1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionTracker.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolution.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/TargetTransformInfo.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/VectorUtils.h" 95 #include <algorithm> 96 #include <map> 97 #include <tuple> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define LV_NAME "loop-vectorize" 103 #define DEBUG_TYPE LV_NAME 104 105 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 107 108 static cl::opt<unsigned> 109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 110 cl::desc("Sets the SIMD width. Zero is autoselect.")); 111 112 static cl::opt<unsigned> 113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 114 cl::desc("Sets the vectorization interleave count. " 115 "Zero is autoselect.")); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 /// We don't unroll loops with a known constant trip count below this number. 145 static const unsigned TinyTripCountUnrollThreshold = 128; 146 147 /// When performing memory disambiguation checks at runtime do not make more 148 /// than this number of comparisons. 149 static const unsigned RuntimeMemoryCheckThreshold = 8; 150 151 /// Maximum simd width. 152 static const unsigned MaxVectorWidth = 64; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// Optimization analysis message produced during vectorization. Messages inform 222 /// the user why vectorization did not occur. 223 class Report { 224 std::string Message; 225 raw_string_ostream Out; 226 Instruction *Instr; 227 228 public: 229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 230 Out << "loop not vectorized: "; 231 } 232 233 template <typename A> Report &operator<<(const A &Value) { 234 Out << Value; 235 return *this; 236 } 237 238 Instruction *getInstr() { return Instr; } 239 240 std::string &str() { return Out.str(); } 241 operator Twine() { return Out.str(); } 242 }; 243 244 /// InnerLoopVectorizer vectorizes loops which contain only one basic 245 /// block to a specified vectorization factor (VF). 246 /// This class performs the widening of scalars into vectors, or multiple 247 /// scalars. This class also implements the following features: 248 /// * It inserts an epilogue loop for handling loops that don't have iteration 249 /// counts that are known to be a multiple of the vectorization factor. 250 /// * It handles the code generation for reduction variables. 251 /// * Scalarization (implementation using scalars) of un-vectorizable 252 /// instructions. 253 /// InnerLoopVectorizer does not perform any vectorization-legality 254 /// checks, and relies on the caller to check for the different legality 255 /// aspects. The InnerLoopVectorizer relies on the 256 /// LoopVectorizationLegality class to provide information about the induction 257 /// and reduction variables that were found to a given vectorization factor. 258 class InnerLoopVectorizer { 259 public: 260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 261 DominatorTree *DT, const DataLayout *DL, 262 const TargetLibraryInfo *TLI, unsigned VecWidth, 263 unsigned UnrollFactor) 264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 267 Legal(nullptr) {} 268 269 // Perform the actual loop widening (vectorization). 270 void vectorize(LoopVectorizationLegality *L) { 271 Legal = L; 272 // Create a new empty loop. Unlink the old loop and connect the new one. 273 createEmptyLoop(); 274 // Widen each instruction in the old loop to a new one in the new loop. 275 // Use the Legality module to find the induction and reduction variables. 276 vectorizeLoop(); 277 // Register the new loop and update the analysis passes. 278 updateAnalysis(); 279 } 280 281 virtual ~InnerLoopVectorizer() {} 282 283 protected: 284 /// A small list of PHINodes. 285 typedef SmallVector<PHINode*, 4> PhiVector; 286 /// When we unroll loops we have multiple vector values for each scalar. 287 /// This data structure holds the unrolled and vectorized values that 288 /// originated from one scalar instruction. 289 typedef SmallVector<Value*, 2> VectorParts; 290 291 // When we if-convert we need create edge masks. We have to cache values so 292 // that we don't end up with exponential recursion/IR. 293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 294 VectorParts> EdgeMaskCache; 295 296 /// \brief Add code that checks at runtime if the accessed arrays overlap. 297 /// 298 /// Returns a pair of instructions where the first element is the first 299 /// instruction generated in possibly a sequence of instructions and the 300 /// second value is the final comparator value or NULL if no check is needed. 301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 302 303 /// \brief Add checks for strides that where assumed to be 1. 304 /// 305 /// Returns the last check instruction and the first check instruction in the 306 /// pair as (first, last). 307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 308 309 /// Create an empty loop, based on the loop ranges of the old loop. 310 void createEmptyLoop(); 311 /// Copy and widen the instructions from the old loop. 312 virtual void vectorizeLoop(); 313 314 /// \brief The Loop exit block may have single value PHI nodes where the 315 /// incoming value is 'Undef'. While vectorizing we only handled real values 316 /// that were defined inside the loop. Here we fix the 'undef case'. 317 /// See PR14725. 318 void fixLCSSAPHIs(); 319 320 /// A helper function that computes the predicate of the block BB, assuming 321 /// that the header block of the loop is set to True. It returns the *entry* 322 /// mask for the block BB. 323 VectorParts createBlockInMask(BasicBlock *BB); 324 /// A helper function that computes the predicate of the edge between SRC 325 /// and DST. 326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 327 328 /// A helper function to vectorize a single BB within the innermost loop. 329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 330 331 /// Vectorize a single PHINode in a block. This method handles the induction 332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 333 /// arbitrary length vectors. 334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 335 unsigned UF, unsigned VF, PhiVector *PV); 336 337 /// Insert the new loop to the loop hierarchy and pass manager 338 /// and update the analysis passes. 339 void updateAnalysis(); 340 341 /// This instruction is un-vectorizable. Implement it as a sequence 342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 343 /// scalarized instruction behind an if block predicated on the control 344 /// dependence of the instruction. 345 virtual void scalarizeInstruction(Instruction *Instr, 346 bool IfPredicateStore=false); 347 348 /// Vectorize Load and Store instructions, 349 virtual void vectorizeMemoryInstruction(Instruction *Instr); 350 351 /// Create a broadcast instruction. This method generates a broadcast 352 /// instruction (shuffle) for loop invariant values and for the induction 353 /// value. If this is the induction variable then we extend it to N, N+1, ... 354 /// this is needed because each iteration in the loop corresponds to a SIMD 355 /// element. 356 virtual Value *getBroadcastInstrs(Value *V); 357 358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 360 /// The sequence starts at StartIndex. 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 363 /// When we go over instructions in the basic block we rely on previous 364 /// values within the current basic block or on loop invariant values. 365 /// When we widen (vectorize) values we place them in the map. If the values 366 /// are not within the map, they have to be loop invariant, so we simply 367 /// broadcast them into a vector. 368 VectorParts &getVectorValue(Value *V); 369 370 /// Generate a shuffle sequence that will reverse the vector Vec. 371 virtual Value *reverseVector(Value *Vec); 372 373 /// This is a helper class that holds the vectorizer state. It maps scalar 374 /// instructions to vector instructions. When the code is 'unrolled' then 375 /// then a single scalar value is mapped to multiple vector parts. The parts 376 /// are stored in the VectorPart type. 377 struct ValueMap { 378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 379 /// are mapped. 380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 381 382 /// \return True if 'Key' is saved in the Value Map. 383 bool has(Value *Key) const { return MapStorage.count(Key); } 384 385 /// Initializes a new entry in the map. Sets all of the vector parts to the 386 /// save value in 'Val'. 387 /// \return A reference to a vector with splat values. 388 VectorParts &splat(Value *Key, Value *Val) { 389 VectorParts &Entry = MapStorage[Key]; 390 Entry.assign(UF, Val); 391 return Entry; 392 } 393 394 ///\return A reference to the value that is stored at 'Key'. 395 VectorParts &get(Value *Key) { 396 VectorParts &Entry = MapStorage[Key]; 397 if (Entry.empty()) 398 Entry.resize(UF); 399 assert(Entry.size() == UF); 400 return Entry; 401 } 402 403 private: 404 /// The unroll factor. Each entry in the map stores this number of vector 405 /// elements. 406 unsigned UF; 407 408 /// Map storage. We use std::map and not DenseMap because insertions to a 409 /// dense map invalidates its iterators. 410 std::map<Value *, VectorParts> MapStorage; 411 }; 412 413 /// The original loop. 414 Loop *OrigLoop; 415 /// Scev analysis to use. 416 ScalarEvolution *SE; 417 /// Loop Info. 418 LoopInfo *LI; 419 /// Dominator Tree. 420 DominatorTree *DT; 421 /// Alias Analysis. 422 AliasAnalysis *AA; 423 /// Data Layout. 424 const DataLayout *DL; 425 /// Target Library Info. 426 const TargetLibraryInfo *TLI; 427 428 /// The vectorization SIMD factor to use. Each vector will have this many 429 /// vector elements. 430 unsigned VF; 431 432 protected: 433 /// The vectorization unroll factor to use. Each scalar is vectorized to this 434 /// many different vector instructions. 435 unsigned UF; 436 437 /// The builder that we use 438 IRBuilder<> Builder; 439 440 // --- Vectorization state --- 441 442 /// The vector-loop preheader. 443 BasicBlock *LoopVectorPreHeader; 444 /// The scalar-loop preheader. 445 BasicBlock *LoopScalarPreHeader; 446 /// Middle Block between the vector and the scalar. 447 BasicBlock *LoopMiddleBlock; 448 ///The ExitBlock of the scalar loop. 449 BasicBlock *LoopExitBlock; 450 ///The vector loop body. 451 SmallVector<BasicBlock *, 4> LoopVectorBody; 452 ///The scalar loop body. 453 BasicBlock *LoopScalarBody; 454 /// A list of all bypass blocks. The first block is the entry of the loop. 455 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 456 457 /// The new Induction variable which was added to the new block. 458 PHINode *Induction; 459 /// The induction variable of the old basic block. 460 PHINode *OldInduction; 461 /// Holds the extended (to the widest induction type) start index. 462 Value *ExtendedIdx; 463 /// Maps scalars to widened vectors. 464 ValueMap WidenMap; 465 EdgeMaskCache MaskCache; 466 467 LoopVectorizationLegality *Legal; 468 }; 469 470 class InnerLoopUnroller : public InnerLoopVectorizer { 471 public: 472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 473 DominatorTree *DT, const DataLayout *DL, 474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 476 477 private: 478 void scalarizeInstruction(Instruction *Instr, 479 bool IfPredicateStore = false) override; 480 void vectorizeMemoryInstruction(Instruction *Instr) override; 481 Value *getBroadcastInstrs(Value *V) override; 482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 483 Value *reverseVector(Value *Vec) override; 484 }; 485 486 /// \brief Look for a meaningful debug location on the instruction or it's 487 /// operands. 488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 489 if (!I) 490 return I; 491 492 DebugLoc Empty; 493 if (I->getDebugLoc() != Empty) 494 return I; 495 496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 498 if (OpInst->getDebugLoc() != Empty) 499 return OpInst; 500 } 501 502 return I; 503 } 504 505 /// \brief Set the debug location in the builder using the debug location in the 506 /// instruction. 507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 509 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 510 else 511 B.SetCurrentDebugLocation(DebugLoc()); 512 } 513 514 #ifndef NDEBUG 515 /// \return string containing a file name and a line # for the given loop. 516 static std::string getDebugLocString(const Loop *L) { 517 std::string Result; 518 if (L) { 519 raw_string_ostream OS(Result); 520 const DebugLoc LoopDbgLoc = L->getStartLoc(); 521 if (!LoopDbgLoc.isUnknown()) 522 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 523 else 524 // Just print the module name. 525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 526 OS.flush(); 527 } 528 return Result; 529 } 530 #endif 531 532 /// \brief Propagate known metadata from one instruction to another. 533 static void propagateMetadata(Instruction *To, const Instruction *From) { 534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 535 From->getAllMetadataOtherThanDebugLoc(Metadata); 536 537 for (auto M : Metadata) { 538 unsigned Kind = M.first; 539 540 // These are safe to transfer (this is safe for TBAA, even when we 541 // if-convert, because should that metadata have had a control dependency 542 // on the condition, and thus actually aliased with some other 543 // non-speculated memory access when the condition was false, this would be 544 // caught by the runtime overlap checks). 545 if (Kind != LLVMContext::MD_tbaa && 546 Kind != LLVMContext::MD_alias_scope && 547 Kind != LLVMContext::MD_noalias && 548 Kind != LLVMContext::MD_fpmath) 549 continue; 550 551 To->setMetadata(Kind, M.second); 552 } 553 } 554 555 /// \brief Propagate known metadata from one instruction to a vector of others. 556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 557 for (Value *V : To) 558 if (Instruction *I = dyn_cast<Instruction>(V)) 559 propagateMetadata(I, From); 560 } 561 562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 563 /// to what vectorization factor. 564 /// This class does not look at the profitability of vectorization, only the 565 /// legality. This class has two main kinds of checks: 566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 567 /// will change the order of memory accesses in a way that will change the 568 /// correctness of the program. 569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 570 /// checks for a number of different conditions, such as the availability of a 571 /// single induction variable, that all types are supported and vectorize-able, 572 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 573 /// This class is also used by InnerLoopVectorizer for identifying 574 /// induction variable and the different reduction variables. 575 class LoopVectorizationLegality { 576 public: 577 unsigned NumLoads; 578 unsigned NumStores; 579 unsigned NumPredStores; 580 581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 582 DominatorTree *DT, TargetLibraryInfo *TLI, 583 AliasAnalysis *AA, Function *F) 584 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 585 DT(DT), TLI(TLI), AA(AA), TheFunction(F), Induction(nullptr), 586 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 587 } 588 589 /// This enum represents the kinds of reductions that we support. 590 enum ReductionKind { 591 RK_NoReduction, ///< Not a reduction. 592 RK_IntegerAdd, ///< Sum of integers. 593 RK_IntegerMult, ///< Product of integers. 594 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 595 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 596 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 597 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 598 RK_FloatAdd, ///< Sum of floats. 599 RK_FloatMult, ///< Product of floats. 600 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 601 }; 602 603 /// This enum represents the kinds of inductions that we support. 604 enum InductionKind { 605 IK_NoInduction, ///< Not an induction variable. 606 IK_IntInduction, ///< Integer induction variable. Step = 1. 607 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 608 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 609 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 610 }; 611 612 // This enum represents the kind of minmax reduction. 613 enum MinMaxReductionKind { 614 MRK_Invalid, 615 MRK_UIntMin, 616 MRK_UIntMax, 617 MRK_SIntMin, 618 MRK_SIntMax, 619 MRK_FloatMin, 620 MRK_FloatMax 621 }; 622 623 /// This struct holds information about reduction variables. 624 struct ReductionDescriptor { 625 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 626 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 627 628 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 629 MinMaxReductionKind MK) 630 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 631 632 // The starting value of the reduction. 633 // It does not have to be zero! 634 TrackingVH<Value> StartValue; 635 // The instruction who's value is used outside the loop. 636 Instruction *LoopExitInstr; 637 // The kind of the reduction. 638 ReductionKind Kind; 639 // If this a min/max reduction the kind of reduction. 640 MinMaxReductionKind MinMaxKind; 641 }; 642 643 /// This POD struct holds information about a potential reduction operation. 644 struct ReductionInstDesc { 645 ReductionInstDesc(bool IsRedux, Instruction *I) : 646 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 647 648 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 649 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 650 651 // Is this instruction a reduction candidate. 652 bool IsReduction; 653 // The last instruction in a min/max pattern (select of the select(icmp()) 654 // pattern), or the current reduction instruction otherwise. 655 Instruction *PatternLastInst; 656 // If this is a min/max pattern the comparison predicate. 657 MinMaxReductionKind MinMaxKind; 658 }; 659 660 /// This struct holds information about the memory runtime legality 661 /// check that a group of pointers do not overlap. 662 struct RuntimePointerCheck { 663 RuntimePointerCheck() : Need(false) {} 664 665 /// Reset the state of the pointer runtime information. 666 void reset() { 667 Need = false; 668 Pointers.clear(); 669 Starts.clear(); 670 Ends.clear(); 671 IsWritePtr.clear(); 672 DependencySetId.clear(); 673 AliasSetId.clear(); 674 } 675 676 /// Insert a pointer and calculate the start and end SCEVs. 677 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 678 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 679 680 /// This flag indicates if we need to add the runtime check. 681 bool Need; 682 /// Holds the pointers that we need to check. 683 SmallVector<TrackingVH<Value>, 2> Pointers; 684 /// Holds the pointer value at the beginning of the loop. 685 SmallVector<const SCEV*, 2> Starts; 686 /// Holds the pointer value at the end of the loop. 687 SmallVector<const SCEV*, 2> Ends; 688 /// Holds the information if this pointer is used for writing to memory. 689 SmallVector<bool, 2> IsWritePtr; 690 /// Holds the id of the set of pointers that could be dependent because of a 691 /// shared underlying object. 692 SmallVector<unsigned, 2> DependencySetId; 693 /// Holds the id of the disjoint alias set to which this pointer belongs. 694 SmallVector<unsigned, 2> AliasSetId; 695 }; 696 697 /// A struct for saving information about induction variables. 698 struct InductionInfo { 699 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 700 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 701 /// Start value. 702 TrackingVH<Value> StartValue; 703 /// Induction kind. 704 InductionKind IK; 705 }; 706 707 /// ReductionList contains the reduction descriptors for all 708 /// of the reductions that were found in the loop. 709 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 710 711 /// InductionList saves induction variables and maps them to the 712 /// induction descriptor. 713 typedef MapVector<PHINode*, InductionInfo> InductionList; 714 715 /// Returns true if it is legal to vectorize this loop. 716 /// This does not mean that it is profitable to vectorize this 717 /// loop, only that it is legal to do so. 718 bool canVectorize(); 719 720 /// Returns the Induction variable. 721 PHINode *getInduction() { return Induction; } 722 723 /// Returns the reduction variables found in the loop. 724 ReductionList *getReductionVars() { return &Reductions; } 725 726 /// Returns the induction variables found in the loop. 727 InductionList *getInductionVars() { return &Inductions; } 728 729 /// Returns the widest induction type. 730 Type *getWidestInductionType() { return WidestIndTy; } 731 732 /// Returns True if V is an induction variable in this loop. 733 bool isInductionVariable(const Value *V); 734 735 /// Return true if the block BB needs to be predicated in order for the loop 736 /// to be vectorized. 737 bool blockNeedsPredication(BasicBlock *BB); 738 739 /// Check if this pointer is consecutive when vectorizing. This happens 740 /// when the last index of the GEP is the induction variable, or that the 741 /// pointer itself is an induction variable. 742 /// This check allows us to vectorize A[idx] into a wide load/store. 743 /// Returns: 744 /// 0 - Stride is unknown or non-consecutive. 745 /// 1 - Address is consecutive. 746 /// -1 - Address is consecutive, and decreasing. 747 int isConsecutivePtr(Value *Ptr); 748 749 /// Returns true if the value V is uniform within the loop. 750 bool isUniform(Value *V); 751 752 /// Returns true if this instruction will remain scalar after vectorization. 753 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 754 755 /// Returns the information that we collected about runtime memory check. 756 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 757 758 /// This function returns the identity element (or neutral element) for 759 /// the operation K. 760 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 761 762 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 763 764 bool hasStride(Value *V) { return StrideSet.count(V); } 765 bool mustCheckStrides() { return !StrideSet.empty(); } 766 SmallPtrSet<Value *, 8>::iterator strides_begin() { 767 return StrideSet.begin(); 768 } 769 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 770 771 private: 772 /// Check if a single basic block loop is vectorizable. 773 /// At this point we know that this is a loop with a constant trip count 774 /// and we only need to check individual instructions. 775 bool canVectorizeInstrs(); 776 777 /// When we vectorize loops we may change the order in which 778 /// we read and write from memory. This method checks if it is 779 /// legal to vectorize the code, considering only memory constrains. 780 /// Returns true if the loop is vectorizable 781 bool canVectorizeMemory(); 782 783 /// Return true if we can vectorize this loop using the IF-conversion 784 /// transformation. 785 bool canVectorizeWithIfConvert(); 786 787 /// Collect the variables that need to stay uniform after vectorization. 788 void collectLoopUniforms(); 789 790 /// Return true if all of the instructions in the block can be speculatively 791 /// executed. \p SafePtrs is a list of addresses that are known to be legal 792 /// and we know that we can read from them without segfault. 793 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 794 795 /// Returns True, if 'Phi' is the kind of reduction variable for type 796 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 797 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 798 /// Returns a struct describing if the instruction 'I' can be a reduction 799 /// variable of type 'Kind'. If the reduction is a min/max pattern of 800 /// select(icmp()) this function advances the instruction pointer 'I' from the 801 /// compare instruction to the select instruction and stores this pointer in 802 /// 'PatternLastInst' member of the returned struct. 803 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 804 ReductionInstDesc &Desc); 805 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 806 /// pattern corresponding to a min(X, Y) or max(X, Y). 807 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 808 ReductionInstDesc &Prev); 809 /// Returns the induction kind of Phi. This function may return NoInduction 810 /// if the PHI is not an induction variable. 811 InductionKind isInductionVariable(PHINode *Phi); 812 813 /// \brief Collect memory access with loop invariant strides. 814 /// 815 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 816 /// invariant. 817 void collectStridedAcccess(Value *LoadOrStoreInst); 818 819 /// Report an analysis message to assist the user in diagnosing loops that are 820 /// not vectorized. 821 void emitAnalysis(Report &Message) { 822 DebugLoc DL = TheLoop->getStartLoc(); 823 if (Instruction *I = Message.getInstr()) 824 DL = I->getDebugLoc(); 825 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 826 *TheFunction, DL, Message.str()); 827 } 828 829 /// The loop that we evaluate. 830 Loop *TheLoop; 831 /// Scev analysis. 832 ScalarEvolution *SE; 833 /// DataLayout analysis. 834 const DataLayout *DL; 835 /// Dominators. 836 DominatorTree *DT; 837 /// Target Library Info. 838 TargetLibraryInfo *TLI; 839 /// Alias analysis. 840 AliasAnalysis *AA; 841 /// Parent function 842 Function *TheFunction; 843 844 // --- vectorization state --- // 845 846 /// Holds the integer induction variable. This is the counter of the 847 /// loop. 848 PHINode *Induction; 849 /// Holds the reduction variables. 850 ReductionList Reductions; 851 /// Holds all of the induction variables that we found in the loop. 852 /// Notice that inductions don't need to start at zero and that induction 853 /// variables can be pointers. 854 InductionList Inductions; 855 /// Holds the widest induction type encountered. 856 Type *WidestIndTy; 857 858 /// Allowed outside users. This holds the reduction 859 /// vars which can be accessed from outside the loop. 860 SmallPtrSet<Value*, 4> AllowedExit; 861 /// This set holds the variables which are known to be uniform after 862 /// vectorization. 863 SmallPtrSet<Instruction*, 4> Uniforms; 864 /// We need to check that all of the pointers in this list are disjoint 865 /// at runtime. 866 RuntimePointerCheck PtrRtCheck; 867 /// Can we assume the absence of NaNs. 868 bool HasFunNoNaNAttr; 869 870 unsigned MaxSafeDepDistBytes; 871 872 ValueToValueMap Strides; 873 SmallPtrSet<Value *, 8> StrideSet; 874 }; 875 876 /// LoopVectorizationCostModel - estimates the expected speedups due to 877 /// vectorization. 878 /// In many cases vectorization is not profitable. This can happen because of 879 /// a number of reasons. In this class we mainly attempt to predict the 880 /// expected speedup/slowdowns due to the supported instruction set. We use the 881 /// TargetTransformInfo to query the different backends for the cost of 882 /// different operations. 883 class LoopVectorizationCostModel { 884 public: 885 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 886 LoopVectorizationLegality *Legal, 887 const TargetTransformInfo &TTI, 888 const DataLayout *DL, const TargetLibraryInfo *TLI, 889 AssumptionTracker *AT, const Function *F, 890 const LoopVectorizeHints *Hints) 891 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 892 TheFunction(F), Hints(Hints) { 893 CodeMetrics::collectEphemeralValues(L, AT, EphValues); 894 } 895 896 /// Information about vectorization costs 897 struct VectorizationFactor { 898 unsigned Width; // Vector width with best cost 899 unsigned Cost; // Cost of the loop with that width 900 }; 901 /// \return The most profitable vectorization factor and the cost of that VF. 902 /// This method checks every power of two up to VF. If UserVF is not ZERO 903 /// then this vectorization factor will be selected if vectorization is 904 /// possible. 905 VectorizationFactor selectVectorizationFactor(bool OptForSize); 906 907 /// \return The size (in bits) of the widest type in the code that 908 /// needs to be vectorized. We ignore values that remain scalar such as 909 /// 64 bit loop indices. 