back(Root); 1138 1139 // Traverse the backward slice of Root through its use-def chain. 1140 while (!Worklist.empty()) { 1141 VPRecipeBase *CurRec = Worklist.back(); 1142 Worklist.pop_back(); 1143 1144 if (!Visited.insert(CurRec).second) 1145 continue; 1146 1147 // Prune search if we find another recipe generating a widen memory 1148 // instruction. Widen memory instructions involved in address computation 1149 // will lead to gather/scatter instructions, which don't need to be 1150 // handled. 1151 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1152 isa<VPInterleaveRecipe>(CurRec) || 1153 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1154 continue; 1155 1156 // This recipe contributes to the address computation of a widen 1157 // load/store. Collect recipe if its underlying instruction has 1158 // poison-generating flags. 1159 Instruction *Instr = CurRec->getUnderlyingInstr(); 1160 if (Instr && Instr->hasPoisonGeneratingFlags()) 1161 State.MayGeneratePoisonRecipes.insert(CurRec); 1162 1163 // Add new definitions to the worklist. 1164 for (VPValue *operand : CurRec->operands()) 1165 if (VPDef *OpDef = operand->getDef()) 1166 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1167 } 1168 }); 1169 1170 // Traverse all the recipes in the VPlan and collect the poison-generating 1171 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1172 // VPInterleaveRecipe. 1173 auto Iter = depth_first( 1174 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1175 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1176 for (VPRecipeBase &Recipe : *VPBB) { 1177 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1178 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1179 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1180 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1181 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1182 collectPoisonGeneratingInstrsInBackwardSlice( 1183 cast<VPRecipeBase>(AddrDef)); 1184 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1185 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1186 if (AddrDef) { 1187 // Check if any member of the interleave group needs predication. 1188 const InterleaveGroup<Instruction> *InterGroup = 1189 InterleaveRec->getInterleaveGroup(); 1190 bool NeedPredication = false; 1191 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1192 I < NumMembers; ++I) { 1193 Instruction *Member = InterGroup->getMember(I); 1194 if (Member) 1195 NeedPredication |= 1196 Legal->blockNeedsPredication(Member->getParent()); 1197 } 1198 1199 if (NeedPredication) 1200 collectPoisonGeneratingInstrsInBackwardSlice( 1201 cast<VPRecipeBase>(AddrDef)); 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 void InnerLoopVectorizer::addMetadata(Instruction *To, 1209 Instruction *From) { 1210 propagateMetadata(To, From); 1211 addNewMetadata(To, From); 1212 } 1213 1214 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1215 Instruction *From) { 1216 for (Value *V : To) { 1217 if (Instruction *I = dyn_cast<Instruction>(V)) 1218 addMetadata(I, From); 1219 } 1220 } 1221 1222 namespace llvm { 1223 1224 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1225 // lowered. 1226 enum ScalarEpilogueLowering { 1227 1228 // The default: allowing scalar epilogues. 1229 CM_ScalarEpilogueAllowed, 1230 1231 // Vectorization with OptForSize: don't allow epilogues. 1232 CM_ScalarEpilogueNotAllowedOptSize, 1233 1234 // A special case of vectorisation with OptForSize: loops with a very small 1235 // trip count are considered for vectorization under OptForSize, thereby 1236 // making sure the cost of their loop body is dominant, free of runtime 1237 // guards and scalar iteration overheads. 1238 CM_ScalarEpilogueNotAllowedLowTripLoop, 1239 1240 // Loop hint predicate indicating an epilogue is undesired. 1241 CM_ScalarEpilogueNotNeededUsePredicate, 1242 1243 // Directive indicating we must either tail fold or not vectorize 1244 CM_ScalarEpilogueNotAllowedUsePredicate 1245 }; 1246 1247 /// ElementCountComparator creates a total ordering for ElementCount 1248 /// for the purposes of using it in a set structure. 1249 struct ElementCountComparator { 1250 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1251 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1252 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1253 } 1254 }; 1255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1256 1257 /// LoopVectorizationCostModel - estimates the expected speedups due to 1258 /// vectorization. 1259 /// In many cases vectorization is not profitable. This can happen because of 1260 /// a number of reasons. In this class we mainly attempt to predict the 1261 /// expected speedup/slowdowns due to the supported instruction set. We use the 1262 /// TargetTransformInfo to query the different backends for the cost of 1263 /// different operations. 1264 class LoopVectorizationCostModel { 1265 public: 1266 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1267 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1268 LoopVectorizationLegality *Legal, 1269 const TargetTransformInfo &TTI, 1270 const TargetLibraryInfo *TLI, DemandedBits *DB, 1271 AssumptionCache *AC, 1272 OptimizationRemarkEmitter *ORE, const Function *F, 1273 const LoopVectorizeHints *Hints, 1274 InterleavedAccessInfo &IAI) 1275 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1276 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1277 Hints(Hints), InterleaveInfo(IAI) {} 1278 1279 /// \return An upper bound for the vectorization factors (both fixed and 1280 /// scalable). If the factors are 0, vectorization and interleaving should be 1281 /// avoided up front. 1282 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1283 1284 /// \return True if runtime checks are required for vectorization, and false 1285 /// otherwise. 1286 bool runtimeChecksRequired(); 1287 1288 /// \return The most profitable vectorization factor and the cost of that VF. 1289 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1290 /// then this vectorization factor will be selected if vectorization is 1291 /// possible. 1292 VectorizationFactor 1293 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1294 1295 VectorizationFactor 1296 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1297 const LoopVectorizationPlanner &LVP); 1298 1299 /// Setup cost-based decisions for user vectorization factor. 1300 /// \return true if the UserVF is a feasible VF to be chosen. 1301 bool selectUserVectorizationFactor(ElementCount UserVF) { 1302 collectUniformsAndScalars(UserVF); 1303 collectInstsToScalarize(UserVF); 1304 return expectedCost(UserVF).first.isValid(); 1305 } 1306 1307 /// \return The size (in bits) of the smallest and widest types in the code 1308 /// that needs to be vectorized. We ignore values that remain scalar such as 1309 /// 64 bit loop indices. 1310 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1311 1312 /// \return The desired interleave count. 1313 /// If interleave count has been specified by metadata it will be returned. 1314 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1315 /// are the selected vectorization factor and the cost of the selected VF. 1316 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1317 1318 /// Memory access instruction may be vectorized in more than one way. 1319 /// Form of instruction after vectorization depends on cost. 1320 /// This function takes cost-based decisions for Load/Store instructions 1321 /// and collects them in a map. This decisions map is used for building 1322 /// the lists of loop-uniform and loop-scalar instructions. 1323 /// The calculated cost is saved with widening decision in order to 1324 /// avoid redundant calculations. 1325 void setCostBasedWideningDecision(ElementCount VF); 1326 1327 /// A struct that represents some properties of the register usage 1328 /// of a loop. 1329 struct RegisterUsage { 1330 /// Holds the number of loop invariant values that are used in the loop. 1331 /// The key is ClassID of target-provided register class. 1332 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1333 /// Holds the maximum number of concurrent live intervals in the loop. 1334 /// The key is ClassID of target-provided register class. 1335 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1336 }; 1337 1338 /// \return Returns information about the register usages of the loop for the 1339 /// given vectorization factors. 1340 SmallVector<RegisterUsage, 8> 1341 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1342 1343 /// Collect values we want to ignore in the cost model. 1344 void collectValuesToIgnore(); 1345 1346 /// Collect all element types in the loop for which widening is needed. 1347 void collectElementTypesForWidening(); 1348 1349 /// Split reductions into those that happen in the loop, and those that happen 1350 /// outside. In loop reductions are collected into InLoopReductionChains. 1351 void collectInLoopReductions(); 1352 1353 /// Returns true if we should use strict in-order reductions for the given 1354 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1355 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1356 /// of FP operations. 1357 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1358 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1359 } 1360 1361 /// \returns The smallest bitwidth each instruction can be represented with. 1362 /// The vector equivalents of these instructions should be truncated to this 1363 /// type. 1364 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1365 return MinBWs; 1366 } 1367 1368 /// \returns True if it is more profitable to scalarize instruction \p I for 1369 /// vectorization factor \p VF. 1370 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1371 assert(VF.isVector() && 1372 "Profitable to scalarize relevant only for VF > 1."); 1373 1374 // Cost model is not run in the VPlan-native path - return conservative 1375 // result until this changes. 1376 if (EnableVPlanNativePath) 1377 return false; 1378 1379 auto Scalars = InstsToScalarize.find(VF); 1380 assert(Scalars != InstsToScalarize.end() && 1381 "VF not yet analyzed for scalarization profitability"); 1382 return Scalars->second.find(I) != Scalars->second.end(); 1383 } 1384 1385 /// Returns true if \p I is known to be uniform after vectorization. 1386 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1387 if (VF.isScalar()) 1388 return true; 1389 1390 // Cost model is not run in the VPlan-native path - return conservative 1391 // result until this changes. 1392 if (EnableVPlanNativePath) 1393 return false; 1394 1395 auto UniformsPerVF = Uniforms.find(VF); 1396 assert(UniformsPerVF != Uniforms.end() && 1397 "VF not yet analyzed for uniformity"); 1398 return UniformsPerVF->second.count(I); 1399 } 1400 1401 /// Returns true if \p I is known to be scalar after vectorization. 1402 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1403 if (VF.isScalar()) 1404 return true; 1405 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return false; 1410 1411 auto ScalarsPerVF = Scalars.find(VF); 1412 assert(ScalarsPerVF != Scalars.end() && 1413 "Scalar values are not calculated for VF"); 1414 return ScalarsPerVF->second.count(I); 1415 } 1416 1417 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1418 /// for vectorization factor \p VF. 1419 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1420 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1421 !isProfitableToScalarize(I, VF) && 1422 !isScalarAfterVectorization(I, VF); 1423 } 1424 1425 /// Decision that was taken during cost calculation for memory instruction. 1426 enum InstWidening { 1427 CM_Unknown, 1428 CM_Widen, // For consecutive accesses with stride +1. 1429 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1430 CM_Interleave, 1431 CM_GatherScatter, 1432 CM_Scalarize 1433 }; 1434 1435 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1436 /// instruction \p I and vector width \p VF. 1437 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1438 InstructionCost Cost) { 1439 assert(VF.isVector() && "Expected VF >=2"); 1440 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1441 } 1442 1443 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1444 /// interleaving group \p Grp and vector width \p VF. 1445 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1446 ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 /// Broadcast this decicion to all instructions inside the group. 1450 /// But the cost will be assigned to one instruction only. 1451 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1452 if (auto *I = Grp->getMember(i)) { 1453 if (Grp->getInsertPos() == I) 1454 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1455 else 1456 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1457 } 1458 } 1459 } 1460 1461 /// Return the cost model decision for the given instruction \p I and vector 1462 /// width \p VF. Return CM_Unknown if this instruction did not pass 1463 /// through the cost modeling. 1464 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1465 assert(VF.isVector() && "Expected VF to be a vector VF"); 1466 // Cost model is not run in the VPlan-native path - return conservative 1467 // result until this changes. 1468 if (EnableVPlanNativePath) 1469 return CM_GatherScatter; 1470 1471 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1472 auto Itr = WideningDecisions.find(InstOnVF); 1473 if (Itr == WideningDecisions.end()) 1474 return CM_Unknown; 1475 return Itr->second.first; 1476 } 1477 1478 /// Return the vectorization cost for the given instruction \p I and vector 1479 /// width \p VF. 1480 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1481 assert(VF.isVector() && "Expected VF >=2"); 1482 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1483 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1484 "The cost is not calculated"); 1485 return WideningDecisions[InstOnVF].second; 1486 } 1487 1488 /// Return True if instruction \p I is an optimizable truncate whose operand 1489 /// is an induction variable. Such a truncate will be removed by adding a new 1490 /// induction variable with the destination type. 1491 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1492 // If the instruction is not a truncate, return false. 1493 auto *Trunc = dyn_cast<TruncInst>(I); 1494 if (!Trunc) 1495 return false; 1496 1497 // Get the source and destination types of the truncate. 1498 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1499 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1500 1501 // If the truncate is free for the given types, return false. Replacing a 1502 // free truncate with an induction variable would add an induction variable 1503 // update instruction to each iteration of the loop. We exclude from this 1504 // check the primary induction variable since it will need an update 1505 // instruction regardless. 1506 Value *Op = Trunc->getOperand(0); 1507 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1508 return false; 1509 1510 // If the truncated value is not an induction variable, return false. 1511 return Legal->isInductionPhi(Op); 1512 } 1513 1514 /// Collects the instructions to scalarize for each predicated instruction in 1515 /// the loop. 1516 void collectInstsToScalarize(ElementCount VF); 1517 1518 /// Collect Uniform and Scalar values for the given \p VF. 1519 /// The sets depend on CM decision for Load/Store instructions 1520 /// that may be vectorized as interleave, gather-scatter or scalarized. 1521 void collectUniformsAndScalars(ElementCount VF) { 1522 // Do the analysis once. 1523 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1524 return; 1525 setCostBasedWideningDecision(VF); 1526 collectLoopUniforms(VF); 1527 collectLoopScalars(VF); 1528 } 1529 1530 /// Returns true if the target machine supports masked store operation 1531 /// for the given \p DataType and kind of access to \p Ptr. 1532 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1533 return Legal->isConsecutivePtr(DataType, Ptr) && 1534 TTI.isLegalMaskedStore(DataType, Alignment); 1535 } 1536 1537 /// Returns true if the target machine supports masked load operation 1538 /// for the given \p DataType and kind of access to \p Ptr. 1539 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1540 return Legal->isConsecutivePtr(DataType, Ptr) && 1541 TTI.isLegalMaskedLoad(DataType, Alignment); 1542 } 1543 1544 /// Returns true if the target machine can represent \p V as a masked gather 1545 /// or scatter operation. 1546 bool isLegalGatherOrScatter(Value *V, 1547 ElementCount VF = ElementCount::getFixed(1)) { 1548 bool LI = isa<LoadInst>(V); 1549 bool SI = isa<StoreInst>(V); 1550 if (!LI && !SI) 1551 return false; 1552 auto *Ty = getLoadStoreType(V); 1553 Align Align = getLoadStoreAlignment(V); 1554 if (VF.isVector()) 1555 Ty = VectorType::get(Ty, VF); 1556 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1557 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1558 } 1559 1560 /// Returns true if the target machine supports all of the reduction 1561 /// variables found for the given VF. 1562 bool canVectorizeReductions(ElementCount VF) const { 1563 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1564 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1565 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1566 })); 1567 } 1568 1569 /// Returns true if \p I is an instruction that will be scalarized with 1570 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1571 /// instructions include conditional stores and instructions that may divide 1572 /// by zero. 1573 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1574 1575 // Returns true if \p I is an instruction that will be predicated either 1576 // through scalar predication or masked load/store or masked gather/scatter. 1577 // \p VF is the vectorization factor that will be used to vectorize \p I. 1578 // Superset of instructions that return true for isScalarWithPredication. 1579 bool isPredicatedInst(Instruction *I, ElementCount VF, 1580 bool IsKnownUniform = false) { 1581 // When we know the load is uniform and the original scalar loop was not 1582 // predicated we don't need to mark it as a predicated instruction. Any 1583 // vectorised blocks created when tail-folding are something artificial we 1584 // have introduced and we know there is always at least one active lane. 1585 // That's why we call Legal->blockNeedsPredication here because it doesn't 1586 // query tail-folding. 1587 if (IsKnownUniform && isa<LoadInst>(I) && 1588 !Legal->blockNeedsPredication(I->getParent())) 1589 return false; 1590 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1591 return false; 1592 // Loads and stores that need some form of masked operation are predicated 1593 // instructions. 1594 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1595 return Legal->isMaskRequired(I); 1596 return isScalarWithPredication(I, VF); 1597 } 1598 1599 /// Returns true if \p I is a memory instruction with consecutive memory 1600 /// access that can be widened. 1601 bool 1602 memoryInstructionCanBeWidened(Instruction *I, 1603 ElementCount VF = ElementCount::getFixed(1)); 1604 1605 /// Returns true if \p I is a memory instruction in an interleaved-group 1606 /// of memory accesses that can be vectorized with wide vector loads/stores 1607 /// and shuffles. 1608 bool 1609 interleavedAccessCanBeWidened(Instruction *I, 1610 ElementCount VF = ElementCount::getFixed(1)); 1611 1612 /// Check if \p Instr belongs to any interleaved access group. 1613 bool isAccessInterleaved(Instruction *Instr) { 1614 return InterleaveInfo.isInterleaved(Instr); 1615 } 1616 1617 /// Get the interleaved access group that \p Instr belongs to. 1618 const InterleaveGroup<Instruction> * 1619 getInterleavedAccessGroup(Instruction *Instr) { 1620 return InterleaveInfo.getInterleaveGroup(Instr); 1621 } 1622 1623 /// Returns true if we're required to use a scalar epilogue for at least 1624 /// the final iteration of the original loop. 1625 bool requiresScalarEpilogue(ElementCount VF) const { 1626 if (!isScalarEpilogueAllowed()) 1627 return false; 1628 // If we might exit from anywhere but the latch, must run the exiting 1629 // iteration in scalar form. 1630 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1631 return true; 1632 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1633 } 1634 1635 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1636 /// loop hint annotation. 1637 bool isScalarEpilogueAllowed() const { 1638 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1639 } 1640 1641 /// Returns true if all loop blocks should be masked to fold tail loop. 1642 bool foldTailByMasking() const { return FoldTailByMasking; } 1643 1644 /// Returns true if the instructions in this block requires predication 1645 /// for any reason, e.g. because tail folding now requires a predicate 1646 /// or because the block in the original loop was predicated. 1647 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1648 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1649 } 1650 1651 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1652 /// nodes to the chain of instructions representing the reductions. Uses a 1653 /// MapVector to ensure deterministic iteration order. 1654 using ReductionChainMap = 1655 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1656 1657 /// Return the chain of instructions representing an inloop reduction. 1658 const ReductionChainMap &getInLoopReductionChains() const { 1659 return InLoopReductionChains; 1660 } 1661 1662 /// Returns true if the Phi is part of an inloop reduction. 1663 bool isInLoopReduction(PHINode *Phi) const { 1664 return InLoopReductionChains.count(Phi); 1665 } 1666 1667 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1668 /// with factor VF. Return the cost of the instruction, including 1669 /// scalarization overhead if it's needed. 1670 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1671 1672 /// Estimate cost of a call instruction CI if it were vectorized with factor 1673 /// VF. Return the cost of the instruction, including scalarization overhead 1674 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1675 /// scalarized - 1676 /// i.e. either vector version isn't available, or is too expensive. 1677 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1678 bool &NeedToScalarize) const; 1679 1680 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1681 /// that of B. 1682 bool isMoreProfitable(const VectorizationFactor &A, 1683 const VectorizationFactor &B) const; 1684 1685 /// Invalidates decisions already taken by the cost model. 1686 void invalidateCostModelingDecisions() { 1687 WideningDecisions.clear(); 1688 Uniforms.clear(); 1689 Scalars.clear(); 1690 } 1691 1692 private: 1693 unsigned NumPredStores = 0; 1694 1695 /// \return An upper bound for the vectorization factors for both 1696 /// fixed and scalable vectorization, where the minimum-known number of 1697 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1698 /// disabled or unsupported, then the scalable part will be equal to 1699 /// ElementCount::getScalable(0). 1700 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1701 ElementCount UserVF, 1702 bool FoldTailByMasking); 1703 1704 /// \return the maximized element count based on the targets vector 1705 /// registers and the loop trip-count, but limited to a maximum safe VF. 1706 /// This is a helper function of computeFeasibleMaxVF. 1707 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1708 /// issue that occurred on one of the buildbots which cannot be reproduced 1709 /// without having access to the properietary compiler (see comments on 1710 /// D98509). The issue is currently under investigation and this workaround 1711 /// will be removed as soon as possible. 1712 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1713 unsigned SmallestType, 1714 unsigned WidestType, 1715 const ElementCount &MaxSafeVF, 1716 bool FoldTailByMasking); 1717 1718 /// \return the maximum legal scalable VF, based on the safe max number 1719 /// of elements. 1720 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1721 1722 /// The vectorization cost is a combination of the cost itself and a boolean 1723 /// indicating whether any of the contributing operations will actually 1724 /// operate on vector values after type legalization in the backend. If this 1725 /// latter value is false, then all operations will be scalarized (i.e. no 1726 /// vectorization has actually taken place). 1727 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1728 1729 /// Returns the expected execution cost. The unit of the cost does 1730 /// not matter because we use the 'cost' units to compare different 1731 /// vector widths. The cost that is returned is *not* normalized by 1732 /// the factor width. If \p Invalid is not nullptr, this function 1733 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1734 /// each instruction that has an Invalid cost for the given VF. 1735 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1736 VectorizationCostTy 1737 expectedCost(ElementCount VF, 1738 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1739 1740 /// Returns the execution time cost of an instruction for a given vector 1741 /// width. Vector width of one means scalar. 1742 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1743 1744 /// The cost-computation logic from getInstructionCost which provides 1745 /// the vector type as an output parameter. 1746 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1747 Type *&VectorTy); 1748 1749 /// Return the cost of instructions in an inloop reduction pattern, if I is 1750 /// part of that pattern. 1751 Optional<InstructionCost> 1752 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1753 TTI::TargetCostKind CostKind); 1754 1755 /// Calculate vectorization cost of memory instruction \p I. 1756 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1757 1758 /// The cost computation for scalarized memory instruction. 1759 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1760 1761 /// The cost computation for interleaving group of memory instructions. 1762 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1763 1764 /// The cost computation for Gather/Scatter instruction. 1765 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for widening instruction \p I with consecutive 1768 /// memory access. 1769 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1770 1771 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1772 /// Load: scalar load + broadcast. 1773 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1774 /// element) 1775 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1776 1777 /// Estimate the overhead of scalarizing an instruction. This is a 1778 /// convenience wrapper for the type-based getScalarizationOverhead API. 1779 InstructionCost getScalarizationOverhead(Instruction *I, 1780 ElementCount VF) const; 1781 1782 /// Returns whether the instruction is a load or store and will be a emitted 1783 /// as a vector operation. 1784 bool isConsecutiveLoadOrStore(Instruction *I); 1785 1786 /// Returns true if an artificially high cost for emulated masked memrefs 1787 /// should be used. 1788 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1789 1790 /// Map of scalar integer values to the smallest bitwidth they can be legally 1791 /// represented as. The vector equivalents of these values should be truncated 1792 /// to this type. 1793 MapVector<Instruction *, uint64_t> MinBWs; 1794 1795 /// A type representing the costs for instructions if they were to be 1796 /// scalarized rather than vectorized. The entries are Instruction-Cost 1797 /// pairs. 1798 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1799 1800 /// A set containing all BasicBlocks that are known to present after 1801 /// vectorization as a predicated block. 1802 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1803 1804 /// Records whether it is allowed to have the original scalar loop execute at 1805 /// least once. This may be needed as a fallback loop in case runtime 1806 /// aliasing/dependence checks fail, or to handle the tail/remainder 1807 /// iterations when the trip count is unknown or doesn't divide by the VF, 1808 /// or as a peel-loop to handle gaps in interleave-groups. 1809 /// Under optsize and when the trip count is very small we don't allow any 1810 /// iterations to execute in the scalar loop. 1811 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1812 1813 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1814 bool FoldTailByMasking = false; 1815 1816 /// A map holding scalar costs for different vectorization factors. The 1817 /// presence of a cost for an instruction in the mapping indicates that the 1818 /// instruction will be scalarized when vectorizing with the associated 1819 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1820 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1821 1822 /// Holds the instructions known to be uniform after vectorization. 1823 /// The data is collected per VF. 1824 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1825 1826 /// Holds the instructions known to be scalar after vectorization. 1827 /// The data is collected per VF. 1828 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1829 1830 /// Holds the instructions (address computations) that are forced to be 1831 /// scalarized. 1832 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1833 1834 /// PHINodes of the reductions that should be expanded in-loop along with 1835 /// their associated chains of reduction operations, in program order from top 1836 /// (PHI) to bottom 1837 ReductionChainMap InLoopReductionChains; 1838 1839 /// A Map of inloop reduction operations and their immediate chain operand. 1840 /// FIXME: This can be removed once reductions can be costed correctly in 1841 /// vplan. This was added to allow quick lookup to the inloop operations, 1842 /// without having to loop through InLoopReductionChains. 1843 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1844 1845 /// Returns the expected difference in cost from scalarizing the expression 1846 /// feeding a predicated instruction \p PredInst. The instructions to 1847 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1848 /// non-negative return value implies the expression will be scalarized. 1849 /// Currently, only single-use chains are considered for scalarization. 1850 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1851 ElementCount VF); 1852 1853 /// Collect the instructions that are uniform after vectorization. An 1854 /// instruction is uniform if we represent it with a single scalar value in 1855 /// the vectorized loop corresponding to each vector iteration. Examples of 1856 /// uniform instructions include pointer operands of consecutive or 1857 /// interleaved memory accesses. Note that although uniformity implies an 1858 /// instruction will be scalar, the reverse is not true. In general, a 1859 /// scalarized instruction will be represented by VF scalar values in the 1860 /// vectorized loop, each corresponding to an iteration of the original 1861 /// scalar loop. 1862 void collectLoopUniforms(ElementCount VF); 1863 1864 /// Collect the instructions that are scalar after vectorization. An 1865 /// instruction is scalar if it is known to be uniform or will be scalarized 1866 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1867 /// to the list if they are used by a load/store instruction that is marked as 1868 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1869 /// VF values in the vectorized loop, each corresponding to an iteration of 1870 /// the original scalar loop. 1871 void collectLoopScalars(ElementCount VF); 1872 1873 /// Keeps cost model vectorization decision and cost for instructions. 1874 /// Right now it is used for memory instructions only. 1875 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1876 std::pair<InstWidening, InstructionCost>>; 1877 1878 DecisionList WideningDecisions; 1879 1880 /// Returns true if \p V is expected to be vectorized and it needs to be 1881 /// extracted. 1882 bool needsExtract(Value *V, ElementCount VF) const { 1883 Instruction *I = dyn_cast<Instruction>(V); 1884 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1885 TheLoop->isLoopInvariant(I)) 1886 return false; 1887 1888 // Assume we can vectorize V (and hence we need extraction) if the 1889 // scalars are not computed yet. This can happen, because it is called 1890 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1891 // the scalars are collected. That should be a safe assumption in most 1892 // cases, because we check if the operands have vectorizable types 1893 // beforehand in LoopVectorizationLegality. 1894 return Scalars.find(VF) == Scalars.end() || 1895 !isScalarAfterVectorization(I, VF); 1896 }; 1897 1898 /// Returns a range containing only operands needing to be extracted. 1899 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1900 ElementCount VF) const { 1901 return SmallVector<Value *, 4>(make_filter_range( 1902 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1903 } 1904 1905 /// Determines if we have the infrastructure to vectorize loop \p L and its 1906 /// epilogue, assuming the main loop is vectorized by \p VF. 1907 bool isCandidateForEpilogueVectorization(const Loop &L, 1908 const ElementCount VF) const; 1909 1910 /// Returns true if epilogue vectorization is considered profitable, and 1911 /// false otherwise. 1912 /// \p VF is the vectorization factor chosen for the original loop. 1913 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1914 1915 public: 1916 /// The loop that we evaluate. 1917 Loop *TheLoop; 1918 1919 /// Predicated scalar evolution analysis. 1920 PredicatedScalarEvolution &PSE; 1921 1922 /// Loop Info analysis. 1923 LoopInfo *LI; 1924 1925 /// Vectorization legality. 1926 LoopVectorizationLegality *Legal; 1927 1928 /// Vector target information. 1929 const TargetTransformInfo &TTI; 1930 1931 /// Target Library Info. 1932 const TargetLibraryInfo *TLI; 1933 1934 /// Demanded bits analysis. 1935 DemandedBits *DB; 1936 1937 /// Assumption cache. 1938 AssumptionCache *AC; 1939 1940 /// Interface to emit optimization remarks. 1941 OptimizationRemarkEmitter *ORE; 1942 1943 const Function *TheFunction; 1944 1945 /// Loop Vectorize Hint. 1946 const LoopVectorizeHints *Hints; 1947 1948 /// The interleave access information contains groups of interleaved accesses 1949 /// with the same stride and close to each other. 1950 InterleavedAccessInfo &InterleaveInfo; 1951 1952 /// Values to ignore in the cost model. 1953 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1954 1955 /// Values to ignore in the cost model when VF > 1. 1956 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1957 1958 /// All element types found in the loop. 1959 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1960 1961 /// Profitable vector factors. 1962 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1963 }; 1964 } // end namespace llvm 1965 1966 /// Helper struct to manage generating runtime checks for vectorization. 1967 /// 1968 /// The runtime checks are created up-front in temporary blocks to allow better 1969 /// estimating the cost and un-linked from the existing IR. After deciding to 1970 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1971 /// temporary blocks are completely removed. 1972 class GeneratedRTChecks { 1973 /// Basic block which contains the generated SCEV checks, if any. 1974 BasicBlock *SCEVCheckBlock = nullptr; 1975 1976 /// The value representing the result of the generated SCEV checks. If it is 1977 /// nullptr, either no SCEV checks have been generated or they have been used. 1978 Value *SCEVCheckCond = nullptr; 1979 1980 /// Basic block which contains the generated memory runtime checks, if any. 1981 BasicBlock *MemCheckBlock = nullptr; 1982 1983 /// The value representing the result of the generated memory runtime checks. 1984 /// If it is nullptr, either no memory runtime checks have been generated or 1985 /// they have been used. 1986 Value *MemRuntimeCheckCond = nullptr; 1987 1988 DominatorTree *DT; 1989 LoopInfo *LI; 1990 1991 SCEVExpander SCEVExp; 1992 SCEVExpander MemCheckExp; 1993 1994 public: 1995 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1996 const DataLayout &DL) 1997 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1998 MemCheckExp(SE, DL, "scev.check") {} 1999 2000 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2001 /// accurately estimate the cost of the runtime checks. The blocks are 2002 /// un-linked from the IR and is added back during vector code generation. If 2003 /// there is no vector code generation, the check blocks are removed 2004 /// completely. 2005 void Create(Loop *L, const LoopAccessInfo &LAI, 2006 const SCEVUnionPredicate &UnionPred) { 2007 2008 BasicBlock *LoopHeader = L->getHeader(); 2009 BasicBlock *Preheader = L->getLoopPreheader(); 2010 2011 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2012 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2013 // may be used by SCEVExpander. The blocks will be un-linked from their 2014 // predecessors and removed from LI & DT at the end of the function. 2015 if (!UnionPred.isAlwaysTrue()) { 2016 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2017 nullptr, "vector.scevcheck"); 2018 2019 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2020 &UnionPred, SCEVCheckBlock->getTerminator()); 2021 } 2022 2023 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2024 if (RtPtrChecking.Need) { 2025 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2026 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2027 "vector.memcheck"); 2028 2029 MemRuntimeCheckCond = 2030 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2031 RtPtrChecking.getChecks(), MemCheckExp); 2032 assert(MemRuntimeCheckCond && 2033 "no RT checks generated although RtPtrChecking " 2034 "claimed checks are required"); 2035 } 2036 2037 if (!MemCheckBlock && !SCEVCheckBlock) 2038 return; 2039 2040 // Unhook the temporary block with the checks, update various places 2041 // accordingly. 2042 if (SCEVCheckBlock) 2043 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2044 if (MemCheckBlock) 2045 MemCheckBlock->replaceAllUsesWith(Preheader); 2046 2047 if (SCEVCheckBlock) { 2048 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2049 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2050 Preheader->getTerminator()->eraseFromParent(); 2051 } 2052 if (MemCheckBlock) { 2053 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2054 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2055 Preheader->getTerminator()->eraseFromParent(); 2056 } 2057 2058 DT->changeImmediateDominator(LoopHeader, Preheader); 2059 if (MemCheckBlock) { 2060 DT->eraseNode(MemCheckBlock); 2061 LI->removeBlock(MemCheckBlock); 2062 } 2063 if (SCEVCheckBlock) { 2064 DT->eraseNode(SCEVCheckBlock); 2065 LI->removeBlock(SCEVCheckBlock); 2066 } 2067 } 2068 2069 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2070 /// unused. 2071 ~GeneratedRTChecks() { 2072 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2073 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2074 if (!SCEVCheckCond) 2075 SCEVCleaner.markResultUsed(); 2076 2077 if (!MemRuntimeCheckCond) 2078 MemCheckCleaner.markResultUsed(); 2079 2080 if (MemRuntimeCheckCond) { 2081 auto &SE = *MemCheckExp.getSE(); 2082 // Memory runtime check generation creates compares that use expanded 2083 // values. Remove them before running the SCEVExpanderCleaners. 2084 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2085 if (MemCheckExp.isInsertedInstruction(&I)) 2086 continue; 2087 SE.forgetValue(&I); 2088 I.eraseFromParent(); 2089 } 2090 } 2091 MemCheckCleaner.cleanup(); 2092 SCEVCleaner.cleanup(); 2093 2094 if (SCEVCheckCond) 2095 SCEVCheckBlock->eraseFromParent(); 2096 if (MemRuntimeCheckCond) 2097 MemCheckBlock->eraseFromParent(); 2098 } 2099 2100 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2101 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2102 /// depending on the generated condition. 2103 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2104 BasicBlock *LoopVectorPreHeader, 2105 BasicBlock *LoopExitBlock) { 2106 if (!SCEVCheckCond) 2107 return nullptr; 2108 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2109 if (C->isZero()) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 2114 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2115 // Create new preheader for vector loop. 2116 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2117 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2118 2119 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2120 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2121 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2122 SCEVCheckBlock); 2123 2124 DT->addNewBlock(SCEVCheckBlock, Pred); 2125 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2126 2127 ReplaceInstWithInst( 2128 SCEVCheckBlock->getTerminator(), 2129 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2130 // Mark the check as used, to prevent it from being removed during cleanup. 2131 SCEVCheckCond = nullptr; 2132 return SCEVCheckBlock; 2133 } 2134 2135 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2136 /// the branches to branch to the vector preheader or \p Bypass, depending on 2137 /// the generated condition. 2138 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2139 BasicBlock *LoopVectorPreHeader) { 2140 // Check if we generated code that checks in runtime if arrays overlap. 2141 if (!MemRuntimeCheckCond) 2142 return nullptr; 2143 2144 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2145 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2146 MemCheckBlock); 2147 2148 DT->addNewBlock(MemCheckBlock, Pred); 2149 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2150 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2151 2152 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2153 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2154 2155 ReplaceInstWithInst( 2156 MemCheckBlock->getTerminator(), 2157 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2158 MemCheckBlock->getTerminator()->setDebugLoc( 2159 Pred->getTerminator()->getDebugLoc()); 2160 2161 // Mark the check as used, to prevent it from being removed during cleanup. 2162 MemRuntimeCheckCond = nullptr; 2163 return MemCheckBlock; 2164 } 2165 }; 2166 2167 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2168 // vectorization. The loop needs to be annotated with #pragma omp simd 2169 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2170 // vector length information is not provided, vectorization is not considered 2171 // explicit. Interleave hints are not allowed either. These limitations will be 2172 // relaxed in the future. 2173 // Please, note that we are currently forced to abuse the pragma 'clang 2174 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2175 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2176 // provides *explicit vectorization hints* (LV can bypass legal checks and 2177 // assume that vectorization is legal). However, both hints are implemented 2178 // using the same metadata (llvm.loop.vectorize, processed by 2179 // LoopVectorizeHints). This will be fixed in the future when the native IR 2180 // representation for pragma 'omp simd' is introduced. 2181 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2182 OptimizationRemarkEmitter *ORE) { 2183 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2184 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2185 2186 // Only outer loops with an explicit vectorization hint are supported. 2187 // Unannotated outer loops are ignored. 2188 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2189 return false; 2190 2191 Function *Fn = OuterLp->getHeader()->getParent(); 2192 if (!Hints.allowVectorization(Fn, OuterLp, 2193 true /*VectorizeOnlyWhenForced*/)) { 2194 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2195 return false; 2196 } 2197 2198 if (Hints.getInterleave() > 1) { 2199 // TODO: Interleave support is future work. 2200 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2201 "outer loops.\n"); 2202 Hints.emitRemarkWithHints(); 2203 return false; 2204 } 2205 2206 return true; 2207 } 2208 2209 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2210 OptimizationRemarkEmitter *ORE, 2211 SmallVectorImpl<Loop *> &V) { 2212 // Collect inner loops and outer loops without irreducible control flow. For 2213 // now, only collect outer loops that have explicit vectorization hints. If we 2214 // are stress testing the VPlan H-CFG construction, we collect the outermost 2215 // loop of every loop nest. 2216 if (L.isInnermost() || VPlanBuildStressTest || 2217 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2218 LoopBlocksRPO RPOT(&L); 2219 RPOT.perform(LI); 2220 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2221 V.push_back(&L); 2222 // TODO: Collect inner loops inside marked outer loops in case 2223 // vectorization fails for the outer loop. Do not invoke 2224 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2225 // already known to be reducible. We can use an inherited attribute for 2226 // that. 2227 return; 2228 } 2229 } 2230 for (Loop *InnerL : L) 2231 collectSupportedLoops(*InnerL, LI, ORE, V); 2232 } 2233 2234 namespace { 2235 2236 /// The LoopVectorize Pass. 2237 struct LoopVectorize : public FunctionPass { 2238 /// Pass identification, replacement for typeid 2239 static char ID; 2240 2241 LoopVectorizePass Impl; 2242 2243 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2244 bool VectorizeOnlyWhenForced = false) 2245 : FunctionPass(ID), 2246 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2247 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2248 } 2249 2250 bool runOnFunction(Function &F) override { 2251 if (skipFunction(F)) 2252 return false; 2253 2254 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2255 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2256 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2257 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2258 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2259 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2260 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2261 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2262 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2263 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2264 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2265 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2266 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2267 2268 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2269 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2270 2271 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2272 GetLAA, *ORE, PSI).MadeAnyChange; 2273 } 2274 2275 void getAnalysisUsage(AnalysisUsage &AU) const override { 2276 AU.addRequired<AssumptionCacheTracker>(); 2277 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2278 AU.addRequired<DominatorTreeWrapperPass>(); 2279 AU.addRequired<LoopInfoWrapperPass>(); 2280 AU.addRequired<ScalarEvolutionWrapperPass>(); 2281 AU.addRequired<TargetTransformInfoWrapperPass>(); 2282 AU.addRequired<AAResultsWrapperPass>(); 2283 AU.addRequired<LoopAccessLegacyAnalysis>(); 2284 AU.addRequired<DemandedBitsWrapperPass>(); 2285 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2286 AU.addRequired<InjectTLIMappingsLegacy>(); 2287 2288 // We currently do not preserve loopinfo/dominator analyses with outer loop 2289 // vectorization. Until this is addressed, mark these analyses as preserved 2290 // only for non-VPlan-native path. 2291 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2292 if (!EnableVPlanNativePath) { 2293 AU.addPreserved<LoopInfoWrapperPass>(); 2294 AU.addPreserved<DominatorTreeWrapperPass>(); 2295 } 2296 2297 AU.addPreserved<BasicAAWrapperPass>(); 2298 AU.addPreserved<GlobalsAAWrapperPass>(); 2299 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2300 } 2301 }; 2302 2303 } // end anonymous namespace 2304 2305 //===----------------------------------------------------------------------===// 2306 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2307 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2308 //===----------------------------------------------------------------------===// 2309 2310 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2311 // We need to place the broadcast of invariant variables outside the loop, 2312 // but only if it's proven safe to do so. Else, broadcast will be inside 2313 // vector loop body. 2314 Instruction *Instr = dyn_cast<Instruction>(V); 2315 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2316 (!Instr || 2317 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2318 // Place the code for broadcasting invariant variables in the new preheader. 