1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/BlockFrequencyInfo.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugInfo.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/DiagnosticInfo.h" 72 #include "llvm/IR/Dominators.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/LLVMContext.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/PatternMatch.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/IR/ValueHandle.h" 83 #include "llvm/IR/Verifier.h" 84 #include "llvm/Pass.h" 85 #include "llvm/Support/BranchProbability.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include "llvm/Transforms/Scalar.h" 90 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/VectorUtils.h" 93 #include <algorithm> 94 #include <map> 95 #include <tuple> 96 97 using namespace llvm; 98 using namespace llvm::PatternMatch; 99 100 #define LV_NAME "loop-vectorize" 101 #define DEBUG_TYPE LV_NAME 102 103 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 104 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 105 106 static cl::opt<unsigned> 107 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 108 cl::desc("Sets the SIMD width. Zero is autoselect.")); 109 110 static cl::opt<unsigned> 111 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 112 cl::desc("Sets the vectorization unroll count. " 113 "Zero is autoselect.")); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// We don't vectorize loops with a known constant trip count below this number. 120 static cl::opt<unsigned> 121 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 122 cl::Hidden, 123 cl::desc("Don't vectorize loops with a constant " 124 "trip count that is smaller than this " 125 "value.")); 126 127 /// This enables versioning on the strides of symbolically striding memory 128 /// accesses in code like the following. 129 /// for (i = 0; i < N; ++i) 130 /// A[i * Stride1] += B[i * Stride2] ... 131 /// 132 /// Will be roughly translated to 133 /// if (Stride1 == 1 && Stride2 == 1) { 134 /// for (i = 0; i < N; i+=4) 135 /// A[i:i+3] += ... 136 /// } else 137 /// ... 138 static cl::opt<bool> EnableMemAccessVersioning( 139 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 140 cl::desc("Enable symblic stride memory access versioning")); 141 142 /// We don't unroll loops with a known constant trip count below this number. 143 static const unsigned TinyTripCountUnrollThreshold = 128; 144 145 /// When performing memory disambiguation checks at runtime do not make more 146 /// than this number of comparisons. 147 static const unsigned RuntimeMemoryCheckThreshold = 8; 148 149 /// Maximum simd width. 150 static const unsigned MaxVectorWidth = 64; 151 152 static cl::opt<unsigned> ForceTargetNumScalarRegs( 153 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 154 cl::desc("A flag that overrides the target's number of scalar registers.")); 155 156 static cl::opt<unsigned> ForceTargetNumVectorRegs( 157 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 158 cl::desc("A flag that overrides the target's number of vector registers.")); 159 160 /// Maximum vectorization unroll count. 161 static const unsigned MaxUnrollFactor = 16; 162 163 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor( 164 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's max unroll factor for scalar " 166 "loops.")); 167 168 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor( 169 "force-target-max-vector-unroll", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's max unroll factor for " 171 "vectorized loops.")); 172 173 static cl::opt<unsigned> ForceTargetInstructionCost( 174 "force-target-instruction-cost", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's expected cost for " 176 "an instruction to a single constant value. Mostly " 177 "useful for getting consistent testing.")); 178 179 static cl::opt<unsigned> SmallLoopCost( 180 "small-loop-cost", cl::init(20), cl::Hidden, 181 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 182 183 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 184 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 185 cl::desc("Enable the use of the block frequency analysis to access PGO " 186 "heuristics minimizing code growth in cold regions and being more " 187 "aggressive in hot regions.")); 188 189 // Runtime unroll loops for load/store throughput. 190 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 191 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 192 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 193 194 /// The number of stores in a loop that are allowed to need predication. 195 static cl::opt<unsigned> NumberOfStoresToPredicate( 196 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 197 cl::desc("Max number of stores to be predicated behind an if.")); 198 199 static cl::opt<bool> EnableIndVarRegisterHeur( 200 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 201 cl::desc("Count the induction variable only once when unrolling")); 202 203 static cl::opt<bool> EnableCondStoresVectorization( 204 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 205 cl::desc("Enable if predication of stores during vectorization.")); 206 207 static cl::opt<unsigned> MaxNestedScalarReductionUF( 208 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 209 cl::desc("The maximum unroll factor to use when unrolling a scalar " 210 "reduction in a nested loop.")); 211 212 namespace { 213 214 // Forward declarations. 215 class LoopVectorizationLegality; 216 class LoopVectorizationCostModel; 217 class LoopVectorizeHints; 218 219 /// Optimization analysis message produced during vectorization. Messages inform 220 /// the user why vectorization did not occur. 221 class Report { 222 std::string Message; 223 raw_string_ostream Out; 224 Instruction *Instr; 225 226 public: 227 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 228 Out << "loop not vectorized: "; 229 } 230 231 template <typename A> Report &operator<<(const A &Value) { 232 Out << Value; 233 return *this; 234 } 235 236 Instruction *getInstr() { return Instr; } 237 238 std::string &str() { return Out.str(); } 239 operator Twine() { return Out.str(); } 240 }; 241 242 /// InnerLoopVectorizer vectorizes loops which contain only one basic 243 /// block to a specified vectorization factor (VF). 244 /// This class performs the widening of scalars into vectors, or multiple 245 /// scalars. This class also implements the following features: 246 /// * It inserts an epilogue loop for handling loops that don't have iteration 247 /// counts that are known to be a multiple of the vectorization factor. 248 /// * It handles the code generation for reduction variables. 249 /// * Scalarization (implementation using scalars) of un-vectorizable 250 /// instructions. 251 /// InnerLoopVectorizer does not perform any vectorization-legality 252 /// checks, and relies on the caller to check for the different legality 253 /// aspects. The InnerLoopVectorizer relies on the 254 /// LoopVectorizationLegality class to provide information about the induction 255 /// and reduction variables that were found to a given vectorization factor. 256 class InnerLoopVectorizer { 257 public: 258 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 259 DominatorTree *DT, const DataLayout *DL, 260 const TargetLibraryInfo *TLI, unsigned VecWidth, 261 unsigned UnrollFactor) 262 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 263 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 264 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 265 Legal(nullptr) {} 266 267 // Perform the actual loop widening (vectorization). 268 void vectorize(LoopVectorizationLegality *L) { 269 Legal = L; 270 // Create a new empty loop. Unlink the old loop and connect the new one. 271 createEmptyLoop(); 272 // Widen each instruction in the old loop to a new one in the new loop. 273 // Use the Legality module to find the induction and reduction variables. 274 vectorizeLoop(); 275 // Register the new loop and update the analysis passes. 276 updateAnalysis(); 277 } 278 279 virtual ~InnerLoopVectorizer() {} 280 281 protected: 282 /// A small list of PHINodes. 283 typedef SmallVector<PHINode*, 4> PhiVector; 284 /// When we unroll loops we have multiple vector values for each scalar. 285 /// This data structure holds the unrolled and vectorized values that 286 /// originated from one scalar instruction. 287 typedef SmallVector<Value*, 2> VectorParts; 288 289 // When we if-convert we need create edge masks. We have to cache values so 290 // that we don't end up with exponential recursion/IR. 291 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 292 VectorParts> EdgeMaskCache; 293 294 /// \brief Add code that checks at runtime if the accessed arrays overlap. 295 /// 296 /// Returns a pair of instructions where the first element is the first 297 /// instruction generated in possibly a sequence of instructions and the 298 /// second value is the final comparator value or NULL if no check is needed. 299 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 300 301 /// \brief Add checks for strides that where assumed to be 1. 302 /// 303 /// Returns the last check instruction and the first check instruction in the 304 /// pair as (first, last). 305 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 306 307 /// Create an empty loop, based on the loop ranges of the old loop. 308 void createEmptyLoop(); 309 /// Copy and widen the instructions from the old loop. 310 virtual void vectorizeLoop(); 311 312 /// \brief The Loop exit block may have single value PHI nodes where the 313 /// incoming value is 'Undef'. While vectorizing we only handled real values 314 /// that were defined inside the loop. Here we fix the 'undef case'. 315 /// See PR14725. 316 void fixLCSSAPHIs(); 317 318 /// A helper function that computes the predicate of the block BB, assuming 319 /// that the header block of the loop is set to True. It returns the *entry* 320 /// mask for the block BB. 321 VectorParts createBlockInMask(BasicBlock *BB); 322 /// A helper function that computes the predicate of the edge between SRC 323 /// and DST. 324 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 325 326 /// A helper function to vectorize a single BB within the innermost loop. 327 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 328 329 /// Vectorize a single PHINode in a block. This method handles the induction 330 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 331 /// arbitrary length vectors. 332 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 333 unsigned UF, unsigned VF, PhiVector *PV); 334 335 /// Insert the new loop to the loop hierarchy and pass manager 336 /// and update the analysis passes. 337 void updateAnalysis(); 338 339 /// This instruction is un-vectorizable. Implement it as a sequence 340 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 341 /// scalarized instruction behind an if block predicated on the control 342 /// dependence of the instruction. 343 virtual void scalarizeInstruction(Instruction *Instr, 344 bool IfPredicateStore=false); 345 346 /// Vectorize Load and Store instructions, 347 virtual void vectorizeMemoryInstruction(Instruction *Instr); 348 349 /// Create a broadcast instruction. This method generates a broadcast 350 /// instruction (shuffle) for loop invariant values and for the induction 351 /// value. If this is the induction variable then we extend it to N, N+1, ... 352 /// this is needed because each iteration in the loop corresponds to a SIMD 353 /// element. 354 virtual Value *getBroadcastInstrs(Value *V); 355 356 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 357 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 358 /// The sequence starts at StartIndex. 359 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 360 361 /// When we go over instructions in the basic block we rely on previous 362 /// values within the current basic block or on loop invariant values. 363 /// When we widen (vectorize) values we place them in the map. If the values 364 /// are not within the map, they have to be loop invariant, so we simply 365 /// broadcast them into a vector. 366 VectorParts &getVectorValue(Value *V); 367 368 /// Generate a shuffle sequence that will reverse the vector Vec. 369 virtual Value *reverseVector(Value *Vec); 370 371 /// This is a helper class that holds the vectorizer state. It maps scalar 372 /// instructions to vector instructions. When the code is 'unrolled' then 373 /// then a single scalar value is mapped to multiple vector parts. The parts 374 /// are stored in the VectorPart type. 375 struct ValueMap { 376 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 377 /// are mapped. 378 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 379 380 /// \return True if 'Key' is saved in the Value Map. 381 bool has(Value *Key) const { return MapStorage.count(Key); } 382 383 /// Initializes a new entry in the map. Sets all of the vector parts to the 384 /// save value in 'Val'. 385 /// \return A reference to a vector with splat values. 386 VectorParts &splat(Value *Key, Value *Val) { 387 VectorParts &Entry = MapStorage[Key]; 388 Entry.assign(UF, Val); 389 return Entry; 390 } 391 392 ///\return A reference to the value that is stored at 'Key'. 393 VectorParts &get(Value *Key) { 394 VectorParts &Entry = MapStorage[Key]; 395 if (Entry.empty()) 396 Entry.resize(UF); 397 assert(Entry.size() == UF); 398 return Entry; 399 } 400 401 private: 402 /// The unroll factor. Each entry in the map stores this number of vector 403 /// elements. 404 unsigned UF; 405 406 /// Map storage. We use std::map and not DenseMap because insertions to a 407 /// dense map invalidates its iterators. 408 std::map<Value *, VectorParts> MapStorage; 409 }; 410 411 /// The original loop. 412 Loop *OrigLoop; 413 /// Scev analysis to use. 414 ScalarEvolution *SE; 415 /// Loop Info. 416 LoopInfo *LI; 417 /// Dominator Tree. 418 DominatorTree *DT; 419 /// Alias Analysis. 420 AliasAnalysis *AA; 421 /// Data Layout. 422 const DataLayout *DL; 423 /// Target Library Info. 424 const TargetLibraryInfo *TLI; 425 426 /// The vectorization SIMD factor to use. Each vector will have this many 427 /// vector elements. 428 unsigned VF; 429 430 protected: 431 /// The vectorization unroll factor to use. Each scalar is vectorized to this 432 /// many different vector instructions. 433 unsigned UF; 434 435 /// The builder that we use 436 IRBuilder<> Builder; 437 438 // --- Vectorization state --- 439 440 /// The vector-loop preheader. 441 BasicBlock *LoopVectorPreHeader; 442 /// The scalar-loop preheader. 443 BasicBlock *LoopScalarPreHeader; 444 /// Middle Block between the vector and the scalar. 445 BasicBlock *LoopMiddleBlock; 446 ///The ExitBlock of the scalar loop. 447 BasicBlock *LoopExitBlock; 448 ///The vector loop body. 449 SmallVector<BasicBlock *, 4> LoopVectorBody; 450 ///The scalar loop body. 451 BasicBlock *LoopScalarBody; 452 /// A list of all bypass blocks. The first block is the entry of the loop. 453 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 454 455 /// The new Induction variable which was added to the new block. 456 PHINode *Induction; 457 /// The induction variable of the old basic block. 458 PHINode *OldInduction; 459 /// Holds the extended (to the widest induction type) start index. 460 Value *ExtendedIdx; 461 /// Maps scalars to widened vectors. 462 ValueMap WidenMap; 463 EdgeMaskCache MaskCache; 464 465 LoopVectorizationLegality *Legal; 466 }; 467 468 class InnerLoopUnroller : public InnerLoopVectorizer { 469 public: 470 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 471 DominatorTree *DT, const DataLayout *DL, 472 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 473 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 474 475 private: 476 void scalarizeInstruction(Instruction *Instr, 477 bool IfPredicateStore = false) override; 478 void vectorizeMemoryInstruction(Instruction *Instr) override; 479 Value *getBroadcastInstrs(Value *V) override; 480 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 481 Value *reverseVector(Value *Vec) override; 482 }; 483 484 /// \brief Look for a meaningful debug location on the instruction or it's 485 /// operands. 486 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 487 if (!I) 488 return I; 489 490 DebugLoc Empty; 491 if (I->getDebugLoc() != Empty) 492 return I; 493 494 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 495 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 496 if (OpInst->getDebugLoc() != Empty) 497 return OpInst; 498 } 499 500 return I; 501 } 502 503 /// \brief Set the debug location in the builder using the debug location in the 504 /// instruction. 505 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 506 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 507 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 508 else 509 B.SetCurrentDebugLocation(DebugLoc()); 510 } 511 512 #ifndef NDEBUG 513 /// \return string containing a file name and a line # for the given loop. 514 static std::string getDebugLocString(const Loop *L) { 515 std::string Result; 516 if (L) { 517 raw_string_ostream OS(Result); 518 const DebugLoc LoopDbgLoc = L->getStartLoc(); 519 if (!LoopDbgLoc.isUnknown()) 520 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 521 else 522 // Just print the module name. 523 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 524 OS.flush(); 525 } 526 return Result; 527 } 528 #endif 529 530 /// \brief Propagate known metadata from one instruction to another. 531 static void propagateMetadata(Instruction *To, const Instruction *From) { 532 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 533 From->getAllMetadataOtherThanDebugLoc(Metadata); 534 535 for (auto M : Metadata) { 536 unsigned Kind = M.first; 537 538 // These are safe to transfer (this is safe for TBAA, even when we 539 // if-convert, because should that metadata have had a control dependency 540 // on the condition, and thus actually aliased with some other 541 // non-speculated memory access when the condition was false, this would be 542 // caught by the runtime overlap checks). 543 if (Kind != LLVMContext::MD_tbaa && 544 Kind != LLVMContext::MD_alias_scope && 545 Kind != LLVMContext::MD_noalias && 546 Kind != LLVMContext::MD_fpmath) 547 continue; 548 549 To->setMetadata(Kind, M.second); 550 } 551 } 552 553 /// \brief Propagate known metadata from one instruction to a vector of others. 554 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 555 for (Value *V : To) 556 if (Instruction *I = dyn_cast<Instruction>(V)) 557 propagateMetadata(I, From); 558 } 559 560 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 561 /// to what vectorization factor. 562 /// This class does not look at the profitability of vectorization, only the 563 /// legality. This class has two main kinds of checks: 564 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 565 /// will change the order of memory accesses in a way that will change the 566 /// correctness of the program. 567 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 568 /// checks for a number of different conditions, such as the availability of a 569 /// single induction variable, that all types are supported and vectorize-able, 570 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 571 /// This class is also used by InnerLoopVectorizer for identifying 572 /// induction variable and the different reduction variables. 573 class LoopVectorizationLegality { 574 public: 575 unsigned NumLoads; 576 unsigned NumStores; 577 unsigned NumPredStores; 578 579 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 580 DominatorTree *DT, TargetLibraryInfo *TLI, 581 AliasAnalysis *AA, Function *F) 582 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 583 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr), 584 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 585 } 586 587 /// This enum represents the kinds of reductions that we support. 588 enum ReductionKind { 589 RK_NoReduction, ///< Not a reduction. 590 RK_IntegerAdd, ///< Sum of integers. 591 RK_IntegerMult, ///< Product of integers. 592 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 593 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 594 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 595 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 596 RK_FloatAdd, ///< Sum of floats. 597 RK_FloatMult, ///< Product of floats. 598 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 599 }; 600 601 /// This enum represents the kinds of inductions that we support. 602 enum InductionKind { 603 IK_NoInduction, ///< Not an induction variable. 604 IK_IntInduction, ///< Integer induction variable. Step = 1. 605 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 606 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 607 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 608 }; 609 610 // This enum represents the kind of minmax reduction. 611 enum MinMaxReductionKind { 612 MRK_Invalid, 613 MRK_UIntMin, 614 MRK_UIntMax, 615 MRK_SIntMin, 616 MRK_SIntMax, 617 MRK_FloatMin, 618 MRK_FloatMax 619 }; 620 621 /// This struct holds information about reduction variables. 622 struct ReductionDescriptor { 623 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 624 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 625 626 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 627 MinMaxReductionKind MK) 628 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 629 630 // The starting value of the reduction. 631 // It does not have to be zero! 632 TrackingVH<Value> StartValue; 633 // The instruction who's value is used outside the loop. 634 Instruction *LoopExitInstr; 635 // The kind of the reduction. 636 ReductionKind Kind; 637 // If this a min/max reduction the kind of reduction. 638 MinMaxReductionKind MinMaxKind; 639 }; 640 641 /// This POD struct holds information about a potential reduction operation. 642 struct ReductionInstDesc { 643 ReductionInstDesc(bool IsRedux, Instruction *I) : 644 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 645 646 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 647 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 648 649 // Is this instruction a reduction candidate. 650 bool IsReduction; 651 // The last instruction in a min/max pattern (select of the select(icmp()) 652 // pattern), or the current reduction instruction otherwise. 653 Instruction *PatternLastInst; 654 // If this is a min/max pattern the comparison predicate. 655 MinMaxReductionKind MinMaxKind; 656 }; 657 658 /// This struct holds information about the memory runtime legality 659 /// check that a group of pointers do not overlap. 660 struct RuntimePointerCheck { 661 RuntimePointerCheck() : Need(false) {} 662 663 /// Reset the state of the pointer runtime information. 664 void reset() { 665 Need = false; 666 Pointers.clear(); 667 Starts.clear(); 668 Ends.clear(); 669 IsWritePtr.clear(); 670 DependencySetId.clear(); 671 AliasSetId.clear(); 672 } 673 674 /// Insert a pointer and calculate the start and end SCEVs. 675 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 676 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 677 678 /// This flag indicates if we need to add the runtime check. 679 bool Need; 680 /// Holds the pointers that we need to check. 681 SmallVector<TrackingVH<Value>, 2> Pointers; 682 /// Holds the pointer value at the beginning of the loop. 683 SmallVector<const SCEV*, 2> Starts; 684 /// Holds the pointer value at the end of the loop. 685 SmallVector<const SCEV*, 2> Ends; 686 /// Holds the information if this pointer is used for writing to memory. 687 SmallVector<bool, 2> IsWritePtr; 688 /// Holds the id of the set of pointers that could be dependent because of a 689 /// shared underlying object. 690 SmallVector<unsigned, 2> DependencySetId; 691 /// Holds the id of the disjoint alias set to which this pointer belongs. 692 SmallVector<unsigned, 2> AliasSetId; 693 }; 694 695 /// A struct for saving information about induction variables. 696 struct InductionInfo { 697 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 698 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 699 /// Start value. 700 TrackingVH<Value> StartValue; 701 /// Induction kind. 702 InductionKind IK; 703 }; 704 705 /// ReductionList contains the reduction descriptors for all 706 /// of the reductions that were found in the loop. 707 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 708 709 /// InductionList saves induction variables and maps them to the 710 /// induction descriptor. 711 typedef MapVector<PHINode*, InductionInfo> InductionList; 712 713 /// Returns true if it is legal to vectorize this loop. 714 /// This does not mean that it is profitable to vectorize this 715 /// loop, only that it is legal to do so. 716 bool canVectorize(); 717 718 /// Returns the Induction variable. 719 PHINode *getInduction() { return Induction; } 720 721 /// Returns the reduction variables found in the loop. 722 ReductionList *getReductionVars() { return &Reductions; } 723 724 /// Returns the induction variables found in the loop. 725 InductionList *getInductionVars() { return &Inductions; } 726 727 /// Returns the widest induction type. 728 Type *getWidestInductionType() { return WidestIndTy; } 729 730 /// Returns True if V is an induction variable in this loop. 731 bool isInductionVariable(const Value *V); 732 733 /// Return true if the block BB needs to be predicated in order for the loop 734 /// to be vectorized. 735 bool blockNeedsPredication(BasicBlock *BB); 736 737 /// Check if this pointer is consecutive when vectorizing. This happens 738 /// when the last index of the GEP is the induction variable, or that the 739 /// pointer itself is an induction variable. 740 /// This check allows us to vectorize A[idx] into a wide load/store. 741 /// Returns: 742 /// 0 - Stride is unknown or non-consecutive. 743 /// 1 - Address is consecutive. 744 /// -1 - Address is consecutive, and decreasing. 745 int isConsecutivePtr(Value *Ptr); 746 747 /// Returns true if the value V is uniform within the loop. 748 bool isUniform(Value *V); 749 750 /// Returns true if this instruction will remain scalar after vectorization. 751 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 752 753 /// Returns the information that we collected about runtime memory check. 754 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 755 756 /// This function returns the identity element (or neutral element) for 757 /// the operation K. 758 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 759 760 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 761 762 bool hasStride(Value *V) { return StrideSet.count(V); } 763 bool mustCheckStrides() { return !StrideSet.empty(); } 764 SmallPtrSet<Value *, 8>::iterator strides_begin() { 765 return StrideSet.begin(); 766 } 767 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 768 769 private: 770 /// Check if a single basic block loop is vectorizable. 771 /// At this point we know that this is a loop with a constant trip count 772 /// and we only need to check individual instructions. 773 bool canVectorizeInstrs(); 774 775 /// When we vectorize loops we may change the order in which 776 /// we read and write from memory. This method checks if it is 777 /// legal to vectorize the code, considering only memory constrains. 778 /// Returns true if the loop is vectorizable 779 bool canVectorizeMemory(); 780 781 /// Return true if we can vectorize this loop using the IF-conversion 782 /// transformation. 783 bool canVectorizeWithIfConvert(); 784 785 /// Collect the variables that need to stay uniform after vectorization. 786 void collectLoopUniforms(); 787 788 /// Return true if all of the instructions in the block can be speculatively 789 /// executed. \p SafePtrs is a list of addresses that are known to be legal 790 /// and we know that we can read from them without segfault. 791 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 792 793 /// Returns True, if 'Phi' is the kind of reduction variable for type 794 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 795 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 796 /// Returns a struct describing if the instruction 'I' can be a reduction 797 /// variable of type 'Kind'. If the reduction is a min/max pattern of 798 /// select(icmp()) this function advances the instruction pointer 'I' from the 799 /// compare instruction to the select instruction and stores this pointer in 800 /// 'PatternLastInst' member of the returned struct. 