910 unsigned getWidestType(); 911 912 /// \return The most profitable unroll factor. 913 /// If UserUF is non-zero then this method finds the best unroll-factor 914 /// based on register pressure and other parameters. 915 /// VF and LoopCost are the selected vectorization factor and the cost of the 916 /// selected VF. 917 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 918 919 /// \brief A struct that represents some properties of the register usage 920 /// of a loop. 921 struct RegisterUsage { 922 /// Holds the number of loop invariant values that are used in the loop. 923 unsigned LoopInvariantRegs; 924 /// Holds the maximum number of concurrent live intervals in the loop. 925 unsigned MaxLocalUsers; 926 /// Holds the number of instructions in the loop. 927 unsigned NumInstructions; 928 }; 929 930 /// \return information about the register usage of the loop. 931 RegisterUsage calculateRegisterUsage(); 932 933 private: 934 /// Returns the expected execution cost. The unit of the cost does 935 /// not matter because we use the 'cost' units to compare different 936 /// vector widths. The cost that is returned is *not* normalized by 937 /// the factor width. 938 unsigned expectedCost(unsigned VF); 939 940 /// Returns the execution time cost of an instruction for a given vector 941 /// width. Vector width of one means scalar. 942 unsigned getInstructionCost(Instruction *I, unsigned VF); 943 944 /// A helper function for converting Scalar types to vector types. 945 /// If the incoming type is void, we return void. If the VF is 1, we return 946 /// the scalar type. 947 static Type* ToVectorTy(Type *Scalar, unsigned VF); 948 949 /// Returns whether the instruction is a load or store and will be a emitted 950 /// as a vector operation. 951 bool isConsecutiveLoadOrStore(Instruction *I); 952 953 /// Report an analysis message to assist the user in diagnosing loops that are 954 /// not vectorized. 955 void emitAnalysis(Report &Message) { 956 DebugLoc DL = TheLoop->getStartLoc(); 957 if (Instruction *I = Message.getInstr()) 958 DL = I->getDebugLoc(); 959 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 960 *TheFunction, DL, Message.str()); 961 } 962 963 /// Values used only by @llvm.assume calls. 964 SmallPtrSet<const Value *, 32> EphValues; 965 966 /// The loop that we evaluate. 967 Loop *TheLoop; 968 /// Scev analysis. 969 ScalarEvolution *SE; 970 /// Loop Info analysis. 971 LoopInfo *LI; 972 /// Vectorization legality. 973 LoopVectorizationLegality *Legal; 974 /// Vector target information. 975 const TargetTransformInfo &TTI; 976 /// Target data layout information. 977 const DataLayout *DL; 978 /// Target Library Info. 979 const TargetLibraryInfo *TLI; 980 const Function *TheFunction; 981 // Loop Vectorize Hint. 982 const LoopVectorizeHints *Hints; 983 }; 984 985 /// Utility class for getting and setting loop vectorizer hints in the form 986 /// of loop metadata. 987 /// This class keeps a number of loop annotations locally (as member variables) 988 /// and can, upon request, write them back as metadata on the loop. It will 989 /// initially scan the loop for existing metadata, and will update the local 990 /// values based on information in the loop. 991 /// We cannot write all values to metadata, as the mere presence of some info, 992 /// for example 'force', means a decision has been made. So, we need to be 993 /// careful NOT to add them if the user hasn't specifically asked so. 994 class LoopVectorizeHints { 995 enum HintKind { 996 HK_WIDTH, 997 HK_UNROLL, 998 HK_FORCE 999 }; 1000 1001 /// Hint - associates name and validation with the hint value. 1002 struct Hint { 1003 const char * Name; 1004 unsigned Value; // This may have to change for non-numeric values. 1005 HintKind Kind; 1006 1007 Hint(const char * Name, unsigned Value, HintKind Kind) 1008 : Name(Name), Value(Value), Kind(Kind) { } 1009 1010 bool validate(unsigned Val) { 1011 switch (Kind) { 1012 case HK_WIDTH: 1013 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1014 case HK_UNROLL: 1015 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1016 case HK_FORCE: 1017 return (Val <= 1); 1018 } 1019 return false; 1020 } 1021 }; 1022 1023 /// Vectorization width. 1024 Hint Width; 1025 /// Vectorization interleave factor. 1026 Hint Interleave; 1027 /// Vectorization forced 1028 Hint Force; 1029 /// Array to help iterating through all hints. 1030 Hint *Hints[3]; // avoiding initialisation due to MSVC2012 1031 1032 /// Return the loop metadata prefix. 1033 static StringRef Prefix() { return "llvm.loop."; } 1034 1035 public: 1036 enum ForceKind { 1037 FK_Undefined = -1, ///< Not selected. 1038 FK_Disabled = 0, ///< Forcing disabled. 1039 FK_Enabled = 1, ///< Forcing enabled. 1040 }; 1041 1042 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1043 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1044 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1045 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1046 TheLoop(L) { 1047 // FIXME: Move this up initialisation when MSVC requirement is 2013+ 1048 Hints[0] = &Width; 1049 Hints[1] = &Interleave; 1050 Hints[2] = &Force; 1051 1052 // Populate values with existing loop metadata. 1053 getHintsFromMetadata(); 1054 1055 // force-vector-interleave overrides DisableInterleaving. 1056 if (VectorizationInterleave.getNumOccurrences() > 0) 1057 Interleave.Value = VectorizationInterleave; 1058 1059 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1060 << "LV: Interleaving disabled by the pass manager\n"); 1061 } 1062 1063 /// Mark the loop L as already vectorized by setting the width to 1. 1064 void setAlreadyVectorized() { 1065 Width.Value = Interleave.Value = 1; 1066 // FIXME: Change all lines below for this when we can use MSVC 2013+ 1067 //writeHintsToMetadata({ Width, Unroll }); 1068 std::vector<Hint> hints; 1069 hints.reserve(2); 1070 hints.emplace_back(Width); 1071 hints.emplace_back(Interleave); 1072 writeHintsToMetadata(std::move(hints)); 1073 } 1074 1075 /// Dumps all the hint information. 1076 std::string emitRemark() const { 1077 Report R; 1078 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1079 R << "vectorization is explicitly disabled"; 1080 else { 1081 R << "use -Rpass-analysis=loop-vectorize for more info"; 1082 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1083 R << " (Force=true"; 1084 if (Width.Value != 0) 1085 R << ", Vector Width=" << Width.Value; 1086 if (Interleave.Value != 0) 1087 R << ", Interleave Count=" << Interleave.Value; 1088 R << ")"; 1089 } 1090 } 1091 1092 return R.str(); 1093 } 1094 1095 unsigned getWidth() const { return Width.Value; } 1096 unsigned getInterleave() const { return Interleave.Value; } 1097 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1098 1099 private: 1100 /// Find hints specified in the loop metadata and update local values. 1101 void getHintsFromMetadata() { 1102 MDNode *LoopID = TheLoop->getLoopID(); 1103 if (!LoopID) 1104 return; 1105 1106 // First operand should refer to the loop id itself. 1107 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1108 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1109 1110 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1111 const MDString *S = nullptr; 1112 SmallVector<Value*, 4> Args; 1113 1114 // The expected hint is either a MDString or a MDNode with the first 1115 // operand a MDString. 1116 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1117 if (!MD || MD->getNumOperands() == 0) 1118 continue; 1119 S = dyn_cast<MDString>(MD->getOperand(0)); 1120 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1121 Args.push_back(MD->getOperand(i)); 1122 } else { 1123 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1124 assert(Args.size() == 0 && "too many arguments for MDString"); 1125 } 1126 1127 if (!S) 1128 continue; 1129 1130 // Check if the hint starts with the loop metadata prefix. 1131 StringRef Name = S->getString(); 1132 if (Args.size() == 1) 1133 setHint(Name, Args[0]); 1134 } 1135 } 1136 1137 /// Checks string hint with one operand and set value if valid. 1138 void setHint(StringRef Name, Value *Arg) { 1139 if (!Name.startswith(Prefix())) 1140 return; 1141 Name = Name.substr(Prefix().size(), StringRef::npos); 1142 1143 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 1144 if (!C) return; 1145 unsigned Val = C->getZExtValue(); 1146 1147 for (auto H : Hints) { 1148 if (Name == H->Name) { 1149 if (H->validate(Val)) 1150 H->Value = Val; 1151 else 1152 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1153 break; 1154 } 1155 } 1156 } 1157 1158 /// Create a new hint from name / value pair. 1159 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1160 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1161 SmallVector<Value*, 2> Vals; 1162 Vals.push_back(MDString::get(Context, Name)); 1163 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 1164 return MDNode::get(Context, Vals); 1165 } 1166 1167 /// Matches metadata with hint name. 1168 bool matchesHintMetadataName(MDNode *Node, std::vector<Hint> &HintTypes) { 1169 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1170 if (!Name) 1171 return false; 1172 1173 for (auto H : HintTypes) 1174 if (Name->getName().endswith(H.Name)) 1175 return true; 1176 return false; 1177 } 1178 1179 /// Sets current hints into loop metadata, keeping other values intact. 1180 void writeHintsToMetadata(std::vector<Hint> HintTypes) { 1181 if (HintTypes.size() == 0) 1182 return; 1183 1184 // Reserve the first element to LoopID (see below). 1185 SmallVector<Value*, 4> Vals(1); 1186 // If the loop already has metadata, then ignore the existing operands. 1187 MDNode *LoopID = TheLoop->getLoopID(); 1188 if (LoopID) { 1189 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1190 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1191 // If node in update list, ignore old value. 1192 if (!matchesHintMetadataName(Node, HintTypes)) 1193 Vals.push_back(Node); 1194 } 1195 } 1196 1197 // Now, add the missing hints. 1198 for (auto H : HintTypes) 1199 Vals.push_back( 1200 createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1201 1202 // Replace current metadata node with new one. 1203 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1204 MDNode *NewLoopID = MDNode::get(Context, Vals); 1205 // Set operand 0 to refer to the loop id itself. 1206 NewLoopID->replaceOperandWith(0, NewLoopID); 1207 1208 TheLoop->setLoopID(NewLoopID); 1209 if (LoopID) 1210 LoopID->replaceAllUsesWith(NewLoopID); 1211 LoopID = NewLoopID; 1212 } 1213 1214 /// The loop these hints belong to. 1215 const Loop *TheLoop; 1216 }; 1217 1218 static void emitMissedWarning(Function *F, Loop *L, 1219 const LoopVectorizeHints &LH) { 1220 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1221 L->getStartLoc(), LH.emitRemark()); 1222 1223 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1224 if (LH.getWidth() != 1) 1225 emitLoopVectorizeWarning( 1226 F->getContext(), *F, L->getStartLoc(), 1227 "failed explicitly specified loop vectorization"); 1228 else if (LH.getInterleave() != 1) 1229 emitLoopInterleaveWarning( 1230 F->getContext(), *F, L->getStartLoc(), 1231 "failed explicitly specified loop interleaving"); 1232 } 1233 } 1234 1235 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1236 if (L.empty()) 1237 return V.push_back(&L); 1238 1239 for (Loop *InnerL : L) 1240 addInnerLoop(*InnerL, V); 1241 } 1242 1243 /// The LoopVectorize Pass. 1244 struct LoopVectorize : public FunctionPass { 1245 /// Pass identification, replacement for typeid 1246 static char ID; 1247 1248 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1249 : FunctionPass(ID), 1250 DisableUnrolling(NoUnrolling), 1251 AlwaysVectorize(AlwaysVectorize) { 1252 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1253 } 1254 1255 ScalarEvolution *SE; 1256 const DataLayout *DL; 1257 LoopInfo *LI; 1258 TargetTransformInfo *TTI; 1259 DominatorTree *DT; 1260 BlockFrequencyInfo *BFI; 1261 TargetLibraryInfo *TLI; 1262 AliasAnalysis *AA; 1263 AssumptionTracker *AT; 1264 bool DisableUnrolling; 1265 bool AlwaysVectorize; 1266 1267 BlockFrequency ColdEntryFreq; 1268 1269 bool runOnFunction(Function &F) override { 1270 SE = &getAnalysis<ScalarEvolution>(); 1271 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1272 DL = DLP ? &DLP->getDataLayout() : nullptr; 1273 LI = &getAnalysis<LoopInfo>(); 1274 TTI = &getAnalysis<TargetTransformInfo>(); 1275 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1276 BFI = &getAnalysis<BlockFrequencyInfo>(); 1277 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1278 AA = &getAnalysis<AliasAnalysis>(); 1279 AT = &getAnalysis<AssumptionTracker>(); 1280 1281 // Compute some weights outside of the loop over the loops. Compute this 1282 // using a BranchProbability to re-use its scaling math. 1283 const BranchProbability ColdProb(1, 5); // 20% 1284 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1285 1286 // If the target claims to have no vector registers don't attempt 1287 // vectorization. 1288 if (!TTI->getNumberOfRegisters(true)) 1289 return false; 1290 1291 if (!DL) { 1292 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1293 << ": Missing data layout\n"); 1294 return false; 1295 } 1296 1297 // Build up a worklist of inner-loops to vectorize. This is necessary as 1298 // the act of vectorizing or partially unrolling a loop creates new loops 1299 // and can invalidate iterators across the loops. 1300 SmallVector<Loop *, 8> Worklist; 1301 1302 for (Loop *L : *LI) 1303 addInnerLoop(*L, Worklist); 1304 1305 LoopsAnalyzed += Worklist.size(); 1306 1307 // Now walk the identified inner loops. 1308 bool Changed = false; 1309 while (!Worklist.empty()) 1310 Changed |= processLoop(Worklist.pop_back_val()); 1311 1312 // Process each loop nest in the function. 1313 return Changed; 1314 } 1315 1316 bool processLoop(Loop *L) { 1317 assert(L->empty() && "Only process inner loops."); 1318 1319 #ifndef NDEBUG 1320 const std::string DebugLocStr = getDebugLocString(L); 1321 #endif /* NDEBUG */ 1322 1323 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1324 << L->getHeader()->getParent()->getName() << "\" from " 1325 << DebugLocStr << "\n"); 1326 1327 LoopVectorizeHints Hints(L, DisableUnrolling); 1328 1329 DEBUG(dbgs() << "LV: Loop hints:" 1330 << " force=" 1331 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1332 ? "disabled" 1333 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1334 ? "enabled" 1335 : "?")) << " width=" << Hints.getWidth() 1336 << " unroll=" << Hints.getInterleave() << "\n"); 1337 1338 // Function containing loop 1339 Function *F = L->getHeader()->getParent(); 1340 1341 // Looking at the diagnostic output is the only way to determine if a loop 1342 // was vectorized (other than looking at the IR or machine code), so it 1343 // is important to generate an optimization remark for each loop. Most of 1344 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1345 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1346 // less verbose reporting vectorized loops and unvectorized loops that may 1347 // benefit from vectorization, respectively. 1348 1349 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1350 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1351 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1352 L->getStartLoc(), Hints.emitRemark()); 1353 return false; 1354 } 1355 1356 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1357 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1358 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1359 L->getStartLoc(), Hints.emitRemark()); 1360 return false; 1361 } 1362 1363 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1364 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1365 emitOptimizationRemarkAnalysis( 1366 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1367 "loop not vectorized: vector width and interleave count are " 1368 "explicitly set to 1"); 1369 return false; 1370 } 1371 1372 // Check the loop for a trip count threshold: 1373 // do not vectorize loops with a tiny trip count. 1374 const unsigned TC = SE->getSmallConstantTripCount(L); 1375 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1376 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1377 << "This loop is not worth vectorizing."); 1378 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1379 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1380 else { 1381 DEBUG(dbgs() << "\n"); 1382 emitOptimizationRemarkAnalysis( 1383 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1384 "vectorization is not beneficial and is not explicitly forced"); 1385 return false; 1386 } 1387 } 1388 1389 // Check if it is legal to vectorize the loop. 1390 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F); 1391 if (!LVL.canVectorize()) { 1392 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1393 emitMissedWarning(F, L, Hints); 1394 return false; 1395 } 1396 1397 // Use the cost model. 1398 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AT, F, 1399 &Hints); 1400 1401 // Check the function attributes to find out if this function should be 1402 // optimized for size. 1403 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1404 F->hasFnAttribute(Attribute::OptimizeForSize); 1405 1406 // Compute the weighted frequency of this loop being executed and see if it 1407 // is less than 20% of the function entry baseline frequency. Note that we 1408 // always have a canonical loop here because we think we *can* vectoriez. 1409 // FIXME: This is hidden behind a flag due to pervasive problems with 1410 // exactly what block frequency models. 1411 if (LoopVectorizeWithBlockFrequency) { 1412 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1413 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1414 LoopEntryFreq < ColdEntryFreq) 1415 OptForSize = true; 1416 } 1417 1418 // Check the function attributes to see if implicit floats are allowed.a 1419 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1420 // an integer loop and the vector instructions selected are purely integer 1421 // vector instructions? 1422 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1423 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1424 "attribute is used.\n"); 1425 emitOptimizationRemarkAnalysis( 1426 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1427 "loop not vectorized due to NoImplicitFloat attribute"); 1428 emitMissedWarning(F, L, Hints); 1429 return false; 1430 } 1431 1432 // Select the optimal vectorization factor. 1433 const LoopVectorizationCostModel::VectorizationFactor VF = 1434 CM.selectVectorizationFactor(OptForSize); 1435 1436 // Select the unroll factor. 1437 const unsigned UF = 1438 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1439 1440 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1441 << DebugLocStr << '\n'); 1442 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1443 1444 if (VF.Width == 1) { 1445 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1446 1447 if (UF == 1) { 1448 emitOptimizationRemarkAnalysis( 1449 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1450 "not beneficial to vectorize and user disabled interleaving"); 1451 return false; 1452 } 1453 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1454 1455 // Report the unrolling decision. 1456 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1457 Twine("unrolled with interleaving factor " + 1458 Twine(UF) + 1459 " (vectorization not beneficial)")); 1460 1461 // We decided not to vectorize, but we may want to unroll. 1462 1463 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1464 Unroller.vectorize(&LVL); 1465 } else { 1466 // If we decided that it is *legal* to vectorize the loop then do it. 1467 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1468 LB.vectorize(&LVL); 1469 ++LoopsVectorized; 1470 1471 // Report the vectorization decision. 1472 emitOptimizationRemark( 1473 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1474 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1475 ", unrolling interleave factor: " + Twine(UF) + ")"); 1476 } 1477 1478 // Mark the loop as already vectorized to avoid vectorizing again. 1479 Hints.setAlreadyVectorized(); 1480 1481 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1482 return true; 1483 } 1484 1485 void getAnalysisUsage(AnalysisUsage &AU) const override { 1486 AU.addRequired<AssumptionTracker>(); 1487 AU.addRequiredID(LoopSimplifyID); 1488 AU.addRequiredID(LCSSAID); 1489 AU.addRequired<BlockFrequencyInfo>(); 1490 AU.addRequired<DominatorTreeWrapperPass>(); 1491 AU.addRequired<LoopInfo>(); 1492 AU.addRequired<ScalarEvolution>(); 1493 AU.addRequired<TargetTransformInfo>(); 1494 AU.addRequired<AliasAnalysis>(); 1495 AU.addPreserved<LoopInfo>(); 1496 AU.addPreserved<DominatorTreeWrapperPass>(); 1497 AU.addPreserved<AliasAnalysis>(); 1498 } 1499 1500 }; 1501 1502 } // end anonymous namespace 1503 1504 //===----------------------------------------------------------------------===// 1505 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1506 // LoopVectorizationCostModel. 1507 //===----------------------------------------------------------------------===// 1508 1509 static Value *stripIntegerCast(Value *V) { 1510 if (CastInst *CI = dyn_cast<CastInst>(V)) 1511 if (CI->getOperand(0)->getType()->isIntegerTy()) 1512 return CI->getOperand(0); 1513 return V; 1514 } 1515 1516 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1517 /// 1518 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1519 /// \p Ptr. 1520 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1521 ValueToValueMap &PtrToStride, 1522 Value *Ptr, Value *OrigPtr = nullptr) { 1523 1524 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1525 1526 // If there is an entry in the map return the SCEV of the pointer with the 1527 // symbolic stride replaced by one. 1528 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1529 if (SI != PtrToStride.end()) { 1530 Value *StrideVal = SI->second; 1531 1532 // Strip casts. 1533 StrideVal = stripIntegerCast(StrideVal); 1534 1535 // Replace symbolic stride by one. 1536 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1537 ValueToValueMap RewriteMap; 1538 RewriteMap[StrideVal] = One; 1539 1540 const SCEV *ByOne = 1541 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1542 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1543 << "\n"); 1544 return ByOne; 1545 } 1546 1547 // Otherwise, just return the SCEV of the original pointer. 1548 return SE->getSCEV(Ptr); 1549 } 1550 1551 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1552 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1553 unsigned ASId, ValueToValueMap &Strides) { 1554 // Get the stride replaced scev. 1555 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1556 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1557 assert(AR && "Invalid addrec expression"); 1558 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1559 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1560 Pointers.push_back(Ptr); 1561 Starts.push_back(AR->getStart()); 1562 Ends.push_back(ScEnd); 1563 IsWritePtr.push_back(WritePtr); 1564 DependencySetId.push_back(DepSetId); 1565 AliasSetId.push_back(ASId); 1566 } 1567 1568 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1569 // We need to place the broadcast of invariant variables outside the loop. 1570 Instruction *Instr = dyn_cast<Instruction>(V); 1571 bool NewInstr = 1572 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1573 Instr->getParent()) != LoopVectorBody.end()); 1574 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1575 1576 // Place the code for broadcasting invariant variables in the new preheader. 1577 IRBuilder<>::InsertPointGuard Guard(Builder); 1578 if (Invariant) 1579 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1580 1581 // Broadcast the scalar into all locations in the vector. 1582 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1583 1584 return Shuf; 1585 } 1586 1587 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1588 bool Negate) { 1589 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1590 assert(Val->getType()->getScalarType()->isIntegerTy() && 1591 "Elem must be an integer"); 1592 // Create the types. 1593 Type *ITy = Val->getType()->getScalarType(); 1594 VectorType *Ty = cast<VectorType>(Val->getType()); 1595 int VLen = Ty->getNumElements(); 1596 SmallVector<Constant*, 8> Indices; 1597 1598 // Create a vector of consecutive numbers from zero to VF. 1599 for (int i = 0; i < VLen; ++i) { 1600 int64_t Idx = Negate ? (-i) : i; 1601 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1602 } 1603 1604 // Add the consecutive indices to the vector value. 1605 Constant *Cv = ConstantVector::get(Indices); 1606 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1607 return Builder.CreateAdd(Val, Cv, "induction"); 1608 } 1609 1610 /// \brief Find the operand of the GEP that should be checked for consecutive 1611 /// stores. This ignores trailing indices that have no effect on the final 1612 /// pointer. 1613 static unsigned getGEPInductionOperand(const DataLayout *DL, 1614 const GetElementPtrInst *Gep) { 1615 unsigned LastOperand = Gep->getNumOperands() - 1; 1616 unsigned GEPAllocSize = DL->getTypeAllocSize( 1617 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1618 1619 // Walk backwards and try to peel off zeros. 1620 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1621 // Find the type we're currently indexing into. 1622 gep_type_iterator GEPTI = gep_type_begin(Gep); 1623 std::advance(GEPTI, LastOperand - 1); 1624 1625 // If it's a type with the same allocation size as the result of the GEP we 1626 // can peel off the zero index. 1627 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1628 break; 1629 --LastOperand; 1630 } 1631 1632 return LastOperand; 1633 } 1634 1635 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1636 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1637 // Make sure that the pointer does not point to structs. 1638 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1639 return 0; 1640 1641 // If this value is a pointer induction variable we know it is consecutive. 1642 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1643 if (Phi && Inductions.count(Phi)) { 1644 InductionInfo II = Inductions[Phi]; 1645 if (IK_PtrInduction == II.IK) 1646 return 1; 1647 else if (IK_ReversePtrInduction == II.IK) 1648 return -1; 1649 } 1650 1651 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1652 if (!Gep) 1653 return 0; 1654 1655 unsigned NumOperands = Gep->getNumOperands(); 1656 Value *GpPtr = Gep->getPointerOperand(); 1657 // If this GEP value is a consecutive pointer induction variable and all of 1658 // the indices are constant then we know it is consecutive. We can 1659 Phi = dyn_cast<PHINode>(GpPtr); 1660 if (Phi && Inductions.count(Phi)) { 1661 1662 // Make sure that the pointer does not point to structs. 1663 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1664 if (GepPtrType->getElementType()->isAggregateType()) 1665 return 0; 1666 1667 // Make sure that all of the index operands are loop invariant. 1668 for (unsigned i = 1; i < NumOperands; ++i) 1669 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1670 return 0; 1671 1672 InductionInfo II = Inductions[Phi]; 1673 if (IK_PtrInduction == II.IK) 1674 return 1; 1675 else if (IK_ReversePtrInduction == II.IK) 1676 return -1; 1677 } 1678 1679 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1680 1681 // Check that all of the gep indices are uniform except for our induction 1682 // operand. 1683 for (unsigned i = 0; i != NumOperands; ++i) 1684 if (i != InductionOperand && 1685 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1686 return 0; 1687 1688 // We can emit wide load/stores only if the last non-zero index is the 1689 // induction variable. 1690 const SCEV *Last = nullptr; 1691 if (!Strides.count(Gep)) 1692 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1693 else { 1694 // Because of the multiplication by a stride we can have a s/zext cast. 1695 // We are going to replace this stride by 1 so the cast is safe to ignore. 