2319 IRBuilder<>::InsertPointGuard Guard(Builder); 2320 if (SafeToHoist) 2321 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2322 2323 // Broadcast the scalar into all locations in the vector. 2324 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2325 2326 return Shuf; 2327 } 2328 2329 /// This function adds 2330 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2331 /// to each vector element of Val. The sequence starts at StartIndex. 2332 /// \p Opcode is relevant for FP induction variable. 2333 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2334 Instruction::BinaryOps BinOp, ElementCount VF, 2335 IRBuilder<> &Builder) { 2336 if (VF.isScalar()) { 2337 // When unrolling and the VF is 1, we only need to add a simple scalar. 2338 Type *Ty = Val->getType(); 2339 assert(!Ty->isVectorTy() && "Val must be a scalar"); 2340 2341 if (Ty->isFloatingPointTy()) { 2342 // Floating-point operations inherit FMF via the builder's flags. 2343 Value *MulOp = Builder.CreateFMul(StartIdx, Step); 2344 return Builder.CreateBinOp(BinOp, Val, MulOp); 2345 } 2346 return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), 2347 "induction"); 2348 } 2349 2350 // Create and check the types. 2351 auto *ValVTy = cast<VectorType>(Val->getType()); 2352 ElementCount VLen = ValVTy->getElementCount(); 2353 2354 Type *STy = Val->getType()->getScalarType(); 2355 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2356 "Induction Step must be an integer or FP"); 2357 assert(Step->getType() == STy && "Step has wrong type"); 2358 2359 SmallVector<Constant *, 8> Indices; 2360 2361 // Create a vector of consecutive numbers from zero to VF. 2362 VectorType *InitVecValVTy = ValVTy; 2363 Type *InitVecValSTy = STy; 2364 if (STy->isFloatingPointTy()) { 2365 InitVecValSTy = 2366 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2367 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2368 } 2369 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2370 2371 // Splat the StartIdx 2372 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2373 2374 if (STy->isIntegerTy()) { 2375 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2376 Step = Builder.CreateVectorSplat(VLen, Step); 2377 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2378 // FIXME: The newly created binary instructions should contain nsw/nuw 2379 // flags, which can be found from the original scalar operations. 2380 Step = Builder.CreateMul(InitVec, Step); 2381 return Builder.CreateAdd(Val, Step, "induction"); 2382 } 2383 2384 // Floating point induction. 2385 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2386 "Binary Opcode should be specified for FP induction"); 2387 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2388 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2389 2390 Step = Builder.CreateVectorSplat(VLen, Step); 2391 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2392 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2393 } 2394 2395 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2396 const InductionDescriptor &II, Value *Step, Value *Start, 2397 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2398 IRBuilder<> &Builder = State.Builder; 2399 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2400 "Expected either an induction phi-node or a truncate of it!"); 2401 2402 // Construct the initial value of the vector IV in the vector loop preheader 2403 auto CurrIP = Builder.saveIP(); 2404 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2405 if (isa<TruncInst>(EntryVal)) { 2406 assert(Start->getType()->isIntegerTy() && 2407 "Truncation requires an integer type"); 2408 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2409 Step = Builder.CreateTrunc(Step, TruncType); 2410 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2411 } 2412 2413 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2414 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2415 Value *SteppedStart = getStepVector( 2416 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2417 2418 // We create vector phi nodes for both integer and floating-point induction 2419 // variables. Here, we determine the kind of arithmetic we will perform. 2420 Instruction::BinaryOps AddOp; 2421 Instruction::BinaryOps MulOp; 2422 if (Step->getType()->isIntegerTy()) { 2423 AddOp = Instruction::Add; 2424 MulOp = Instruction::Mul; 2425 } else { 2426 AddOp = II.getInductionOpcode(); 2427 MulOp = Instruction::FMul; 2428 } 2429 2430 // Multiply the vectorization factor by the step using integer or 2431 // floating-point arithmetic as appropriate. 2432 Type *StepType = Step->getType(); 2433 Value *RuntimeVF; 2434 if (Step->getType()->isFloatingPointTy()) 2435 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2436 else 2437 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2438 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2439 2440 // Create a vector splat to use in the induction update. 2441 // 2442 // FIXME: If the step is non-constant, we create the vector splat with 2443 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2444 // handle a constant vector splat. 2445 Value *SplatVF = isa<Constant>(Mul) 2446 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2447 : Builder.CreateVectorSplat(State.VF, Mul); 2448 Builder.restoreIP(CurrIP); 2449 2450 // We may need to add the step a number of times, depending on the unroll 2451 // factor. The last of those goes into the PHI. 2452 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2453 &*LoopVectorBody->getFirstInsertionPt()); 2454 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2455 Instruction *LastInduction = VecInd; 2456 for (unsigned Part = 0; Part < UF; ++Part) { 2457 State.set(Def, LastInduction, Part); 2458 2459 if (isa<TruncInst>(EntryVal)) 2460 addMetadata(LastInduction, EntryVal); 2461 2462 LastInduction = cast<Instruction>( 2463 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2464 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2465 } 2466 2467 // Move the last step to the end of the latch block. This ensures consistent 2468 // placement of all induction updates. 2469 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2470 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2471 LastInduction->moveBefore(Br); 2472 LastInduction->setName("vec.ind.next"); 2473 2474 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2475 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2476 } 2477 2478 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2479 return Cost->isScalarAfterVectorization(I, VF) || 2480 Cost->isProfitableToScalarize(I, VF); 2481 } 2482 2483 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2484 if (shouldScalarizeInstruction(IV)) 2485 return true; 2486 auto isScalarInst = [&](User *U) -> bool { 2487 auto *I = cast<Instruction>(U); 2488 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2489 }; 2490 return llvm::any_of(IV->users(), isScalarInst); 2491 } 2492 2493 /// Returns true if \p ID starts at 0 and has a step of 1. 2494 static bool isCanonicalID(const InductionDescriptor &ID) { 2495 if (!ID.getConstIntStepValue() || !ID.getConstIntStepValue()->isOne()) 2496 return false; 2497 auto *StartC = dyn_cast<ConstantInt>(ID.getStartValue()); 2498 return StartC && StartC->isZero(); 2499 } 2500 2501 void InnerLoopVectorizer::widenIntOrFpInduction( 2502 PHINode *IV, const InductionDescriptor &ID, Value *Start, TruncInst *Trunc, 2503 VPValue *Def, VPTransformState &State, Value *CanonicalIV) { 2504 IRBuilder<> &Builder = State.Builder; 2505 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2506 assert(!State.VF.isZero() && "VF must be non-zero"); 2507 2508 // The value from the original loop to which we are mapping the new induction 2509 // variable. 2510 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2511 2512 auto &DL = EntryVal->getModule()->getDataLayout(); 2513 2514 // Generate code for the induction step. Note that induction steps are 2515 // required to be loop-invariant 2516 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2517 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2518 "Induction step should be loop invariant"); 2519 if (PSE.getSE()->isSCEVable(IV->getType())) { 2520 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2521 return Exp.expandCodeFor(Step, Step->getType(), 2522 State.CFG.VectorPreHeader->getTerminator()); 2523 } 2524 return cast<SCEVUnknown>(Step)->getValue(); 2525 }; 2526 2527 // The scalar value to broadcast. This is derived from the canonical 2528 // induction variable. If a truncation type is given, truncate the canonical 2529 // induction variable and step. Otherwise, derive these values from the 2530 // induction descriptor. 2531 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2532 Value *ScalarIV = CanonicalIV; 2533 Type *NeededType = IV->getType(); 2534 if (!isCanonicalID(ID) || ScalarIV->getType() != NeededType) { 2535 ScalarIV = 2536 NeededType->isIntegerTy() 2537 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2538 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2539 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2540 State.CFG.PrevBB); 2541 ScalarIV->setName("offset.idx"); 2542 } 2543 if (Trunc) { 2544 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2545 assert(Step->getType()->isIntegerTy() && 2546 "Truncation requires an integer step"); 2547 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2548 Step = Builder.CreateTrunc(Step, TruncType); 2549 } 2550 return ScalarIV; 2551 }; 2552 2553 // Create the vector values from the scalar IV, in the absence of creating a 2554 // vector IV. 2555 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2556 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2557 for (unsigned Part = 0; Part < UF; ++Part) { 2558 Value *StartIdx; 2559 if (Step->getType()->isFloatingPointTy()) 2560 StartIdx = 2561 getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part); 2562 else 2563 StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part); 2564 2565 Value *EntryPart = 2566 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(), 2567 State.VF, State.Builder); 2568 State.set(Def, EntryPart, Part); 2569 if (Trunc) 2570 addMetadata(EntryPart, Trunc); 2571 } 2572 }; 2573 2574 // Fast-math-flags propagate from the original induction instruction. 2575 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2576 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2577 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2578 2579 // Now do the actual transformations, and start with creating the step value. 2580 Value *Step = CreateStepValue(ID.getStep()); 2581 if (State.VF.isScalar()) { 2582 Value *ScalarIV = CreateScalarIV(Step); 2583 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2584 Step->getType()->getScalarSizeInBits()); 2585 for (unsigned Part = 0; Part < UF; ++Part) { 2586 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2587 Instruction::BinaryOps MulOp = Instruction::Mul; 2588 if (Step->getType()->isFloatingPointTy()) { 2589 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2590 MulOp = Instruction::FMul; 2591 } 2592 2593 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2594 Value *EntryPart = Builder.CreateBinOp(ID.getInductionOpcode(), ScalarIV, 2595 Mul, "induction"); 2596 State.set(Def, EntryPart, Part); 2597 if (Trunc) { 2598 assert(!Step->getType()->isFloatingPointTy() && 2599 "fp inductions shouldn't be truncated"); 2600 addMetadata(EntryPart, Trunc); 2601 } 2602 } 2603 return; 2604 } 2605 2606 // Determine if we want a scalar version of the induction variable. This is 2607 // true if the induction variable itself is not widened, or if it has at 2608 // least one user in the loop that is not widened. 2609 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2610 if (!NeedsScalarIV) { 2611 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2612 return; 2613 } 2614 2615 // Try to create a new independent vector induction variable. If we can't 2616 // create the phi node, we will splat the scalar induction variable in each 2617 // loop iteration. 2618 if (!shouldScalarizeInstruction(EntryVal)) { 2619 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2620 Value *ScalarIV = CreateScalarIV(Step); 2621 // Create scalar steps that can be used by instructions we will later 2622 // scalarize. Note that the addition of the scalar steps will not increase 2623 // the number of instructions in the loop in the common case prior to 2624 // InstCombine. We will be trading one vector extract for each scalar step. 2625 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2626 return; 2627 } 2628 2629 // All IV users are scalar instructions, so only emit a scalar IV, not a 2630 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2631 // predicate used by the masked loads/stores. 2632 Value *ScalarIV = CreateScalarIV(Step); 2633 if (!Cost->isScalarEpilogueAllowed()) 2634 CreateSplatIV(ScalarIV, Step); 2635 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2636 } 2637 2638 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2639 Instruction *EntryVal, 2640 const InductionDescriptor &ID, 2641 VPValue *Def, 2642 VPTransformState &State) { 2643 IRBuilder<> &Builder = State.Builder; 2644 // We shouldn't have to build scalar steps if we aren't vectorizing. 2645 assert(State.VF.isVector() && "VF should be greater than one"); 2646 // Get the value type and ensure it and the step have the same integer type. 2647 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2648 assert(ScalarIVTy == Step->getType() && 2649 "Val and Step should have the same type"); 2650 2651 // We build scalar steps for both integer and floating-point induction 2652 // variables. Here, we determine the kind of arithmetic we will perform. 2653 Instruction::BinaryOps AddOp; 2654 Instruction::BinaryOps MulOp; 2655 if (ScalarIVTy->isIntegerTy()) { 2656 AddOp = Instruction::Add; 2657 MulOp = Instruction::Mul; 2658 } else { 2659 AddOp = ID.getInductionOpcode(); 2660 MulOp = Instruction::FMul; 2661 } 2662 2663 // Determine the number of scalars we need to generate for each unroll 2664 // iteration. If EntryVal is uniform, we only need to generate the first 2665 // lane. Otherwise, we generate all VF values. 2666 bool IsUniform = 2667 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF); 2668 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 2669 // Compute the scalar steps and save the results in State. 2670 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2671 ScalarIVTy->getScalarSizeInBits()); 2672 Type *VecIVTy = nullptr; 2673 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2674 if (!IsUniform && State.VF.isScalable()) { 2675 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2676 UnitStepVec = 2677 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2678 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2679 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2680 } 2681 2682 for (unsigned Part = 0; Part < State.UF; ++Part) { 2683 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2684 2685 if (!IsUniform && State.VF.isScalable()) { 2686 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2687 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2688 if (ScalarIVTy->isFloatingPointTy()) 2689 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2690 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2691 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2692 State.set(Def, Add, Part); 2693 // It's useful to record the lane values too for the known minimum number 2694 // of elements so we do those below. This improves the code quality when 2695 // trying to extract the first element, for example. 2696 } 2697 2698 if (ScalarIVTy->isFloatingPointTy()) 2699 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2700 2701 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2702 Value *StartIdx = Builder.CreateBinOp( 2703 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2704 // The step returned by `createStepForVF` is a runtime-evaluated value 2705 // when VF is scalable. Otherwise, it should be folded into a Constant. 2706 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2707 "Expected StartIdx to be folded to a constant when VF is not " 2708 "scalable"); 2709 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2710 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2711 State.set(Def, Add, VPIteration(Part, Lane)); 2712 } 2713 } 2714 } 2715 2716 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2717 const VPIteration &Instance, 2718 VPTransformState &State) { 2719 Value *ScalarInst = State.get(Def, Instance); 2720 Value *VectorValue = State.get(Def, Instance.Part); 2721 VectorValue = Builder.CreateInsertElement( 2722 VectorValue, ScalarInst, 2723 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2724 State.set(Def, VectorValue, Instance.Part); 2725 } 2726 2727 // Return whether we allow using masked interleave-groups (for dealing with 2728 // strided loads/stores that reside in predicated blocks, or for dealing 2729 // with gaps). 2730 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2731 // If an override option has been passed in for interleaved accesses, use it. 2732 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2733 return EnableMaskedInterleavedMemAccesses; 2734 2735 return TTI.enableMaskedInterleavedAccessVectorization(); 2736 } 2737 2738 // Try to vectorize the interleave group that \p Instr belongs to. 2739 // 2740 // E.g. Translate following interleaved load group (factor = 3): 2741 // for (i = 0; i < N; i+=3) { 2742 // R = Pic[i]; // Member of index 0 2743 // G = Pic[i+1]; // Member of index 1 2744 // B = Pic[i+2]; // Member of index 2 2745 // ... // do something to R, G, B 2746 // } 2747 // To: 2748 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2749 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2750 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2751 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2752 // 2753 // Or translate following interleaved store group (factor = 3): 2754 // for (i = 0; i < N; i+=3) { 2755 // ... do something to R, G, B 2756 // Pic[i] = R; // Member of index 0 2757 // Pic[i+1] = G; // Member of index 1 2758 // Pic[i+2] = B; // Member of index 2 2759 // } 2760 // To: 2761 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2762 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2763 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2764 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2765 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2766 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2767 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2768 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2769 VPValue *BlockInMask) { 2770 Instruction *Instr = Group->getInsertPos(); 2771 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2772 2773 // Prepare for the vector type of the interleaved load/store. 2774 Type *ScalarTy = getLoadStoreType(Instr); 2775 unsigned InterleaveFactor = Group->getFactor(); 2776 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2777 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2778 2779 // Prepare for the new pointers. 2780 SmallVector<Value *, 2> AddrParts; 2781 unsigned Index = Group->getIndex(Instr); 2782 2783 // TODO: extend the masked interleaved-group support to reversed access. 2784 assert((!BlockInMask || !Group->isReverse()) && 2785 "Reversed masked interleave-group not supported."); 2786 2787 // If the group is reverse, adjust the index to refer to the last vector lane 2788 // instead of the first. We adjust the index from the first vector lane, 2789 // rather than directly getting the pointer for lane VF - 1, because the 2790 // pointer operand of the interleaved access is supposed to be uniform. For 2791 // uniform instructions, we're only required to generate a value for the 2792 // first vector lane in each unroll iteration. 2793 if (Group->isReverse()) 2794 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2795 2796 for (unsigned Part = 0; Part < UF; Part++) { 2797 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2798 setDebugLocFromInst(AddrPart); 2799 2800 // Notice current instruction could be any index. Need to adjust the address 2801 // to the member of index 0. 2802 // 2803 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2804 // b = A[i]; // Member of index 0 2805 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2806 // 2807 // E.g. A[i+1] = a; // Member of index 1 2808 // A[i] = b; // Member of index 0 2809 // A[i+2] = c; // Member of index 2 (Current instruction) 2810 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2811 2812 bool InBounds = false; 2813 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2814 InBounds = gep->isInBounds(); 2815 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2816 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2817 2818 // Cast to the vector pointer type. 2819 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2820 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2821 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2822 } 2823 2824 setDebugLocFromInst(Instr); 2825 Value *PoisonVec = PoisonValue::get(VecTy); 2826 2827 Value *MaskForGaps = nullptr; 2828 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2829 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2830 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2831 } 2832 2833 // Vectorize the interleaved load group. 2834 if (isa<LoadInst>(Instr)) { 2835 // For each unroll part, create a wide load for the group. 2836 SmallVector<Value *, 2> NewLoads; 2837 for (unsigned Part = 0; Part < UF; Part++) { 2838 Instruction *NewLoad; 2839 if (BlockInMask || MaskForGaps) { 2840 assert(useMaskedInterleavedAccesses(*TTI) && 2841 "masked interleaved groups are not allowed."); 2842 Value *GroupMask = MaskForGaps; 2843 if (BlockInMask) { 2844 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2845 Value *ShuffledMask = Builder.CreateShuffleVector( 2846 BlockInMaskPart, 2847 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2848 "interleaved.mask"); 2849 GroupMask = MaskForGaps 2850 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2851 MaskForGaps) 2852 : ShuffledMask; 2853 } 2854 NewLoad = 2855 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2856 GroupMask, PoisonVec, "wide.masked.vec"); 2857 } 2858 else 2859 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2860 Group->getAlign(), "wide.vec"); 2861 Group->addMetadata(NewLoad); 2862 NewLoads.push_back(NewLoad); 2863 } 2864 2865 // For each member in the group, shuffle out the appropriate data from the 2866 // wide loads. 2867 unsigned J = 0; 2868 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2869 Instruction *Member = Group->getMember(I); 2870 2871 // Skip the gaps in the group. 2872 if (!Member) 2873 continue; 2874 2875 auto StrideMask = 2876 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2877 for (unsigned Part = 0; Part < UF; Part++) { 2878 Value *StridedVec = Builder.CreateShuffleVector( 2879 NewLoads[Part], StrideMask, "strided.vec"); 2880 2881 // If this member has different type, cast the result type. 2882 if (Member->getType() != ScalarTy) { 2883 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2884 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2885 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2886 } 2887 2888 if (Group->isReverse()) 2889 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2890 2891 State.set(VPDefs[J], StridedVec, Part); 2892 } 2893 ++J; 2894 } 2895 return; 2896 } 2897 2898 // The sub vector type for current instruction. 2899 auto *SubVT = VectorType::get(ScalarTy, VF); 2900 2901 // Vectorize the interleaved store group. 2902 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2903 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2904 "masked interleaved groups are not allowed."); 2905 assert((!MaskForGaps || !VF.isScalable()) && 2906 "masking gaps for scalable vectors is not yet supported."); 2907 for (unsigned Part = 0; Part < UF; Part++) { 2908 // Collect the stored vector from each member. 2909 SmallVector<Value *, 4> StoredVecs; 2910 for (unsigned i = 0; i < InterleaveFactor; i++) { 2911 assert((Group->getMember(i) || MaskForGaps) && 2912 "Fail to get a member from an interleaved store group"); 2913 Instruction *Member = Group->getMember(i); 2914 2915 // Skip the gaps in the group. 2916 if (!Member) { 2917 Value *Undef = PoisonValue::get(SubVT); 2918 StoredVecs.push_back(Undef); 2919 continue; 2920 } 2921 2922 Value *StoredVec = State.get(StoredValues[i], Part); 2923 2924 if (Group->isReverse()) 2925 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2926 2927 // If this member has different type, cast it to a unified type. 2928 2929 if (StoredVec->getType() != SubVT) 2930 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2931 2932 StoredVecs.push_back(StoredVec); 2933 } 2934 2935 // Concatenate all vectors into a wide vector. 2936 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2937 2938 // Interleave the elements in the wide vector. 2939 Value *IVec = Builder.CreateShuffleVector( 2940 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2941 "interleaved.vec"); 2942 2943 Instruction *NewStoreInstr; 2944 if (BlockInMask || MaskForGaps) { 2945 Value *GroupMask = MaskForGaps; 2946 if (BlockInMask) { 2947 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2948 Value *ShuffledMask = Builder.CreateShuffleVector( 2949 BlockInMaskPart, 2950 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2951 "interleaved.mask"); 2952 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2953 ShuffledMask, MaskForGaps) 2954 : ShuffledMask; 2955 } 2956 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2957 Group->getAlign(), GroupMask); 2958 } else 2959 NewStoreInstr = 2960 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2961 2962 Group->addMetadata(NewStoreInstr); 2963 } 2964 } 2965 2966 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2967 VPReplicateRecipe *RepRecipe, 2968 const VPIteration &Instance, 2969 bool IfPredicateInstr, 2970 VPTransformState &State) { 2971 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2972 2973 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2974 // the first lane and part. 2975 if (isa<NoAliasScopeDeclInst>(Instr)) 2976 if (!Instance.isFirstIteration()) 2977 return; 2978 2979 setDebugLocFromInst(Instr); 2980 2981 // Does this instruction return a value ? 2982 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2983 2984 Instruction *Cloned = Instr->clone(); 2985 if (!IsVoidRetTy) 2986 Cloned->setName(Instr->getName() + ".cloned"); 2987 2988 // If the scalarized instruction contributes to the address computation of a 2989 // widen masked load/store which was in a basic block that needed predication 2990 // and is not predicated after vectorization, we can't propagate 2991 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2992 // instruction could feed a poison value to the base address of the widen 2993 // load/store. 2994 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2995 Cloned->dropPoisonGeneratingFlags(); 2996 2997 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2998 Builder.GetInsertPoint()); 2999 // Replace the operands of the cloned instructions with their scalar 3000 // equivalents in the new loop. 3001 for (auto &I : enumerate(RepRecipe->operands())) { 3002 auto InputInstance = Instance; 3003 VPValue *Operand = I.value(); 3004 if (State.Plan->isUniformAfterVectorization(Operand)) 3005 InputInstance.Lane = VPLane::getFirstLane(); 3006 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 3007 } 3008 addNewMetadata(Cloned, Instr); 3009 3010 // Place the cloned scalar in the new loop. 3011 Builder.Insert(Cloned); 3012 3013 State.set(RepRecipe, Cloned, Instance); 3014 3015 // If we just cloned a new assumption, add it the assumption cache. 3016 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3017 AC->registerAssumption(II); 3018 3019 // End if-block. 3020 if (IfPredicateInstr) 3021 PredicatedInstructions.push_back(Cloned); 3022 } 3023 3024 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 3025 BasicBlock *Header = L->getHeader(); 3026 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 3027 3028 IRBuilder<> B(Header->getTerminator()); 3029 Instruction *OldInst = 3030 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 3031 setDebugLocFromInst(OldInst, &B); 3032 3033 // Connect the header to the exit and header blocks and replace the old 3034 // terminator. 3035 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 3036 3037 // Now we have two terminators. Remove the old one from the block. 3038 Header->getTerminator()->eraseFromParent(); 3039 } 3040 3041 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3042 if (TripCount) 3043 return TripCount; 3044 3045 assert(L && "Create Trip Count for null loop."); 3046 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3047 // Find the loop boundaries. 3048 ScalarEvolution *SE = PSE.getSE(); 3049 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3050 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3051 "Invalid loop count"); 3052 3053 Type *IdxTy = Legal->getWidestInductionType(); 3054 assert(IdxTy && "No type for induction"); 3055 3056 // The exit count might have the type of i64 while the phi is i32. This can 3057 // happen if we have an induction variable that is sign extended before the 3058 // compare. The only way that we get a backedge taken count is that the 3059 // induction variable was signed and as such will not overflow. In such a case 3060 // truncation is legal. 3061 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3062 IdxTy->getPrimitiveSizeInBits()) 3063 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3064 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3065 3066 // Get the total trip count from the count by adding 1. 3067 const SCEV *ExitCount = SE->getAddExpr( 3068 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3069 3070 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3071 3072 // Expand the trip count and place the new instructions in the preheader. 3073 // Notice that the pre-header does not change, only the loop body. 3074 SCEVExpander Exp(*SE, DL, "induction"); 3075 3076 // Count holds the overall loop count (N). 3077 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3078 L->getLoopPreheader()->getTerminator()); 3079 3080 if (TripCount->getType()->isPointerTy()) 3081 TripCount = 3082 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3083 L->getLoopPreheader()->getTerminator()); 3084 3085 return TripCount; 3086 } 3087 3088 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3089 if (VectorTripCount) 3090 return VectorTripCount; 3091 3092 Value *TC = getOrCreateTripCount(L); 3093 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3094 3095 Type *Ty = TC->getType(); 3096 // This is where we can make the step a runtime constant. 3097 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3098 3099 // If the tail is to be folded by masking, round the number of iterations N 3100 // up to a multiple of Step instead of rounding down. This is done by first 3101 // adding Step-1 and then rounding down. Note that it's ok if this addition 3102 // overflows: the vector induction variable will eventually wrap to zero given 3103 // that it starts at zero and its Step is a power of two; the loop will then 3104 // exit, with the last early-exit vector comparison also producing all-true. 3105 if (Cost->foldTailByMasking()) { 3106 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3107 "VF*UF must be a power of 2 when folding tail by masking"); 3108 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3109 TC = Builder.CreateAdd( 3110 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3111 } 3112 3113 // Now we need to generate the expression for the part of the loop that the 3114 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3115 // iterations are not required for correctness, or N - Step, otherwise. Step 3116 // is equal to the vectorization factor (number of SIMD elements) times the 3117 // unroll factor (number of SIMD instructions). 3118 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3119 3120 // There are cases where we *must* run at least one iteration in the remainder 3121 // loop. See the cost model for when this can happen. If the step evenly 3122 // divides the trip count, we set the remainder to be equal to the step. If 3123 // the step does not evenly divide the trip count, no adjustment is necessary 3124 // since there will already be scalar iterations. Note that the minimum 3125 // iterations check ensures that N >= Step. 3126 if (Cost->requiresScalarEpilogue(VF)) { 3127 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3128 R = Builder.CreateSelect(IsZero, Step, R); 3129 } 3130 3131 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3132 3133 return VectorTripCount; 3134 } 3135 3136 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3137 const DataLayout &DL) { 3138 // Verify that V is a vector type with same number of elements as DstVTy. 3139 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3140 unsigned VF = DstFVTy->getNumElements(); 3141 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3142 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3143 Type *SrcElemTy = SrcVecTy->getElementType(); 3144 Type *DstElemTy = DstFVTy->getElementType(); 3145 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3146 "Vector elements must have same size"); 3147 3148 // Do a direct cast if element types are castable. 3149 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3150 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3151 } 3152 // V cannot be directly casted to desired vector type. 3153 // May happen when V is a floating point vector but DstVTy is a vector of 3154 // pointers or vice-versa. Handle this using a two-step bitcast using an 3155 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3156 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3157 "Only one type should be a pointer type"); 3158 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3159 "Only one type should be a floating point type"); 3160 Type *IntTy = 3161 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3162 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3163 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3164 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3165 } 3166 3167 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3168 BasicBlock *Bypass) { 3169 Value *Count = getOrCreateTripCount(L); 3170 // Reuse existing vector loop preheader for TC checks. 3171 // Note that new preheader block is generated for vector loop. 3172 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3173 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3174 3175 // Generate code to check if the loop's trip count is less than VF * UF, or 3176 // equal to it in case a scalar epilogue is required; this implies that the 3177 // vector trip count is zero. This check also covers the case where adding one 3178 // to the backedge-taken count overflowed leading to an incorrect trip count 3179 // of zero. In this case we will also jump to the scalar loop. 3180 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3181 : ICmpInst::ICMP_ULT; 3182 3183 // If tail is to be folded, vector loop takes care of all iterations. 3184 Value *CheckMinIters = Builder.getFalse(); 3185 if (!Cost->foldTailByMasking()) { 3186 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3187 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3188 } 3189 // Create new preheader for vector loop. 3190 LoopVectorPreHeader = 3191 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3192 "vector.ph"); 3193 3194 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3195 DT->getNode(Bypass)->getIDom()) && 3196 "TC check is expected to dominate Bypass"); 3197 3198 // Update dominator for Bypass & LoopExit (if needed). 3199 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3200 if (!Cost->requiresScalarEpilogue(VF)) 3201 // If there is an epilogue which must run, there's no edge from the 3202 // middle block to exit blocks and thus no need to update the immediate 3203 // dominator of the exit blocks. 3204 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3205 3206 ReplaceInstWithInst( 3207 TCCheckBlock->getTerminator(), 3208 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3209 LoopBypassBlocks.push_back(TCCheckBlock); 3210 } 3211 3212 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3213 3214 BasicBlock *const SCEVCheckBlock = 3215 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3216 if (!SCEVCheckBlock) 3217 return nullptr; 3218 3219 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3220 (OptForSizeBasedOnProfile && 3221 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3222 "Cannot SCEV check stride or overflow when optimizing for size"); 3223 3224 3225 // Update dominator only if this is first RT check. 3226 if (LoopBypassBlocks.empty()) { 3227 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3228 if (!Cost->requiresScalarEpilogue(VF)) 3229 // If there is an epilogue which must run, there's no edge from the 3230 // middle block to exit blocks and thus no need to update the immediate 3231 // dominator of the exit blocks. 3232 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3233 } 3234 3235 LoopBypassBlocks.push_back(SCEVCheckBlock); 3236 AddedSafetyChecks = true; 3237 return SCEVCheckBlock; 3238 } 3239 3240 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3241 BasicBlock *Bypass) { 3242 // VPlan-native path does not do any analysis for runtime checks currently. 3243 if (EnableVPlanNativePath) 3244 return nullptr; 3245 3246 BasicBlock *const MemCheckBlock = 3247 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3248 3249 // Check if we generated code that checks in runtime if arrays overlap. We put 3250 // the checks into a separate block to make the more common case of few 3251 // elements faster. 3252 if (!MemCheckBlock) 3253 return nullptr; 3254 3255 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3256 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3257 "Cannot emit memory checks when optimizing for size, unless forced " 3258 "to vectorize."); 3259 ORE->emit([&]() { 3260 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3261 L->getStartLoc(), L->getHeader()) 3262 << "Code-size may be reduced by not forcing " 3263 "vectorization, or by source-code modifications " 3264 "eliminating the need for runtime checks " 3265 "(e.g., adding 'restrict')."; 3266 }); 3267 } 3268 3269 LoopBypassBlocks.push_back(MemCheckBlock); 3270 3271 AddedSafetyChecks = true; 3272 3273 // We currently don't use LoopVersioning for the actual loop cloning but we 3274 // still use it to add the noalias metadata. 3275 LVer = std::make_unique<LoopVersioning>( 3276 *Legal->getLAI(), 3277 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3278 DT, PSE.getSE()); 3279 LVer->prepareNoAliasMetadata(); 3280 return MemCheckBlock; 3281 } 3282 3283 Value *InnerLoopVectorizer::emitTransformedIndex( 3284 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3285 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3286 3287 SCEVExpander Exp(*SE, DL, "induction"); 3288 auto Step = ID.getStep(); 3289 auto StartValue = ID.getStartValue(); 3290 assert(Index->getType()->getScalarType() == Step->getType() && 3291 "Index scalar type does not match StepValue type"); 3292 3293 // Note: the IR at this point is broken. We cannot use SE to create any new 3294 // SCEV and then expand it, hoping that SCEV's simplification will give us 3295 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3296 // lead to various SCEV crashes. So all we can do is to use builder and rely 3297 // on InstCombine for future simplifications. Here we handle some trivial 3298 // cases only. 3299 auto CreateAdd = [&B](Value *X, Value *Y) { 3300 assert(X->getType() == Y->getType() && "Types don't match!"); 3301 if (auto *CX = dyn_cast<ConstantInt>(X)) 3302 if (CX->isZero()) 3303 return Y; 3304 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3305 if (CY->isZero()) 3306 return X; 3307 return B.CreateAdd(X, Y); 3308 }; 3309 3310 // We allow X to be a vector type, in which case Y will potentially be 3311 // splatted into a vector with the same element count. 3312 auto CreateMul = [&B](Value *X, Value *Y) { 3313 assert(X->getType()->getScalarType() == Y->getType() && 3314 "Types don't match!"); 3315 if (auto *CX = dyn_cast<ConstantInt>(X)) 3316 if (CX->isOne()) 3317 return Y; 3318 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3319 if (CY->isOne()) 3320 return X; 3321 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3322 if (XVTy && !isa<VectorType>(Y->getType())) 3323 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3324 return B.CreateMul(X, Y); 3325 }; 3326 3327 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3328 // loop, choose the end of the vector loop header (=VectorHeader), because 3329 // the DomTree is not kept up-to-date for additional blocks generated in the 3330 // vector loop. By using the header as insertion point, we guarantee that the 3331 // expanded instructions dominate all their uses. 3332 auto GetInsertPoint = [this, &B, VectorHeader]() { 3333 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3334 if (InsertBB != LoopVectorBody && 3335 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3336 return VectorHeader->getTerminator(); 3337 return &*B.GetInsertPoint(); 3338 }; 3339 3340 switch (ID.getKind()) { 3341 case InductionDescriptor::IK_IntInduction: { 3342 assert(!isa<VectorType>(Index->getType()) && 3343 "Vector indices not supported for integer inductions yet"); 3344 assert(Index->getType() == StartValue->getType() && 3345 "Index type does not match StartValue type"); 3346 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3347 return B.CreateSub(StartValue, Index); 3348 auto *Offset = CreateMul( 3349 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3350 return CreateAdd(StartValue, Offset); 3351 } 3352 case InductionDescriptor::IK_PtrInduction: { 3353 assert(isa<SCEVConstant>(Step) && 3354 "Expected constant step for pointer induction"); 3355 return B.CreateGEP( 3356 ID.getElementType(), StartValue, 3357 CreateMul(Index, 3358 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3359 GetInsertPoint()))); 3360 } 3361 case InductionDescriptor::IK_FpInduction: { 3362 assert(!isa<VectorType>(Index->getType()) && 3363 "Vector indices not supported for FP inductions yet"); 3364 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3365 auto InductionBinOp = ID.getInductionBinOp(); 3366 assert(InductionBinOp && 3367 (InductionBinOp->getOpcode() == Instruction::FAdd || 3368 InductionBinOp->getOpcode() == Instruction::FSub) && 3369 "Original bin op should be defined for FP induction"); 3370 3371 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3372 Value *MulExp = B.CreateFMul(StepValue, Index); 3373 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3374 "induction"); 3375 } 3376 case InductionDescriptor::IK_NoInduction: 3377 return nullptr; 3378 } 3379 llvm_unreachable("invalid enum"); 3380 } 3381 3382 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3383 LoopScalarBody = OrigLoop->getHeader(); 3384 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3385 assert(LoopVectorPreHeader && "Invalid loop structure"); 3386 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3387 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3388 "multiple exit loop without required epilogue?"); 3389 3390 LoopMiddleBlock = 3391 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3392 LI, nullptr, Twine(Prefix) + "middle.block"); 3393 LoopScalarPreHeader = 3394 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3395 nullptr, Twine(Prefix) + "scalar.ph"); 3396 3397 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3398 3399 // Set up the middle block terminator. Two cases: 3400 // 1) If we know that we must execute the scalar epilogue, emit an 3401 // unconditional branch. 3402 // 2) Otherwise, we must have a single unique exit block (due to how we 3403 // implement the multiple exit case). In this case, set up a conditonal 3404 // branch from the middle block to the loop scalar preheader, and the 3405 // exit block. completeLoopSkeleton will update the condition to use an 3406 // iteration check, if required to decide whether to execute the remainder. 3407 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3408 BranchInst::Create(LoopScalarPreHeader) : 3409 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3410 Builder.getTrue()); 3411 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3412 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3413 3414 // We intentionally don't let SplitBlock to update LoopInfo since 3415 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3416 // LoopVectorBody is explicitly added to the correct place few lines later. 3417 LoopVectorBody = 3418 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3419 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3420 3421 // Update dominator for loop exit. 3422 if (!Cost->requiresScalarEpilogue(VF)) 3423 // If there is an epilogue which must run, there's no edge from the 3424 // middle block to exit blocks and thus no need to update the immediate 3425 // dominator of the exit blocks. 3426 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3427 3428 // Create and register the new vector loop. 3429 Loop *Lp = LI->AllocateLoop(); 3430 Loop *ParentLoop = OrigLoop->getParentLoop(); 3431 3432 // Insert the new loop into the loop nest and register the new basic blocks 3433 // before calling any utilities such as SCEV that require valid LoopInfo. 3434 if (ParentLoop) { 3435 ParentLoop->addChildLoop(Lp); 3436 } else { 3437 LI->addTopLevelLoop(Lp); 3438 } 3439 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3440 return Lp; 3441 } 3442 3443 void InnerLoopVectorizer::createInductionResumeValues( 3444 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3445 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3446 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3447 "Inconsistent information about additional bypass."); 3448 3449 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3450 assert(VectorTripCount && L && "Expected valid arguments"); 3451 // We are going to resume the execution of the scalar loop. 3452 // Go over all of the induction variables that we found and fix the 3453 // PHIs that are left in the scalar version of the loop. 3454 // The starting values of PHI nodes depend on the counter of the last 3455 // iteration in the vectorized loop. 3456 // If we come from a bypass edge then we need to start from the original 3457 // start value. 3458 Instruction *OldInduction = Legal->getPrimaryInduction(); 3459 for (auto &InductionEntry : Legal->getInductionVars()) { 3460 PHINode *OrigPhi = InductionEntry.first; 3461 InductionDescriptor II = InductionEntry.second; 3462 3463 // Create phi nodes to merge from the backedge-taken check block. 3464 PHINode *BCResumeVal = 3465 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3466 LoopScalarPreHeader->getTerminator()); 3467 // Copy original phi DL over to the new one. 3468 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3469 Value *&EndValue = IVEndValues[OrigPhi]; 3470 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3471 if (OrigPhi == OldInduction) { 3472 // We know what the end value is. 3473 EndValue = VectorTripCount; 3474 } else { 3475 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3476 3477 // Fast-math-flags propagate from the original induction instruction. 3478 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3479 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3480 3481 Type *StepType = II.getStep()->getType(); 3482 Instruction::CastOps CastOp = 3483 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3484 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3485 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3486 EndValue = 3487 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3488 EndValue->setName("ind.end"); 3489 3490 // Compute the end value for the additional bypass (if applicable). 