801 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 802 ReductionInstDesc &Desc); 803 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 804 /// pattern corresponding to a min(X, Y) or max(X, Y). 805 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 806 ReductionInstDesc &Prev); 807 /// Returns the induction kind of Phi. This function may return NoInduction 808 /// if the PHI is not an induction variable. 809 InductionKind isInductionVariable(PHINode *Phi); 810 811 /// \brief Collect memory access with loop invariant strides. 812 /// 813 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 814 /// invariant. 815 void collectStridedAcccess(Value *LoadOrStoreInst); 816 817 /// Report an analysis message to assist the user in diagnosing loops that are 818 /// not vectorized. 819 void emitAnalysis(Report &Message) { 820 DebugLoc DL = TheLoop->getStartLoc(); 821 if (Instruction *I = Message.getInstr()) 822 DL = I->getDebugLoc(); 823 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 824 *TheFunction, DL, Message.str()); 825 } 826 827 /// The loop that we evaluate. 828 Loop *TheLoop; 829 /// Scev analysis. 830 ScalarEvolution *SE; 831 /// DataLayout analysis. 832 const DataLayout *DL; 833 /// Dominators. 834 DominatorTree *DT; 835 /// Target Library Info. 836 TargetLibraryInfo *TLI; 837 /// Alias analysis. 838 AliasAnalysis *AA; 839 /// Parent function 840 Function *TheFunction; 841 842 // --- vectorization state --- // 843 844 /// Holds the integer induction variable. This is the counter of the 845 /// loop. 846 PHINode *Induction; 847 /// Holds the reduction variables. 848 ReductionList Reductions; 849 /// Holds all of the induction variables that we found in the loop. 850 /// Notice that inductions don't need to start at zero and that induction 851 /// variables can be pointers. 852 InductionList Inductions; 853 /// Holds the widest induction type encountered. 854 Type *WidestIndTy; 855 856 /// Allowed outside users. This holds the reduction 857 /// vars which can be accessed from outside the loop. 858 SmallPtrSet<Value*, 4> AllowedExit; 859 /// This set holds the variables which are known to be uniform after 860 /// vectorization. 861 SmallPtrSet<Instruction*, 4> Uniforms; 862 /// We need to check that all of the pointers in this list are disjoint 863 /// at runtime. 864 RuntimePointerCheck PtrRtCheck; 865 /// Can we assume the absence of NaNs. 866 bool HasFunNoNaNAttr; 867 868 unsigned MaxSafeDepDistBytes; 869 870 ValueToValueMap Strides; 871 SmallPtrSet<Value *, 8> StrideSet; 872 }; 873 874 /// LoopVectorizationCostModel - estimates the expected speedups due to 875 /// vectorization. 876 /// In many cases vectorization is not profitable. This can happen because of 877 /// a number of reasons. In this class we mainly attempt to predict the 878 /// expected speedup/slowdowns due to the supported instruction set. We use the 879 /// TargetTransformInfo to query the different backends for the cost of 880 /// different operations. 881 class LoopVectorizationCostModel { 882 public: 883 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 884 LoopVectorizationLegality *Legal, 885 const TargetTransformInfo &TTI, 886 const DataLayout *DL, const TargetLibraryInfo *TLI, 887 const Function *F, const LoopVectorizeHints *Hints) 888 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), TheFunction(F), Hints(Hints) {} 889 890 /// Information about vectorization costs 891 struct VectorizationFactor { 892 unsigned Width; // Vector width with best cost 893 unsigned Cost; // Cost of the loop with that width 894 }; 895 /// \return The most profitable vectorization factor and the cost of that VF. 896 /// This method checks every power of two up to VF. If UserVF is not ZERO 897 /// then this vectorization factor will be selected if vectorization is 898 /// possible. 899 VectorizationFactor selectVectorizationFactor(bool OptForSize); 900 901 /// \return The size (in bits) of the widest type in the code that 902 /// needs to be vectorized. We ignore values that remain scalar such as 903 /// 64 bit loop indices. 904 unsigned getWidestType(); 905 906 /// \return The most profitable unroll factor. 907 /// If UserUF is non-zero then this method finds the best unroll-factor 908 /// based on register pressure and other parameters. 909 /// VF and LoopCost are the selected vectorization factor and the cost of the 910 /// selected VF. 911 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 912 913 /// \brief A struct that represents some properties of the register usage 914 /// of a loop. 915 struct RegisterUsage { 916 /// Holds the number of loop invariant values that are used in the loop. 917 unsigned LoopInvariantRegs; 918 /// Holds the maximum number of concurrent live intervals in the loop. 919 unsigned MaxLocalUsers; 920 /// Holds the number of instructions in the loop. 921 unsigned NumInstructions; 922 }; 923 924 /// \return information about the register usage of the loop. 925 RegisterUsage calculateRegisterUsage(); 926 927 private: 928 /// Returns the expected execution cost. The unit of the cost does 929 /// not matter because we use the 'cost' units to compare different 930 /// vector widths. The cost that is returned is *not* normalized by 931 /// the factor width. 932 unsigned expectedCost(unsigned VF); 933 934 /// Returns the execution time cost of an instruction for a given vector 935 /// width. Vector width of one means scalar. 936 unsigned getInstructionCost(Instruction *I, unsigned VF); 937 938 /// A helper function for converting Scalar types to vector types. 939 /// If the incoming type is void, we return void. If the VF is 1, we return 940 /// the scalar type. 941 static Type* ToVectorTy(Type *Scalar, unsigned VF); 942 943 /// Returns whether the instruction is a load or store and will be a emitted 944 /// as a vector operation. 945 bool isConsecutiveLoadOrStore(Instruction *I); 946 947 /// Report an analysis message to assist the user in diagnosing loops that are 948 /// not vectorized. 949 void emitAnalysis(Report &Message) { 950 DebugLoc DL = TheLoop->getStartLoc(); 951 if (Instruction *I = Message.getInstr()) 952 DL = I->getDebugLoc(); 953 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 954 *TheFunction, DL, Message.str()); 955 } 956 957 /// The loop that we evaluate. 958 Loop *TheLoop; 959 /// Scev analysis. 960 ScalarEvolution *SE; 961 /// Loop Info analysis. 962 LoopInfo *LI; 963 /// Vectorization legality. 964 LoopVectorizationLegality *Legal; 965 /// Vector target information. 966 const TargetTransformInfo &TTI; 967 /// Target data layout information. 968 const DataLayout *DL; 969 /// Target Library Info. 970 const TargetLibraryInfo *TLI; 971 const Function *TheFunction; 972 // Loop Vectorize Hint. 973 const LoopVectorizeHints *Hints; 974 }; 975 976 /// Utility class for getting and setting loop vectorizer hints in the form 977 /// of loop metadata. 978 /// This class keeps a number of loop annotations locally (as member variables) 979 /// and can, upon request, write them back as metadata on the loop. It will 980 /// initially scan the loop for existing metadata, and will update the local 981 /// values based on information in the loop. 982 /// We cannot write all values to metadata, as the mere presence of some info, 983 /// for example 'force', means a decision has been made. So, we need to be 984 /// careful NOT to add them if the user hasn't specifically asked so. 985 class LoopVectorizeHints { 986 enum HintKind { 987 HK_WIDTH, 988 HK_UNROLL, 989 HK_FORCE 990 }; 991 992 /// Hint - associates name and validation with the hint value. 993 struct Hint { 994 const char * Name; 995 unsigned Value; // This may have to change for non-numeric values. 996 HintKind Kind; 997 998 Hint(const char * Name, unsigned Value, HintKind Kind) 999 : Name(Name), Value(Value), Kind(Kind) { } 1000 1001 bool validate(unsigned Val) { 1002 switch (Kind) { 1003 case HK_WIDTH: 1004 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1005 case HK_UNROLL: 1006 return isPowerOf2_32(Val) && Val <= MaxUnrollFactor; 1007 case HK_FORCE: 1008 return (Val <= 1); 1009 } 1010 return false; 1011 } 1012 }; 1013 1014 /// Vectorization width. 1015 Hint Width; 1016 /// Vectorization unroll factor. 1017 Hint Unroll; 1018 /// Vectorization forced 1019 Hint Force; 1020 /// Array to help iterating through all hints. 1021 Hint *Hints[3]; // avoiding initialisation due to MSVC2012 1022 1023 /// Return the loop metadata prefix. 1024 static StringRef Prefix() { return "llvm.loop."; } 1025 1026 public: 1027 enum ForceKind { 1028 FK_Undefined = -1, ///< Not selected. 1029 FK_Disabled = 0, ///< Forcing disabled. 1030 FK_Enabled = 1, ///< Forcing enabled. 1031 }; 1032 1033 LoopVectorizeHints(const Loop *L, bool DisableUnrolling) 1034 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1035 Unroll("interleave.count", DisableUnrolling, HK_UNROLL), 1036 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1037 TheLoop(L) { 1038 // FIXME: Move this up initialisation when MSVC requirement is 2013+ 1039 Hints[0] = &Width; 1040 Hints[1] = &Unroll; 1041 Hints[2] = &Force; 1042 1043 // Populate values with existing loop metadata. 1044 getHintsFromMetadata(); 1045 1046 // force-vector-unroll overrides DisableUnrolling. 1047 if (VectorizationUnroll.getNumOccurrences() > 0) 1048 Unroll.Value = VectorizationUnroll; 1049 1050 DEBUG(if (DisableUnrolling && Unroll.Value == 1) dbgs() 1051 << "LV: Unrolling disabled by the pass manager\n"); 1052 } 1053 1054 /// Mark the loop L as already vectorized by setting the width to 1. 1055 void setAlreadyVectorized() { 1056 Width.Value = Unroll.Value = 1; 1057 // FIXME: Change all lines below for this when we can use MSVC 2013+ 1058 //writeHintsToMetadata({ Width, Unroll }); 1059 std::vector<Hint> hints; 1060 hints.reserve(2); 1061 hints.emplace_back(Width); 1062 hints.emplace_back(Unroll); 1063 writeHintsToMetadata(std::move(hints)); 1064 } 1065 1066 /// Dumps all the hint information. 1067 std::string emitRemark() const { 1068 Report R; 1069 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1070 R << "vectorization is explicitly disabled"; 1071 else { 1072 R << "use -Rpass-analysis=loop-vectorize for more info"; 1073 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1074 R << " (Force=true"; 1075 if (Width.Value != 0) 1076 R << ", Vector Width=" << Width.Value; 1077 if (Unroll.Value != 0) 1078 R << ", Interleave Count=" << Unroll.Value; 1079 R << ")"; 1080 } 1081 } 1082 1083 return R.str(); 1084 } 1085 1086 unsigned getWidth() const { return Width.Value; } 1087 unsigned getUnroll() const { return Unroll.Value; } 1088 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1089 1090 private: 1091 /// Find hints specified in the loop metadata and update local values. 1092 void getHintsFromMetadata() { 1093 MDNode *LoopID = TheLoop->getLoopID(); 1094 if (!LoopID) 1095 return; 1096 1097 // First operand should refer to the loop id itself. 1098 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1099 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1100 1101 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1102 const MDString *S = nullptr; 1103 SmallVector<Value*, 4> Args; 1104 1105 // The expected hint is either a MDString or a MDNode with the first 1106 // operand a MDString. 1107 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1108 if (!MD || MD->getNumOperands() == 0) 1109 continue; 1110 S = dyn_cast<MDString>(MD->getOperand(0)); 1111 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1112 Args.push_back(MD->getOperand(i)); 1113 } else { 1114 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1115 assert(Args.size() == 0 && "too many arguments for MDString"); 1116 } 1117 1118 if (!S) 1119 continue; 1120 1121 // Check if the hint starts with the loop metadata prefix. 1122 StringRef Name = S->getString(); 1123 if (Args.size() == 1) 1124 setHint(Name, Args[0]); 1125 } 1126 } 1127 1128 /// Checks string hint with one operand and set value if valid. 1129 void setHint(StringRef Name, Value *Arg) { 1130 if (!Name.startswith(Prefix())) 1131 return; 1132 Name = Name.substr(Prefix().size(), StringRef::npos); 1133 1134 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1135 if (!C) return; 1136 unsigned Val = C->getZExtValue(); 1137 1138 for (auto H : Hints) { 1139 if (Name == H->Name) { 1140 if (H->validate(Val)) 1141 H->Value = Val; 1142 else 1143 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1144 break; 1145 } 1146 } 1147 } 1148 1149 /// Create a new hint from name / value pair. 1150 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1151 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1152 SmallVector<Value*, 2> Vals; 1153 Vals.push_back(MDString::get(Context, Name)); 1154 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 1155 return MDNode::get(Context, Vals); 1156 } 1157 1158 /// Matches metadata with hint name. 1159 bool matchesHintMetadataName(MDNode *Node, std::vector<Hint> &HintTypes) { 1160 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1161 if (!Name) 1162 return false; 1163 1164 for (auto H : HintTypes) 1165 if (Name->getName().endswith(H.Name)) 1166 return true; 1167 return false; 1168 } 1169 1170 /// Sets current hints into loop metadata, keeping other values intact. 1171 void writeHintsToMetadata(std::vector<Hint> HintTypes) { 1172 if (HintTypes.size() == 0) 1173 return; 1174 1175 // Reserve the first element to LoopID (see below). 1176 SmallVector<Value*, 4> Vals(1); 1177 // If the loop already has metadata, then ignore the existing operands. 1178 MDNode *LoopID = TheLoop->getLoopID(); 1179 if (LoopID) { 1180 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1181 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1182 // If node in update list, ignore old value. 1183 if (!matchesHintMetadataName(Node, HintTypes)) 1184 Vals.push_back(Node); 1185 } 1186 } 1187 1188 // Now, add the missing hints. 1189 for (auto H : HintTypes) 1190 Vals.push_back( 1191 createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1192 1193 // Replace current metadata node with new one. 1194 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1195 MDNode *NewLoopID = MDNode::get(Context, Vals); 1196 // Set operand 0 to refer to the loop id itself. 1197 NewLoopID->replaceOperandWith(0, NewLoopID); 1198 1199 TheLoop->setLoopID(NewLoopID); 1200 if (LoopID) 1201 LoopID->replaceAllUsesWith(NewLoopID); 1202 LoopID = NewLoopID; 1203 } 1204 1205 /// The loop these hints belong to. 1206 const Loop *TheLoop; 1207 }; 1208 1209 static void emitMissedWarning(Function *F, Loop *L, 1210 const LoopVectorizeHints &LH) { 1211 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1212 L->getStartLoc(), LH.emitRemark()); 1213 1214 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1215 if (LH.getWidth() != 1) 1216 emitLoopVectorizeWarning( 1217 F->getContext(), *F, L->getStartLoc(), 1218 "failed explicitly specified loop vectorization"); 1219 else if (LH.getUnroll() != 1) 1220 emitLoopInterleaveWarning( 1221 F->getContext(), *F, L->getStartLoc(), 1222 "failed explicitly specified loop interleaving"); 1223 } 1224 } 1225 1226 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1227 if (L.empty()) 1228 return V.push_back(&L); 1229 1230 for (Loop *InnerL : L) 1231 addInnerLoop(*InnerL, V); 1232 } 1233 1234 /// The LoopVectorize Pass. 1235 struct LoopVectorize : public FunctionPass { 1236 /// Pass identification, replacement for typeid 1237 static char ID; 1238 1239 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1240 : FunctionPass(ID), 1241 DisableUnrolling(NoUnrolling), 1242 AlwaysVectorize(AlwaysVectorize) { 1243 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1244 } 1245 1246 ScalarEvolution *SE; 1247 const DataLayout *DL; 1248 LoopInfo *LI; 1249 TargetTransformInfo *TTI; 1250 DominatorTree *DT; 1251 BlockFrequencyInfo *BFI; 1252 TargetLibraryInfo *TLI; 1253 AliasAnalysis *AA; 1254 bool DisableUnrolling; 1255 bool AlwaysVectorize; 1256 1257 BlockFrequency ColdEntryFreq; 1258 1259 bool runOnFunction(Function &F) override { 1260 SE = &getAnalysis<ScalarEvolution>(); 1261 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1262 DL = DLP ? &DLP->getDataLayout() : nullptr; 1263 LI = &getAnalysis<LoopInfo>(); 1264 TTI = &getAnalysis<TargetTransformInfo>(); 1265 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1266 BFI = &getAnalysis<BlockFrequencyInfo>(); 1267 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1268 AA = &getAnalysis<AliasAnalysis>(); 1269 1270 // Compute some weights outside of the loop over the loops. Compute this 1271 // using a BranchProbability to re-use its scaling math. 1272 const BranchProbability ColdProb(1, 5); // 20% 1273 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1274 1275 // If the target claims to have no vector registers don't attempt 1276 // vectorization. 1277 if (!TTI->getNumberOfRegisters(true)) 1278 return false; 1279 1280 if (!DL) { 1281 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1282 << ": Missing data layout\n"); 1283 return false; 1284 } 1285 1286 // Build up a worklist of inner-loops to vectorize. This is necessary as 1287 // the act of vectorizing or partially unrolling a loop creates new loops 1288 // and can invalidate iterators across the loops. 1289 SmallVector<Loop *, 8> Worklist; 1290 1291 for (Loop *L : *LI) 1292 addInnerLoop(*L, Worklist); 1293 1294 LoopsAnalyzed += Worklist.size(); 1295 1296 // Now walk the identified inner loops. 1297 bool Changed = false; 1298 while (!Worklist.empty()) 1299 Changed |= processLoop(Worklist.pop_back_val()); 1300 1301 // Process each loop nest in the function. 1302 return Changed; 1303 } 1304 1305 bool processLoop(Loop *L) { 1306 assert(L->empty() && "Only process inner loops."); 1307 1308 #ifndef NDEBUG 1309 const std::string DebugLocStr = getDebugLocString(L); 1310 #endif /* NDEBUG */ 1311 1312 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1313 << L->getHeader()->getParent()->getName() << "\" from " 1314 << DebugLocStr << "\n"); 1315 1316 LoopVectorizeHints Hints(L, DisableUnrolling); 1317 1318 DEBUG(dbgs() << "LV: Loop hints:" 1319 << " force=" 1320 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1321 ? "disabled" 1322 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1323 ? "enabled" 1324 : "?")) << " width=" << Hints.getWidth() 1325 << " unroll=" << Hints.getUnroll() << "\n"); 1326 1327 // Function containing loop 1328 Function *F = L->getHeader()->getParent(); 1329 1330 // Looking at the diagnostic output is the only way to determine if a loop 1331 // was vectorized (other than looking at the IR or machine code), so it 1332 // is important to generate an optimization remark for each loop. Most of 1333 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1334 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1335 // less verbose reporting vectorized loops and unvectorized loops that may 1336 // benefit from vectorization, respectively. 1337 1338 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1339 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1340 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1341 L->getStartLoc(), Hints.emitRemark()); 1342 return false; 1343 } 1344 1345 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1346 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1347 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1348 L->getStartLoc(), Hints.emitRemark()); 1349 return false; 1350 } 1351 1352 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) { 1353 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1354 emitOptimizationRemarkAnalysis( 1355 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1356 "loop not vectorized: vector width and interleave count are " 1357 "explicitly set to 1"); 1358 return false; 1359 } 1360 1361 // Check the loop for a trip count threshold: 1362 // do not vectorize loops with a tiny trip count. 1363 BasicBlock *Latch = L->getLoopLatch(); 1364 const unsigned TC = SE->getSmallConstantTripCount(L, Latch); 1365 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1366 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1367 << "This loop is not worth vectorizing."); 1368 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1369 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1370 else { 1371 DEBUG(dbgs() << "\n"); 1372 emitOptimizationRemarkAnalysis( 1373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1374 "vectorization is not beneficial and is not explicitly forced"); 1375 return false; 1376 } 1377 } 1378 1379 // Check if it is legal to vectorize the loop. 1380 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F); 1381 if (!LVL.canVectorize()) { 1382 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1383 emitMissedWarning(F, L, Hints); 1384 return false; 1385 } 1386 1387 // Use the cost model. 1388 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, F, &Hints); 1389 1390 // Check the function attributes to find out if this function should be 1391 // optimized for size. 1392 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1393 F->hasFnAttribute(Attribute::OptimizeForSize); 1394 1395 // Compute the weighted frequency of this loop being executed and see if it 1396 // is less than 20% of the function entry baseline frequency. Note that we 1397 // always have a canonical loop here because we think we *can* vectoriez. 1398 // FIXME: This is hidden behind a flag due to pervasive problems with 1399 // exactly what block frequency models. 1400 if (LoopVectorizeWithBlockFrequency) { 1401 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1402 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1403 LoopEntryFreq < ColdEntryFreq) 1404 OptForSize = true; 1405 } 1406 1407 // Check the function attributes to see if implicit floats are allowed.a 1408 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1409 // an integer loop and the vector instructions selected are purely integer 1410 // vector instructions? 1411 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1412 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1413 "attribute is used.\n"); 1414 emitOptimizationRemarkAnalysis( 1415 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1416 "loop not vectorized due to NoImplicitFloat attribute"); 1417 emitMissedWarning(F, L, Hints); 1418 return false; 1419 } 1420 1421 // Select the optimal vectorization factor. 1422 const LoopVectorizationCostModel::VectorizationFactor VF = 1423 CM.selectVectorizationFactor(OptForSize); 1424 1425 // Select the unroll factor. 1426 const unsigned UF = 1427 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1428 1429 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1430 << DebugLocStr << '\n'); 1431 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1432 1433 if (VF.Width == 1) { 1434 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1435 1436 if (UF == 1) { 1437 emitOptimizationRemarkAnalysis( 1438 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1439 "not beneficial to vectorize and user disabled interleaving"); 1440 return false; 1441 } 1442 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1443 1444 // Report the unrolling decision. 1445 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1446 Twine("unrolled with interleaving factor " + 1447 Twine(UF) + 1448 " (vectorization not beneficial)")); 1449 1450 // We decided not to vectorize, but we may want to unroll. 1451 1452 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1453 Unroller.vectorize(&LVL); 1454 } else { 1455 // If we decided that it is *legal* to vectorize the loop then do it. 1456 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1457 LB.vectorize(&LVL); 1458 ++LoopsVectorized; 1459 1460 // Report the vectorization decision. 1461 emitOptimizationRemark( 1462 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1463 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1464 ", unrolling interleave factor: " + Twine(UF) + ")"); 1465 } 1466 1467 // Mark the loop as already vectorized to avoid vectorizing again. 1468 Hints.setAlreadyVectorized(); 1469 1470 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1471 return true; 1472 } 1473 1474 void getAnalysisUsage(AnalysisUsage &AU) const override { 1475 AU.addRequiredID(LoopSimplifyID); 1476 AU.addRequiredID(LCSSAID); 1477 AU.addRequired<BlockFrequencyInfo>(); 1478 AU.addRequired<DominatorTreeWrapperPass>(); 1479 AU.addRequired<LoopInfo>(); 1480 AU.addRequired<ScalarEvolution>(); 1481 AU.addRequired<TargetTransformInfo>(); 1482 AU.addRequired<AliasAnalysis>(); 1483 AU.addPreserved<LoopInfo>(); 1484 AU.addPreserved<DominatorTreeWrapperPass>(); 1485 AU.addPreserved<AliasAnalysis>(); 1486 } 1487 1488 }; 1489 1490 } // end anonymous namespace 1491 1492 //===----------------------------------------------------------------------===// 1493 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1494 // LoopVectorizationCostModel. 1495 //===----------------------------------------------------------------------===// 1496 1497 static Value *stripIntegerCast(Value *V) { 1498 if (CastInst *CI = dyn_cast<CastInst>(V)) 1499 if (CI->getOperand(0)->getType()->isIntegerTy()) 1500 return CI->getOperand(0); 1501 return V; 1502 } 1503 1504 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1505 /// 1506 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1507 /// \p Ptr. 1508 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1509 ValueToValueMap &PtrToStride, 1510 Value *Ptr, Value *OrigPtr = nullptr) { 1511 1512 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1513 1514 // If there is an entry in the map return the SCEV of the pointer with the 1515 // symbolic stride replaced by one. 1516 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1517 if (SI != PtrToStride.end()) { 1518 Value *StrideVal = SI->second; 1519 1520 // Strip casts. 1521 StrideVal = stripIntegerCast(StrideVal); 1522 1523 // Replace symbolic stride by one. 1524 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1525 ValueToValueMap RewriteMap; 1526 RewriteMap[StrideVal] = One; 1527 1528 const SCEV *ByOne = 1529 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1530 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1531 << "\n"); 1532 return ByOne; 1533 } 1534 1535 // Otherwise, just return the SCEV of the original pointer. 1536 return SE->getSCEV(Ptr); 1537 } 1538 1539 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1540 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1541 unsigned ASId, ValueToValueMap &Strides) { 1542 // Get the stride replaced scev. 1543 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1545 assert(AR && "Invalid addrec expression"); 1546 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1547 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1548 Pointers.push_back(Ptr); 1549 Starts.push_back(AR->getStart()); 1550 Ends.push_back(ScEnd); 1551 IsWritePtr.push_back(WritePtr); 1552 DependencySetId.push_back(DepSetId); 1553 AliasSetId.push_back(ASId); 1554 } 1555 1556 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1557 // We need to place the broadcast of invariant variables outside the loop. 1558 Instruction *Instr = dyn_cast<Instruction>(V); 1559 bool NewInstr = 1560 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1561 Instr->getParent()) != LoopVectorBody.end()); 1562 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1563 1564 // Place the code for broadcasting invariant variables in the new preheader. 1565 IRBuilder<>::InsertPointGuard Guard(Builder); 1566 if (Invariant) 1567 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1568 1569 // Broadcast the scalar into all locations in the vector. 1570 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1571 1572 return Shuf; 1573 } 1574 1575 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1576 bool Negate) { 1577 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1578 assert(Val->getType()->getScalarType()->isIntegerTy() && 1579 "Elem must be an integer"); 1580 // Create the types. 1581 Type *ITy = Val->getType()->getScalarType(); 1582 VectorType *Ty = cast<VectorType>(Val->getType()); 1583 int VLen = Ty->getNumElements(); 1584 SmallVector<Constant*, 8> Indices; 1585 1586 // Create a vector of consecutive numbers from zero to VF. 1587 for (int i = 0; i < VLen; ++i) { 1588 int64_t Idx = Negate ? (-i) : i; 1589 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1590 } 1591 1592 // Add the consecutive indices to the vector value. 