1696 // 1697 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1698 // %0 = trunc i64 %indvars.iv to i32 1699 // %mul = mul i32 %0, %Stride1 1700 // %idxprom = zext i32 %mul to i64 << Safe cast. 1701 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1702 // 1703 Last = replaceSymbolicStrideSCEV(SE, Strides, 1704 Gep->getOperand(InductionOperand), Gep); 1705 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1706 Last = 1707 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1708 ? C->getOperand() 1709 : Last; 1710 } 1711 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1712 const SCEV *Step = AR->getStepRecurrence(*SE); 1713 1714 // The memory is consecutive because the last index is consecutive 1715 // and all other indices are loop invariant. 1716 if (Step->isOne()) 1717 return 1; 1718 if (Step->isAllOnesValue()) 1719 return -1; 1720 } 1721 1722 return 0; 1723 } 1724 1725 bool LoopVectorizationLegality::isUniform(Value *V) { 1726 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1727 } 1728 1729 InnerLoopVectorizer::VectorParts& 1730 InnerLoopVectorizer::getVectorValue(Value *V) { 1731 assert(V != Induction && "The new induction variable should not be used."); 1732 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1733 1734 // If we have a stride that is replaced by one, do it here. 1735 if (Legal->hasStride(V)) 1736 V = ConstantInt::get(V->getType(), 1); 1737 1738 // If we have this scalar in the map, return it. 1739 if (WidenMap.has(V)) 1740 return WidenMap.get(V); 1741 1742 // If this scalar is unknown, assume that it is a constant or that it is 1743 // loop invariant. Broadcast V and save the value for future uses. 1744 Value *B = getBroadcastInstrs(V); 1745 return WidenMap.splat(V, B); 1746 } 1747 1748 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1749 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1750 SmallVector<Constant*, 8> ShuffleMask; 1751 for (unsigned i = 0; i < VF; ++i) 1752 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1753 1754 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1755 ConstantVector::get(ShuffleMask), 1756 "reverse"); 1757 } 1758 1759 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1760 // Attempt to issue a wide load. 1761 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1762 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1763 1764 assert((LI || SI) && "Invalid Load/Store instruction"); 1765 1766 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1767 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1768 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1769 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1770 // An alignment of 0 means target abi alignment. We need to use the scalar's 1771 // target abi alignment in such a case. 1772 if (!Alignment) 1773 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1774 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1775 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1776 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1777 1778 if (SI && Legal->blockNeedsPredication(SI->getParent())) 1779 return scalarizeInstruction(Instr, true); 1780 1781 if (ScalarAllocatedSize != VectorElementSize) 1782 return scalarizeInstruction(Instr); 1783 1784 // If the pointer is loop invariant or if it is non-consecutive, 1785 // scalarize the load. 1786 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1787 bool Reverse = ConsecutiveStride < 0; 1788 bool UniformLoad = LI && Legal->isUniform(Ptr); 1789 if (!ConsecutiveStride || UniformLoad) 1790 return scalarizeInstruction(Instr); 1791 1792 Constant *Zero = Builder.getInt32(0); 1793 VectorParts &Entry = WidenMap.get(Instr); 1794 1795 // Handle consecutive loads/stores. 1796 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1797 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1798 setDebugLocFromInst(Builder, Gep); 1799 Value *PtrOperand = Gep->getPointerOperand(); 1800 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1801 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1802 1803 // Create the new GEP with the new induction variable. 1804 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1805 Gep2->setOperand(0, FirstBasePtr); 1806 Gep2->setName("gep.indvar.base"); 1807 Ptr = Builder.Insert(Gep2); 1808 } else if (Gep) { 1809 setDebugLocFromInst(Builder, Gep); 1810 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1811 OrigLoop) && "Base ptr must be invariant"); 1812 1813 // The last index does not have to be the induction. It can be 1814 // consecutive and be a function of the index. For example A[I+1]; 1815 unsigned NumOperands = Gep->getNumOperands(); 1816 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1817 // Create the new GEP with the new induction variable. 1818 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1819 1820 for (unsigned i = 0; i < NumOperands; ++i) { 1821 Value *GepOperand = Gep->getOperand(i); 1822 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1823 1824 // Update last index or loop invariant instruction anchored in loop. 1825 if (i == InductionOperand || 1826 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1827 assert((i == InductionOperand || 1828 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1829 "Must be last index or loop invariant"); 1830 1831 VectorParts &GEPParts = getVectorValue(GepOperand); 1832 Value *Index = GEPParts[0]; 1833 Index = Builder.CreateExtractElement(Index, Zero); 1834 Gep2->setOperand(i, Index); 1835 Gep2->setName("gep.indvar.idx"); 1836 } 1837 } 1838 Ptr = Builder.Insert(Gep2); 1839 } else { 1840 // Use the induction element ptr. 1841 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1842 setDebugLocFromInst(Builder, Ptr); 1843 VectorParts &PtrVal = getVectorValue(Ptr); 1844 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1845 } 1846 1847 // Handle Stores: 1848 if (SI) { 1849 assert(!Legal->isUniform(SI->getPointerOperand()) && 1850 "We do not allow storing to uniform addresses"); 1851 setDebugLocFromInst(Builder, SI); 1852 // We don't want to update the value in the map as it might be used in 1853 // another expression. So don't use a reference type for "StoredVal". 1854 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1855 1856 for (unsigned Part = 0; Part < UF; ++Part) { 1857 // Calculate the pointer for the specific unroll-part. 1858 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1859 1860 if (Reverse) { 1861 // If we store to reverse consecutive memory locations then we need 1862 // to reverse the order of elements in the stored value. 1863 StoredVal[Part] = reverseVector(StoredVal[Part]); 1864 // If the address is consecutive but reversed, then the 1865 // wide store needs to start at the last vector element. 1866 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1867 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1868 } 1869 1870 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1871 DataTy->getPointerTo(AddressSpace)); 1872 StoreInst *NewSI = 1873 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1874 propagateMetadata(NewSI, SI); 1875 } 1876 return; 1877 } 1878 1879 // Handle loads. 1880 assert(LI && "Must have a load instruction"); 1881 setDebugLocFromInst(Builder, LI); 1882 for (unsigned Part = 0; Part < UF; ++Part) { 1883 // Calculate the pointer for the specific unroll-part. 1884 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1885 1886 if (Reverse) { 1887 // If the address is consecutive but reversed, then the 1888 // wide store needs to start at the last vector element. 1889 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1890 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1891 } 1892 1893 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1894 DataTy->getPointerTo(AddressSpace)); 1895 LoadInst *NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1896 propagateMetadata(NewLI, LI); 1897 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1898 } 1899 } 1900 1901 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1902 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1903 // Holds vector parameters or scalars, in case of uniform vals. 1904 SmallVector<VectorParts, 4> Params; 1905 1906 setDebugLocFromInst(Builder, Instr); 1907 1908 // Find all of the vectorized parameters. 1909 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1910 Value *SrcOp = Instr->getOperand(op); 1911 1912 // If we are accessing the old induction variable, use the new one. 1913 if (SrcOp == OldInduction) { 1914 Params.push_back(getVectorValue(SrcOp)); 1915 continue; 1916 } 1917 1918 // Try using previously calculated values. 1919 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1920 1921 // If the src is an instruction that appeared earlier in the basic block 1922 // then it should already be vectorized. 1923 if (SrcInst && OrigLoop->contains(SrcInst)) { 1924 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1925 // The parameter is a vector value from earlier. 1926 Params.push_back(WidenMap.get(SrcInst)); 1927 } else { 1928 // The parameter is a scalar from outside the loop. Maybe even a constant. 1929 VectorParts Scalars; 1930 Scalars.append(UF, SrcOp); 1931 Params.push_back(Scalars); 1932 } 1933 } 1934 1935 assert(Params.size() == Instr->getNumOperands() && 1936 "Invalid number of operands"); 1937 1938 // Does this instruction return a value ? 1939 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1940 1941 Value *UndefVec = IsVoidRetTy ? nullptr : 1942 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1943 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1944 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1945 1946 Instruction *InsertPt = Builder.GetInsertPoint(); 1947 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1948 BasicBlock *CondBlock = nullptr; 1949 1950 VectorParts Cond; 1951 Loop *VectorLp = nullptr; 1952 if (IfPredicateStore) { 1953 assert(Instr->getParent()->getSinglePredecessor() && 1954 "Only support single predecessor blocks"); 1955 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1956 Instr->getParent()); 1957 VectorLp = LI->getLoopFor(IfBlock); 1958 assert(VectorLp && "Must have a loop for this block"); 1959 } 1960 1961 // For each vector unroll 'part': 1962 for (unsigned Part = 0; Part < UF; ++Part) { 1963 // For each scalar that we create: 1964 for (unsigned Width = 0; Width < VF; ++Width) { 1965 1966 // Start if-block. 1967 Value *Cmp = nullptr; 1968 if (IfPredicateStore) { 1969 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1970 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1971 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1972 LoopVectorBody.push_back(CondBlock); 1973 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1974 // Update Builder with newly created basic block. 1975 Builder.SetInsertPoint(InsertPt); 1976 } 1977 1978 Instruction *Cloned = Instr->clone(); 1979 if (!IsVoidRetTy) 1980 Cloned->setName(Instr->getName() + ".cloned"); 1981 // Replace the operands of the cloned instructions with extracted scalars. 1982 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1983 Value *Op = Params[op][Part]; 1984 // Param is a vector. Need to extract the right lane. 1985 if (Op->getType()->isVectorTy()) 1986 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1987 Cloned->setOperand(op, Op); 1988 } 1989 1990 // Place the cloned scalar in the new loop. 1991 Builder.Insert(Cloned); 1992 1993 // If the original scalar returns a value we need to place it in a vector 1994 // so that future users will be able to use it. 1995 if (!IsVoidRetTy) 1996 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1997 Builder.getInt32(Width)); 1998 // End if-block. 1999 if (IfPredicateStore) { 2000 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2001 LoopVectorBody.push_back(NewIfBlock); 2002 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 2003 Builder.SetInsertPoint(InsertPt); 2004 Instruction *OldBr = IfBlock->getTerminator(); 2005 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2006 OldBr->eraseFromParent(); 2007 IfBlock = NewIfBlock; 2008 } 2009 } 2010 } 2011 } 2012 2013 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2014 Instruction *Loc) { 2015 if (FirstInst) 2016 return FirstInst; 2017 if (Instruction *I = dyn_cast<Instruction>(V)) 2018 return I->getParent() == Loc->getParent() ? I : nullptr; 2019 return nullptr; 2020 } 2021 2022 std::pair<Instruction *, Instruction *> 2023 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2024 Instruction *tnullptr = nullptr; 2025 if (!Legal->mustCheckStrides()) 2026 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2027 2028 IRBuilder<> ChkBuilder(Loc); 2029 2030 // Emit checks. 2031 Value *Check = nullptr; 2032 Instruction *FirstInst = nullptr; 2033 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2034 SE = Legal->strides_end(); 2035 SI != SE; ++SI) { 2036 Value *Ptr = stripIntegerCast(*SI); 2037 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2038 "stride.chk"); 2039 // Store the first instruction we create. 2040 FirstInst = getFirstInst(FirstInst, C, Loc); 2041 if (Check) 2042 Check = ChkBuilder.CreateOr(Check, C); 2043 else 2044 Check = C; 2045 } 2046 2047 // We have to do this trickery because the IRBuilder might fold the check to a 2048 // constant expression in which case there is no Instruction anchored in a 2049 // the block. 2050 LLVMContext &Ctx = Loc->getContext(); 2051 Instruction *TheCheck = 2052 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2053 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2054 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2055 2056 return std::make_pair(FirstInst, TheCheck); 2057 } 2058 2059 std::pair<Instruction *, Instruction *> 2060 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2061 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2062 Legal->getRuntimePointerCheck(); 2063 2064 Instruction *tnullptr = nullptr; 2065 if (!PtrRtCheck->Need) 2066 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2067 2068 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2069 SmallVector<TrackingVH<Value> , 2> Starts; 2070 SmallVector<TrackingVH<Value> , 2> Ends; 2071 2072 LLVMContext &Ctx = Loc->getContext(); 2073 SCEVExpander Exp(*SE, "induction"); 2074 Instruction *FirstInst = nullptr; 2075 2076 for (unsigned i = 0; i < NumPointers; ++i) { 2077 Value *Ptr = PtrRtCheck->Pointers[i]; 2078 const SCEV *Sc = SE->getSCEV(Ptr); 2079 2080 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2081 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2082 *Ptr <<"\n"); 2083 Starts.push_back(Ptr); 2084 Ends.push_back(Ptr); 2085 } else { 2086 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2087 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2088 2089 // Use this type for pointer arithmetic. 2090 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2091 2092 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2093 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2094 Starts.push_back(Start); 2095 Ends.push_back(End); 2096 } 2097 } 2098 2099 IRBuilder<> ChkBuilder(Loc); 2100 // Our instructions might fold to a constant. 2101 Value *MemoryRuntimeCheck = nullptr; 2102 for (unsigned i = 0; i < NumPointers; ++i) { 2103 for (unsigned j = i+1; j < NumPointers; ++j) { 2104 // No need to check if two readonly pointers intersect. 2105 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2106 continue; 2107 2108 // Only need to check pointers between two different dependency sets. 2109 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2110 continue; 2111 // Only need to check pointers in the same alias set. 2112 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2113 continue; 2114 2115 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2116 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2117 2118 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2119 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2120 "Trying to bounds check pointers with different address spaces"); 2121 2122 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2123 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2124 2125 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2126 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2127 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2128 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2129 2130 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2131 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2132 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2133 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2134 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2135 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2136 if (MemoryRuntimeCheck) { 2137 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2138 "conflict.rdx"); 2139 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2140 } 2141 MemoryRuntimeCheck = IsConflict; 2142 } 2143 } 2144 2145 // We have to do this trickery because the IRBuilder might fold the check to a 2146 // constant expression in which case there is no Instruction anchored in a 2147 // the block. 2148 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2149 ConstantInt::getTrue(Ctx)); 2150 ChkBuilder.Insert(Check, "memcheck.conflict"); 2151 FirstInst = getFirstInst(FirstInst, Check, Loc); 2152 return std::make_pair(FirstInst, Check); 2153 } 2154 2155 void InnerLoopVectorizer::createEmptyLoop() { 2156 /* 2157 In this function we generate a new loop. The new loop will contain 2158 the vectorized instructions while the old loop will continue to run the 2159 scalar remainder. 2160 2161 [ ] <-- Back-edge taken count overflow check. 2162 / | 2163 / v 2164 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2165 | / | 2166 | / v 2167 || [ ] <-- vector pre header. 2168 || | 2169 || v 2170 || [ ] \ 2171 || [ ]_| <-- vector loop. 2172 || | 2173 | \ v 2174 | >[ ] <--- middle-block. 2175 | / | 2176 | / v 2177 -|- >[ ] <--- new preheader. 2178 | | 2179 | v 2180 | [ ] \ 2181 | [ ]_| <-- old scalar loop to handle remainder. 2182 \ | 2183 \ v 2184 >[ ] <-- exit block. 2185 ... 2186 */ 2187 2188 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2189 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2190 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2191 assert(BypassBlock && "Invalid loop structure"); 2192 assert(ExitBlock && "Must have an exit block"); 2193 2194 // Some loops have a single integer induction variable, while other loops 2195 // don't. One example is c++ iterators that often have multiple pointer 2196 // induction variables. In the code below we also support a case where we 2197 // don't have a single induction variable. 2198 OldInduction = Legal->getInduction(); 2199 Type *IdxTy = Legal->getWidestInductionType(); 2200 2201 // Find the loop boundaries. 2202 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2203 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2204 2205 // The exit count might have the type of i64 while the phi is i32. This can 2206 // happen if we have an induction variable that is sign extended before the 2207 // compare. The only way that we get a backedge taken count is that the 2208 // induction variable was signed and as such will not overflow. In such a case 2209 // truncation is legal. 2210 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2211 IdxTy->getPrimitiveSizeInBits()) 2212 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2213 2214 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2215 // Get the total trip count from the count by adding 1. 2216 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2217 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2218 2219 // Expand the trip count and place the new instructions in the preheader. 2220 // Notice that the pre-header does not change, only the loop body. 2221 SCEVExpander Exp(*SE, "induction"); 2222 2223 // We need to test whether the backedge-taken count is uint##_max. Adding one 2224 // to it will cause overflow and an incorrect loop trip count in the vector 2225 // body. In case of overflow we want to directly jump to the scalar remainder 2226 // loop. 2227 Value *BackedgeCount = 2228 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2229 BypassBlock->getTerminator()); 2230 if (BackedgeCount->getType()->isPointerTy()) 2231 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2232 "backedge.ptrcnt.to.int", 2233 BypassBlock->getTerminator()); 2234 Instruction *CheckBCOverflow = 2235 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2236 Constant::getAllOnesValue(BackedgeCount->getType()), 2237 "backedge.overflow", BypassBlock->getTerminator()); 2238 2239 // The loop index does not have to start at Zero. Find the original start 2240 // value from the induction PHI node. If we don't have an induction variable 2241 // then we know that it starts at zero. 2242 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2243 Value *StartIdx = ExtendedIdx = OldInduction ? 2244 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2245 IdxTy): 2246 ConstantInt::get(IdxTy, 0); 2247 2248 // We need an instruction to anchor the overflow check on. StartIdx needs to 2249 // be defined before the overflow check branch. Because the scalar preheader 2250 // is going to merge the start index and so the overflow branch block needs to 2251 // contain a definition of the start index. 2252 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2253 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2254 BypassBlock->getTerminator()); 2255 2256 // Count holds the overall loop count (N). 2257 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2258 BypassBlock->getTerminator()); 2259 2260 LoopBypassBlocks.push_back(BypassBlock); 2261 2262 // Split the single block loop into the two loop structure described above. 2263 BasicBlock *VectorPH = 2264 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2265 BasicBlock *VecBody = 2266 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2267 BasicBlock *MiddleBlock = 2268 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2269 BasicBlock *ScalarPH = 2270 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2271 2272 // Create and register the new vector loop. 2273 Loop* Lp = new Loop(); 2274 Loop *ParentLoop = OrigLoop->getParentLoop(); 2275 2276 // Insert the new loop into the loop nest and register the new basic blocks 2277 // before calling any utilities such as SCEV that require valid LoopInfo. 2278 if (ParentLoop) { 2279 ParentLoop->addChildLoop(Lp); 2280 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2281 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2282 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2283 } else { 2284 LI->addTopLevelLoop(Lp); 2285 } 2286 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2287 2288 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2289 // inside the loop. 2290 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2291 2292 // Generate the induction variable. 2293 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2294 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2295 // The loop step is equal to the vectorization factor (num of SIMD elements) 2296 // times the unroll factor (num of SIMD instructions). 2297 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2298 2299 // This is the IR builder that we use to add all of the logic for bypassing 2300 // the new vector loop. 2301 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2302 setDebugLocFromInst(BypassBuilder, 2303 getDebugLocFromInstOrOperands(OldInduction)); 2304 2305 // We may need to extend the index in case there is a type mismatch. 2306 // We know that the count starts at zero and does not overflow. 2307 if (Count->getType() != IdxTy) { 2308 // The exit count can be of pointer type. Convert it to the correct 2309 // integer type. 2310 if (ExitCount->getType()->isPointerTy()) 2311 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2312 else 2313 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2314 } 2315 2316 // Add the start index to the loop count to get the new end index. 2317 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2318 2319 // Now we need to generate the expression for N - (N % VF), which is 2320 // the part that the vectorized body will execute. 2321 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2322 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2323 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2324 "end.idx.rnd.down"); 2325 2326 // Now, compare the new count to zero. If it is zero skip the vector loop and 2327 // jump to the scalar loop. 2328 Value *Cmp = 2329 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2330 2331 BasicBlock *LastBypassBlock = BypassBlock; 2332 2333 // Generate code to check that the loops trip count that we computed by adding 2334 // one to the backedge-taken count will not overflow. 2335 { 2336 auto PastOverflowCheck = 2337 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2338 BasicBlock *CheckBlock = 2339 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2340 if (ParentLoop) 2341 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2342 LoopBypassBlocks.push_back(CheckBlock); 2343 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2344 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2345 OldTerm->eraseFromParent(); 2346 LastBypassBlock = CheckBlock; 2347 } 2348 2349 // Generate the code to check that the strides we assumed to be one are really 2350 // one. We want the new basic block to start at the first instruction in a 2351 // sequence of instructions that form a check. 2352 Instruction *StrideCheck; 2353 Instruction *FirstCheckInst; 2354 std::tie(FirstCheckInst, StrideCheck) = 2355 addStrideCheck(LastBypassBlock->getTerminator()); 2356 if (StrideCheck) { 2357 // Create a new block containing the stride check. 2358 BasicBlock *CheckBlock = 2359 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2360 if (ParentLoop) 2361 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2362 LoopBypassBlocks.push_back(CheckBlock); 2363 2364 // Replace the branch into the memory check block with a conditional branch 2365 // for the "few elements case". 2366 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2367 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2368 OldTerm->eraseFromParent(); 2369 2370 Cmp = StrideCheck; 2371 LastBypassBlock = CheckBlock; 2372 } 2373 2374 // Generate the code that checks in runtime if arrays overlap. We put the 2375 // checks into a separate block to make the more common case of few elements 2376 // faster. 2377 Instruction *MemRuntimeCheck; 2378 std::tie(FirstCheckInst, MemRuntimeCheck) = 2379 addRuntimeCheck(LastBypassBlock->getTerminator()); 2380 if (MemRuntimeCheck) { 2381 // Create a new block containing the memory check. 2382 BasicBlock *CheckBlock = 2383 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2384 if (ParentLoop) 2385 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2386 LoopBypassBlocks.push_back(CheckBlock); 2387 2388 // Replace the branch into the memory check block with a conditional branch 2389 // for the "few elements case". 2390 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2391 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2392 OldTerm->eraseFromParent(); 2393 2394 Cmp = MemRuntimeCheck; 2395 LastBypassBlock = CheckBlock; 2396 } 2397 2398 LastBypassBlock->getTerminator()->eraseFromParent(); 2399 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2400 LastBypassBlock); 2401 2402 // We are going to resume the execution of the scalar loop. 2403 // Go over all of the induction variables that we found and fix the 2404 // PHIs that are left in the scalar version of the loop. 2405 // The starting values of PHI nodes depend on the counter of the last 2406 // iteration in the vectorized loop. 2407 // If we come from a bypass edge then we need to start from the original 2408 // start value. 