3491 if (AdditionalBypass.first) { 3492 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3493 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3494 StepType, true); 3495 CRD = 3496 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3497 EndValueFromAdditionalBypass = 3498 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3499 EndValueFromAdditionalBypass->setName("ind.end"); 3500 } 3501 } 3502 // The new PHI merges the original incoming value, in case of a bypass, 3503 // or the value at the end of the vectorized loop. 3504 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3505 3506 // Fix the scalar body counter (PHI node). 3507 // The old induction's phi node in the scalar body needs the truncated 3508 // value. 3509 for (BasicBlock *BB : LoopBypassBlocks) 3510 BCResumeVal->addIncoming(II.getStartValue(), BB); 3511 3512 if (AdditionalBypass.first) 3513 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3514 EndValueFromAdditionalBypass); 3515 3516 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3517 } 3518 } 3519 3520 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3521 MDNode *OrigLoopID) { 3522 assert(L && "Expected valid loop."); 3523 3524 // The trip counts should be cached by now. 3525 Value *Count = getOrCreateTripCount(L); 3526 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3527 3528 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3529 3530 // Add a check in the middle block to see if we have completed 3531 // all of the iterations in the first vector loop. Three cases: 3532 // 1) If we require a scalar epilogue, there is no conditional branch as 3533 // we unconditionally branch to the scalar preheader. Do nothing. 3534 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3535 // Thus if tail is to be folded, we know we don't need to run the 3536 // remainder and we can use the previous value for the condition (true). 3537 // 3) Otherwise, construct a runtime check. 3538 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3539 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3540 Count, VectorTripCount, "cmp.n", 3541 LoopMiddleBlock->getTerminator()); 3542 3543 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3544 // of the corresponding compare because they may have ended up with 3545 // different line numbers and we want to avoid awkward line stepping while 3546 // debugging. Eg. if the compare has got a line number inside the loop. 3547 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3548 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3549 } 3550 3551 // Get ready to start creating new instructions into the vectorized body. 3552 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3553 "Inconsistent vector loop preheader"); 3554 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3555 3556 #ifdef EXPENSIVE_CHECKS 3557 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3558 LI->verify(*DT); 3559 #endif 3560 3561 return LoopVectorPreHeader; 3562 } 3563 3564 std::pair<BasicBlock *, Value *> 3565 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3566 /* 3567 In this function we generate a new loop. The new loop will contain 3568 the vectorized instructions while the old loop will continue to run the 3569 scalar remainder. 3570 3571 [ ] <-- loop iteration number check. 3572 / | 3573 / v 3574 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3575 | / | 3576 | / v 3577 || [ ] <-- vector pre header. 3578 |/ | 3579 | v 3580 | [ ] \ 3581 | [ ]_| <-- vector loop. 3582 | | 3583 | v 3584 \ -[ ] <--- middle-block. 3585 \/ | 3586 /\ v 3587 | ->[ ] <--- new preheader. 3588 | | 3589 (opt) v <-- edge from middle to exit iff epilogue is not required. 3590 | [ ] \ 3591 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3592 \ | 3593 \ v 3594 >[ ] <-- exit block(s). 3595 ... 3596 */ 3597 3598 // Get the metadata of the original loop before it gets modified. 3599 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3600 3601 // Workaround! Compute the trip count of the original loop and cache it 3602 // before we start modifying the CFG. This code has a systemic problem 3603 // wherein it tries to run analysis over partially constructed IR; this is 3604 // wrong, and not simply for SCEV. The trip count of the original loop 3605 // simply happens to be prone to hitting this in practice. In theory, we 3606 // can hit the same issue for any SCEV, or ValueTracking query done during 3607 // mutation. See PR49900. 3608 getOrCreateTripCount(OrigLoop); 3609 3610 // Create an empty vector loop, and prepare basic blocks for the runtime 3611 // checks. 3612 Loop *Lp = createVectorLoopSkeleton(""); 3613 3614 // Now, compare the new count to zero. If it is zero skip the vector loop and 3615 // jump to the scalar loop. This check also covers the case where the 3616 // backedge-taken count is uint##_max: adding one to it will overflow leading 3617 // to an incorrect trip count of zero. In this (rare) case we will also jump 3618 // to the scalar loop. 3619 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3620 3621 // Generate the code to check any assumptions that we've made for SCEV 3622 // expressions. 3623 emitSCEVChecks(Lp, LoopScalarPreHeader); 3624 3625 // Generate the code that checks in runtime if arrays overlap. We put the 3626 // checks into a separate block to make the more common case of few elements 3627 // faster. 3628 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3629 3630 createHeaderBranch(Lp); 3631 3632 // Emit phis for the new starting index of the scalar loop. 3633 createInductionResumeValues(Lp); 3634 3635 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3636 } 3637 3638 // Fix up external users of the induction variable. At this point, we are 3639 // in LCSSA form, with all external PHIs that use the IV having one input value, 3640 // coming from the remainder loop. We need those PHIs to also have a correct 3641 // value for the IV when arriving directly from the middle block. 3642 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3643 const InductionDescriptor &II, 3644 Value *CountRoundDown, Value *EndValue, 3645 BasicBlock *MiddleBlock) { 3646 // There are two kinds of external IV usages - those that use the value 3647 // computed in the last iteration (the PHI) and those that use the penultimate 3648 // value (the value that feeds into the phi from the loop latch). 3649 // We allow both, but they, obviously, have different values. 3650 3651 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3652 3653 DenseMap<Value *, Value *> MissingVals; 3654 3655 // An external user of the last iteration's value should see the value that 3656 // the remainder loop uses to initialize its own IV. 3657 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3658 for (User *U : PostInc->users()) { 3659 Instruction *UI = cast<Instruction>(U); 3660 if (!OrigLoop->contains(UI)) { 3661 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3662 MissingVals[UI] = EndValue; 3663 } 3664 } 3665 3666 // An external user of the penultimate value need to see EndValue - Step. 3667 // The simplest way to get this is to recompute it from the constituent SCEVs, 3668 // that is Start + (Step * (CRD - 1)). 3669 for (User *U : OrigPhi->users()) { 3670 auto *UI = cast<Instruction>(U); 3671 if (!OrigLoop->contains(UI)) { 3672 const DataLayout &DL = 3673 OrigLoop->getHeader()->getModule()->getDataLayout(); 3674 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3675 3676 IRBuilder<> B(MiddleBlock->getTerminator()); 3677 3678 // Fast-math-flags propagate from the original induction instruction. 3679 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3680 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3681 3682 Value *CountMinusOne = B.CreateSub( 3683 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3684 Value *CMO = 3685 !II.getStep()->getType()->isIntegerTy() 3686 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3687 II.getStep()->getType()) 3688 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3689 CMO->setName("cast.cmo"); 3690 Value *Escape = 3691 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3692 Escape->setName("ind.escape"); 3693 MissingVals[UI] = Escape; 3694 } 3695 } 3696 3697 for (auto &I : MissingVals) { 3698 PHINode *PHI = cast<PHINode>(I.first); 3699 // One corner case we have to handle is two IVs "chasing" each-other, 3700 // that is %IV2 = phi [...], [ %IV1, %latch ] 3701 // In this case, if IV1 has an external use, we need to avoid adding both 3702 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3703 // don't already have an incoming value for the middle block. 3704 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3705 PHI->addIncoming(I.second, MiddleBlock); 3706 } 3707 } 3708 3709 namespace { 3710 3711 struct CSEDenseMapInfo { 3712 static bool canHandle(const Instruction *I) { 3713 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3714 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3715 } 3716 3717 static inline Instruction *getEmptyKey() { 3718 return DenseMapInfo<Instruction *>::getEmptyKey(); 3719 } 3720 3721 static inline Instruction *getTombstoneKey() { 3722 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3723 } 3724 3725 static unsigned getHashValue(const Instruction *I) { 3726 assert(canHandle(I) && "Unknown instruction!"); 3727 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3728 I->value_op_end())); 3729 } 3730 3731 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3732 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3733 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3734 return LHS == RHS; 3735 return LHS->isIdenticalTo(RHS); 3736 } 3737 }; 3738 3739 } // end anonymous namespace 3740 3741 ///Perform cse of induction variable instructions. 3742 static void cse(BasicBlock *BB) { 3743 // Perform simple cse. 3744 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3745 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3746 if (!CSEDenseMapInfo::canHandle(&In)) 3747 continue; 3748 3749 // Check if we can replace this instruction with any of the 3750 // visited instructions. 3751 if (Instruction *V = CSEMap.lookup(&In)) { 3752 In.replaceAllUsesWith(V); 3753 In.eraseFromParent(); 3754 continue; 3755 } 3756 3757 CSEMap[&In] = &In; 3758 } 3759 } 3760 3761 InstructionCost 3762 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3763 bool &NeedToScalarize) const { 3764 Function *F = CI->getCalledFunction(); 3765 Type *ScalarRetTy = CI->getType(); 3766 SmallVector<Type *, 4> Tys, ScalarTys; 3767 for (auto &ArgOp : CI->args()) 3768 ScalarTys.push_back(ArgOp->getType()); 3769 3770 // Estimate cost of scalarized vector call. The source operands are assumed 3771 // to be vectors, so we need to extract individual elements from there, 3772 // execute VF scalar calls, and then gather the result into the vector return 3773 // value. 3774 InstructionCost ScalarCallCost = 3775 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3776 if (VF.isScalar()) 3777 return ScalarCallCost; 3778 3779 // Compute corresponding vector type for return value and arguments. 3780 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3781 for (Type *ScalarTy : ScalarTys) 3782 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3783 3784 // Compute costs of unpacking argument values for the scalar calls and 3785 // packing the return values to a vector. 3786 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3787 3788 InstructionCost Cost = 3789 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3790 3791 // If we can't emit a vector call for this function, then the currently found 3792 // cost is the cost we need to return. 3793 NeedToScalarize = true; 3794 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3795 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3796 3797 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3798 return Cost; 3799 3800 // If the corresponding vector cost is cheaper, return its cost. 3801 InstructionCost VectorCallCost = 3802 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3803 if (VectorCallCost < Cost) { 3804 NeedToScalarize = false; 3805 Cost = VectorCallCost; 3806 } 3807 return Cost; 3808 } 3809 3810 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3811 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3812 return Elt; 3813 return VectorType::get(Elt, VF); 3814 } 3815 3816 InstructionCost 3817 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3818 ElementCount VF) const { 3819 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3820 assert(ID && "Expected intrinsic call!"); 3821 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3822 FastMathFlags FMF; 3823 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3824 FMF = FPMO->getFastMathFlags(); 3825 3826 SmallVector<const Value *> Arguments(CI->args()); 3827 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3828 SmallVector<Type *> ParamTys; 3829 std::transform(FTy->param_begin(), FTy->param_end(), 3830 std::back_inserter(ParamTys), 3831 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3832 3833 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3834 dyn_cast<IntrinsicInst>(CI)); 3835 return TTI.getIntrinsicInstrCost(CostAttrs, 3836 TargetTransformInfo::TCK_RecipThroughput); 3837 } 3838 3839 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3840 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3841 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3842 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3843 } 3844 3845 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3846 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3847 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3848 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3849 } 3850 3851 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3852 // For every instruction `I` in MinBWs, truncate the operands, create a 3853 // truncated version of `I` and reextend its result. InstCombine runs 3854 // later and will remove any ext/trunc pairs. 3855 SmallPtrSet<Value *, 4> Erased; 3856 for (const auto &KV : Cost->getMinimalBitwidths()) { 3857 // If the value wasn't vectorized, we must maintain the original scalar 3858 // type. The absence of the value from State indicates that it 3859 // wasn't vectorized. 3860 // FIXME: Should not rely on getVPValue at this point. 3861 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3862 if (!State.hasAnyVectorValue(Def)) 3863 continue; 3864 for (unsigned Part = 0; Part < UF; ++Part) { 3865 Value *I = State.get(Def, Part); 3866 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3867 continue; 3868 Type *OriginalTy = I->getType(); 3869 Type *ScalarTruncatedTy = 3870 IntegerType::get(OriginalTy->getContext(), KV.second); 3871 auto *TruncatedTy = VectorType::get( 3872 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3873 if (TruncatedTy == OriginalTy) 3874 continue; 3875 3876 IRBuilder<> B(cast<Instruction>(I)); 3877 auto ShrinkOperand = [&](Value *V) -> Value * { 3878 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3879 if (ZI->getSrcTy() == TruncatedTy) 3880 return ZI->getOperand(0); 3881 return B.CreateZExtOrTrunc(V, TruncatedTy); 3882 }; 3883 3884 // The actual instruction modification depends on the instruction type, 3885 // unfortunately. 3886 Value *NewI = nullptr; 3887 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3888 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3889 ShrinkOperand(BO->getOperand(1))); 3890 3891 // Any wrapping introduced by shrinking this operation shouldn't be 3892 // considered undefined behavior. So, we can't unconditionally copy 3893 // arithmetic wrapping flags to NewI. 3894 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3895 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3896 NewI = 3897 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3898 ShrinkOperand(CI->getOperand(1))); 3899 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3900 NewI = B.CreateSelect(SI->getCondition(), 3901 ShrinkOperand(SI->getTrueValue()), 3902 ShrinkOperand(SI->getFalseValue())); 3903 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3904 switch (CI->getOpcode()) { 3905 default: 3906 llvm_unreachable("Unhandled cast!"); 3907 case Instruction::Trunc: 3908 NewI = ShrinkOperand(CI->getOperand(0)); 3909 break; 3910 case Instruction::SExt: 3911 NewI = B.CreateSExtOrTrunc( 3912 CI->getOperand(0), 3913 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3914 break; 3915 case Instruction::ZExt: 3916 NewI = B.CreateZExtOrTrunc( 3917 CI->getOperand(0), 3918 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3919 break; 3920 } 3921 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3922 auto Elements0 = 3923 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3924 auto *O0 = B.CreateZExtOrTrunc( 3925 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3926 auto Elements1 = 3927 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3928 auto *O1 = B.CreateZExtOrTrunc( 3929 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3930 3931 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3932 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3933 // Don't do anything with the operands, just extend the result. 3934 continue; 3935 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3936 auto Elements = 3937 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3938 auto *O0 = B.CreateZExtOrTrunc( 3939 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3940 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3941 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3942 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3943 auto Elements = 3944 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3945 auto *O0 = B.CreateZExtOrTrunc( 3946 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3947 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3948 } else { 3949 // If we don't know what to do, be conservative and don't do anything. 3950 continue; 3951 } 3952 3953 // Lastly, extend the result. 3954 NewI->takeName(cast<Instruction>(I)); 3955 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3956 I->replaceAllUsesWith(Res); 3957 cast<Instruction>(I)->eraseFromParent(); 3958 Erased.insert(I); 3959 State.reset(Def, Res, Part); 3960 } 3961 } 3962 3963 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3964 for (const auto &KV : Cost->getMinimalBitwidths()) { 3965 // If the value wasn't vectorized, we must maintain the original scalar 3966 // type. The absence of the value from State indicates that it 3967 // wasn't vectorized. 3968 // FIXME: Should not rely on getVPValue at this point. 3969 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3970 if (!State.hasAnyVectorValue(Def)) 3971 continue; 3972 for (unsigned Part = 0; Part < UF; ++Part) { 3973 Value *I = State.get(Def, Part); 3974 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3975 if (Inst && Inst->use_empty()) { 3976 Value *NewI = Inst->getOperand(0); 3977 Inst->eraseFromParent(); 3978 State.reset(Def, NewI, Part); 3979 } 3980 } 3981 } 3982 } 3983 3984 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3985 // Insert truncates and extends for any truncated instructions as hints to 3986 // InstCombine. 3987 if (VF.isVector()) 3988 truncateToMinimalBitwidths(State); 3989 3990 // Fix widened non-induction PHIs by setting up the PHI operands. 3991 if (OrigPHIsToFix.size()) { 3992 assert(EnableVPlanNativePath && 3993 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3994 fixNonInductionPHIs(State); 3995 } 3996 3997 // At this point every instruction in the original loop is widened to a 3998 // vector form. Now we need to fix the recurrences in the loop. These PHI 3999 // nodes are currently empty because we did not want to introduce cycles. 4000 // This is the second stage of vectorizing recurrences. 4001 fixCrossIterationPHIs(State); 4002 4003 // Forget the original basic block. 4004 PSE.getSE()->forgetLoop(OrigLoop); 4005 4006 // If we inserted an edge from the middle block to the unique exit block, 4007 // update uses outside the loop (phis) to account for the newly inserted 4008 // edge. 4009 if (!Cost->requiresScalarEpilogue(VF)) { 4010 // Fix-up external users of the induction variables. 4011 for (auto &Entry : Legal->getInductionVars()) 4012 fixupIVUsers(Entry.first, Entry.second, 4013 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4014 IVEndValues[Entry.first], LoopMiddleBlock); 4015 4016 fixLCSSAPHIs(State); 4017 } 4018 4019 for (Instruction *PI : PredicatedInstructions) 4020 sinkScalarOperands(&*PI); 4021 4022 // Remove redundant induction instructions. 4023 cse(LoopVectorBody); 4024 4025 // Set/update profile weights for the vector and remainder loops as original 4026 // loop iterations are now distributed among them. Note that original loop 4027 // represented by LoopScalarBody becomes remainder loop after vectorization. 4028 // 4029 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4030 // end up getting slightly roughened result but that should be OK since 4031 // profile is not inherently precise anyway. Note also possible bypass of 4032 // vector code caused by legality checks is ignored, assigning all the weight 4033 // to the vector loop, optimistically. 4034 // 4035 // For scalable vectorization we can't know at compile time how many iterations 4036 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4037 // vscale of '1'. 4038 setProfileInfoAfterUnrolling( 4039 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4040 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4041 } 4042 4043 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4044 // In order to support recurrences we need to be able to vectorize Phi nodes. 4045 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4046 // stage #2: We now need to fix the recurrences by adding incoming edges to 4047 // the currently empty PHI nodes. At this point every instruction in the 4048 // original loop is widened to a vector form so we can use them to construct 4049 // the incoming edges. 4050 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4051 for (VPRecipeBase &R : Header->phis()) { 4052 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4053 fixReduction(ReductionPhi, State); 4054 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4055 fixFirstOrderRecurrence(FOR, State); 4056 } 4057 } 4058 4059 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4060 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4061 // This is the second phase of vectorizing first-order recurrences. An 4062 // overview of the transformation is described below. Suppose we have the 4063 // following loop. 4064 // 4065 // for (int i = 0; i < n; ++i) 4066 // b[i] = a[i] - a[i - 1]; 4067 // 4068 // There is a first-order recurrence on "a". For this loop, the shorthand 4069 // scalar IR looks like: 4070 // 4071 // scalar.ph: 4072 // s_init = a[-1] 4073 // br scalar.body 4074 // 4075 // scalar.body: 4076 // i = phi [0, scalar.ph], [i+1, scalar.body] 4077 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4078 // s2 = a[i] 4079 // b[i] = s2 - s1 4080 // br cond, scalar.body, ... 4081 // 4082 // In this example, s1 is a recurrence because it's value depends on the 4083 // previous iteration. In the first phase of vectorization, we created a 4084 // vector phi v1 for s1. We now complete the vectorization and produce the 4085 // shorthand vector IR shown below (for VF = 4, UF = 1). 4086 // 4087 // vector.ph: 4088 // v_init = vector(..., ..., ..., a[-1]) 4089 // br vector.body 4090 // 4091 // vector.body 4092 // i = phi [0, vector.ph], [i+4, vector.body] 4093 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4094 // v2 = a[i, i+1, i+2, i+3]; 4095 // v3 = vector(v1(3), v2(0, 1, 2)) 4096 // b[i, i+1, i+2, i+3] = v2 - v3 4097 // br cond, vector.body, middle.block 4098 // 4099 // middle.block: 4100 // x = v2(3) 4101 // br scalar.ph 4102 // 4103 // scalar.ph: 4104 // s_init = phi [x, middle.block], [a[-1], otherwise] 4105 // br scalar.body 4106 // 4107 // After execution completes the vector loop, we extract the next value of 4108 // the recurrence (x) to use as the initial value in the scalar loop. 4109 4110 // Extract the last vector element in the middle block. This will be the 4111 // initial value for the recurrence when jumping to the scalar loop. 4112 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4113 Value *Incoming = State.get(PreviousDef, UF - 1); 4114 auto *ExtractForScalar = Incoming; 4115 auto *IdxTy = Builder.getInt32Ty(); 4116 if (VF.isVector()) { 4117 auto *One = ConstantInt::get(IdxTy, 1); 4118 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4119 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4120 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4121 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4122 "vector.recur.extract"); 4123 } 4124 // Extract the second last element in the middle block if the 4125 // Phi is used outside the loop. We need to extract the phi itself 4126 // and not the last element (the phi update in the current iteration). This 4127 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4128 // when the scalar loop is not run at all. 4129 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4130 if (VF.isVector()) { 4131 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4132 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4133 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4134 Incoming, Idx, "vector.recur.extract.for.phi"); 4135 } else if (UF > 1) 4136 // When loop is unrolled without vectorizing, initialize 4137 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4138 // of `Incoming`. This is analogous to the vectorized case above: extracting 4139 // the second last element when VF > 1. 4140 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4141 4142 // Fix the initial value of the original recurrence in the scalar loop. 4143 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4144 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4145 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4146 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4147 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4148 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4149 Start->addIncoming(Incoming, BB); 4150 } 4151 4152 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4153 Phi->setName("scalar.recur"); 4154 4155 // Finally, fix users of the recurrence outside the loop. The users will need 4156 // either the last value of the scalar recurrence or the last value of the 4157 // vector recurrence we extracted in the middle block. Since the loop is in 4158 // LCSSA form, we just need to find all the phi nodes for the original scalar 4159 // recurrence in the exit block, and then add an edge for the middle block. 4160 // Note that LCSSA does not imply single entry when the original scalar loop 4161 // had multiple exiting edges (as we always run the last iteration in the 4162 // scalar epilogue); in that case, there is no edge from middle to exit and 4163 // and thus no phis which needed updated. 4164 if (!Cost->requiresScalarEpilogue(VF)) 4165 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4166 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4167 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4168 } 4169 4170 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4171 VPTransformState &State) { 4172 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4173 // Get it's reduction variable descriptor. 4174 assert(Legal->isReductionVariable(OrigPhi) && 4175 "Unable to find the reduction variable"); 4176 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4177 4178 RecurKind RK = RdxDesc.getRecurrenceKind(); 4179 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4180 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4181 setDebugLocFromInst(ReductionStartValue); 4182 4183 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4184 // This is the vector-clone of the value that leaves the loop. 4185 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4186 4187 // Wrap flags are in general invalid after vectorization, clear them. 4188 clearReductionWrapFlags(RdxDesc, State); 4189 4190 // Before each round, move the insertion point right between 4191 // the PHIs and the values we are going to write. 4192 // This allows us to write both PHINodes and the extractelement 4193 // instructions. 4194 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4195 4196 setDebugLocFromInst(LoopExitInst); 4197 4198 Type *PhiTy = OrigPhi->getType(); 4199 // If tail is folded by masking, the vector value to leave the loop should be 4200 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4201 // instead of the former. For an inloop reduction the reduction will already 4202 // be predicated, and does not need to be handled here. 4203 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4204 for (unsigned Part = 0; Part < UF; ++Part) { 4205 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4206 Value *Sel = nullptr; 4207 for (User *U : VecLoopExitInst->users()) { 4208 if (isa<SelectInst>(U)) { 4209 assert(!Sel && "Reduction exit feeding two selects"); 4210 Sel = U; 4211 } else 4212 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4213 } 4214 assert(Sel && "Reduction exit feeds no select"); 4215 State.reset(LoopExitInstDef, Sel, Part); 4216 4217 // If the target can create a predicated operator for the reduction at no 4218 // extra cost in the loop (for example a predicated vadd), it can be 4219 // cheaper for the select to remain in the loop than be sunk out of it, 4220 // and so use the select value for the phi instead of the old 4221 // LoopExitValue. 4222 if (PreferPredicatedReductionSelect || 4223 TTI->preferPredicatedReductionSelect( 4224 RdxDesc.getOpcode(), PhiTy, 4225 TargetTransformInfo::ReductionFlags())) { 4226 auto *VecRdxPhi = 4227 cast<PHINode>(State.get(PhiR, Part)); 4228 VecRdxPhi->setIncomingValueForBlock( 4229 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4230 } 4231 } 4232 } 4233 4234 // If the vector reduction can be performed in a smaller type, we truncate 4235 // then extend the loop exit value to enable InstCombine to evaluate the 4236 // entire expression in the smaller type. 4237 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4238 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4239 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4240 Builder.SetInsertPoint( 4241 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4242 VectorParts RdxParts(UF); 4243 for (unsigned Part = 0; Part < UF; ++Part) { 4244 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4245 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4246 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4247 : Builder.CreateZExt(Trunc, VecTy); 4248 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4249 if (U != Trunc) { 4250 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4251 RdxParts[Part] = Extnd; 4252 } 4253 } 4254 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4255 for (unsigned Part = 0; Part < UF; ++Part) { 4256 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4257 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4258 } 4259 } 4260 4261 // Reduce all of the unrolled parts into a single vector. 4262 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4263 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4264 4265 // The middle block terminator has already been assigned a DebugLoc here (the 4266 // OrigLoop's single latch terminator). We want the whole middle block to 4267 // appear to execute on this line because: (a) it is all compiler generated, 4268 // (b) these instructions are always executed after evaluating the latch 4269 // conditional branch, and (c) other passes may add new predecessors which 4270 // terminate on this line. This is the easiest way to ensure we don't 4271 // accidentally cause an extra step back into the loop while debugging. 4272 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4273 if (PhiR->isOrdered()) 4274 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4275 else { 4276 // Floating-point operations should have some FMF to enable the reduction. 4277 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4278 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4279 for (unsigned Part = 1; Part < UF; ++Part) { 4280 Value *RdxPart = State.get(LoopExitInstDef, Part); 4281 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4282 ReducedPartRdx = Builder.CreateBinOp( 4283 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4284 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4285 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4286 ReducedPartRdx, RdxPart); 4287 else 4288 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4289 } 4290 } 4291 4292 // Create the reduction after the loop. Note that inloop reductions create the 4293 // target reduction in the loop using a Reduction recipe. 4294 if (VF.isVector() && !PhiR->isInLoop()) { 4295 ReducedPartRdx = 4296 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4297 // If the reduction can be performed in a smaller type, we need to extend 4298 // the reduction to the wider type before we branch to the original loop. 4299 if (PhiTy != RdxDesc.getRecurrenceType()) 4300 ReducedPartRdx = RdxDesc.isSigned() 4301 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4302 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4303 } 4304 4305 // Create a phi node that merges control-flow from the backedge-taken check 4306 // block and the middle block. 4307 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4308 LoopScalarPreHeader->getTerminator()); 4309 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4310 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4311 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4312 4313 // Now, we need to fix the users of the reduction variable 4314 // inside and outside of the scalar remainder loop. 4315 4316 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4317 // in the exit blocks. See comment on analogous loop in 4318 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4319 if (!Cost->requiresScalarEpilogue(VF)) 4320 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4321 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4322 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4323 4324 // Fix the scalar loop reduction variable with the incoming reduction sum 4325 // from the vector body and from the backedge value. 4326 int IncomingEdgeBlockIdx = 4327 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4328 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4329 // Pick the other block. 4330 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4331 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4332 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4333 } 4334 4335 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4336 VPTransformState &State) { 4337 RecurKind RK = RdxDesc.getRecurrenceKind(); 4338 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4339 return; 4340 4341 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4342 assert(LoopExitInstr && "null loop exit instruction"); 4343 SmallVector<Instruction *, 8> Worklist; 4344 SmallPtrSet<Instruction *, 8> Visited; 4345 Worklist.push_back(LoopExitInstr); 4346 Visited.insert(LoopExitInstr); 4347 4348 while (!Worklist.empty()) { 4349 Instruction *Cur = Worklist.pop_back_val(); 4350 if (isa<OverflowingBinaryOperator>(Cur)) 4351 for (unsigned Part = 0; Part < UF; ++Part) { 4352 // FIXME: Should not rely on getVPValue at this point. 4353 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4354 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4355 } 4356 4357 for (User *U : Cur->users()) { 4358 Instruction *UI = cast<Instruction>(U); 4359 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4360 Visited.insert(UI).second) 4361 Worklist.push_back(UI); 4362 } 4363 } 4364 } 4365 4366 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4367 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4368 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4369 // Some phis were already hand updated by the reduction and recurrence 4370 // code above, leave them alone. 4371 continue; 4372 4373 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4374 // Non-instruction incoming values will have only one value. 4375 4376 VPLane Lane = VPLane::getFirstLane(); 4377 if (isa<Instruction>(IncomingValue) && 4378 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4379 VF)) 4380 Lane = VPLane::getLastLaneForVF(VF); 4381 4382 // Can be a loop invariant incoming value or the last scalar value to be 4383 // extracted from the vectorized loop. 4384 // FIXME: Should not rely on getVPValue at this point. 4385 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4386 Value *lastIncomingValue = 4387 OrigLoop->isLoopInvariant(IncomingValue) 4388 ? IncomingValue 4389 : State.get(State.Plan->getVPValue(IncomingValue, true), 4390 VPIteration(UF - 1, Lane)); 4391 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4392 } 4393 } 4394 4395 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4396 // The basic block and loop containing the predicated instruction. 4397 auto *PredBB = PredInst->getParent(); 4398 auto *VectorLoop = LI->getLoopFor(PredBB); 4399 4400 // Initialize a worklist with the operands of the predicated instruction. 4401 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4402 4403 // Holds instructions that we need to analyze again. An instruction may be 4404 // reanalyzed if we don't yet know if we can sink it or not. 4405 SmallVector<Instruction *, 8> InstsToReanalyze; 4406 4407 // Returns true if a given use occurs in the predicated block. Phi nodes use 4408 // their operands in their corresponding predecessor blocks. 4409 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4410 auto *I = cast<Instruction>(U.getUser()); 4411 BasicBlock *BB = I->getParent(); 4412 if (auto *Phi = dyn_cast<PHINode>(I)) 4413 BB = Phi->getIncomingBlock( 4414 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4415 return BB == PredBB; 4416 }; 4417 4418 // Iteratively sink the scalarized operands of the predicated instruction 4419 // into the block we created for it. When an instruction is sunk, it's 4420 // operands are then added to the worklist. The algorithm ends after one pass 4421 // through the worklist doesn't sink a single instruction. 4422 bool Changed; 4423 do { 4424 // Add the instructions that need to be reanalyzed to the worklist, and 4425 // reset the changed indicator. 4426 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4427 InstsToReanalyze.clear(); 4428 Changed = false; 4429 4430 while (!Worklist.empty()) { 4431 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4432 4433 // We can't sink an instruction if it is a phi node, is not in the loop, 4434 // or may have side effects. 4435 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4436 I->mayHaveSideEffects()) 4437 continue; 4438 4439 // If the instruction is already in PredBB, check if we can sink its 4440 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4441 // sinking the scalar instruction I, hence it appears in PredBB; but it 4442 // may have failed to sink I's operands (recursively), which we try 4443 // (again) here. 4444 if (I->getParent() == PredBB) { 4445 Worklist.insert(I->op_begin(), I->op_end()); 4446 continue; 4447 } 4448 4449 // It's legal to sink the instruction if all its uses occur in the 4450 // predicated block. Otherwise, there's nothing to do yet, and we may 4451 // need to reanalyze the instruction. 4452 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4453 InstsToReanalyze.push_back(I); 4454 continue; 4455 } 4456 4457 // Move the instruction to the beginning of the predicated block, and add 4458 // it's operands to the worklist. 4459 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4460 Worklist.insert(I->op_begin(), I->op_end()); 4461 4462 // The sinking may have enabled other instructions to be sunk, so we will 4463 // need to iterate. 4464 Changed = true; 4465 } 4466 } while (Changed); 4467 } 4468 4469 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4470 for (PHINode *OrigPhi : OrigPHIsToFix) { 4471 VPWidenPHIRecipe *VPPhi = 4472 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4473 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4474 // Make sure the builder has a valid insert point. 4475 Builder.SetInsertPoint(NewPhi); 4476 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4477 VPValue *Inc = VPPhi->getIncomingValue(i); 4478 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4479 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4480 } 4481 } 4482 } 4483 4484 bool InnerLoopVectorizer::useOrderedReductions( 4485 const RecurrenceDescriptor &RdxDesc) { 4486 return Cost->useOrderedReductions(RdxDesc); 4487 } 4488 4489 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4490 VPWidenPHIRecipe *PhiR, 4491 VPTransformState &State) { 4492 PHINode *P = cast<PHINode>(PN); 4493 if (EnableVPlanNativePath) { 4494 // Currently we enter here in the VPlan-native path for non-induction 4495 // PHIs where all control flow is uniform. We simply widen these PHIs. 4496 // Create a vector phi with no operands - the vector phi operands will be 4497 // set at the end of vector code generation. 4498 Type *VecTy = (State.VF.isScalar()) 4499 ? PN->getType() 4500 : VectorType::get(PN->getType(), State.VF); 4501 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4502 State.set(PhiR, VecPhi, 0); 4503 OrigPHIsToFix.push_back(P); 4504 4505 return; 4506 } 4507 4508 assert(PN->getParent() == OrigLoop->getHeader() && 4509 "Non-header phis should have been handled elsewhere"); 4510 4511 // In order to support recurrences we need to be able to vectorize Phi nodes. 4512 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4513 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4514 // this value when we vectorize all of the instructions that use the PHI. 4515 4516 assert(!Legal->isReductionVariable(P) && 4517 "reductions should be handled elsewhere"); 4518 4519 setDebugLocFromInst(P); 4520 4521 // This PHINode must be an induction variable. 4522 // Make sure that we know about it. 4523 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4524 4525 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4526 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4527 4528 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4529 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4530 4531 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4532 // which can be found from the original scalar operations. 4533 switch (II.getKind()) { 4534 case InductionDescriptor::IK_NoInduction: 4535 llvm_unreachable("Unknown induction"); 4536 case InductionDescriptor::IK_IntInduction: 4537 case InductionDescriptor::IK_FpInduction: 4538 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4539 case InductionDescriptor::IK_PtrInduction: { 4540 // Handle the pointer induction variable case. 4541 assert(P->getType()->isPointerTy() && "Unexpected type."); 4542 4543 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4544 // This is the normalized GEP that starts counting at zero. 4545 Value *PtrInd = 4546 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4547 // Determine the number of scalars we need to generate for each unroll 4548 // iteration. If the instruction is uniform, we only need to generate the 4549 // first lane. Otherwise, we generate all VF values. 4550 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4551 assert((IsUniform || !State.VF.isScalable()) && 4552 "Cannot scalarize a scalable VF"); 4553 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4554 4555 for (unsigned Part = 0; Part < UF; ++Part) { 4556 Value *PartStart = 4557 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4558 4559 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4560 Value *Idx = Builder.CreateAdd( 4561 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4562 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4563 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4564 DL, II, State.CFG.PrevBB); 4565 SclrGep->setName("next.gep"); 4566 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4567 } 4568 } 4569 return; 4570 } 4571 assert(isa<SCEVConstant>(II.getStep()) && 4572 "Induction step not a SCEV constant!"); 4573 Type *PhiType = II.getStep()->getType(); 4574 4575 // Build a pointer phi 4576 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4577 Type *ScStValueType = ScalarStartValue->getType(); 4578 PHINode *NewPointerPhi = 4579 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4580 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4581 4582 // A pointer induction, performed by using a gep 4583 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4584 Instruction *InductionLoc = LoopLatch->getTerminator(); 4585 const SCEV *ScalarStep = II.getStep(); 4586 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4587 Value *ScalarStepValue = 4588 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4589 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4590 Value *NumUnrolledElems = 4591 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4592 Value *InductionGEP = GetElementPtrInst::Create( 4593 II.getElementType(), NewPointerPhi, 4594 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4595 InductionLoc); 4596 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4597 4598 // Create UF many actual address geps that use the pointer 4599 // phi as base and a vectorized version of the step value 4600 // (<step*0, ..., step*N>) as offset. 4601 for (unsigned Part = 0; Part < State.UF; ++Part) { 4602 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4603 Value *StartOffsetScalar = 4604 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4605 Value *StartOffset = 4606 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4607 // Create a vector of consecutive numbers from zero to VF. 4608 StartOffset = 4609 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4610 4611 Value *GEP = Builder.CreateGEP( 4612 II.getElementType(), NewPointerPhi, 4613 Builder.CreateMul( 4614 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4615 "vector.gep")); 4616 State.set(PhiR, GEP, Part); 4617 } 4618 } 4619 } 4620 } 4621 4622 /// A helper function for checking whether an integer division-related 4623 /// instruction may divide by zero (in which case it must be predicated if 4624 /// executed conditionally in the scalar code). 4625 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4626 /// Non-zero divisors that are non compile-time constants will not be 4627 /// converted into multiplication, so we will still end up scalarizing 4628 /// the division, but can do so w/o predication. 4629 static bool mayDivideByZero(Instruction &I) { 4630 assert((I.getOpcode() == Instruction::UDiv || 4631 I.getOpcode() == Instruction::SDiv || 4632 I.getOpcode() == Instruction::URem || 4633 I.getOpcode() == Instruction::SRem) && 4634 "Unexpected instruction"); 4635 Value *Divisor = I.getOperand(1); 4636 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4637 return !CInt || CInt->isZero(); 4638 } 4639 4640 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4641 VPUser &ArgOperands, 4642 VPTransformState &State) { 4643 assert(!isa<DbgInfoIntrinsic>(I) && 4644 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4645 setDebugLocFromInst(&I); 4646 4647 Module *M = I.getParent()->getParent()->getParent(); 4648 auto *CI = cast<CallInst>(&I); 4649 4650 SmallVector<Type *, 4> Tys; 4651 for (Value *ArgOperand : CI->args()) 4652 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4653 4654 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4655 4656 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4657 // version of the instruction. 