1593 Constant *Cv = ConstantVector::get(Indices); 1594 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1595 return Builder.CreateAdd(Val, Cv, "induction"); 1596 } 1597 1598 /// \brief Find the operand of the GEP that should be checked for consecutive 1599 /// stores. This ignores trailing indices that have no effect on the final 1600 /// pointer. 1601 static unsigned getGEPInductionOperand(const DataLayout *DL, 1602 const GetElementPtrInst *Gep) { 1603 unsigned LastOperand = Gep->getNumOperands() - 1; 1604 unsigned GEPAllocSize = DL->getTypeAllocSize( 1605 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1606 1607 // Walk backwards and try to peel off zeros. 1608 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1609 // Find the type we're currently indexing into. 1610 gep_type_iterator GEPTI = gep_type_begin(Gep); 1611 std::advance(GEPTI, LastOperand - 1); 1612 1613 // If it's a type with the same allocation size as the result of the GEP we 1614 // can peel off the zero index. 1615 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1616 break; 1617 --LastOperand; 1618 } 1619 1620 return LastOperand; 1621 } 1622 1623 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1624 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1625 // Make sure that the pointer does not point to structs. 1626 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1627 return 0; 1628 1629 // If this value is a pointer induction variable we know it is consecutive. 1630 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1631 if (Phi && Inductions.count(Phi)) { 1632 InductionInfo II = Inductions[Phi]; 1633 if (IK_PtrInduction == II.IK) 1634 return 1; 1635 else if (IK_ReversePtrInduction == II.IK) 1636 return -1; 1637 } 1638 1639 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1640 if (!Gep) 1641 return 0; 1642 1643 unsigned NumOperands = Gep->getNumOperands(); 1644 Value *GpPtr = Gep->getPointerOperand(); 1645 // If this GEP value is a consecutive pointer induction variable and all of 1646 // the indices are constant then we know it is consecutive. We can 1647 Phi = dyn_cast<PHINode>(GpPtr); 1648 if (Phi && Inductions.count(Phi)) { 1649 1650 // Make sure that the pointer does not point to structs. 1651 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1652 if (GepPtrType->getElementType()->isAggregateType()) 1653 return 0; 1654 1655 // Make sure that all of the index operands are loop invariant. 1656 for (unsigned i = 1; i < NumOperands; ++i) 1657 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1658 return 0; 1659 1660 InductionInfo II = Inductions[Phi]; 1661 if (IK_PtrInduction == II.IK) 1662 return 1; 1663 else if (IK_ReversePtrInduction == II.IK) 1664 return -1; 1665 } 1666 1667 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1668 1669 // Check that all of the gep indices are uniform except for our induction 1670 // operand. 1671 for (unsigned i = 0; i != NumOperands; ++i) 1672 if (i != InductionOperand && 1673 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1674 return 0; 1675 1676 // We can emit wide load/stores only if the last non-zero index is the 1677 // induction variable. 1678 const SCEV *Last = nullptr; 1679 if (!Strides.count(Gep)) 1680 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1681 else { 1682 // Because of the multiplication by a stride we can have a s/zext cast. 1683 // We are going to replace this stride by 1 so the cast is safe to ignore. 1684 // 1685 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1686 // %0 = trunc i64 %indvars.iv to i32 1687 // %mul = mul i32 %0, %Stride1 1688 // %idxprom = zext i32 %mul to i64 << Safe cast. 1689 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1690 // 1691 Last = replaceSymbolicStrideSCEV(SE, Strides, 1692 Gep->getOperand(InductionOperand), Gep); 1693 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1694 Last = 1695 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1696 ? C->getOperand() 1697 : Last; 1698 } 1699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1700 const SCEV *Step = AR->getStepRecurrence(*SE); 1701 1702 // The memory is consecutive because the last index is consecutive 1703 // and all other indices are loop invariant. 1704 if (Step->isOne()) 1705 return 1; 1706 if (Step->isAllOnesValue()) 1707 return -1; 1708 } 1709 1710 return 0; 1711 } 1712 1713 bool LoopVectorizationLegality::isUniform(Value *V) { 1714 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1715 } 1716 1717 InnerLoopVectorizer::VectorParts& 1718 InnerLoopVectorizer::getVectorValue(Value *V) { 1719 assert(V != Induction && "The new induction variable should not be used."); 1720 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1721 1722 // If we have a stride that is replaced by one, do it here. 1723 if (Legal->hasStride(V)) 1724 V = ConstantInt::get(V->getType(), 1); 1725 1726 // If we have this scalar in the map, return it. 1727 if (WidenMap.has(V)) 1728 return WidenMap.get(V); 1729 1730 // If this scalar is unknown, assume that it is a constant or that it is 1731 // loop invariant. Broadcast V and save the value for future uses. 1732 Value *B = getBroadcastInstrs(V); 1733 return WidenMap.splat(V, B); 1734 } 1735 1736 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1737 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1738 SmallVector<Constant*, 8> ShuffleMask; 1739 for (unsigned i = 0; i < VF; ++i) 1740 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1741 1742 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1743 ConstantVector::get(ShuffleMask), 1744 "reverse"); 1745 } 1746 1747 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1748 // Attempt to issue a wide load. 1749 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1750 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1751 1752 assert((LI || SI) && "Invalid Load/Store instruction"); 1753 1754 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1755 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1756 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1757 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1758 // An alignment of 0 means target abi alignment. We need to use the scalar's 1759 // target abi alignment in such a case. 1760 if (!Alignment) 1761 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1762 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1763 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1764 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1765 1766 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1767 return scalarizeInstruction(Instr, true); 1768 1769 if (ScalarAllocatedSize != VectorElementSize) 1770 return scalarizeInstruction(Instr); 1771 1772 // If the pointer is loop invariant or if it is non-consecutive, 1773 // scalarize the load. 1774 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1775 bool Reverse = ConsecutiveStride < 0; 1776 bool UniformLoad = LI && Legal->isUniform(Ptr); 1777 if (!ConsecutiveStride || UniformLoad) 1778 return scalarizeInstruction(Instr); 1779 1780 Constant *Zero = Builder.getInt32(0); 1781 VectorParts &Entry = WidenMap.get(Instr); 1782 1783 // Handle consecutive loads/stores. 1784 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1785 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1786 setDebugLocFromInst(Builder, Gep); 1787 Value *PtrOperand = Gep->getPointerOperand(); 1788 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1789 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1790 1791 // Create the new GEP with the new induction variable. 1792 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1793 Gep2->setOperand(0, FirstBasePtr); 1794 Gep2->setName("gep.indvar.base"); 1795 Ptr = Builder.Insert(Gep2); 1796 } else if (Gep) { 1797 setDebugLocFromInst(Builder, Gep); 1798 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1799 OrigLoop) && "Base ptr must be invariant"); 1800 1801 // The last index does not have to be the induction. It can be 1802 // consecutive and be a function of the index. For example A[I+1]; 1803 unsigned NumOperands = Gep->getNumOperands(); 1804 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1805 // Create the new GEP with the new induction variable. 1806 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1807 1808 for (unsigned i = 0; i < NumOperands; ++i) { 1809 Value *GepOperand = Gep->getOperand(i); 1810 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1811 1812 // Update last index or loop invariant instruction anchored in loop. 1813 if (i == InductionOperand || 1814 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1815 assert((i == InductionOperand || 1816 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1817 "Must be last index or loop invariant"); 1818 1819 VectorParts &GEPParts = getVectorValue(GepOperand); 1820 Value *Index = GEPParts[0]; 1821 Index = Builder.CreateExtractElement(Index, Zero); 1822 Gep2->setOperand(i, Index); 1823 Gep2->setName("gep.indvar.idx"); 1824 } 1825 } 1826 Ptr = Builder.Insert(Gep2); 1827 } else { 1828 // Use the induction element ptr. 1829 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1830 setDebugLocFromInst(Builder, Ptr); 1831 VectorParts &PtrVal = getVectorValue(Ptr); 1832 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1833 } 1834 1835 // Handle Stores: 1836 if (SI) { 1837 assert(!Legal->isUniform(SI->getPointerOperand()) && 1838 "We do not allow storing to uniform addresses"); 1839 setDebugLocFromInst(Builder, SI); 1840 // We don't want to update the value in the map as it might be used in 1841 // another expression. So don't use a reference type for "StoredVal". 1842 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1843 1844 for (unsigned Part = 0; Part < UF; ++Part) { 1845 // Calculate the pointer for the specific unroll-part. 1846 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1847 1848 if (Reverse) { 1849 // If we store to reverse consecutive memory locations then we need 1850 // to reverse the order of elements in the stored value. 1851 StoredVal[Part] = reverseVector(StoredVal[Part]); 1852 // If the address is consecutive but reversed, then the 1853 // wide store needs to start at the last vector element. 1854 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1855 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1856 } 1857 1858 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1859 DataTy->getPointerTo(AddressSpace)); 1860 StoreInst *NewSI = 1861 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1862 propagateMetadata(NewSI, SI); 1863 } 1864 return; 1865 } 1866 1867 // Handle loads. 1868 assert(LI && "Must have a load instruction"); 1869 setDebugLocFromInst(Builder, LI); 1870 for (unsigned Part = 0; Part < UF; ++Part) { 1871 // Calculate the pointer for the specific unroll-part. 1872 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1873 1874 if (Reverse) { 1875 // If the address is consecutive but reversed, then the 1876 // wide store needs to start at the last vector element. 1877 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1878 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1879 } 1880 1881 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1882 DataTy->getPointerTo(AddressSpace)); 1883 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1884 propagateMetadata(NewLI, LI); 1885 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1886 } 1887 } 1888 1889 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1890 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1891 // Holds vector parameters or scalars, in case of uniform vals. 1892 SmallVector<VectorParts, 4> Params; 1893 1894 setDebugLocFromInst(Builder, Instr); 1895 1896 // Find all of the vectorized parameters. 1897 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1898 Value *SrcOp = Instr->getOperand(op); 1899 1900 // If we are accessing the old induction variable, use the new one. 1901 if (SrcOp == OldInduction) { 1902 Params.push_back(getVectorValue(SrcOp)); 1903 continue; 1904 } 1905 1906 // Try using previously calculated values. 1907 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1908 1909 // If the src is an instruction that appeared earlier in the basic block 1910 // then it should already be vectorized. 1911 if (SrcInst && OrigLoop->contains(SrcInst)) { 1912 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1913 // The parameter is a vector value from earlier. 1914 Params.push_back(WidenMap.get(SrcInst)); 1915 } else { 1916 // The parameter is a scalar from outside the loop. Maybe even a constant. 1917 VectorParts Scalars; 1918 Scalars.append(UF, SrcOp); 1919 Params.push_back(Scalars); 1920 } 1921 } 1922 1923 assert(Params.size() == Instr->getNumOperands() && 1924 "Invalid number of operands"); 1925 1926 // Does this instruction return a value ? 1927 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1928 1929 Value *UndefVec = IsVoidRetTy ? nullptr : 1930 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1931 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1932 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1933 1934 Instruction *InsertPt = Builder.GetInsertPoint(); 1935 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1936 BasicBlock *CondBlock = nullptr; 1937 1938 VectorParts Cond; 1939 Loop *VectorLp = nullptr; 1940 if (IfPredicateStore) { 1941 assert(Instr->getParent()->getSinglePredecessor() && 1942 "Only support single predecessor blocks"); 1943 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1944 Instr->getParent()); 1945 VectorLp = LI->getLoopFor(IfBlock); 1946 assert(VectorLp && "Must have a loop for this block"); 1947 } 1948 1949 // For each vector unroll 'part': 1950 for (unsigned Part = 0; Part < UF; ++Part) { 1951 // For each scalar that we create: 1952 for (unsigned Width = 0; Width < VF; ++Width) { 1953 1954 // Start if-block. 1955 Value *Cmp = nullptr; 1956 if (IfPredicateStore) { 1957 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1958 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1959 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1960 LoopVectorBody.push_back(CondBlock); 1961 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1962 // Update Builder with newly created basic block. 1963 Builder.SetInsertPoint(InsertPt); 1964 } 1965 1966 Instruction *Cloned = Instr->clone(); 1967 if (!IsVoidRetTy) 1968 Cloned->setName(Instr->getName() + ".cloned"); 1969 // Replace the operands of the cloned instructions with extracted scalars. 1970 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1971 Value *Op = Params[op][Part]; 1972 // Param is a vector. Need to extract the right lane. 1973 if (Op->getType()->isVectorTy()) 1974 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1975 Cloned->setOperand(op, Op); 1976 } 1977 1978 // Place the cloned scalar in the new loop. 1979 Builder.Insert(Cloned); 1980 1981 // If the original scalar returns a value we need to place it in a vector 1982 // so that future users will be able to use it. 1983 if (!IsVoidRetTy) 1984 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1985 Builder.getInt32(Width)); 1986 // End if-block. 1987 if (IfPredicateStore) { 1988 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1989 LoopVectorBody.push_back(NewIfBlock); 1990 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 1991 Builder.SetInsertPoint(InsertPt); 1992 Instruction *OldBr = IfBlock->getTerminator(); 1993 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1994 OldBr->eraseFromParent(); 1995 IfBlock = NewIfBlock; 1996 } 1997 } 1998 } 1999 } 2000 2001 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2002 Instruction *Loc) { 2003 if (FirstInst) 2004 return FirstInst; 2005 if (Instruction *I = dyn_cast<Instruction>(V)) 2006 return I->getParent() == Loc->getParent() ? I : nullptr; 2007 return nullptr; 2008 } 2009 2010 std::pair<Instruction *, Instruction *> 2011 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2012 Instruction *tnullptr = nullptr; 2013 if (!Legal->mustCheckStrides()) 2014 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2015 2016 IRBuilder<> ChkBuilder(Loc); 2017 2018 // Emit checks. 2019 Value *Check = nullptr; 2020 Instruction *FirstInst = nullptr; 2021 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2022 SE = Legal->strides_end(); 2023 SI != SE; ++SI) { 2024 Value *Ptr = stripIntegerCast(*SI); 2025 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2026 "stride.chk"); 2027 // Store the first instruction we create. 2028 FirstInst = getFirstInst(FirstInst, C, Loc); 2029 if (Check) 2030 Check = ChkBuilder.CreateOr(Check, C); 2031 else 2032 Check = C; 2033 } 2034 2035 // We have to do this trickery because the IRBuilder might fold the check to a 2036 // constant expression in which case there is no Instruction anchored in a 2037 // the block. 2038 LLVMContext &Ctx = Loc->getContext(); 2039 Instruction *TheCheck = 2040 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2041 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2042 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2043 2044 return std::make_pair(FirstInst, TheCheck); 2045 } 2046 2047 std::pair<Instruction *, Instruction *> 2048 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2049 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2050 Legal->getRuntimePointerCheck(); 2051 2052 Instruction *tnullptr = nullptr; 2053 if (!PtrRtCheck->Need) 2054 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2055 2056 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2057 SmallVector<TrackingVH<Value> , 2> Starts; 2058 SmallVector<TrackingVH<Value> , 2> Ends; 2059 2060 LLVMContext &Ctx = Loc->getContext(); 2061 SCEVExpander Exp(*SE, "induction"); 2062 Instruction *FirstInst = nullptr; 2063 2064 for (unsigned i = 0; i < NumPointers; ++i) { 2065 Value *Ptr = PtrRtCheck->Pointers[i]; 2066 const SCEV *Sc = SE->getSCEV(Ptr); 2067 2068 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2069 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2070 *Ptr <<"\n"); 2071 Starts.push_back(Ptr); 2072 Ends.push_back(Ptr); 2073 } else { 2074 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2075 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2076 2077 // Use this type for pointer arithmetic. 2078 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2079 2080 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2081 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2082 Starts.push_back(Start); 2083 Ends.push_back(End); 2084 } 2085 } 2086 2087 IRBuilder<> ChkBuilder(Loc); 2088 // Our instructions might fold to a constant. 2089 Value *MemoryRuntimeCheck = nullptr; 2090 for (unsigned i = 0; i < NumPointers; ++i) { 2091 for (unsigned j = i+1; j < NumPointers; ++j) { 2092 // No need to check if two readonly pointers intersect. 2093 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2094 continue; 2095 2096 // Only need to check pointers between two different dependency sets. 2097 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2098 continue; 2099 // Only need to check pointers in the same alias set. 2100 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2101 continue; 2102 2103 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2104 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2105 2106 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2107 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2108 "Trying to bounds check pointers with different address spaces"); 2109 2110 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2111 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2112 2113 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2114 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2115 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2116 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2117 2118 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2119 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2120 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2121 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2122 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2123 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2124 if (MemoryRuntimeCheck) { 2125 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2126 "conflict.rdx"); 2127 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2128 } 2129 MemoryRuntimeCheck = IsConflict; 2130 } 2131 } 2132 2133 // We have to do this trickery because the IRBuilder might fold the check to a 2134 // constant expression in which case there is no Instruction anchored in a 2135 // the block. 2136 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2137 ConstantInt::getTrue(Ctx)); 2138 ChkBuilder.Insert(Check, "memcheck.conflict"); 2139 FirstInst = getFirstInst(FirstInst, Check, Loc); 2140 return std::make_pair(FirstInst, Check); 2141 } 2142 2143 void InnerLoopVectorizer::createEmptyLoop() { 2144 /* 2145 In this function we generate a new loop. The new loop will contain 2146 the vectorized instructions while the old loop will continue to run the 2147 scalar remainder. 2148 2149 [ ] <-- Back-edge taken count overflow check. 2150 / | 2151 / v 2152 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2153 | / | 2154 | / v 2155 || [ ] <-- vector pre header. 2156 || | 2157 || v 2158 || [ ] \ 2159 || [ ]_| <-- vector loop. 2160 || | 2161 | \ v 2162 | >[ ] <--- middle-block. 2163 | / | 2164 | / v 2165 -|- >[ ] <--- new preheader. 2166 | | 2167 | v 2168 | [ ] \ 2169 | [ ]_| <-- old scalar loop to handle remainder. 2170 \ | 2171 \ v 2172 >[ ] <-- exit block. 2173 ... 2174 */ 2175 2176 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2177 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2178 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2179 assert(BypassBlock && "Invalid loop structure"); 2180 assert(ExitBlock && "Must have an exit block"); 2181 2182 // Some loops have a single integer induction variable, while other loops 2183 // don't. One example is c++ iterators that often have multiple pointer 2184 // induction variables. In the code below we also support a case where we 2185 // don't have a single induction variable. 2186 OldInduction = Legal->getInduction(); 2187 Type *IdxTy = Legal->getWidestInductionType(); 2188 2189 // Find the loop boundaries. 2190 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2191 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2192 2193 // The exit count might have the type of i64 while the phi is i32. This can 2194 // happen if we have an induction variable that is sign extended before the 2195 // compare. The only way that we get a backedge taken count is that the 2196 // induction variable was signed and as such will not overflow. In such a case 2197 // truncation is legal. 2198 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2199 IdxTy->getPrimitiveSizeInBits()) 2200 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2201 2202 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2203 // Get the total trip count from the count by adding 1. 2204 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2205 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2206 2207 // Expand the trip count and place the new instructions in the preheader. 2208 // Notice that the pre-header does not change, only the loop body. 2209 SCEVExpander Exp(*SE, "induction"); 2210 2211 // We need to test whether the backedge-taken count is uint##_max. Adding one 2212 // to it will cause overflow and an incorrect loop trip count in the vector 2213 // body. In case of overflow we want to directly jump to the scalar remainder 2214 // loop. 2215 Value *BackedgeCount = 2216 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2217 BypassBlock->getTerminator()); 2218 if (BackedgeCount->getType()->isPointerTy()) 2219 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2220 "backedge.ptrcnt.to.int", 2221 BypassBlock->getTerminator()); 2222 Instruction *CheckBCOverflow = 2223 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2224 Constant::getAllOnesValue(BackedgeCount->getType()), 2225 "backedge.overflow", BypassBlock->getTerminator()); 2226 2227 // The loop index does not have to start at Zero. Find the original start 2228 // value from the induction PHI node. If we don't have an induction variable 2229 // then we know that it starts at zero. 2230 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2231 Value *StartIdx = ExtendedIdx = OldInduction ? 2232 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2233 IdxTy): 2234 ConstantInt::get(IdxTy, 0); 2235 2236 // We need an instruction to anchor the overflow check on. StartIdx needs to 2237 // be defined before the overflow check branch. Because the scalar preheader 2238 // is going to merge the start index and so the overflow branch block needs to 2239 // contain a definition of the start index. 2240 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2241 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2242 BypassBlock->getTerminator()); 2243 2244 // Count holds the overall loop count (N). 2245 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2246 BypassBlock->getTerminator()); 2247 2248 LoopBypassBlocks.push_back(BypassBlock); 2249 2250 // Split the single block loop into the two loop structure described above. 2251 BasicBlock *VectorPH = 2252 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2253 BasicBlock *VecBody = 2254 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2255 BasicBlock *MiddleBlock = 2256 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2257 BasicBlock *ScalarPH = 2258 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2259 2260 // Create and register the new vector loop. 2261 Loop* Lp = new Loop(); 2262 Loop *ParentLoop = OrigLoop->getParentLoop(); 2263 2264 // Insert the new loop into the loop nest and register the new basic blocks 2265 // before calling any utilities such as SCEV that require valid LoopInfo. 2266 if (ParentLoop) { 2267 ParentLoop->addChildLoop(Lp); 2268 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2269 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2270 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2271 } else { 2272 LI->addTopLevelLoop(Lp); 2273 } 2274 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2275 2276 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2277 // inside the loop. 2278 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2279 2280 // Generate the induction variable. 2281 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2282 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2283 // The loop step is equal to the vectorization factor (num of SIMD elements) 2284 // times the unroll factor (num of SIMD instructions). 2285 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2286 2287 // This is the IR builder that we use to add all of the logic for bypassing 2288 // the new vector loop. 2289 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2290 setDebugLocFromInst(BypassBuilder, 2291 getDebugLocFromInstOrOperands(OldInduction)); 2292 2293 // We may need to extend the index in case there is a type mismatch. 2294 // We know that the count starts at zero and does not overflow. 2295 if (Count->getType() != IdxTy) { 2296 // The exit count can be of pointer type. Convert it to the correct 2297 // integer type. 2298 if (ExitCount->getType()->isPointerTy()) 2299 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2300 else 2301 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2302 } 2303 2304 // Add the start index to the loop count to get the new end index. 2305 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2306 2307 // Now we need to generate the expression for N - (N % VF), which is 2308 // the part that the vectorized body will execute. 2309 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2310 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2311 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2312 "end.idx.rnd.down"); 2313 2314 // Now, compare the new count to zero. If it is zero skip the vector loop and 2315 // jump to the scalar loop. 2316 Value *Cmp = 2317 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2318 2319 BasicBlock *LastBypassBlock = BypassBlock; 2320 2321 // Generate code to check that the loops trip count that we computed by adding 2322 // one to the backedge-taken count will not overflow. 