2409 2410 // This variable saves the new starting index for the scalar loop. 2411 PHINode *ResumeIndex = nullptr; 2412 LoopVectorizationLegality::InductionList::iterator I, E; 2413 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2414 // Set builder to point to last bypass block. 2415 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2416 for (I = List->begin(), E = List->end(); I != E; ++I) { 2417 PHINode *OrigPhi = I->first; 2418 LoopVectorizationLegality::InductionInfo II = I->second; 2419 2420 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2421 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2422 MiddleBlock->getTerminator()); 2423 // We might have extended the type of the induction variable but we need a 2424 // truncated version for the scalar loop. 2425 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2426 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2427 MiddleBlock->getTerminator()) : nullptr; 2428 2429 // Create phi nodes to merge from the backedge-taken check block. 2430 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2431 ScalarPH->getTerminator()); 2432 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2433 2434 PHINode *BCTruncResumeVal = nullptr; 2435 if (OrigPhi == OldInduction) { 2436 BCTruncResumeVal = 2437 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2438 ScalarPH->getTerminator()); 2439 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2440 } 2441 2442 Value *EndValue = nullptr; 2443 switch (II.IK) { 2444 case LoopVectorizationLegality::IK_NoInduction: 2445 llvm_unreachable("Unknown induction"); 2446 case LoopVectorizationLegality::IK_IntInduction: { 2447 // Handle the integer induction counter. 2448 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2449 2450 // We have the canonical induction variable. 2451 if (OrigPhi == OldInduction) { 2452 // Create a truncated version of the resume value for the scalar loop, 2453 // we might have promoted the type to a larger width. 2454 EndValue = 2455 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2456 // The new PHI merges the original incoming value, in case of a bypass, 2457 // or the value at the end of the vectorized loop. 2458 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2459 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2460 TruncResumeVal->addIncoming(EndValue, VecBody); 2461 2462 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2463 2464 // We know what the end value is. 2465 EndValue = IdxEndRoundDown; 2466 // We also know which PHI node holds it. 2467 ResumeIndex = ResumeVal; 2468 break; 2469 } 2470 2471 // Not the canonical induction variable - add the vector loop count to the 2472 // start value. 2473 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2474 II.StartValue->getType(), 2475 "cast.crd"); 2476 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2477 break; 2478 } 2479 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2480 // Convert the CountRoundDown variable to the PHI size. 2481 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2482 II.StartValue->getType(), 2483 "cast.crd"); 2484 // Handle reverse integer induction counter. 2485 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2486 break; 2487 } 2488 case LoopVectorizationLegality::IK_PtrInduction: { 2489 // For pointer induction variables, calculate the offset using 2490 // the end index. 2491 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2492 "ptr.ind.end"); 2493 break; 2494 } 2495 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2496 // The value at the end of the loop for the reverse pointer is calculated 2497 // by creating a GEP with a negative index starting from the start value. 2498 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2499 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2500 "rev.ind.end"); 2501 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2502 "rev.ptr.ind.end"); 2503 break; 2504 } 2505 }// end of case 2506 2507 // The new PHI merges the original incoming value, in case of a bypass, 2508 // or the value at the end of the vectorized loop. 2509 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2510 if (OrigPhi == OldInduction) 2511 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2512 else 2513 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2514 } 2515 ResumeVal->addIncoming(EndValue, VecBody); 2516 2517 // Fix the scalar body counter (PHI node). 2518 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2519 2520 // The old induction's phi node in the scalar body needs the truncated 2521 // value. 2522 if (OrigPhi == OldInduction) { 2523 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2524 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2525 } else { 2526 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2527 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2528 } 2529 } 2530 2531 // If we are generating a new induction variable then we also need to 2532 // generate the code that calculates the exit value. This value is not 2533 // simply the end of the counter because we may skip the vectorized body 2534 // in case of a runtime check. 2535 if (!OldInduction){ 2536 assert(!ResumeIndex && "Unexpected resume value found"); 2537 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2538 MiddleBlock->getTerminator()); 2539 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2540 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2541 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2542 } 2543 2544 // Make sure that we found the index where scalar loop needs to continue. 2545 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2546 "Invalid resume Index"); 2547 2548 // Add a check in the middle block to see if we have completed 2549 // all of the iterations in the first vector loop. 2550 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2551 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2552 ResumeIndex, "cmp.n", 2553 MiddleBlock->getTerminator()); 2554 2555 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2556 // Remove the old terminator. 2557 MiddleBlock->getTerminator()->eraseFromParent(); 2558 2559 // Create i+1 and fill the PHINode. 2560 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2561 Induction->addIncoming(StartIdx, VectorPH); 2562 Induction->addIncoming(NextIdx, VecBody); 2563 // Create the compare. 2564 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2565 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2566 2567 // Now we have two terminators. Remove the old one from the block. 2568 VecBody->getTerminator()->eraseFromParent(); 2569 2570 // Get ready to start creating new instructions into the vectorized body. 2571 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2572 2573 // Save the state. 2574 LoopVectorPreHeader = VectorPH; 2575 LoopScalarPreHeader = ScalarPH; 2576 LoopMiddleBlock = MiddleBlock; 2577 LoopExitBlock = ExitBlock; 2578 LoopVectorBody.push_back(VecBody); 2579 LoopScalarBody = OldBasicBlock; 2580 2581 LoopVectorizeHints Hints(Lp, true); 2582 Hints.setAlreadyVectorized(); 2583 } 2584 2585 /// This function returns the identity element (or neutral element) for 2586 /// the operation K. 2587 Constant* 2588 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2589 switch (K) { 2590 case RK_IntegerXor: 2591 case RK_IntegerAdd: 2592 case RK_IntegerOr: 2593 // Adding, Xoring, Oring zero to a number does not change it. 2594 return ConstantInt::get(Tp, 0); 2595 case RK_IntegerMult: 2596 // Multiplying a number by 1 does not change it. 2597 return ConstantInt::get(Tp, 1); 2598 case RK_IntegerAnd: 2599 // AND-ing a number with an all-1 value does not change it. 2600 return ConstantInt::get(Tp, -1, true); 2601 case RK_FloatMult: 2602 // Multiplying a number by 1 does not change it. 2603 return ConstantFP::get(Tp, 1.0L); 2604 case RK_FloatAdd: 2605 // Adding zero to a number does not change it. 2606 return ConstantFP::get(Tp, 0.0L); 2607 default: 2608 llvm_unreachable("Unknown reduction kind"); 2609 } 2610 } 2611 2612 /// This function translates the reduction kind to an LLVM binary operator. 2613 static unsigned 2614 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2615 switch (Kind) { 2616 case LoopVectorizationLegality::RK_IntegerAdd: 2617 return Instruction::Add; 2618 case LoopVectorizationLegality::RK_IntegerMult: 2619 return Instruction::Mul; 2620 case LoopVectorizationLegality::RK_IntegerOr: 2621 return Instruction::Or; 2622 case LoopVectorizationLegality::RK_IntegerAnd: 2623 return Instruction::And; 2624 case LoopVectorizationLegality::RK_IntegerXor: 2625 return Instruction::Xor; 2626 case LoopVectorizationLegality::RK_FloatMult: 2627 return Instruction::FMul; 2628 case LoopVectorizationLegality::RK_FloatAdd: 2629 return Instruction::FAdd; 2630 case LoopVectorizationLegality::RK_IntegerMinMax: 2631 return Instruction::ICmp; 2632 case LoopVectorizationLegality::RK_FloatMinMax: 2633 return Instruction::FCmp; 2634 default: 2635 llvm_unreachable("Unknown reduction operation"); 2636 } 2637 } 2638 2639 Value *createMinMaxOp(IRBuilder<> &Builder, 2640 LoopVectorizationLegality::MinMaxReductionKind RK, 2641 Value *Left, 2642 Value *Right) { 2643 CmpInst::Predicate P = CmpInst::ICMP_NE; 2644 switch (RK) { 2645 default: 2646 llvm_unreachable("Unknown min/max reduction kind"); 2647 case LoopVectorizationLegality::MRK_UIntMin: 2648 P = CmpInst::ICMP_ULT; 2649 break; 2650 case LoopVectorizationLegality::MRK_UIntMax: 2651 P = CmpInst::ICMP_UGT; 2652 break; 2653 case LoopVectorizationLegality::MRK_SIntMin: 2654 P = CmpInst::ICMP_SLT; 2655 break; 2656 case LoopVectorizationLegality::MRK_SIntMax: 2657 P = CmpInst::ICMP_SGT; 2658 break; 2659 case LoopVectorizationLegality::MRK_FloatMin: 2660 P = CmpInst::FCMP_OLT; 2661 break; 2662 case LoopVectorizationLegality::MRK_FloatMax: 2663 P = CmpInst::FCMP_OGT; 2664 break; 2665 } 2666 2667 Value *Cmp; 2668 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2669 RK == LoopVectorizationLegality::MRK_FloatMax) 2670 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2671 else 2672 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2673 2674 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2675 return Select; 2676 } 2677 2678 namespace { 2679 struct CSEDenseMapInfo { 2680 static bool canHandle(Instruction *I) { 2681 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2682 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2683 } 2684 static inline Instruction *getEmptyKey() { 2685 return DenseMapInfo<Instruction *>::getEmptyKey(); 2686 } 2687 static inline Instruction *getTombstoneKey() { 2688 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2689 } 2690 static unsigned getHashValue(Instruction *I) { 2691 assert(canHandle(I) && "Unknown instruction!"); 2692 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2693 I->value_op_end())); 2694 } 2695 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2696 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2697 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2698 return LHS == RHS; 2699 return LHS->isIdenticalTo(RHS); 2700 } 2701 }; 2702 } 2703 2704 /// \brief Check whether this block is a predicated block. 2705 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2706 /// = ...; " blocks. We start with one vectorized basic block. For every 2707 /// conditional block we split this vectorized block. Therefore, every second 2708 /// block will be a predicated one. 2709 static bool isPredicatedBlock(unsigned BlockNum) { 2710 return BlockNum % 2; 2711 } 2712 2713 ///\brief Perform cse of induction variable instructions. 2714 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2715 // Perform simple cse. 2716 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2717 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2718 BasicBlock *BB = BBs[i]; 2719 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2720 Instruction *In = I++; 2721 2722 if (!CSEDenseMapInfo::canHandle(In)) 2723 continue; 2724 2725 // Check if we can replace this instruction with any of the 2726 // visited instructions. 2727 if (Instruction *V = CSEMap.lookup(In)) { 2728 In->replaceAllUsesWith(V); 2729 In->eraseFromParent(); 2730 continue; 2731 } 2732 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2733 // ...;" blocks for predicated stores. Every second block is a predicated 2734 // block. 2735 if (isPredicatedBlock(i)) 2736 continue; 2737 2738 CSEMap[In] = In; 2739 } 2740 } 2741 } 2742 2743 /// \brief Adds a 'fast' flag to floating point operations. 2744 static Value *addFastMathFlag(Value *V) { 2745 if (isa<FPMathOperator>(V)){ 2746 FastMathFlags Flags; 2747 Flags.setUnsafeAlgebra(); 2748 cast<Instruction>(V)->setFastMathFlags(Flags); 2749 } 2750 return V; 2751 } 2752 2753 void InnerLoopVectorizer::vectorizeLoop() { 2754 //===------------------------------------------------===// 2755 // 2756 // Notice: any optimization or new instruction that go 2757 // into the code below should be also be implemented in 2758 // the cost-model. 2759 // 2760 //===------------------------------------------------===// 2761 Constant *Zero = Builder.getInt32(0); 2762 2763 // In order to support reduction variables we need to be able to vectorize 2764 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2765 // stages. First, we create a new vector PHI node with no incoming edges. 2766 // We use this value when we vectorize all of the instructions that use the 2767 // PHI. Next, after all of the instructions in the block are complete we 2768 // add the new incoming edges to the PHI. At this point all of the 2769 // instructions in the basic block are vectorized, so we can use them to 2770 // construct the PHI. 2771 PhiVector RdxPHIsToFix; 2772 2773 // Scan the loop in a topological order to ensure that defs are vectorized 2774 // before users. 2775 LoopBlocksDFS DFS(OrigLoop); 2776 DFS.perform(LI); 2777 2778 // Vectorize all of the blocks in the original loop. 2779 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2780 be = DFS.endRPO(); bb != be; ++bb) 2781 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2782 2783 // At this point every instruction in the original loop is widened to 2784 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2785 // that we vectorized. The PHI nodes are currently empty because we did 2786 // not want to introduce cycles. Notice that the remaining PHI nodes 2787 // that we need to fix are reduction variables. 2788 2789 // Create the 'reduced' values for each of the induction vars. 2790 // The reduced values are the vector values that we scalarize and combine 2791 // after the loop is finished. 2792 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2793 it != e; ++it) { 2794 PHINode *RdxPhi = *it; 2795 assert(RdxPhi && "Unable to recover vectorized PHI"); 2796 2797 // Find the reduction variable descriptor. 2798 assert(Legal->getReductionVars()->count(RdxPhi) && 2799 "Unable to find the reduction variable"); 2800 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2801 (*Legal->getReductionVars())[RdxPhi]; 2802 2803 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2804 2805 // We need to generate a reduction vector from the incoming scalar. 2806 // To do so, we need to generate the 'identity' vector and override 2807 // one of the elements with the incoming scalar reduction. We need 2808 // to do it in the vector-loop preheader. 2809 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2810 2811 // This is the vector-clone of the value that leaves the loop. 2812 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2813 Type *VecTy = VectorExit[0]->getType(); 2814 2815 // Find the reduction identity variable. Zero for addition, or, xor, 2816 // one for multiplication, -1 for And. 2817 Value *Identity; 2818 Value *VectorStart; 2819 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2820 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2821 // MinMax reduction have the start value as their identify. 2822 if (VF == 1) { 2823 VectorStart = Identity = RdxDesc.StartValue; 2824 } else { 2825 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2826 RdxDesc.StartValue, 2827 "minmax.ident"); 2828 } 2829 } else { 2830 // Handle other reduction kinds: 2831 Constant *Iden = 2832 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2833 VecTy->getScalarType()); 2834 if (VF == 1) { 2835 Identity = Iden; 2836 // This vector is the Identity vector where the first element is the 2837 // incoming scalar reduction. 2838 VectorStart = RdxDesc.StartValue; 2839 } else { 2840 Identity = ConstantVector::getSplat(VF, Iden); 2841 2842 // This vector is the Identity vector where the first element is the 2843 // incoming scalar reduction. 2844 VectorStart = Builder.CreateInsertElement(Identity, 2845 RdxDesc.StartValue, Zero); 2846 } 2847 } 2848 2849 // Fix the vector-loop phi. 2850 // We created the induction variable so we know that the 2851 // preheader is the first entry. 2852 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2853 2854 // Reductions do not have to start at zero. They can start with 2855 // any loop invariant values. 2856 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2857 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2858 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2859 VectorParts &Val = getVectorValue(LoopVal); 2860 for (unsigned part = 0; part < UF; ++part) { 2861 // Make sure to add the reduction stat value only to the 2862 // first unroll part. 2863 Value *StartVal = (part == 0) ? VectorStart : Identity; 2864 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2865 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2866 LoopVectorBody.back()); 2867 } 2868 2869 // Before each round, move the insertion point right between 2870 // the PHIs and the values we are going to write. 2871 // This allows us to write both PHINodes and the extractelement 2872 // instructions. 2873 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2874 2875 VectorParts RdxParts; 2876 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2877 for (unsigned part = 0; part < UF; ++part) { 2878 // This PHINode contains the vectorized reduction variable, or 2879 // the initial value vector, if we bypass the vector loop. 2880 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2881 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2882 Value *StartVal = (part == 0) ? VectorStart : Identity; 2883 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2884 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2885 NewPhi->addIncoming(RdxExitVal[part], 2886 LoopVectorBody.back()); 2887 RdxParts.push_back(NewPhi); 2888 } 2889 2890 // Reduce all of the unrolled parts into a single vector. 2891 Value *ReducedPartRdx = RdxParts[0]; 2892 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2893 setDebugLocFromInst(Builder, ReducedPartRdx); 2894 for (unsigned part = 1; part < UF; ++part) { 2895 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2896 // Floating point operations had to be 'fast' to enable the reduction. 2897 ReducedPartRdx = addFastMathFlag( 2898 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2899 ReducedPartRdx, "bin.rdx")); 2900 else 2901 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2902 ReducedPartRdx, RdxParts[part]); 2903 } 2904 2905 if (VF > 1) { 2906 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2907 // and vector ops, reducing the set of values being computed by half each 2908 // round. 2909 assert(isPowerOf2_32(VF) && 2910 "Reduction emission only supported for pow2 vectors!"); 2911 Value *TmpVec = ReducedPartRdx; 2912 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2913 for (unsigned i = VF; i != 1; i >>= 1) { 2914 // Move the upper half of the vector to the lower half. 2915 for (unsigned j = 0; j != i/2; ++j) 2916 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2917 2918 // Fill the rest of the mask with undef. 2919 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2920 UndefValue::get(Builder.getInt32Ty())); 2921 2922 Value *Shuf = 2923 Builder.CreateShuffleVector(TmpVec, 2924 UndefValue::get(TmpVec->getType()), 2925 ConstantVector::get(ShuffleMask), 2926 "rdx.shuf"); 2927 2928 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2929 // Floating point operations had to be 'fast' to enable the reduction. 2930 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2931 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2932 else 2933 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2934 } 2935 2936 // The result is in the first element of the vector. 2937 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2938 Builder.getInt32(0)); 2939 } 2940 2941 // Create a phi node that merges control-flow from the backedge-taken check 2942 // block and the middle block. 2943 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2944 LoopScalarPreHeader->getTerminator()); 2945 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2946 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2947 2948 // Now, we need to fix the users of the reduction variable 2949 // inside and outside of the scalar remainder loop. 2950 // We know that the loop is in LCSSA form. We need to update the 2951 // PHI nodes in the exit blocks. 2952 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2953 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2954 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2955 if (!LCSSAPhi) break; 2956 2957 // All PHINodes need to have a single entry edge, or two if 2958 // we already fixed them. 2959 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2960 2961 // We found our reduction value exit-PHI. Update it with the 2962 // incoming bypass edge. 2963 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2964 // Add an edge coming from the bypass. 2965 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2966 break; 2967 } 2968 }// end of the LCSSA phi scan. 2969 2970 // Fix the scalar loop reduction variable with the incoming reduction sum 2971 // from the vector body and from the backedge value. 2972 int IncomingEdgeBlockIdx = 2973 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2974 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2975 // Pick the other block. 2976 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2977 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2978 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2979 }// end of for each redux variable. 2980 2981 fixLCSSAPHIs(); 2982 2983 // Remove redundant induction instructions. 2984 cse(LoopVectorBody); 2985 } 2986 2987 void InnerLoopVectorizer::fixLCSSAPHIs() { 2988 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2989 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2990 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2991 if (!LCSSAPhi) break; 2992 if (LCSSAPhi->getNumIncomingValues() == 1) 2993 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2994 LoopMiddleBlock); 2995 } 2996 } 2997 2998 InnerLoopVectorizer::VectorParts 2999 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3000 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3001 "Invalid edge"); 3002 3003 // Look for cached value. 3004 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3005 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3006 if (ECEntryIt != MaskCache.end()) 3007 return ECEntryIt->second; 3008 3009 VectorParts SrcMask = createBlockInMask(Src); 3010 3011 // The terminator has to be a branch inst! 3012 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3013 assert(BI && "Unexpected terminator found"); 3014 3015 if (BI->isConditional()) { 3016 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3017 3018 if (BI->getSuccessor(0) != Dst) 3019 for (unsigned part = 0; part < UF; ++part) 3020 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3021 3022 for (unsigned part = 0; part < UF; ++part) 3023 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3024 3025 MaskCache[Edge] = EdgeMask; 3026 return EdgeMask; 3027 } 3028 3029 MaskCache[Edge] = SrcMask; 3030 return SrcMask; 3031 } 3032 3033 InnerLoopVectorizer::VectorParts 3034 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3035 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3036 3037 // Loop incoming mask is all-one. 3038 if (OrigLoop->getHeader() == BB) { 3039 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3040 return getVectorValue(C); 3041 } 3042 3043 // This is the block mask. We OR all incoming edges, and with zero. 3044 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3045 VectorParts BlockMask = getVectorValue(Zero); 3046 3047 // For each pred: 3048 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3049 VectorParts EM = createEdgeMask(*it, BB); 3050 for (unsigned part = 0; part < UF; ++part) 3051 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3052 } 3053 3054 return BlockMask; 3055 } 3056 3057 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3058 InnerLoopVectorizer::VectorParts &Entry, 3059 unsigned UF, unsigned VF, PhiVector *PV) { 3060 PHINode* P = cast<PHINode>(PN); 3061 // Handle reduction variables: 3062 if (Legal->getReductionVars()->count(P)) { 3063 for (unsigned part = 0; part < UF; ++part) { 3064 // This is phase one of vectorizing PHIs. 3065 Type *VecTy = (VF == 1) ? PN->getType() : 3066 VectorType::get(PN->getType(), VF); 3067 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3068 LoopVectorBody.back()-> getFirstInsertionPt()); 3069 } 3070 PV->push_back(P); 3071 return; 3072 } 3073 3074 setDebugLocFromInst(Builder, P); 3075 // Check for PHI nodes that are lowered to vector selects. 3076 if (P->getParent() != OrigLoop->getHeader()) { 3077 // We know that all PHIs in non-header blocks are converted into 3078 // selects, so we don't have to worry about the insertion order and we 3079 // can just use the builder. 3080 // At this point we generate the predication tree. There may be 3081 // duplications since this is a simple recursive scan, but future 3082 // optimizations will clean it up. 3083 3084 unsigned NumIncoming = P->getNumIncomingValues(); 3085 3086 // Generate a sequence of selects of the form: 3087 // SELECT(Mask3, In3, 3088 // SELECT(Mask2, In2, 3089 // ( ...))) 3090 for (unsigned In = 0; In < NumIncoming; In++) { 3091 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3092 P->getParent()); 3093 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3094 3095 for (unsigned part = 0; part < UF; ++part) { 3096 // We might have single edge PHIs (blocks) - use an identity 3097 // 'select' for the first PHI operand. 3098 if (In == 0) 3099 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3100 In0[part]); 3101 else 3102 // Select between the current value and the previous incoming edge 3103 // based on the incoming mask. 3104 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3105 Entry[part], "predphi"); 3106 } 3107 } 3108 return; 3109 } 3110 3111 // This PHINode must be an induction variable. 3112 // Make sure that we know about it. 3113 assert(Legal->getInductionVars()->count(P) && 3114 "Not an induction variable"); 3115 3116 LoopVectorizationLegality::InductionInfo II = 3117 Legal->getInductionVars()->lookup(P); 3118 3119 switch (II.IK) { 3120 case LoopVectorizationLegality::IK_NoInduction: 3121 llvm_unreachable("Unknown induction"); 3122 case LoopVectorizationLegality::IK_IntInduction: { 3123 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3124 Type *PhiTy = P->getType(); 3125 Value *Broadcasted; 3126 if (P == OldInduction) { 3127 // Handle the canonical induction variable. We might have had to 3128 // extend the type. 3129 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3130 } else { 3131 // Handle other induction variables that are now based on the 3132 // canonical one. 3133 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3134 "normalized.idx"); 3135 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3136 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3137 "offset.idx"); 3138 } 3139 Broadcasted = getBroadcastInstrs(Broadcasted); 3140 // After broadcasting the induction variable we need to make the vector 3141 // consecutive by adding 0, 1, 2, etc. 3142 for (unsigned part = 0; part < UF; ++part) 3143 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3144 return; 3145 } 3146 case LoopVectorizationLegality::IK_ReverseIntInduction: 3147 case LoopVectorizationLegality::IK_PtrInduction: 3148 case LoopVectorizationLegality::IK_ReversePtrInduction: 3149 // Handle reverse integer and pointer inductions. 