4658 // Is it beneficial to perform intrinsic call compared to lib call? 4659 bool NeedToScalarize = false; 4660 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4661 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4662 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4663 assert((UseVectorIntrinsic || !NeedToScalarize) && 4664 "Instruction should be scalarized elsewhere."); 4665 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4666 "Either the intrinsic cost or vector call cost must be valid"); 4667 4668 for (unsigned Part = 0; Part < UF; ++Part) { 4669 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4670 SmallVector<Value *, 4> Args; 4671 for (auto &I : enumerate(ArgOperands.operands())) { 4672 // Some intrinsics have a scalar argument - don't replace it with a 4673 // vector. 4674 Value *Arg; 4675 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4676 Arg = State.get(I.value(), Part); 4677 else { 4678 Arg = State.get(I.value(), VPIteration(0, 0)); 4679 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4680 TysForDecl.push_back(Arg->getType()); 4681 } 4682 Args.push_back(Arg); 4683 } 4684 4685 Function *VectorF; 4686 if (UseVectorIntrinsic) { 4687 // Use vector version of the intrinsic. 4688 if (VF.isVector()) 4689 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4690 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4691 assert(VectorF && "Can't retrieve vector intrinsic."); 4692 } else { 4693 // Use vector version of the function call. 4694 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4695 #ifndef NDEBUG 4696 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4697 "Can't create vector function."); 4698 #endif 4699 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4700 } 4701 SmallVector<OperandBundleDef, 1> OpBundles; 4702 CI->getOperandBundlesAsDefs(OpBundles); 4703 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4704 4705 if (isa<FPMathOperator>(V)) 4706 V->copyFastMathFlags(CI); 4707 4708 State.set(Def, V, Part); 4709 addMetadata(V, &I); 4710 } 4711 } 4712 4713 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4714 // We should not collect Scalars more than once per VF. Right now, this 4715 // function is called from collectUniformsAndScalars(), which already does 4716 // this check. Collecting Scalars for VF=1 does not make any sense. 4717 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4718 "This function should not be visited twice for the same VF"); 4719 4720 SmallSetVector<Instruction *, 8> Worklist; 4721 4722 // These sets are used to seed the analysis with pointers used by memory 4723 // accesses that will remain scalar. 4724 SmallSetVector<Instruction *, 8> ScalarPtrs; 4725 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4726 auto *Latch = TheLoop->getLoopLatch(); 4727 4728 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4729 // The pointer operands of loads and stores will be scalar as long as the 4730 // memory access is not a gather or scatter operation. The value operand of a 4731 // store will remain scalar if the store is scalarized. 4732 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4733 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4734 assert(WideningDecision != CM_Unknown && 4735 "Widening decision should be ready at this moment"); 4736 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4737 if (Ptr == Store->getValueOperand()) 4738 return WideningDecision == CM_Scalarize; 4739 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4740 "Ptr is neither a value or pointer operand"); 4741 return WideningDecision != CM_GatherScatter; 4742 }; 4743 4744 // A helper that returns true if the given value is a bitcast or 4745 // getelementptr instruction contained in the loop. 4746 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4747 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4748 isa<GetElementPtrInst>(V)) && 4749 !TheLoop->isLoopInvariant(V); 4750 }; 4751 4752 // A helper that evaluates a memory access's use of a pointer. If the use will 4753 // be a scalar use and the pointer is only used by memory accesses, we place 4754 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4755 // PossibleNonScalarPtrs. 4756 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4757 // We only care about bitcast and getelementptr instructions contained in 4758 // the loop. 4759 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4760 return; 4761 4762 // If the pointer has already been identified as scalar (e.g., if it was 4763 // also identified as uniform), there's nothing to do. 4764 auto *I = cast<Instruction>(Ptr); 4765 if (Worklist.count(I)) 4766 return; 4767 4768 // If the use of the pointer will be a scalar use, and all users of the 4769 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4770 // place the pointer in PossibleNonScalarPtrs. 4771 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4772 return isa<LoadInst>(U) || isa<StoreInst>(U); 4773 })) 4774 ScalarPtrs.insert(I); 4775 else 4776 PossibleNonScalarPtrs.insert(I); 4777 }; 4778 4779 // We seed the scalars analysis with three classes of instructions: (1) 4780 // instructions marked uniform-after-vectorization and (2) bitcast, 4781 // getelementptr and (pointer) phi instructions used by memory accesses 4782 // requiring a scalar use. 4783 // 4784 // (1) Add to the worklist all instructions that have been identified as 4785 // uniform-after-vectorization. 4786 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4787 4788 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4789 // memory accesses requiring a scalar use. The pointer operands of loads and 4790 // stores will be scalar as long as the memory accesses is not a gather or 4791 // scatter operation. The value operand of a store will remain scalar if the 4792 // store is scalarized. 4793 for (auto *BB : TheLoop->blocks()) 4794 for (auto &I : *BB) { 4795 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4796 evaluatePtrUse(Load, Load->getPointerOperand()); 4797 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4798 evaluatePtrUse(Store, Store->getPointerOperand()); 4799 evaluatePtrUse(Store, Store->getValueOperand()); 4800 } 4801 } 4802 for (auto *I : ScalarPtrs) 4803 if (!PossibleNonScalarPtrs.count(I)) { 4804 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4805 Worklist.insert(I); 4806 } 4807 4808 // Insert the forced scalars. 4809 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4810 // induction variable when the PHI user is scalarized. 4811 auto ForcedScalar = ForcedScalars.find(VF); 4812 if (ForcedScalar != ForcedScalars.end()) 4813 for (auto *I : ForcedScalar->second) 4814 Worklist.insert(I); 4815 4816 // Expand the worklist by looking through any bitcasts and getelementptr 4817 // instructions we've already identified as scalar. This is similar to the 4818 // expansion step in collectLoopUniforms(); however, here we're only 4819 // expanding to include additional bitcasts and getelementptr instructions. 4820 unsigned Idx = 0; 4821 while (Idx != Worklist.size()) { 4822 Instruction *Dst = Worklist[Idx++]; 4823 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4824 continue; 4825 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4826 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4827 auto *J = cast<Instruction>(U); 4828 return !TheLoop->contains(J) || Worklist.count(J) || 4829 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4830 isScalarUse(J, Src)); 4831 })) { 4832 Worklist.insert(Src); 4833 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4834 } 4835 } 4836 4837 // An induction variable will remain scalar if all users of the induction 4838 // variable and induction variable update remain scalar. 4839 for (auto &Induction : Legal->getInductionVars()) { 4840 auto *Ind = Induction.first; 4841 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4842 4843 // If tail-folding is applied, the primary induction variable will be used 4844 // to feed a vector compare. 4845 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4846 continue; 4847 4848 // Returns true if \p Indvar is a pointer induction that is used directly by 4849 // load/store instruction \p I. 4850 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4851 Instruction *I) { 4852 return Induction.second.getKind() == 4853 InductionDescriptor::IK_PtrInduction && 4854 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4855 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4856 }; 4857 4858 // Determine if all users of the induction variable are scalar after 4859 // vectorization. 4860 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4861 auto *I = cast<Instruction>(U); 4862 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4863 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4864 }); 4865 if (!ScalarInd) 4866 continue; 4867 4868 // Determine if all users of the induction variable update instruction are 4869 // scalar after vectorization. 4870 auto ScalarIndUpdate = 4871 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4872 auto *I = cast<Instruction>(U); 4873 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4874 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4875 }); 4876 if (!ScalarIndUpdate) 4877 continue; 4878 4879 // The induction variable and its update instruction will remain scalar. 4880 Worklist.insert(Ind); 4881 Worklist.insert(IndUpdate); 4882 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4883 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4884 << "\n"); 4885 } 4886 4887 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4888 } 4889 4890 bool LoopVectorizationCostModel::isScalarWithPredication( 4891 Instruction *I, ElementCount VF) const { 4892 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4893 return false; 4894 switch(I->getOpcode()) { 4895 default: 4896 break; 4897 case Instruction::Load: 4898 case Instruction::Store: { 4899 if (!Legal->isMaskRequired(I)) 4900 return false; 4901 auto *Ptr = getLoadStorePointerOperand(I); 4902 auto *Ty = getLoadStoreType(I); 4903 Type *VTy = Ty; 4904 if (VF.isVector()) 4905 VTy = VectorType::get(Ty, VF); 4906 const Align Alignment = getLoadStoreAlignment(I); 4907 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4908 TTI.isLegalMaskedGather(VTy, Alignment)) 4909 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4910 TTI.isLegalMaskedScatter(VTy, Alignment)); 4911 } 4912 case Instruction::UDiv: 4913 case Instruction::SDiv: 4914 case Instruction::SRem: 4915 case Instruction::URem: 4916 return mayDivideByZero(*I); 4917 } 4918 return false; 4919 } 4920 4921 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4922 Instruction *I, ElementCount VF) { 4923 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4924 assert(getWideningDecision(I, VF) == CM_Unknown && 4925 "Decision should not be set yet."); 4926 auto *Group = getInterleavedAccessGroup(I); 4927 assert(Group && "Must have a group."); 4928 4929 // If the instruction's allocated size doesn't equal it's type size, it 4930 // requires padding and will be scalarized. 4931 auto &DL = I->getModule()->getDataLayout(); 4932 auto *ScalarTy = getLoadStoreType(I); 4933 if (hasIrregularType(ScalarTy, DL)) 4934 return false; 4935 4936 // Check if masking is required. 4937 // A Group may need masking for one of two reasons: it resides in a block that 4938 // needs predication, or it was decided to use masking to deal with gaps 4939 // (either a gap at the end of a load-access that may result in a speculative 4940 // load, or any gaps in a store-access). 4941 bool PredicatedAccessRequiresMasking = 4942 blockNeedsPredicationForAnyReason(I->getParent()) && 4943 Legal->isMaskRequired(I); 4944 bool LoadAccessWithGapsRequiresEpilogMasking = 4945 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4946 !isScalarEpilogueAllowed(); 4947 bool StoreAccessWithGapsRequiresMasking = 4948 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4949 if (!PredicatedAccessRequiresMasking && 4950 !LoadAccessWithGapsRequiresEpilogMasking && 4951 !StoreAccessWithGapsRequiresMasking) 4952 return true; 4953 4954 // If masked interleaving is required, we expect that the user/target had 4955 // enabled it, because otherwise it either wouldn't have been created or 4956 // it should have been invalidated by the CostModel. 4957 assert(useMaskedInterleavedAccesses(TTI) && 4958 "Masked interleave-groups for predicated accesses are not enabled."); 4959 4960 if (Group->isReverse()) 4961 return false; 4962 4963 auto *Ty = getLoadStoreType(I); 4964 const Align Alignment = getLoadStoreAlignment(I); 4965 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4966 : TTI.isLegalMaskedStore(Ty, Alignment); 4967 } 4968 4969 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4970 Instruction *I, ElementCount VF) { 4971 // Get and ensure we have a valid memory instruction. 4972 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4973 4974 auto *Ptr = getLoadStorePointerOperand(I); 4975 auto *ScalarTy = getLoadStoreType(I); 4976 4977 // In order to be widened, the pointer should be consecutive, first of all. 4978 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4979 return false; 4980 4981 // If the instruction is a store located in a predicated block, it will be 4982 // scalarized. 4983 if (isScalarWithPredication(I, VF)) 4984 return false; 4985 4986 // If the instruction's allocated size doesn't equal it's type size, it 4987 // requires padding and will be scalarized. 4988 auto &DL = I->getModule()->getDataLayout(); 4989 if (hasIrregularType(ScalarTy, DL)) 4990 return false; 4991 4992 return true; 4993 } 4994 4995 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4996 // We should not collect Uniforms more than once per VF. Right now, 4997 // this function is called from collectUniformsAndScalars(), which 4998 // already does this check. Collecting Uniforms for VF=1 does not make any 4999 // sense. 5000 5001 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5002 "This function should not be visited twice for the same VF"); 5003 5004 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5005 // not analyze again. Uniforms.count(VF) will return 1. 5006 Uniforms[VF].clear(); 5007 5008 // We now know that the loop is vectorizable! 5009 // Collect instructions inside the loop that will remain uniform after 5010 // vectorization. 5011 5012 // Global values, params and instructions outside of current loop are out of 5013 // scope. 5014 auto isOutOfScope = [&](Value *V) -> bool { 5015 Instruction *I = dyn_cast<Instruction>(V); 5016 return (!I || !TheLoop->contains(I)); 5017 }; 5018 5019 // Worklist containing uniform instructions demanding lane 0. 5020 SetVector<Instruction *> Worklist; 5021 BasicBlock *Latch = TheLoop->getLoopLatch(); 5022 5023 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5024 // that are scalar with predication must not be considered uniform after 5025 // vectorization, because that would create an erroneous replicating region 5026 // where only a single instance out of VF should be formed. 5027 // TODO: optimize such seldom cases if found important, see PR40816. 5028 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5029 if (isOutOfScope(I)) { 5030 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5031 << *I << "\n"); 5032 return; 5033 } 5034 if (isScalarWithPredication(I, VF)) { 5035 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5036 << *I << "\n"); 5037 return; 5038 } 5039 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5040 Worklist.insert(I); 5041 }; 5042 5043 // Start with the conditional branch. If the branch condition is an 5044 // instruction contained in the loop that is only used by the branch, it is 5045 // uniform. 5046 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5047 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5048 addToWorklistIfAllowed(Cmp); 5049 5050 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5051 InstWidening WideningDecision = getWideningDecision(I, VF); 5052 assert(WideningDecision != CM_Unknown && 5053 "Widening decision should be ready at this moment"); 5054 5055 // A uniform memory op is itself uniform. We exclude uniform stores 5056 // here as they demand the last lane, not the first one. 5057 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5058 assert(WideningDecision == CM_Scalarize); 5059 return true; 5060 } 5061 5062 return (WideningDecision == CM_Widen || 5063 WideningDecision == CM_Widen_Reverse || 5064 WideningDecision == CM_Interleave); 5065 }; 5066 5067 5068 // Returns true if Ptr is the pointer operand of a memory access instruction 5069 // I, and I is known to not require scalarization. 5070 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5071 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5072 }; 5073 5074 // Holds a list of values which are known to have at least one uniform use. 5075 // Note that there may be other uses which aren't uniform. A "uniform use" 5076 // here is something which only demands lane 0 of the unrolled iterations; 5077 // it does not imply that all lanes produce the same value (e.g. this is not 5078 // the usual meaning of uniform) 5079 SetVector<Value *> HasUniformUse; 5080 5081 // Scan the loop for instructions which are either a) known to have only 5082 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5083 for (auto *BB : TheLoop->blocks()) 5084 for (auto &I : *BB) { 5085 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5086 switch (II->getIntrinsicID()) { 5087 case Intrinsic::sideeffect: 5088 case Intrinsic::experimental_noalias_scope_decl: 5089 case Intrinsic::assume: 5090 case Intrinsic::lifetime_start: 5091 case Intrinsic::lifetime_end: 5092 if (TheLoop->hasLoopInvariantOperands(&I)) 5093 addToWorklistIfAllowed(&I); 5094 break; 5095 default: 5096 break; 5097 } 5098 } 5099 5100 // ExtractValue instructions must be uniform, because the operands are 5101 // known to be loop-invariant. 5102 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5103 assert(isOutOfScope(EVI->getAggregateOperand()) && 5104 "Expected aggregate value to be loop invariant"); 5105 addToWorklistIfAllowed(EVI); 5106 continue; 5107 } 5108 5109 // If there's no pointer operand, there's nothing to do. 5110 auto *Ptr = getLoadStorePointerOperand(&I); 5111 if (!Ptr) 5112 continue; 5113 5114 // A uniform memory op is itself uniform. We exclude uniform stores 5115 // here as they demand the last lane, not the first one. 5116 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5117 addToWorklistIfAllowed(&I); 5118 5119 if (isUniformDecision(&I, VF)) { 5120 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5121 HasUniformUse.insert(Ptr); 5122 } 5123 } 5124 5125 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5126 // demanding) users. Since loops are assumed to be in LCSSA form, this 5127 // disallows uses outside the loop as well. 5128 for (auto *V : HasUniformUse) { 5129 if (isOutOfScope(V)) 5130 continue; 5131 auto *I = cast<Instruction>(V); 5132 auto UsersAreMemAccesses = 5133 llvm::all_of(I->users(), [&](User *U) -> bool { 5134 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5135 }); 5136 if (UsersAreMemAccesses) 5137 addToWorklistIfAllowed(I); 5138 } 5139 5140 // Expand Worklist in topological order: whenever a new instruction 5141 // is added , its users should be already inside Worklist. It ensures 5142 // a uniform instruction will only be used by uniform instructions. 5143 unsigned idx = 0; 5144 while (idx != Worklist.size()) { 5145 Instruction *I = Worklist[idx++]; 5146 5147 for (auto OV : I->operand_values()) { 5148 // isOutOfScope operands cannot be uniform instructions. 5149 if (isOutOfScope(OV)) 5150 continue; 5151 // First order recurrence Phi's should typically be considered 5152 // non-uniform. 5153 auto *OP = dyn_cast<PHINode>(OV); 5154 if (OP && Legal->isFirstOrderRecurrence(OP)) 5155 continue; 5156 // If all the users of the operand are uniform, then add the 5157 // operand into the uniform worklist. 5158 auto *OI = cast<Instruction>(OV); 5159 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5160 auto *J = cast<Instruction>(U); 5161 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5162 })) 5163 addToWorklistIfAllowed(OI); 5164 } 5165 } 5166 5167 // For an instruction to be added into Worklist above, all its users inside 5168 // the loop should also be in Worklist. However, this condition cannot be 5169 // true for phi nodes that form a cyclic dependence. We must process phi 5170 // nodes separately. An induction variable will remain uniform if all users 5171 // of the induction variable and induction variable update remain uniform. 5172 // The code below handles both pointer and non-pointer induction variables. 5173 for (auto &Induction : Legal->getInductionVars()) { 5174 auto *Ind = Induction.first; 5175 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5176 5177 // Determine if all users of the induction variable are uniform after 5178 // vectorization. 5179 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5180 auto *I = cast<Instruction>(U); 5181 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5182 isVectorizedMemAccessUse(I, Ind); 5183 }); 5184 if (!UniformInd) 5185 continue; 5186 5187 // Determine if all users of the induction variable update instruction are 5188 // uniform after vectorization. 5189 auto UniformIndUpdate = 5190 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5191 auto *I = cast<Instruction>(U); 5192 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5193 isVectorizedMemAccessUse(I, IndUpdate); 5194 }); 5195 if (!UniformIndUpdate) 5196 continue; 5197 5198 // The induction variable and its update instruction will remain uniform. 5199 addToWorklistIfAllowed(Ind); 5200 addToWorklistIfAllowed(IndUpdate); 5201 } 5202 5203 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5204 } 5205 5206 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5207 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5208 5209 if (Legal->getRuntimePointerChecking()->Need) { 5210 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5211 "runtime pointer checks needed. Enable vectorization of this " 5212 "loop with '#pragma clang loop vectorize(enable)' when " 5213 "compiling with -Os/-Oz", 5214 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5215 return true; 5216 } 5217 5218 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5219 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5220 "runtime SCEV checks needed. Enable vectorization of this " 5221 "loop with '#pragma clang loop vectorize(enable)' when " 5222 "compiling with -Os/-Oz", 5223 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5224 return true; 5225 } 5226 5227 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5228 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5229 reportVectorizationFailure("Runtime stride check for small trip count", 5230 "runtime stride == 1 checks needed. Enable vectorization of " 5231 "this loop without such check by compiling with -Os/-Oz", 5232 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5233 return true; 5234 } 5235 5236 return false; 5237 } 5238 5239 ElementCount 5240 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5241 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5242 return ElementCount::getScalable(0); 5243 5244 if (Hints->isScalableVectorizationDisabled()) { 5245 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5246 "ScalableVectorizationDisabled", ORE, TheLoop); 5247 return ElementCount::getScalable(0); 5248 } 5249 5250 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5251 5252 auto MaxScalableVF = ElementCount::getScalable( 5253 std::numeric_limits<ElementCount::ScalarTy>::max()); 5254 5255 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5256 // FIXME: While for scalable vectors this is currently sufficient, this should 5257 // be replaced by a more detailed mechanism that filters out specific VFs, 5258 // instead of invalidating vectorization for a whole set of VFs based on the 5259 // MaxVF. 5260 5261 // Disable scalable vectorization if the loop contains unsupported reductions. 5262 if (!canVectorizeReductions(MaxScalableVF)) { 5263 reportVectorizationInfo( 5264 "Scalable vectorization not supported for the reduction " 5265 "operations found in this loop.", 5266 "ScalableVFUnfeasible", ORE, TheLoop); 5267 return ElementCount::getScalable(0); 5268 } 5269 5270 // Disable scalable vectorization if the loop contains any instructions 5271 // with element types not supported for scalable vectors. 5272 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5273 return !Ty->isVoidTy() && 5274 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5275 })) { 5276 reportVectorizationInfo("Scalable vectorization is not supported " 5277 "for all element types found in this loop.", 5278 "ScalableVFUnfeasible", ORE, TheLoop); 5279 return ElementCount::getScalable(0); 5280 } 5281 5282 if (Legal->isSafeForAnyVectorWidth()) 5283 return MaxScalableVF; 5284 5285 // Limit MaxScalableVF by the maximum safe dependence distance. 5286 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5287 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5288 MaxVScale = 5289 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5290 MaxScalableVF = ElementCount::getScalable( 5291 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5292 if (!MaxScalableVF) 5293 reportVectorizationInfo( 5294 "Max legal vector width too small, scalable vectorization " 5295 "unfeasible.", 5296 "ScalableVFUnfeasible", ORE, TheLoop); 5297 5298 return MaxScalableVF; 5299 } 5300 5301 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5302 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5303 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5304 unsigned SmallestType, WidestType; 5305 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5306 5307 // Get the maximum safe dependence distance in bits computed by LAA. 5308 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5309 // the memory accesses that is most restrictive (involved in the smallest 5310 // dependence distance). 5311 unsigned MaxSafeElements = 5312 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5313 5314 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5315 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5316 5317 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5318 << ".\n"); 5319 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5320 << ".\n"); 5321 5322 // First analyze the UserVF, fall back if the UserVF should be ignored. 5323 if (UserVF) { 5324 auto MaxSafeUserVF = 5325 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5326 5327 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5328 // If `VF=vscale x N` is safe, then so is `VF=N` 5329 if (UserVF.isScalable()) 5330 return FixedScalableVFPair( 5331 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5332 else 5333 return UserVF; 5334 } 5335 5336 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5337 5338 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5339 // is better to ignore the hint and let the compiler choose a suitable VF. 5340 if (!UserVF.isScalable()) { 5341 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5342 << " is unsafe, clamping to max safe VF=" 5343 << MaxSafeFixedVF << ".\n"); 5344 ORE->emit([&]() { 5345 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5346 TheLoop->getStartLoc(), 5347 TheLoop->getHeader()) 5348 << "User-specified vectorization factor " 5349 << ore::NV("UserVectorizationFactor", UserVF) 5350 << " is unsafe, clamping to maximum safe vectorization factor " 5351 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5352 }); 5353 return MaxSafeFixedVF; 5354 } 5355 5356 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5357 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5358 << " is ignored because scalable vectors are not " 5359 "available.\n"); 5360 ORE->emit([&]() { 5361 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5362 TheLoop->getStartLoc(), 5363 TheLoop->getHeader()) 5364 << "User-specified vectorization factor " 5365 << ore::NV("UserVectorizationFactor", UserVF) 5366 << " is ignored because the target does not support scalable " 5367 "vectors. The compiler will pick a more suitable value."; 5368 }); 5369 } else { 5370 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5371 << " is unsafe. Ignoring scalable UserVF.\n"); 5372 ORE->emit([&]() { 5373 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5374 TheLoop->getStartLoc(), 5375 TheLoop->getHeader()) 5376 << "User-specified vectorization factor " 5377 << ore::NV("UserVectorizationFactor", UserVF) 5378 << " is unsafe. Ignoring the hint to let the compiler pick a " 5379 "more suitable value."; 5380 }); 5381 } 5382 } 5383 5384 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5385 << " / " << WidestType << " bits.\n"); 5386 5387 FixedScalableVFPair Result(ElementCount::getFixed(1), 5388 ElementCount::getScalable(0)); 5389 if (auto MaxVF = 5390 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5391 MaxSafeFixedVF, FoldTailByMasking)) 5392 Result.FixedVF = MaxVF; 5393 5394 if (auto MaxVF = 5395 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5396 MaxSafeScalableVF, FoldTailByMasking)) 5397 if (MaxVF.isScalable()) { 5398 Result.ScalableVF = MaxVF; 5399 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5400 << "\n"); 5401 } 5402 5403 return Result; 5404 } 5405 5406 FixedScalableVFPair 5407 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5408 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5409 // TODO: It may by useful to do since it's still likely to be dynamically 5410 // uniform if the target can skip. 5411 reportVectorizationFailure( 5412 "Not inserting runtime ptr check for divergent target", 5413 "runtime pointer checks needed. Not enabled for divergent target", 5414 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5415 return FixedScalableVFPair::getNone(); 5416 } 5417 5418 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5419 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5420 if (TC == 1) { 5421 reportVectorizationFailure("Single iteration (non) loop", 5422 "loop trip count is one, irrelevant for vectorization", 5423 "SingleIterationLoop", ORE, TheLoop); 5424 return FixedScalableVFPair::getNone(); 5425 } 5426 5427 switch (ScalarEpilogueStatus) { 5428 case CM_ScalarEpilogueAllowed: 5429 return computeFeasibleMaxVF(TC, UserVF, false); 5430 case CM_ScalarEpilogueNotAllowedUsePredicate: 5431 LLVM_FALLTHROUGH; 5432 case CM_ScalarEpilogueNotNeededUsePredicate: 5433 LLVM_DEBUG( 5434 dbgs() << "LV: vector predicate hint/switch found.\n" 5435 << "LV: Not allowing scalar epilogue, creating predicated " 5436 << "vector loop.\n"); 5437 break; 5438 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5439 // fallthrough as a special case of OptForSize 5440 case CM_ScalarEpilogueNotAllowedOptSize: 5441 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5442 LLVM_DEBUG( 5443 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5444 else 5445 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5446 << "count.\n"); 5447 5448 // Bail if runtime checks are required, which are not good when optimising 5449 // for size. 5450 if (runtimeChecksRequired()) 5451 return FixedScalableVFPair::getNone(); 5452 5453 break; 5454 } 5455 5456 // The only loops we can vectorize without a scalar epilogue, are loops with 5457 // a bottom-test and a single exiting block. We'd have to handle the fact 5458 // that not every instruction executes on the last iteration. This will 5459 // require a lane mask which varies through the vector loop body. (TODO) 5460 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5461 // If there was a tail-folding hint/switch, but we can't fold the tail by 5462 // masking, fallback to a vectorization with a scalar epilogue. 5463 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5464 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5465 "scalar epilogue instead.\n"); 5466 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5467 return computeFeasibleMaxVF(TC, UserVF, false); 5468 } 5469 return FixedScalableVFPair::getNone(); 5470 } 5471 5472 // Now try the tail folding 5473 5474 // Invalidate interleave groups that require an epilogue if we can't mask 5475 // the interleave-group. 5476 if (!useMaskedInterleavedAccesses(TTI)) { 5477 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5478 "No decisions should have been taken at this point"); 5479 // Note: There is no need to invalidate any cost modeling decisions here, as 5480 // non where taken so far. 5481 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5482 } 5483 5484 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5485 // Avoid tail folding if the trip count is known to be a multiple of any VF 5486 // we chose. 5487 // FIXME: The condition below pessimises the case for fixed-width vectors, 5488 // when scalable VFs are also candidates for vectorization. 5489 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5490 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5491 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5492 "MaxFixedVF must be a power of 2"); 5493 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5494 : MaxFixedVF.getFixedValue(); 5495 ScalarEvolution *SE = PSE.getSE(); 5496 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5497 const SCEV *ExitCount = SE->getAddExpr( 5498 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5499 const SCEV *Rem = SE->getURemExpr( 5500 SE->applyLoopGuards(ExitCount, TheLoop), 5501 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5502 if (Rem->isZero()) { 5503 // Accept MaxFixedVF if we do not have a tail. 5504 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5505 return MaxFactors; 5506 } 5507 } 5508 5509 // For scalable vectors don't use tail folding for low trip counts or 5510 // optimizing for code size. We only permit this if the user has explicitly 5511 // requested it. 5512 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5513 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5514 MaxFactors.ScalableVF.isVector()) 5515 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5516 5517 // If we don't know the precise trip count, or if the trip count that we 5518 // found modulo the vectorization factor is not zero, try to fold the tail 5519 // by masking. 5520 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5521 if (Legal->prepareToFoldTailByMasking()) { 5522 FoldTailByMasking = true; 5523 return MaxFactors; 5524 } 5525 5526 // If there was a tail-folding hint/switch, but we can't fold the tail by 5527 // masking, fallback to a vectorization with a scalar epilogue. 5528 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5529 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5530 "scalar epilogue instead.\n"); 5531 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5532 return MaxFactors; 5533 } 5534 5535 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5536 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5537 return FixedScalableVFPair::getNone(); 5538 } 5539 5540 if (TC == 0) { 5541 reportVectorizationFailure( 5542 "Unable to calculate the loop count due to complex control flow", 5543 "unable to calculate the loop count due to complex control flow", 5544 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5545 return FixedScalableVFPair::getNone(); 5546 } 5547 5548 reportVectorizationFailure( 5549 "Cannot optimize for size and vectorize at the same time.", 5550 "cannot optimize for size and vectorize at the same time. " 5551 "Enable vectorization of this loop with '#pragma clang loop " 5552 "vectorize(enable)' when compiling with -Os/-Oz", 5553 "NoTailLoopWithOptForSize", ORE, TheLoop); 5554 return FixedScalableVFPair::getNone(); 5555 } 5556 5557 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5558 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5559 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5560 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5561 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5562 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5563 : TargetTransformInfo::RGK_FixedWidthVector); 5564 5565 // Convenience function to return the minimum of two ElementCounts. 5566 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5567 assert((LHS.isScalable() == RHS.isScalable()) && 5568 "Scalable flags must match"); 5569 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5570 }; 5571 5572 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5573 // Note that both WidestRegister and WidestType may not be a powers of 2. 5574 auto MaxVectorElementCount = ElementCount::get( 5575 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5576 ComputeScalableMaxVF); 5577 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5578 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5579 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5580 5581 if (!MaxVectorElementCount) { 5582 LLVM_DEBUG(dbgs() << "LV: The target has no " 5583 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5584 << " vector registers.\n"); 5585 return ElementCount::getFixed(1); 5586 } 5587 5588 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5589 if (ConstTripCount && 5590 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5591 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5592 // If loop trip count (TC) is known at compile time there is no point in 5593 // choosing VF greater than TC (as done in the loop below). Select maximum 5594 // power of two which doesn't exceed TC. 5595 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5596 // when the TC is less than or equal to the known number of lanes. 5597 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5598 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5599 "exceeding the constant trip count: " 5600 << ClampedConstTripCount << "\n"); 5601 return ElementCount::getFixed(ClampedConstTripCount); 5602 } 5603 5604 ElementCount MaxVF = MaxVectorElementCount; 5605 if (TTI.shouldMaximizeVectorBandwidth() || 5606 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5607 auto MaxVectorElementCountMaxBW = ElementCount::get( 5608 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5609 ComputeScalableMaxVF); 5610 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5611 5612 // Collect all viable vectorization factors larger than the default MaxVF 5613 // (i.e. MaxVectorElementCount). 5614 SmallVector<ElementCount, 8> VFs; 5615 for (ElementCount VS = MaxVectorElementCount * 2; 5616 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5617 VFs.push_back(VS); 5618 5619 // For each VF calculate its register usage. 5620 auto RUs = calculateRegisterUsage(VFs); 5621 5622 // Select the largest VF which doesn't require more registers than existing 5623 // ones. 5624 for (int i = RUs.size() - 1; i >= 0; --i) { 5625 bool Selected = true; 5626 for (auto &pair : RUs[i].MaxLocalUsers) { 5627 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5628 if (pair.second > TargetNumRegisters) 5629 Selected = false; 5630 } 5631 if (Selected) { 5632 MaxVF = VFs[i]; 5633 break; 5634 } 5635 } 5636 if (ElementCount MinVF = 5637 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5638 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5639 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5640 << ") with target's minimum: " << MinVF << '\n'); 5641 MaxVF = MinVF; 5642 } 5643 } 5644 } 5645 return MaxVF; 5646 } 5647 5648 bool LoopVectorizationCostModel::isMoreProfitable( 5649 const VectorizationFactor &A, const VectorizationFactor &B) const { 5650 InstructionCost CostA = A.Cost; 5651 InstructionCost CostB = B.Cost; 5652 5653 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5654 5655 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5656 MaxTripCount) { 5657 // If we are folding the tail and the trip count is a known (possibly small) 5658 // constant, the trip count will be rounded up to an integer number of 5659 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5660 // which we compare directly. When not folding the tail, the total cost will 5661 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5662 // approximated with the per-lane cost below instead of using the tripcount 5663 // as here. 5664 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5665 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5666 return RTCostA < RTCostB; 5667 } 5668 5669 // Improve estimate for the vector width if it is scalable. 5670 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5671 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5672 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5673 if (A.Width.isScalable()) 5674 EstimatedWidthA *= VScale.getValue(); 5675 if (B.Width.isScalable()) 5676 EstimatedWidthB *= VScale.getValue(); 5677 } 5678 5679 // Assume vscale may be larger than 1 (or the value being tuned for), 5680 // so that scalable vectorization is slightly favorable over fixed-width 5681 // vectorization. 5682 if (A.Width.isScalable() && !B.Width.isScalable()) 5683 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5684 5685 // To avoid the need for FP division: 5686 // (CostA / A.Width) < (CostB / B.Width) 5687 // <=> (CostA * B.Width) < (CostB * A.Width) 5688 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5689 } 5690 5691 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5692 const ElementCountSet &VFCandidates) { 5693 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5694 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5695 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5696 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5697 "Expected Scalar VF to be a candidate"); 5698 5699 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5700 VectorizationFactor ChosenFactor = ScalarCost; 5701 5702 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5703 if (ForceVectorization && VFCandidates.size() > 1) { 5704 // Ignore scalar width, because the user explicitly wants vectorization. 5705 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5706 // evaluation. 5707 ChosenFactor.Cost = InstructionCost::getMax(); 5708 } 5709 5710 SmallVector<InstructionVFPair> InvalidCosts; 5711 for (const auto &i : VFCandidates) { 5712 // The cost for scalar VF=1 is already calculated, so ignore it. 5713 if (i.isScalar()) 5714 continue; 5715 5716 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5717 VectorizationFactor Candidate(i, C.first); 5718 5719 #ifndef NDEBUG 5720 unsigned AssumedMinimumVscale = 1; 5721 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5722 AssumedMinimumVscale = VScale.getValue(); 5723 unsigned Width = 5724 Candidate.Width.isScalable() 5725 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5726 : Candidate.Width.getFixedValue(); 5727 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5728 << " costs: " << (Candidate.Cost / Width)); 5729 if (i.isScalable()) 5730 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5731 << AssumedMinimumVscale << ")"); 5732 LLVM_DEBUG(dbgs() << ".\n"); 5733 #endif 5734 5735 if (!C.second && !ForceVectorization) { 5736 LLVM_DEBUG( 5737 dbgs() << "LV: Not considering vector loop of width " << i 5738 << " because it will not generate any vector instructions.\n"); 5739 continue; 5740 } 5741 5742 // If profitable add it to ProfitableVF list. 5743 if (isMoreProfitable(Candidate, ScalarCost)) 5744 ProfitableVFs.push_back(Candidate); 5745 5746 if (isMoreProfitable(Candidate, ChosenFactor)) 5747 ChosenFactor = Candidate; 5748 } 5749 5750 // Emit a report of VFs with invalid costs in the loop. 5751 if (!InvalidCosts.empty()) { 5752 // Group the remarks per instruction, keeping the instruction order from 5753 // InvalidCosts. 5754 std::map<Instruction *, unsigned> Numbering; 5755 unsigned I = 0; 5756 for (auto &Pair : InvalidCosts) 5757 if (!Numbering.count(Pair.first)) 5758 Numbering[Pair.first] = I++; 5759 5760 // Sort the list, first on instruction(number) then on VF. 5761 llvm::sort(InvalidCosts, 5762 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5763 if (Numbering[A.first] != Numbering[B.first]) 5764 return Numbering[A.first] < Numbering[B.first]; 5765 ElementCountComparator ECC; 5766 return ECC(A.second, B.second); 5767 }); 5768 5769 // For a list of ordered instruction-vf pairs: 5770 // [(load, vf1), (load, vf2), (store, vf1)] 5771 // Group the instructions together to emit separate remarks for: 5772 // load (vf1, vf2) 5773 // store (vf1) 5774 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5775 auto Subset = ArrayRef<InstructionVFPair>(); 5776 do { 5777 if (Subset.empty()) 5778 Subset = Tail.take_front(1); 5779 5780 Instruction *I = Subset.front().first; 5781 5782 // If the next instruction is different, or if there are no other pairs, 5783 // emit a remark for the collated subset. e.g. 5784 // [(load, vf1), (load, vf2))] 5785 // to emit: 5786 // remark: invalid costs for 'load' at VF=(vf, vf2) 5787 if (Subset == Tail || Tail[Subset.size()].first != I) { 5788 std::string OutString; 5789 raw_string_ostream OS(OutString); 5790 assert(!Subset.empty() && "Unexpected empty range"); 5791 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5792 for (auto &Pair : Subset) 5793 OS << (Pair.second == Subset.front().second ? "" : ", ") 5794 << Pair.second; 5795 OS << "):"; 5796 if (auto *CI = dyn_cast<CallInst>(I)) 5797 OS << " call to " << CI->getCalledFunction()->getName(); 5798 else 5799 OS << " " << I->getOpcodeName(); 5800 OS.flush(); 5801 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5802 Tail = Tail.drop_front(Subset.size()); 5803 Subset = {}; 5804 } else 5805 // Grow the subset by one element 5806 Subset = Tail.take_front(Subset.size() + 1); 5807 } while (!Tail.empty()); 5808 } 5809 5810 if (!EnableCondStoresVectorization && NumPredStores) { 5811 reportVectorizationFailure("There are conditional stores.", 5812 "store that is conditionally executed prevents vectorization", 5813 "ConditionalStore", ORE, TheLoop); 5814 ChosenFactor = ScalarCost; 5815 } 5816 5817 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5818 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5819 << "LV: Vectorization seems to be not beneficial, " 5820 << "but was forced by a user.\n"); 5821 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5822 return ChosenFactor; 5823 } 5824 5825 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5826 const Loop &L, ElementCount VF) const { 5827 // Cross iteration phis such as reductions need special handling and are 5828 // currently unsupported. 5829 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5830 return Legal->isFirstOrderRecurrence(&Phi) || 5831 Legal->isReductionVariable(&Phi); 5832 })) 5833 return false; 5834 5835 // Phis with uses outside of the loop require special handling and are 5836 // currently unsupported. 5837 for (auto &Entry : Legal->getInductionVars()) { 5838 // Look for uses of the value of the induction at the last iteration. 5839 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5840 for (User *U : PostInc->users()) 5841 if (!L.contains(cast<Instruction>(U))) 5842 return false; 5843 // Look for uses of penultimate value of the induction. 5844 for (User *U : Entry.first->users()) 5845 if (!L.contains(cast<Instruction>(U))) 5846 return false; 5847 } 5848 5849 // Induction variables that are widened require special handling that is 5850 // currently not supported. 5851 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5852 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5853 this->isProfitableToScalarize(Entry.first, VF)); 5854 })) 5855 return false; 5856 5857 // Epilogue vectorization code has not been auditted to ensure it handles 5858 // non-latch exits properly. It may be fine, but it needs auditted and 5859 // tested. 5860 if (L.getExitingBlock() != L.getLoopLatch()) 5861 return false; 5862 5863 return true; 5864 } 5865 5866 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5867 const ElementCount VF) const { 5868 // FIXME: We need a much better cost-model to take different parameters such 5869 // as register pressure, code size increase and cost of extra branches into 5870 // account. For now we apply a very crude heuristic and only consider loops 5871 // with vectorization factors larger than a certain value. 5872 // We also consider epilogue vectorization unprofitable for targets that don't 5873 // consider interleaving beneficial (eg. MVE). 5874 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5875 return false; 5876 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5877 return true; 5878 return false; 5879 } 5880 5881 VectorizationFactor 5882 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5883 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5884 VectorizationFactor Result = VectorizationFactor::Disabled(); 5885 if (!EnableEpilogueVectorization) { 5886 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5887 return Result; 5888 } 5889 5890 if (!isScalarEpilogueAllowed()) { 5891 LLVM_DEBUG( 5892 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5893 "allowed.