1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #define LV_NAME "loop-vectorize" 46 #define DEBUG_TYPE LV_NAME 47 48 #include "llvm/Transforms/Vectorize.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/StringExtras.h" 57 #include "llvm/Analysis/AliasAnalysis.h" 58 #include "llvm/Analysis/Dominators.h" 59 #include "llvm/Analysis/LoopInfo.h" 60 #include "llvm/Analysis/LoopIterator.h" 61 #include "llvm/Analysis/LoopPass.h" 62 #include "llvm/Analysis/ScalarEvolution.h" 63 #include "llvm/Analysis/ScalarEvolutionExpander.h" 64 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/Analysis/ValueTracking.h" 67 #include "llvm/Analysis/Verifier.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/IRBuilder.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/LLVMContext.h" 76 #include "llvm/IR/Module.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/Value.h" 79 #include "llvm/Pass.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/PatternMatch.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Support/ValueHandle.h" 85 #include "llvm/Target/TargetLibraryInfo.h" 86 #include "llvm/Transforms/Scalar.h" 87 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 88 #include "llvm/Transforms/Utils/Local.h" 89 #include <algorithm> 90 #include <map> 91 92 using namespace llvm; 93 using namespace llvm::PatternMatch; 94 95 static cl::opt<unsigned> 96 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 97 cl::desc("Sets the SIMD width. Zero is autoselect.")); 98 99 static cl::opt<unsigned> 100 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden, 101 cl::desc("Sets the vectorization unroll count. " 102 "Zero is autoselect.")); 103 104 static cl::opt<bool> 105 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 106 cl::desc("Enable if-conversion during vectorization.")); 107 108 /// We don't vectorize loops with a known constant trip count below this number. 109 static cl::opt<unsigned> 110 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 111 cl::Hidden, 112 cl::desc("Don't vectorize loops with a constant " 113 "trip count that is smaller than this " 114 "value.")); 115 116 /// We don't unroll loops with a known constant trip count below this number. 117 static const unsigned TinyTripCountUnrollThreshold = 128; 118 119 /// When performing memory disambiguation checks at runtime do not make more 120 /// than this number of comparisons. 121 static const unsigned RuntimeMemoryCheckThreshold = 8; 122 123 /// Maximum simd width. 124 static const unsigned MaxVectorWidth = 64; 125 126 /// Maximum vectorization unroll count. 127 static const unsigned MaxUnrollFactor = 16; 128 129 namespace { 130 131 // Forward declarations. 132 class LoopVectorizationLegality; 133 class LoopVectorizationCostModel; 134 135 /// InnerLoopVectorizer vectorizes loops which contain only one basic 136 /// block to a specified vectorization factor (VF). 137 /// This class performs the widening of scalars into vectors, or multiple 138 /// scalars. This class also implements the following features: 139 /// * It inserts an epilogue loop for handling loops that don't have iteration 140 /// counts that are known to be a multiple of the vectorization factor. 141 /// * It handles the code generation for reduction variables. 142 /// * Scalarization (implementation using scalars) of un-vectorizable 143 /// instructions. 144 /// InnerLoopVectorizer does not perform any vectorization-legality 145 /// checks, and relies on the caller to check for the different legality 146 /// aspects. The InnerLoopVectorizer relies on the 147 /// LoopVectorizationLegality class to provide information about the induction 148 /// and reduction variables that were found to a given vectorization factor. 149 class InnerLoopVectorizer { 150 public: 151 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 152 DominatorTree *DT, DataLayout *DL, 153 const TargetLibraryInfo *TLI, unsigned VecWidth, 154 unsigned UnrollFactor) 155 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 156 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0), 157 OldInduction(0), WidenMap(UnrollFactor) {} 158 159 // Perform the actual loop widening (vectorization). 160 void vectorize(LoopVectorizationLegality *Legal) { 161 // Create a new empty loop. Unlink the old loop and connect the new one. 162 createEmptyLoop(Legal); 163 // Widen each instruction in the old loop to a new one in the new loop. 164 // Use the Legality module to find the induction and reduction variables. 