3150 Value *StartIdx = ExtendedIdx; 3151 // This is the normalized GEP that starts counting at zero. 3152 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3153 "normalized.idx"); 3154 3155 // Handle the reverse integer induction variable case. 3156 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3157 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3158 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3159 "resize.norm.idx"); 3160 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3161 "reverse.idx"); 3162 3163 // This is a new value so do not hoist it out. 3164 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3165 // After broadcasting the induction variable we need to make the 3166 // vector consecutive by adding ... -3, -2, -1, 0. 3167 for (unsigned part = 0; part < UF; ++part) 3168 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3169 true); 3170 return; 3171 } 3172 3173 // Handle the pointer induction variable case. 3174 assert(P->getType()->isPointerTy() && "Unexpected type."); 3175 3176 // Is this a reverse induction ptr or a consecutive induction ptr. 3177 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3178 II.IK); 3179 3180 // This is the vector of results. Notice that we don't generate 3181 // vector geps because scalar geps result in better code. 3182 for (unsigned part = 0; part < UF; ++part) { 3183 if (VF == 1) { 3184 int EltIndex = (part) * (Reverse ? -1 : 1); 3185 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3186 Value *GlobalIdx; 3187 if (Reverse) 3188 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3189 else 3190 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3191 3192 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3193 "next.gep"); 3194 Entry[part] = SclrGep; 3195 continue; 3196 } 3197 3198 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3199 for (unsigned int i = 0; i < VF; ++i) { 3200 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3201 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3202 Value *GlobalIdx; 3203 if (!Reverse) 3204 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3205 else 3206 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3207 3208 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3209 "next.gep"); 3210 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3211 Builder.getInt32(i), 3212 "insert.gep"); 3213 } 3214 Entry[part] = VecVal; 3215 } 3216 return; 3217 } 3218 } 3219 3220 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3221 // For each instruction in the old loop. 3222 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3223 VectorParts &Entry = WidenMap.get(it); 3224 switch (it->getOpcode()) { 3225 case Instruction::Br: 3226 // Nothing to do for PHIs and BR, since we already took care of the 3227 // loop control flow instructions. 3228 continue; 3229 case Instruction::PHI:{ 3230 // Vectorize PHINodes. 3231 widenPHIInstruction(it, Entry, UF, VF, PV); 3232 continue; 3233 }// End of PHI. 3234 3235 case Instruction::Add: 3236 case Instruction::FAdd: 3237 case Instruction::Sub: 3238 case Instruction::FSub: 3239 case Instruction::Mul: 3240 case Instruction::FMul: 3241 case Instruction::UDiv: 3242 case Instruction::SDiv: 3243 case Instruction::FDiv: 3244 case Instruction::URem: 3245 case Instruction::SRem: 3246 case Instruction::FRem: 3247 case Instruction::Shl: 3248 case Instruction::LShr: 3249 case Instruction::AShr: 3250 case Instruction::And: 3251 case Instruction::Or: 3252 case Instruction::Xor: { 3253 // Just widen binops. 3254 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3255 setDebugLocFromInst(Builder, BinOp); 3256 VectorParts &A = getVectorValue(it->getOperand(0)); 3257 VectorParts &B = getVectorValue(it->getOperand(1)); 3258 3259 // Use this vector value for all users of the original instruction. 3260 for (unsigned Part = 0; Part < UF; ++Part) { 3261 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3262 3263 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3264 VecOp->copyIRFlags(BinOp); 3265 3266 Entry[Part] = V; 3267 } 3268 3269 propagateMetadata(Entry, it); 3270 break; 3271 } 3272 case Instruction::Select: { 3273 // Widen selects. 3274 // If the selector is loop invariant we can create a select 3275 // instruction with a scalar condition. Otherwise, use vector-select. 3276 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3277 OrigLoop); 3278 setDebugLocFromInst(Builder, it); 3279 3280 // The condition can be loop invariant but still defined inside the 3281 // loop. This means that we can't just use the original 'cond' value. 3282 // We have to take the 'vectorized' value and pick the first lane. 3283 // Instcombine will make this a no-op. 3284 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3285 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3286 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3287 3288 Value *ScalarCond = (VF == 1) ? Cond[0] : 3289 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3290 3291 for (unsigned Part = 0; Part < UF; ++Part) { 3292 Entry[Part] = Builder.CreateSelect( 3293 InvariantCond ? ScalarCond : Cond[Part], 3294 Op0[Part], 3295 Op1[Part]); 3296 } 3297 3298 propagateMetadata(Entry, it); 3299 break; 3300 } 3301 3302 case Instruction::ICmp: 3303 case Instruction::FCmp: { 3304 // Widen compares. Generate vector compares. 3305 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3306 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3307 setDebugLocFromInst(Builder, it); 3308 VectorParts &A = getVectorValue(it->getOperand(0)); 3309 VectorParts &B = getVectorValue(it->getOperand(1)); 3310 for (unsigned Part = 0; Part < UF; ++Part) { 3311 Value *C = nullptr; 3312 if (FCmp) 3313 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3314 else 3315 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3316 Entry[Part] = C; 3317 } 3318 3319 propagateMetadata(Entry, it); 3320 break; 3321 } 3322 3323 case Instruction::Store: 3324 case Instruction::Load: 3325 vectorizeMemoryInstruction(it); 3326 break; 3327 case Instruction::ZExt: 3328 case Instruction::SExt: 3329 case Instruction::FPToUI: 3330 case Instruction::FPToSI: 3331 case Instruction::FPExt: 3332 case Instruction::PtrToInt: 3333 case Instruction::IntToPtr: 3334 case Instruction::SIToFP: 3335 case Instruction::UIToFP: 3336 case Instruction::Trunc: 3337 case Instruction::FPTrunc: 3338 case Instruction::BitCast: { 3339 CastInst *CI = dyn_cast<CastInst>(it); 3340 setDebugLocFromInst(Builder, it); 3341 /// Optimize the special case where the source is the induction 3342 /// variable. Notice that we can only optimize the 'trunc' case 3343 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3344 /// c. other casts depend on pointer size. 3345 if (CI->getOperand(0) == OldInduction && 3346 it->getOpcode() == Instruction::Trunc) { 3347 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3348 CI->getType()); 3349 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3350 for (unsigned Part = 0; Part < UF; ++Part) 3351 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3352 propagateMetadata(Entry, it); 3353 break; 3354 } 3355 /// Vectorize casts. 3356 Type *DestTy = (VF == 1) ? CI->getType() : 3357 VectorType::get(CI->getType(), VF); 3358 3359 VectorParts &A = getVectorValue(it->getOperand(0)); 3360 for (unsigned Part = 0; Part < UF; ++Part) 3361 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3362 propagateMetadata(Entry, it); 3363 break; 3364 } 3365 3366 case Instruction::Call: { 3367 // Ignore dbg intrinsics. 3368 if (isa<DbgInfoIntrinsic>(it)) 3369 break; 3370 setDebugLocFromInst(Builder, it); 3371 3372 Module *M = BB->getParent()->getParent(); 3373 CallInst *CI = cast<CallInst>(it); 3374 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3375 assert(ID && "Not an intrinsic call!"); 3376 switch (ID) { 3377 case Intrinsic::assume: 3378 case Intrinsic::lifetime_end: 3379 case Intrinsic::lifetime_start: 3380 scalarizeInstruction(it); 3381 break; 3382 default: 3383 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3384 for (unsigned Part = 0; Part < UF; ++Part) { 3385 SmallVector<Value *, 4> Args; 3386 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3387 if (HasScalarOpd && i == 1) { 3388 Args.push_back(CI->getArgOperand(i)); 3389 continue; 3390 } 3391 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3392 Args.push_back(Arg[Part]); 3393 } 3394 Type *Tys[] = {CI->getType()}; 3395 if (VF > 1) 3396 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3397 3398 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3399 Entry[Part] = Builder.CreateCall(F, Args); 3400 } 3401 3402 propagateMetadata(Entry, it); 3403 break; 3404 } 3405 break; 3406 } 3407 3408 default: 3409 // All other instructions are unsupported. Scalarize them. 3410 scalarizeInstruction(it); 3411 break; 3412 }// end of switch. 3413 }// end of for_each instr. 3414 } 3415 3416 void InnerLoopVectorizer::updateAnalysis() { 3417 // Forget the original basic block. 3418 SE->forgetLoop(OrigLoop); 3419 3420 // Update the dominator tree information. 3421 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3422 "Entry does not dominate exit."); 3423 3424 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3425 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3426 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3427 3428 // Due to if predication of stores we might create a sequence of "if(pred) 3429 // a[i] = ...; " blocks. 3430 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3431 if (i == 0) 3432 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3433 else if (isPredicatedBlock(i)) { 3434 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3435 } else { 3436 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3437 } 3438 } 3439 3440 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3441 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3442 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3443 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3444 3445 DEBUG(DT->verifyDomTree()); 3446 } 3447 3448 /// \brief Check whether it is safe to if-convert this phi node. 3449 /// 3450 /// Phi nodes with constant expressions that can trap are not safe to if 3451 /// convert. 3452 static bool canIfConvertPHINodes(BasicBlock *BB) { 3453 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3454 PHINode *Phi = dyn_cast<PHINode>(I); 3455 if (!Phi) 3456 return true; 3457 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3458 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3459 if (C->canTrap()) 3460 return false; 3461 } 3462 return true; 3463 } 3464 3465 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3466 if (!EnableIfConversion) { 3467 emitAnalysis(Report() << "if-conversion is disabled"); 3468 return false; 3469 } 3470 3471 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3472 3473 // A list of pointers that we can safely read and write to. 3474 SmallPtrSet<Value *, 8> SafePointes; 3475 3476 // Collect safe addresses. 3477 for (Loop::block_iterator BI = TheLoop->block_begin(), 3478 BE = TheLoop->block_end(); BI != BE; ++BI) { 3479 BasicBlock *BB = *BI; 3480 3481 if (blockNeedsPredication(BB)) 3482 continue; 3483 3484 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3485 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3486 SafePointes.insert(LI->getPointerOperand()); 3487 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3488 SafePointes.insert(SI->getPointerOperand()); 3489 } 3490 } 3491 3492 // Collect the blocks that need predication. 3493 BasicBlock *Header = TheLoop->getHeader(); 3494 for (Loop::block_iterator BI = TheLoop->block_begin(), 3495 BE = TheLoop->block_end(); BI != BE; ++BI) { 3496 BasicBlock *BB = *BI; 3497 3498 // We don't support switch statements inside loops. 3499 if (!isa<BranchInst>(BB->getTerminator())) { 3500 emitAnalysis(Report(BB->getTerminator()) 3501 << "loop contains a switch statement"); 3502 return false; 3503 } 3504 3505 // We must be able to predicate all blocks that need to be predicated. 3506 if (blockNeedsPredication(BB)) { 3507 if (!blockCanBePredicated(BB, SafePointes)) { 3508 emitAnalysis(Report(BB->getTerminator()) 3509 << "control flow cannot be substituted for a select"); 3510 return false; 3511 } 3512 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3513 emitAnalysis(Report(BB->getTerminator()) 3514 << "control flow cannot be substituted for a select"); 3515 return false; 3516 } 3517 } 3518 3519 // We can if-convert this loop. 3520 return true; 3521 } 3522 3523 bool LoopVectorizationLegality::canVectorize() { 3524 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3525 // be canonicalized. 3526 if (!TheLoop->getLoopPreheader()) { 3527 emitAnalysis( 3528 Report() << "loop control flow is not understood by vectorizer"); 3529 return false; 3530 } 3531 3532 // We can only vectorize innermost loops. 3533 if (TheLoop->getSubLoopsVector().size()) { 3534 emitAnalysis(Report() << "loop is not the innermost loop"); 3535 return false; 3536 } 3537 3538 // We must have a single backedge. 3539 if (TheLoop->getNumBackEdges() != 1) { 3540 emitAnalysis( 3541 Report() << "loop control flow is not understood by vectorizer"); 3542 return false; 3543 } 3544 3545 // We must have a single exiting block. 3546 if (!TheLoop->getExitingBlock()) { 3547 emitAnalysis( 3548 Report() << "loop control flow is not understood by vectorizer"); 3549 return false; 3550 } 3551 3552 // We need to have a loop header. 3553 DEBUG(dbgs() << "LV: Found a loop: " << 3554 TheLoop->getHeader()->getName() << '\n'); 3555 3556 // Check if we can if-convert non-single-bb loops. 3557 unsigned NumBlocks = TheLoop->getNumBlocks(); 3558 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3559 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3560 return false; 3561 } 3562 3563 // ScalarEvolution needs to be able to find the exit count. 3564 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3565 if (ExitCount == SE->getCouldNotCompute()) { 3566 emitAnalysis(Report() << "could not determine number of loop iterations"); 3567 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3568 return false; 3569 } 3570 3571 // Check if we can vectorize the instructions and CFG in this loop. 3572 if (!canVectorizeInstrs()) { 3573 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3574 return false; 3575 } 3576 3577 // Go over each instruction and look at memory deps. 3578 if (!canVectorizeMemory()) { 3579 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3580 return false; 3581 } 3582 3583 // Collect all of the variables that remain uniform after vectorization. 3584 collectLoopUniforms(); 3585 3586 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3587 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3588 <<"!\n"); 3589 3590 // Okay! We can vectorize. At this point we don't have any other mem analysis 3591 // which may limit our maximum vectorization factor, so just return true with 3592 // no restrictions. 3593 return true; 3594 } 3595 3596 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3597 if (Ty->isPointerTy()) 3598 return DL.getIntPtrType(Ty); 3599 3600 // It is possible that char's or short's overflow when we ask for the loop's 3601 // trip count, work around this by changing the type size. 3602 if (Ty->getScalarSizeInBits() < 32) 3603 return Type::getInt32Ty(Ty->getContext()); 3604 3605 return Ty; 3606 } 3607 3608 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3609 Ty0 = convertPointerToIntegerType(DL, Ty0); 3610 Ty1 = convertPointerToIntegerType(DL, Ty1); 3611 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3612 return Ty0; 3613 return Ty1; 3614 } 3615 3616 /// \brief Check that the instruction has outside loop users and is not an 3617 /// identified reduction variable. 3618 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3619 SmallPtrSetImpl<Value *> &Reductions) { 3620 // Reduction instructions are allowed to have exit users. All other 3621 // instructions must not have external users. 3622 if (!Reductions.count(Inst)) 3623 //Check that all of the users of the loop are inside the BB. 3624 for (User *U : Inst->users()) { 3625 Instruction *UI = cast<Instruction>(U); 3626 // This user may be a reduction exit value. 3627 if (!TheLoop->contains(UI)) { 3628 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3629 return true; 3630 } 3631 } 3632 return false; 3633 } 3634 3635 bool LoopVectorizationLegality::canVectorizeInstrs() { 3636 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3637 BasicBlock *Header = TheLoop->getHeader(); 3638 3639 // Look for the attribute signaling the absence of NaNs. 3640 Function &F = *Header->getParent(); 3641 if (F.hasFnAttribute("no-nans-fp-math")) 3642 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3643 AttributeSet::FunctionIndex, 3644 "no-nans-fp-math").getValueAsString() == "true"; 3645 3646 // For each block in the loop. 3647 for (Loop::block_iterator bb = TheLoop->block_begin(), 3648 be = TheLoop->block_end(); bb != be; ++bb) { 3649 3650 // Scan the instructions in the block and look for hazards. 3651 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3652 ++it) { 3653 3654 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3655 Type *PhiTy = Phi->getType(); 3656 // Check that this PHI type is allowed. 3657 if (!PhiTy->isIntegerTy() && 3658 !PhiTy->isFloatingPointTy() && 3659 !PhiTy->isPointerTy()) { 3660 emitAnalysis(Report(it) 3661 << "loop control flow is not understood by vectorizer"); 3662 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3663 return false; 3664 } 3665 3666 // If this PHINode is not in the header block, then we know that we 3667 // can convert it to select during if-conversion. No need to check if 3668 // the PHIs in this block are induction or reduction variables. 3669 if (*bb != Header) { 3670 // Check that this instruction has no outside users or is an 3671 // identified reduction value with an outside user. 3672 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3673 continue; 3674 emitAnalysis(Report(it) << "value could not be identified as " 3675 "an induction or reduction variable"); 3676 return false; 3677 } 3678 3679 // We only allow if-converted PHIs with more than two incoming values. 3680 if (Phi->getNumIncomingValues() != 2) { 3681 emitAnalysis(Report(it) 3682 << "control flow not understood by vectorizer"); 3683 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3684 return false; 3685 } 3686 3687 // This is the value coming from the preheader. 3688 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3689 // Check if this is an induction variable. 3690 InductionKind IK = isInductionVariable(Phi); 3691 3692 if (IK_NoInduction != IK) { 3693 // Get the widest type. 3694 if (!WidestIndTy) 3695 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3696 else 3697 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3698 3699 // Int inductions are special because we only allow one IV. 3700 if (IK == IK_IntInduction) { 3701 // Use the phi node with the widest type as induction. Use the last 3702 // one if there are multiple (no good reason for doing this other 3703 // than it is expedient). 3704 if (!Induction || PhiTy == WidestIndTy) 3705 Induction = Phi; 3706 } 3707 3708 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3709 Inductions[Phi] = InductionInfo(StartValue, IK); 3710 3711 // Until we explicitly handle the case of an induction variable with 3712 // an outside loop user we have to give up vectorizing this loop. 3713 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3714 emitAnalysis(Report(it) << "use of induction value outside of the " 3715 "loop is not handled by vectorizer"); 3716 return false; 3717 } 3718 3719 continue; 3720 } 3721 3722 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3723 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3724 continue; 3725 } 3726 if (AddReductionVar(Phi, RK_IntegerMult)) { 3727 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3728 continue; 3729 } 3730 if (AddReductionVar(Phi, RK_IntegerOr)) { 3731 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3732 continue; 3733 } 3734 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3735 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3736 continue; 3737 } 3738 if (AddReductionVar(Phi, RK_IntegerXor)) { 3739 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3740 continue; 3741 } 3742 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3743 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3744 continue; 3745 } 3746 if (AddReductionVar(Phi, RK_FloatMult)) { 3747 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3748 continue; 3749 } 3750 if (AddReductionVar(Phi, RK_FloatAdd)) { 3751 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3752 continue; 3753 } 3754 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3755 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3756 "\n"); 3757 continue; 3758 } 3759 3760 emitAnalysis(Report(it) << "value that could not be identified as " 3761 "reduction is used outside the loop"); 3762 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3763 return false; 3764 }// end of PHI handling 3765 3766 // We still don't handle functions. However, we can ignore dbg intrinsic 3767 // calls and we do handle certain intrinsic and libm functions. 3768 CallInst *CI = dyn_cast<CallInst>(it); 3769 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3770 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3771 DEBUG(dbgs() << "LV: Found a call site.\n"); 3772 return false; 3773 } 3774 3775 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3776 // second argument is the same (i.e. loop invariant) 3777 if (CI && 3778 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3779 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3780 emitAnalysis(Report(it) 3781 << "intrinsic instruction cannot be vectorized"); 3782 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3783 return false; 3784 } 3785 } 3786 3787 // Check that the instruction return type is vectorizable. 3788 // Also, we can't vectorize extractelement instructions. 3789 if ((!VectorType::isValidElementType(it->getType()) && 3790 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3791 emitAnalysis(Report(it) 3792 << "instruction return type cannot be vectorized"); 3793 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3794 return false; 3795 } 3796 3797 // Check that the stored type is vectorizable. 3798 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3799 Type *T = ST->getValueOperand()->getType(); 3800 if (!VectorType::isValidElementType(T)) { 3801 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3802 return false; 3803 } 3804 if (EnableMemAccessVersioning) 3805 collectStridedAcccess(ST); 3806 } 3807 3808 if (EnableMemAccessVersioning) 3809 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3810 collectStridedAcccess(LI); 3811 3812 // Reduction instructions are allowed to have exit users. 3813 // All other instructions must not have external users. 3814 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3815 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3816 return false; 3817 } 3818 3819 } // next instr. 3820 3821 } 3822 3823 if (!Induction) { 3824 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3825 if (Inductions.empty()) { 3826 emitAnalysis(Report() 3827 << "loop induction variable could not be identified"); 3828 return false; 3829 } 3830 } 3831 3832 return true; 3833 } 3834 3835 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3836 /// return the induction operand of the gep pointer. 3837 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3838 const DataLayout *DL, Loop *Lp) { 3839 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3840 if (!GEP) 3841 return Ptr; 3842 3843 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3844 3845 // Check that all of the gep indices are uniform except for our induction 3846 // operand. 3847 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3848 if (i != InductionOperand && 3849 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3850 return Ptr; 3851 return GEP->getOperand(InductionOperand); 3852 } 3853 3854 ///\brief Look for a cast use of the passed value. 3855 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3856 Value *UniqueCast = nullptr; 3857 for (User *U : Ptr->users()) { 3858 CastInst *CI = dyn_cast<CastInst>(U); 3859 if (CI && CI->getType() == Ty) { 3860 if (!UniqueCast) 3861 UniqueCast = CI; 3862 else 3863 return nullptr; 3864 } 3865 } 3866 return UniqueCast; 3867 } 3868 3869 ///\brief Get the stride of a pointer access in a loop. 3870 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3871 /// pointer to the Value, or null otherwise. 3872 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3873 const DataLayout *DL, Loop *Lp) { 3874 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3875 if (!PtrTy || PtrTy->isAggregateType()) 3876 return nullptr; 3877 3878 // Try to remove a gep instruction to make the pointer (actually index at this 3879 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3880 // pointer, otherwise, we are analyzing the index. 3881 Value *OrigPtr = Ptr; 3882 3883 // The size of the pointer access. 3884 int64_t PtrAccessSize = 1; 3885 3886 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3887 const SCEV *V = SE->getSCEV(Ptr); 3888 3889 if (Ptr != OrigPtr) 3890 // Strip off casts. 3891 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3892 V = C->getOperand(); 3893 3894 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3895 if (!S) 3896 return nullptr; 3897 3898 V = S->getStepRecurrence(*SE); 3899 if (!V) 3900 return nullptr; 3901 3902 // Strip off the size of access multiplication if we are still analyzing the 3903 // pointer. 3904 if (OrigPtr == Ptr) { 3905 DL->getTypeAllocSize(PtrTy->getElementType()); 3906 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3907 if (M->getOperand(0)->getSCEVType() != scConstant) 3908 return nullptr; 3909 3910 const APInt &APStepVal = 3911 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3912 3913 // Huge step value - give up. 3914 if (APStepVal.getBitWidth() > 64) 3915 return nullptr; 3916 3917 int64_t StepVal = APStepVal.getSExtValue(); 3918 if (PtrAccessSize != StepVal) 3919 return nullptr; 3920 V = M->getOperand(1); 3921 } 3922 } 3923 3924 // Strip off casts. 3925 Type *StripedOffRecurrenceCast = nullptr; 3926 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3927 StripedOffRecurrenceCast = C->getType(); 3928 V = C->getOperand(); 3929 } 3930 3931 // Look for the loop invariant symbolic value. 3932 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3933 if (!U) 3934 return nullptr; 3935 3936 Value *Stride = U->getValue(); 3937 if (!Lp->isLoopInvariant(Stride)) 3938 return nullptr; 3939 3940 // If we have stripped off the recurrence cast we have to make sure that we 3941 // return the value that is used in this loop so that we can replace it later. 3942 if (StripedOffRecurrenceCast) 3943 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3944 3945 return Stride; 3946 } 3947 3948 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3949 Value *Ptr = nullptr; 3950 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3951 Ptr = LI->getPointerOperand(); 3952 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3953 Ptr = SI->getPointerOperand(); 3954 else 3955 return; 3956 3957 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3958 if (!Stride) 3959 return; 3960 3961 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3962 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3963 Strides[Ptr] = Stride; 3964 StrideSet.insert(Stride); 3965 } 3966 3967 void LoopVectorizationLegality::collectLoopUniforms() { 3968 // We now know that the loop is vectorizable! 