\n";); 5894 return Result; 5895 } 5896 5897 // Not really a cost consideration, but check for unsupported cases here to 5898 // simplify the logic. 5899 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5900 LLVM_DEBUG( 5901 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5902 "not a supported candidate.\n";); 5903 return Result; 5904 } 5905 5906 if (EpilogueVectorizationForceVF > 1) { 5907 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5908 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5909 if (LVP.hasPlanWithVF(ForcedEC)) 5910 return {ForcedEC, 0}; 5911 else { 5912 LLVM_DEBUG( 5913 dbgs() 5914 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5915 return Result; 5916 } 5917 } 5918 5919 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5920 TheLoop->getHeader()->getParent()->hasMinSize()) { 5921 LLVM_DEBUG( 5922 dbgs() 5923 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5924 return Result; 5925 } 5926 5927 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5928 if (MainLoopVF.isScalable()) 5929 LLVM_DEBUG( 5930 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 5931 "yet supported. Converting to fixed-width (VF=" 5932 << FixedMainLoopVF << ") instead\n"); 5933 5934 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 5935 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5936 "this loop\n"); 5937 return Result; 5938 } 5939 5940 for (auto &NextVF : ProfitableVFs) 5941 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 5942 (Result.Width.getFixedValue() == 1 || 5943 isMoreProfitable(NextVF, Result)) && 5944 LVP.hasPlanWithVF(NextVF.Width)) 5945 Result = NextVF; 5946 5947 if (Result != VectorizationFactor::Disabled()) 5948 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5949 << Result.Width.getFixedValue() << "\n";); 5950 return Result; 5951 } 5952 5953 std::pair<unsigned, unsigned> 5954 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5955 unsigned MinWidth = -1U; 5956 unsigned MaxWidth = 8; 5957 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5958 // For in-loop reductions, no element types are added to ElementTypesInLoop 5959 // if there are no loads/stores in the loop. In this case, check through the 5960 // reduction variables to determine the maximum width. 5961 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5962 // Reset MaxWidth so that we can find the smallest type used by recurrences 5963 // in the loop. 5964 MaxWidth = -1U; 5965 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5966 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5967 // When finding the min width used by the recurrence we need to account 5968 // for casts on the input operands of the recurrence. 5969 MaxWidth = std::min<unsigned>( 5970 MaxWidth, std::min<unsigned>( 5971 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5972 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5973 } 5974 } else { 5975 for (Type *T : ElementTypesInLoop) { 5976 MinWidth = std::min<unsigned>( 5977 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5978 MaxWidth = std::max<unsigned>( 5979 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5980 } 5981 } 5982 return {MinWidth, MaxWidth}; 5983 } 5984 5985 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5986 ElementTypesInLoop.clear(); 5987 // For each block. 5988 for (BasicBlock *BB : TheLoop->blocks()) { 5989 // For each instruction in the loop. 5990 for (Instruction &I : BB->instructionsWithoutDebug()) { 5991 Type *T = I.getType(); 5992 5993 // Skip ignored values. 5994 if (ValuesToIgnore.count(&I)) 5995 continue; 5996 5997 // Only examine Loads, Stores and PHINodes. 5998 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5999 continue; 6000 6001 // Examine PHI nodes that are reduction variables. Update the type to 6002 // account for the recurrence type. 6003 if (auto *PN = dyn_cast<PHINode>(&I)) { 6004 if (!Legal->isReductionVariable(PN)) 6005 continue; 6006 const RecurrenceDescriptor &RdxDesc = 6007 Legal->getReductionVars().find(PN)->second; 6008 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6009 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6010 RdxDesc.getRecurrenceType(), 6011 TargetTransformInfo::ReductionFlags())) 6012 continue; 6013 T = RdxDesc.getRecurrenceType(); 6014 } 6015 6016 // Examine the stored values. 6017 if (auto *ST = dyn_cast<StoreInst>(&I)) 6018 T = ST->getValueOperand()->getType(); 6019 6020 assert(T->isSized() && 6021 "Expected the load/store/recurrence type to be sized"); 6022 6023 ElementTypesInLoop.insert(T); 6024 } 6025 } 6026 } 6027 6028 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6029 unsigned LoopCost) { 6030 // -- The interleave heuristics -- 6031 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6032 // There are many micro-architectural considerations that we can't predict 6033 // at this level. For example, frontend pressure (on decode or fetch) due to 6034 // code size, or the number and capabilities of the execution ports. 6035 // 6036 // We use the following heuristics to select the interleave count: 6037 // 1. If the code has reductions, then we interleave to break the cross 6038 // iteration dependency. 6039 // 2. If the loop is really small, then we interleave to reduce the loop 6040 // overhead. 6041 // 3. We don't interleave if we think that we will spill registers to memory 6042 // due to the increased register pressure. 6043 6044 if (!isScalarEpilogueAllowed()) 6045 return 1; 6046 6047 // We used the distance for the interleave count. 6048 if (Legal->getMaxSafeDepDistBytes() != -1U) 6049 return 1; 6050 6051 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6052 const bool HasReductions = !Legal->getReductionVars().empty(); 6053 // Do not interleave loops with a relatively small known or estimated trip 6054 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6055 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6056 // because with the above conditions interleaving can expose ILP and break 6057 // cross iteration dependences for reductions. 6058 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6059 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6060 return 1; 6061 6062 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6063 // We divide by these constants so assume that we have at least one 6064 // instruction that uses at least one register. 6065 for (auto& pair : R.MaxLocalUsers) { 6066 pair.second = std::max(pair.second, 1U); 6067 } 6068 6069 // We calculate the interleave count using the following formula. 6070 // Subtract the number of loop invariants from the number of available 6071 // registers. These registers are used by all of the interleaved instances. 6072 // Next, divide the remaining registers by the number of registers that is 6073 // required by the loop, in order to estimate how many parallel instances 6074 // fit without causing spills. All of this is rounded down if necessary to be 6075 // a power of two. We want power of two interleave count to simplify any 6076 // addressing operations or alignment considerations. 6077 // We also want power of two interleave counts to ensure that the induction 6078 // variable of the vector loop wraps to zero, when tail is folded by masking; 6079 // this currently happens when OptForSize, in which case IC is set to 1 above. 6080 unsigned IC = UINT_MAX; 6081 6082 for (auto& pair : R.MaxLocalUsers) { 6083 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6084 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6085 << " registers of " 6086 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6087 if (VF.isScalar()) { 6088 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6089 TargetNumRegisters = ForceTargetNumScalarRegs; 6090 } else { 6091 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6092 TargetNumRegisters = ForceTargetNumVectorRegs; 6093 } 6094 unsigned MaxLocalUsers = pair.second; 6095 unsigned LoopInvariantRegs = 0; 6096 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6097 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6098 6099 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6100 // Don't count the induction variable as interleaved. 6101 if (EnableIndVarRegisterHeur) { 6102 TmpIC = 6103 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6104 std::max(1U, (MaxLocalUsers - 1))); 6105 } 6106 6107 IC = std::min(IC, TmpIC); 6108 } 6109 6110 // Clamp the interleave ranges to reasonable counts. 6111 unsigned MaxInterleaveCount = 6112 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6113 6114 // Check if the user has overridden the max. 6115 if (VF.isScalar()) { 6116 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6117 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6118 } else { 6119 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6120 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6121 } 6122 6123 // If trip count is known or estimated compile time constant, limit the 6124 // interleave count to be less than the trip count divided by VF, provided it 6125 // is at least 1. 6126 // 6127 // For scalable vectors we can't know if interleaving is beneficial. It may 6128 // not be beneficial for small loops if none of the lanes in the second vector 6129 // iterations is enabled. However, for larger loops, there is likely to be a 6130 // similar benefit as for fixed-width vectors. For now, we choose to leave 6131 // the InterleaveCount as if vscale is '1', although if some information about 6132 // the vector is known (e.g. min vector size), we can make a better decision. 6133 if (BestKnownTC) { 6134 MaxInterleaveCount = 6135 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6136 // Make sure MaxInterleaveCount is greater than 0. 6137 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6138 } 6139 6140 assert(MaxInterleaveCount > 0 && 6141 "Maximum interleave count must be greater than 0"); 6142 6143 // Clamp the calculated IC to be between the 1 and the max interleave count 6144 // that the target and trip count allows. 6145 if (IC > MaxInterleaveCount) 6146 IC = MaxInterleaveCount; 6147 else 6148 // Make sure IC is greater than 0. 6149 IC = std::max(1u, IC); 6150 6151 assert(IC > 0 && "Interleave count must be greater than 0."); 6152 6153 // If we did not calculate the cost for VF (because the user selected the VF) 6154 // then we calculate the cost of VF here. 6155 if (LoopCost == 0) { 6156 InstructionCost C = expectedCost(VF).first; 6157 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6158 LoopCost = *C.getValue(); 6159 } 6160 6161 assert(LoopCost && "Non-zero loop cost expected"); 6162 6163 // Interleave if we vectorized this loop and there is a reduction that could 6164 // benefit from interleaving. 6165 if (VF.isVector() && HasReductions) { 6166 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6167 return IC; 6168 } 6169 6170 // Note that if we've already vectorized the loop we will have done the 6171 // runtime check and so interleaving won't require further checks. 6172 bool InterleavingRequiresRuntimePointerCheck = 6173 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6174 6175 // We want to interleave small loops in order to reduce the loop overhead and 6176 // potentially expose ILP opportunities. 6177 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6178 << "LV: IC is " << IC << '\n' 6179 << "LV: VF is " << VF << '\n'); 6180 const bool AggressivelyInterleaveReductions = 6181 TTI.enableAggressiveInterleaving(HasReductions); 6182 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6183 // We assume that the cost overhead is 1 and we use the cost model 6184 // to estimate the cost of the loop and interleave until the cost of the 6185 // loop overhead is about 5% of the cost of the loop. 6186 unsigned SmallIC = 6187 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6188 6189 // Interleave until store/load ports (estimated by max interleave count) are 6190 // saturated. 6191 unsigned NumStores = Legal->getNumStores(); 6192 unsigned NumLoads = Legal->getNumLoads(); 6193 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6194 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6195 6196 // There is little point in interleaving for reductions containing selects 6197 // and compares when VF=1 since it may just create more overhead than it's 6198 // worth for loops with small trip counts. This is because we still have to 6199 // do the final reduction after the loop. 6200 bool HasSelectCmpReductions = 6201 HasReductions && 6202 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6203 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6204 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6205 RdxDesc.getRecurrenceKind()); 6206 }); 6207 if (HasSelectCmpReductions) { 6208 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6209 return 1; 6210 } 6211 6212 // If we have a scalar reduction (vector reductions are already dealt with 6213 // by this point), we can increase the critical path length if the loop 6214 // we're interleaving is inside another loop. For tree-wise reductions 6215 // set the limit to 2, and for ordered reductions it's best to disable 6216 // interleaving entirely. 6217 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6218 bool HasOrderedReductions = 6219 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6220 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6221 return RdxDesc.isOrdered(); 6222 }); 6223 if (HasOrderedReductions) { 6224 LLVM_DEBUG( 6225 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6226 return 1; 6227 } 6228 6229 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6230 SmallIC = std::min(SmallIC, F); 6231 StoresIC = std::min(StoresIC, F); 6232 LoadsIC = std::min(LoadsIC, F); 6233 } 6234 6235 if (EnableLoadStoreRuntimeInterleave && 6236 std::max(StoresIC, LoadsIC) > SmallIC) { 6237 LLVM_DEBUG( 6238 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6239 return std::max(StoresIC, LoadsIC); 6240 } 6241 6242 // If there are scalar reductions and TTI has enabled aggressive 6243 // interleaving for reductions, we will interleave to expose ILP. 6244 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6245 AggressivelyInterleaveReductions) { 6246 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6247 // Interleave no less than SmallIC but not as aggressive as the normal IC 6248 // to satisfy the rare situation when resources are too limited. 6249 return std::max(IC / 2, SmallIC); 6250 } else { 6251 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6252 return SmallIC; 6253 } 6254 } 6255 6256 // Interleave if this is a large loop (small loops are already dealt with by 6257 // this point) that could benefit from interleaving. 6258 if (AggressivelyInterleaveReductions) { 6259 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6260 return IC; 6261 } 6262 6263 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6264 return 1; 6265 } 6266 6267 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6268 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6269 // This function calculates the register usage by measuring the highest number 6270 // of values that are alive at a single location. Obviously, this is a very 6271 // rough estimation. We scan the loop in a topological order in order and 6272 // assign a number to each instruction. We use RPO to ensure that defs are 6273 // met before their users. We assume that each instruction that has in-loop 6274 // users starts an interval. We record every time that an in-loop value is 6275 // used, so we have a list of the first and last occurrences of each 6276 // instruction. Next, we transpose this data structure into a multi map that 6277 // holds the list of intervals that *end* at a specific location. This multi 6278 // map allows us to perform a linear search. We scan the instructions linearly 6279 // and record each time that a new interval starts, by placing it in a set. 6280 // If we find this value in the multi-map then we remove it from the set. 6281 // The max register usage is the maximum size of the set. 6282 // We also search for instructions that are defined outside the loop, but are 6283 // used inside the loop. We need this number separately from the max-interval 6284 // usage number because when we unroll, loop-invariant values do not take 6285 // more register. 6286 LoopBlocksDFS DFS(TheLoop); 6287 DFS.perform(LI); 6288 6289 RegisterUsage RU; 6290 6291 // Each 'key' in the map opens a new interval. The values 6292 // of the map are the index of the 'last seen' usage of the 6293 // instruction that is the key. 6294 using IntervalMap = DenseMap<Instruction *, unsigned>; 6295 6296 // Maps instruction to its index. 6297 SmallVector<Instruction *, 64> IdxToInstr; 6298 // Marks the end of each interval. 6299 IntervalMap EndPoint; 6300 // Saves the list of instruction indices that are used in the loop. 6301 SmallPtrSet<Instruction *, 8> Ends; 6302 // Saves the list of values that are used in the loop but are 6303 // defined outside the loop, such as arguments and constants. 6304 SmallPtrSet<Value *, 8> LoopInvariants; 6305 6306 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6307 for (Instruction &I : BB->instructionsWithoutDebug()) { 6308 IdxToInstr.push_back(&I); 6309 6310 // Save the end location of each USE. 6311 for (Value *U : I.operands()) { 6312 auto *Instr = dyn_cast<Instruction>(U); 6313 6314 // Ignore non-instruction values such as arguments, constants, etc. 6315 if (!Instr) 6316 continue; 6317 6318 // If this instruction is outside the loop then record it and continue. 6319 if (!TheLoop->contains(Instr)) { 6320 LoopInvariants.insert(Instr); 6321 continue; 6322 } 6323 6324 // Overwrite previous end points. 6325 EndPoint[Instr] = IdxToInstr.size(); 6326 Ends.insert(Instr); 6327 } 6328 } 6329 } 6330 6331 // Saves the list of intervals that end with the index in 'key'. 6332 using InstrList = SmallVector<Instruction *, 2>; 6333 DenseMap<unsigned, InstrList> TransposeEnds; 6334 6335 // Transpose the EndPoints to a list of values that end at each index. 6336 for (auto &Interval : EndPoint) 6337 TransposeEnds[Interval.second].push_back(Interval.first); 6338 6339 SmallPtrSet<Instruction *, 8> OpenIntervals; 6340 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6341 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6342 6343 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6344 6345 // A lambda that gets the register usage for the given type and VF. 6346 const auto &TTICapture = TTI; 6347 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6348 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6349 return 0; 6350 InstructionCost::CostType RegUsage = 6351 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6352 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6353 "Nonsensical values for register usage."); 6354 return RegUsage; 6355 }; 6356 6357 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6358 Instruction *I = IdxToInstr[i]; 6359 6360 // Remove all of the instructions that end at this location. 6361 InstrList &List = TransposeEnds[i]; 6362 for (Instruction *ToRemove : List) 6363 OpenIntervals.erase(ToRemove); 6364 6365 // Ignore instructions that are never used within the loop. 6366 if (!Ends.count(I)) 6367 continue; 6368 6369 // Skip ignored values. 6370 if (ValuesToIgnore.count(I)) 6371 continue; 6372 6373 // For each VF find the maximum usage of registers. 6374 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6375 // Count the number of live intervals. 6376 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6377 6378 if (VFs[j].isScalar()) { 6379 for (auto Inst : OpenIntervals) { 6380 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6381 if (RegUsage.find(ClassID) == RegUsage.end()) 6382 RegUsage[ClassID] = 1; 6383 else 6384 RegUsage[ClassID] += 1; 6385 } 6386 } else { 6387 collectUniformsAndScalars(VFs[j]); 6388 for (auto Inst : OpenIntervals) { 6389 // Skip ignored values for VF > 1. 6390 if (VecValuesToIgnore.count(Inst)) 6391 continue; 6392 if (isScalarAfterVectorization(Inst, VFs[j])) { 6393 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6394 if (RegUsage.find(ClassID) == RegUsage.end()) 6395 RegUsage[ClassID] = 1; 6396 else 6397 RegUsage[ClassID] += 1; 6398 } else { 6399 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6400 if (RegUsage.find(ClassID) == RegUsage.end()) 6401 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6402 else 6403 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6404 } 6405 } 6406 } 6407 6408 for (auto& pair : RegUsage) { 6409 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6410 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6411 else 6412 MaxUsages[j][pair.first] = pair.second; 6413 } 6414 } 6415 6416 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6417 << OpenIntervals.size() << '\n'); 6418 6419 // Add the current instruction to the list of open intervals. 6420 OpenIntervals.insert(I); 6421 } 6422 6423 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6424 SmallMapVector<unsigned, unsigned, 4> Invariant; 6425 6426 for (auto Inst : LoopInvariants) { 6427 unsigned Usage = 6428 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6429 unsigned ClassID = 6430 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6431 if (Invariant.find(ClassID) == Invariant.end()) 6432 Invariant[ClassID] = Usage; 6433 else 6434 Invariant[ClassID] += Usage; 6435 } 6436 6437 LLVM_DEBUG({ 6438 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6439 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6440 << " item\n"; 6441 for (const auto &pair : MaxUsages[i]) { 6442 dbgs() << "LV(REG): RegisterClass: " 6443 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6444 << " registers\n"; 6445 } 6446 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6447 << " item\n"; 6448 for (const auto &pair : Invariant) { 6449 dbgs() << "LV(REG): RegisterClass: " 6450 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6451 << " registers\n"; 6452 } 6453 }); 6454 6455 RU.LoopInvariantRegs = Invariant; 6456 RU.MaxLocalUsers = MaxUsages[i]; 6457 RUs[i] = RU; 6458 } 6459 6460 return RUs; 6461 } 6462 6463 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6464 ElementCount VF) { 6465 // TODO: Cost model for emulated masked load/store is completely 6466 // broken. This hack guides the cost model to use an artificially 6467 // high enough value to practically disable vectorization with such 6468 // operations, except where previously deployed legality hack allowed 6469 // using very low cost values. This is to avoid regressions coming simply 6470 // from moving "masked load/store" check from legality to cost model. 6471 // Masked Load/Gather emulation was previously never allowed. 6472 // Limited number of Masked Store/Scatter emulation was allowed. 6473 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6474 return isa<LoadInst>(I) || 6475 (isa<StoreInst>(I) && 6476 NumPredStores > NumberOfStoresToPredicate); 6477 } 6478 6479 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6480 // If we aren't vectorizing the loop, or if we've already collected the 6481 // instructions to scalarize, there's nothing to do. Collection may already 6482 // have occurred if we have a user-selected VF and are now computing the 6483 // expected cost for interleaving. 6484 if (VF.isScalar() || VF.isZero() || 6485 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6486 return; 6487 6488 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6489 // not profitable to scalarize any instructions, the presence of VF in the 6490 // map will indicate that we've analyzed it already. 6491 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6492 6493 // Find all the instructions that are scalar with predication in the loop and 6494 // determine if it would be better to not if-convert the blocks they are in. 6495 // If so, we also record the instructions to scalarize. 6496 for (BasicBlock *BB : TheLoop->blocks()) { 6497 if (!blockNeedsPredicationForAnyReason(BB)) 6498 continue; 6499 for (Instruction &I : *BB) 6500 if (isScalarWithPredication(&I, VF)) { 6501 ScalarCostsTy ScalarCosts; 6502 // Do not apply discount if scalable, because that would lead to 6503 // invalid scalarization costs. 6504 // Do not apply discount logic if hacked cost is needed 6505 // for emulated masked memrefs. 6506 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6507 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6508 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6509 // Remember that BB will remain after vectorization. 6510 PredicatedBBsAfterVectorization.insert(BB); 6511 } 6512 } 6513 } 6514 6515 int LoopVectorizationCostModel::computePredInstDiscount( 6516 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6517 assert(!isUniformAfterVectorization(PredInst, VF) && 6518 "Instruction marked uniform-after-vectorization will be predicated"); 6519 6520 // Initialize the discount to zero, meaning that the scalar version and the 6521 // vector version cost the same. 6522 InstructionCost Discount = 0; 6523 6524 // Holds instructions to analyze. The instructions we visit are mapped in 6525 // ScalarCosts. Those instructions are the ones that would be scalarized if 6526 // we find that the scalar version costs less. 6527 SmallVector<Instruction *, 8> Worklist; 6528 6529 // Returns true if the given instruction can be scalarized. 6530 auto canBeScalarized = [&](Instruction *I) -> bool { 6531 // We only attempt to scalarize instructions forming a single-use chain 6532 // from the original predicated block that would otherwise be vectorized. 6533 // Although not strictly necessary, we give up on instructions we know will 6534 // already be scalar to avoid traversing chains that are unlikely to be 6535 // beneficial. 6536 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6537 isScalarAfterVectorization(I, VF)) 6538 return false; 6539 6540 // If the instruction is scalar with predication, it will be analyzed 6541 // separately. We ignore it within the context of PredInst. 6542 if (isScalarWithPredication(I, VF)) 6543 return false; 6544 6545 // If any of the instruction's operands are uniform after vectorization, 6546 // the instruction cannot be scalarized. This prevents, for example, a 6547 // masked load from being scalarized. 6548 // 6549 // We assume we will only emit a value for lane zero of an instruction 6550 // marked uniform after vectorization, rather than VF identical values. 6551 // Thus, if we scalarize an instruction that uses a uniform, we would 6552 // create uses of values corresponding to the lanes we aren't emitting code 6553 // for. This behavior can be changed by allowing getScalarValue to clone 6554 // the lane zero values for uniforms rather than asserting. 6555 for (Use &U : I->operands()) 6556 if (auto *J = dyn_cast<Instruction>(U.get())) 6557 if (isUniformAfterVectorization(J, VF)) 6558 return false; 6559 6560 // Otherwise, we can scalarize the instruction. 6561 return true; 6562 }; 6563 6564 // Compute the expected cost discount from scalarizing the entire expression 6565 // feeding the predicated instruction. We currently only consider expressions 6566 // that are single-use instruction chains. 6567 Worklist.push_back(PredInst); 6568 while (!Worklist.empty()) { 6569 Instruction *I = Worklist.pop_back_val(); 6570 6571 // If we've already analyzed the instruction, there's nothing to do. 6572 if (ScalarCosts.find(I) != ScalarCosts.end()) 6573 continue; 6574 6575 // Compute the cost of the vector instruction. Note that this cost already 6576 // includes the scalarization overhead of the predicated instruction. 6577 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6578 6579 // Compute the cost of the scalarized instruction. This cost is the cost of 6580 // the instruction as if it wasn't if-converted and instead remained in the 6581 // predicated block. We will scale this cost by block probability after 6582 // computing the scalarization overhead. 6583 InstructionCost ScalarCost = 6584 VF.getFixedValue() * 6585 getInstructionCost(I, ElementCount::getFixed(1)).first; 6586 6587 // Compute the scalarization overhead of needed insertelement instructions 6588 // and phi nodes. 6589 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6590 ScalarCost += TTI.getScalarizationOverhead( 6591 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6592 APInt::getAllOnes(VF.getFixedValue()), true, false); 6593 ScalarCost += 6594 VF.getFixedValue() * 6595 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6596 } 6597 6598 // Compute the scalarization overhead of needed extractelement 6599 // instructions. For each of the instruction's operands, if the operand can 6600 // be scalarized, add it to the worklist; otherwise, account for the 6601 // overhead. 6602 for (Use &U : I->operands()) 6603 if (auto *J = dyn_cast<Instruction>(U.get())) { 6604 assert(VectorType::isValidElementType(J->getType()) && 6605 "Instruction has non-scalar type"); 6606 if (canBeScalarized(J)) 6607 Worklist.push_back(J); 6608 else if (needsExtract(J, VF)) { 6609 ScalarCost += TTI.getScalarizationOverhead( 6610 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6611 APInt::getAllOnes(VF.getFixedValue()), false, true); 6612 } 6613 } 6614 6615 // Scale the total scalar cost by block probability. 6616 ScalarCost /= getReciprocalPredBlockProb(); 6617 6618 // Compute the discount. A non-negative discount means the vector version 6619 // of the instruction costs more, and scalarizing would be beneficial. 6620 Discount += VectorCost - ScalarCost; 6621 ScalarCosts[I] = ScalarCost; 6622 } 6623 6624 return *Discount.getValue(); 6625 } 6626 6627 LoopVectorizationCostModel::VectorizationCostTy 6628 LoopVectorizationCostModel::expectedCost( 6629 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6630 VectorizationCostTy Cost; 6631 6632 // For each block. 6633 for (BasicBlock *BB : TheLoop->blocks()) { 6634 VectorizationCostTy BlockCost; 6635 6636 // For each instruction in the old loop. 6637 for (Instruction &I : BB->instructionsWithoutDebug()) { 6638 // Skip ignored values. 6639 if (ValuesToIgnore.count(&I) || 6640 (VF.isVector() && VecValuesToIgnore.count(&I))) 6641 continue; 6642 6643 VectorizationCostTy C = getInstructionCost(&I, VF); 6644 6645 // Check if we should override the cost. 6646 if (C.first.isValid() && 6647 ForceTargetInstructionCost.getNumOccurrences() > 0) 6648 C.first = InstructionCost(ForceTargetInstructionCost); 6649 6650 // Keep a list of instructions with invalid costs. 6651 if (Invalid && !C.first.isValid()) 6652 Invalid->emplace_back(&I, VF); 6653 6654 BlockCost.first += C.first; 6655 BlockCost.second |= C.second; 6656 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6657 << " for VF " << VF << " For instruction: " << I 6658 << '\n'); 6659 } 6660 6661 // If we are vectorizing a predicated block, it will have been 6662 // if-converted. This means that the block's instructions (aside from 6663 // stores and instructions that may divide by zero) will now be 6664 // unconditionally executed. For the scalar case, we may not always execute 6665 // the predicated block, if it is an if-else block. Thus, scale the block's 6666 // cost by the probability of executing it. blockNeedsPredication from 6667 // Legal is used so as to not include all blocks in tail folded loops. 6668 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6669 BlockCost.first /= getReciprocalPredBlockProb(); 6670 6671 Cost.first += BlockCost.first; 6672 Cost.second |= BlockCost.second; 6673 } 6674 6675 return Cost; 6676 } 6677 6678 /// Gets Address Access SCEV after verifying that the access pattern 6679 /// is loop invariant except the induction variable dependence. 6680 /// 6681 /// This SCEV can be sent to the Target in order to estimate the address 6682 /// calculation cost. 6683 static const SCEV *getAddressAccessSCEV( 6684 Value *Ptr, 6685 LoopVectorizationLegality *Legal, 6686 PredicatedScalarEvolution &PSE, 6687 const Loop *TheLoop) { 6688 6689 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6690 if (!Gep) 6691 return nullptr; 6692 6693 // We are looking for a gep with all loop invariant indices except for one 6694 // which should be an induction variable. 6695 auto SE = PSE.getSE(); 6696 unsigned NumOperands = Gep->getNumOperands(); 6697 for (unsigned i = 1; i < NumOperands; ++i) { 6698 Value *Opd = Gep->getOperand(i); 6699 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6700 !Legal->isInductionVariable(Opd)) 6701 return nullptr; 6702 } 6703 6704 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6705 return PSE.getSCEV(Ptr); 6706 } 6707 6708 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6709 return Legal->hasStride(I->getOperand(0)) || 6710 Legal->hasStride(I->getOperand(1)); 6711 } 6712 6713 InstructionCost 6714 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6715 ElementCount VF) { 6716 assert(VF.isVector() && 6717 "Scalarization cost of instruction implies vectorization."); 6718 if (VF.isScalable()) 6719 return InstructionCost::getInvalid(); 6720 6721 Type *ValTy = getLoadStoreType(I); 6722 auto SE = PSE.getSE(); 6723 6724 unsigned AS = getLoadStoreAddressSpace(I); 6725 Value *Ptr = getLoadStorePointerOperand(I); 6726 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6727 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6728 // that it is being called from this specific place. 6729 6730 // Figure out whether the access is strided and get the stride value 6731 // if it's known in compile time 6732 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6733 6734 // Get the cost of the scalar memory instruction and address computation. 6735 InstructionCost Cost = 6736 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6737 6738 // Don't pass *I here, since it is scalar but will actually be part of a 6739 // vectorized loop where the user of it is a vectorized instruction. 6740 const Align Alignment = getLoadStoreAlignment(I); 6741 Cost += VF.getKnownMinValue() * 6742 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6743 AS, TTI::TCK_RecipThroughput); 6744 6745 // Get the overhead of the extractelement and insertelement instructions 6746 // we might create due to scalarization. 6747 Cost += getScalarizationOverhead(I, VF); 6748 6749 // If we have a predicated load/store, it will need extra i1 extracts and 6750 // conditional branches, but may not be executed for each vector lane. Scale 6751 // the cost by the probability of executing the predicated block. 6752 if (isPredicatedInst(I, VF)) { 6753 Cost /= getReciprocalPredBlockProb(); 6754 6755 // Add the cost of an i1 extract and a branch 6756 auto *Vec_i1Ty = 6757 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6758 Cost += TTI.getScalarizationOverhead( 6759 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6760 /*Insert=*/false, /*Extract=*/true); 6761 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6762 6763 if (useEmulatedMaskMemRefHack(I, VF)) 6764 // Artificially setting to a high enough value to practically disable 6765 // vectorization with such operations. 6766 Cost = 3000000; 6767 } 6768 6769 return Cost; 6770 } 6771 6772 InstructionCost 6773 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6774 ElementCount VF) { 6775 Type *ValTy = getLoadStoreType(I); 6776 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6777 Value *Ptr = getLoadStorePointerOperand(I); 6778 unsigned AS = getLoadStoreAddressSpace(I); 6779 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6780 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6781 6782 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6783 "Stride should be 1 or -1 for consecutive memory access"); 6784 const Align Alignment = getLoadStoreAlignment(I); 6785 InstructionCost Cost = 0; 6786 if (Legal->isMaskRequired(I)) 6787 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6788 CostKind); 6789 else 6790 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6791 CostKind, I); 6792 6793 bool Reverse = ConsecutiveStride < 0; 6794 if (Reverse) 6795 Cost += 6796 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6797 return Cost; 6798 } 6799 6800 InstructionCost 6801 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6802 ElementCount VF) { 6803 assert(Legal->isUniformMemOp(*I)); 6804 6805 Type *ValTy = getLoadStoreType(I); 6806 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6807 const Align Alignment = getLoadStoreAlignment(I); 6808 unsigned AS = getLoadStoreAddressSpace(I); 6809 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6810 if (isa<LoadInst>(I)) { 6811 return TTI.getAddressComputationCost(ValTy) + 6812 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6813 CostKind) + 6814 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6815 } 6816 StoreInst *SI = cast<StoreInst>(I); 6817 6818 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6819 return TTI.getAddressComputationCost(ValTy) + 6820 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6821 CostKind) + 6822 (isLoopInvariantStoreValue 6823 ? 0 6824 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6825 VF.getKnownMinValue() - 1)); 6826 } 6827 6828 InstructionCost 6829 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6830 ElementCount VF) { 6831 Type *ValTy = getLoadStoreType(I); 6832 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6833 const Align Alignment = getLoadStoreAlignment(I); 6834 const Value *Ptr = getLoadStorePointerOperand(I); 6835 6836 return TTI.getAddressComputationCost(VectorTy) + 6837 TTI.getGatherScatterOpCost( 6838 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6839 TargetTransformInfo::TCK_RecipThroughput, I); 6840 } 6841 6842 InstructionCost 6843 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6844 ElementCount VF) { 6845 // TODO: Once we have support for interleaving with scalable vectors 6846 // we can calculate the cost properly here. 6847 if (VF.isScalable()) 6848 return InstructionCost::getInvalid(); 6849 6850 Type *ValTy = getLoadStoreType(I); 6851 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6852 unsigned AS = getLoadStoreAddressSpace(I); 6853 6854 auto Group = getInterleavedAccessGroup(I); 6855 assert(Group && "Fail to get an interleaved access group."); 6856 6857 unsigned InterleaveFactor = Group->getFactor(); 6858 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6859 6860 // Holds the indices of existing members in the interleaved group. 6861 SmallVector<unsigned, 4> Indices; 6862 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6863 if (Group->getMember(IF)) 6864 Indices.push_back(IF); 6865 6866 // Calculate the cost of the whole interleaved group. 6867 bool UseMaskForGaps = 6868 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6869 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6870 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6871 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6872 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6873 6874 if (Group->isReverse()) { 6875 // TODO: Add support for reversed masked interleaved access. 6876 assert(!Legal->isMaskRequired(I) && 6877 "Reverse masked interleaved access not supported."); 6878 Cost += 6879 Group->getNumMembers() * 6880 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6881 } 6882 return Cost; 6883 } 6884 6885 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6886 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6887 using namespace llvm::PatternMatch; 6888 // Early exit for no inloop reductions 6889 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6890 return None; 6891 auto *VectorTy = cast<VectorType>(Ty); 6892 6893 // We are looking for a pattern of, and finding the minimal acceptable cost: 6894 // reduce(mul(ext(A), ext(B))) or 6895 // reduce(mul(A, B)) or 6896 // reduce(ext(A)) or 6897 // reduce(A). 6898 // The basic idea is that we walk down the tree to do that, finding the root 6899 // reduction instruction in InLoopReductionImmediateChains. From there we find 6900 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6901 // of the components. If the reduction cost is lower then we return it for the 6902 // reduction instruction and 0 for the other instructions in the pattern. If 6903 // it is not we return an invalid cost specifying the orignal cost method 6904 // should be used. 6905 Instruction *RetI = I; 6906 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6907 if (!RetI->hasOneUser()) 6908 return None; 6909 RetI = RetI->user_back(); 6910 } 6911 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6912 RetI->user_back()->getOpcode() == Instruction::Add) { 6913 if (!RetI->hasOneUser()) 6914 return None; 6915 RetI = RetI->user_back(); 6916 } 6917 6918 // Test if the found instruction is a reduction, and if not return an invalid 6919 // cost specifying the parent to use the original cost modelling. 6920 if (!InLoopReductionImmediateChains.count(RetI)) 6921 return None; 6922 6923 // Find the reduction this chain is a part of and calculate the basic cost of 6924 // the reduction on its own. 6925 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6926 Instruction *ReductionPhi = LastChain; 6927 while (!isa<PHINode>(ReductionPhi)) 6928 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6929 6930 const RecurrenceDescriptor &RdxDesc = 6931 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6932 6933 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6934 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6935 6936 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6937 // normal fmul instruction to the cost of the fadd reduction. 6938 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6939 BaseCost += 6940 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6941 6942 // If we're using ordered reductions then we can just return the base cost 6943 // here, since getArithmeticReductionCost calculates the full ordered 6944 // reduction cost when FP reassociation is not allowed. 6945 if (useOrderedReductions(RdxDesc)) 6946 return BaseCost; 6947 6948 // Get the operand that was not the reduction chain and match it to one of the 6949 // patterns, returning the better cost if it is found. 6950 Instruction *RedOp = RetI->getOperand(1) == LastChain 6951 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6952 : dyn_cast<Instruction>(RetI->getOperand(1)); 6953 6954 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6955 6956 Instruction *Op0, *Op1; 6957 if (RedOp && 6958 match(RedOp, 6959 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6960 match(Op0, m_ZExtOrSExt(m_Value())) && 6961 Op0->getOpcode() == Op1->getOpcode() && 6962 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6963 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6964 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6965 6966 // Matched reduce(ext(mul(ext(A), ext(B))) 6967 // Note that the extend opcodes need to all match, or if A==B they will have 6968 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6969 // which is equally fine. 6970 bool IsUnsigned = isa<ZExtInst>(Op0); 6971 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6972 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6973 6974 InstructionCost ExtCost = 6975 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6976 TTI::CastContextHint::None, CostKind, Op0); 6977 InstructionCost MulCost = 6978 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6979 InstructionCost Ext2Cost = 6980 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6981 TTI::CastContextHint::None, CostKind, RedOp); 6982 6983 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6984 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6985 CostKind); 6986 6987 if (RedCost.isValid() && 6988 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6989 return I == RetI ? RedCost : 0; 6990 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6991 !TheLoop->isLoopInvariant(RedOp)) { 6992 // Matched reduce(ext(A)) 6993 bool IsUnsigned = isa<ZExtInst>(RedOp); 6994 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6995 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6996 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6997 CostKind); 6998 6999 InstructionCost ExtCost = 7000 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7001 TTI::CastContextHint::None, CostKind, RedOp); 7002 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7003 return I == RetI ? RedCost : 0; 7004 } else if (RedOp && 7005 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7006 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7007 Op0->getOpcode() == Op1->getOpcode() && 7008 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7009 bool IsUnsigned = isa<ZExtInst>(Op0); 7010 Type *Op0Ty = Op0->getOperand(0)->getType(); 7011 Type *Op1Ty = Op1->getOperand(0)->getType(); 7012 Type *LargestOpTy = 7013 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 7014 : Op0Ty; 7015 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 7016 7017 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 7018 // different sizes. We take the largest type as the ext to reduce, and add 7019 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 7020 InstructionCost ExtCost0 = TTI.getCastInstrCost( 7021 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 7022 TTI::CastContextHint::None, CostKind, Op0); 7023 InstructionCost ExtCost1 = TTI.getCastInstrCost( 7024 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 7025 TTI::CastContextHint::None, CostKind, Op1); 7026 InstructionCost MulCost = 7027 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7028 7029 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7030 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7031 CostKind); 7032 InstructionCost ExtraExtCost = 0; 7033 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7034 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7035 ExtraExtCost = TTI.getCastInstrCost( 7036 ExtraExtOp->getOpcode(), ExtType, 7037 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7038 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7039 } 7040 7041 if (RedCost.isValid() && 7042 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7043 return I == RetI ? RedCost : 0; 7044 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7045 // Matched reduce(mul()) 7046 InstructionCost MulCost = 7047 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7048 7049 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7050 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7051 CostKind); 7052 7053 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7054 return I == RetI ? RedCost : 0; 7055 } 7056 } 7057 7058 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7059 } 7060 7061 InstructionCost 7062 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7063 ElementCount VF) { 7064 // Calculate scalar cost only. Vectorization cost should be ready at this 7065 // moment. 7066 if (VF.isScalar()) { 7067 Type *ValTy = getLoadStoreType(I); 7068 const Align Alignment = getLoadStoreAlignment(I); 7069 unsigned AS = getLoadStoreAddressSpace(I); 7070 7071 return TTI.getAddressComputationCost(ValTy) + 7072 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7073 TTI::TCK_RecipThroughput, I); 7074 } 7075 return getWideningCost(I, VF); 7076 } 7077 7078 LoopVectorizationCostModel::VectorizationCostTy 7079 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7080 ElementCount VF) { 7081 // If we know that this instruction will remain uniform, check the cost of 7082 // the scalar version. 7083 if (isUniformAfterVectorization(I, VF)) 7084 VF = ElementCount::getFixed(1); 7085 7086 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7087 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7088 7089 // Forced scalars do not have any scalarization overhead. 7090 auto ForcedScalar = ForcedScalars.find(VF); 7091 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7092 auto InstSet = ForcedScalar->second; 7093 if (InstSet.count(I)) 7094 return VectorizationCostTy( 7095 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7096 VF.getKnownMinValue()), 7097 false); 7098 } 7099 7100 Type *VectorTy; 7101 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7102 7103 bool TypeNotScalarized = false; 7104 if (VF.isVector() && VectorTy->isVectorTy()) { 7105 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7106 if (NumParts) 7107 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7108 else 7109 C = InstructionCost::getInvalid(); 7110 } 7111 return VectorizationCostTy(C, TypeNotScalarized); 7112 } 7113 7114 InstructionCost 7115 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7116 ElementCount VF) const { 7117 7118 // There is no mechanism yet to create a scalable scalarization loop, 7119 // so this is currently Invalid. 