165 vectorizeLoop(Legal); 166 // Register the new loop and update the analysis passes. 167 updateAnalysis(); 168 } 169 170 private: 171 /// A small list of PHINodes. 172 typedef SmallVector<PHINode*, 4> PhiVector; 173 /// When we unroll loops we have multiple vector values for each scalar. 174 /// This data structure holds the unrolled and vectorized values that 175 /// originated from one scalar instruction. 176 typedef SmallVector<Value*, 2> VectorParts; 177 178 /// Add code that checks at runtime if the accessed arrays overlap. 179 /// Returns the comparator value or NULL if no check is needed. 180 Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal, 181 Instruction *Loc); 182 /// Create an empty loop, based on the loop ranges of the old loop. 183 void createEmptyLoop(LoopVectorizationLegality *Legal); 184 /// Copy and widen the instructions from the old loop. 185 void vectorizeLoop(LoopVectorizationLegality *Legal); 186 187 /// A helper function that computes the predicate of the block BB, assuming 188 /// that the header block of the loop is set to True. It returns the *entry* 189 /// mask for the block BB. 190 VectorParts createBlockInMask(BasicBlock *BB); 191 /// A helper function that computes the predicate of the edge between SRC 192 /// and DST. 193 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 194 195 /// A helper function to vectorize a single BB within the innermost loop. 196 void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, 197 PhiVector *PV); 198 199 /// Insert the new loop to the loop hierarchy and pass manager 200 /// and update the analysis passes. 201 void updateAnalysis(); 202 203 /// This instruction is un-vectorizable. Implement it as a sequence 204 /// of scalars. 205 void scalarizeInstruction(Instruction *Instr); 206 207 /// Vectorize Load and Store instructions, 208 void vectorizeMemoryInstruction(Instruction *Instr, 209 LoopVectorizationLegality *Legal); 210 211 /// Create a broadcast instruction. This method generates a broadcast 212 /// instruction (shuffle) for loop invariant values and for the induction 213 /// value. If this is the induction variable then we extend it to N, N+1, ... 214 /// this is needed because each iteration in the loop corresponds to a SIMD 215 /// element. 216 Value *getBroadcastInstrs(Value *V); 217 218 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 219 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 220 /// The sequence starts at StartIndex. 221 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 222 223 /// When we go over instructions in the basic block we rely on previous 224 /// values within the current basic block or on loop invariant values. 225 /// When we widen (vectorize) values we place them in the map. If the values 226 /// are not within the map, they have to be loop invariant, so we simply 227 /// broadcast them into a vector. 228 VectorParts &getVectorValue(Value *V); 229 230 /// Generate a shuffle sequence that will reverse the vector Vec. 231 Value *reverseVector(Value *Vec); 232 233 /// This is a helper class that holds the vectorizer state. It maps scalar 234 /// instructions to vector instructions. When the code is 'unrolled' then 235 /// then a single scalar value is mapped to multiple vector parts. The parts 236 /// are stored in the VectorPart type. 237 struct ValueMap { 238 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 239 /// are mapped. 240 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 241 242 /// \return True if 'Key' is saved in the Value Map. 243 bool has(Value *Key) const { return MapStorage.count(Key); } 244 245 /// Initializes a new entry in the map. Sets all of the vector parts to the 246 /// save value in 'Val'. 247 /// \return A reference to a vector with splat values. 248 VectorParts &splat(Value *Key, Value *Val) { 249 VectorParts &Entry = MapStorage[Key]; 250 Entry.assign(UF, Val); 251 return Entry; 252 } 253 254 ///\return A reference to the value that is stored at 'Key'. 255 VectorParts &get(Value *Key) { 256 VectorParts &Entry = MapStorage[Key]; 257 if (Entry.empty()) 258 Entry.resize(UF); 259 assert(Entry.size() == UF); 260 return Entry; 261 } 262 263 private: 264 /// The unroll factor. Each entry in the map stores this number of vector 265 /// elements. 