3969 // Collect variables that will remain uniform after vectorization. 3970 std::vector<Value*> Worklist; 3971 BasicBlock *Latch = TheLoop->getLoopLatch(); 3972 3973 // Start with the conditional branch and walk up the block. 3974 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3975 3976 // Also add all consecutive pointer values; these values will be uniform 3977 // after vectorization (and subsequent cleanup) and, until revectorization is 3978 // supported, all dependencies must also be uniform. 3979 for (Loop::block_iterator B = TheLoop->block_begin(), 3980 BE = TheLoop->block_end(); B != BE; ++B) 3981 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3982 I != IE; ++I) 3983 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3984 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3985 3986 while (Worklist.size()) { 3987 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3988 Worklist.pop_back(); 3989 3990 // Look at instructions inside this loop. 3991 // Stop when reaching PHI nodes. 3992 // TODO: we need to follow values all over the loop, not only in this block. 3993 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3994 continue; 3995 3996 // This is a known uniform. 3997 Uniforms.insert(I); 3998 3999 // Insert all operands. 4000 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4001 } 4002 } 4003 4004 namespace { 4005 /// \brief Analyses memory accesses in a loop. 4006 /// 4007 /// Checks whether run time pointer checks are needed and builds sets for data 4008 /// dependence checking. 4009 class AccessAnalysis { 4010 public: 4011 /// \brief Read or write access location. 4012 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4013 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4014 4015 /// \brief Set of potential dependent memory accesses. 4016 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4017 4018 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4019 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4020 4021 /// \brief Register a load and whether it is only read from. 4022 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4023 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4024 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4025 Accesses.insert(MemAccessInfo(Ptr, false)); 4026 if (IsReadOnly) 4027 ReadOnlyPtr.insert(Ptr); 4028 } 4029 4030 /// \brief Register a store. 4031 void addStore(AliasAnalysis::Location &Loc) { 4032 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4033 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4034 Accesses.insert(MemAccessInfo(Ptr, true)); 4035 } 4036 4037 /// \brief Check whether we can check the pointers at runtime for 4038 /// non-intersection. 4039 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4040 unsigned &NumComparisons, ScalarEvolution *SE, 4041 Loop *TheLoop, ValueToValueMap &Strides, 4042 bool ShouldCheckStride = false); 4043 4044 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4045 /// and builds sets of dependent accesses. 4046 void buildDependenceSets() { 4047 processMemAccesses(); 4048 } 4049 4050 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4051 4052 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4053 void resetDepChecks() { CheckDeps.clear(); } 4054 4055 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4056 4057 private: 4058 typedef SetVector<MemAccessInfo> PtrAccessSet; 4059 4060 /// \brief Go over all memory access and check whether runtime pointer checks 4061 /// are needed /// and build sets of dependency check candidates. 4062 void processMemAccesses(); 4063 4064 /// Set of all accesses. 4065 PtrAccessSet Accesses; 4066 4067 /// Set of accesses that need a further dependence check. 4068 MemAccessInfoSet CheckDeps; 4069 4070 /// Set of pointers that are read only. 4071 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4072 4073 const DataLayout *DL; 4074 4075 /// An alias set tracker to partition the access set by underlying object and 4076 //intrinsic property (such as TBAA metadata). 4077 AliasSetTracker AST; 4078 4079 /// Sets of potentially dependent accesses - members of one set share an 4080 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4081 /// dependence check. 4082 DepCandidates &DepCands; 4083 4084 bool IsRTCheckNeeded; 4085 }; 4086 4087 } // end anonymous namespace 4088 4089 /// \brief Check whether a pointer can participate in a runtime bounds check. 4090 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4091 Value *Ptr) { 4092 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4093 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4094 if (!AR) 4095 return false; 4096 4097 return AR->isAffine(); 4098 } 4099 4100 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4101 /// the address space. 4102 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4103 const Loop *Lp, ValueToValueMap &StridesMap); 4104 4105 bool AccessAnalysis::canCheckPtrAtRT( 4106 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4107 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4108 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4109 // Find pointers with computable bounds. We are going to use this information 4110 // to place a runtime bound check. 4111 bool CanDoRT = true; 4112 4113 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4114 NumComparisons = 0; 4115 4116 // We assign a consecutive id to access from different alias sets. 4117 // Accesses between different groups doesn't need to be checked. 4118 unsigned ASId = 1; 4119 for (auto &AS : AST) { 4120 unsigned NumReadPtrChecks = 0; 4121 unsigned NumWritePtrChecks = 0; 4122 4123 // We assign consecutive id to access from different dependence sets. 4124 // Accesses within the same set don't need a runtime check. 4125 unsigned RunningDepId = 1; 4126 DenseMap<Value *, unsigned> DepSetId; 4127 4128 for (auto A : AS) { 4129 Value *Ptr = A.getValue(); 4130 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4131 MemAccessInfo Access(Ptr, IsWrite); 4132 4133 if (IsWrite) 4134 ++NumWritePtrChecks; 4135 else 4136 ++NumReadPtrChecks; 4137 4138 if (hasComputableBounds(SE, StridesMap, Ptr) && 4139 // When we run after a failing dependency check we have to make sure we 4140 // don't have wrapping pointers. 4141 (!ShouldCheckStride || 4142 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4143 // The id of the dependence set. 4144 unsigned DepId; 4145 4146 if (IsDepCheckNeeded) { 4147 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4148 unsigned &LeaderId = DepSetId[Leader]; 4149 if (!LeaderId) 4150 LeaderId = RunningDepId++; 4151 DepId = LeaderId; 4152 } else 4153 // Each access has its own dependence set. 4154 DepId = RunningDepId++; 4155 4156 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4157 4158 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4159 } else { 4160 CanDoRT = false; 4161 } 4162 } 4163 4164 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4165 NumComparisons += 0; // Only one dependence set. 4166 else { 4167 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4168 NumWritePtrChecks - 1)); 4169 } 4170 4171 ++ASId; 4172 } 4173 4174 // If the pointers that we would use for the bounds comparison have different 4175 // address spaces, assume the values aren't directly comparable, so we can't 4176 // use them for the runtime check. We also have to assume they could 4177 // overlap. In the future there should be metadata for whether address spaces 4178 // are disjoint. 4179 unsigned NumPointers = RtCheck.Pointers.size(); 4180 for (unsigned i = 0; i < NumPointers; ++i) { 4181 for (unsigned j = i + 1; j < NumPointers; ++j) { 4182 // Only need to check pointers between two different dependency sets. 4183 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4184 continue; 4185 // Only need to check pointers in the same alias set. 4186 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4187 continue; 4188 4189 Value *PtrI = RtCheck.Pointers[i]; 4190 Value *PtrJ = RtCheck.Pointers[j]; 4191 4192 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4193 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4194 if (ASi != ASj) { 4195 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4196 " different address spaces\n"); 4197 return false; 4198 } 4199 } 4200 } 4201 4202 return CanDoRT; 4203 } 4204 4205 void AccessAnalysis::processMemAccesses() { 4206 // We process the set twice: first we process read-write pointers, last we 4207 // process read-only pointers. This allows us to skip dependence tests for 4208 // read-only pointers. 4209 4210 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4211 DEBUG(dbgs() << " AST: "; AST.dump()); 4212 DEBUG(dbgs() << "LV: Accesses:\n"); 4213 DEBUG({ 4214 for (auto A : Accesses) 4215 dbgs() << "\t" << *A.getPointer() << " (" << 4216 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4217 "read-only" : "read")) << ")\n"; 4218 }); 4219 4220 // The AliasSetTracker has nicely partitioned our pointers by metadata 4221 // compatibility and potential for underlying-object overlap. As a result, we 4222 // only need to check for potential pointer dependencies within each alias 4223 // set. 4224 for (auto &AS : AST) { 4225 // Note that both the alias-set tracker and the alias sets themselves used 4226 // linked lists internally and so the iteration order here is deterministic 4227 // (matching the original instruction order within each set). 4228 4229 bool SetHasWrite = false; 4230 4231 // Map of pointers to last access encountered. 4232 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4233 UnderlyingObjToAccessMap ObjToLastAccess; 4234 4235 // Set of access to check after all writes have been processed. 4236 PtrAccessSet DeferredAccesses; 4237 4238 // Iterate over each alias set twice, once to process read/write pointers, 4239 // and then to process read-only pointers. 4240 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4241 bool UseDeferred = SetIteration > 0; 4242 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4243 4244 for (auto A : AS) { 4245 Value *Ptr = A.getValue(); 4246 bool IsWrite = S.count(MemAccessInfo(Ptr, true)); 4247 4248 // If we're using the deferred access set, then it contains only reads. 4249 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4250 if (UseDeferred && !IsReadOnlyPtr) 4251 continue; 4252 // Otherwise, the pointer must be in the PtrAccessSet, either as a read 4253 // or a write. 4254 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4255 S.count(MemAccessInfo(Ptr, false))) && 4256 "Alias-set pointer not in the access set?"); 4257 4258 MemAccessInfo Access(Ptr, IsWrite); 4259 DepCands.insert(Access); 4260 4261 // Memorize read-only pointers for later processing and skip them in the 4262 // first round (they need to be checked after we have seen all write 4263 // pointers). Note: we also mark pointer that are not consecutive as 4264 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need 4265 // the second check for "!IsWrite". 4266 if (!UseDeferred && IsReadOnlyPtr) { 4267 DeferredAccesses.insert(Access); 4268 continue; 4269 } 4270 4271 // If this is a write - check other reads and writes for conflicts. If 4272 // this is a read only check other writes for conflicts (but only if 4273 // there is no other write to the ptr - this is an optimization to 4274 // catch "a[i] = a[i] + " without having to do a dependence check). 4275 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4276 CheckDeps.insert(Access); 4277 IsRTCheckNeeded = true; 4278 } 4279 4280 if (IsWrite) 4281 SetHasWrite = true; 4282 4283 // Create sets of pointers connected by a shared alias set and 4284 // underlying object. 4285 typedef SmallVector<Value*, 16> ValueVector; 4286 ValueVector TempObjects; 4287 GetUnderlyingObjects(Ptr, TempObjects, DL); 4288 for (Value *UnderlyingObj : TempObjects) { 4289 UnderlyingObjToAccessMap::iterator Prev = 4290 ObjToLastAccess.find(UnderlyingObj); 4291 if (Prev != ObjToLastAccess.end()) 4292 DepCands.unionSets(Access, Prev->second); 4293 4294 ObjToLastAccess[UnderlyingObj] = Access; 4295 } 4296 } 4297 } 4298 } 4299 } 4300 4301 namespace { 4302 /// \brief Checks memory dependences among accesses to the same underlying 4303 /// object to determine whether there vectorization is legal or not (and at 4304 /// which vectorization factor). 4305 /// 4306 /// This class works under the assumption that we already checked that memory 4307 /// locations with different underlying pointers are "must-not alias". 4308 /// We use the ScalarEvolution framework to symbolically evalutate access 4309 /// functions pairs. Since we currently don't restructure the loop we can rely 4310 /// on the program order of memory accesses to determine their safety. 4311 /// At the moment we will only deem accesses as safe for: 4312 /// * A negative constant distance assuming program order. 4313 /// 4314 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4315 /// a[i] = tmp; y = a[i]; 4316 /// 4317 /// The latter case is safe because later checks guarantuee that there can't 4318 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4319 /// the same variable: a header phi can only be an induction or a reduction, a 4320 /// reduction can't have a memory sink, an induction can't have a memory 4321 /// source). This is important and must not be violated (or we have to 4322 /// resort to checking for cycles through memory). 4323 /// 4324 /// * A positive constant distance assuming program order that is bigger 4325 /// than the biggest memory access. 4326 /// 4327 /// tmp = a[i] OR b[i] = x 4328 /// a[i+2] = tmp y = b[i+2]; 4329 /// 4330 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4331 /// 4332 /// * Zero distances and all accesses have the same size. 4333 /// 4334 class MemoryDepChecker { 4335 public: 4336 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4337 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4338 4339 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4340 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4341 ShouldRetryWithRuntimeCheck(false) {} 4342 4343 /// \brief Register the location (instructions are given increasing numbers) 4344 /// of a write access. 4345 void addAccess(StoreInst *SI) { 4346 Value *Ptr = SI->getPointerOperand(); 4347 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4348 InstMap.push_back(SI); 4349 ++AccessIdx; 4350 } 4351 4352 /// \brief Register the location (instructions are given increasing numbers) 4353 /// of a write access. 4354 void addAccess(LoadInst *LI) { 4355 Value *Ptr = LI->getPointerOperand(); 4356 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4357 InstMap.push_back(LI); 4358 ++AccessIdx; 4359 } 4360 4361 /// \brief Check whether the dependencies between the accesses are safe. 4362 /// 4363 /// Only checks sets with elements in \p CheckDeps. 4364 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4365 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4366 4367 /// \brief The maximum number of bytes of a vector register we can vectorize 4368 /// the accesses safely with. 4369 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4370 4371 /// \brief In same cases when the dependency check fails we can still 4372 /// vectorize the loop with a dynamic array access check. 4373 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4374 4375 private: 4376 ScalarEvolution *SE; 4377 const DataLayout *DL; 4378 const Loop *InnermostLoop; 4379 4380 /// \brief Maps access locations (ptr, read/write) to program order. 4381 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4382 4383 /// \brief Memory access instructions in program order. 4384 SmallVector<Instruction *, 16> InstMap; 4385 4386 /// \brief The program order index to be used for the next instruction. 4387 unsigned AccessIdx; 4388 4389 // We can access this many bytes in parallel safely. 4390 unsigned MaxSafeDepDistBytes; 4391 4392 /// \brief If we see a non-constant dependence distance we can still try to 4393 /// vectorize this loop with runtime checks. 4394 bool ShouldRetryWithRuntimeCheck; 4395 4396 /// \brief Check whether there is a plausible dependence between the two 4397 /// accesses. 4398 /// 4399 /// Access \p A must happen before \p B in program order. The two indices 4400 /// identify the index into the program order map. 4401 /// 4402 /// This function checks whether there is a plausible dependence (or the 4403 /// absence of such can't be proved) between the two accesses. If there is a 4404 /// plausible dependence but the dependence distance is bigger than one 4405 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4406 /// distance is smaller than any other distance encountered so far). 4407 /// Otherwise, this function returns true signaling a possible dependence. 4408 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4409 const MemAccessInfo &B, unsigned BIdx, 4410 ValueToValueMap &Strides); 4411 4412 /// \brief Check whether the data dependence could prevent store-load 4413 /// forwarding. 4414 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4415 }; 4416 4417 } // end anonymous namespace 4418 4419 static bool isInBoundsGep(Value *Ptr) { 4420 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4421 return GEP->isInBounds(); 4422 return false; 4423 } 4424 4425 /// \brief Check whether the access through \p Ptr has a constant stride. 4426 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4427 const Loop *Lp, ValueToValueMap &StridesMap) { 4428 const Type *Ty = Ptr->getType(); 4429 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4430 4431 // Make sure that the pointer does not point to aggregate types. 4432 const PointerType *PtrTy = cast<PointerType>(Ty); 4433 if (PtrTy->getElementType()->isAggregateType()) { 4434 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4435 "\n"); 4436 return 0; 4437 } 4438 4439 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4440 4441 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4442 if (!AR) { 4443 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4444 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4445 return 0; 4446 } 4447 4448 // The accesss function must stride over the innermost loop. 4449 if (Lp != AR->getLoop()) { 4450 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4451 *Ptr << " SCEV: " << *PtrScev << "\n"); 4452 } 4453 4454 // The address calculation must not wrap. Otherwise, a dependence could be 4455 // inverted. 4456 // An inbounds getelementptr that is a AddRec with a unit stride 4457 // cannot wrap per definition. The unit stride requirement is checked later. 4458 // An getelementptr without an inbounds attribute and unit stride would have 4459 // to access the pointer value "0" which is undefined behavior in address 4460 // space 0, therefore we can also vectorize this case. 4461 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4462 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4463 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4464 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4465 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4466 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4467 return 0; 4468 } 4469 4470 // Check the step is constant. 4471 const SCEV *Step = AR->getStepRecurrence(*SE); 4472 4473 // Calculate the pointer stride and check if it is consecutive. 4474 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4475 if (!C) { 4476 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4477 " SCEV: " << *PtrScev << "\n"); 4478 return 0; 4479 } 4480 4481 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4482 const APInt &APStepVal = C->getValue()->getValue(); 4483 4484 // Huge step value - give up. 4485 if (APStepVal.getBitWidth() > 64) 4486 return 0; 4487 4488 int64_t StepVal = APStepVal.getSExtValue(); 4489 4490 // Strided access. 4491 int64_t Stride = StepVal / Size; 4492 int64_t Rem = StepVal % Size; 4493 if (Rem) 4494 return 0; 4495 4496 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4497 // know we can't "wrap around the address space". In case of address space 4498 // zero we know that this won't happen without triggering undefined behavior. 4499 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4500 Stride != 1 && Stride != -1) 4501 return 0; 4502 4503 return Stride; 4504 } 4505 4506 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4507 unsigned TypeByteSize) { 4508 // If loads occur at a distance that is not a multiple of a feasible vector 4509 // factor store-load forwarding does not take place. 4510 // Positive dependences might cause troubles because vectorizing them might 4511 // prevent store-load forwarding making vectorized code run a lot slower. 4512 // a[i] = a[i-3] ^ a[i-8]; 4513 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4514 // hence on your typical architecture store-load forwarding does not take 4515 // place. Vectorizing in such cases does not make sense. 4516 // Store-load forwarding distance. 4517 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4518 // Maximum vector factor. 4519 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4520 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4521 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4522 4523 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4524 vf *= 2) { 4525 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4526 MaxVFWithoutSLForwardIssues = (vf >>=1); 4527 break; 4528 } 4529 } 4530 4531 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4532 DEBUG(dbgs() << "LV: Distance " << Distance << 4533 " that could cause a store-load forwarding conflict\n"); 4534 return true; 4535 } 4536 4537 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4538 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4539 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4540 return false; 4541 } 4542 4543 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4544 const MemAccessInfo &B, unsigned BIdx, 4545 ValueToValueMap &Strides) { 4546 assert (AIdx < BIdx && "Must pass arguments in program order"); 4547 4548 Value *APtr = A.getPointer(); 4549 Value *BPtr = B.getPointer(); 4550 bool AIsWrite = A.getInt(); 4551 bool BIsWrite = B.getInt(); 4552 4553 // Two reads are independent. 4554 if (!AIsWrite && !BIsWrite) 4555 return false; 4556 4557 // We cannot check pointers in different address spaces. 4558 if (APtr->getType()->getPointerAddressSpace() != 4559 BPtr->getType()->getPointerAddressSpace()) 4560 return true; 4561 4562 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4563 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4564 4565 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4566 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4567 4568 const SCEV *Src = AScev; 4569 const SCEV *Sink = BScev; 4570 4571 // If the induction step is negative we have to invert source and sink of the 4572 // dependence. 4573 if (StrideAPtr < 0) { 4574 //Src = BScev; 4575 //Sink = AScev; 4576 std::swap(APtr, BPtr); 4577 std::swap(Src, Sink); 4578 std::swap(AIsWrite, BIsWrite); 4579 std::swap(AIdx, BIdx); 4580 std::swap(StrideAPtr, StrideBPtr); 4581 } 4582 4583 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4584 4585 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4586 << "(Induction step: " << StrideAPtr << ")\n"); 4587 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4588 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4589 4590 // Need consecutive accesses. We don't want to vectorize 4591 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4592 // the address space. 4593 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4594 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4595 return true; 4596 } 4597 4598 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4599 if (!C) { 4600 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4601 ShouldRetryWithRuntimeCheck = true; 4602 return true; 4603 } 4604 4605 Type *ATy = APtr->getType()->getPointerElementType(); 4606 Type *BTy = BPtr->getType()->getPointerElementType(); 4607 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4608 4609 // Negative distances are not plausible dependencies. 4610 const APInt &Val = C->getValue()->getValue(); 4611 if (Val.isNegative()) { 4612 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4613 if (IsTrueDataDependence && 4614 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4615 ATy != BTy)) 4616 return true; 4617 4618 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4619 return false; 4620 } 4621 4622 // Write to the same location with the same size. 4623 // Could be improved to assert type sizes are the same (i32 == float, etc). 4624 if (Val == 0) { 4625 if (ATy == BTy) 4626 return false; 4627 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4628 return true; 4629 } 4630 4631 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4632 4633 // Positive distance bigger than max vectorization factor. 4634 if (ATy != BTy) { 4635 DEBUG(dbgs() << 4636 "LV: ReadWrite-Write positive dependency with different types\n"); 4637 return false; 4638 } 4639 4640 unsigned Distance = (unsigned) Val.getZExtValue(); 4641 4642 // Bail out early if passed-in parameters make vectorization not feasible. 4643 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4644 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 4645 4646 // The distance must be bigger than the size needed for a vectorized version 4647 // of the operation and the size of the vectorized operation must not be 4648 // bigger than the currrent maximum size. 4649 if (Distance < 2*TypeByteSize || 4650 2*TypeByteSize > MaxSafeDepDistBytes || 4651 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4652 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4653 << Val.getSExtValue() << '\n'); 4654 return true; 4655 } 4656 4657 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4658 Distance : MaxSafeDepDistBytes; 4659 4660 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4661 if (IsTrueDataDependence && 4662 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4663 return true; 4664 4665 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4666 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4667 4668 return false; 4669 } 4670 4671 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4672 MemAccessInfoSet &CheckDeps, 4673 ValueToValueMap &Strides) { 4674 4675 MaxSafeDepDistBytes = -1U; 4676 while (!CheckDeps.empty()) { 4677 MemAccessInfo CurAccess = *CheckDeps.begin(); 4678 4679 // Get the relevant memory access set. 4680 EquivalenceClasses<MemAccessInfo>::iterator I = 4681 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4682 4683 // Check accesses within this set. 4684 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4685 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4686 4687 // Check every access pair. 4688 while (AI != AE) { 4689 CheckDeps.erase(*AI); 4690 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4691 while (OI != AE) { 4692 // Check every accessing instruction pair in program order. 4693 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4694 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4695 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4696 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4697 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4698 return false; 4699 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4700 return false; 4701 } 4702 ++OI; 4703 } 4704 AI++; 4705 } 4706 } 4707 return true; 4708 } 4709 4710 bool LoopVectorizationLegality::canVectorizeMemory() { 4711 4712 typedef SmallVector<Value*, 16> ValueVector; 4713 typedef SmallPtrSet<Value*, 16> ValueSet; 4714 4715 // Holds the Load and Store *instructions*. 4716 ValueVector Loads; 4717 ValueVector Stores; 4718 4719 // Holds all the different accesses in the loop. 4720 unsigned NumReads = 0; 4721 unsigned NumReadWrites = 0; 4722 4723 PtrRtCheck.Pointers.clear(); 4724 PtrRtCheck.Need = false; 4725 4726 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4727 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4728 4729 // For each block. 