2323 { 2324 auto PastOverflowCheck = 2325 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2326 BasicBlock *CheckBlock = 2327 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2328 if (ParentLoop) 2329 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2330 LoopBypassBlocks.push_back(CheckBlock); 2331 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2332 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2333 OldTerm->eraseFromParent(); 2334 LastBypassBlock = CheckBlock; 2335 } 2336 2337 // Generate the code to check that the strides we assumed to be one are really 2338 // one. We want the new basic block to start at the first instruction in a 2339 // sequence of instructions that form a check. 2340 Instruction *StrideCheck; 2341 Instruction *FirstCheckInst; 2342 std::tie(FirstCheckInst, StrideCheck) = 2343 addStrideCheck(LastBypassBlock->getTerminator()); 2344 if (StrideCheck) { 2345 // Create a new block containing the stride check. 2346 BasicBlock *CheckBlock = 2347 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2348 if (ParentLoop) 2349 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2350 LoopBypassBlocks.push_back(CheckBlock); 2351 2352 // Replace the branch into the memory check block with a conditional branch 2353 // for the "few elements case". 2354 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2355 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2356 OldTerm->eraseFromParent(); 2357 2358 Cmp = StrideCheck; 2359 LastBypassBlock = CheckBlock; 2360 } 2361 2362 // Generate the code that checks in runtime if arrays overlap. We put the 2363 // checks into a separate block to make the more common case of few elements 2364 // faster. 2365 Instruction *MemRuntimeCheck; 2366 std::tie(FirstCheckInst, MemRuntimeCheck) = 2367 addRuntimeCheck(LastBypassBlock->getTerminator()); 2368 if (MemRuntimeCheck) { 2369 // Create a new block containing the memory check. 2370 BasicBlock *CheckBlock = 2371 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2372 if (ParentLoop) 2373 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2374 LoopBypassBlocks.push_back(CheckBlock); 2375 2376 // Replace the branch into the memory check block with a conditional branch 2377 // for the "few elements case". 2378 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2379 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2380 OldTerm->eraseFromParent(); 2381 2382 Cmp = MemRuntimeCheck; 2383 LastBypassBlock = CheckBlock; 2384 } 2385 2386 LastBypassBlock->getTerminator()->eraseFromParent(); 2387 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2388 LastBypassBlock); 2389 2390 // We are going to resume the execution of the scalar loop. 2391 // Go over all of the induction variables that we found and fix the 2392 // PHIs that are left in the scalar version of the loop. 2393 // The starting values of PHI nodes depend on the counter of the last 2394 // iteration in the vectorized loop. 2395 // If we come from a bypass edge then we need to start from the original 2396 // start value. 2397 2398 // This variable saves the new starting index for the scalar loop. 2399 PHINode *ResumeIndex = nullptr; 2400 LoopVectorizationLegality::InductionList::iterator I, E; 2401 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2402 // Set builder to point to last bypass block. 2403 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2404 for (I = List->begin(), E = List->end(); I != E; ++I) { 2405 PHINode *OrigPhi = I->first; 2406 LoopVectorizationLegality::InductionInfo II = I->second; 2407 2408 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2409 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2410 MiddleBlock->getTerminator()); 2411 // We might have extended the type of the induction variable but we need a 2412 // truncated version for the scalar loop. 2413 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2414 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2415 MiddleBlock->getTerminator()) : nullptr; 2416 2417 // Create phi nodes to merge from the backedge-taken check block. 2418 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2419 ScalarPH->getTerminator()); 2420 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2421 2422 PHINode *BCTruncResumeVal = nullptr; 2423 if (OrigPhi == OldInduction) { 2424 BCTruncResumeVal = 2425 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2426 ScalarPH->getTerminator()); 2427 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2428 } 2429 2430 Value *EndValue = nullptr; 2431 switch (II.IK) { 2432 case LoopVectorizationLegality::IK_NoInduction: 2433 llvm_unreachable("Unknown induction"); 2434 case LoopVectorizationLegality::IK_IntInduction: { 2435 // Handle the integer induction counter. 2436 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2437 2438 // We have the canonical induction variable. 2439 if (OrigPhi == OldInduction) { 2440 // Create a truncated version of the resume value for the scalar loop, 2441 // we might have promoted the type to a larger width. 2442 EndValue = 2443 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2444 // The new PHI merges the original incoming value, in case of a bypass, 2445 // or the value at the end of the vectorized loop. 2446 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2447 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2448 TruncResumeVal->addIncoming(EndValue, VecBody); 2449 2450 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2451 2452 // We know what the end value is. 2453 EndValue = IdxEndRoundDown; 2454 // We also know which PHI node holds it. 2455 ResumeIndex = ResumeVal; 2456 break; 2457 } 2458 2459 // Not the canonical induction variable - add the vector loop count to the 2460 // start value. 2461 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2462 II.StartValue->getType(), 2463 "cast.crd"); 2464 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2465 break; 2466 } 2467 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2468 // Convert the CountRoundDown variable to the PHI size. 2469 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2470 II.StartValue->getType(), 2471 "cast.crd"); 2472 // Handle reverse integer induction counter. 2473 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2474 break; 2475 } 2476 case LoopVectorizationLegality::IK_PtrInduction: { 2477 // For pointer induction variables, calculate the offset using 2478 // the end index. 2479 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2480 "ptr.ind.end"); 2481 break; 2482 } 2483 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2484 // The value at the end of the loop for the reverse pointer is calculated 2485 // by creating a GEP with a negative index starting from the start value. 2486 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2487 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2488 "rev.ind.end"); 2489 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2490 "rev.ptr.ind.end"); 2491 break; 2492 } 2493 }// end of case 2494 2495 // The new PHI merges the original incoming value, in case of a bypass, 2496 // or the value at the end of the vectorized loop. 2497 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2498 if (OrigPhi == OldInduction) 2499 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2500 else 2501 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2502 } 2503 ResumeVal->addIncoming(EndValue, VecBody); 2504 2505 // Fix the scalar body counter (PHI node). 2506 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2507 2508 // The old induction's phi node in the scalar body needs the truncated 2509 // value. 2510 if (OrigPhi == OldInduction) { 2511 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2512 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2513 } else { 2514 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2515 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2516 } 2517 } 2518 2519 // If we are generating a new induction variable then we also need to 2520 // generate the code that calculates the exit value. This value is not 2521 // simply the end of the counter because we may skip the vectorized body 2522 // in case of a runtime check. 2523 if (!OldInduction){ 2524 assert(!ResumeIndex && "Unexpected resume value found"); 2525 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2526 MiddleBlock->getTerminator()); 2527 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2528 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2529 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2530 } 2531 2532 // Make sure that we found the index where scalar loop needs to continue. 2533 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2534 "Invalid resume Index"); 2535 2536 // Add a check in the middle block to see if we have completed 2537 // all of the iterations in the first vector loop. 2538 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2539 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2540 ResumeIndex, "cmp.n", 2541 MiddleBlock->getTerminator()); 2542 2543 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2544 // Remove the old terminator. 2545 MiddleBlock->getTerminator()->eraseFromParent(); 2546 2547 // Create i+1 and fill the PHINode. 2548 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2549 Induction->addIncoming(StartIdx, VectorPH); 2550 Induction->addIncoming(NextIdx, VecBody); 2551 // Create the compare. 2552 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2553 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2554 2555 // Now we have two terminators. Remove the old one from the block. 2556 VecBody->getTerminator()->eraseFromParent(); 2557 2558 // Get ready to start creating new instructions into the vectorized body. 2559 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2560 2561 // Save the state. 2562 LoopVectorPreHeader = VectorPH; 2563 LoopScalarPreHeader = ScalarPH; 2564 LoopMiddleBlock = MiddleBlock; 2565 LoopExitBlock = ExitBlock; 2566 LoopVectorBody.push_back(VecBody); 2567 LoopScalarBody = OldBasicBlock; 2568 2569 LoopVectorizeHints Hints(Lp, true); 2570 Hints.setAlreadyVectorized(); 2571 } 2572 2573 /// This function returns the identity element (or neutral element) for 2574 /// the operation K. 2575 Constant* 2576 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2577 switch (K) { 2578 case RK_IntegerXor: 2579 case RK_IntegerAdd: 2580 case RK_IntegerOr: 2581 // Adding, Xoring, Oring zero to a number does not change it. 2582 return ConstantInt::get(Tp, 0); 2583 case RK_IntegerMult: 2584 // Multiplying a number by 1 does not change it. 2585 return ConstantInt::get(Tp, 1); 2586 case RK_IntegerAnd: 2587 // AND-ing a number with an all-1 value does not change it. 2588 return ConstantInt::get(Tp, -1, true); 2589 case RK_FloatMult: 2590 // Multiplying a number by 1 does not change it. 2591 return ConstantFP::get(Tp, 1.0L); 2592 case RK_FloatAdd: 2593 // Adding zero to a number does not change it. 2594 return ConstantFP::get(Tp, 0.0L); 2595 default: 2596 llvm_unreachable("Unknown reduction kind"); 2597 } 2598 } 2599 2600 /// This function translates the reduction kind to an LLVM binary operator. 2601 static unsigned 2602 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2603 switch (Kind) { 2604 case LoopVectorizationLegality::RK_IntegerAdd: 2605 return Instruction::Add; 2606 case LoopVectorizationLegality::RK_IntegerMult: 2607 return Instruction::Mul; 2608 case LoopVectorizationLegality::RK_IntegerOr: 2609 return Instruction::Or; 2610 case LoopVectorizationLegality::RK_IntegerAnd: 2611 return Instruction::And; 2612 case LoopVectorizationLegality::RK_IntegerXor: 2613 return Instruction::Xor; 2614 case LoopVectorizationLegality::RK_FloatMult: 2615 return Instruction::FMul; 2616 case LoopVectorizationLegality::RK_FloatAdd: 2617 return Instruction::FAdd; 2618 case LoopVectorizationLegality::RK_IntegerMinMax: 2619 return Instruction::ICmp; 2620 case LoopVectorizationLegality::RK_FloatMinMax: 2621 return Instruction::FCmp; 2622 default: 2623 llvm_unreachable("Unknown reduction operation"); 2624 } 2625 } 2626 2627 Value *createMinMaxOp(IRBuilder<> &Builder, 2628 LoopVectorizationLegality::MinMaxReductionKind RK, 2629 Value *Left, 2630 Value *Right) { 2631 CmpInst::Predicate P = CmpInst::ICMP_NE; 2632 switch (RK) { 2633 default: 2634 llvm_unreachable("Unknown min/max reduction kind"); 2635 case LoopVectorizationLegality::MRK_UIntMin: 2636 P = CmpInst::ICMP_ULT; 2637 break; 2638 case LoopVectorizationLegality::MRK_UIntMax: 2639 P = CmpInst::ICMP_UGT; 2640 break; 2641 case LoopVectorizationLegality::MRK_SIntMin: 2642 P = CmpInst::ICMP_SLT; 2643 break; 2644 case LoopVectorizationLegality::MRK_SIntMax: 2645 P = CmpInst::ICMP_SGT; 2646 break; 2647 case LoopVectorizationLegality::MRK_FloatMin: 2648 P = CmpInst::FCMP_OLT; 2649 break; 2650 case LoopVectorizationLegality::MRK_FloatMax: 2651 P = CmpInst::FCMP_OGT; 2652 break; 2653 } 2654 2655 Value *Cmp; 2656 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2657 RK == LoopVectorizationLegality::MRK_FloatMax) 2658 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2659 else 2660 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2661 2662 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2663 return Select; 2664 } 2665 2666 namespace { 2667 struct CSEDenseMapInfo { 2668 static bool canHandle(Instruction *I) { 2669 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2670 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2671 } 2672 static inline Instruction *getEmptyKey() { 2673 return DenseMapInfo<Instruction *>::getEmptyKey(); 2674 } 2675 static inline Instruction *getTombstoneKey() { 2676 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2677 } 2678 static unsigned getHashValue(Instruction *I) { 2679 assert(canHandle(I) && "Unknown instruction!"); 2680 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2681 I->value_op_end())); 2682 } 2683 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2684 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2685 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2686 return LHS == RHS; 2687 return LHS->isIdenticalTo(RHS); 2688 } 2689 }; 2690 } 2691 2692 /// \brief Check whether this block is a predicated block. 2693 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2694 /// = ...; " blocks. We start with one vectorized basic block. For every 2695 /// conditional block we split this vectorized block. Therefore, every second 2696 /// block will be a predicated one. 2697 static bool isPredicatedBlock(unsigned BlockNum) { 2698 return BlockNum % 2; 2699 } 2700 2701 ///\brief Perform cse of induction variable instructions. 2702 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2703 // Perform simple cse. 2704 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2705 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2706 BasicBlock *BB = BBs[i]; 2707 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2708 Instruction *In = I++; 2709 2710 if (!CSEDenseMapInfo::canHandle(In)) 2711 continue; 2712 2713 // Check if we can replace this instruction with any of the 2714 // visited instructions. 2715 if (Instruction *V = CSEMap.lookup(In)) { 2716 In->replaceAllUsesWith(V); 2717 In->eraseFromParent(); 2718 continue; 2719 } 2720 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2721 // ...;" blocks for predicated stores. Every second block is a predicated 2722 // block. 2723 if (isPredicatedBlock(i)) 2724 continue; 2725 2726 CSEMap[In] = In; 2727 } 2728 } 2729 } 2730 2731 /// \brief Adds a 'fast' flag to floating point operations. 2732 static Value *addFastMathFlag(Value *V) { 2733 if (isa<FPMathOperator>(V)){ 2734 FastMathFlags Flags; 2735 Flags.setUnsafeAlgebra(); 2736 cast<Instruction>(V)->setFastMathFlags(Flags); 2737 } 2738 return V; 2739 } 2740 2741 void InnerLoopVectorizer::vectorizeLoop() { 2742 //===------------------------------------------------===// 2743 // 2744 // Notice: any optimization or new instruction that go 2745 // into the code below should be also be implemented in 2746 // the cost-model. 2747 // 2748 //===------------------------------------------------===// 2749 Constant *Zero = Builder.getInt32(0); 2750 2751 // In order to support reduction variables we need to be able to vectorize 2752 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2753 // stages. First, we create a new vector PHI node with no incoming edges. 2754 // We use this value when we vectorize all of the instructions that use the 2755 // PHI. Next, after all of the instructions in the block are complete we 2756 // add the new incoming edges to the PHI. At this point all of the 2757 // instructions in the basic block are vectorized, so we can use them to 2758 // construct the PHI. 2759 PhiVector RdxPHIsToFix; 2760 2761 // Scan the loop in a topological order to ensure that defs are vectorized 2762 // before users. 2763 LoopBlocksDFS DFS(OrigLoop); 2764 DFS.perform(LI); 2765 2766 // Vectorize all of the blocks in the original loop. 2767 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2768 be = DFS.endRPO(); bb != be; ++bb) 2769 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2770 2771 // At this point every instruction in the original loop is widened to 2772 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2773 // that we vectorized. The PHI nodes are currently empty because we did 2774 // not want to introduce cycles. Notice that the remaining PHI nodes 2775 // that we need to fix are reduction variables. 2776 2777 // Create the 'reduced' values for each of the induction vars. 2778 // The reduced values are the vector values that we scalarize and combine 2779 // after the loop is finished. 2780 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2781 it != e; ++it) { 2782 PHINode *RdxPhi = *it; 2783 assert(RdxPhi && "Unable to recover vectorized PHI"); 2784 2785 // Find the reduction variable descriptor. 2786 assert(Legal->getReductionVars()->count(RdxPhi) && 2787 "Unable to find the reduction variable"); 2788 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2789 (*Legal->getReductionVars())[RdxPhi]; 2790 2791 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2792 2793 // We need to generate a reduction vector from the incoming scalar. 2794 // To do so, we need to generate the 'identity' vector and override 2795 // one of the elements with the incoming scalar reduction. We need 2796 // to do it in the vector-loop preheader. 2797 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2798 2799 // This is the vector-clone of the value that leaves the loop. 2800 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2801 Type *VecTy = VectorExit[0]->getType(); 2802 2803 // Find the reduction identity variable. Zero for addition, or, xor, 2804 // one for multiplication, -1 for And. 2805 Value *Identity; 2806 Value *VectorStart; 2807 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2808 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2809 // MinMax reduction have the start value as their identify. 2810 if (VF == 1) { 2811 VectorStart = Identity = RdxDesc.StartValue; 2812 } else { 2813 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2814 RdxDesc.StartValue, 2815 "minmax.ident"); 2816 } 2817 } else { 2818 // Handle other reduction kinds: 2819 Constant *Iden = 2820 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2821 VecTy->getScalarType()); 2822 if (VF == 1) { 2823 Identity = Iden; 2824 // This vector is the Identity vector where the first element is the 2825 // incoming scalar reduction. 2826 VectorStart = RdxDesc.StartValue; 2827 } else { 2828 Identity = ConstantVector::getSplat(VF, Iden); 2829 2830 // This vector is the Identity vector where the first element is the 2831 // incoming scalar reduction. 2832 VectorStart = Builder.CreateInsertElement(Identity, 2833 RdxDesc.StartValue, Zero); 2834 } 2835 } 2836 2837 // Fix the vector-loop phi. 2838 // We created the induction variable so we know that the 2839 // preheader is the first entry. 2840 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2841 2842 // Reductions do not have to start at zero. They can start with 2843 // any loop invariant values. 2844 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2845 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2846 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2847 VectorParts &Val = getVectorValue(LoopVal); 2848 for (unsigned part = 0; part < UF; ++part) { 2849 // Make sure to add the reduction stat value only to the 2850 // first unroll part. 2851 Value *StartVal = (part == 0) ? VectorStart : Identity; 2852 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2853 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2854 LoopVectorBody.back()); 2855 } 2856 2857 // Before each round, move the insertion point right between 2858 // the PHIs and the values we are going to write. 2859 // This allows us to write both PHINodes and the extractelement 2860 // instructions. 2861 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2862 2863 VectorParts RdxParts; 2864 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2865 for (unsigned part = 0; part < UF; ++part) { 2866 // This PHINode contains the vectorized reduction variable, or 2867 // the initial value vector, if we bypass the vector loop. 2868 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2869 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2870 Value *StartVal = (part == 0) ? VectorStart : Identity; 2871 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2872 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2873 NewPhi->addIncoming(RdxExitVal[part], 2874 LoopVectorBody.back()); 2875 RdxParts.push_back(NewPhi); 2876 } 2877 2878 // Reduce all of the unrolled parts into a single vector. 2879 Value *ReducedPartRdx = RdxParts[0]; 2880 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2881 setDebugLocFromInst(Builder, ReducedPartRdx); 2882 for (unsigned part = 1; part < UF; ++part) { 2883 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2884 // Floating point operations had to be 'fast' to enable the reduction. 2885 ReducedPartRdx = addFastMathFlag( 2886 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2887 ReducedPartRdx, "bin.rdx")); 2888 else 2889 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2890 ReducedPartRdx, RdxParts[part]); 2891 } 2892 2893 if (VF > 1) { 2894 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2895 // and vector ops, reducing the set of values being computed by half each 2896 // round. 2897 assert(isPowerOf2_32(VF) && 2898 "Reduction emission only supported for pow2 vectors!"); 2899 Value *TmpVec = ReducedPartRdx; 2900 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2901 for (unsigned i = VF; i != 1; i >>= 1) { 2902 // Move the upper half of the vector to the lower half. 2903 for (unsigned j = 0; j != i/2; ++j) 2904 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2905 2906 // Fill the rest of the mask with undef. 2907 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2908 UndefValue::get(Builder.getInt32Ty())); 2909 2910 Value *Shuf = 2911 Builder.CreateShuffleVector(TmpVec, 2912 UndefValue::get(TmpVec->getType()), 2913 ConstantVector::get(ShuffleMask), 2914 "rdx.shuf"); 2915 2916 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2917 // Floating point operations had to be 'fast' to enable the reduction. 2918 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2919 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2920 else 2921 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2922 } 2923 2924 // The result is in the first element of the vector. 2925 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2926 Builder.getInt32(0)); 2927 } 2928 2929 // Create a phi node that merges control-flow from the backedge-taken check 2930 // block and the middle block. 2931 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2932 LoopScalarPreHeader->getTerminator()); 2933 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2934 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2935 2936 // Now, we need to fix the users of the reduction variable 2937 // inside and outside of the scalar remainder loop. 2938 // We know that the loop is in LCSSA form. We need to update the 2939 // PHI nodes in the exit blocks. 2940 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2941 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2942 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2943 if (!LCSSAPhi) break; 2944 2945 // All PHINodes need to have a single entry edge, or two if 2946 // we already fixed them. 2947 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2948 2949 // We found our reduction value exit-PHI. Update it with the 2950 // incoming bypass edge. 2951 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2952 // Add an edge coming from the bypass. 2953 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2954 break; 2955 } 2956 }// end of the LCSSA phi scan. 2957 2958 // Fix the scalar loop reduction variable with the incoming reduction sum 2959 // from the vector body and from the backedge value. 2960 int IncomingEdgeBlockIdx = 2961 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2962 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2963 // Pick the other block. 2964 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2965 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2966 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2967 }// end of for each redux variable. 2968 2969 fixLCSSAPHIs(); 2970 2971 // Remove redundant induction instructions. 2972 cse(LoopVectorBody); 2973 } 2974 2975 void InnerLoopVectorizer::fixLCSSAPHIs() { 2976 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2977 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2978 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2979 if (!LCSSAPhi) break; 2980 if (LCSSAPhi->getNumIncomingValues() == 1) 2981 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2982 LoopMiddleBlock); 2983 } 2984 } 2985 2986 InnerLoopVectorizer::VectorParts 2987 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2988 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2989 "Invalid edge"); 2990 2991 // Look for cached value. 2992 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2993 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2994 if (ECEntryIt != MaskCache.end()) 2995 return ECEntryIt->second; 2996 2997 VectorParts SrcMask = createBlockInMask(Src); 2998 2999 // The terminator has to be a branch inst! 3000 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3001 assert(BI && "Unexpected terminator found"); 3002 3003 if (BI->isConditional()) { 3004 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3005 3006 if (BI->getSuccessor(0) != Dst) 3007 for (unsigned part = 0; part < UF; ++part) 3008 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3009 3010 for (unsigned part = 0; part < UF; ++part) 3011 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3012 3013 MaskCache[Edge] = EdgeMask; 3014 return EdgeMask; 3015 } 3016 3017 MaskCache[Edge] = SrcMask; 3018 return SrcMask; 3019 } 3020 3021 InnerLoopVectorizer::VectorParts 3022 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3023 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3024 3025 // Loop incoming mask is all-one. 3026 if (OrigLoop->getHeader() == BB) { 3027 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3028 return getVectorValue(C); 3029 } 3030 3031 // This is the block mask. We OR all incoming edges, and with zero. 3032 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3033 VectorParts BlockMask = getVectorValue(Zero); 3034 3035 // For each pred: 3036 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3037 VectorParts EM = createEdgeMask(*it, BB); 3038 for (unsigned part = 0; part < UF; ++part) 3039 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3040 } 3041 3042 return BlockMask; 3043 } 3044 3045 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3046 InnerLoopVectorizer::VectorParts &Entry, 3047 unsigned UF, unsigned VF, PhiVector *PV) { 3048 PHINode* P = cast<PHINode>(PN); 3049 // Handle reduction variables: 3050 if (Legal->getReductionVars()->count(P)) { 3051 for (unsigned part = 0; part < UF; ++part) { 3052 // This is phase one of vectorizing PHIs. 3053 Type *VecTy = (VF == 1) ? PN->getType() : 3054 VectorType::get(PN->getType(), VF); 3055 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3056 LoopVectorBody.back()-> getFirstInsertionPt()); 3057 } 3058 PV->push_back(P); 3059 return; 3060 } 3061 3062 setDebugLocFromInst(Builder, P); 3063 // Check for PHI nodes that are lowered to vector selects. 3064 if (P->getParent() != OrigLoop->getHeader()) { 3065 // We know that all PHIs in non-header blocks are converted into 3066 // selects, so we don't have to worry about the insertion order and we 3067 // can just use the builder. 