7120 if (VF.isScalable()) 7121 return InstructionCost::getInvalid(); 7122 7123 if (VF.isScalar()) 7124 return 0; 7125 7126 InstructionCost Cost = 0; 7127 Type *RetTy = ToVectorTy(I->getType(), VF); 7128 if (!RetTy->isVoidTy() && 7129 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7130 Cost += TTI.getScalarizationOverhead( 7131 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7132 false); 7133 7134 // Some targets keep addresses scalar. 7135 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7136 return Cost; 7137 7138 // Some targets support efficient element stores. 7139 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7140 return Cost; 7141 7142 // Collect operands to consider. 7143 CallInst *CI = dyn_cast<CallInst>(I); 7144 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7145 7146 // Skip operands that do not require extraction/scalarization and do not incur 7147 // any overhead. 7148 SmallVector<Type *> Tys; 7149 for (auto *V : filterExtractingOperands(Ops, VF)) 7150 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7151 return Cost + TTI.getOperandsScalarizationOverhead( 7152 filterExtractingOperands(Ops, VF), Tys); 7153 } 7154 7155 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7156 if (VF.isScalar()) 7157 return; 7158 NumPredStores = 0; 7159 for (BasicBlock *BB : TheLoop->blocks()) { 7160 // For each instruction in the old loop. 7161 for (Instruction &I : *BB) { 7162 Value *Ptr = getLoadStorePointerOperand(&I); 7163 if (!Ptr) 7164 continue; 7165 7166 // TODO: We should generate better code and update the cost model for 7167 // predicated uniform stores. Today they are treated as any other 7168 // predicated store (see added test cases in 7169 // invariant-store-vectorization.ll). 7170 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7171 NumPredStores++; 7172 7173 if (Legal->isUniformMemOp(I)) { 7174 // TODO: Avoid replicating loads and stores instead of 7175 // relying on instcombine to remove them. 7176 // Load: Scalar load + broadcast 7177 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7178 InstructionCost Cost; 7179 if (isa<StoreInst>(&I) && VF.isScalable() && 7180 isLegalGatherOrScatter(&I, VF)) { 7181 Cost = getGatherScatterCost(&I, VF); 7182 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7183 } else { 7184 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7185 "Cannot yet scalarize uniform stores"); 7186 Cost = getUniformMemOpCost(&I, VF); 7187 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7188 } 7189 continue; 7190 } 7191 7192 // We assume that widening is the best solution when possible. 7193 if (memoryInstructionCanBeWidened(&I, VF)) { 7194 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7195 int ConsecutiveStride = Legal->isConsecutivePtr( 7196 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7197 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7198 "Expected consecutive stride."); 7199 InstWidening Decision = 7200 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7201 setWideningDecision(&I, VF, Decision, Cost); 7202 continue; 7203 } 7204 7205 // Choose between Interleaving, Gather/Scatter or Scalarization. 7206 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7207 unsigned NumAccesses = 1; 7208 if (isAccessInterleaved(&I)) { 7209 auto Group = getInterleavedAccessGroup(&I); 7210 assert(Group && "Fail to get an interleaved access group."); 7211 7212 // Make one decision for the whole group. 7213 if (getWideningDecision(&I, VF) != CM_Unknown) 7214 continue; 7215 7216 NumAccesses = Group->getNumMembers(); 7217 if (interleavedAccessCanBeWidened(&I, VF)) 7218 InterleaveCost = getInterleaveGroupCost(&I, VF); 7219 } 7220 7221 InstructionCost GatherScatterCost = 7222 isLegalGatherOrScatter(&I, VF) 7223 ? getGatherScatterCost(&I, VF) * NumAccesses 7224 : InstructionCost::getInvalid(); 7225 7226 InstructionCost ScalarizationCost = 7227 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7228 7229 // Choose better solution for the current VF, 7230 // write down this decision and use it during vectorization. 7231 InstructionCost Cost; 7232 InstWidening Decision; 7233 if (InterleaveCost <= GatherScatterCost && 7234 InterleaveCost < ScalarizationCost) { 7235 Decision = CM_Interleave; 7236 Cost = InterleaveCost; 7237 } else if (GatherScatterCost < ScalarizationCost) { 7238 Decision = CM_GatherScatter; 7239 Cost = GatherScatterCost; 7240 } else { 7241 Decision = CM_Scalarize; 7242 Cost = ScalarizationCost; 7243 } 7244 // If the instructions belongs to an interleave group, the whole group 7245 // receives the same decision. The whole group receives the cost, but 7246 // the cost will actually be assigned to one instruction. 7247 if (auto Group = getInterleavedAccessGroup(&I)) 7248 setWideningDecision(Group, VF, Decision, Cost); 7249 else 7250 setWideningDecision(&I, VF, Decision, Cost); 7251 } 7252 } 7253 7254 // Make sure that any load of address and any other address computation 7255 // remains scalar unless there is gather/scatter support. This avoids 7256 // inevitable extracts into address registers, and also has the benefit of 7257 // activating LSR more, since that pass can't optimize vectorized 7258 // addresses. 7259 if (TTI.prefersVectorizedAddressing()) 7260 return; 7261 7262 // Start with all scalar pointer uses. 7263 SmallPtrSet<Instruction *, 8> AddrDefs; 7264 for (BasicBlock *BB : TheLoop->blocks()) 7265 for (Instruction &I : *BB) { 7266 Instruction *PtrDef = 7267 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7268 if (PtrDef && TheLoop->contains(PtrDef) && 7269 getWideningDecision(&I, VF) != CM_GatherScatter) 7270 AddrDefs.insert(PtrDef); 7271 } 7272 7273 // Add all instructions used to generate the addresses. 7274 SmallVector<Instruction *, 4> Worklist; 7275 append_range(Worklist, AddrDefs); 7276 while (!Worklist.empty()) { 7277 Instruction *I = Worklist.pop_back_val(); 7278 for (auto &Op : I->operands()) 7279 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7280 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7281 AddrDefs.insert(InstOp).second) 7282 Worklist.push_back(InstOp); 7283 } 7284 7285 for (auto *I : AddrDefs) { 7286 if (isa<LoadInst>(I)) { 7287 // Setting the desired widening decision should ideally be handled in 7288 // by cost functions, but since this involves the task of finding out 7289 // if the loaded register is involved in an address computation, it is 7290 // instead changed here when we know this is the case. 7291 InstWidening Decision = getWideningDecision(I, VF); 7292 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7293 // Scalarize a widened load of address. 7294 setWideningDecision( 7295 I, VF, CM_Scalarize, 7296 (VF.getKnownMinValue() * 7297 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7298 else if (auto Group = getInterleavedAccessGroup(I)) { 7299 // Scalarize an interleave group of address loads. 7300 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7301 if (Instruction *Member = Group->getMember(I)) 7302 setWideningDecision( 7303 Member, VF, CM_Scalarize, 7304 (VF.getKnownMinValue() * 7305 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7306 } 7307 } 7308 } else 7309 // Make sure I gets scalarized and a cost estimate without 7310 // scalarization overhead. 7311 ForcedScalars[VF].insert(I); 7312 } 7313 } 7314 7315 InstructionCost 7316 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7317 Type *&VectorTy) { 7318 Type *RetTy = I->getType(); 7319 if (canTruncateToMinimalBitwidth(I, VF)) 7320 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7321 auto SE = PSE.getSE(); 7322 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7323 7324 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7325 ElementCount VF) -> bool { 7326 if (VF.isScalar()) 7327 return true; 7328 7329 auto Scalarized = InstsToScalarize.find(VF); 7330 assert(Scalarized != InstsToScalarize.end() && 7331 "VF not yet analyzed for scalarization profitability"); 7332 return !Scalarized->second.count(I) && 7333 llvm::all_of(I->users(), [&](User *U) { 7334 auto *UI = cast<Instruction>(U); 7335 return !Scalarized->second.count(UI); 7336 }); 7337 }; 7338 (void) hasSingleCopyAfterVectorization; 7339 7340 if (isScalarAfterVectorization(I, VF)) { 7341 // With the exception of GEPs and PHIs, after scalarization there should 7342 // only be one copy of the instruction generated in the loop. This is 7343 // because the VF is either 1, or any instructions that need scalarizing 7344 // have already been dealt with by the the time we get here. As a result, 7345 // it means we don't have to multiply the instruction cost by VF. 7346 assert(I->getOpcode() == Instruction::GetElementPtr || 7347 I->getOpcode() == Instruction::PHI || 7348 (I->getOpcode() == Instruction::BitCast && 7349 I->getType()->isPointerTy()) || 7350 hasSingleCopyAfterVectorization(I, VF)); 7351 VectorTy = RetTy; 7352 } else 7353 VectorTy = ToVectorTy(RetTy, VF); 7354 7355 // TODO: We need to estimate the cost of intrinsic calls. 7356 switch (I->getOpcode()) { 7357 case Instruction::GetElementPtr: 7358 // We mark this instruction as zero-cost because the cost of GEPs in 7359 // vectorized code depends on whether the corresponding memory instruction 7360 // is scalarized or not. Therefore, we handle GEPs with the memory 7361 // instruction cost. 7362 return 0; 7363 case Instruction::Br: { 7364 // In cases of scalarized and predicated instructions, there will be VF 7365 // predicated blocks in the vectorized loop. Each branch around these 7366 // blocks requires also an extract of its vector compare i1 element. 7367 bool ScalarPredicatedBB = false; 7368 BranchInst *BI = cast<BranchInst>(I); 7369 if (VF.isVector() && BI->isConditional() && 7370 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7371 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7372 ScalarPredicatedBB = true; 7373 7374 if (ScalarPredicatedBB) { 7375 // Not possible to scalarize scalable vector with predicated instructions. 7376 if (VF.isScalable()) 7377 return InstructionCost::getInvalid(); 7378 // Return cost for branches around scalarized and predicated blocks. 7379 auto *Vec_i1Ty = 7380 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7381 return ( 7382 TTI.getScalarizationOverhead( 7383 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7384 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7385 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7386 // The back-edge branch will remain, as will all scalar branches. 7387 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7388 else 7389 // This branch will be eliminated by if-conversion. 7390 return 0; 7391 // Note: We currently assume zero cost for an unconditional branch inside 7392 // a predicated block since it will become a fall-through, although we 7393 // may decide in the future to call TTI for all branches. 7394 } 7395 case Instruction::PHI: { 7396 auto *Phi = cast<PHINode>(I); 7397 7398 // First-order recurrences are replaced by vector shuffles inside the loop. 7399 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7400 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7401 return TTI.getShuffleCost( 7402 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7403 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7404 7405 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7406 // converted into select instructions. We require N - 1 selects per phi 7407 // node, where N is the number of incoming values. 7408 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7409 return (Phi->getNumIncomingValues() - 1) * 7410 TTI.getCmpSelInstrCost( 7411 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7412 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7413 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7414 7415 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7416 } 7417 case Instruction::UDiv: 7418 case Instruction::SDiv: 7419 case Instruction::URem: 7420 case Instruction::SRem: 7421 // If we have a predicated instruction, it may not be executed for each 7422 // vector lane. Get the scalarization cost and scale this amount by the 7423 // probability of executing the predicated block. If the instruction is not 7424 // predicated, we fall through to the next case. 7425 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7426 InstructionCost Cost = 0; 7427 7428 // These instructions have a non-void type, so account for the phi nodes 7429 // that we will create. This cost is likely to be zero. The phi node 7430 // cost, if any, should be scaled by the block probability because it 7431 // models a copy at the end of each predicated block. 7432 Cost += VF.getKnownMinValue() * 7433 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7434 7435 // The cost of the non-predicated instruction. 7436 Cost += VF.getKnownMinValue() * 7437 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7438 7439 // The cost of insertelement and extractelement instructions needed for 7440 // scalarization. 7441 Cost += getScalarizationOverhead(I, VF); 7442 7443 // Scale the cost by the probability of executing the predicated blocks. 7444 // This assumes the predicated block for each vector lane is equally 7445 // likely. 7446 return Cost / getReciprocalPredBlockProb(); 7447 } 7448 LLVM_FALLTHROUGH; 7449 case Instruction::Add: 7450 case Instruction::FAdd: 7451 case Instruction::Sub: 7452 case Instruction::FSub: 7453 case Instruction::Mul: 7454 case Instruction::FMul: 7455 case Instruction::FDiv: 7456 case Instruction::FRem: 7457 case Instruction::Shl: 7458 case Instruction::LShr: 7459 case Instruction::AShr: 7460 case Instruction::And: 7461 case Instruction::Or: 7462 case Instruction::Xor: { 7463 // Since we will replace the stride by 1 the multiplication should go away. 7464 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7465 return 0; 7466 7467 // Detect reduction patterns 7468 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7469 return *RedCost; 7470 7471 // Certain instructions can be cheaper to vectorize if they have a constant 7472 // second vector operand. One example of this are shifts on x86. 7473 Value *Op2 = I->getOperand(1); 7474 TargetTransformInfo::OperandValueProperties Op2VP; 7475 TargetTransformInfo::OperandValueKind Op2VK = 7476 TTI.getOperandInfo(Op2, Op2VP); 7477 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7478 Op2VK = TargetTransformInfo::OK_UniformValue; 7479 7480 SmallVector<const Value *, 4> Operands(I->operand_values()); 7481 return TTI.getArithmeticInstrCost( 7482 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7483 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7484 } 7485 case Instruction::FNeg: { 7486 return TTI.getArithmeticInstrCost( 7487 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7488 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7489 TargetTransformInfo::OP_None, I->getOperand(0), I); 7490 } 7491 case Instruction::Select: { 7492 SelectInst *SI = cast<SelectInst>(I); 7493 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7494 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7495 7496 const Value *Op0, *Op1; 7497 using namespace llvm::PatternMatch; 7498 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7499 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7500 // select x, y, false --> x & y 7501 // select x, true, y --> x | y 7502 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7503 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7504 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7505 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7506 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7507 Op1->getType()->getScalarSizeInBits() == 1); 7508 7509 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7510 return TTI.getArithmeticInstrCost( 7511 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7512 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7513 } 7514 7515 Type *CondTy = SI->getCondition()->getType(); 7516 if (!ScalarCond) 7517 CondTy = VectorType::get(CondTy, VF); 7518 7519 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7520 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7521 Pred = Cmp->getPredicate(); 7522 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7523 CostKind, I); 7524 } 7525 case Instruction::ICmp: 7526 case Instruction::FCmp: { 7527 Type *ValTy = I->getOperand(0)->getType(); 7528 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7529 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7530 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7531 VectorTy = ToVectorTy(ValTy, VF); 7532 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7533 cast<CmpInst>(I)->getPredicate(), CostKind, 7534 I); 7535 } 7536 case Instruction::Store: 7537 case Instruction::Load: { 7538 ElementCount Width = VF; 7539 if (Width.isVector()) { 7540 InstWidening Decision = getWideningDecision(I, Width); 7541 assert(Decision != CM_Unknown && 7542 "CM decision should be taken at this point"); 7543 if (Decision == CM_Scalarize) 7544 Width = ElementCount::getFixed(1); 7545 } 7546 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7547 return getMemoryInstructionCost(I, VF); 7548 } 7549 case Instruction::BitCast: 7550 if (I->getType()->isPointerTy()) 7551 return 0; 7552 LLVM_FALLTHROUGH; 7553 case Instruction::ZExt: 7554 case Instruction::SExt: 7555 case Instruction::FPToUI: 7556 case Instruction::FPToSI: 7557 case Instruction::FPExt: 7558 case Instruction::PtrToInt: 7559 case Instruction::IntToPtr: 7560 case Instruction::SIToFP: 7561 case Instruction::UIToFP: 7562 case Instruction::Trunc: 7563 case Instruction::FPTrunc: { 7564 // Computes the CastContextHint from a Load/Store instruction. 7565 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7566 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7567 "Expected a load or a store!"); 7568 7569 if (VF.isScalar() || !TheLoop->contains(I)) 7570 return TTI::CastContextHint::Normal; 7571 7572 switch (getWideningDecision(I, VF)) { 7573 case LoopVectorizationCostModel::CM_GatherScatter: 7574 return TTI::CastContextHint::GatherScatter; 7575 case LoopVectorizationCostModel::CM_Interleave: 7576 return TTI::CastContextHint::Interleave; 7577 case LoopVectorizationCostModel::CM_Scalarize: 7578 case LoopVectorizationCostModel::CM_Widen: 7579 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7580 : TTI::CastContextHint::Normal; 7581 case LoopVectorizationCostModel::CM_Widen_Reverse: 7582 return TTI::CastContextHint::Reversed; 7583 case LoopVectorizationCostModel::CM_Unknown: 7584 llvm_unreachable("Instr did not go through cost modelling?"); 7585 } 7586 7587 llvm_unreachable("Unhandled case!"); 7588 }; 7589 7590 unsigned Opcode = I->getOpcode(); 7591 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7592 // For Trunc, the context is the only user, which must be a StoreInst. 7593 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7594 if (I->hasOneUse()) 7595 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7596 CCH = ComputeCCH(Store); 7597 } 7598 // For Z/Sext, the context is the operand, which must be a LoadInst. 7599 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7600 Opcode == Instruction::FPExt) { 7601 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7602 CCH = ComputeCCH(Load); 7603 } 7604 7605 // We optimize the truncation of induction variables having constant 7606 // integer steps. The cost of these truncations is the same as the scalar 7607 // operation. 7608 if (isOptimizableIVTruncate(I, VF)) { 7609 auto *Trunc = cast<TruncInst>(I); 7610 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7611 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7612 } 7613 7614 // Detect reduction patterns 7615 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7616 return *RedCost; 7617 7618 Type *SrcScalarTy = I->getOperand(0)->getType(); 7619 Type *SrcVecTy = 7620 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7621 if (canTruncateToMinimalBitwidth(I, VF)) { 7622 // This cast is going to be shrunk. This may remove the cast or it might 7623 // turn it into slightly different cast. For example, if MinBW == 16, 7624 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7625 // 7626 // Calculate the modified src and dest types. 7627 Type *MinVecTy = VectorTy; 7628 if (Opcode == Instruction::Trunc) { 7629 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7630 VectorTy = 7631 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7632 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7633 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7634 VectorTy = 7635 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7636 } 7637 } 7638 7639 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7640 } 7641 case Instruction::Call: { 7642 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7643 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7644 return *RedCost; 7645 bool NeedToScalarize; 7646 CallInst *CI = cast<CallInst>(I); 7647 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7648 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7649 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7650 return std::min(CallCost, IntrinsicCost); 7651 } 7652 return CallCost; 7653 } 7654 case Instruction::ExtractValue: 7655 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7656 case Instruction::Alloca: 7657 // We cannot easily widen alloca to a scalable alloca, as 7658 // the result would need to be a vector of pointers. 7659 if (VF.isScalable()) 7660 return InstructionCost::getInvalid(); 7661 LLVM_FALLTHROUGH; 7662 default: 7663 // This opcode is unknown. Assume that it is the same as 'mul'. 7664 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7665 } // end of switch. 7666 } 7667 7668 char LoopVectorize::ID = 0; 7669 7670 static const char lv_name[] = "Loop Vectorization"; 7671 7672 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7673 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7674 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7675 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7676 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7677 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7678 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7679 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7680 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7681 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7682 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7683 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7684 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7685 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7686 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7687 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7688 7689 namespace llvm { 7690 7691 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7692 7693 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7694 bool VectorizeOnlyWhenForced) { 7695 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7696 } 7697 7698 } // end namespace llvm 7699 7700 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7701 // Check if the pointer operand of a load or store instruction is 7702 // consecutive. 7703 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7704 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7705 return false; 7706 } 7707 7708 void LoopVectorizationCostModel::collectValuesToIgnore() { 7709 // Ignore ephemeral values. 7710 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7711 7712 // Ignore type-promoting instructions we identified during reduction 7713 // detection. 7714 for (auto &Reduction : Legal->getReductionVars()) { 7715 const RecurrenceDescriptor &RedDes = Reduction.second; 7716 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7717 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7718 } 7719 // Ignore type-casting instructions we identified during induction 7720 // detection. 7721 for (auto &Induction : Legal->getInductionVars()) { 7722 const InductionDescriptor &IndDes = Induction.second; 7723 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7724 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7725 } 7726 } 7727 7728 void LoopVectorizationCostModel::collectInLoopReductions() { 7729 for (auto &Reduction : Legal->getReductionVars()) { 7730 PHINode *Phi = Reduction.first; 7731 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7732 7733 // We don't collect reductions that are type promoted (yet). 7734 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7735 continue; 7736 7737 // If the target would prefer this reduction to happen "in-loop", then we 7738 // want to record it as such. 7739 unsigned Opcode = RdxDesc.getOpcode(); 7740 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7741 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7742 TargetTransformInfo::ReductionFlags())) 7743 continue; 7744 7745 // Check that we can correctly put the reductions into the loop, by 7746 // finding the chain of operations that leads from the phi to the loop 7747 // exit value. 7748 SmallVector<Instruction *, 4> ReductionOperations = 7749 RdxDesc.getReductionOpChain(Phi, TheLoop); 7750 bool InLoop = !ReductionOperations.empty(); 7751 if (InLoop) { 7752 InLoopReductionChains[Phi] = ReductionOperations; 7753 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7754 Instruction *LastChain = Phi; 7755 for (auto *I : ReductionOperations) { 7756 InLoopReductionImmediateChains[I] = LastChain; 7757 LastChain = I; 7758 } 7759 } 7760 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7761 << " reduction for phi: " << *Phi << "\n"); 7762 } 7763 } 7764 7765 // TODO: we could return a pair of values that specify the max VF and 7766 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7767 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7768 // doesn't have a cost model that can choose which plan to execute if 7769 // more than one is generated. 7770 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7771 LoopVectorizationCostModel &CM) { 7772 unsigned WidestType; 7773 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7774 return WidestVectorRegBits / WidestType; 7775 } 7776 7777 VectorizationFactor 7778 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7779 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7780 ElementCount VF = UserVF; 7781 // Outer loop handling: They may require CFG and instruction level 7782 // transformations before even evaluating whether vectorization is profitable. 7783 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7784 // the vectorization pipeline. 7785 if (!OrigLoop->isInnermost()) { 7786 // If the user doesn't provide a vectorization factor, determine a 7787 // reasonable one. 7788 if (UserVF.isZero()) { 7789 VF = ElementCount::getFixed(determineVPlanVF( 7790 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7791 .getFixedSize(), 7792 CM)); 7793 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7794 7795 // Make sure we have a VF > 1 for stress testing. 7796 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7797 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7798 << "overriding computed VF.\n"); 7799 VF = ElementCount::getFixed(4); 7800 } 7801 } 7802 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7803 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7804 "VF needs to be a power of two"); 7805 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7806 << "VF " << VF << " to build VPlans.\n"); 7807 buildVPlans(VF, VF); 7808 7809 // For VPlan build stress testing, we bail out after VPlan construction. 7810 if (VPlanBuildStressTest) 7811 return VectorizationFactor::Disabled(); 7812 7813 return {VF, 0 /*Cost*/}; 7814 } 7815 7816 LLVM_DEBUG( 7817 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7818 "VPlan-native path.\n"); 7819 return VectorizationFactor::Disabled(); 7820 } 7821 7822 Optional<VectorizationFactor> 7823 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7824 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7825 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7826 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7827 return None; 7828 7829 // Invalidate interleave groups if all blocks of loop will be predicated. 7830 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7831 !useMaskedInterleavedAccesses(*TTI)) { 7832 LLVM_DEBUG( 7833 dbgs() 7834 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7835 "which requires masked-interleaved support.\n"); 7836 if (CM.InterleaveInfo.invalidateGroups()) 7837 // Invalidating interleave groups also requires invalidating all decisions 7838 // based on them, which includes widening decisions and uniform and scalar 7839 // values. 7840 CM.invalidateCostModelingDecisions(); 7841 } 7842 7843 ElementCount MaxUserVF = 7844 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7845 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7846 if (!UserVF.isZero() && UserVFIsLegal) { 7847 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7848 "VF needs to be a power of two"); 7849 // Collect the instructions (and their associated costs) that will be more 7850 // profitable to scalarize. 7851 if (CM.selectUserVectorizationFactor(UserVF)) { 7852 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7853 CM.collectInLoopReductions(); 7854 buildVPlansWithVPRecipes(UserVF, UserVF); 7855 LLVM_DEBUG(printPlans(dbgs())); 7856 return {{UserVF, 0}}; 7857 } else 7858 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7859 "InvalidCost", ORE, OrigLoop); 7860 } 7861 7862 // Populate the set of Vectorization Factor Candidates. 7863 ElementCountSet VFCandidates; 7864 for (auto VF = ElementCount::getFixed(1); 7865 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7866 VFCandidates.insert(VF); 7867 for (auto VF = ElementCount::getScalable(1); 7868 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7869 VFCandidates.insert(VF); 7870 7871 for (const auto &VF : VFCandidates) { 7872 // Collect Uniform and Scalar instructions after vectorization with VF. 7873 CM.collectUniformsAndScalars(VF); 7874 7875 // Collect the instructions (and their associated costs) that will be more 7876 // profitable to scalarize. 7877 if (VF.isVector()) 7878 CM.collectInstsToScalarize(VF); 7879 } 7880 7881 CM.collectInLoopReductions(); 7882 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7883 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7884 7885 LLVM_DEBUG(printPlans(dbgs())); 7886 if (!MaxFactors.hasVector()) 7887 return VectorizationFactor::Disabled(); 7888 7889 // Select the optimal vectorization factor. 7890 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7891 7892 // Check if it is profitable to vectorize with runtime checks. 7893 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7894 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7895 bool PragmaThresholdReached = 7896 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7897 bool ThresholdReached = 7898 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7899 if ((ThresholdReached && !Hints.allowReordering()) || 7900 PragmaThresholdReached) { 7901 ORE->emit([&]() { 7902 return OptimizationRemarkAnalysisAliasing( 7903 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7904 OrigLoop->getHeader()) 7905 << "loop not vectorized: cannot prove it is safe to reorder " 7906 "memory operations"; 7907 }); 7908 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7909 Hints.emitRemarkWithHints(); 7910 return VectorizationFactor::Disabled(); 7911 } 7912 } 7913 return SelectedVF; 7914 } 7915 7916 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7917 assert(count_if(VPlans, 7918 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7919 1 && 7920 "Best VF has not a single VPlan."); 7921 7922 for (const VPlanPtr &Plan : VPlans) { 7923 if (Plan->hasVF(VF)) 7924 return *Plan.get(); 7925 } 7926 llvm_unreachable("No plan found!"); 7927 } 7928 7929 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7930 VPlan &BestVPlan, 7931 InnerLoopVectorizer &ILV, 7932 DominatorTree *DT) { 7933 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7934 << '\n'); 7935 7936 // Perform the actual loop transformation. 7937 7938 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7939 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7940 Value *CanonicalIVStartValue; 7941 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7942 ILV.createVectorizedLoopSkeleton(); 7943 ILV.collectPoisonGeneratingRecipes(State); 7944 7945 ILV.printDebugTracesAtStart(); 7946 7947 //===------------------------------------------------===// 7948 // 7949 // Notice: any optimization or new instruction that go 7950 // into the code below should also be implemented in 7951 // the cost-model. 7952 // 7953 //===------------------------------------------------===// 7954 7955 // 2. Copy and widen instructions from the old loop into the new loop. 7956 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7957 ILV.getOrCreateVectorTripCount(nullptr), 7958 CanonicalIVStartValue, State); 7959 BestVPlan.execute(&State); 7960 7961 // Keep all loop hints from the original loop on the vector loop (we'll 7962 // replace the vectorizer-specific hints below). 7963 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7964 7965 Optional<MDNode *> VectorizedLoopID = 7966 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7967 LLVMLoopVectorizeFollowupVectorized}); 7968 7969 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7970 if (VectorizedLoopID.hasValue()) 7971 L->setLoopID(VectorizedLoopID.getValue()); 7972 else { 7973 // Keep all loop hints from the original loop on the vector loop (we'll 7974 // replace the vectorizer-specific hints below). 7975 if (MDNode *LID = OrigLoop->getLoopID()) 7976 L->setLoopID(LID); 7977 7978 LoopVectorizeHints Hints(L, true, *ORE); 7979 Hints.setAlreadyVectorized(); 7980 } 7981 7982 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7983 // predication, updating analyses. 7984 ILV.fixVectorizedLoop(State); 7985 7986 ILV.printDebugTracesAtEnd(); 7987 } 7988 7989 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7990 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7991 for (const auto &Plan : VPlans) 7992 if (PrintVPlansInDotFormat) 7993 Plan->printDOT(O); 7994 else 7995 Plan->print(O); 7996 } 7997 #endif 7998 7999 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8000 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8001 8002 // We create new control-flow for the vectorized loop, so the original exit 8003 // conditions will be dead after vectorization if it's only used by the 8004 // terminator 8005 SmallVector<BasicBlock*> ExitingBlocks; 8006 OrigLoop->getExitingBlocks(ExitingBlocks); 8007 for (auto *BB : ExitingBlocks) { 8008 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8009 if (!Cmp || !Cmp->hasOneUse()) 8010 continue; 8011 8012 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8013 if (!DeadInstructions.insert(Cmp).second) 8014 continue; 8015 8016 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8017 // TODO: can recurse through operands in general 8018 for (Value *Op : Cmp->operands()) { 8019 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8020 DeadInstructions.insert(cast<Instruction>(Op)); 8021 } 8022 } 8023 8024 // We create new "steps" for induction variable updates to which the original 8025 // induction variables map. An original update instruction will be dead if 8026 // all its users except the induction variable are dead. 8027 auto *Latch = OrigLoop->getLoopLatch(); 8028 for (auto &Induction : Legal->getInductionVars()) { 8029 PHINode *Ind = Induction.first; 8030 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8031 8032 // If the tail is to be folded by masking, the primary induction variable, 8033 // if exists, isn't dead: it will be used for masking. Don't kill it. 8034 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8035 continue; 8036 8037 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8038 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8039 })) 8040 DeadInstructions.insert(IndUpdate); 8041 } 8042 } 8043 8044 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8045 8046 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8047 SmallVector<Metadata *, 4> MDs; 8048 // Reserve first location for self reference to the LoopID metadata node. 8049 MDs.push_back(nullptr); 8050 bool IsUnrollMetadata = false; 8051 MDNode *LoopID = L->getLoopID(); 8052 if (LoopID) { 8053 // First find existing loop unrolling disable metadata. 8054 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8055 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8056 if (MD) { 8057 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8058 IsUnrollMetadata = 8059 S && S->getString().startswith("llvm.loop.unroll.disable"); 8060 } 8061 MDs.push_back(LoopID->getOperand(i)); 8062 } 8063 } 8064 8065 if (!IsUnrollMetadata) { 8066 // Add runtime unroll disable metadata. 8067 LLVMContext &Context = L->getHeader()->getContext(); 8068 SmallVector<Metadata *, 1> DisableOperands; 8069 DisableOperands.push_back( 8070 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8071 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8072 MDs.push_back(DisableNode); 8073 MDNode *NewLoopID = MDNode::get(Context, MDs); 8074 // Set operand 0 to refer to the loop id itself. 8075 NewLoopID->replaceOperandWith(0, NewLoopID); 8076 L->setLoopID(NewLoopID); 8077 } 8078 } 8079 8080 //===--------------------------------------------------------------------===// 8081 // EpilogueVectorizerMainLoop 8082 //===--------------------------------------------------------------------===// 8083 8084 /// This function is partially responsible for generating the control flow 8085 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8086 std::pair<BasicBlock *, Value *> 8087 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8088 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8089 Loop *Lp = createVectorLoopSkeleton(""); 8090 8091 // Generate the code to check the minimum iteration count of the vector 8092 // epilogue (see below). 8093 EPI.EpilogueIterationCountCheck = 8094 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8095 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8096 8097 // Generate the code to check any assumptions that we've made for SCEV 8098 // expressions. 8099 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8100 8101 // Generate the code that checks at runtime if arrays overlap. We put the 8102 // checks into a separate block to make the more common case of few elements 8103 // faster. 8104 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8105 8106 // Generate the iteration count check for the main loop, *after* the check 8107 // for the epilogue loop, so that the path-length is shorter for the case 8108 // that goes directly through the vector epilogue. The longer-path length for 8109 // the main loop is compensated for, by the gain from vectorizing the larger 8110 // trip count. Note: the branch will get updated later on when we vectorize 8111 // the epilogue. 8112 EPI.MainLoopIterationCountCheck = 8113 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8114 8115 // Generate the induction variable. 8116 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8117 EPI.VectorTripCount = CountRoundDown; 8118 createHeaderBranch(Lp); 8119 8120 // Skip induction resume value creation here because they will be created in 8121 // the second pass. If we created them here, they wouldn't be used anyway, 8122 // because the vplan in the second pass still contains the inductions from the 8123 // original loop. 8124 8125 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8126 } 8127 8128 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8129 LLVM_DEBUG({ 8130 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8131 << "Main Loop VF:" << EPI.MainLoopVF 8132 << ", Main Loop UF:" << EPI.MainLoopUF 8133 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8134 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8135 }); 8136 } 8137 8138 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8139 DEBUG_WITH_TYPE(VerboseDebug, { 8140 dbgs() << "intermediate fn:\n" 8141 << *OrigLoop->getHeader()->getParent() << "\n"; 8142 }); 8143 } 8144 8145 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8146 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8147 assert(L && "Expected valid Loop."); 8148 assert(Bypass && "Expected valid bypass basic block."); 8149 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8150 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8151 Value *Count = getOrCreateTripCount(L); 8152 // Reuse existing vector loop preheader for TC checks. 8153 // Note that new preheader block is generated for vector loop. 8154 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8155 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8156 8157 // Generate code to check if the loop's trip count is less than VF * UF of the 8158 // main vector loop. 8159 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8160 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8161 8162 Value *CheckMinIters = Builder.CreateICmp( 8163 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8164 "min.iters.check"); 8165 8166 if (!ForEpilogue) 8167 TCCheckBlock->setName("vector.main.loop.iter.check"); 8168 8169 // Create new preheader for vector loop. 8170 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8171 DT, LI, nullptr, "vector.ph"); 8172 8173 if (ForEpilogue) { 8174 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8175 DT->getNode(Bypass)->getIDom()) && 8176 "TC check is expected to dominate Bypass"); 8177 8178 // Update dominator for Bypass & LoopExit. 8179 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8180 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8181 // For loops with multiple exits, there's no edge from the middle block 8182 // to exit blocks (as the epilogue must run) and thus no need to update 8183 // the immediate dominator of the exit blocks. 8184 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8185 8186 LoopBypassBlocks.push_back(TCCheckBlock); 8187 8188 // Save the trip count so we don't have to regenerate it in the 8189 // vec.epilog.iter.check. This is safe to do because the trip count 8190 // generated here dominates the vector epilog iter check. 8191 EPI.TripCount = Count; 8192 } 8193 8194 ReplaceInstWithInst( 8195 TCCheckBlock->getTerminator(), 8196 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8197 8198 return TCCheckBlock; 8199 } 8200 8201 //===--------------------------------------------------------------------===// 8202 // EpilogueVectorizerEpilogueLoop 8203 //===--------------------------------------------------------------------===// 8204 8205 /// This function is partially responsible for generating the control flow 8206 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8207 std::pair<BasicBlock *, Value *> 8208 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8209 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8210 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8211 8212 // Now, compare the remaining count and if there aren't enough iterations to 8213 // execute the vectorized epilogue skip to the scalar part. 8214 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8215 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8216 LoopVectorPreHeader = 8217 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8218 LI, nullptr, "vec.epilog.ph"); 8219 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8220 VecEpilogueIterationCountCheck); 8221 8222 // Adjust the control flow taking the state info from the main loop 8223 // vectorization into account. 8224 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8225 "expected this to be saved from the previous pass."); 8226 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8227 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8228 8229 DT->changeImmediateDominator(LoopVectorPreHeader, 8230 EPI.MainLoopIterationCountCheck); 8231 8232 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8233 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8234 8235 if (EPI.SCEVSafetyCheck) 8236 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8237 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8238 if (EPI.MemSafetyCheck) 8239 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8240 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8241 8242 DT->changeImmediateDominator( 8243 VecEpilogueIterationCountCheck, 8244 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8245 8246 DT->changeImmediateDominator(LoopScalarPreHeader, 8247 EPI.EpilogueIterationCountCheck); 8248 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8249 // If there is an epilogue which must run, there's no edge from the 8250 // middle block to exit blocks and thus no need to update the immediate 8251 // dominator of the exit blocks. 8252 DT->changeImmediateDominator(LoopExitBlock, 8253 EPI.EpilogueIterationCountCheck); 8254 8255 // Keep track of bypass blocks, as they feed start values to the induction 8256 // phis in the scalar loop preheader. 8257 if (EPI.SCEVSafetyCheck) 8258 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8259 if (EPI.MemSafetyCheck) 8260 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8261 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8262 8263 // Generate a resume induction for the vector epilogue and put it in the 8264 // vector epilogue preheader 8265 Type *IdxTy = Legal->getWidestInductionType(); 8266 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8267 LoopVectorPreHeader->getFirstNonPHI()); 8268 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8269 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8270 EPI.MainLoopIterationCountCheck); 8271 8272 // Generate the induction variable. 8273 createHeaderBranch(Lp); 8274 8275 // Generate induction resume values. These variables save the new starting 8276 // indexes for the scalar loop. They are used to test if there are any tail 8277 // iterations left once the vector loop has completed. 8278 // Note that when the vectorized epilogue is skipped due to iteration count 8279 // check, then the resume value for the induction variable comes from 8280 // the trip count of the main vector loop, hence passing the AdditionalBypass 8281 // argument. 8282 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8283 EPI.VectorTripCount} /* AdditionalBypass */); 8284 8285 AddRuntimeUnrollDisableMetaData(Lp); 8286 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8287 } 8288 8289 BasicBlock * 8290 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8291 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8292 8293 assert(EPI.TripCount && 8294 "Expected trip count to have been safed in the first pass."); 8295 assert( 8296 (!isa<Instruction>(EPI.TripCount) || 8297 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8298 "saved trip count does not dominate insertion point."); 8299 Value *TC = EPI.TripCount; 8300 IRBuilder<> Builder(Insert->getTerminator()); 8301 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8302 8303 // Generate code to check if the loop's trip count is less than VF * UF of the 8304 // vector epilogue loop. 8305 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8306 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8307 8308 Value *CheckMinIters = 8309 Builder.CreateICmp(P, Count, 8310 createStepForVF(Builder, Count->getType(), 8311 EPI.EpilogueVF, EPI.EpilogueUF), 8312 "min.epilog.iters.check"); 8313 8314 ReplaceInstWithInst( 8315 Insert->getTerminator(), 8316 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8317 8318 LoopBypassBlocks.push_back(Insert); 8319 return Insert; 8320 } 8321 8322 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8323 LLVM_DEBUG({ 8324 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8325 << "Epilogue Loop VF:" << EPI.EpilogueVF 8326 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8327 }); 8328 } 8329 8330 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8331 DEBUG_WITH_TYPE(VerboseDebug, { 8332 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8333 }); 8334 } 8335 8336 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8337 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8338 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8339 bool PredicateAtRangeStart = Predicate(Range.Start); 8340 8341 for (ElementCount TmpVF = Range.Start * 2; 8342 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8343 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8344 Range.End = TmpVF; 8345 break; 8346 } 8347 8348 return PredicateAtRangeStart; 8349 } 8350 8351 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8352 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8353 /// of VF's starting at a given VF and extending it as much as possible. Each 8354 /// vectorization decision can potentially shorten this sub-range during 8355 /// buildVPlan(). 