4730 for (Loop::block_iterator bb = TheLoop->block_begin(), 4731 be = TheLoop->block_end(); bb != be; ++bb) { 4732 4733 // Scan the BB and collect legal loads and stores. 4734 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4735 ++it) { 4736 4737 // If this is a load, save it. If this instruction can read from memory 4738 // but is not a load, then we quit. Notice that we don't handle function 4739 // calls that read or write. 4740 if (it->mayReadFromMemory()) { 4741 // Many math library functions read the rounding mode. We will only 4742 // vectorize a loop if it contains known function calls that don't set 4743 // the flag. Therefore, it is safe to ignore this read from memory. 4744 CallInst *Call = dyn_cast<CallInst>(it); 4745 if (Call && getIntrinsicIDForCall(Call, TLI)) 4746 continue; 4747 4748 LoadInst *Ld = dyn_cast<LoadInst>(it); 4749 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4750 emitAnalysis(Report(Ld) 4751 << "read with atomic ordering or volatile read"); 4752 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4753 return false; 4754 } 4755 NumLoads++; 4756 Loads.push_back(Ld); 4757 DepChecker.addAccess(Ld); 4758 continue; 4759 } 4760 4761 // Save 'store' instructions. Abort if other instructions write to memory. 4762 if (it->mayWriteToMemory()) { 4763 StoreInst *St = dyn_cast<StoreInst>(it); 4764 if (!St) { 4765 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4766 return false; 4767 } 4768 if (!St->isSimple() && !IsAnnotatedParallel) { 4769 emitAnalysis(Report(St) 4770 << "write with atomic ordering or volatile write"); 4771 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4772 return false; 4773 } 4774 NumStores++; 4775 Stores.push_back(St); 4776 DepChecker.addAccess(St); 4777 } 4778 } // Next instr. 4779 } // Next block. 4780 4781 // Now we have two lists that hold the loads and the stores. 4782 // Next, we find the pointers that they use. 4783 4784 // Check if we see any stores. If there are no stores, then we don't 4785 // care if the pointers are *restrict*. 4786 if (!Stores.size()) { 4787 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4788 return true; 4789 } 4790 4791 AccessAnalysis::DepCandidates DependentAccesses; 4792 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4793 4794 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4795 // multiple times on the same object. If the ptr is accessed twice, once 4796 // for read and once for write, it will only appear once (on the write 4797 // list). This is okay, since we are going to check for conflicts between 4798 // writes and between reads and writes, but not between reads and reads. 4799 ValueSet Seen; 4800 4801 ValueVector::iterator I, IE; 4802 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4803 StoreInst *ST = cast<StoreInst>(*I); 4804 Value* Ptr = ST->getPointerOperand(); 4805 4806 if (isUniform(Ptr)) { 4807 emitAnalysis( 4808 Report(ST) 4809 << "write to a loop invariant address could not be vectorized"); 4810 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4811 return false; 4812 } 4813 4814 // If we did *not* see this pointer before, insert it to the read-write 4815 // list. At this phase it is only a 'write' list. 4816 if (Seen.insert(Ptr)) { 4817 ++NumReadWrites; 4818 4819 AliasAnalysis::Location Loc = AA->getLocation(ST); 4820 // The TBAA metadata could have a control dependency on the predication 4821 // condition, so we cannot rely on it when determining whether or not we 4822 // need runtime pointer checks. 4823 if (blockNeedsPredication(ST->getParent())) 4824 Loc.AATags.TBAA = nullptr; 4825 4826 Accesses.addStore(Loc); 4827 } 4828 } 4829 4830 if (IsAnnotatedParallel) { 4831 DEBUG(dbgs() 4832 << "LV: A loop annotated parallel, ignore memory dependency " 4833 << "checks.\n"); 4834 return true; 4835 } 4836 4837 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4838 LoadInst *LD = cast<LoadInst>(*I); 4839 Value* Ptr = LD->getPointerOperand(); 4840 // If we did *not* see this pointer before, insert it to the 4841 // read list. If we *did* see it before, then it is already in 4842 // the read-write list. This allows us to vectorize expressions 4843 // such as A[i] += x; Because the address of A[i] is a read-write 4844 // pointer. This only works if the index of A[i] is consecutive. 4845 // If the address of i is unknown (for example A[B[i]]) then we may 4846 // read a few words, modify, and write a few words, and some of the 4847 // words may be written to the same address. 4848 bool IsReadOnlyPtr = false; 4849 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4850 ++NumReads; 4851 IsReadOnlyPtr = true; 4852 } 4853 4854 AliasAnalysis::Location Loc = AA->getLocation(LD); 4855 // The TBAA metadata could have a control dependency on the predication 4856 // condition, so we cannot rely on it when determining whether or not we 4857 // need runtime pointer checks. 4858 if (blockNeedsPredication(LD->getParent())) 4859 Loc.AATags.TBAA = nullptr; 4860 4861 Accesses.addLoad(Loc, IsReadOnlyPtr); 4862 } 4863 4864 // If we write (or read-write) to a single destination and there are no 4865 // other reads in this loop then is it safe to vectorize. 4866 if (NumReadWrites == 1 && NumReads == 0) { 4867 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4868 return true; 4869 } 4870 4871 // Build dependence sets and check whether we need a runtime pointer bounds 4872 // check. 4873 Accesses.buildDependenceSets(); 4874 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4875 4876 // Find pointers with computable bounds. We are going to use this information 4877 // to place a runtime bound check. 4878 unsigned NumComparisons = 0; 4879 bool CanDoRT = false; 4880 if (NeedRTCheck) 4881 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4882 Strides); 4883 4884 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4885 " pointer comparisons.\n"); 4886 4887 // If we only have one set of dependences to check pointers among we don't 4888 // need a runtime check. 4889 if (NumComparisons == 0 && NeedRTCheck) 4890 NeedRTCheck = false; 4891 4892 // Check that we did not collect too many pointers or found an unsizeable 4893 // pointer. 4894 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4895 PtrRtCheck.reset(); 4896 CanDoRT = false; 4897 } 4898 4899 if (CanDoRT) { 4900 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4901 } 4902 4903 if (NeedRTCheck && !CanDoRT) { 4904 emitAnalysis(Report() << "cannot identify array bounds"); 4905 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4906 "the array bounds.\n"); 4907 PtrRtCheck.reset(); 4908 return false; 4909 } 4910 4911 PtrRtCheck.Need = NeedRTCheck; 4912 4913 bool CanVecMem = true; 4914 if (Accesses.isDependencyCheckNeeded()) { 4915 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4916 CanVecMem = DepChecker.areDepsSafe( 4917 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4918 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4919 4920 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4921 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4922 NeedRTCheck = true; 4923 4924 // Clear the dependency checks. We assume they are not needed. 4925 Accesses.resetDepChecks(); 4926 4927 PtrRtCheck.reset(); 4928 PtrRtCheck.Need = true; 4929 4930 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4931 TheLoop, Strides, true); 4932 // Check that we did not collect too many pointers or found an unsizeable 4933 // pointer. 4934 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4935 if (!CanDoRT && NumComparisons > 0) 4936 emitAnalysis(Report() 4937 << "cannot check memory dependencies at runtime"); 4938 else 4939 emitAnalysis(Report() 4940 << NumComparisons << " exceeds limit of " 4941 << RuntimeMemoryCheckThreshold 4942 << " dependent memory operations checked at runtime"); 4943 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4944 PtrRtCheck.reset(); 4945 return false; 4946 } 4947 4948 CanVecMem = true; 4949 } 4950 } 4951 4952 if (!CanVecMem) 4953 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4954 4955 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4956 " need a runtime memory check.\n"); 4957 4958 return CanVecMem; 4959 } 4960 4961 static bool hasMultipleUsesOf(Instruction *I, 4962 SmallPtrSetImpl<Instruction *> &Insts) { 4963 unsigned NumUses = 0; 4964 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 4965 if (Insts.count(dyn_cast<Instruction>(*Use))) 4966 ++NumUses; 4967 if (NumUses > 1) 4968 return true; 4969 } 4970 4971 return false; 4972 } 4973 4974 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 4975 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 4976 if (!Set.count(dyn_cast<Instruction>(*Use))) 4977 return false; 4978 return true; 4979 } 4980 4981 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 4982 ReductionKind Kind) { 4983 if (Phi->getNumIncomingValues() != 2) 4984 return false; 4985 4986 // Reduction variables are only found in the loop header block. 4987 if (Phi->getParent() != TheLoop->getHeader()) 4988 return false; 4989 4990 // Obtain the reduction start value from the value that comes from the loop 4991 // preheader. 4992 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 4993 4994 // ExitInstruction is the single value which is used outside the loop. 4995 // We only allow for a single reduction value to be used outside the loop. 4996 // This includes users of the reduction, variables (which form a cycle 4997 // which ends in the phi node). 4998 Instruction *ExitInstruction = nullptr; 4999 // Indicates that we found a reduction operation in our scan. 5000 bool FoundReduxOp = false; 5001 5002 // We start with the PHI node and scan for all of the users of this 5003 // instruction. All users must be instructions that can be used as reduction 5004 // variables (such as ADD). We must have a single out-of-block user. The cycle 5005 // must include the original PHI. 5006 bool FoundStartPHI = false; 5007 5008 // To recognize min/max patterns formed by a icmp select sequence, we store 5009 // the number of instruction we saw from the recognized min/max pattern, 5010 // to make sure we only see exactly the two instructions. 5011 unsigned NumCmpSelectPatternInst = 0; 5012 ReductionInstDesc ReduxDesc(false, nullptr); 5013 5014 SmallPtrSet<Instruction *, 8> VisitedInsts; 5015 SmallVector<Instruction *, 8> Worklist; 5016 Worklist.push_back(Phi); 5017 VisitedInsts.insert(Phi); 5018 5019 // A value in the reduction can be used: 5020 // - By the reduction: 5021 // - Reduction operation: 5022 // - One use of reduction value (safe). 5023 // - Multiple use of reduction value (not safe). 5024 // - PHI: 5025 // - All uses of the PHI must be the reduction (safe). 5026 // - Otherwise, not safe. 5027 // - By one instruction outside of the loop (safe). 5028 // - By further instructions outside of the loop (not safe). 5029 // - By an instruction that is not part of the reduction (not safe). 5030 // This is either: 5031 // * An instruction type other than PHI or the reduction operation. 5032 // * A PHI in the header other than the initial PHI. 5033 while (!Worklist.empty()) { 5034 Instruction *Cur = Worklist.back(); 5035 Worklist.pop_back(); 5036 5037 // No Users. 5038 // If the instruction has no users then this is a broken chain and can't be 5039 // a reduction variable. 5040 if (Cur->use_empty()) 5041 return false; 5042 5043 bool IsAPhi = isa<PHINode>(Cur); 5044 5045 // A header PHI use other than the original PHI. 5046 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5047 return false; 5048 5049 // Reductions of instructions such as Div, and Sub is only possible if the 5050 // LHS is the reduction variable. 5051 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5052 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5053 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5054 return false; 5055 5056 // Any reduction instruction must be of one of the allowed kinds. 5057 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5058 if (!ReduxDesc.IsReduction) 5059 return false; 5060 5061 // A reduction operation must only have one use of the reduction value. 5062 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5063 hasMultipleUsesOf(Cur, VisitedInsts)) 5064 return false; 5065 5066 // All inputs to a PHI node must be a reduction value. 5067 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5068 return false; 5069 5070 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5071 isa<SelectInst>(Cur))) 5072 ++NumCmpSelectPatternInst; 5073 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5074 isa<SelectInst>(Cur))) 5075 ++NumCmpSelectPatternInst; 5076 5077 // Check whether we found a reduction operator. 5078 FoundReduxOp |= !IsAPhi; 5079 5080 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5081 // onto the stack. This way we are going to have seen all inputs to PHI 5082 // nodes once we get to them. 5083 SmallVector<Instruction *, 8> NonPHIs; 5084 SmallVector<Instruction *, 8> PHIs; 5085 for (User *U : Cur->users()) { 5086 Instruction *UI = cast<Instruction>(U); 5087 5088 // Check if we found the exit user. 5089 BasicBlock *Parent = UI->getParent(); 5090 if (!TheLoop->contains(Parent)) { 5091 // Exit if you find multiple outside users or if the header phi node is 5092 // being used. In this case the user uses the value of the previous 5093 // iteration, in which case we would loose "VF-1" iterations of the 5094 // reduction operation if we vectorize. 5095 if (ExitInstruction != nullptr || Cur == Phi) 5096 return false; 5097 5098 // The instruction used by an outside user must be the last instruction 5099 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5100 // operations on the value. 5101 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5102 return false; 5103 5104 ExitInstruction = Cur; 5105 continue; 5106 } 5107 5108 // Process instructions only once (termination). Each reduction cycle 5109 // value must only be used once, except by phi nodes and min/max 5110 // reductions which are represented as a cmp followed by a select. 5111 ReductionInstDesc IgnoredVal(false, nullptr); 5112 if (VisitedInsts.insert(UI)) { 5113 if (isa<PHINode>(UI)) 5114 PHIs.push_back(UI); 5115 else 5116 NonPHIs.push_back(UI); 5117 } else if (!isa<PHINode>(UI) && 5118 ((!isa<FCmpInst>(UI) && 5119 !isa<ICmpInst>(UI) && 5120 !isa<SelectInst>(UI)) || 5121 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5122 return false; 5123 5124 // Remember that we completed the cycle. 5125 if (UI == Phi) 5126 FoundStartPHI = true; 5127 } 5128 Worklist.append(PHIs.begin(), PHIs.end()); 5129 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5130 } 5131 5132 // This means we have seen one but not the other instruction of the 5133 // pattern or more than just a select and cmp. 5134 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5135 NumCmpSelectPatternInst != 2) 5136 return false; 5137 5138 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5139 return false; 5140 5141 // We found a reduction var if we have reached the original phi node and we 5142 // only have a single instruction with out-of-loop users. 5143 5144 // This instruction is allowed to have out-of-loop users. 5145 AllowedExit.insert(ExitInstruction); 5146 5147 // Save the description of this reduction variable. 5148 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5149 ReduxDesc.MinMaxKind); 5150 Reductions[Phi] = RD; 5151 // We've ended the cycle. This is a reduction variable if we have an 5152 // outside user and it has a binary op. 5153 5154 return true; 5155 } 5156 5157 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5158 /// pattern corresponding to a min(X, Y) or max(X, Y). 5159 LoopVectorizationLegality::ReductionInstDesc 5160 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5161 ReductionInstDesc &Prev) { 5162 5163 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5164 "Expect a select instruction"); 5165 Instruction *Cmp = nullptr; 5166 SelectInst *Select = nullptr; 5167 5168 // We must handle the select(cmp()) as a single instruction. Advance to the 5169 // select. 5170 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5171 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5172 return ReductionInstDesc(false, I); 5173 return ReductionInstDesc(Select, Prev.MinMaxKind); 5174 } 5175 5176 // Only handle single use cases for now. 5177 if (!(Select = dyn_cast<SelectInst>(I))) 5178 return ReductionInstDesc(false, I); 5179 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5180 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5181 return ReductionInstDesc(false, I); 5182 if (!Cmp->hasOneUse()) 5183 return ReductionInstDesc(false, I); 5184 5185 Value *CmpLeft; 5186 Value *CmpRight; 5187 5188 // Look for a min/max pattern. 5189 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5190 return ReductionInstDesc(Select, MRK_UIntMin); 5191 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5192 return ReductionInstDesc(Select, MRK_UIntMax); 5193 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5194 return ReductionInstDesc(Select, MRK_SIntMax); 5195 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5196 return ReductionInstDesc(Select, MRK_SIntMin); 5197 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5198 return ReductionInstDesc(Select, MRK_FloatMin); 5199 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5200 return ReductionInstDesc(Select, MRK_FloatMax); 5201 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5202 return ReductionInstDesc(Select, MRK_FloatMin); 5203 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5204 return ReductionInstDesc(Select, MRK_FloatMax); 5205 5206 return ReductionInstDesc(false, I); 5207 } 5208 5209 LoopVectorizationLegality::ReductionInstDesc 5210 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5211 ReductionKind Kind, 5212 ReductionInstDesc &Prev) { 5213 bool FP = I->getType()->isFloatingPointTy(); 5214 bool FastMath = FP && I->hasUnsafeAlgebra(); 5215 switch (I->getOpcode()) { 5216 default: 5217 return ReductionInstDesc(false, I); 5218 case Instruction::PHI: 5219 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5220 Kind != RK_FloatMinMax)) 5221 return ReductionInstDesc(false, I); 5222 return ReductionInstDesc(I, Prev.MinMaxKind); 5223 case Instruction::Sub: 5224 case Instruction::Add: 5225 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5226 case Instruction::Mul: 5227 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5228 case Instruction::And: 5229 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5230 case Instruction::Or: 5231 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5232 case Instruction::Xor: 5233 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5234 case Instruction::FMul: 5235 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5236 case Instruction::FSub: 5237 case Instruction::FAdd: 5238 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5239 case Instruction::FCmp: 5240 case Instruction::ICmp: 5241 case Instruction::Select: 5242 if (Kind != RK_IntegerMinMax && 5243 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5244 return ReductionInstDesc(false, I); 5245 return isMinMaxSelectCmpPattern(I, Prev); 5246 } 5247 } 5248 5249 LoopVectorizationLegality::InductionKind 5250 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5251 Type *PhiTy = Phi->getType(); 5252 // We only handle integer and pointer inductions variables. 5253 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5254 return IK_NoInduction; 5255 5256 // Check that the PHI is consecutive. 5257 const SCEV *PhiScev = SE->getSCEV(Phi); 5258 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5259 if (!AR) { 5260 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5261 return IK_NoInduction; 5262 } 5263 const SCEV *Step = AR->getStepRecurrence(*SE); 5264 5265 // Integer inductions need to have a stride of one. 5266 if (PhiTy->isIntegerTy()) { 5267 if (Step->isOne()) 5268 return IK_IntInduction; 5269 if (Step->isAllOnesValue()) 5270 return IK_ReverseIntInduction; 5271 return IK_NoInduction; 5272 } 5273 5274 // Calculate the pointer stride and check if it is consecutive. 5275 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5276 if (!C) 5277 return IK_NoInduction; 5278 5279 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5280 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 5281 if (C->getValue()->equalsInt(Size)) 5282 return IK_PtrInduction; 5283 else if (C->getValue()->equalsInt(0 - Size)) 5284 return IK_ReversePtrInduction; 5285 5286 return IK_NoInduction; 5287 } 5288 5289 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5290 Value *In0 = const_cast<Value*>(V); 5291 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5292 if (!PN) 5293 return false; 5294 5295 return Inductions.count(PN); 5296 } 5297 5298 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5299 assert(TheLoop->contains(BB) && "Unknown block used"); 5300 5301 // Blocks that do not dominate the latch need predication. 5302 BasicBlock* Latch = TheLoop->getLoopLatch(); 5303 return !DT->dominates(BB, Latch); 5304 } 5305 5306 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5307 SmallPtrSetImpl<Value *> &SafePtrs) { 5308 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5309 // We might be able to hoist the load. 5310 if (it->mayReadFromMemory()) { 5311 LoadInst *LI = dyn_cast<LoadInst>(it); 5312 if (!LI || !SafePtrs.count(LI->getPointerOperand())) 5313 return false; 5314 } 5315 5316 // We don't predicate stores at the moment. 5317 if (it->mayWriteToMemory()) { 5318 StoreInst *SI = dyn_cast<StoreInst>(it); 5319 // We only support predication of stores in basic blocks with one 5320 // predecessor. 5321 if (!SI || ++NumPredStores > NumberOfStoresToPredicate || 5322 !SafePtrs.count(SI->getPointerOperand()) || 5323 !SI->getParent()->getSinglePredecessor()) 5324 return false; 5325 } 5326 if (it->mayThrow()) 5327 return false; 5328 5329 // Check that we don't have a constant expression that can trap as operand. 5330 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5331 OI != OE; ++OI) { 5332 if (Constant *C = dyn_cast<Constant>(*OI)) 5333 if (C->canTrap()) 5334 return false; 5335 } 5336 5337 // The instructions below can trap. 5338 switch (it->getOpcode()) { 5339 default: continue; 5340 case Instruction::UDiv: 5341 case Instruction::SDiv: 5342 case Instruction::URem: 5343 case Instruction::SRem: 5344 return false; 5345 } 5346 } 5347 5348 return true; 5349 } 5350 5351 LoopVectorizationCostModel::VectorizationFactor 5352 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5353 // Width 1 means no vectorize 5354 VectorizationFactor Factor = { 1U, 0U }; 5355 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5356 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5357 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5358 return Factor; 5359 } 5360 5361 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5362 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5363 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5364 return Factor; 5365 } 5366 5367 // Find the trip count. 5368 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5369 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5370 5371 unsigned WidestType = getWidestType(); 5372 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5373 unsigned MaxSafeDepDist = -1U; 5374 if (Legal->getMaxSafeDepDistBytes() != -1U) 5375 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5376 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5377 WidestRegister : MaxSafeDepDist); 5378 unsigned MaxVectorSize = WidestRegister / WidestType; 5379 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5380 DEBUG(dbgs() << "LV: The Widest register is: " 5381 << WidestRegister << " bits.\n"); 5382 5383 if (MaxVectorSize == 0) { 5384 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5385 MaxVectorSize = 1; 5386 } 5387 5388 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 5389 " into one vector!"); 5390 5391 unsigned VF = MaxVectorSize; 5392 5393 // If we optimize the program for size, avoid creating the tail loop. 5394 if (OptForSize) { 5395 // If we are unable to calculate the trip count then don't try to vectorize. 5396 if (TC < 2) { 5397 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5398 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5399 return Factor; 5400 } 5401 5402 // Find the maximum SIMD width that can fit within the trip count. 5403 VF = TC % MaxVectorSize; 5404 5405 if (VF == 0) 5406 VF = MaxVectorSize; 5407 5408 // If the trip count that we found modulo the vectorization factor is not 5409 // zero then we require a tail. 5410 if (VF < 2) { 5411 emitAnalysis(Report() << "cannot optimize for size and vectorize at the same time. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5412 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5413 return Factor; 5414 } 5415 } 5416 5417 int UserVF = Hints->getWidth(); 5418 if (UserVF != 0) { 5419 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5420 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5421 5422 Factor.Width = UserVF; 5423 return Factor; 5424 } 5425 5426 float Cost = expectedCost(1); 5427 #ifndef NDEBUG 5428 const float ScalarCost = Cost; 5429 #endif /* NDEBUG */ 5430 unsigned Width = 1; 5431 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5432 5433 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5434 // Ignore scalar width, because the user explicitly wants vectorization. 5435 if (ForceVectorization && VF > 1) { 5436 Width = 2; 5437 Cost = expectedCost(Width) / (float)Width; 5438 } 5439 5440 for (unsigned i=2; i <= VF; i*=2) { 5441 // Notice that the vector loop needs to be executed less times, so 5442 // we need to divide the cost of the vector loops by the width of 5443 // the vector elements. 5444 float VectorCost = expectedCost(i) / (float)i; 5445 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5446 (int)VectorCost << ".\n"); 5447 if (VectorCost < Cost) { 5448 Cost = VectorCost; 5449 Width = i; 5450 } 5451 } 5452 5453 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5454 << "LV: Vectorization seems to be not beneficial, " 5455 << "but was forced by a user.\n"); 5456 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5457 Factor.Width = Width; 5458 Factor.Cost = Width * Cost; 5459 return Factor; 5460 } 5461 5462 unsigned LoopVectorizationCostModel::getWidestType() { 5463 unsigned MaxWidth = 8; 5464 5465 // For each block. 5466 for (Loop::block_iterator bb = TheLoop->block_begin(), 5467 be = TheLoop->block_end(); bb != be; ++bb) { 5468 BasicBlock *BB = *bb; 5469 5470 // For each instruction in the loop. 5471 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5472 Type *T = it->getType(); 5473 5474 // Ignore ephemeral values. 5475 if (EphValues.count(it)) 5476 continue; 5477 5478 // Only examine Loads, Stores and PHINodes. 5479 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5480 continue; 5481 5482 // Examine PHI nodes that are reduction variables. 5483 if (PHINode *PN = dyn_cast<PHINode>(it)) 5484 if (!Legal->getReductionVars()->count(PN)) 5485 continue; 5486 5487 // Examine the stored values. 5488 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5489 T = ST->getValueOperand()->getType(); 5490 5491 // Ignore loaded pointer types and stored pointer types that are not 5492 // consecutive. However, we do want to take consecutive stores/loads of 5493 // pointer vectors into account. 5494 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5495 continue; 5496 5497 MaxWidth = std::max(MaxWidth, 5498 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5499 } 5500 } 5501 5502 return MaxWidth; 5503 } 5504 5505 unsigned 5506 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5507 unsigned VF, 5508 unsigned LoopCost) { 5509 5510 // -- The unroll heuristics -- 5511 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5512 // There are many micro-architectural considerations that we can't predict 5513 // at this level. For example, frontend pressure (on decode or fetch) due to 5514 // code size, or the number and capabilities of the execution ports. 