3068 // At this point we generate the predication tree. There may be 3069 // duplications since this is a simple recursive scan, but future 3070 // optimizations will clean it up. 3071 3072 unsigned NumIncoming = P->getNumIncomingValues(); 3073 3074 // Generate a sequence of selects of the form: 3075 // SELECT(Mask3, In3, 3076 // SELECT(Mask2, In2, 3077 // ( ...))) 3078 for (unsigned In = 0; In < NumIncoming; In++) { 3079 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3080 P->getParent()); 3081 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3082 3083 for (unsigned part = 0; part < UF; ++part) { 3084 // We might have single edge PHIs (blocks) - use an identity 3085 // 'select' for the first PHI operand. 3086 if (In == 0) 3087 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3088 In0[part]); 3089 else 3090 // Select between the current value and the previous incoming edge 3091 // based on the incoming mask. 3092 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3093 Entry[part], "predphi"); 3094 } 3095 } 3096 return; 3097 } 3098 3099 // This PHINode must be an induction variable. 3100 // Make sure that we know about it. 3101 assert(Legal->getInductionVars()->count(P) && 3102 "Not an induction variable"); 3103 3104 LoopVectorizationLegality::InductionInfo II = 3105 Legal->getInductionVars()->lookup(P); 3106 3107 switch (II.IK) { 3108 case LoopVectorizationLegality::IK_NoInduction: 3109 llvm_unreachable("Unknown induction"); 3110 case LoopVectorizationLegality::IK_IntInduction: { 3111 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3112 Type *PhiTy = P->getType(); 3113 Value *Broadcasted; 3114 if (P == OldInduction) { 3115 // Handle the canonical induction variable. We might have had to 3116 // extend the type. 3117 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3118 } else { 3119 // Handle other induction variables that are now based on the 3120 // canonical one. 3121 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3122 "normalized.idx"); 3123 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3124 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3125 "offset.idx"); 3126 } 3127 Broadcasted = getBroadcastInstrs(Broadcasted); 3128 // After broadcasting the induction variable we need to make the vector 3129 // consecutive by adding 0, 1, 2, etc. 3130 for (unsigned part = 0; part < UF; ++part) 3131 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3132 return; 3133 } 3134 case LoopVectorizationLegality::IK_ReverseIntInduction: 3135 case LoopVectorizationLegality::IK_PtrInduction: 3136 case LoopVectorizationLegality::IK_ReversePtrInduction: 3137 // Handle reverse integer and pointer inductions. 3138 Value *StartIdx = ExtendedIdx; 3139 // This is the normalized GEP that starts counting at zero. 3140 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3141 "normalized.idx"); 3142 3143 // Handle the reverse integer induction variable case. 3144 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3145 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3146 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3147 "resize.norm.idx"); 3148 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3149 "reverse.idx"); 3150 3151 // This is a new value so do not hoist it out. 3152 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3153 // After broadcasting the induction variable we need to make the 3154 // vector consecutive by adding ... -3, -2, -1, 0. 3155 for (unsigned part = 0; part < UF; ++part) 3156 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3157 true); 3158 return; 3159 } 3160 3161 // Handle the pointer induction variable case. 3162 assert(P->getType()->isPointerTy() && "Unexpected type."); 3163 3164 // Is this a reverse induction ptr or a consecutive induction ptr. 3165 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3166 II.IK); 3167 3168 // This is the vector of results. Notice that we don't generate 3169 // vector geps because scalar geps result in better code. 3170 for (unsigned part = 0; part < UF; ++part) { 3171 if (VF == 1) { 3172 int EltIndex = (part) * (Reverse ? -1 : 1); 3173 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3174 Value *GlobalIdx; 3175 if (Reverse) 3176 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3177 else 3178 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3179 3180 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3181 "next.gep"); 3182 Entry[part] = SclrGep; 3183 continue; 3184 } 3185 3186 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3187 for (unsigned int i = 0; i < VF; ++i) { 3188 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3189 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3190 Value *GlobalIdx; 3191 if (!Reverse) 3192 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3193 else 3194 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3195 3196 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3197 "next.gep"); 3198 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3199 Builder.getInt32(i), 3200 "insert.gep"); 3201 } 3202 Entry[part] = VecVal; 3203 } 3204 return; 3205 } 3206 } 3207 3208 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3209 // For each instruction in the old loop. 3210 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3211 VectorParts &Entry = WidenMap.get(it); 3212 switch (it->getOpcode()) { 3213 case Instruction::Br: 3214 // Nothing to do for PHIs and BR, since we already took care of the 3215 // loop control flow instructions. 3216 continue; 3217 case Instruction::PHI:{ 3218 // Vectorize PHINodes. 3219 widenPHIInstruction(it, Entry, UF, VF, PV); 3220 continue; 3221 }// End of PHI. 3222 3223 case Instruction::Add: 3224 case Instruction::FAdd: 3225 case Instruction::Sub: 3226 case Instruction::FSub: 3227 case Instruction::Mul: 3228 case Instruction::FMul: 3229 case Instruction::UDiv: 3230 case Instruction::SDiv: 3231 case Instruction::FDiv: 3232 case Instruction::URem: 3233 case Instruction::SRem: 3234 case Instruction::FRem: 3235 case Instruction::Shl: 3236 case Instruction::LShr: 3237 case Instruction::AShr: 3238 case Instruction::And: 3239 case Instruction::Or: 3240 case Instruction::Xor: { 3241 // Just widen binops. 3242 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3243 setDebugLocFromInst(Builder, BinOp); 3244 VectorParts &A = getVectorValue(it->getOperand(0)); 3245 VectorParts &B = getVectorValue(it->getOperand(1)); 3246 3247 // Use this vector value for all users of the original instruction. 3248 for (unsigned Part = 0; Part < UF; ++Part) { 3249 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3250 3251 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3252 VecOp->copyFlags(BinOp); 3253 3254 Entry[Part] = V; 3255 } 3256 3257 propagateMetadata(Entry, it); 3258 break; 3259 } 3260 case Instruction::Select: { 3261 // Widen selects. 3262 // If the selector is loop invariant we can create a select 3263 // instruction with a scalar condition. Otherwise, use vector-select. 3264 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3265 OrigLoop); 3266 setDebugLocFromInst(Builder, it); 3267 3268 // The condition can be loop invariant but still defined inside the 3269 // loop. This means that we can't just use the original 'cond' value. 3270 // We have to take the 'vectorized' value and pick the first lane. 3271 // Instcombine will make this a no-op. 3272 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3273 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3274 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3275 3276 Value *ScalarCond = (VF == 1) ? Cond[0] : 3277 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3278 3279 for (unsigned Part = 0; Part < UF; ++Part) { 3280 Entry[Part] = Builder.CreateSelect( 3281 InvariantCond ? ScalarCond : Cond[Part], 3282 Op0[Part], 3283 Op1[Part]); 3284 } 3285 3286 propagateMetadata(Entry, it); 3287 break; 3288 } 3289 3290 case Instruction::ICmp: 3291 case Instruction::FCmp: { 3292 // Widen compares. Generate vector compares. 3293 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3294 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3295 setDebugLocFromInst(Builder, it); 3296 VectorParts &A = getVectorValue(it->getOperand(0)); 3297 VectorParts &B = getVectorValue(it->getOperand(1)); 3298 for (unsigned Part = 0; Part < UF; ++Part) { 3299 Value *C = nullptr; 3300 if (FCmp) 3301 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3302 else 3303 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3304 Entry[Part] = C; 3305 } 3306 3307 propagateMetadata(Entry, it); 3308 break; 3309 } 3310 3311 case Instruction::Store: 3312 case Instruction::Load: 3313 vectorizeMemoryInstruction(it); 3314 break; 3315 case Instruction::ZExt: 3316 case Instruction::SExt: 3317 case Instruction::FPToUI: 3318 case Instruction::FPToSI: 3319 case Instruction::FPExt: 3320 case Instruction::PtrToInt: 3321 case Instruction::IntToPtr: 3322 case Instruction::SIToFP: 3323 case Instruction::UIToFP: 3324 case Instruction::Trunc: 3325 case Instruction::FPTrunc: 3326 case Instruction::BitCast: { 3327 CastInst *CI = dyn_cast<CastInst>(it); 3328 setDebugLocFromInst(Builder, it); 3329 /// Optimize the special case where the source is the induction 3330 /// variable. Notice that we can only optimize the 'trunc' case 3331 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3332 /// c. other casts depend on pointer size. 3333 if (CI->getOperand(0) == OldInduction && 3334 it->getOpcode() == Instruction::Trunc) { 3335 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3336 CI->getType()); 3337 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3338 for (unsigned Part = 0; Part < UF; ++Part) 3339 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3340 propagateMetadata(Entry, it); 3341 break; 3342 } 3343 /// Vectorize casts. 3344 Type *DestTy = (VF == 1) ? CI->getType() : 3345 VectorType::get(CI->getType(), VF); 3346 3347 VectorParts &A = getVectorValue(it->getOperand(0)); 3348 for (unsigned Part = 0; Part < UF; ++Part) 3349 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3350 propagateMetadata(Entry, it); 3351 break; 3352 } 3353 3354 case Instruction::Call: { 3355 // Ignore dbg intrinsics. 3356 if (isa<DbgInfoIntrinsic>(it)) 3357 break; 3358 setDebugLocFromInst(Builder, it); 3359 3360 Module *M = BB->getParent()->getParent(); 3361 CallInst *CI = cast<CallInst>(it); 3362 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3363 assert(ID && "Not an intrinsic call!"); 3364 switch (ID) { 3365 case Intrinsic::lifetime_end: 3366 case Intrinsic::lifetime_start: 3367 scalarizeInstruction(it); 3368 break; 3369 default: 3370 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3371 for (unsigned Part = 0; Part < UF; ++Part) { 3372 SmallVector<Value *, 4> Args; 3373 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3374 if (HasScalarOpd && i == 1) { 3375 Args.push_back(CI->getArgOperand(i)); 3376 continue; 3377 } 3378 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3379 Args.push_back(Arg[Part]); 3380 } 3381 Type *Tys[] = {CI->getType()}; 3382 if (VF > 1) 3383 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3384 3385 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3386 Entry[Part] = Builder.CreateCall(F, Args); 3387 } 3388 3389 propagateMetadata(Entry, it); 3390 break; 3391 } 3392 break; 3393 } 3394 3395 default: 3396 // All other instructions are unsupported. Scalarize them. 3397 scalarizeInstruction(it); 3398 break; 3399 }// end of switch. 3400 }// end of for_each instr. 3401 } 3402 3403 void InnerLoopVectorizer::updateAnalysis() { 3404 // Forget the original basic block. 3405 SE->forgetLoop(OrigLoop); 3406 3407 // Update the dominator tree information. 3408 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3409 "Entry does not dominate exit."); 3410 3411 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3412 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3413 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3414 3415 // Due to if predication of stores we might create a sequence of "if(pred) 3416 // a[i] = ...; " blocks. 3417 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3418 if (i == 0) 3419 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3420 else if (isPredicatedBlock(i)) { 3421 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3422 } else { 3423 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3424 } 3425 } 3426 3427 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3428 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3429 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3430 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3431 3432 DEBUG(DT->verifyDomTree()); 3433 } 3434 3435 /// \brief Check whether it is safe to if-convert this phi node. 3436 /// 3437 /// Phi nodes with constant expressions that can trap are not safe to if 3438 /// convert. 3439 static bool canIfConvertPHINodes(BasicBlock *BB) { 3440 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3441 PHINode *Phi = dyn_cast<PHINode>(I); 3442 if (!Phi) 3443 return true; 3444 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3445 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3446 if (C->canTrap()) 3447 return false; 3448 } 3449 return true; 3450 } 3451 3452 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3453 if (!EnableIfConversion) { 3454 emitAnalysis(Report() << "if-conversion is disabled"); 3455 return false; 3456 } 3457 3458 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3459 3460 // A list of pointers that we can safely read and write to. 3461 SmallPtrSet<Value *, 8> SafePointes; 3462 3463 // Collect safe addresses. 3464 for (Loop::block_iterator BI = TheLoop->block_begin(), 3465 BE = TheLoop->block_end(); BI != BE; ++BI) { 3466 BasicBlock *BB = *BI; 3467 3468 if (blockNeedsPredication(BB)) 3469 continue; 3470 3471 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3472 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3473 SafePointes.insert(LI->getPointerOperand()); 3474 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3475 SafePointes.insert(SI->getPointerOperand()); 3476 } 3477 } 3478 3479 // Collect the blocks that need predication. 3480 BasicBlock *Header = TheLoop->getHeader(); 3481 for (Loop::block_iterator BI = TheLoop->block_begin(), 3482 BE = TheLoop->block_end(); BI != BE; ++BI) { 3483 BasicBlock *BB = *BI; 3484 3485 // We don't support switch statements inside loops. 3486 if (!isa<BranchInst>(BB->getTerminator())) { 3487 emitAnalysis(Report(BB->getTerminator()) 3488 << "loop contains a switch statement"); 3489 return false; 3490 } 3491 3492 // We must be able to predicate all blocks that need to be predicated. 3493 if (blockNeedsPredication(BB)) { 3494 if (!blockCanBePredicated(BB, SafePointes)) { 3495 emitAnalysis(Report(BB->getTerminator()) 3496 << "control flow cannot be substituted for a select"); 3497 return false; 3498 } 3499 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3500 emitAnalysis(Report(BB->getTerminator()) 3501 << "control flow cannot be substituted for a select"); 3502 return false; 3503 } 3504 } 3505 3506 // We can if-convert this loop. 3507 return true; 3508 } 3509 3510 bool LoopVectorizationLegality::canVectorize() { 3511 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3512 // be canonicalized. 3513 if (!TheLoop->getLoopPreheader()) { 3514 emitAnalysis( 3515 Report() << "loop control flow is not understood by vectorizer"); 3516 return false; 3517 } 3518 3519 // We can only vectorize innermost loops. 3520 if (TheLoop->getSubLoopsVector().size()) { 3521 emitAnalysis(Report() << "loop is not the innermost loop"); 3522 return false; 3523 } 3524 3525 // We must have a single backedge. 3526 if (TheLoop->getNumBackEdges() != 1) { 3527 emitAnalysis( 3528 Report() << "loop control flow is not understood by vectorizer"); 3529 return false; 3530 } 3531 3532 // We must have a single exiting block. 3533 if (!TheLoop->getExitingBlock()) { 3534 emitAnalysis( 3535 Report() << "loop control flow is not understood by vectorizer"); 3536 return false; 3537 } 3538 3539 // We need to have a loop header. 3540 DEBUG(dbgs() << "LV: Found a loop: " << 3541 TheLoop->getHeader()->getName() << '\n'); 3542 3543 // Check if we can if-convert non-single-bb loops. 3544 unsigned NumBlocks = TheLoop->getNumBlocks(); 3545 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3546 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3547 return false; 3548 } 3549 3550 // ScalarEvolution needs to be able to find the exit count. 3551 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3552 if (ExitCount == SE->getCouldNotCompute()) { 3553 emitAnalysis(Report() << "could not determine number of loop iterations"); 3554 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3555 return false; 3556 } 3557 3558 // Check if we can vectorize the instructions and CFG in this loop. 3559 if (!canVectorizeInstrs()) { 3560 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3561 return false; 3562 } 3563 3564 // Go over each instruction and look at memory deps. 3565 if (!canVectorizeMemory()) { 3566 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3567 return false; 3568 } 3569 3570 // Collect all of the variables that remain uniform after vectorization. 3571 collectLoopUniforms(); 3572 3573 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3574 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3575 <<"!\n"); 3576 3577 // Okay! We can vectorize. At this point we don't have any other mem analysis 3578 // which may limit our maximum vectorization factor, so just return true with 3579 // no restrictions. 3580 return true; 3581 } 3582 3583 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3584 if (Ty->isPointerTy()) 3585 return DL.getIntPtrType(Ty); 3586 3587 // It is possible that char's or short's overflow when we ask for the loop's 3588 // trip count, work around this by changing the type size. 3589 if (Ty->getScalarSizeInBits() < 32) 3590 return Type::getInt32Ty(Ty->getContext()); 3591 3592 return Ty; 3593 } 3594 3595 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3596 Ty0 = convertPointerToIntegerType(DL, Ty0); 3597 Ty1 = convertPointerToIntegerType(DL, Ty1); 3598 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3599 return Ty0; 3600 return Ty1; 3601 } 3602 3603 /// \brief Check that the instruction has outside loop users and is not an 3604 /// identified reduction variable. 3605 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3606 SmallPtrSetImpl<Value *> &Reductions) { 3607 // Reduction instructions are allowed to have exit users. All other 3608 // instructions must not have external users. 3609 if (!Reductions.count(Inst)) 3610 //Check that all of the users of the loop are inside the BB. 3611 for (User *U : Inst->users()) { 3612 Instruction *UI = cast<Instruction>(U); 3613 // This user may be a reduction exit value. 3614 if (!TheLoop->contains(UI)) { 3615 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3616 return true; 3617 } 3618 } 3619 return false; 3620 } 3621 3622 bool LoopVectorizationLegality::canVectorizeInstrs() { 3623 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3624 BasicBlock *Header = TheLoop->getHeader(); 3625 3626 // Look for the attribute signaling the absence of NaNs. 3627 Function &F = *Header->getParent(); 3628 if (F.hasFnAttribute("no-nans-fp-math")) 3629 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3630 AttributeSet::FunctionIndex, 3631 "no-nans-fp-math").getValueAsString() == "true"; 3632 3633 // For each block in the loop. 3634 for (Loop::block_iterator bb = TheLoop->block_begin(), 3635 be = TheLoop->block_end(); bb != be; ++bb) { 3636 3637 // Scan the instructions in the block and look for hazards. 3638 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3639 ++it) { 3640 3641 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3642 Type *PhiTy = Phi->getType(); 3643 // Check that this PHI type is allowed. 3644 if (!PhiTy->isIntegerTy() && 3645 !PhiTy->isFloatingPointTy() && 3646 !PhiTy->isPointerTy()) { 3647 emitAnalysis(Report(it) 3648 << "loop control flow is not understood by vectorizer"); 3649 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3650 return false; 3651 } 3652 3653 // If this PHINode is not in the header block, then we know that we 3654 // can convert it to select during if-conversion. No need to check if 3655 // the PHIs in this block are induction or reduction variables. 3656 if (*bb != Header) { 3657 // Check that this instruction has no outside users or is an 3658 // identified reduction value with an outside user. 3659 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3660 continue; 3661 emitAnalysis(Report(it) << "value could not be identified as " 3662 "an induction or reduction variable"); 3663 return false; 3664 } 3665 3666 // We only allow if-converted PHIs with more than two incoming values. 3667 if (Phi->getNumIncomingValues() != 2) { 3668 emitAnalysis(Report(it) 3669 << "control flow not understood by vectorizer"); 3670 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3671 return false; 3672 } 3673 3674 // This is the value coming from the preheader. 3675 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3676 // Check if this is an induction variable. 3677 InductionKind IK = isInductionVariable(Phi); 3678 3679 if (IK_NoInduction != IK) { 3680 // Get the widest type. 3681 if (!WidestIndTy) 3682 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3683 else 3684 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3685 3686 // Int inductions are special because we only allow one IV. 3687 if (IK == IK_IntInduction) { 3688 // Use the phi node with the widest type as induction. Use the last 3689 // one if there are multiple (no good reason for doing this other 3690 // than it is expedient). 3691 if (!Induction || PhiTy == WidestIndTy) 3692 Induction = Phi; 3693 } 3694 3695 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3696 Inductions[Phi] = InductionInfo(StartValue, IK); 3697 3698 // Until we explicitly handle the case of an induction variable with 3699 // an outside loop user we have to give up vectorizing this loop. 3700 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3701 emitAnalysis(Report(it) << "use of induction value outside of the " 3702 "loop is not handled by vectorizer"); 3703 return false; 3704 } 3705 3706 continue; 3707 } 3708 3709 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3710 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3711 continue; 3712 } 3713 if (AddReductionVar(Phi, RK_IntegerMult)) { 3714 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3715 continue; 3716 } 3717 if (AddReductionVar(Phi, RK_IntegerOr)) { 3718 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3719 continue; 3720 } 3721 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3722 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3723 continue; 3724 } 3725 if (AddReductionVar(Phi, RK_IntegerXor)) { 3726 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3727 continue; 3728 } 3729 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3730 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3731 continue; 3732 } 3733 if (AddReductionVar(Phi, RK_FloatMult)) { 3734 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3735 continue; 3736 } 3737 if (AddReductionVar(Phi, RK_FloatAdd)) { 3738 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3739 continue; 3740 } 3741 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3742 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3743 "\n"); 3744 continue; 3745 } 3746 3747 emitAnalysis(Report(it) << "value that could not be identified as " 3748 "reduction is used outside the loop"); 3749 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3750 return false; 3751 }// end of PHI handling 3752 3753 // We still don't handle functions. However, we can ignore dbg intrinsic 3754 // calls and we do handle certain intrinsic and libm functions. 3755 CallInst *CI = dyn_cast<CallInst>(it); 3756 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3757 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3758 DEBUG(dbgs() << "LV: Found a call site.\n"); 3759 return false; 3760 } 3761 3762 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3763 // second argument is the same (i.e. loop invariant) 3764 if (CI && 3765 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3766 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3767 emitAnalysis(Report(it) 3768 << "intrinsic instruction cannot be vectorized"); 3769 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3770 return false; 3771 } 3772 } 3773 3774 // Check that the instruction return type is vectorizable. 3775 // Also, we can't vectorize extractelement instructions. 3776 if ((!VectorType::isValidElementType(it->getType()) && 3777 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3778 emitAnalysis(Report(it) 3779 << "instruction return type cannot be vectorized"); 3780 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3781 return false; 3782 } 3783 3784 // Check that the stored type is vectorizable. 3785 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3786 Type *T = ST->getValueOperand()->getType(); 3787 if (!VectorType::isValidElementType(T)) { 3788 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3789 return false; 3790 } 3791 if (EnableMemAccessVersioning) 3792 collectStridedAcccess(ST); 3793 } 3794 3795 if (EnableMemAccessVersioning) 3796 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3797 collectStridedAcccess(LI); 3798 3799 // Reduction instructions are allowed to have exit users. 3800 // All other instructions must not have external users. 3801 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3802 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3803 return false; 3804 } 3805 3806 } // next instr. 3807 3808 } 3809 3810 if (!Induction) { 3811 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3812 if (Inductions.empty()) { 3813 emitAnalysis(Report() 3814 << "loop induction variable could not be identified"); 3815 return false; 3816 } 3817 } 3818 3819 return true; 3820 } 3821 3822 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3823 /// return the induction operand of the gep pointer. 3824 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3825 const DataLayout *DL, Loop *Lp) { 3826 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3827 if (!GEP) 3828 return Ptr; 3829 3830 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3831 3832 // Check that all of the gep indices are uniform except for our induction 3833 // operand. 3834 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3835 if (i != InductionOperand && 3836 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3837 return Ptr; 3838 return GEP->getOperand(InductionOperand); 3839 } 3840 3841 ///\brief Look for a cast use of the passed value. 3842 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3843 Value *UniqueCast = nullptr; 3844 for (User *U : Ptr->users()) { 3845 CastInst *CI = dyn_cast<CastInst>(U); 3846 if (CI && CI->getType() == Ty) { 3847 if (!UniqueCast) 3848 UniqueCast = CI; 3849 else 3850 return nullptr; 3851 } 3852 } 3853 return UniqueCast; 3854 } 3855 3856 ///\brief Get the stride of a pointer access in a loop. 3857 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3858 /// pointer to the Value, or null otherwise. 3859 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3860 const DataLayout *DL, Loop *Lp) { 3861 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3862 if (!PtrTy || PtrTy->isAggregateType()) 3863 return nullptr; 3864 3865 // Try to remove a gep instruction to make the pointer (actually index at this 3866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3867 // pointer, otherwise, we are analyzing the index. 3868 Value *OrigPtr = Ptr; 3869 3870 // The size of the pointer access. 3871 int64_t PtrAccessSize = 1; 3872 3873 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3874 const SCEV *V = SE->getSCEV(Ptr); 3875 3876 if (Ptr != OrigPtr) 3877 // Strip off casts. 3878 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3879 V = C->getOperand(); 3880 3881 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3882 if (!S) 3883 return nullptr; 3884 3885 V = S->getStepRecurrence(*SE); 3886 if (!V) 3887 return nullptr; 3888 3889 // Strip off the size of access multiplication if we are still analyzing the 3890 // pointer. 