8356 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8357 ElementCount MaxVF) { 8358 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8359 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8360 VFRange SubRange = {VF, MaxVFPlusOne}; 8361 VPlans.push_back(buildVPlan(SubRange)); 8362 VF = SubRange.End; 8363 } 8364 } 8365 8366 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8367 VPlanPtr &Plan) { 8368 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8369 8370 // Look for cached value. 8371 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8372 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8373 if (ECEntryIt != EdgeMaskCache.end()) 8374 return ECEntryIt->second; 8375 8376 VPValue *SrcMask = createBlockInMask(Src, Plan); 8377 8378 // The terminator has to be a branch inst! 8379 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8380 assert(BI && "Unexpected terminator found"); 8381 8382 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8383 return EdgeMaskCache[Edge] = SrcMask; 8384 8385 // If source is an exiting block, we know the exit edge is dynamically dead 8386 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8387 // adding uses of an otherwise potentially dead instruction. 8388 if (OrigLoop->isLoopExiting(Src)) 8389 return EdgeMaskCache[Edge] = SrcMask; 8390 8391 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8392 assert(EdgeMask && "No Edge Mask found for condition"); 8393 8394 if (BI->getSuccessor(0) != Dst) 8395 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8396 8397 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8398 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8399 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8400 // The select version does not introduce new UB if SrcMask is false and 8401 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8402 VPValue *False = Plan->getOrAddVPValue( 8403 ConstantInt::getFalse(BI->getCondition()->getType())); 8404 EdgeMask = 8405 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8406 } 8407 8408 return EdgeMaskCache[Edge] = EdgeMask; 8409 } 8410 8411 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8412 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8413 8414 // Look for cached value. 8415 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8416 if (BCEntryIt != BlockMaskCache.end()) 8417 return BCEntryIt->second; 8418 8419 // All-one mask is modelled as no-mask following the convention for masked 8420 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8421 VPValue *BlockMask = nullptr; 8422 8423 if (OrigLoop->getHeader() == BB) { 8424 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8425 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8426 8427 // Introduce the early-exit compare IV <= BTC to form header block mask. 8428 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8429 // constructing the desired canonical IV in the header block as its first 8430 // non-phi instructions. 8431 assert(CM.foldTailByMasking() && "must fold the tail"); 8432 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8433 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8434 8435 VPValue *IV = nullptr; 8436 if (Legal->getPrimaryInduction()) 8437 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8438 else { 8439 auto *IVRecipe = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8440 HeaderVPBB->insert(IVRecipe, NewInsertionPoint); 8441 IV = IVRecipe; 8442 } 8443 8444 VPBuilder::InsertPointGuard Guard(Builder); 8445 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8446 if (CM.TTI.emitGetActiveLaneMask()) { 8447 VPValue *TC = Plan->getOrCreateTripCount(); 8448 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8449 } else { 8450 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8451 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8452 } 8453 return BlockMaskCache[BB] = BlockMask; 8454 } 8455 8456 // This is the block mask. We OR all incoming edges. 8457 for (auto *Predecessor : predecessors(BB)) { 8458 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8459 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8460 return BlockMaskCache[BB] = EdgeMask; 8461 8462 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8463 BlockMask = EdgeMask; 8464 continue; 8465 } 8466 8467 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8468 } 8469 8470 return BlockMaskCache[BB] = BlockMask; 8471 } 8472 8473 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8474 ArrayRef<VPValue *> Operands, 8475 VFRange &Range, 8476 VPlanPtr &Plan) { 8477 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8478 "Must be called with either a load or store"); 8479 8480 auto willWiden = [&](ElementCount VF) -> bool { 8481 if (VF.isScalar()) 8482 return false; 8483 LoopVectorizationCostModel::InstWidening Decision = 8484 CM.getWideningDecision(I, VF); 8485 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8486 "CM decision should be taken at this point."); 8487 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8488 return true; 8489 if (CM.isScalarAfterVectorization(I, VF) || 8490 CM.isProfitableToScalarize(I, VF)) 8491 return false; 8492 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8493 }; 8494 8495 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8496 return nullptr; 8497 8498 VPValue *Mask = nullptr; 8499 if (Legal->isMaskRequired(I)) 8500 Mask = createBlockInMask(I->getParent(), Plan); 8501 8502 // Determine if the pointer operand of the access is either consecutive or 8503 // reverse consecutive. 8504 LoopVectorizationCostModel::InstWidening Decision = 8505 CM.getWideningDecision(I, Range.Start); 8506 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8507 bool Consecutive = 8508 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8509 8510 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8511 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8512 Consecutive, Reverse); 8513 8514 StoreInst *Store = cast<StoreInst>(I); 8515 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8516 Mask, Consecutive, Reverse); 8517 } 8518 8519 VPWidenIntOrFpInductionRecipe * 8520 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8521 ArrayRef<VPValue *> Operands) const { 8522 // Check if this is an integer or fp induction. If so, build the recipe that 8523 // produces its scalar and vector values. 8524 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) { 8525 assert(II->getStartValue() == 8526 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8527 return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II); 8528 } 8529 8530 return nullptr; 8531 } 8532 8533 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8534 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8535 VPlan &Plan) const { 8536 // Optimize the special case where the source is a constant integer 8537 // induction variable. Notice that we can only optimize the 'trunc' case 8538 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8539 // (c) other casts depend on pointer size. 8540 8541 // Determine whether \p K is a truncation based on an induction variable that 8542 // can be optimized. 8543 auto isOptimizableIVTruncate = 8544 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8545 return [=](ElementCount VF) -> bool { 8546 return CM.isOptimizableIVTruncate(K, VF); 8547 }; 8548 }; 8549 8550 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8551 isOptimizableIVTruncate(I), Range)) { 8552 8553 auto *Phi = cast<PHINode>(I->getOperand(0)); 8554 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8555 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8556 return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I); 8557 } 8558 return nullptr; 8559 } 8560 8561 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8562 ArrayRef<VPValue *> Operands, 8563 VPlanPtr &Plan) { 8564 // If all incoming values are equal, the incoming VPValue can be used directly 8565 // instead of creating a new VPBlendRecipe. 8566 VPValue *FirstIncoming = Operands[0]; 8567 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8568 return FirstIncoming == Inc; 8569 })) { 8570 return Operands[0]; 8571 } 8572 8573 // We know that all PHIs in non-header blocks are converted into selects, so 8574 // we don't have to worry about the insertion order and we can just use the 8575 // builder. At this point we generate the predication tree. There may be 8576 // duplications since this is a simple recursive scan, but future 8577 // optimizations will clean it up. 8578 SmallVector<VPValue *, 2> OperandsWithMask; 8579 unsigned NumIncoming = Phi->getNumIncomingValues(); 8580 8581 for (unsigned In = 0; In < NumIncoming; In++) { 8582 VPValue *EdgeMask = 8583 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8584 assert((EdgeMask || NumIncoming == 1) && 8585 "Multiple predecessors with one having a full mask"); 8586 OperandsWithMask.push_back(Operands[In]); 8587 if (EdgeMask) 8588 OperandsWithMask.push_back(EdgeMask); 8589 } 8590 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8591 } 8592 8593 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8594 ArrayRef<VPValue *> Operands, 8595 VFRange &Range) const { 8596 8597 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8598 [this, CI](ElementCount VF) { 8599 return CM.isScalarWithPredication(CI, VF); 8600 }, 8601 Range); 8602 8603 if (IsPredicated) 8604 return nullptr; 8605 8606 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8607 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8608 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8609 ID == Intrinsic::pseudoprobe || 8610 ID == Intrinsic::experimental_noalias_scope_decl)) 8611 return nullptr; 8612 8613 auto willWiden = [&](ElementCount VF) -> bool { 8614 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8615 // The following case may be scalarized depending on the VF. 8616 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8617 // version of the instruction. 8618 // Is it beneficial to perform intrinsic call compared to lib call? 8619 bool NeedToScalarize = false; 8620 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8621 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8622 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8623 return UseVectorIntrinsic || !NeedToScalarize; 8624 }; 8625 8626 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8627 return nullptr; 8628 8629 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8630 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8631 } 8632 8633 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8634 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8635 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8636 // Instruction should be widened, unless it is scalar after vectorization, 8637 // scalarization is profitable or it is predicated. 8638 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8639 return CM.isScalarAfterVectorization(I, VF) || 8640 CM.isProfitableToScalarize(I, VF) || 8641 CM.isScalarWithPredication(I, VF); 8642 }; 8643 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8644 Range); 8645 } 8646 8647 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8648 ArrayRef<VPValue *> Operands) const { 8649 auto IsVectorizableOpcode = [](unsigned Opcode) { 8650 switch (Opcode) { 8651 case Instruction::Add: 8652 case Instruction::And: 8653 case Instruction::AShr: 8654 case Instruction::BitCast: 8655 case Instruction::FAdd: 8656 case Instruction::FCmp: 8657 case Instruction::FDiv: 8658 case Instruction::FMul: 8659 case Instruction::FNeg: 8660 case Instruction::FPExt: 8661 case Instruction::FPToSI: 8662 case Instruction::FPToUI: 8663 case Instruction::FPTrunc: 8664 case Instruction::FRem: 8665 case Instruction::FSub: 8666 case Instruction::ICmp: 8667 case Instruction::IntToPtr: 8668 case Instruction::LShr: 8669 case Instruction::Mul: 8670 case Instruction::Or: 8671 case Instruction::PtrToInt: 8672 case Instruction::SDiv: 8673 case Instruction::Select: 8674 case Instruction::SExt: 8675 case Instruction::Shl: 8676 case Instruction::SIToFP: 8677 case Instruction::SRem: 8678 case Instruction::Sub: 8679 case Instruction::Trunc: 8680 case Instruction::UDiv: 8681 case Instruction::UIToFP: 8682 case Instruction::URem: 8683 case Instruction::Xor: 8684 case Instruction::ZExt: 8685 return true; 8686 } 8687 return false; 8688 }; 8689 8690 if (!IsVectorizableOpcode(I->getOpcode())) 8691 return nullptr; 8692 8693 // Success: widen this instruction. 8694 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8695 } 8696 8697 void VPRecipeBuilder::fixHeaderPhis() { 8698 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8699 for (VPHeaderPHIRecipe *R : PhisToFix) { 8700 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8701 VPRecipeBase *IncR = 8702 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8703 R->addOperand(IncR->getVPSingleValue()); 8704 } 8705 } 8706 8707 VPBasicBlock *VPRecipeBuilder::handleReplication( 8708 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8709 VPlanPtr &Plan) { 8710 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8711 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8712 Range); 8713 8714 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8715 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8716 Range); 8717 8718 // Even if the instruction is not marked as uniform, there are certain 8719 // intrinsic calls that can be effectively treated as such, so we check for 8720 // them here. Conservatively, we only do this for scalable vectors, since 8721 // for fixed-width VFs we can always fall back on full scalarization. 8722 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8723 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8724 case Intrinsic::assume: 8725 case Intrinsic::lifetime_start: 8726 case Intrinsic::lifetime_end: 8727 // For scalable vectors if one of the operands is variant then we still 8728 // want to mark as uniform, which will generate one instruction for just 8729 // the first lane of the vector. We can't scalarize the call in the same 8730 // way as for fixed-width vectors because we don't know how many lanes 8731 // there are. 8732 // 8733 // The reasons for doing it this way for scalable vectors are: 8734 // 1. For the assume intrinsic generating the instruction for the first 8735 // lane is still be better than not generating any at all. For 8736 // example, the input may be a splat across all lanes. 8737 // 2. For the lifetime start/end intrinsics the pointer operand only 8738 // does anything useful when the input comes from a stack object, 8739 // which suggests it should always be uniform. For non-stack objects 8740 // the effect is to poison the object, which still allows us to 8741 // remove the call. 8742 IsUniform = true; 8743 break; 8744 default: 8745 break; 8746 } 8747 } 8748 8749 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8750 IsUniform, IsPredicated); 8751 setRecipe(I, Recipe); 8752 Plan->addVPValue(I, Recipe); 8753 8754 // Find if I uses a predicated instruction. If so, it will use its scalar 8755 // value. Avoid hoisting the insert-element which packs the scalar value into 8756 // a vector value, as that happens iff all users use the vector value. 8757 for (VPValue *Op : Recipe->operands()) { 8758 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8759 if (!PredR) 8760 continue; 8761 auto *RepR = 8762 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8763 assert(RepR->isPredicated() && 8764 "expected Replicate recipe to be predicated"); 8765 RepR->setAlsoPack(false); 8766 } 8767 8768 // Finalize the recipe for Instr, first if it is not predicated. 8769 if (!IsPredicated) { 8770 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8771 VPBB->appendRecipe(Recipe); 8772 return VPBB; 8773 } 8774 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8775 8776 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8777 assert(SingleSucc && "VPBB must have a single successor when handling " 8778 "predicated replication."); 8779 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8780 // Record predicated instructions for above packing optimizations. 8781 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8782 VPBlockUtils::insertBlockAfter(Region, VPBB); 8783 auto *RegSucc = new VPBasicBlock(); 8784 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8785 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8786 return RegSucc; 8787 } 8788 8789 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8790 VPRecipeBase *PredRecipe, 8791 VPlanPtr &Plan) { 8792 // Instructions marked for predication are replicated and placed under an 8793 // if-then construct to prevent side-effects. 8794 8795 // Generate recipes to compute the block mask for this region. 8796 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8797 8798 // Build the triangular if-then region. 8799 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8800 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8801 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8802 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8803 auto *PHIRecipe = Instr->getType()->isVoidTy() 8804 ? nullptr 8805 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8806 if (PHIRecipe) { 8807 Plan->removeVPValueFor(Instr); 8808 Plan->addVPValue(Instr, PHIRecipe); 8809 } 8810 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8811 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8812 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8813 8814 // Note: first set Entry as region entry and then connect successors starting 8815 // from it in order, to propagate the "parent" of each VPBasicBlock. 8816 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8817 VPBlockUtils::connectBlocks(Pred, Exit); 8818 8819 return Region; 8820 } 8821 8822 VPRecipeOrVPValueTy 8823 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8824 ArrayRef<VPValue *> Operands, 8825 VFRange &Range, VPlanPtr &Plan) { 8826 // First, check for specific widening recipes that deal with calls, memory 8827 // operations, inductions and Phi nodes. 8828 if (auto *CI = dyn_cast<CallInst>(Instr)) 8829 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8830 8831 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8832 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8833 8834 VPRecipeBase *Recipe; 8835 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8836 if (Phi->getParent() != OrigLoop->getHeader()) 8837 return tryToBlend(Phi, Operands, Plan); 8838 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8839 return toVPRecipeResult(Recipe); 8840 8841 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8842 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8843 VPValue *StartV = Operands[0]; 8844 if (Legal->isReductionVariable(Phi)) { 8845 const RecurrenceDescriptor &RdxDesc = 8846 Legal->getReductionVars().find(Phi)->second; 8847 assert(RdxDesc.getRecurrenceStartValue() == 8848 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8849 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8850 CM.isInLoopReduction(Phi), 8851 CM.useOrderedReductions(RdxDesc)); 8852 } else { 8853 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8854 } 8855 8856 // Record the incoming value from the backedge, so we can add the incoming 8857 // value from the backedge after all recipes have been created. 8858 recordRecipeOf(cast<Instruction>( 8859 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8860 PhisToFix.push_back(PhiRecipe); 8861 } else { 8862 // TODO: record backedge value for remaining pointer induction phis. 8863 assert(Phi->getType()->isPointerTy() && 8864 "only pointer phis should be handled here"); 8865 assert(Legal->getInductionVars().count(Phi) && 8866 "Not an induction variable"); 8867 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8868 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8869 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8870 } 8871 8872 return toVPRecipeResult(PhiRecipe); 8873 } 8874 8875 if (isa<TruncInst>(Instr) && 8876 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8877 Range, *Plan))) 8878 return toVPRecipeResult(Recipe); 8879 8880 if (!shouldWiden(Instr, Range)) 8881 return nullptr; 8882 8883 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8884 return toVPRecipeResult(new VPWidenGEPRecipe( 8885 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8886 8887 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8888 bool InvariantCond = 8889 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8890 return toVPRecipeResult(new VPWidenSelectRecipe( 8891 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8892 } 8893 8894 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8895 } 8896 8897 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8898 ElementCount MaxVF) { 8899 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8900 8901 // Collect instructions from the original loop that will become trivially dead 8902 // in the vectorized loop. We don't need to vectorize these instructions. For 8903 // example, original induction update instructions can become dead because we 8904 // separately emit induction "steps" when generating code for the new loop. 8905 // Similarly, we create a new latch condition when setting up the structure 8906 // of the new loop, so the old one can become dead. 8907 SmallPtrSet<Instruction *, 4> DeadInstructions; 8908 collectTriviallyDeadInstructions(DeadInstructions); 8909 8910 // Add assume instructions we need to drop to DeadInstructions, to prevent 8911 // them from being added to the VPlan. 8912 // TODO: We only need to drop assumes in blocks that get flattend. If the 8913 // control flow is preserved, we should keep them. 8914 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8915 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8916 8917 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8918 // Dead instructions do not need sinking. Remove them from SinkAfter. 8919 for (Instruction *I : DeadInstructions) 8920 SinkAfter.erase(I); 8921 8922 // Cannot sink instructions after dead instructions (there won't be any 8923 // recipes for them). Instead, find the first non-dead previous instruction. 8924 for (auto &P : Legal->getSinkAfter()) { 8925 Instruction *SinkTarget = P.second; 8926 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8927 (void)FirstInst; 8928 while (DeadInstructions.contains(SinkTarget)) { 8929 assert( 8930 SinkTarget != FirstInst && 8931 "Must find a live instruction (at least the one feeding the " 8932 "first-order recurrence PHI) before reaching beginning of the block"); 8933 SinkTarget = SinkTarget->getPrevNode(); 8934 assert(SinkTarget != P.first && 8935 "sink source equals target, no sinking required"); 8936 } 8937 P.second = SinkTarget; 8938 } 8939 8940 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8941 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8942 VFRange SubRange = {VF, MaxVFPlusOne}; 8943 VPlans.push_back( 8944 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8945 VF = SubRange.End; 8946 } 8947 } 8948 8949 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8950 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8951 // BranchOnCount VPInstruction to the latch. 8952 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8953 bool HasNUW, bool IsVPlanNative) { 8954 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8955 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8956 8957 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8958 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8959 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8960 if (IsVPlanNative) 8961 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8962 Header->insert(CanonicalIVPHI, Header->begin()); 8963 8964 auto *CanonicalIVIncrement = 8965 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8966 : VPInstruction::CanonicalIVIncrement, 8967 {CanonicalIVPHI}, DL); 8968 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8969 8970 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8971 if (IsVPlanNative) { 8972 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8973 EB->setCondBit(nullptr); 8974 } 8975 EB->appendRecipe(CanonicalIVIncrement); 8976 8977 auto *BranchOnCount = 8978 new VPInstruction(VPInstruction::BranchOnCount, 8979 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8980 EB->appendRecipe(BranchOnCount); 8981 } 8982 8983 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8984 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8985 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8986 8987 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8988 8989 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8990 8991 // --------------------------------------------------------------------------- 8992 // Pre-construction: record ingredients whose recipes we'll need to further 8993 // process after constructing the initial VPlan. 8994 // --------------------------------------------------------------------------- 8995 8996 // Mark instructions we'll need to sink later and their targets as 8997 // ingredients whose recipe we'll need to record. 8998 for (auto &Entry : SinkAfter) { 8999 RecipeBuilder.recordRecipeOf(Entry.first); 9000 RecipeBuilder.recordRecipeOf(Entry.second); 9001 } 9002 for (auto &Reduction : CM.getInLoopReductionChains()) { 9003 PHINode *Phi = Reduction.first; 9004 RecurKind Kind = 9005 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 9006 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9007 9008 RecipeBuilder.recordRecipeOf(Phi); 9009 for (auto &R : ReductionOperations) { 9010 RecipeBuilder.recordRecipeOf(R); 9011 // For min/max reducitons, where we have a pair of icmp/select, we also 9012 // need to record the ICmp recipe, so it can be removed later. 9013 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9014 "Only min/max recurrences allowed for inloop reductions"); 9015 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9016 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9017 } 9018 } 9019 9020 // For each interleave group which is relevant for this (possibly trimmed) 9021 // Range, add it to the set of groups to be later applied to the VPlan and add 9022 // placeholders for its members' Recipes which we'll be replacing with a 9023 // single VPInterleaveRecipe. 9024 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9025 auto applyIG = [IG, this](ElementCount VF) -> bool { 9026 return (VF.isVector() && // Query is illegal for VF == 1 9027 CM.getWideningDecision(IG->getInsertPos(), VF) == 9028 LoopVectorizationCostModel::CM_Interleave); 9029 }; 9030 if (!getDecisionAndClampRange(applyIG, Range)) 9031 continue; 9032 InterleaveGroups.insert(IG); 9033 for (unsigned i = 0; i < IG->getFactor(); i++) 9034 if (Instruction *Member = IG->getMember(i)) 9035 RecipeBuilder.recordRecipeOf(Member); 9036 }; 9037 9038 // --------------------------------------------------------------------------- 9039 // Build initial VPlan: Scan the body of the loop in a topological order to 9040 // visit each basic block after having visited its predecessor basic blocks. 9041 // --------------------------------------------------------------------------- 9042 9043 // Create initial VPlan skeleton, with separate header and latch blocks. 9044 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9045 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9046 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9047 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9048 auto Plan = std::make_unique<VPlan>(TopRegion); 9049 9050 Instruction *DLInst = 9051 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9052 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9053 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9054 !CM.foldTailByMasking(), false); 9055 9056 // Scan the body of the loop in a topological order to visit each basic block 9057 // after having visited its predecessor basic blocks. 9058 LoopBlocksDFS DFS(OrigLoop); 9059 DFS.perform(LI); 9060 9061 VPBasicBlock *VPBB = HeaderVPBB; 9062 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9063 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9064 // Relevant instructions from basic block BB will be grouped into VPRecipe 9065 // ingredients and fill a new VPBasicBlock. 9066 unsigned VPBBsForBB = 0; 9067 VPBB->setName(BB->getName()); 9068 Builder.setInsertPoint(VPBB); 9069 9070 // Introduce each ingredient into VPlan. 9071 // TODO: Model and preserve debug instrinsics in VPlan. 9072 for (Instruction &I : BB->instructionsWithoutDebug()) { 9073 Instruction *Instr = &I; 9074 9075 // First filter out irrelevant instructions, to ensure no recipes are 9076 // built for them. 9077 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9078 continue; 9079 9080 SmallVector<VPValue *, 4> Operands; 9081 auto *Phi = dyn_cast<PHINode>(Instr); 9082 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9083 Operands.push_back(Plan->getOrAddVPValue( 9084 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9085 } else { 9086 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9087 Operands = {OpRange.begin(), OpRange.end()}; 9088 } 9089 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9090 Instr, Operands, Range, Plan)) { 9091 // If Instr can be simplified to an existing VPValue, use it. 9092 if (RecipeOrValue.is<VPValue *>()) { 9093 auto *VPV = RecipeOrValue.get<VPValue *>(); 9094 Plan->addVPValue(Instr, VPV); 9095 // If the re-used value is a recipe, register the recipe for the 9096 // instruction, in case the recipe for Instr needs to be recorded. 9097 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9098 RecipeBuilder.setRecipe(Instr, R); 9099 continue; 9100 } 9101 // Otherwise, add the new recipe. 9102 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9103 for (auto *Def : Recipe->definedValues()) { 9104 auto *UV = Def->getUnderlyingValue(); 9105 Plan->addVPValue(UV, Def); 9106 } 9107 9108 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9109 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9110 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9111 // of the header block. That can happen for truncates of induction 9112 // variables. Those recipes are moved to the phi section of the header 9113 // block after applying SinkAfter, which relies on the original 9114 // position of the trunc. 9115 assert(isa<TruncInst>(Instr)); 9116 InductionsToMove.push_back( 9117 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9118 } 9119 RecipeBuilder.setRecipe(Instr, Recipe); 9120 VPBB->appendRecipe(Recipe); 9121 continue; 9122 } 9123 9124 // Otherwise, if all widening options failed, Instruction is to be 9125 // replicated. This may create a successor for VPBB. 9126 VPBasicBlock *NextVPBB = 9127 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9128 if (NextVPBB != VPBB) { 9129 VPBB = NextVPBB; 9130 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9131 : ""); 9132 } 9133 } 9134 9135 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9136 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9137 } 9138 9139 // Fold the last, empty block into its predecessor. 9140 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9141 assert(VPBB && "expected to fold last (empty) block"); 9142 // After here, VPBB should not be used. 9143 VPBB = nullptr; 9144 9145 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9146 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9147 "entry block must be set to a VPRegionBlock having a non-empty entry " 9148 "VPBasicBlock"); 9149 RecipeBuilder.fixHeaderPhis(); 9150 9151 // --------------------------------------------------------------------------- 9152 // Transform initial VPlan: Apply previously taken decisions, in order, to 9153 // bring the VPlan to its final state. 9154 // --------------------------------------------------------------------------- 9155 9156 // Apply Sink-After legal constraints. 9157 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9158 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9159 if (Region && Region->isReplicator()) { 9160 assert(Region->getNumSuccessors() == 1 && 9161 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9162 assert(R->getParent()->size() == 1 && 9163 "A recipe in an original replicator region must be the only " 9164 "recipe in its block"); 9165 return Region; 9166 } 9167 return nullptr; 9168 }; 9169 for (auto &Entry : SinkAfter) { 9170 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9171 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9172 9173 auto *TargetRegion = GetReplicateRegion(Target); 9174 auto *SinkRegion = GetReplicateRegion(Sink); 9175 if (!SinkRegion) { 9176 // If the sink source is not a replicate region, sink the recipe directly. 9177 if (TargetRegion) { 9178 // The target is in a replication region, make sure to move Sink to 9179 // the block after it, not into the replication region itself. 9180 VPBasicBlock *NextBlock = 9181 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9182 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9183 } else 9184 Sink->moveAfter(Target); 9185 continue; 9186 } 9187 9188 // The sink source is in a replicate region. Unhook the region from the CFG. 9189 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9190 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9191 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9192 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9193 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9194 9195 if (TargetRegion) { 9196 // The target recipe is also in a replicate region, move the sink region 9197 // after the target region. 9198 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9199 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9200 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9201 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9202 } else { 9203 // The sink source is in a replicate region, we need to move the whole 9204 // replicate region, which should only contain a single recipe in the 9205 // main block. 9206 auto *SplitBlock = 9207 Target->getParent()->splitAt(std::next(Target->getIterator())); 9208 9209 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9210 9211 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9212 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9213 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9214 } 9215 } 9216 9217 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9218 9219 // Now that sink-after is done, move induction recipes for optimized truncates 9220 // to the phi section of the header block. 9221 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9222 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9223 9224 // Adjust the recipes for any inloop reductions. 9225 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9226 RecipeBuilder, Range.Start); 9227 9228 // Introduce a recipe to combine the incoming and previous values of a 9229 // first-order recurrence. 9230 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9231 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9232 if (!RecurPhi) 9233 continue; 9234 9235 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9236 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9237 auto *Region = GetReplicateRegion(PrevRecipe); 9238 if (Region) 9239 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9240 if (Region || PrevRecipe->isPhi()) 9241 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9242 else 9243 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9244 9245 auto *RecurSplice = cast<VPInstruction>( 9246 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9247 {RecurPhi, RecurPhi->getBackedgeValue()})); 9248 9249 RecurPhi->replaceAllUsesWith(RecurSplice); 9250 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9251 // all users. 9252 RecurSplice->setOperand(0, RecurPhi); 9253 } 9254 9255 // Interleave memory: for each Interleave Group we marked earlier as relevant 9256 // for this VPlan, replace the Recipes widening its memory instructions with a 9257 // single VPInterleaveRecipe at its insertion point. 9258 for (auto IG : InterleaveGroups) { 9259 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9260 RecipeBuilder.getRecipe(IG->getInsertPos())); 9261 SmallVector<VPValue *, 4> StoredValues; 9262 for (unsigned i = 0; i < IG->getFactor(); ++i) 9263 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9264 auto *StoreR = 9265 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9266 StoredValues.push_back(StoreR->getStoredValue()); 9267 } 9268 9269 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9270 Recipe->getMask()); 9271 VPIG->insertBefore(Recipe); 9272 unsigned J = 0; 9273 for (unsigned i = 0; i < IG->getFactor(); ++i) 9274 if (Instruction *Member = IG->getMember(i)) { 9275 if (!Member->getType()->isVoidTy()) { 9276 VPValue *OriginalV = Plan->getVPValue(Member); 9277 Plan->removeVPValueFor(Member); 9278 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9279 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9280 J++; 9281 } 9282 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9283 } 9284 } 9285 9286 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9287 // in ways that accessing values using original IR values is incorrect. 9288 Plan->disableValue2VPValue(); 9289 9290 VPlanTransforms::sinkScalarOperands(*Plan); 9291 VPlanTransforms::mergeReplicateRegions(*Plan); 9292 9293 std::string PlanName; 9294 raw_string_ostream RSO(PlanName); 9295 ElementCount VF = Range.Start; 9296 Plan->addVF(VF); 9297 RSO << "Initial VPlan for VF={" << VF; 9298 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9299 Plan->addVF(VF); 9300 RSO << "," << VF; 9301 } 9302 RSO << "},UF>=1"; 9303 RSO.flush(); 9304 Plan->setName(PlanName); 9305 9306 // Fold Exit block into its predecessor if possible. 9307 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9308 // VPBasicBlock as exit. 9309 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9310 9311 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9312 return Plan; 9313 } 9314 9315 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9316 // Outer loop handling: They may require CFG and instruction level 9317 // transformations before even evaluating whether vectorization is profitable. 9318 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9319 // the vectorization pipeline. 9320 assert(!OrigLoop->isInnermost()); 9321 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9322 9323 // Create new empty VPlan 9324 auto Plan = std::make_unique<VPlan>(); 9325 9326 // Build hierarchical CFG 9327 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9328 HCFGBuilder.buildHierarchicalCFG(); 9329 9330 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9331 VF *= 2) 9332 Plan->addVF(VF); 9333 9334 if (EnableVPlanPredication) { 9335 VPlanPredicator VPP(*Plan); 9336 VPP.predicate(); 9337 9338 // Avoid running transformation to recipes until masked code generation in 9339 // VPlan-native path is in place. 9340 return Plan; 9341 } 9342 9343 SmallPtrSet<Instruction *, 1> DeadInstructions; 9344 VPlanTransforms::VPInstructionsToVPRecipes( 9345 OrigLoop, Plan, 9346 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9347 DeadInstructions, *PSE.getSE()); 9348 9349 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9350 true, true); 9351 return Plan; 9352 } 9353 9354 // Adjust the recipes for reductions. For in-loop reductions the chain of 9355 // instructions leading from the loop exit instr to the phi need to be converted 9356 // to reductions, with one operand being vector and the other being the scalar 9357 // reduction chain. For other reductions, a select is introduced between the phi 9358 // and live-out recipes when folding the tail. 9359 void LoopVectorizationPlanner::adjustRecipesForReductions( 9360 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9361 ElementCount MinVF) { 9362 for (auto &Reduction : CM.getInLoopReductionChains()) { 9363 PHINode *Phi = Reduction.first; 9364 const RecurrenceDescriptor &RdxDesc = 9365 Legal->getReductionVars().find(Phi)->second; 9366 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9367 9368 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9369 continue; 9370 9371 // ReductionOperations are orders top-down from the phi's use to the 9372 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9373 // which of the two operands will remain scalar and which will be reduced. 9374 // For minmax the chain will be the select instructions. 9375 Instruction *Chain = Phi; 9376 for (Instruction *R : ReductionOperations) { 9377 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9378 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9379 9380 VPValue *ChainOp = Plan->getVPValue(Chain); 9381 unsigned FirstOpId; 9382 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9383 "Only min/max recurrences allowed for inloop reductions"); 9384 // Recognize a call to the llvm.fmuladd intrinsic. 9385 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9386 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9387 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9388 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9389 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9390 "Expected to replace a VPWidenSelectSC"); 9391 FirstOpId = 1; 9392 } else { 9393 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9394 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9395 "Expected to replace a VPWidenSC"); 9396 FirstOpId = 0; 9397 } 9398 unsigned VecOpId = 9399 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9400 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9401 9402 auto *CondOp = CM.foldTailByMasking() 9403 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9404 : nullptr; 9405 9406 if (IsFMulAdd) { 9407 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9408 // need to create an fmul recipe to use as the vector operand for the 9409 // fadd reduction. 9410 VPInstruction *FMulRecipe = new VPInstruction( 9411 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9412 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9413 WidenRecipe->getParent()->insert(FMulRecipe, 9414 WidenRecipe->getIterator()); 9415 VecOp = FMulRecipe; 9416 } 9417 VPReductionRecipe *RedRecipe = 9418 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9419 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9420 Plan->removeVPValueFor(R); 9421 Plan->addVPValue(R, RedRecipe); 9422 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9423 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9424 WidenRecipe->eraseFromParent(); 9425 9426 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9427 VPRecipeBase *CompareRecipe = 9428 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9429 assert(isa<VPWidenRecipe>(CompareRecipe) && 9430 "Expected to replace a VPWidenSC"); 9431 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9432 "Expected no remaining users"); 9433 CompareRecipe->eraseFromParent(); 9434 } 9435 Chain = R; 9436 } 9437 } 9438 9439 // If tail is folded by masking, introduce selects between the phi 9440 // and the live-out instruction of each reduction, at the beginning of the 9441 // dedicated latch block. 9442 if (CM.foldTailByMasking()) { 9443 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9444 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9445 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9446 if (!PhiR || PhiR->isInLoop()) 9447 continue; 9448 VPValue *Cond = 9449 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9450 VPValue *Red = PhiR->getBackedgeValue(); 9451 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9452 "reduction recipe must be defined before latch"); 9453 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9454 } 9455 } 9456 } 9457 9458 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9459 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9460 VPSlotTracker &SlotTracker) const { 9461 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9462 IG->getInsertPos()->printAsOperand(O, false); 9463 O << ", "; 9464 getAddr()->printAsOperand(O, SlotTracker); 9465 VPValue *Mask = getMask(); 9466 if (Mask) { 9467 O << ", "; 9468 Mask->printAsOperand(O, SlotTracker); 9469 } 9470 9471 unsigned OpIdx = 0; 9472 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9473 if (!IG->getMember(i)) 9474 continue; 9475 if (getNumStoreOperands() > 0) { 9476 O << "\n" << Indent << " store "; 9477 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9478 O << " to index " << i; 9479 } else { 9480 O << "\n" << Indent << " "; 9481 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9482 O << " = load from index " << i; 9483 } 9484 ++OpIdx; 9485 } 9486 } 9487 #endif 9488 9489 void VPWidenCallRecipe::execute(VPTransformState &State) { 9490 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9491 *this, State); 9492 } 9493 9494 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9495 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9496 State.ILV->setDebugLocFromInst(&I); 9497 9498 // The condition can be loop invariant but still defined inside the 9499 // loop. This means that we can't just use the original 'cond' value. 9500 // We have to take the 'vectorized' value and pick the first lane. 9501 // Instcombine will make this a no-op. 9502 auto *InvarCond = 9503 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9504 9505 for (unsigned Part = 0; Part < State.UF; ++Part) { 9506 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9507 Value *Op0 = State.get(getOperand(1), Part); 9508 Value *Op1 = State.get(getOperand(2), Part); 9509 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9510 State.set(this, Sel, Part); 9511 State.ILV->addMetadata(Sel, &I); 9512 } 9513 } 9514 9515 void VPWidenRecipe::execute(VPTransformState &State) { 9516 auto &I = *cast<Instruction>(getUnderlyingValue()); 9517 auto &Builder = State.Builder; 9518 switch (I.getOpcode()) { 9519 case Instruction::Call: 9520 case Instruction::Br: 9521 case Instruction::PHI: 9522 case Instruction::GetElementPtr: 9523 case Instruction::Select: 9524 llvm_unreachable("This instruction is handled by a different recipe."); 9525 case Instruction::UDiv: 9526 case Instruction::SDiv: 9527 case Instruction::SRem: 9528 case Instruction::URem: 9529 case Instruction::Add: 9530 case Instruction::FAdd: 9531 case Instruction::Sub: 9532 case Instruction::FSub: 9533 case Instruction::FNeg: 9534 case Instruction::Mul: 9535 case Instruction::FMul: 9536 case Instruction::FDiv: 9537 case Instruction::FRem: 9538 case Instruction::Shl: 9539 case Instruction::LShr: 9540 case Instruction::AShr: 9541 case Instruction::And: 9542 case Instruction::Or: 9543 case Instruction::Xor: { 9544 // Just widen unops and binops. 9545 State.ILV->setDebugLocFromInst(&I); 9546 9547 for (unsigned Part = 0; Part < State.UF; ++Part) { 9548 SmallVector<Value *, 2> Ops; 9549 for (VPValue *VPOp : operands()) 9550 Ops.push_back(State.get(VPOp, Part)); 9551 9552 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9553 9554 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9555 VecOp->copyIRFlags(&I); 9556 9557 // If the instruction is vectorized and was in a basic block that needed 9558 // predication, we can't propagate poison-generating flags (nuw/nsw, 9559 // exact, etc.). The control flow has been linearized and the 9560 // instruction is no longer guarded by the predicate, which could make 9561 // the flag properties to no longer hold. 9562 if (State.MayGeneratePoisonRecipes.contains(this)) 9563 VecOp->dropPoisonGeneratingFlags(); 9564 } 9565 9566 // Use this vector value for all users of the original instruction. 