5515 // 5516 // We use the following heuristics to select the unroll factor: 5517 // 1. If the code has reductions, then we unroll in order to break the cross 5518 // iteration dependency. 5519 // 2. If the loop is really small, then we unroll in order to reduce the loop 5520 // overhead. 5521 // 3. We don't unroll if we think that we will spill registers to memory due 5522 // to the increased register pressure. 5523 5524 // Use the user preference, unless 'auto' is selected. 5525 int UserUF = Hints->getInterleave(); 5526 if (UserUF != 0) 5527 return UserUF; 5528 5529 // When we optimize for size, we don't unroll. 5530 if (OptForSize) 5531 return 1; 5532 5533 // We used the distance for the unroll factor. 5534 if (Legal->getMaxSafeDepDistBytes() != -1U) 5535 return 1; 5536 5537 // Do not unroll loops with a relatively small trip count. 5538 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5539 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5540 return 1; 5541 5542 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5543 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5544 " registers\n"); 5545 5546 if (VF == 1) { 5547 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5548 TargetNumRegisters = ForceTargetNumScalarRegs; 5549 } else { 5550 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5551 TargetNumRegisters = ForceTargetNumVectorRegs; 5552 } 5553 5554 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5555 // We divide by these constants so assume that we have at least one 5556 // instruction that uses at least one register. 5557 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5558 R.NumInstructions = std::max(R.NumInstructions, 1U); 5559 5560 // We calculate the unroll factor using the following formula. 5561 // Subtract the number of loop invariants from the number of available 5562 // registers. These registers are used by all of the unrolled instances. 5563 // Next, divide the remaining registers by the number of registers that is 5564 // required by the loop, in order to estimate how many parallel instances 5565 // fit without causing spills. All of this is rounded down if necessary to be 5566 // a power of two. We want power of two unroll factors to simplify any 5567 // addressing operations or alignment considerations. 5568 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5569 R.MaxLocalUsers); 5570 5571 // Don't count the induction variable as unrolled. 5572 if (EnableIndVarRegisterHeur) 5573 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5574 std::max(1U, (R.MaxLocalUsers - 1))); 5575 5576 // Clamp the unroll factor ranges to reasonable factors. 5577 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 5578 5579 // Check if the user has overridden the unroll max. 5580 if (VF == 1) { 5581 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5582 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 5583 } else { 5584 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5585 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 5586 } 5587 5588 // If we did not calculate the cost for VF (because the user selected the VF) 5589 // then we calculate the cost of VF here. 5590 if (LoopCost == 0) 5591 LoopCost = expectedCost(VF); 5592 5593 // Clamp the calculated UF to be between the 1 and the max unroll factor 5594 // that the target allows. 5595 if (UF > MaxInterleaveSize) 5596 UF = MaxInterleaveSize; 5597 else if (UF < 1) 5598 UF = 1; 5599 5600 // Unroll if we vectorized this loop and there is a reduction that could 5601 // benefit from unrolling. 5602 if (VF > 1 && Legal->getReductionVars()->size()) { 5603 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5604 return UF; 5605 } 5606 5607 // Note that if we've already vectorized the loop we will have done the 5608 // runtime check and so unrolling won't require further checks. 5609 bool UnrollingRequiresRuntimePointerCheck = 5610 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5611 5612 // We want to unroll small loops in order to reduce the loop overhead and 5613 // potentially expose ILP opportunities. 5614 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5615 if (!UnrollingRequiresRuntimePointerCheck && 5616 LoopCost < SmallLoopCost) { 5617 // We assume that the cost overhead is 1 and we use the cost model 5618 // to estimate the cost of the loop and unroll until the cost of the 5619 // loop overhead is about 5% of the cost of the loop. 5620 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5621 5622 // Unroll until store/load ports (estimated by max unroll factor) are 5623 // saturated. 5624 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5625 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5626 5627 // If we have a scalar reduction (vector reductions are already dealt with 5628 // by this point), we can increase the critical path length if the loop 5629 // we're unrolling is inside another loop. Limit, by default to 2, so the 5630 // critical path only gets increased by one reduction operation. 5631 if (Legal->getReductionVars()->size() && 5632 TheLoop->getLoopDepth() > 1) { 5633 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5634 SmallUF = std::min(SmallUF, F); 5635 StoresUF = std::min(StoresUF, F); 5636 LoadsUF = std::min(LoadsUF, F); 5637 } 5638 5639 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5640 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5641 return std::max(StoresUF, LoadsUF); 5642 } 5643 5644 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5645 return SmallUF; 5646 } 5647 5648 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5649 return 1; 5650 } 5651 5652 LoopVectorizationCostModel::RegisterUsage 5653 LoopVectorizationCostModel::calculateRegisterUsage() { 5654 // This function calculates the register usage by measuring the highest number 5655 // of values that are alive at a single location. Obviously, this is a very 5656 // rough estimation. We scan the loop in a topological order in order and 5657 // assign a number to each instruction. We use RPO to ensure that defs are 5658 // met before their users. We assume that each instruction that has in-loop 5659 // users starts an interval. We record every time that an in-loop value is 5660 // used, so we have a list of the first and last occurrences of each 5661 // instruction. Next, we transpose this data structure into a multi map that 5662 // holds the list of intervals that *end* at a specific location. This multi 5663 // map allows us to perform a linear search. We scan the instructions linearly 5664 // and record each time that a new interval starts, by placing it in a set. 5665 // If we find this value in the multi-map then we remove it from the set. 5666 // The max register usage is the maximum size of the set. 5667 // We also search for instructions that are defined outside the loop, but are 5668 // used inside the loop. We need this number separately from the max-interval 5669 // usage number because when we unroll, loop-invariant values do not take 5670 // more register. 5671 LoopBlocksDFS DFS(TheLoop); 5672 DFS.perform(LI); 5673 5674 RegisterUsage R; 5675 R.NumInstructions = 0; 5676 5677 // Each 'key' in the map opens a new interval. The values 5678 // of the map are the index of the 'last seen' usage of the 5679 // instruction that is the key. 5680 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5681 // Maps instruction to its index. 5682 DenseMap<unsigned, Instruction*> IdxToInstr; 5683 // Marks the end of each interval. 5684 IntervalMap EndPoint; 5685 // Saves the list of instruction indices that are used in the loop. 5686 SmallSet<Instruction*, 8> Ends; 5687 // Saves the list of values that are used in the loop but are 5688 // defined outside the loop, such as arguments and constants. 5689 SmallPtrSet<Value*, 8> LoopInvariants; 5690 5691 unsigned Index = 0; 5692 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5693 be = DFS.endRPO(); bb != be; ++bb) { 5694 R.NumInstructions += (*bb)->size(); 5695 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5696 ++it) { 5697 Instruction *I = it; 5698 IdxToInstr[Index++] = I; 5699 5700 // Save the end location of each USE. 5701 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5702 Value *U = I->getOperand(i); 5703 Instruction *Instr = dyn_cast<Instruction>(U); 5704 5705 // Ignore non-instruction values such as arguments, constants, etc. 5706 if (!Instr) continue; 5707 5708 // If this instruction is outside the loop then record it and continue. 5709 if (!TheLoop->contains(Instr)) { 5710 LoopInvariants.insert(Instr); 5711 continue; 5712 } 5713 5714 // Overwrite previous end points. 5715 EndPoint[Instr] = Index; 5716 Ends.insert(Instr); 5717 } 5718 } 5719 } 5720 5721 // Saves the list of intervals that end with the index in 'key'. 5722 typedef SmallVector<Instruction*, 2> InstrList; 5723 DenseMap<unsigned, InstrList> TransposeEnds; 5724 5725 // Transpose the EndPoints to a list of values that end at each index. 5726 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5727 it != e; ++it) 5728 TransposeEnds[it->second].push_back(it->first); 5729 5730 SmallSet<Instruction*, 8> OpenIntervals; 5731 unsigned MaxUsage = 0; 5732 5733 5734 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5735 for (unsigned int i = 0; i < Index; ++i) { 5736 Instruction *I = IdxToInstr[i]; 5737 // Ignore instructions that are never used within the loop. 5738 if (!Ends.count(I)) continue; 5739 5740 // Ignore ephemeral values. 5741 if (EphValues.count(I)) 5742 continue; 5743 5744 // Remove all of the instructions that end at this location. 5745 InstrList &List = TransposeEnds[i]; 5746 for (unsigned int j=0, e = List.size(); j < e; ++j) 5747 OpenIntervals.erase(List[j]); 5748 5749 // Count the number of live interals. 5750 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5751 5752 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5753 OpenIntervals.size() << '\n'); 5754 5755 // Add the current instruction to the list of open intervals. 5756 OpenIntervals.insert(I); 5757 } 5758 5759 unsigned Invariant = LoopInvariants.size(); 5760 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5761 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5762 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5763 5764 R.LoopInvariantRegs = Invariant; 5765 R.MaxLocalUsers = MaxUsage; 5766 return R; 5767 } 5768 5769 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5770 unsigned Cost = 0; 5771 5772 // For each block. 5773 for (Loop::block_iterator bb = TheLoop->block_begin(), 5774 be = TheLoop->block_end(); bb != be; ++bb) { 5775 unsigned BlockCost = 0; 5776 BasicBlock *BB = *bb; 5777 5778 // For each instruction in the old loop. 5779 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5780 // Skip dbg intrinsics. 5781 if (isa<DbgInfoIntrinsic>(it)) 5782 continue; 5783 5784 // Ignore ephemeral values. 5785 if (EphValues.count(it)) 5786 continue; 5787 5788 unsigned C = getInstructionCost(it, VF); 5789 5790 // Check if we should override the cost. 5791 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5792 C = ForceTargetInstructionCost; 5793 5794 BlockCost += C; 5795 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5796 VF << " For instruction: " << *it << '\n'); 5797 } 5798 5799 // We assume that if-converted blocks have a 50% chance of being executed. 5800 // When the code is scalar then some of the blocks are avoided due to CF. 5801 // When the code is vectorized we execute all code paths. 5802 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5803 BlockCost /= 2; 5804 5805 Cost += BlockCost; 5806 } 5807 5808 return Cost; 5809 } 5810 5811 /// \brief Check whether the address computation for a non-consecutive memory 5812 /// access looks like an unlikely candidate for being merged into the indexing 5813 /// mode. 5814 /// 5815 /// We look for a GEP which has one index that is an induction variable and all 5816 /// other indices are loop invariant. If the stride of this access is also 5817 /// within a small bound we decide that this address computation can likely be 5818 /// merged into the addressing mode. 5819 /// In all other cases, we identify the address computation as complex. 5820 static bool isLikelyComplexAddressComputation(Value *Ptr, 5821 LoopVectorizationLegality *Legal, 5822 ScalarEvolution *SE, 5823 const Loop *TheLoop) { 5824 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5825 if (!Gep) 5826 return true; 5827 5828 // We are looking for a gep with all loop invariant indices except for one 5829 // which should be an induction variable. 5830 unsigned NumOperands = Gep->getNumOperands(); 5831 for (unsigned i = 1; i < NumOperands; ++i) { 5832 Value *Opd = Gep->getOperand(i); 5833 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5834 !Legal->isInductionVariable(Opd)) 5835 return true; 5836 } 5837 5838 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5839 // can likely be merged into the address computation. 5840 unsigned MaxMergeDistance = 64; 5841 5842 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5843 if (!AddRec) 5844 return true; 5845 5846 // Check the step is constant. 5847 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5848 // Calculate the pointer stride and check if it is consecutive. 5849 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5850 if (!C) 5851 return true; 5852 5853 const APInt &APStepVal = C->getValue()->getValue(); 5854 5855 // Huge step value - give up. 5856 if (APStepVal.getBitWidth() > 64) 5857 return true; 5858 5859 int64_t StepVal = APStepVal.getSExtValue(); 5860 5861 return StepVal > MaxMergeDistance; 5862 } 5863 5864 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5865 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5866 return true; 5867 return false; 5868 } 5869 5870 unsigned 5871 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5872 // If we know that this instruction will remain uniform, check the cost of 5873 // the scalar version. 5874 if (Legal->isUniformAfterVectorization(I)) 5875 VF = 1; 5876 5877 Type *RetTy = I->getType(); 5878 Type *VectorTy = ToVectorTy(RetTy, VF); 5879 5880 // TODO: We need to estimate the cost of intrinsic calls. 5881 switch (I->getOpcode()) { 5882 case Instruction::GetElementPtr: 5883 // We mark this instruction as zero-cost because the cost of GEPs in 5884 // vectorized code depends on whether the corresponding memory instruction 5885 // is scalarized or not. Therefore, we handle GEPs with the memory 5886 // instruction cost. 5887 return 0; 5888 case Instruction::Br: { 5889 return TTI.getCFInstrCost(I->getOpcode()); 5890 } 5891 case Instruction::PHI: 5892 //TODO: IF-converted IFs become selects. 5893 return 0; 5894 case Instruction::Add: 5895 case Instruction::FAdd: 5896 case Instruction::Sub: 5897 case Instruction::FSub: 5898 case Instruction::Mul: 5899 case Instruction::FMul: 5900 case Instruction::UDiv: 5901 case Instruction::SDiv: 5902 case Instruction::FDiv: 5903 case Instruction::URem: 5904 case Instruction::SRem: 5905 case Instruction::FRem: 5906 case Instruction::Shl: 5907 case Instruction::LShr: 5908 case Instruction::AShr: 5909 case Instruction::And: 5910 case Instruction::Or: 5911 case Instruction::Xor: { 5912 // Since we will replace the stride by 1 the multiplication should go away. 5913 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5914 return 0; 5915 // Certain instructions can be cheaper to vectorize if they have a constant 5916 // second vector operand. One example of this are shifts on x86. 5917 TargetTransformInfo::OperandValueKind Op1VK = 5918 TargetTransformInfo::OK_AnyValue; 5919 TargetTransformInfo::OperandValueKind Op2VK = 5920 TargetTransformInfo::OK_AnyValue; 5921 TargetTransformInfo::OperandValueProperties Op1VP = 5922 TargetTransformInfo::OP_None; 5923 TargetTransformInfo::OperandValueProperties Op2VP = 5924 TargetTransformInfo::OP_None; 5925 Value *Op2 = I->getOperand(1); 5926 5927 // Check for a splat of a constant or for a non uniform vector of constants. 5928 if (isa<ConstantInt>(Op2)) { 5929 ConstantInt *CInt = cast<ConstantInt>(Op2); 5930 if (CInt && CInt->getValue().isPowerOf2()) 5931 Op2VP = TargetTransformInfo::OP_PowerOf2; 5932 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5933 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5934 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5935 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5936 if (SplatValue) { 5937 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5938 if (CInt && CInt->getValue().isPowerOf2()) 5939 Op2VP = TargetTransformInfo::OP_PowerOf2; 5940 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5941 } 5942 } 5943 5944 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5945 Op1VP, Op2VP); 5946 } 5947 case Instruction::Select: { 5948 SelectInst *SI = cast<SelectInst>(I); 5949 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5950 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5951 Type *CondTy = SI->getCondition()->getType(); 5952 if (!ScalarCond) 5953 CondTy = VectorType::get(CondTy, VF); 5954 5955 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5956 } 5957 case Instruction::ICmp: 5958 case Instruction::FCmp: { 5959 Type *ValTy = I->getOperand(0)->getType(); 5960 VectorTy = ToVectorTy(ValTy, VF); 5961 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5962 } 5963 case Instruction::Store: 5964 case Instruction::Load: { 5965 StoreInst *SI = dyn_cast<StoreInst>(I); 5966 LoadInst *LI = dyn_cast<LoadInst>(I); 5967 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5968 LI->getType()); 5969 VectorTy = ToVectorTy(ValTy, VF); 5970 5971 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5972 unsigned AS = SI ? SI->getPointerAddressSpace() : 5973 LI->getPointerAddressSpace(); 5974 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5975 // We add the cost of address computation here instead of with the gep 5976 // instruction because only here we know whether the operation is 5977 // scalarized. 5978 if (VF == 1) 5979 return TTI.getAddressComputationCost(VectorTy) + 5980 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5981 5982 // Scalarized loads/stores. 5983 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5984 bool Reverse = ConsecutiveStride < 0; 5985 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 5986 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 5987 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5988 bool IsComplexComputation = 5989 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5990 unsigned Cost = 0; 5991 // The cost of extracting from the value vector and pointer vector. 5992 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5993 for (unsigned i = 0; i < VF; ++i) { 5994 // The cost of extracting the pointer operand. 5995 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5996 // In case of STORE, the cost of ExtractElement from the vector. 5997 // In case of LOAD, the cost of InsertElement into the returned 5998 // vector. 5999 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 6000 Instruction::InsertElement, 6001 VectorTy, i); 6002 } 6003 6004 // The cost of the scalar loads/stores. 6005 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6006 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6007 Alignment, AS); 6008 return Cost; 6009 } 6010 6011 // Wide load/stores. 6012 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6013 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6014 6015 if (Reverse) 6016 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6017 VectorTy, 0); 6018 return Cost; 6019 } 6020 case Instruction::ZExt: 6021 case Instruction::SExt: 6022 case Instruction::FPToUI: 6023 case Instruction::FPToSI: 6024 case Instruction::FPExt: 6025 case Instruction::PtrToInt: 6026 case Instruction::IntToPtr: 6027 case Instruction::SIToFP: 6028 case Instruction::UIToFP: 6029 case Instruction::Trunc: 6030 case Instruction::FPTrunc: 6031 case Instruction::BitCast: { 6032 // We optimize the truncation of induction variable. 6033 // The cost of these is the same as the scalar operation. 6034 if (I->getOpcode() == Instruction::Trunc && 6035 Legal->isInductionVariable(I->getOperand(0))) 6036 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6037 I->getOperand(0)->getType()); 6038 6039 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6040 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6041 } 6042 case Instruction::Call: { 6043 CallInst *CI = cast<CallInst>(I); 6044 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6045 assert(ID && "Not an intrinsic call!"); 6046 Type *RetTy = ToVectorTy(CI->getType(), VF); 6047 SmallVector<Type*, 4> Tys; 6048 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6049 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6050 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6051 } 6052 default: { 6053 // We are scalarizing the instruction. Return the cost of the scalar 6054 // instruction, plus the cost of insert and extract into vector 6055 // elements, times the vector width. 6056 unsigned Cost = 0; 6057 6058 if (!RetTy->isVoidTy() && VF != 1) { 6059 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6060 VectorTy); 6061 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6062 VectorTy); 6063 6064 // The cost of inserting the results plus extracting each one of the 6065 // operands. 6066 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6067 } 6068 6069 // The cost of executing VF copies of the scalar instruction. This opcode 6070 // is unknown. Assume that it is the same as 'mul'. 6071 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6072 return Cost; 6073 } 6074 }// end of switch. 6075 } 6076 6077 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6078 if (Scalar->isVoidTy() || VF == 1) 6079 return Scalar; 6080 return VectorType::get(Scalar, VF); 6081 } 6082 6083 char LoopVectorize::ID = 0; 6084 static const char lv_name[] = "Loop Vectorization"; 6085 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6086 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6087 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6088 INITIALIZE_PASS_DEPENDENCY(AssumptionTracker) 6089 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6090 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6091 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6092 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6093 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 6094 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6095 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6096 6097 namespace llvm { 6098 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6099 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6100 } 6101 } 6102 6103 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6104 // Check for a store. 6105 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6106 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6107 6108 // Check for a load. 6109 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6110 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6111 6112 return false; 6113 } 6114 6115 6116 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6117 bool IfPredicateStore) { 6118 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6119 // Holds vector parameters or scalars, in case of uniform vals. 6120 SmallVector<VectorParts, 4> Params; 6121 6122 setDebugLocFromInst(Builder, Instr); 6123 6124 // Find all of the vectorized parameters. 6125 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6126 Value *SrcOp = Instr->getOperand(op); 6127 6128 // If we are accessing the old induction variable, use the new one. 6129 if (SrcOp == OldInduction) { 6130 Params.push_back(getVectorValue(SrcOp)); 6131 continue; 6132 } 6133 6134 // Try using previously calculated values. 6135 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6136 6137 // If the src is an instruction that appeared earlier in the basic block 6138 // then it should already be vectorized. 6139 if (SrcInst && OrigLoop->contains(SrcInst)) { 6140 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6141 // The parameter is a vector value from earlier. 6142 Params.push_back(WidenMap.get(SrcInst)); 6143 } else { 6144 // The parameter is a scalar from outside the loop. Maybe even a constant. 6145 VectorParts Scalars; 6146 Scalars.append(UF, SrcOp); 6147 Params.push_back(Scalars); 6148 } 6149 } 6150 6151 assert(Params.size() == Instr->getNumOperands() && 6152 "Invalid number of operands"); 6153 6154 // Does this instruction return a value ? 6155 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6156 6157 Value *UndefVec = IsVoidRetTy ? nullptr : 6158 UndefValue::get(Instr->getType()); 6159 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6160 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6161 6162 Instruction *InsertPt = Builder.GetInsertPoint(); 6163 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6164 BasicBlock *CondBlock = nullptr; 6165 6166 VectorParts Cond; 6167 Loop *VectorLp = nullptr; 6168 if (IfPredicateStore) { 6169 assert(Instr->getParent()->getSinglePredecessor() && 6170 "Only support single predecessor blocks"); 6171 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6172 Instr->getParent()); 6173 VectorLp = LI->getLoopFor(IfBlock); 6174 assert(VectorLp && "Must have a loop for this block"); 6175 } 6176 6177 // For each vector unroll 'part': 6178 for (unsigned Part = 0; Part < UF; ++Part) { 6179 // For each scalar that we create: 6180 6181 // Start an "if (pred) a[i] = ..." block. 6182 Value *Cmp = nullptr; 6183 if (IfPredicateStore) { 6184 if (Cond[Part]->getType()->isVectorTy()) 6185 Cond[Part] = 6186 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6187 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6188 ConstantInt::get(Cond[Part]->getType(), 1)); 6189 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6190 LoopVectorBody.push_back(CondBlock); 6191 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6192 // Update Builder with newly created basic block. 6193 Builder.SetInsertPoint(InsertPt); 6194 } 6195 6196 Instruction *Cloned = Instr->clone(); 6197 if (!IsVoidRetTy) 6198 Cloned->setName(Instr->getName() + ".cloned"); 6199 // Replace the operands of the cloned instructions with extracted scalars. 6200 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6201 Value *Op = Params[op][Part]; 6202 Cloned->setOperand(op, Op); 6203 } 6204 6205 // Place the cloned scalar in the new loop. 6206 Builder.Insert(Cloned); 6207 6208 // If the original scalar returns a value we need to place it in a vector 6209 // so that future users will be able to use it. 6210 if (!IsVoidRetTy) 6211 VecResults[Part] = Cloned; 6212 6213 // End if-block. 6214 if (IfPredicateStore) { 6215 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6216 LoopVectorBody.push_back(NewIfBlock); 6217 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6218 Builder.SetInsertPoint(InsertPt); 6219 Instruction *OldBr = IfBlock->getTerminator(); 6220 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6221 OldBr->eraseFromParent(); 6222 IfBlock = NewIfBlock; 6223 } 6224 } 6225 } 6226 6227 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6228 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6229 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6230 6231 return scalarizeInstruction(Instr, IfPredicateStore); 6232 } 6233 6234 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6235 return Vec; 6236 } 6237 6238 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6239 return V; 6240 } 6241 6242 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6243 bool Negate) { 6244 // When unrolling and the VF is 1, we only need to add a simple scalar. 6245 Type *ITy = Val->getType(); 6246 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6247 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6248 return Builder.CreateAdd(Val, C, "induction"); 6249 } 6250