3891 if (OrigPtr == Ptr) { 3892 DL->getTypeAllocSize(PtrTy->getElementType()); 3893 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3894 if (M->getOperand(0)->getSCEVType() != scConstant) 3895 return nullptr; 3896 3897 const APInt &APStepVal = 3898 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3899 3900 // Huge step value - give up. 3901 if (APStepVal.getBitWidth() > 64) 3902 return nullptr; 3903 3904 int64_t StepVal = APStepVal.getSExtValue(); 3905 if (PtrAccessSize != StepVal) 3906 return nullptr; 3907 V = M->getOperand(1); 3908 } 3909 } 3910 3911 // Strip off casts. 3912 Type *StripedOffRecurrenceCast = nullptr; 3913 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3914 StripedOffRecurrenceCast = C->getType(); 3915 V = C->getOperand(); 3916 } 3917 3918 // Look for the loop invariant symbolic value. 3919 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3920 if (!U) 3921 return nullptr; 3922 3923 Value *Stride = U->getValue(); 3924 if (!Lp->isLoopInvariant(Stride)) 3925 return nullptr; 3926 3927 // If we have stripped off the recurrence cast we have to make sure that we 3928 // return the value that is used in this loop so that we can replace it later. 3929 if (StripedOffRecurrenceCast) 3930 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3931 3932 return Stride; 3933 } 3934 3935 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3936 Value *Ptr = nullptr; 3937 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3938 Ptr = LI->getPointerOperand(); 3939 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3940 Ptr = SI->getPointerOperand(); 3941 else 3942 return; 3943 3944 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3945 if (!Stride) 3946 return; 3947 3948 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3949 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3950 Strides[Ptr] = Stride; 3951 StrideSet.insert(Stride); 3952 } 3953 3954 void LoopVectorizationLegality::collectLoopUniforms() { 3955 // We now know that the loop is vectorizable! 3956 // Collect variables that will remain uniform after vectorization. 3957 std::vector<Value*> Worklist; 3958 BasicBlock *Latch = TheLoop->getLoopLatch(); 3959 3960 // Start with the conditional branch and walk up the block. 3961 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3962 3963 // Also add all consecutive pointer values; these values will be uniform 3964 // after vectorization (and subsequent cleanup) and, until revectorization is 3965 // supported, all dependencies must also be uniform. 3966 for (Loop::block_iterator B = TheLoop->block_begin(), 3967 BE = TheLoop->block_end(); B != BE; ++B) 3968 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3969 I != IE; ++I) 3970 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3971 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3972 3973 while (Worklist.size()) { 3974 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3975 Worklist.pop_back(); 3976 3977 // Look at instructions inside this loop. 3978 // Stop when reaching PHI nodes. 3979 // TODO: we need to follow values all over the loop, not only in this block. 3980 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3981 continue; 3982 3983 // This is a known uniform. 3984 Uniforms.insert(I); 3985 3986 // Insert all operands. 3987 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3988 } 3989 } 3990 3991 namespace { 3992 /// \brief Analyses memory accesses in a loop. 3993 /// 3994 /// Checks whether run time pointer checks are needed and builds sets for data 3995 /// dependence checking. 3996 class AccessAnalysis { 3997 public: 3998 /// \brief Read or write access location. 3999 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4000 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4001 4002 /// \brief Set of potential dependent memory accesses. 4003 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4004 4005 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4006 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4007 4008 /// \brief Register a load and whether it is only read from. 4009 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4010 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4011 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4012 Accesses.insert(MemAccessInfo(Ptr, false)); 4013 if (IsReadOnly) 4014 ReadOnlyPtr.insert(Ptr); 4015 } 4016 4017 /// \brief Register a store. 4018 void addStore(AliasAnalysis::Location &Loc) { 4019 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4020 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4021 Accesses.insert(MemAccessInfo(Ptr, true)); 4022 } 4023 4024 /// \brief Check whether we can check the pointers at runtime for 4025 /// non-intersection. 4026 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4027 unsigned &NumComparisons, ScalarEvolution *SE, 4028 Loop *TheLoop, ValueToValueMap &Strides, 4029 bool ShouldCheckStride = false); 4030 4031 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4032 /// and builds sets of dependent accesses. 4033 void buildDependenceSets() { 4034 processMemAccesses(); 4035 } 4036 4037 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4038 4039 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4040 void resetDepChecks() { CheckDeps.clear(); } 4041 4042 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4043 4044 private: 4045 typedef SetVector<MemAccessInfo> PtrAccessSet; 4046 4047 /// \brief Go over all memory access and check whether runtime pointer checks 4048 /// are needed /// and build sets of dependency check candidates. 4049 void processMemAccesses(); 4050 4051 /// Set of all accesses. 4052 PtrAccessSet Accesses; 4053 4054 /// Set of accesses that need a further dependence check. 4055 MemAccessInfoSet CheckDeps; 4056 4057 /// Set of pointers that are read only. 4058 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4059 4060 const DataLayout *DL; 4061 4062 /// An alias set tracker to partition the access set by underlying object and 4063 //intrinsic property (such as TBAA metadata). 4064 AliasSetTracker AST; 4065 4066 /// Sets of potentially dependent accesses - members of one set share an 4067 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4068 /// dependence check. 4069 DepCandidates &DepCands; 4070 4071 bool IsRTCheckNeeded; 4072 }; 4073 4074 } // end anonymous namespace 4075 4076 /// \brief Check whether a pointer can participate in a runtime bounds check. 4077 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4078 Value *Ptr) { 4079 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4080 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4081 if (!AR) 4082 return false; 4083 4084 return AR->isAffine(); 4085 } 4086 4087 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4088 /// the address space. 4089 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4090 const Loop *Lp, ValueToValueMap &StridesMap); 4091 4092 bool AccessAnalysis::canCheckPtrAtRT( 4093 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4094 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4095 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4096 // Find pointers with computable bounds. We are going to use this information 4097 // to place a runtime bound check. 4098 bool CanDoRT = true; 4099 4100 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4101 NumComparisons = 0; 4102 4103 // We assign a consecutive id to access from different alias sets. 4104 // Accesses between different groups doesn't need to be checked. 4105 unsigned ASId = 1; 4106 for (auto &AS : AST) { 4107 unsigned NumReadPtrChecks = 0; 4108 unsigned NumWritePtrChecks = 0; 4109 4110 // We assign consecutive id to access from different dependence sets. 4111 // Accesses within the same set don't need a runtime check. 4112 unsigned RunningDepId = 1; 4113 DenseMap<Value *, unsigned> DepSetId; 4114 4115 for (auto A : AS) { 4116 Value *Ptr = A.getValue(); 4117 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4118 MemAccessInfo Access(Ptr, IsWrite); 4119 4120 if (IsWrite) 4121 ++NumWritePtrChecks; 4122 else 4123 ++NumReadPtrChecks; 4124 4125 if (hasComputableBounds(SE, StridesMap, Ptr) && 4126 // When we run after a failing dependency check we have to make sure we 4127 // don't have wrapping pointers. 4128 (!ShouldCheckStride || 4129 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4130 // The id of the dependence set. 4131 unsigned DepId; 4132 4133 if (IsDepCheckNeeded) { 4134 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4135 unsigned &LeaderId = DepSetId[Leader]; 4136 if (!LeaderId) 4137 LeaderId = RunningDepId++; 4138 DepId = LeaderId; 4139 } else 4140 // Each access has its own dependence set. 4141 DepId = RunningDepId++; 4142 4143 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4144 4145 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4146 } else { 4147 CanDoRT = false; 4148 } 4149 } 4150 4151 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4152 NumComparisons += 0; // Only one dependence set. 4153 else { 4154 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4155 NumWritePtrChecks - 1)); 4156 } 4157 4158 ++ASId; 4159 } 4160 4161 // If the pointers that we would use for the bounds comparison have different 4162 // address spaces, assume the values aren't directly comparable, so we can't 4163 // use them for the runtime check. We also have to assume they could 4164 // overlap. In the future there should be metadata for whether address spaces 4165 // are disjoint. 4166 unsigned NumPointers = RtCheck.Pointers.size(); 4167 for (unsigned i = 0; i < NumPointers; ++i) { 4168 for (unsigned j = i + 1; j < NumPointers; ++j) { 4169 // Only need to check pointers between two different dependency sets. 4170 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4171 continue; 4172 // Only need to check pointers in the same alias set. 4173 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4174 continue; 4175 4176 Value *PtrI = RtCheck.Pointers[i]; 4177 Value *PtrJ = RtCheck.Pointers[j]; 4178 4179 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4180 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4181 if (ASi != ASj) { 4182 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4183 " different address spaces\n"); 4184 return false; 4185 } 4186 } 4187 } 4188 4189 return CanDoRT; 4190 } 4191 4192 void AccessAnalysis::processMemAccesses() { 4193 // We process the set twice: first we process read-write pointers, last we 4194 // process read-only pointers. This allows us to skip dependence tests for 4195 // read-only pointers. 4196 4197 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4198 DEBUG(dbgs() << " AST: "; AST.dump()); 4199 DEBUG(dbgs() << "LV: Accesses:\n"); 4200 DEBUG({ 4201 for (auto A : Accesses) 4202 dbgs() << "\t" << *A.getPointer() << " (" << 4203 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4204 "read-only" : "read")) << ")\n"; 4205 }); 4206 4207 // The AliasSetTracker has nicely partitioned our pointers by metadata 4208 // compatibility and potential for underlying-object overlap. As a result, we 4209 // only need to check for potential pointer dependencies within each alias 4210 // set. 4211 for (auto &AS : AST) { 4212 // Note that both the alias-set tracker and the alias sets themselves used 4213 // linked lists internally and so the iteration order here is deterministic 4214 // (matching the original instruction order within each set). 4215 4216 bool SetHasWrite = false; 4217 4218 // Map of pointers to last access encountered. 4219 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4220 UnderlyingObjToAccessMap ObjToLastAccess; 4221 4222 // Set of access to check after all writes have been processed. 4223 PtrAccessSet DeferredAccesses; 4224 4225 // Iterate over each alias set twice, once to process read/write pointers, 4226 // and then to process read-only pointers. 4227 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4228 bool UseDeferred = SetIteration > 0; 4229 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4230 4231 for (auto A : AS) { 4232 Value *Ptr = A.getValue(); 4233 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 4234 4235 // If we're using the deferred access set, then it contains only reads. 4236 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4237 if (UseDeferred && !IsReadOnlyPtr) 4238 continue; 4239 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 4240 // or a write. 4241 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4242 S.count(MemAccessInfo(Ptr, false))) && 4243 "Alias-set pointer not in the access set?"); 4244 4245 MemAccessInfo Access(Ptr, IsWrite); 4246 DepCands.insert(Access); 4247 4248 // Memorize read-only pointers for later processing and skip them in the 4249 // first round (they need to be checked after we have seen all write 4250 // pointers). Note: we also mark pointer that are not consecutive as 4251 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 4252 // the second check for "!IsWrite". 4253 if (!UseDeferred && IsReadOnlyPtr) { 4254 DeferredAccesses.insert(Access); 4255 continue; 4256 } 4257 4258 // If this is a write - check other reads and writes for conflicts. If 4259 // this is a read only check other writes for conflicts (but only if 4260 // there is no other write to the ptr - this is an optimization to 4261 // catch "a[i] = a[i] + " without having to do a dependence check). 4262 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4263 CheckDeps.insert(Access); 4264 IsRTCheckNeeded = true; 4265 } 4266 4267 if (IsWrite) 4268 SetHasWrite = true; 4269 4270 // Create sets of pointers connected by a shared alias set and 4271 // underlying object. 4272 typedef SmallVector<Value*, 16> ValueVector; 4273 ValueVector TempObjects; 4274 GetUnderlyingObjects(Ptr, TempObjects, DL); 4275 for (Value *UnderlyingObj : TempObjects) { 4276 UnderlyingObjToAccessMap::iterator Prev = 4277 ObjToLastAccess.find(UnderlyingObj); 4278 if (Prev != ObjToLastAccess.end()) 4279 DepCands.unionSets(Access, Prev->second); 4280 4281 ObjToLastAccess[UnderlyingObj] = Access; 4282 } 4283 } 4284 } 4285 } 4286 } 4287 4288 namespace { 4289 /// \brief Checks memory dependences among accesses to the same underlying 4290 /// object to determine whether there vectorization is legal or not (and at 4291 /// which vectorization factor). 4292 /// 4293 /// This class works under the assumption that we already checked that memory 4294 /// locations with different underlying pointers are "must-not alias". 4295 /// We use the ScalarEvolution framework to symbolically evalutate access 4296 /// functions pairs. Since we currently don't restructure the loop we can rely 4297 /// on the program order of memory accesses to determine their safety. 4298 /// At the moment we will only deem accesses as safe for: 4299 /// * A negative constant distance assuming program order. 4300 /// 4301 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4302 /// a[i] = tmp; y = a[i]; 4303 /// 4304 /// The latter case is safe because later checks guarantuee that there can't 4305 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4306 /// the same variable: a header phi can only be an induction or a reduction, a 4307 /// reduction can't have a memory sink, an induction can't have a memory 4308 /// source). This is important and must not be violated (or we have to 4309 /// resort to checking for cycles through memory). 4310 /// 4311 /// * A positive constant distance assuming program order that is bigger 4312 /// than the biggest memory access. 4313 /// 4314 /// tmp = a[i] OR b[i] = x 4315 /// a[i+2] = tmp y = b[i+2]; 4316 /// 4317 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4318 /// 4319 /// * Zero distances and all accesses have the same size. 4320 /// 4321 class MemoryDepChecker { 4322 public: 4323 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4324 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4325 4326 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4327 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4328 ShouldRetryWithRuntimeCheck(false) {} 4329 4330 /// \brief Register the location (instructions are given increasing numbers) 4331 /// of a write access. 4332 void addAccess(StoreInst *SI) { 4333 Value *Ptr = SI->getPointerOperand(); 4334 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4335 InstMap.push_back(SI); 4336 ++AccessIdx; 4337 } 4338 4339 /// \brief Register the location (instructions are given increasing numbers) 4340 /// of a write access. 4341 void addAccess(LoadInst *LI) { 4342 Value *Ptr = LI->getPointerOperand(); 4343 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4344 InstMap.push_back(LI); 4345 ++AccessIdx; 4346 } 4347 4348 /// \brief Check whether the dependencies between the accesses are safe. 4349 /// 4350 /// Only checks sets with elements in \p CheckDeps. 4351 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4352 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4353 4354 /// \brief The maximum number of bytes of a vector register we can vectorize 4355 /// the accesses safely with. 4356 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4357 4358 /// \brief In same cases when the dependency check fails we can still 4359 /// vectorize the loop with a dynamic array access check. 4360 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4361 4362 private: 4363 ScalarEvolution *SE; 4364 const DataLayout *DL; 4365 const Loop *InnermostLoop; 4366 4367 /// \brief Maps access locations (ptr, read/write) to program order. 4368 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4369 4370 /// \brief Memory access instructions in program order. 4371 SmallVector<Instruction *, 16> InstMap; 4372 4373 /// \brief The program order index to be used for the next instruction. 4374 unsigned AccessIdx; 4375 4376 // We can access this many bytes in parallel safely. 4377 unsigned MaxSafeDepDistBytes; 4378 4379 /// \brief If we see a non-constant dependence distance we can still try to 4380 /// vectorize this loop with runtime checks. 4381 bool ShouldRetryWithRuntimeCheck; 4382 4383 /// \brief Check whether there is a plausible dependence between the two 4384 /// accesses. 4385 /// 4386 /// Access \p A must happen before \p B in program order. The two indices 4387 /// identify the index into the program order map. 4388 /// 4389 /// This function checks whether there is a plausible dependence (or the 4390 /// absence of such can't be proved) between the two accesses. If there is a 4391 /// plausible dependence but the dependence distance is bigger than one 4392 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4393 /// distance is smaller than any other distance encountered so far). 4394 /// Otherwise, this function returns true signaling a possible dependence. 4395 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4396 const MemAccessInfo &B, unsigned BIdx, 4397 ValueToValueMap &Strides); 4398 4399 /// \brief Check whether the data dependence could prevent store-load 4400 /// forwarding. 4401 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4402 }; 4403 4404 } // end anonymous namespace 4405 4406 static bool isInBoundsGep(Value *Ptr) { 4407 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4408 return GEP->isInBounds(); 4409 return false; 4410 } 4411 4412 /// \brief Check whether the access through \p Ptr has a constant stride. 4413 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4414 const Loop *Lp, ValueToValueMap &StridesMap) { 4415 const Type *Ty = Ptr->getType(); 4416 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4417 4418 // Make sure that the pointer does not point to aggregate types. 4419 const PointerType *PtrTy = cast<PointerType>(Ty); 4420 if (PtrTy->getElementType()->isAggregateType()) { 4421 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4422 "\n"); 4423 return 0; 4424 } 4425 4426 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4427 4428 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4429 if (!AR) { 4430 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4431 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4432 return 0; 4433 } 4434 4435 // The accesss function must stride over the innermost loop. 4436 if (Lp != AR->getLoop()) { 4437 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4438 *Ptr << " SCEV: " << *PtrScev << "\n"); 4439 } 4440 4441 // The address calculation must not wrap. Otherwise, a dependence could be 4442 // inverted. 4443 // An inbounds getelementptr that is a AddRec with a unit stride 4444 // cannot wrap per definition. The unit stride requirement is checked later. 4445 // An getelementptr without an inbounds attribute and unit stride would have 4446 // to access the pointer value "0" which is undefined behavior in address 4447 // space 0, therefore we can also vectorize this case. 4448 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4449 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4450 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4451 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4452 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4453 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4454 return 0; 4455 } 4456 4457 // Check the step is constant. 4458 const SCEV *Step = AR->getStepRecurrence(*SE); 4459 4460 // Calculate the pointer stride and check if it is consecutive. 4461 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4462 if (!C) { 4463 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4464 " SCEV: " << *PtrScev << "\n"); 4465 return 0; 4466 } 4467 4468 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4469 const APInt &APStepVal = C->getValue()->getValue(); 4470 4471 // Huge step value - give up. 4472 if (APStepVal.getBitWidth() > 64) 4473 return 0; 4474 4475 int64_t StepVal = APStepVal.getSExtValue(); 4476 4477 // Strided access. 4478 int64_t Stride = StepVal / Size; 4479 int64_t Rem = StepVal % Size; 4480 if (Rem) 4481 return 0; 4482 4483 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4484 // know we can't "wrap around the address space". In case of address space 4485 // zero we know that this won't happen without triggering undefined behavior. 4486 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4487 Stride != 1 && Stride != -1) 4488 return 0; 4489 4490 return Stride; 4491 } 4492 4493 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4494 unsigned TypeByteSize) { 4495 // If loads occur at a distance that is not a multiple of a feasible vector 4496 // factor store-load forwarding does not take place. 4497 // Positive dependences might cause troubles because vectorizing them might 4498 // prevent store-load forwarding making vectorized code run a lot slower. 4499 // a[i] = a[i-3] ^ a[i-8]; 4500 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4501 // hence on your typical architecture store-load forwarding does not take 4502 // place. Vectorizing in such cases does not make sense. 4503 // Store-load forwarding distance. 4504 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4505 // Maximum vector factor. 4506 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4507 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4508 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4509 4510 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4511 vf *= 2) { 4512 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4513 MaxVFWithoutSLForwardIssues = (vf >>=1); 4514 break; 4515 } 4516 } 4517 4518 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4519 DEBUG(dbgs() << "LV: Distance " << Distance << 4520 " that could cause a store-load forwarding conflict\n"); 4521 return true; 4522 } 4523 4524 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4525 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4526 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4527 return false; 4528 } 4529 4530 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4531 const MemAccessInfo &B, unsigned BIdx, 4532 ValueToValueMap &Strides) { 4533 assert (AIdx < BIdx && "Must pass arguments in program order"); 4534 4535 Value *APtr = A.getPointer(); 4536 Value *BPtr = B.getPointer(); 4537 bool AIsWrite = A.getInt(); 4538 bool BIsWrite = B.getInt(); 4539 4540 // Two reads are independent. 4541 if (!AIsWrite && !BIsWrite) 4542 return false; 4543 4544 // We cannot check pointers in different address spaces. 4545 if (APtr->getType()->getPointerAddressSpace() != 4546 BPtr->getType()->getPointerAddressSpace()) 4547 return true; 4548 4549 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4550 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4551 4552 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4553 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4554 4555 const SCEV *Src = AScev; 4556 const SCEV *Sink = BScev; 4557 4558 // If the induction step is negative we have to invert source and sink of the 4559 // dependence. 4560 if (StrideAPtr < 0) { 4561 //Src = BScev; 4562 //Sink = AScev; 4563 std::swap(APtr, BPtr); 4564 std::swap(Src, Sink); 4565 std::swap(AIsWrite, BIsWrite); 4566 std::swap(AIdx, BIdx); 4567 std::swap(StrideAPtr, StrideBPtr); 4568 } 4569 4570 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4571 4572 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4573 << "(Induction step: " << StrideAPtr << ")\n"); 4574 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4575 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4576 4577 // Need consecutive accesses. We don't want to vectorize 4578 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4579 // the address space. 4580 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4581 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4582 return true; 4583 } 4584 4585 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4586 if (!C) { 4587 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4588 ShouldRetryWithRuntimeCheck = true; 4589 return true; 4590 } 4591 4592 Type *ATy = APtr->getType()->getPointerElementType(); 4593 Type *BTy = BPtr->getType()->getPointerElementType(); 4594 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4595 4596 // Negative distances are not plausible dependencies. 4597 const APInt &Val = C->getValue()->getValue(); 4598 if (Val.isNegative()) { 4599 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4600 if (IsTrueDataDependence && 4601 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4602 ATy != BTy)) 4603 return true; 4604 4605 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4606 return false; 4607 } 4608 4609 // Write to the same location with the same size. 4610 // Could be improved to assert type sizes are the same (i32 == float, etc). 4611 if (Val == 0) { 4612 if (ATy == BTy) 4613 return false; 4614 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4615 return true; 4616 } 4617 4618 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4619 4620 // Positive distance bigger than max vectorization factor. 4621 if (ATy != BTy) { 4622 DEBUG(dbgs() << 4623 "LV: ReadWrite-Write positive dependency with different types\n"); 4624 return false; 4625 } 4626 4627 unsigned Distance = (unsigned) Val.getZExtValue(); 4628 4629 // Bail out early if passed-in parameters make vectorization not feasible. 4630 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4631 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 4632 4633 // The distance must be bigger than the size needed for a vectorized version 4634 // of the operation and the size of the vectorized operation must not be 4635 // bigger than the currrent maximum size. 4636 if (Distance < 2*TypeByteSize || 4637 2*TypeByteSize > MaxSafeDepDistBytes || 4638 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4639 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4640 << Val.getSExtValue() << '\n'); 4641 return true; 4642 } 4643 4644 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4645 Distance : MaxSafeDepDistBytes; 4646 4647 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4648 if (IsTrueDataDependence && 4649 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4650 return true; 4651 4652 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4653 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4654 4655 return false; 4656 } 4657 4658 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4659 MemAccessInfoSet &CheckDeps, 4660 ValueToValueMap &Strides) { 4661 4662 MaxSafeDepDistBytes = -1U; 4663 while (!CheckDeps.empty()) { 4664 MemAccessInfo CurAccess = *CheckDeps.begin(); 4665 4666 // Get the relevant memory access set. 4667 EquivalenceClasses<MemAccessInfo>::iterator I = 4668 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4669 4670 // Check accesses within this set. 4671 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4672 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4673 4674 // Check every access pair. 4675 while (AI != AE) { 4676 CheckDeps.erase(*AI); 4677 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4678 while (OI != AE) { 4679 // Check every accessing instruction pair in program order. 