9567 State.set(this, V, Part); 9568 State.ILV->addMetadata(V, &I); 9569 } 9570 9571 break; 9572 } 9573 case Instruction::ICmp: 9574 case Instruction::FCmp: { 9575 // Widen compares. Generate vector compares. 9576 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9577 auto *Cmp = cast<CmpInst>(&I); 9578 State.ILV->setDebugLocFromInst(Cmp); 9579 for (unsigned Part = 0; Part < State.UF; ++Part) { 9580 Value *A = State.get(getOperand(0), Part); 9581 Value *B = State.get(getOperand(1), Part); 9582 Value *C = nullptr; 9583 if (FCmp) { 9584 // Propagate fast math flags. 9585 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9586 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9587 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9588 } else { 9589 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9590 } 9591 State.set(this, C, Part); 9592 State.ILV->addMetadata(C, &I); 9593 } 9594 9595 break; 9596 } 9597 9598 case Instruction::ZExt: 9599 case Instruction::SExt: 9600 case Instruction::FPToUI: 9601 case Instruction::FPToSI: 9602 case Instruction::FPExt: 9603 case Instruction::PtrToInt: 9604 case Instruction::IntToPtr: 9605 case Instruction::SIToFP: 9606 case Instruction::UIToFP: 9607 case Instruction::Trunc: 9608 case Instruction::FPTrunc: 9609 case Instruction::BitCast: { 9610 auto *CI = cast<CastInst>(&I); 9611 State.ILV->setDebugLocFromInst(CI); 9612 9613 /// Vectorize casts. 9614 Type *DestTy = (State.VF.isScalar()) 9615 ? CI->getType() 9616 : VectorType::get(CI->getType(), State.VF); 9617 9618 for (unsigned Part = 0; Part < State.UF; ++Part) { 9619 Value *A = State.get(getOperand(0), Part); 9620 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9621 State.set(this, Cast, Part); 9622 State.ILV->addMetadata(Cast, &I); 9623 } 9624 break; 9625 } 9626 default: 9627 // This instruction is not vectorized by simple widening. 9628 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9629 llvm_unreachable("Unhandled instruction!"); 9630 } // end of switch. 9631 } 9632 9633 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9634 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9635 // Construct a vector GEP by widening the operands of the scalar GEP as 9636 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9637 // results in a vector of pointers when at least one operand of the GEP 9638 // is vector-typed. Thus, to keep the representation compact, we only use 9639 // vector-typed operands for loop-varying values. 9640 9641 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9642 // If we are vectorizing, but the GEP has only loop-invariant operands, 9643 // the GEP we build (by only using vector-typed operands for 9644 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9645 // produce a vector of pointers, we need to either arbitrarily pick an 9646 // operand to broadcast, or broadcast a clone of the original GEP. 9647 // Here, we broadcast a clone of the original. 9648 // 9649 // TODO: If at some point we decide to scalarize instructions having 9650 // loop-invariant operands, this special case will no longer be 9651 // required. We would add the scalarization decision to 9652 // collectLoopScalars() and teach getVectorValue() to broadcast 9653 // the lane-zero scalar value. 9654 auto *Clone = State.Builder.Insert(GEP->clone()); 9655 for (unsigned Part = 0; Part < State.UF; ++Part) { 9656 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9657 State.set(this, EntryPart, Part); 9658 State.ILV->addMetadata(EntryPart, GEP); 9659 } 9660 } else { 9661 // If the GEP has at least one loop-varying operand, we are sure to 9662 // produce a vector of pointers. But if we are only unrolling, we want 9663 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9664 // produce with the code below will be scalar (if VF == 1) or vector 9665 // (otherwise). Note that for the unroll-only case, we still maintain 9666 // values in the vector mapping with initVector, as we do for other 9667 // instructions. 9668 for (unsigned Part = 0; Part < State.UF; ++Part) { 9669 // The pointer operand of the new GEP. If it's loop-invariant, we 9670 // won't broadcast it. 9671 auto *Ptr = IsPtrLoopInvariant 9672 ? State.get(getOperand(0), VPIteration(0, 0)) 9673 : State.get(getOperand(0), Part); 9674 9675 // Collect all the indices for the new GEP. If any index is 9676 // loop-invariant, we won't broadcast it. 9677 SmallVector<Value *, 4> Indices; 9678 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9679 VPValue *Operand = getOperand(I); 9680 if (IsIndexLoopInvariant[I - 1]) 9681 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9682 else 9683 Indices.push_back(State.get(Operand, Part)); 9684 } 9685 9686 // If the GEP instruction is vectorized and was in a basic block that 9687 // needed predication, we can't propagate the poison-generating 'inbounds' 9688 // flag. The control flow has been linearized and the GEP is no longer 9689 // guarded by the predicate, which could make the 'inbounds' properties to 9690 // no longer hold. 9691 bool IsInBounds = 9692 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9693 9694 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9695 // but it should be a vector, otherwise. 9696 auto *NewGEP = IsInBounds 9697 ? State.Builder.CreateInBoundsGEP( 9698 GEP->getSourceElementType(), Ptr, Indices) 9699 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9700 Ptr, Indices); 9701 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9702 "NewGEP is not a pointer vector"); 9703 State.set(this, NewGEP, Part); 9704 State.ILV->addMetadata(NewGEP, GEP); 9705 } 9706 } 9707 } 9708 9709 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9710 assert(!State.Instance && "Int or FP induction being replicated."); 9711 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9712 State.ILV->widenIntOrFpInduction(IV, getInductionDescriptor(), 9713 getStartValue()->getLiveInIRValue(), 9714 getTruncInst(), this, State, CanonicalIV); 9715 } 9716 9717 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9718 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9719 State); 9720 } 9721 9722 void VPBlendRecipe::execute(VPTransformState &State) { 9723 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9724 // We know that all PHIs in non-header blocks are converted into 9725 // selects, so we don't have to worry about the insertion order and we 9726 // can just use the builder. 9727 // At this point we generate the predication tree. There may be 9728 // duplications since this is a simple recursive scan, but future 9729 // optimizations will clean it up. 9730 9731 unsigned NumIncoming = getNumIncomingValues(); 9732 9733 // Generate a sequence of selects of the form: 9734 // SELECT(Mask3, In3, 9735 // SELECT(Mask2, In2, 9736 // SELECT(Mask1, In1, 9737 // In0))) 9738 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9739 // are essentially undef are taken from In0. 9740 InnerLoopVectorizer::VectorParts Entry(State.UF); 9741 for (unsigned In = 0; In < NumIncoming; ++In) { 9742 for (unsigned Part = 0; Part < State.UF; ++Part) { 9743 // We might have single edge PHIs (blocks) - use an identity 9744 // 'select' for the first PHI operand. 9745 Value *In0 = State.get(getIncomingValue(In), Part); 9746 if (In == 0) 9747 Entry[Part] = In0; // Initialize with the first incoming value. 9748 else { 9749 // Select between the current value and the previous incoming edge 9750 // based on the incoming mask. 9751 Value *Cond = State.get(getMask(In), Part); 9752 Entry[Part] = 9753 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9754 } 9755 } 9756 } 9757 for (unsigned Part = 0; Part < State.UF; ++Part) 9758 State.set(this, Entry[Part], Part); 9759 } 9760 9761 void VPInterleaveRecipe::execute(VPTransformState &State) { 9762 assert(!State.Instance && "Interleave group being replicated."); 9763 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9764 getStoredValues(), getMask()); 9765 } 9766 9767 void VPReductionRecipe::execute(VPTransformState &State) { 9768 assert(!State.Instance && "Reduction being replicated."); 9769 Value *PrevInChain = State.get(getChainOp(), 0); 9770 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9771 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9772 // Propagate the fast-math flags carried by the underlying instruction. 9773 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9774 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9775 for (unsigned Part = 0; Part < State.UF; ++Part) { 9776 Value *NewVecOp = State.get(getVecOp(), Part); 9777 if (VPValue *Cond = getCondOp()) { 9778 Value *NewCond = State.get(Cond, Part); 9779 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9780 Value *Iden = RdxDesc->getRecurrenceIdentity( 9781 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9782 Value *IdenVec = 9783 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9784 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9785 NewVecOp = Select; 9786 } 9787 Value *NewRed; 9788 Value *NextInChain; 9789 if (IsOrdered) { 9790 if (State.VF.isVector()) 9791 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9792 PrevInChain); 9793 else 9794 NewRed = State.Builder.CreateBinOp( 9795 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9796 NewVecOp); 9797 PrevInChain = NewRed; 9798 } else { 9799 PrevInChain = State.get(getChainOp(), Part); 9800 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9801 } 9802 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9803 NextInChain = 9804 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9805 NewRed, PrevInChain); 9806 } else if (IsOrdered) 9807 NextInChain = NewRed; 9808 else 9809 NextInChain = State.Builder.CreateBinOp( 9810 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9811 PrevInChain); 9812 State.set(this, NextInChain, Part); 9813 } 9814 } 9815 9816 void VPReplicateRecipe::execute(VPTransformState &State) { 9817 if (State.Instance) { // Generate a single instance. 9818 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9819 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9820 IsPredicated, State); 9821 // Insert scalar instance packing it into a vector. 9822 if (AlsoPack && State.VF.isVector()) { 9823 // If we're constructing lane 0, initialize to start from poison. 9824 if (State.Instance->Lane.isFirstLane()) { 9825 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9826 Value *Poison = PoisonValue::get( 9827 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9828 State.set(this, Poison, State.Instance->Part); 9829 } 9830 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9831 } 9832 return; 9833 } 9834 9835 // Generate scalar instances for all VF lanes of all UF parts, unless the 9836 // instruction is uniform inwhich case generate only the first lane for each 9837 // of the UF parts. 9838 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9839 assert((!State.VF.isScalable() || IsUniform) && 9840 "Can't scalarize a scalable vector"); 9841 for (unsigned Part = 0; Part < State.UF; ++Part) 9842 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9843 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9844 VPIteration(Part, Lane), IsPredicated, 9845 State); 9846 } 9847 9848 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9849 assert(State.Instance && "Branch on Mask works only on single instance."); 9850 9851 unsigned Part = State.Instance->Part; 9852 unsigned Lane = State.Instance->Lane.getKnownLane(); 9853 9854 Value *ConditionBit = nullptr; 9855 VPValue *BlockInMask = getMask(); 9856 if (BlockInMask) { 9857 ConditionBit = State.get(BlockInMask, Part); 9858 if (ConditionBit->getType()->isVectorTy()) 9859 ConditionBit = State.Builder.CreateExtractElement( 9860 ConditionBit, State.Builder.getInt32(Lane)); 9861 } else // Block in mask is all-one. 9862 ConditionBit = State.Builder.getTrue(); 9863 9864 // Replace the temporary unreachable terminator with a new conditional branch, 9865 // whose two destinations will be set later when they are created. 9866 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9867 assert(isa<UnreachableInst>(CurrentTerminator) && 9868 "Expected to replace unreachable terminator with conditional branch."); 9869 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9870 CondBr->setSuccessor(0, nullptr); 9871 ReplaceInstWithInst(CurrentTerminator, CondBr); 9872 } 9873 9874 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9875 assert(State.Instance && "Predicated instruction PHI works per instance."); 9876 Instruction *ScalarPredInst = 9877 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9878 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9879 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9880 assert(PredicatingBB && "Predicated block has no single predecessor."); 9881 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9882 "operand must be VPReplicateRecipe"); 9883 9884 // By current pack/unpack logic we need to generate only a single phi node: if 9885 // a vector value for the predicated instruction exists at this point it means 9886 // the instruction has vector users only, and a phi for the vector value is 9887 // needed. In this case the recipe of the predicated instruction is marked to 9888 // also do that packing, thereby "hoisting" the insert-element sequence. 9889 // Otherwise, a phi node for the scalar value is needed. 9890 unsigned Part = State.Instance->Part; 9891 if (State.hasVectorValue(getOperand(0), Part)) { 9892 Value *VectorValue = State.get(getOperand(0), Part); 9893 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9894 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9895 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9896 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9897 if (State.hasVectorValue(this, Part)) 9898 State.reset(this, VPhi, Part); 9899 else 9900 State.set(this, VPhi, Part); 9901 // NOTE: Currently we need to update the value of the operand, so the next 9902 // predicated iteration inserts its generated value in the correct vector. 9903 State.reset(getOperand(0), VPhi, Part); 9904 } else { 9905 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9906 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9907 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9908 PredicatingBB); 9909 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9910 if (State.hasScalarValue(this, *State.Instance)) 9911 State.reset(this, Phi, *State.Instance); 9912 else 9913 State.set(this, Phi, *State.Instance); 9914 // NOTE: Currently we need to update the value of the operand, so the next 9915 // predicated iteration inserts its generated value in the correct vector. 9916 State.reset(getOperand(0), Phi, *State.Instance); 9917 } 9918 } 9919 9920 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9921 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9922 9923 // Attempt to issue a wide load. 9924 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9925 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9926 9927 assert((LI || SI) && "Invalid Load/Store instruction"); 9928 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9929 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9930 9931 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9932 9933 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9934 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9935 bool CreateGatherScatter = !Consecutive; 9936 9937 auto &Builder = State.Builder; 9938 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9939 bool isMaskRequired = getMask(); 9940 if (isMaskRequired) 9941 for (unsigned Part = 0; Part < State.UF; ++Part) 9942 BlockInMaskParts[Part] = State.get(getMask(), Part); 9943 9944 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9945 // Calculate the pointer for the specific unroll-part. 9946 GetElementPtrInst *PartPtr = nullptr; 9947 9948 bool InBounds = false; 9949 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9950 InBounds = gep->isInBounds(); 9951 if (Reverse) { 9952 // If the address is consecutive but reversed, then the 9953 // wide store needs to start at the last vector element. 9954 // RunTimeVF = VScale * VF.getKnownMinValue() 9955 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9956 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9957 // NumElt = -Part * RunTimeVF 9958 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9959 // LastLane = 1 - RunTimeVF 9960 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9961 PartPtr = 9962 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9963 PartPtr->setIsInBounds(InBounds); 9964 PartPtr = cast<GetElementPtrInst>( 9965 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9966 PartPtr->setIsInBounds(InBounds); 9967 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9968 BlockInMaskParts[Part] = 9969 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9970 } else { 9971 Value *Increment = 9972 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9973 PartPtr = cast<GetElementPtrInst>( 9974 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9975 PartPtr->setIsInBounds(InBounds); 9976 } 9977 9978 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9979 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9980 }; 9981 9982 // Handle Stores: 9983 if (SI) { 9984 State.ILV->setDebugLocFromInst(SI); 9985 9986 for (unsigned Part = 0; Part < State.UF; ++Part) { 9987 Instruction *NewSI = nullptr; 9988 Value *StoredVal = State.get(StoredValue, Part); 9989 if (CreateGatherScatter) { 9990 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9991 Value *VectorGep = State.get(getAddr(), Part); 9992 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9993 MaskPart); 9994 } else { 9995 if (Reverse) { 9996 // If we store to reverse consecutive memory locations, then we need 9997 // to reverse the order of elements in the stored value. 9998 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9999 // We don't want to update the value in the map as it might be used in 10000 // another expression. So don't call resetVectorValue(StoredVal). 10001 } 10002 auto *VecPtr = 10003 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10004 if (isMaskRequired) 10005 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 10006 BlockInMaskParts[Part]); 10007 else 10008 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10009 } 10010 State.ILV->addMetadata(NewSI, SI); 10011 } 10012 return; 10013 } 10014 10015 // Handle loads. 10016 assert(LI && "Must have a load instruction"); 10017 State.ILV->setDebugLocFromInst(LI); 10018 for (unsigned Part = 0; Part < State.UF; ++Part) { 10019 Value *NewLI; 10020 if (CreateGatherScatter) { 10021 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10022 Value *VectorGep = State.get(getAddr(), Part); 10023 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10024 nullptr, "wide.masked.gather"); 10025 State.ILV->addMetadata(NewLI, LI); 10026 } else { 10027 auto *VecPtr = 10028 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10029 if (isMaskRequired) 10030 NewLI = Builder.CreateMaskedLoad( 10031 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10032 PoisonValue::get(DataTy), "wide.masked.load"); 10033 else 10034 NewLI = 10035 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10036 10037 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10038 State.ILV->addMetadata(NewLI, LI); 10039 if (Reverse) 10040 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10041 } 10042 10043 State.set(this, NewLI, Part); 10044 } 10045 } 10046 10047 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10048 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10049 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10050 // for predication. 10051 static ScalarEpilogueLowering getScalarEpilogueLowering( 10052 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10053 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10054 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10055 LoopVectorizationLegality &LVL) { 10056 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10057 // don't look at hints or options, and don't request a scalar epilogue. 10058 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10059 // LoopAccessInfo (due to code dependency and not being able to reliably get 10060 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10061 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10062 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10063 // back to the old way and vectorize with versioning when forced. See D81345.) 10064 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10065 PGSOQueryType::IRPass) && 10066 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10067 return CM_ScalarEpilogueNotAllowedOptSize; 10068 10069 // 2) If set, obey the directives 10070 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10071 switch (PreferPredicateOverEpilogue) { 10072 case PreferPredicateTy::ScalarEpilogue: 10073 return CM_ScalarEpilogueAllowed; 10074 case PreferPredicateTy::PredicateElseScalarEpilogue: 10075 return CM_ScalarEpilogueNotNeededUsePredicate; 10076 case PreferPredicateTy::PredicateOrDontVectorize: 10077 return CM_ScalarEpilogueNotAllowedUsePredicate; 10078 }; 10079 } 10080 10081 // 3) If set, obey the hints 10082 switch (Hints.getPredicate()) { 10083 case LoopVectorizeHints::FK_Enabled: 10084 return CM_ScalarEpilogueNotNeededUsePredicate; 10085 case LoopVectorizeHints::FK_Disabled: 10086 return CM_ScalarEpilogueAllowed; 10087 }; 10088 10089 // 4) if the TTI hook indicates this is profitable, request predication. 10090 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10091 LVL.getLAI())) 10092 return CM_ScalarEpilogueNotNeededUsePredicate; 10093 10094 return CM_ScalarEpilogueAllowed; 10095 } 10096 10097 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10098 // If Values have been set for this Def return the one relevant for \p Part. 10099 if (hasVectorValue(Def, Part)) 10100 return Data.PerPartOutput[Def][Part]; 10101 10102 if (!hasScalarValue(Def, {Part, 0})) { 10103 Value *IRV = Def->getLiveInIRValue(); 10104 Value *B = ILV->getBroadcastInstrs(IRV); 10105 set(Def, B, Part); 10106 return B; 10107 } 10108 10109 Value *ScalarValue = get(Def, {Part, 0}); 10110 // If we aren't vectorizing, we can just copy the scalar map values over 10111 // to the vector map. 10112 if (VF.isScalar()) { 10113 set(Def, ScalarValue, Part); 10114 return ScalarValue; 10115 } 10116 10117 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10118 bool IsUniform = RepR && RepR->isUniform(); 10119 10120 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10121 // Check if there is a scalar value for the selected lane. 10122 if (!hasScalarValue(Def, {Part, LastLane})) { 10123 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10124 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10125 "unexpected recipe found to be invariant"); 10126 IsUniform = true; 10127 LastLane = 0; 10128 } 10129 10130 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10131 // Set the insert point after the last scalarized instruction or after the 10132 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10133 // will directly follow the scalar definitions. 10134 auto OldIP = Builder.saveIP(); 10135 auto NewIP = 10136 isa<PHINode>(LastInst) 10137 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10138 : std::next(BasicBlock::iterator(LastInst)); 10139 Builder.SetInsertPoint(&*NewIP); 10140 10141 // However, if we are vectorizing, we need to construct the vector values. 10142 // If the value is known to be uniform after vectorization, we can just 10143 // broadcast the scalar value corresponding to lane zero for each unroll 10144 // iteration. Otherwise, we construct the vector values using 10145 // insertelement instructions. Since the resulting vectors are stored in 10146 // State, we will only generate the insertelements once. 10147 Value *VectorValue = nullptr; 10148 if (IsUniform) { 10149 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10150 set(Def, VectorValue, Part); 10151 } else { 10152 // Initialize packing with insertelements to start from undef. 10153 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10154 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10155 set(Def, Undef, Part); 10156 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10157 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10158 VectorValue = get(Def, Part); 10159 } 10160 Builder.restoreIP(OldIP); 10161 return VectorValue; 10162 } 10163 10164 // Process the loop in the VPlan-native vectorization path. This path builds 10165 // VPlan upfront in the vectorization pipeline, which allows to apply 10166 // VPlan-to-VPlan transformations from the very beginning without modifying the 10167 // input LLVM IR. 10168 static bool processLoopInVPlanNativePath( 10169 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10170 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10171 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10172 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10173 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10174 LoopVectorizationRequirements &Requirements) { 10175 10176 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10177 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10178 return false; 10179 } 10180 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10181 Function *F = L->getHeader()->getParent(); 10182 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10183 10184 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10185 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10186 10187 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10188 &Hints, IAI); 10189 // Use the planner for outer loop vectorization. 10190 // TODO: CM is not used at this point inside the planner. Turn CM into an 10191 // optional argument if we don't need it in the future. 10192 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10193 Requirements, ORE); 10194 10195 // Get user vectorization factor. 10196 ElementCount UserVF = Hints.getWidth(); 10197 10198 CM.collectElementTypesForWidening(); 10199 10200 // Plan how to best vectorize, return the best VF and its cost. 10201 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10202 10203 // If we are stress testing VPlan builds, do not attempt to generate vector 10204 // code. Masked vector code generation support will follow soon. 10205 // Also, do not attempt to vectorize if no vector code will be produced. 10206 if (VPlanBuildStressTest || EnableVPlanPredication || 10207 VectorizationFactor::Disabled() == VF) 10208 return false; 10209 10210 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10211 10212 { 10213 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10214 F->getParent()->getDataLayout()); 10215 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10216 &CM, BFI, PSI, Checks); 10217 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10218 << L->getHeader()->getParent()->getName() << "\"\n"); 10219 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10220 } 10221 10222 // Mark the loop as already vectorized to avoid vectorizing again. 10223 Hints.setAlreadyVectorized(); 10224 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10225 return true; 10226 } 10227 10228 // Emit a remark if there are stores to floats that required a floating point 10229 // extension. If the vectorized loop was generated with floating point there 10230 // will be a performance penalty from the conversion overhead and the change in 10231 // the vector width. 10232 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10233 SmallVector<Instruction *, 4> Worklist; 10234 for (BasicBlock *BB : L->getBlocks()) { 10235 for (Instruction &Inst : *BB) { 10236 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10237 if (S->getValueOperand()->getType()->isFloatTy()) 10238 Worklist.push_back(S); 10239 } 10240 } 10241 } 10242 10243 // Traverse the floating point stores upwards searching, for floating point 10244 // conversions. 10245 SmallPtrSet<const Instruction *, 4> Visited; 10246 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10247 while (!Worklist.empty()) { 10248 auto *I = Worklist.pop_back_val(); 10249 if (!L->contains(I)) 10250 continue; 10251 if (!Visited.insert(I).second) 10252 continue; 10253 10254 // Emit a remark if the floating point store required a floating 10255 // point conversion. 10256 // TODO: More work could be done to identify the root cause such as a 10257 // constant or a function return type and point the user to it. 10258 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10259 ORE->emit([&]() { 10260 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10261 I->getDebugLoc(), L->getHeader()) 10262 << "floating point conversion changes vector width. " 10263 << "Mixed floating point precision requires an up/down " 10264 << "cast that will negatively impact performance."; 10265 }); 10266 10267 for (Use &Op : I->operands()) 10268 if (auto *OpI = dyn_cast<Instruction>(Op)) 10269 Worklist.push_back(OpI); 10270 } 10271 } 10272 10273 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10274 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10275 !EnableLoopInterleaving), 10276 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10277 !EnableLoopVectorization) {} 10278 10279 bool LoopVectorizePass::processLoop(Loop *L) { 10280 assert((EnableVPlanNativePath || L->isInnermost()) && 10281 "VPlan-native path is not enabled. Only process inner loops."); 10282 10283 #ifndef NDEBUG 10284 const std::string DebugLocStr = getDebugLocString(L); 10285 #endif /* NDEBUG */ 10286 10287 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10288 << L->getHeader()->getParent()->getName() << "\" from " 10289 << DebugLocStr << "\n"); 10290 10291 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10292 10293 LLVM_DEBUG( 10294 dbgs() << "LV: Loop hints:" 10295 << " force=" 10296 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10297 ? "disabled" 10298 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10299 ? "enabled" 10300 : "?")) 10301 << " width=" << Hints.getWidth() 10302 << " interleave=" << Hints.getInterleave() << "\n"); 10303 10304 // Function containing loop 10305 Function *F = L->getHeader()->getParent(); 10306 10307 // Looking at the diagnostic output is the only way to determine if a loop 10308 // was vectorized (other than looking at the IR or machine code), so it 10309 // is important to generate an optimization remark for each loop. Most of 10310 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10311 // generated as OptimizationRemark and OptimizationRemarkMissed are 10312 // less verbose reporting vectorized loops and unvectorized loops that may 10313 // benefit from vectorization, respectively. 10314 10315 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10316 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10317 return false; 10318 } 10319 10320 PredicatedScalarEvolution PSE(*SE, *L); 10321 10322 // Check if it is legal to vectorize the loop. 10323 LoopVectorizationRequirements Requirements; 10324 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10325 &Requirements, &Hints, DB, AC, BFI, PSI); 10326 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10327 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10328 Hints.emitRemarkWithHints(); 10329 return false; 10330 } 10331 10332 // Check the function attributes and profiles to find out if this function 10333 // should be optimized for size. 10334 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10335 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10336 10337 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10338 // here. They may require CFG and instruction level transformations before 10339 // even evaluating whether vectorization is profitable. Since we cannot modify 10340 // the incoming IR, we need to build VPlan upfront in the vectorization 10341 // pipeline. 10342 if (!L->isInnermost()) 10343 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10344 ORE, BFI, PSI, Hints, Requirements); 10345 10346 assert(L->isInnermost() && "Inner loop expected."); 10347 10348 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10349 // count by optimizing for size, to minimize overheads. 10350 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10351 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10352 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10353 << "This loop is worth vectorizing only if no scalar " 10354 << "iteration overheads are incurred."); 10355 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10356 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10357 else { 10358 LLVM_DEBUG(dbgs() << "\n"); 10359 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10360 } 10361 } 10362 10363 // Check the function attributes to see if implicit floats are allowed. 10364 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10365 // an integer loop and the vector instructions selected are purely integer 10366 // vector instructions? 10367 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10368 reportVectorizationFailure( 10369 "Can't vectorize when the NoImplicitFloat attribute is used", 10370 "loop not vectorized due to NoImplicitFloat attribute", 10371 "NoImplicitFloat", ORE, L); 10372 Hints.emitRemarkWithHints(); 10373 return false; 10374 } 10375 10376 // Check if the target supports potentially unsafe FP vectorization. 10377 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10378 // for the target we're vectorizing for, to make sure none of the 10379 // additional fp-math flags can help. 10380 if (Hints.isPotentiallyUnsafe() && 10381 TTI->isFPVectorizationPotentiallyUnsafe()) { 10382 reportVectorizationFailure( 10383 "Potentially unsafe FP op prevents vectorization", 10384 "loop not vectorized due to unsafe FP support.", 10385 "UnsafeFP", ORE, L); 10386 Hints.emitRemarkWithHints(); 10387 return false; 10388 } 10389 10390 bool AllowOrderedReductions; 10391 // If the flag is set, use that instead and override the TTI behaviour. 10392 if (ForceOrderedReductions.getNumOccurrences() > 0) 10393 AllowOrderedReductions = ForceOrderedReductions; 10394 else 10395 AllowOrderedReductions = TTI->enableOrderedReductions(); 10396 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10397 ORE->emit([&]() { 10398 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10399 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10400 ExactFPMathInst->getDebugLoc(), 10401 ExactFPMathInst->getParent()) 10402 << "loop not vectorized: cannot prove it is safe to reorder " 10403 "floating-point operations"; 10404 }); 10405 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10406 "reorder floating-point operations\n"); 10407 Hints.emitRemarkWithHints(); 10408 return false; 10409 } 10410 10411 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10412 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10413 10414 // If an override option has been passed in for interleaved accesses, use it. 10415 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10416 UseInterleaved = EnableInterleavedMemAccesses; 10417 10418 // Analyze interleaved memory accesses. 10419 if (UseInterleaved) { 10420 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10421 } 10422 10423 // Use the cost model. 10424 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10425 F, &Hints, IAI); 10426 CM.collectValuesToIgnore(); 10427 CM.collectElementTypesForWidening(); 10428 10429 // Use the planner for vectorization. 10430 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10431 Requirements, ORE); 10432 10433 // Get user vectorization factor and interleave count. 10434 ElementCount UserVF = Hints.getWidth(); 10435 unsigned UserIC = Hints.getInterleave(); 10436 10437 // Plan how to best vectorize, return the best VF and its cost. 10438 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10439 10440 VectorizationFactor VF = VectorizationFactor::Disabled(); 10441 unsigned IC = 1; 10442 10443 if (MaybeVF) { 10444 VF = *MaybeVF; 10445 // Select the interleave count. 10446 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10447 } 10448 10449 // Identify the diagnostic messages that should be produced. 10450 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10451 bool VectorizeLoop = true, InterleaveLoop = true; 10452 if (VF.Width.isScalar()) { 10453 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10454 VecDiagMsg = std::make_pair( 10455 "VectorizationNotBeneficial", 10456 "the cost-model indicates that vectorization is not beneficial"); 10457 VectorizeLoop = false; 10458 } 10459 10460 if (!MaybeVF && UserIC > 1) { 10461 // Tell the user interleaving was avoided up-front, despite being explicitly 10462 // requested. 10463 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10464 "interleaving should be avoided up front\n"); 10465 IntDiagMsg = std::make_pair( 10466 "InterleavingAvoided", 10467 "Ignoring UserIC, because interleaving was avoided up front"); 10468 InterleaveLoop = false; 10469 } else if (IC == 1 && UserIC <= 1) { 10470 // Tell the user interleaving is not beneficial. 10471 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10472 IntDiagMsg = std::make_pair( 10473 "InterleavingNotBeneficial", 10474 "the cost-model indicates that interleaving is not beneficial"); 10475 InterleaveLoop = false; 10476 if (UserIC == 1) { 10477 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10478 IntDiagMsg.second += 10479 " and is explicitly disabled or interleave count is set to 1"; 10480 } 10481 } else if (IC > 1 && UserIC == 1) { 10482 // Tell the user interleaving is beneficial, but it explicitly disabled. 10483 LLVM_DEBUG( 10484 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10485 IntDiagMsg = std::make_pair( 10486 "InterleavingBeneficialButDisabled", 10487 "the cost-model indicates that interleaving is beneficial " 10488 "but is explicitly disabled or interleave count is set to 1"); 10489 InterleaveLoop = false; 10490 } 10491 10492 // Override IC if user provided an interleave count. 10493 IC = UserIC > 0 ? UserIC : IC; 10494 10495 // Emit diagnostic messages, if any. 10496 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10497 if (!VectorizeLoop && !InterleaveLoop) { 10498 // Do not vectorize or interleaving the loop. 10499 ORE->emit([&]() { 10500 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10501 L->getStartLoc(), L->getHeader()) 10502 << VecDiagMsg.second; 10503 }); 10504 ORE->emit([&]() { 10505 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10506 L->getStartLoc(), L->getHeader()) 10507 << IntDiagMsg.second; 10508 }); 10509 return false; 10510 } else if (!VectorizeLoop && InterleaveLoop) { 10511 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10512 ORE->emit([&]() { 10513 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10514 L->getStartLoc(), L->getHeader()) 10515 << VecDiagMsg.second; 10516 }); 10517 } else if (VectorizeLoop && !InterleaveLoop) { 10518 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10519 << ") in " << DebugLocStr << '\n'); 10520 ORE->emit([&]() { 10521 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10522 L->getStartLoc(), L->getHeader()) 10523 << IntDiagMsg.second; 10524 }); 10525 } else if (VectorizeLoop && InterleaveLoop) { 10526 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10527 << ") in " << DebugLocStr << '\n'); 10528 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10529 } 10530 10531 bool DisableRuntimeUnroll = false; 10532 MDNode *OrigLoopID = L->getLoopID(); 10533 { 10534 // Optimistically generate runtime checks. Drop them if they turn out to not 10535 // be profitable. Limit the scope of Checks, so the cleanup happens 10536 // immediately after vector codegeneration is done. 10537 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10538 F->getParent()->getDataLayout()); 10539 if (!VF.Width.isScalar() || IC > 1) 10540 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10541 10542 using namespace ore; 10543 if (!VectorizeLoop) { 10544 assert(IC > 1 && "interleave count should not be 1 or 0"); 10545 // If we decided that it is not legal to vectorize the loop, then 10546 // interleave it. 10547 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10548 &CM, BFI, PSI, Checks); 10549 10550 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10551 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10552 10553 ORE->emit([&]() { 10554 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10555 L->getHeader()) 10556 << "interleaved loop (interleaved count: " 10557 << NV("InterleaveCount", IC) << ")"; 10558 }); 10559 } else { 10560 // If we decided that it is *legal* to vectorize the loop, then do it. 10561 10562 // Consider vectorizing the epilogue too if it's profitable. 10563 VectorizationFactor EpilogueVF = 10564 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10565 if (EpilogueVF.Width.isVector()) { 10566 10567 // The first pass vectorizes the main loop and creates a scalar epilogue 10568 // to be vectorized by executing the plan (potentially with a different 10569 // factor) again shortly afterwards. 10570 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10571 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10572 EPI, &LVL, &CM, BFI, PSI, Checks); 10573 10574 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10575 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10576 DT); 10577 ++LoopsVectorized; 10578 10579 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10580 formLCSSARecursively(*L, *DT, LI, SE); 10581 10582 // Second pass vectorizes the epilogue and adjusts the control flow 10583 // edges from the first pass. 10584 EPI.MainLoopVF = EPI.EpilogueVF; 10585 EPI.MainLoopUF = EPI.EpilogueUF; 10586 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10587 ORE, EPI, &LVL, &CM, BFI, PSI, 10588 Checks); 10589 10590 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10591 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10592 DT); 10593 ++LoopsEpilogueVectorized; 10594 10595 if (!MainILV.areSafetyChecksAdded()) 10596 DisableRuntimeUnroll = true; 10597 } else { 10598 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10599 &LVL, &CM, BFI, PSI, Checks); 10600 10601 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10602 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10603 ++LoopsVectorized; 10604 10605 // Add metadata to disable runtime unrolling a scalar loop when there 10606 // are no runtime checks about strides and memory. A scalar loop that is 10607 // rarely used is not worth unrolling. 10608 if (!LB.areSafetyChecksAdded()) 10609 DisableRuntimeUnroll = true; 10610 } 10611 // Report the vectorization decision. 10612 ORE->emit([&]() { 10613 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10614 L->getHeader()) 10615 << "vectorized loop (vectorization width: " 10616 << NV("VectorizationFactor", VF.Width) 10617 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10618 }); 10619 } 10620 10621 if (ORE->allowExtraAnalysis(LV_NAME)) 10622 checkMixedPrecision(L, ORE); 10623 } 10624 10625 Optional<MDNode *> RemainderLoopID = 10626 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10627 LLVMLoopVectorizeFollowupEpilogue}); 10628 if (RemainderLoopID.hasValue()) { 10629 L->setLoopID(RemainderLoopID.getValue()); 10630 } else { 10631 if (DisableRuntimeUnroll) 10632 AddRuntimeUnrollDisableMetaData(L); 10633 10634 // Mark the loop as already vectorized to avoid vectorizing again. 10635 Hints.setAlreadyVectorized(); 10636 } 10637 10638 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10639 return true; 10640 } 10641 10642 LoopVectorizeResult LoopVectorizePass::runImpl( 10643 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10644 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10645 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10646 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10647 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10648 SE = &SE_; 10649 LI = &LI_; 10650 TTI = &TTI_; 10651 DT = &DT_; 10652 BFI = &BFI_; 10653 TLI = TLI_; 10654 AA = &AA_; 10655 AC = &AC_; 10656 GetLAA = &GetLAA_; 10657 DB = &DB_; 10658 ORE = &ORE_; 10659 PSI = PSI_; 10660 10661 // Don't attempt if 10662 // 1. the target claims to have no vector registers, and 10663 // 2. interleaving won't help ILP. 10664 // 10665 // The second condition is necessary because, even if the target has no 10666 // vector registers, loop vectorization may still enable scalar 10667 // interleaving. 10668 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10669 TTI->getMaxInterleaveFactor(1) < 2) 10670 return LoopVectorizeResult(false, false); 10671 10672 bool Changed = false, CFGChanged = false; 10673 10674 // The vectorizer requires loops to be in simplified form. 10675 // Since simplification may add new inner loops, it has to run before the 10676 // legality and profitability checks. This means running the loop vectorizer 10677 // will simplify all loops, regardless of whether anything end up being 10678 // vectorized. 10679 for (auto &L : *LI) 10680 Changed |= CFGChanged |= 10681 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10682 10683 // Build up a worklist of inner-loops to vectorize. This is necessary as 10684 // the act of vectorizing or partially unrolling a loop creates new loops 10685 // and can invalidate iterators across the loops. 10686 SmallVector<Loop *, 8> Worklist; 10687 10688 for (Loop *L : *LI) 10689 collectSupportedLoops(*L, LI, ORE, Worklist); 10690 10691 LoopsAnalyzed += Worklist.size(); 10692 10693 // Now walk the identified inner loops. 10694 while (!Worklist.empty()) { 10695 Loop *L = Worklist.pop_back_val(); 10696 10697 // For the inner loops we actually process, form LCSSA to simplify the 10698 // transform. 10699 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10700 10701 Changed |= CFGChanged |= processLoop(L); 10702 } 10703 10704 // Process each loop nest in the function. 10705 return LoopVectorizeResult(Changed, CFGChanged); 10706 } 10707 10708 PreservedAnalyses LoopVectorizePass::run(Function &F, 10709 FunctionAnalysisManager &AM) { 10710 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10711 auto &LI = AM.getResult<LoopAnalysis>(F); 10712 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10713 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10714 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10715 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10716 auto &AA = AM.getResult<AAManager>(F); 10717 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10718 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10719 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10720 10721 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10722 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10723 [&](Loop &L) -> const LoopAccessInfo & { 10724 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10725 TLI, TTI, nullptr, nullptr, nullptr}; 10726 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10727 }; 10728 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10729 ProfileSummaryInfo *PSI = 10730 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10731 LoopVectorizeResult Result = 10732 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10733 if (!Result.MadeAnyChange) 10734 return PreservedAnalyses::all(); 10735 PreservedAnalyses PA; 10736 10737 // We currently do not preserve loopinfo/dominator analyses with outer loop 10738 // vectorization. Until this is addressed, mark these analyses as preserved 10739 // only for non-VPlan-native path. 10740 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10741 if (!EnableVPlanNativePath) { 10742 PA.preserve<LoopAnalysis>(); 10743 PA.preserve<DominatorTreeAnalysis>(); 10744 } 10745 10746 if (Result.MadeCFGChange) { 10747 // Making CFG changes likely means a loop got vectorized. Indicate that 10748 // extra simplification passes should be run. 10749 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10750 // be run if runtime checks have been added. 10751 AM.getResult<ShouldRunExtraVectorPasses>(F); 10752 PA.preserve<ShouldRunExtraVectorPasses>(); 10753 } else { 10754 PA.preserveSet<CFGAnalyses>(); 10755 } 10756 return PA; 10757 } 10758 10759 void LoopVectorizePass::printPipeline( 10760 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10761 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10762 OS, MapClassName2PassName); 10763 10764 OS << "<"; 10765 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10766 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10767 OS << ">"; 10768 } 10769