4680 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4681 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4682 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4683 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4684 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4685 return false; 4686 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4687 return false; 4688 } 4689 ++OI; 4690 } 4691 AI++; 4692 } 4693 } 4694 return true; 4695 } 4696 4697 bool LoopVectorizationLegality::canVectorizeMemory() { 4698 4699 typedef SmallVector<Value*, 16> ValueVector; 4700 typedef SmallPtrSet<Value*, 16> ValueSet; 4701 4702 // Holds the Load and Store *instructions*. 4703 ValueVector Loads; 4704 ValueVector Stores; 4705 4706 // Holds all the different accesses in the loop. 4707 unsigned NumReads = 0; 4708 unsigned NumReadWrites = 0; 4709 4710 PtrRtCheck.Pointers.clear(); 4711 PtrRtCheck.Need = false; 4712 4713 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4714 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4715 4716 // For each block. 4717 for (Loop::block_iterator bb = TheLoop->block_begin(), 4718 be = TheLoop->block_end(); bb != be; ++bb) { 4719 4720 // Scan the BB and collect legal loads and stores. 4721 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4722 ++it) { 4723 4724 // If this is a load, save it. If this instruction can read from memory 4725 // but is not a load, then we quit. Notice that we don't handle function 4726 // calls that read or write. 4727 if (it->mayReadFromMemory()) { 4728 // Many math library functions read the rounding mode. We will only 4729 // vectorize a loop if it contains known function calls that don't set 4730 // the flag. Therefore, it is safe to ignore this read from memory. 4731 CallInst *Call = dyn_cast<CallInst>(it); 4732 if (Call && getIntrinsicIDForCall(Call, TLI)) 4733 continue; 4734 4735 LoadInst *Ld = dyn_cast<LoadInst>(it); 4736 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4737 emitAnalysis(Report(Ld) 4738 << "read with atomic ordering or volatile read"); 4739 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4740 return false; 4741 } 4742 NumLoads++; 4743 Loads.push_back(Ld); 4744 DepChecker.addAccess(Ld); 4745 continue; 4746 } 4747 4748 // Save 'store' instructions. Abort if other instructions write to memory. 4749 if (it->mayWriteToMemory()) { 4750 StoreInst *St = dyn_cast<StoreInst>(it); 4751 if (!St) { 4752 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4753 return false; 4754 } 4755 if (!St->isSimple() && !IsAnnotatedParallel) { 4756 emitAnalysis(Report(St) 4757 << "write with atomic ordering or volatile write"); 4758 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4759 return false; 4760 } 4761 NumStores++; 4762 Stores.push_back(St); 4763 DepChecker.addAccess(St); 4764 } 4765 } // Next instr. 4766 } // Next block. 4767 4768 // Now we have two lists that hold the loads and the stores. 4769 // Next, we find the pointers that they use. 4770 4771 // Check if we see any stores. If there are no stores, then we don't 4772 // care if the pointers are *restrict*. 4773 if (!Stores.size()) { 4774 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4775 return true; 4776 } 4777 4778 AccessAnalysis::DepCandidates DependentAccesses; 4779 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4780 4781 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4782 // multiple times on the same object. If the ptr is accessed twice, once 4783 // for read and once for write, it will only appear once (on the write 4784 // list). This is okay, since we are going to check for conflicts between 4785 // writes and between reads and writes, but not between reads and reads. 4786 ValueSet Seen; 4787 4788 ValueVector::iterator I, IE; 4789 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4790 StoreInst *ST = cast<StoreInst>(*I); 4791 Value* Ptr = ST->getPointerOperand(); 4792 4793 if (isUniform(Ptr)) { 4794 emitAnalysis( 4795 Report(ST) 4796 << "write to a loop invariant address could not be vectorized"); 4797 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4798 return false; 4799 } 4800 4801 // If we did *not* see this pointer before, insert it to the read-write 4802 // list. At this phase it is only a 'write' list. 4803 if (Seen.insert(Ptr)) { 4804 ++NumReadWrites; 4805 4806 AliasAnalysis::Location Loc = AA->getLocation(ST); 4807 // The TBAA metadata could have a control dependency on the predication 4808 // condition, so we cannot rely on it when determining whether or not we 4809 // need runtime pointer checks. 4810 if (blockNeedsPredication(ST->getParent())) 4811 Loc.AATags.TBAA = nullptr; 4812 4813 Accesses.addStore(Loc); 4814 } 4815 } 4816 4817 if (IsAnnotatedParallel) { 4818 DEBUG(dbgs() 4819 << "LV: A loop annotated parallel, ignore memory dependency " 4820 << "checks.\n"); 4821 return true; 4822 } 4823 4824 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4825 LoadInst *LD = cast<LoadInst>(*I); 4826 Value* Ptr = LD->getPointerOperand(); 4827 // If we did *not* see this pointer before, insert it to the 4828 // read list. If we *did* see it before, then it is already in 4829 // the read-write list. This allows us to vectorize expressions 4830 // such as A[i] += x; Because the address of A[i] is a read-write 4831 // pointer. This only works if the index of A[i] is consecutive. 4832 // If the address of i is unknown (for example A[B[i]]) then we may 4833 // read a few words, modify, and write a few words, and some of the 4834 // words may be written to the same address. 4835 bool IsReadOnlyPtr = false; 4836 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4837 ++NumReads; 4838 IsReadOnlyPtr = true; 4839 } 4840 4841 AliasAnalysis::Location Loc = AA->getLocation(LD); 4842 // The TBAA metadata could have a control dependency on the predication 4843 // condition, so we cannot rely on it when determining whether or not we 4844 // need runtime pointer checks. 4845 if (blockNeedsPredication(LD->getParent())) 4846 Loc.AATags.TBAA = nullptr; 4847 4848 Accesses.addLoad(Loc, IsReadOnlyPtr); 4849 } 4850 4851 // If we write (or read-write) to a single destination and there are no 4852 // other reads in this loop then is it safe to vectorize. 4853 if (NumReadWrites == 1 && NumReads == 0) { 4854 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4855 return true; 4856 } 4857 4858 // Build dependence sets and check whether we need a runtime pointer bounds 4859 // check. 4860 Accesses.buildDependenceSets(); 4861 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4862 4863 // Find pointers with computable bounds. We are going to use this information 4864 // to place a runtime bound check. 4865 unsigned NumComparisons = 0; 4866 bool CanDoRT = false; 4867 if (NeedRTCheck) 4868 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4869 Strides); 4870 4871 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4872 " pointer comparisons.\n"); 4873 4874 // If we only have one set of dependences to check pointers among we don't 4875 // need a runtime check. 4876 if (NumComparisons == 0 && NeedRTCheck) 4877 NeedRTCheck = false; 4878 4879 // Check that we did not collect too many pointers or found an unsizeable 4880 // pointer. 4881 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4882 PtrRtCheck.reset(); 4883 CanDoRT = false; 4884 } 4885 4886 if (CanDoRT) { 4887 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4888 } 4889 4890 if (NeedRTCheck && !CanDoRT) { 4891 emitAnalysis(Report() << "cannot identify array bounds"); 4892 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4893 "the array bounds.\n"); 4894 PtrRtCheck.reset(); 4895 return false; 4896 } 4897 4898 PtrRtCheck.Need = NeedRTCheck; 4899 4900 bool CanVecMem = true; 4901 if (Accesses.isDependencyCheckNeeded()) { 4902 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4903 CanVecMem = DepChecker.areDepsSafe( 4904 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4905 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4906 4907 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4908 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4909 NeedRTCheck = true; 4910 4911 // Clear the dependency checks. We assume they are not needed. 4912 Accesses.resetDepChecks(); 4913 4914 PtrRtCheck.reset(); 4915 PtrRtCheck.Need = true; 4916 4917 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4918 TheLoop, Strides, true); 4919 // Check that we did not collect too many pointers or found an unsizeable 4920 // pointer. 4921 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4922 if (!CanDoRT && NumComparisons > 0) 4923 emitAnalysis(Report() 4924 << "cannot check memory dependencies at runtime"); 4925 else 4926 emitAnalysis(Report() 4927 << NumComparisons << " exceeds limit of " 4928 << RuntimeMemoryCheckThreshold 4929 << " dependent memory operations checked at runtime"); 4930 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4931 PtrRtCheck.reset(); 4932 return false; 4933 } 4934 4935 CanVecMem = true; 4936 } 4937 } 4938 4939 if (!CanVecMem) 4940 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4941 4942 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4943 " need a runtime memory check.\n"); 4944 4945 return CanVecMem; 4946 } 4947 4948 static bool hasMultipleUsesOf(Instruction *I, 4949 SmallPtrSetImpl<Instruction *> &Insts) { 4950 unsigned NumUses = 0; 4951 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4952 if (Insts.count(dyn_cast<Instruction>(*Use))) 4953 ++NumUses; 4954 if (NumUses > 1) 4955 return true; 4956 } 4957 4958 return false; 4959 } 4960 4961 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 4962 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4963 if (!Set.count(dyn_cast<Instruction>(*Use))) 4964 return false; 4965 return true; 4966 } 4967 4968 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4969 ReductionKind Kind) { 4970 if (Phi->getNumIncomingValues() != 2) 4971 return false; 4972 4973 // Reduction variables are only found in the loop header block. 4974 if (Phi->getParent() != TheLoop->getHeader()) 4975 return false; 4976 4977 // Obtain the reduction start value from the value that comes from the loop 4978 // preheader. 4979 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4980 4981 // ExitInstruction is the single value which is used outside the loop. 4982 // We only allow for a single reduction value to be used outside the loop. 4983 // This includes users of the reduction, variables (which form a cycle 4984 // which ends in the phi node). 4985 Instruction *ExitInstruction = nullptr; 4986 // Indicates that we found a reduction operation in our scan. 4987 bool FoundReduxOp = false; 4988 4989 // We start with the PHI node and scan for all of the users of this 4990 // instruction. All users must be instructions that can be used as reduction 4991 // variables (such as ADD). We must have a single out-of-block user. The cycle 4992 // must include the original PHI. 4993 bool FoundStartPHI = false; 4994 4995 // To recognize min/max patterns formed by a icmp select sequence, we store 4996 // the number of instruction we saw from the recognized min/max pattern, 4997 // to make sure we only see exactly the two instructions. 4998 unsigned NumCmpSelectPatternInst = 0; 4999 ReductionInstDesc ReduxDesc(false, nullptr); 5000 5001 SmallPtrSet<Instruction *, 8> VisitedInsts; 5002 SmallVector<Instruction *, 8> Worklist; 5003 Worklist.push_back(Phi); 5004 VisitedInsts.insert(Phi); 5005 5006 // A value in the reduction can be used: 5007 // - By the reduction: 5008 // - Reduction operation: 5009 // - One use of reduction value (safe). 5010 // - Multiple use of reduction value (not safe). 5011 // - PHI: 5012 // - All uses of the PHI must be the reduction (safe). 5013 // - Otherwise, not safe. 5014 // - By one instruction outside of the loop (safe). 5015 // - By further instructions outside of the loop (not safe). 5016 // - By an instruction that is not part of the reduction (not safe). 5017 // This is either: 5018 // * An instruction type other than PHI or the reduction operation. 5019 // * A PHI in the header other than the initial PHI. 5020 while (!Worklist.empty()) { 5021 Instruction *Cur = Worklist.back(); 5022 Worklist.pop_back(); 5023 5024 // No Users. 5025 // If the instruction has no users then this is a broken chain and can't be 5026 // a reduction variable. 5027 if (Cur->use_empty()) 5028 return false; 5029 5030 bool IsAPhi = isa<PHINode>(Cur); 5031 5032 // A header PHI use other than the original PHI. 5033 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5034 return false; 5035 5036 // Reductions of instructions such as Div, and Sub is only possible if the 5037 // LHS is the reduction variable. 5038 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5039 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5040 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5041 return false; 5042 5043 // Any reduction instruction must be of one of the allowed kinds. 5044 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5045 if (!ReduxDesc.IsReduction) 5046 return false; 5047 5048 // A reduction operation must only have one use of the reduction value. 5049 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5050 hasMultipleUsesOf(Cur, VisitedInsts)) 5051 return false; 5052 5053 // All inputs to a PHI node must be a reduction value. 5054 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5055 return false; 5056 5057 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5058 isa<SelectInst>(Cur))) 5059 ++NumCmpSelectPatternInst; 5060 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5061 isa<SelectInst>(Cur))) 5062 ++NumCmpSelectPatternInst; 5063 5064 // Check whether we found a reduction operator. 5065 FoundReduxOp |= !IsAPhi; 5066 5067 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5068 // onto the stack. This way we are going to have seen all inputs to PHI 5069 // nodes once we get to them. 5070 SmallVector<Instruction *, 8> NonPHIs; 5071 SmallVector<Instruction *, 8> PHIs; 5072 for (User *U : Cur->users()) { 5073 Instruction *UI = cast<Instruction>(U); 5074 5075 // Check if we found the exit user. 5076 BasicBlock *Parent = UI->getParent(); 5077 if (!TheLoop->contains(Parent)) { 5078 // Exit if you find multiple outside users or if the header phi node is 5079 // being used. In this case the user uses the value of the previous 5080 // iteration, in which case we would loose "VF-1" iterations of the 5081 // reduction operation if we vectorize. 5082 if (ExitInstruction != nullptr || Cur == Phi) 5083 return false; 5084 5085 // The instruction used by an outside user must be the last instruction 5086 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5087 // operations on the value. 5088 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5089 return false; 5090 5091 ExitInstruction = Cur; 5092 continue; 5093 } 5094 5095 // Process instructions only once (termination). Each reduction cycle 5096 // value must only be used once, except by phi nodes and min/max 5097 // reductions which are represented as a cmp followed by a select. 5098 ReductionInstDesc IgnoredVal(false, nullptr); 5099 if (VisitedInsts.insert(UI)) { 5100 if (isa<PHINode>(UI)) 5101 PHIs.push_back(UI); 5102 else 5103 NonPHIs.push_back(UI); 5104 } else if (!isa<PHINode>(UI) && 5105 ((!isa<FCmpInst>(UI) && 5106 !isa<ICmpInst>(UI) && 5107 !isa<SelectInst>(UI)) || 5108 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5109 return false; 5110 5111 // Remember that we completed the cycle. 5112 if (UI == Phi) 5113 FoundStartPHI = true; 5114 } 5115 Worklist.append(PHIs.begin(), PHIs.end()); 5116 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5117 } 5118 5119 // This means we have seen one but not the other instruction of the 5120 // pattern or more than just a select and cmp. 5121 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5122 NumCmpSelectPatternInst != 2) 5123 return false; 5124 5125 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5126 return false; 5127 5128 // We found a reduction var if we have reached the original phi node and we 5129 // only have a single instruction with out-of-loop users. 5130 5131 // This instruction is allowed to have out-of-loop users. 5132 AllowedExit.insert(ExitInstruction); 5133 5134 // Save the description of this reduction variable. 5135 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5136 ReduxDesc.MinMaxKind); 5137 Reductions[Phi] = RD; 5138 // We've ended the cycle. This is a reduction variable if we have an 5139 // outside user and it has a binary op. 5140 5141 return true; 5142 } 5143 5144 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5145 /// pattern corresponding to a min(X, Y) or max(X, Y). 5146 LoopVectorizationLegality::ReductionInstDesc 5147 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5148 ReductionInstDesc &Prev) { 5149 5150 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5151 "Expect a select instruction"); 5152 Instruction *Cmp = nullptr; 5153 SelectInst *Select = nullptr; 5154 5155 // We must handle the select(cmp()) as a single instruction. Advance to the 5156 // select. 5157 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5158 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5159 return ReductionInstDesc(false, I); 5160 return ReductionInstDesc(Select, Prev.MinMaxKind); 5161 } 5162 5163 // Only handle single use cases for now. 5164 if (!(Select = dyn_cast<SelectInst>(I))) 5165 return ReductionInstDesc(false, I); 5166 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5167 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5168 return ReductionInstDesc(false, I); 5169 if (!Cmp->hasOneUse()) 5170 return ReductionInstDesc(false, I); 5171 5172 Value *CmpLeft; 5173 Value *CmpRight; 5174 5175 // Look for a min/max pattern. 5176 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5177 return ReductionInstDesc(Select, MRK_UIntMin); 5178 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5179 return ReductionInstDesc(Select, MRK_UIntMax); 5180 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5181 return ReductionInstDesc(Select, MRK_SIntMax); 5182 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5183 return ReductionInstDesc(Select, MRK_SIntMin); 5184 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5185 return ReductionInstDesc(Select, MRK_FloatMin); 5186 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5187 return ReductionInstDesc(Select, MRK_FloatMax); 5188 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5189 return ReductionInstDesc(Select, MRK_FloatMin); 5190 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5191 return ReductionInstDesc(Select, MRK_FloatMax); 5192 5193 return ReductionInstDesc(false, I); 5194 } 5195 5196 LoopVectorizationLegality::ReductionInstDesc 5197 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5198 ReductionKind Kind, 5199 ReductionInstDesc &Prev) { 5200 bool FP = I->getType()->isFloatingPointTy(); 5201 bool FastMath = FP && I->hasUnsafeAlgebra(); 5202 switch (I->getOpcode()) { 5203 default: 5204 return ReductionInstDesc(false, I); 5205 case Instruction::PHI: 5206 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5207 Kind != RK_FloatMinMax)) 5208 return ReductionInstDesc(false, I); 5209 return ReductionInstDesc(I, Prev.MinMaxKind); 5210 case Instruction::Sub: 5211 case Instruction::Add: 5212 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5213 case Instruction::Mul: 5214 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5215 case Instruction::And: 5216 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5217 case Instruction::Or: 5218 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5219 case Instruction::Xor: 5220 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5221 case Instruction::FMul: 5222 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5223 case Instruction::FSub: 5224 case Instruction::FAdd: 5225 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5226 case Instruction::FCmp: 5227 case Instruction::ICmp: 5228 case Instruction::Select: 5229 if (Kind != RK_IntegerMinMax && 5230 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5231 return ReductionInstDesc(false, I); 5232 return isMinMaxSelectCmpPattern(I, Prev); 5233 } 5234 } 5235 5236 LoopVectorizationLegality::InductionKind 5237 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5238 Type *PhiTy = Phi->getType(); 5239 // We only handle integer and pointer inductions variables. 5240 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5241 return IK_NoInduction; 5242 5243 // Check that the PHI is consecutive. 5244 const SCEV *PhiScev = SE->getSCEV(Phi); 5245 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5246 if (!AR) { 5247 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5248 return IK_NoInduction; 5249 } 5250 const SCEV *Step = AR->getStepRecurrence(*SE); 5251 5252 // Integer inductions need to have a stride of one. 5253 if (PhiTy->isIntegerTy()) { 5254 if (Step->isOne()) 5255 return IK_IntInduction; 5256 if (Step->isAllOnesValue()) 5257 return IK_ReverseIntInduction; 5258 return IK_NoInduction; 5259 } 5260 5261 // Calculate the pointer stride and check if it is consecutive. 5262 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5263 if (!C) 5264 return IK_NoInduction; 5265 5266 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5267 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5268 if (C->getValue()->equalsInt(Size)) 5269 return IK_PtrInduction; 5270 else if (C->getValue()->equalsInt(0 - Size)) 5271 return IK_ReversePtrInduction; 5272 5273 return IK_NoInduction; 5274 } 5275 5276 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5277 Value *In0 = const_cast<Value*>(V); 5278 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5279 if (!PN) 5280 return false; 5281 5282 return Inductions.count(PN); 5283 } 5284 5285 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5286 assert(TheLoop->contains(BB) && "Unknown block used"); 5287 5288 // Blocks that do not dominate the latch need predication. 5289 BasicBlock* Latch = TheLoop->getLoopLatch(); 5290 return !DT->dominates(BB, Latch); 5291 } 5292 5293 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5294 SmallPtrSetImpl<Value *> &SafePtrs) { 5295 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5296 // We might be able to hoist the load. 5297 if (it->mayReadFromMemory()) { 5298 LoadInst *LI = dyn_cast<LoadInst>(it); 5299 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5300 return false; 5301 } 5302 5303 // We don't predicate stores at the moment. 5304 if (it->mayWriteToMemory()) { 5305 StoreInst *SI = dyn_cast<StoreInst>(it); 5306 // We only support predication of stores in basic blocks with one 5307 // predecessor. 5308 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5309 !SafePtrs.count(SI->getPointerOperand()) || 5310 !SI->getParent()->getSinglePredecessor()) 5311 return false; 5312 } 5313 if (it->mayThrow()) 5314 return false; 5315 5316 // Check that we don't have a constant expression that can trap as operand. 5317 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5318 OI != OE; ++OI) { 5319 if (Constant *C = dyn_cast<Constant>(*OI)) 5320 if (C->canTrap()) 5321 return false; 5322 } 5323 5324 // The instructions below can trap. 5325 switch (it->getOpcode()) { 5326 default: continue; 5327 case Instruction::UDiv: 5328 case Instruction::SDiv: 5329 case Instruction::URem: 5330 case Instruction::SRem: 5331 return false; 5332 } 5333 } 5334 5335 return true; 5336 } 5337 5338 LoopVectorizationCostModel::VectorizationFactor 5339 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5340 // Width 1 means no vectorize 5341 VectorizationFactor Factor = { 1U, 0U }; 5342 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5343 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5344 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5345 return Factor; 5346 } 5347 5348 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5349 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5350 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5351 return Factor; 5352 } 5353 5354 // Find the trip count. 5355 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 5356 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5357 5358 unsigned WidestType = getWidestType(); 5359 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5360 unsigned MaxSafeDepDist = -1U; 5361 if (Legal->getMaxSafeDepDistBytes() != -1U) 5362 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5363 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5364 WidestRegister : MaxSafeDepDist); 5365 unsigned MaxVectorSize = WidestRegister / WidestType; 5366 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5367 DEBUG(dbgs() << "LV: The Widest register is: " 5368 << WidestRegister << " bits.\n"); 5369 5370 if (MaxVectorSize == 0) { 5371 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5372 MaxVectorSize = 1; 5373 } 5374 5375 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5376 " into one vector!"); 5377 5378 unsigned VF = MaxVectorSize; 5379 5380 // If we optimize the program for size, avoid creating the tail loop. 5381 if (OptForSize) { 5382 // If we are unable to calculate the trip count then don't try to vectorize. 5383 if (TC < 2) { 5384 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5385 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5386 return Factor; 5387 } 5388 5389 // Find the maximum SIMD width that can fit within the trip count. 5390 VF = TC % MaxVectorSize; 5391 5392 if (VF == 0) 5393 VF = MaxVectorSize; 5394 5395 // If the trip count that we found modulo the vectorization factor is not 5396 // zero then we require a tail. 5397 if (VF < 2) { 5398 emitAnalysis(Report() << "cannot optimize for size and vectorize at the same time. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5399 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5400 return Factor; 5401 } 5402 } 5403 5404 int UserVF = Hints->getWidth(); 5405 if (UserVF != 0) { 5406 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5407 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5408 5409 Factor.Width = UserVF; 5410 return Factor; 5411 } 5412 5413 float Cost = expectedCost(1); 5414 #ifndef NDEBUG 5415 const float ScalarCost = Cost; 5416 #endif /* NDEBUG */ 5417 unsigned Width = 1; 5418 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5419 5420 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5421 // Ignore scalar width, because the user explicitly wants vectorization. 5422 if (ForceVectorization && VF > 1) { 5423 Width = 2; 5424 Cost = expectedCost(Width) / (float)Width; 5425 } 5426 5427 for (unsigned i=2; i <= VF; i*=2) { 5428 // Notice that the vector loop needs to be executed less times, so 5429 // we need to divide the cost of the vector loops by the width of 5430 // the vector elements. 5431 float VectorCost = expectedCost(i) / (float)i; 5432 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5433 (int)VectorCost << ".\n"); 5434 if (VectorCost < Cost) { 5435 Cost = VectorCost; 5436 Width = i; 5437 } 5438 } 5439 5440 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5441 << "LV: Vectorization seems to be not beneficial, " 5442 << "but was forced by a user.\n"); 5443 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5444 Factor.Width = Width; 5445 Factor.Cost = Width * Cost; 5446 return Factor; 5447 } 5448 5449 unsigned LoopVectorizationCostModel::getWidestType() { 5450 unsigned MaxWidth = 8; 5451 5452 // For each block. 5453 for (Loop::block_iterator bb = TheLoop->block_begin(), 5454 be = TheLoop->block_end(); bb != be; ++bb) { 5455 BasicBlock *BB = *bb; 5456 5457 // For each instruction in the loop. 5458 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5459 Type *T = it->getType(); 5460 5461 // Only examine Loads, Stores and PHINodes. 5462 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5463 continue; 5464 5465 // Examine PHI nodes that are reduction variables. 5466 if (PHINode *PN = dyn_cast<PHINode>(it)) 5467 if (!Legal->getReductionVars()->count(PN)) 5468 continue; 5469 5470 // Examine the stored values. 5471 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5472 T = ST->getValueOperand()->getType(); 5473 5474 // Ignore loaded pointer types and stored pointer types that are not 5475 // consecutive. However, we do want to take consecutive stores/loads of 5476 // pointer vectors into account. 5477 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5478 continue; 5479 5480 MaxWidth = std::max(MaxWidth, 5481 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5482 } 5483 } 5484 5485 return MaxWidth; 5486 } 5487 5488 unsigned 5489 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5490 unsigned VF, 5491 unsigned LoopCost) { 5492 5493 // -- The unroll heuristics -- 5494 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5495 // There are many micro-architectural considerations that we can't predict 5496 // at this level. For example, frontend pressure (on decode or fetch) due to 5497 // code size, or the number and capabilities of the execution ports. 5498 // 5499 // We use the following heuristics to select the unroll factor: 5500 // 1. If the code has reductions, then we unroll in order to break the cross 5501 // iteration dependency. 5502 // 2. If the loop is really small, then we unroll in order to reduce the loop 5503 // overhead. 5504 // 3. We don't unroll if we think that we will spill registers to memory due 5505 // to the increased register pressure. 5506 5507 // Use the user preference, unless 'auto' is selected. 5508 int UserUF = Hints->getUnroll(); 5509 if (UserUF != 0) 5510 return UserUF; 5511 5512 // When we optimize for size, we don't unroll. 5513 if (OptForSize) 5514 return 1; 5515 5516 // We used the distance for the unroll factor. 5517 if (Legal->getMaxSafeDepDistBytes() != -1U) 5518 return 1; 5519 5520 // Do not unroll loops with a relatively small trip count. 5521 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 5522 TheLoop->getLoopLatch()); 5523 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5524 return 1; 5525 5526 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5527 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5528 " registers\n"); 5529 5530 if (VF == 1) { 5531 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5532 TargetNumRegisters = ForceTargetNumScalarRegs; 5533 } else { 5534 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5535 TargetNumRegisters = ForceTargetNumVectorRegs; 5536 } 5537 5538 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5539 // We divide by these constants so assume that we have at least one 5540 // instruction that uses at least one register. 5541 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5542 R.NumInstructions = std::max(R.NumInstructions, 1U); 5543 5544 // We calculate the unroll factor using the following formula. 5545 // Subtract the number of loop invariants from the number of available 5546 // registers. These registers are used by all of the unrolled instances. 5547 // Next, divide the remaining registers by the number of registers that is 5548 // required by the loop, in order to estimate how many parallel instances 5549 // fit without causing spills. All of this is rounded down if necessary to be 5550 // a power of two. We want power of two unroll factors to simplify any 5551 // addressing operations or alignment considerations. 5552 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5553 R.MaxLocalUsers); 5554 5555 // Don't count the induction variable as unrolled. 5556 if (EnableIndVarRegisterHeur) 5557 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5558 std::max(1U, (R.MaxLocalUsers - 1))); 5559 5560 // Clamp the unroll factor ranges to reasonable factors. 5561 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 5562 5563 // Check if the user has overridden the unroll max. 5564 if (VF == 1) { 5565 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0) 5566 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor; 5567 } else { 5568 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0) 5569 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor; 5570 } 5571 5572 // If we did not calculate the cost for VF (because the user selected the VF) 5573 // then we calculate the cost of VF here. 5574 if (LoopCost == 0) 5575 LoopCost = expectedCost(VF); 5576 5577 // Clamp the calculated UF to be between the 1 and the max unroll factor 5578 // that the target allows. 5579 if (UF > MaxUnrollSize) 5580 UF = MaxUnrollSize; 5581 else if (UF < 1) 5582 UF = 1; 5583 5584 // Unroll if we vectorized this loop and there is a reduction that could 5585 // benefit from unrolling. 5586 if (VF > 1 && Legal->getReductionVars()->size()) { 5587 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5588 return UF; 5589 } 5590 5591 // Note that if we've already vectorized the loop we will have done the 5592 // runtime check and so unrolling won't require further checks. 5593 bool UnrollingRequiresRuntimePointerCheck = 5594 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5595 5596 // We want to unroll small loops in order to reduce the loop overhead and 5597 // potentially expose ILP opportunities. 5598 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5599 if (!UnrollingRequiresRuntimePointerCheck && 5600 LoopCost < SmallLoopCost) { 5601 // We assume that the cost overhead is 1 and we use the cost model 5602 // to estimate the cost of the loop and unroll until the cost of the 5603 // loop overhead is about 5% of the cost of the loop. 5604 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5605 5606 // Unroll until store/load ports (estimated by max unroll factor) are 5607 // saturated. 5608 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5609 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5610 5611 // If we have a scalar reduction (vector reductions are already dealt with 5612 // by this point), we can increase the critical path length if the loop 5613 // we're unrolling is inside another loop. Limit, by default to 2, so the 5614 // critical path only gets increased by one reduction operation. 5615 if (Legal->getReductionVars()->size() && 5616 TheLoop->getLoopDepth() > 1) { 5617 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5618 SmallUF = std::min(SmallUF, F); 5619 StoresUF = std::min(StoresUF, F); 5620 LoadsUF = std::min(LoadsUF, F); 5621 } 5622 5623 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5624 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5625 return std::max(StoresUF, LoadsUF); 5626 } 5627 5628 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5629 return SmallUF; 5630 } 5631 5632 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5633 return 1; 5634 } 5635 5636 LoopVectorizationCostModel::RegisterUsage 5637 LoopVectorizationCostModel::calculateRegisterUsage() { 5638 // This function calculates the register usage by measuring the highest number 5639 // of values that are alive at a single location. Obviously, this is a very 5640 // rough estimation. We scan the loop in a topological order in order and 5641 // assign a number to each instruction. We use RPO to ensure that defs are 5642 // met before their users. We assume that each instruction that has in-loop 5643 // users starts an interval. We record every time that an in-loop value is 5644 // used, so we have a list of the first and last occurrences of each 5645 // instruction. Next, we transpose this data structure into a multi map that 5646 // holds the list of intervals that *end* at a specific location. This multi 5647 // map allows us to perform a linear search. We scan the instructions linearly 5648 // and record each time that a new interval starts, by placing it in a set. 5649 // If we find this value in the multi-map then we remove it from the set. 5650 // The max register usage is the maximum size of the set. 5651 // We also search for instructions that are defined outside the loop, but are 5652 // used inside the loop. We need this number separately from the max-interval 5653 // usage number because when we unroll, loop-invariant values do not take 5654 // more register. 5655 LoopBlocksDFS DFS(TheLoop); 5656 DFS.perform(LI); 5657 5658 RegisterUsage R; 5659 R.NumInstructions = 0; 5660 5661 // Each 'key' in the map opens a new interval. The values 5662 // of the map are the index of the 'last seen' usage of the 5663 // instruction that is the key. 5664 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5665 // Maps instruction to its index. 5666 DenseMap<unsigned, Instruction*> IdxToInstr; 5667 // Marks the end of each interval. 5668 IntervalMap EndPoint; 5669 // Saves the list of instruction indices that are used in the loop. 5670 SmallSet<Instruction*, 8> Ends; 5671 // Saves the list of values that are used in the loop but are 5672 // defined outside the loop, such as arguments and constants. 5673 SmallPtrSet<Value*, 8> LoopInvariants; 5674 5675 unsigned Index = 0; 5676 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5677 be = DFS.endRPO(); bb != be; ++bb) { 5678 R.NumInstructions += (*bb)->size(); 5679 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5680 ++it) { 5681 Instruction *I = it; 5682 IdxToInstr[Index++] = I; 5683 5684 // Save the end location of each USE. 5685 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5686 Value *U = I->getOperand(i); 5687 Instruction *Instr = dyn_cast<Instruction>(U); 5688 5689 // Ignore non-instruction values such as arguments, constants, etc. 5690 if (!Instr) continue; 5691 5692 // If this instruction is outside the loop then record it and continue. 5693 if (!TheLoop->contains(Instr)) { 5694 LoopInvariants.insert(Instr); 5695 continue; 5696 } 5697 5698 // Overwrite previous end points. 5699 EndPoint[Instr] = Index; 5700 Ends.insert(Instr); 5701 } 5702 } 5703 } 5704 5705 // Saves the list of intervals that end with the index in 'key'. 5706 typedef SmallVector<Instruction*, 2> InstrList; 5707 DenseMap<unsigned, InstrList> TransposeEnds; 5708 5709 // Transpose the EndPoints to a list of values that end at each index. 5710 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5711 it != e; ++it) 5712 TransposeEnds[it->second].push_back(it->first); 5713 5714 SmallSet<Instruction*, 8> OpenIntervals; 5715 unsigned MaxUsage = 0; 5716 5717 5718 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5719 for (unsigned int i = 0; i < Index; ++i) { 5720 Instruction *I = IdxToInstr[i]; 5721 // Ignore instructions that are never used within the loop. 5722 if (!Ends.count(I)) continue; 5723 5724 // Remove all of the instructions that end at this location. 5725 InstrList &List = TransposeEnds[i]; 5726 for (unsigned int j=0, e = List.size(); j < e; ++j) 5727 OpenIntervals.erase(List[j]); 5728 5729 // Count the number of live interals. 5730 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5731 5732 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5733 OpenIntervals.size() << '\n'); 5734 5735 // Add the current instruction to the list of open intervals. 5736 OpenIntervals.insert(I); 5737 } 5738 5739 unsigned Invariant = LoopInvariants.size(); 5740 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5741 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5742 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5743 5744 R.LoopInvariantRegs = Invariant; 5745 R.MaxLocalUsers = MaxUsage; 5746 return R; 5747 } 5748 5749 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5750 unsigned Cost = 0; 5751 5752 // For each block. 5753 for (Loop::block_iterator bb = TheLoop->block_begin(), 5754 be = TheLoop->block_end(); bb != be; ++bb) { 5755 unsigned BlockCost = 0; 5756 BasicBlock *BB = *bb; 5757 5758 // For each instruction in the old loop. 5759 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5760 // Skip dbg intrinsics. 5761 if (isa<DbgInfoIntrinsic>(it)) 5762 continue; 5763 5764 unsigned C = getInstructionCost(it, VF); 5765 5766 // Check if we should override the cost. 5767 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5768 C = ForceTargetInstructionCost; 5769 5770 BlockCost += C; 5771 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5772 VF << " For instruction: " << *it << '\n'); 5773 } 5774 5775 // We assume that if-converted blocks have a 50% chance of being executed. 5776 // When the code is scalar then some of the blocks are avoided due to CF. 5777 // When the code is vectorized we execute all code paths. 5778 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5779 BlockCost /= 2; 5780 5781 Cost += BlockCost; 5782 } 5783 5784 return Cost; 5785 } 5786 5787 /// \brief Check whether the address computation for a non-consecutive memory 5788 /// access looks like an unlikely candidate for being merged into the indexing 5789 /// mode. 5790 /// 5791 /// We look for a GEP which has one index that is an induction variable and all 5792 /// other indices are loop invariant. If the stride of this access is also 5793 /// within a small bound we decide that this address computation can likely be 5794 /// merged into the addressing mode. 5795 /// In all other cases, we identify the address computation as complex. 5796 static bool isLikelyComplexAddressComputation(Value *Ptr, 5797 LoopVectorizationLegality *Legal, 5798 ScalarEvolution *SE, 5799 const Loop *TheLoop) { 5800 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5801 if (!Gep) 5802 return true; 5803 5804 // We are looking for a gep with all loop invariant indices except for one 5805 // which should be an induction variable. 5806 unsigned NumOperands = Gep->getNumOperands(); 5807 for (unsigned i = 1; i < NumOperands; ++i) { 5808 Value *Opd = Gep->getOperand(i); 5809 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5810 !Legal->isInductionVariable(Opd)) 5811 return true; 5812 } 5813 5814 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5815 // can likely be merged into the address computation. 5816 unsigned MaxMergeDistance = 64; 5817 5818 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5819 if (!AddRec) 5820 return true; 5821 5822 // Check the step is constant. 5823 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5824 // Calculate the pointer stride and check if it is consecutive. 5825 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5826 if (!C) 5827 return true; 5828 5829 const APInt &APStepVal = C->getValue()->getValue(); 5830 5831 // Huge step value - give up. 5832 if (APStepVal.getBitWidth() > 64) 5833 return true; 5834 5835 int64_t StepVal = APStepVal.getSExtValue(); 5836 5837 return StepVal > MaxMergeDistance; 5838 } 5839 5840 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5841 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5842 return true; 5843 return false; 5844 } 5845 5846 unsigned 5847 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5848 // If we know that this instruction will remain uniform, check the cost of 5849 // the scalar version. 5850 if (Legal->isUniformAfterVectorization(I)) 5851 VF = 1; 5852 5853 Type *RetTy = I->getType(); 5854 Type *VectorTy = ToVectorTy(RetTy, VF); 5855 5856 // TODO: We need to estimate the cost of intrinsic calls. 5857 switch (I->getOpcode()) { 5858 case Instruction::GetElementPtr: 5859 // We mark this instruction as zero-cost because the cost of GEPs in 5860 // vectorized code depends on whether the corresponding memory instruction 5861 // is scalarized or not. Therefore, we handle GEPs with the memory 5862 // instruction cost. 5863 return 0; 5864 case Instruction::Br: { 5865 return TTI.getCFInstrCost(I->getOpcode()); 5866 } 5867 case Instruction::PHI: 5868 //TODO: IF-converted IFs become selects. 5869 return 0; 5870 case Instruction::Add: 5871 case Instruction::FAdd: 5872 case Instruction::Sub: 5873 case Instruction::FSub: 5874 case Instruction::Mul: 5875 case Instruction::FMul: 5876 case Instruction::UDiv: 5877 case Instruction::SDiv: 5878 case Instruction::FDiv: 5879 case Instruction::URem: 5880 case Instruction::SRem: 5881 case Instruction::FRem: 5882 case Instruction::Shl: 5883 case Instruction::LShr: 5884 case Instruction::AShr: 5885 case Instruction::And: 5886 case Instruction::Or: 5887 case Instruction::Xor: { 5888 // Since we will replace the stride by 1 the multiplication should go away. 5889 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5890 return 0; 5891 // Certain instructions can be cheaper to vectorize if they have a constant 5892 // second vector operand. One example of this are shifts on x86. 5893 TargetTransformInfo::OperandValueKind Op1VK = 5894 TargetTransformInfo::OK_AnyValue; 5895 TargetTransformInfo::OperandValueKind Op2VK = 5896 TargetTransformInfo::OK_AnyValue; 5897 TargetTransformInfo::OperandValueProperties Op1VP = 5898 TargetTransformInfo::OP_None; 5899 TargetTransformInfo::OperandValueProperties Op2VP = 5900 TargetTransformInfo::OP_None; 5901 Value *Op2 = I->getOperand(1); 5902 5903 // Check for a splat of a constant or for a non uniform vector of constants. 5904 if (isa<ConstantInt>(Op2)) { 5905 ConstantInt *CInt = cast<ConstantInt>(Op2); 5906 if (CInt && CInt->getValue().isPowerOf2()) 5907 Op2VP = TargetTransformInfo::OP_PowerOf2; 5908 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5909 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5910 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5911 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5912 if (SplatValue) { 5913 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5914 if (CInt && CInt->getValue().isPowerOf2()) 5915 Op2VP = TargetTransformInfo::OP_PowerOf2; 5916 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5917 } 5918 } 5919 5920 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5921 Op1VP, Op2VP); 5922 } 5923 case Instruction::Select: { 5924 SelectInst *SI = cast<SelectInst>(I); 5925 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5926 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5927 Type *CondTy = SI->getCondition()->getType(); 5928 if (!ScalarCond) 5929 CondTy = VectorType::get(CondTy, VF); 5930 5931 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5932 } 5933 case Instruction::ICmp: 5934 case Instruction::FCmp: { 5935 Type *ValTy = I->getOperand(0)->getType(); 5936 VectorTy = ToVectorTy(ValTy, VF); 5937 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5938 } 5939 case Instruction::Store: 5940 case Instruction::Load: { 5941 StoreInst *SI = dyn_cast<StoreInst>(I); 5942 LoadInst *LI = dyn_cast<LoadInst>(I); 5943 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5944 LI->getType()); 5945 VectorTy = ToVectorTy(ValTy, VF); 5946 5947 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5948 unsigned AS = SI ? SI->getPointerAddressSpace() : 5949 LI->getPointerAddressSpace(); 5950 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5951 // We add the cost of address computation here instead of with the gep 5952 // instruction because only here we know whether the operation is 5953 // scalarized. 5954 if (VF == 1) 5955 return TTI.getAddressComputationCost(VectorTy) + 5956 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5957 5958 // Scalarized loads/stores. 5959 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5960 bool Reverse = ConsecutiveStride < 0; 5961 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5962 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5963 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5964 bool IsComplexComputation = 5965 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5966 unsigned Cost = 0; 5967 // The cost of extracting from the value vector and pointer vector. 5968 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5969 for (unsigned i = 0; i < VF; ++i) { 5970 // The cost of extracting the pointer operand. 5971 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5972 // In case of STORE, the cost of ExtractElement from the vector. 5973 // In case of LOAD, the cost of InsertElement into the returned 5974 // vector. 5975 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5976 Instruction::InsertElement, 5977 VectorTy, i); 5978 } 5979 5980 // The cost of the scalar loads/stores. 5981 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5982 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5983 Alignment, AS); 5984 return Cost; 5985 } 5986 5987 // Wide load/stores. 5988 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5989 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5990 5991 if (Reverse) 5992 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5993 VectorTy, 0); 5994 return Cost; 5995 } 5996 case Instruction::ZExt: 5997 case Instruction::SExt: 5998 case Instruction::FPToUI: 5999 case Instruction::FPToSI: 6000 case Instruction::FPExt: 6001 case Instruction::PtrToInt: 6002 case Instruction::IntToPtr: 6003 case Instruction::SIToFP: 6004 case Instruction::UIToFP: 6005 case Instruction::Trunc: 6006 case Instruction::FPTrunc: 6007 case Instruction::BitCast: { 6008 // We optimize the truncation of induction variable. 6009 // The cost of these is the same as the scalar operation. 6010 if (I->getOpcode() == Instruction::Trunc && 6011 Legal->isInductionVariable(I->getOperand(0))) 6012 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6013 I->getOperand(0)->getType()); 6014 6015 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6016 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6017 } 6018 case Instruction::Call: { 6019 CallInst *CI = cast<CallInst>(I); 6020 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6021 assert(ID && "Not an intrinsic call!"); 6022 Type *RetTy = ToVectorTy(CI->getType(), VF); 6023 SmallVector<Type*, 4> Tys; 6024 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6025 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6026 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6027 } 6028 default: { 6029 // We are scalarizing the instruction. Return the cost of the scalar 6030 // instruction, plus the cost of insert and extract into vector 6031 // elements, times the vector width. 6032 unsigned Cost = 0; 6033 6034 if (!RetTy->isVoidTy() && VF != 1) { 6035 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6036 VectorTy); 6037 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6038 VectorTy); 6039 6040 // The cost of inserting the results plus extracting each one of the 6041 // operands. 6042 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6043 } 6044 6045 // The cost of executing VF copies of the scalar instruction. This opcode 6046 // is unknown. Assume that it is the same as 'mul'. 6047 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6048 return Cost; 6049 } 6050 }// end of switch. 6051 } 6052 6053 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6054 if (Scalar->isVoidTy() || VF == 1) 6055 return Scalar; 6056 return VectorType::get(Scalar, VF); 6057 } 6058 6059 char LoopVectorize::ID = 0; 6060 static const char lv_name[] = "Loop Vectorization"; 6061 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6062 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6063 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6064 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6065 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6066 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6067 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6068 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 6069 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6070 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6071 6072 namespace llvm { 6073 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6074 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6075 } 6076 } 6077 6078 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6079 // Check for a store. 6080 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6081 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6082 6083 // Check for a load. 6084 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6085 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6086 6087 return false; 6088 } 6089 6090 6091 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6092 bool IfPredicateStore) { 6093 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6094 // Holds vector parameters or scalars, in case of uniform vals. 6095 SmallVector<VectorParts, 4> Params; 6096 6097 setDebugLocFromInst(Builder, Instr); 6098 6099 // Find all of the vectorized parameters. 6100 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6101 Value *SrcOp = Instr->getOperand(op); 6102 6103 // If we are accessing the old induction variable, use the new one. 6104 if (SrcOp == OldInduction) { 6105 Params.push_back(getVectorValue(SrcOp)); 6106 continue; 6107 } 6108 6109 // Try using previously calculated values. 6110 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6111 6112 // If the src is an instruction that appeared earlier in the basic block 6113 // then it should already be vectorized. 6114 if (SrcInst && OrigLoop->contains(SrcInst)) { 6115 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6116 // The parameter is a vector value from earlier. 6117 Params.push_back(WidenMap.get(SrcInst)); 6118 } else { 6119 // The parameter is a scalar from outside the loop. Maybe even a constant. 6120 VectorParts Scalars; 6121 Scalars.append(UF, SrcOp); 6122 Params.push_back(Scalars); 6123 } 6124 } 6125 6126 assert(Params.size() == Instr->getNumOperands() && 6127 "Invalid number of operands"); 6128 6129 // Does this instruction return a value ? 6130 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6131 6132 Value *UndefVec = IsVoidRetTy ? nullptr : 6133 UndefValue::get(Instr->getType()); 6134 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6135 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6136 6137 Instruction *InsertPt = Builder.GetInsertPoint(); 6138 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6139 BasicBlock *CondBlock = nullptr; 6140 6141 VectorParts Cond; 6142 Loop *VectorLp = nullptr; 6143 if (IfPredicateStore) { 6144 assert(Instr->getParent()->getSinglePredecessor() && 6145 "Only support single predecessor blocks"); 6146 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6147 Instr->getParent()); 6148 VectorLp = LI->getLoopFor(IfBlock); 6149 assert(VectorLp && "Must have a loop for this block"); 6150 } 6151 6152 // For each vector unroll 'part': 6153 for (unsigned Part = 0; Part < UF; ++Part) { 6154 // For each scalar that we create: 6155 6156 // Start an "if (pred) a[i] = ..." block. 6157 Value *Cmp = nullptr; 6158 if (IfPredicateStore) { 6159 if (Cond[Part]->getType()->isVectorTy()) 6160 Cond[Part] = 6161 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6162 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6163 ConstantInt::get(Cond[Part]->getType(), 1)); 6164 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6165 LoopVectorBody.push_back(CondBlock); 6166 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6167 // Update Builder with newly created basic block. 6168 Builder.SetInsertPoint(InsertPt); 6169 } 6170 6171 Instruction *Cloned = Instr->clone(); 6172 if (!IsVoidRetTy) 6173 Cloned->setName(Instr->getName() + ".cloned"); 6174 // Replace the operands of the cloned instructions with extracted scalars. 6175 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6176 Value *Op = Params[op][Part]; 6177 Cloned->setOperand(op, Op); 6178 } 6179 6180 // Place the cloned scalar in the new loop. 6181 Builder.Insert(Cloned); 6182 6183 // If the original scalar returns a value we need to place it in a vector 6184 // so that future users will be able to use it. 6185 if (!IsVoidRetTy) 6186 VecResults[Part] = Cloned; 6187 6188 // End if-block. 6189 if (IfPredicateStore) { 6190 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6191 LoopVectorBody.push_back(NewIfBlock); 6192 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6193 Builder.SetInsertPoint(InsertPt); 6194 Instruction *OldBr = IfBlock->getTerminator(); 6195 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6196 OldBr->eraseFromParent(); 6197 IfBlock = NewIfBlock; 6198 } 6199 } 6200 } 6201 6202 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6203 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6204 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6205 6206 return scalarizeInstruction(Instr, IfPredicateStore); 6207 } 6208 6209 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6210 return Vec; 6211 } 6212 6213 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6214 return V; 6215 } 6216 6217 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6218 bool Negate) { 6219 // When unrolling and the VF is 1, we only need to add a simple scalar. 6220 Type *ITy = Val->getType(); 6221 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6222 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6223 return Builder.CreateAdd(Val, C, "induction"); 6224 } 6225