266 unsigned UF; 267 268 /// Map storage. We use std::map and not DenseMap because insertions to a 269 /// dense map invalidates its iterators. 270 std::map<Value *, VectorParts> MapStorage; 271 }; 272 273 /// The original loop. 274 Loop *OrigLoop; 275 /// Scev analysis to use. 276 ScalarEvolution *SE; 277 /// Loop Info. 278 LoopInfo *LI; 279 /// Dominator Tree. 280 DominatorTree *DT; 281 /// Data Layout. 282 DataLayout *DL; 283 /// Target Library Info. 284 const TargetLibraryInfo *TLI; 285 286 /// The vectorization SIMD factor to use. Each vector will have this many 287 /// vector elements. 288 unsigned VF; 289 /// The vectorization unroll factor to use. Each scalar is vectorized to this 290 /// many different vector instructions. 291 unsigned UF; 292 293 /// The builder that we use 294 IRBuilder<> Builder; 295 296 // --- Vectorization state --- 297 298 /// The vector-loop preheader. 299 BasicBlock *LoopVectorPreHeader; 300 /// The scalar-loop preheader. 301 BasicBlock *LoopScalarPreHeader; 302 /// Middle Block between the vector and the scalar. 303 BasicBlock *LoopMiddleBlock; 304 ///The ExitBlock of the scalar loop. 305 BasicBlock *LoopExitBlock; 306 ///The vector loop body. 307 BasicBlock *LoopVectorBody; 308 ///The scalar loop body. 309 BasicBlock *LoopScalarBody; 310 /// A list of all bypass blocks. The first block is the entry of the loop. 311 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 312 313 /// The new Induction variable which was added to the new block. 314 PHINode *Induction; 315 /// The induction variable of the old basic block. 316 PHINode *OldInduction; 317 /// Holds the extended (to the widest induction type) start index. 318 Value *ExtendedIdx; 319 /// Maps scalars to widened vectors. 320 ValueMap WidenMap; 321 }; 322 323 /// \brief Check if conditionally executed loads are hoistable. 324 /// 325 /// This class has two functions: isHoistableLoad and canHoistAllLoads. 326 /// isHoistableLoad should be called on all load instructions that are executed 327 /// conditionally. After all conditional loads are processed, the client should 328 /// call canHoistAllLoads to determine if all of the conditional executed loads 329 /// have an unconditional memory access to the same memory address in the loop. 330 class LoadHoisting { 331 typedef SmallPtrSet<Value *, 8> MemorySet; 332 333 Loop *TheLoop; 334 DominatorTree *DT; 335 MemorySet CondLoadAddrSet; 336 337 public: 338 LoadHoisting(Loop *L, DominatorTree *D) : TheLoop(L), DT(D) {} 339 340 /// \brief Check if the instruction is a load with a identifiable address. 341 bool isHoistableLoad(Instruction *L); 342 343 /// \brief Check if all of the conditional loads are hoistable because there 344 /// exists an unconditional memory access to the same address in the loop. 345 bool canHoistAllLoads(); 346 }; 347 348 bool LoadHoisting::isHoistableLoad(Instruction *L) { 349 LoadInst *LI = dyn_cast<LoadInst>(L); 350 if (!LI) 351 return false; 352 353 CondLoadAddrSet.insert(LI->getPointerOperand()); 354 return true; 355 } 356 357 static void addMemAccesses(BasicBlock *BB, SmallPtrSet<Value *, 8> &Set) { 358 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { 359 if (LoadInst *LI = dyn_cast<LoadInst>(BI)) // Try a load. 360 Set.insert(LI->getPointerOperand()); 361 else if (StoreInst *SI = dyn_cast<StoreInst>(BI)) // Try a store. 362 Set.insert(SI->getPointerOperand()); 363 } 364 } 365 366 bool LoadHoisting::canHoistAllLoads() { 367 // No conditional loads. 368 if (CondLoadAddrSet.empty()) 369 return true; 370 371 MemorySet UncondMemAccesses; 372 std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector(); 373 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 374 375 // Iterate over the unconditional blocks and collect memory access addresses. 376 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { 377 BasicBlock *BB = LoopBlocks[i]; 378 379 // Ignore conditional blocks. 380 if (BB != LoopLatch && !DT->dominates(BB, LoopLatch)) 381 continue; 382 383 addMemAccesses(BB, UncondMemAccesses); 384 } 385 386 // And make sure there is a matching unconditional access for every 387 // conditional load. 388 for (MemorySet::iterator MI = CondLoadAddrSet.begin(), 389 ME = CondLoadAddrSet.end(); MI != ME; ++MI) 390 if (!UncondMemAccesses.count(*MI)) 391 return false; 392 393 return true; 394 } 395 396 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 397 /// to what vectorization factor. 398 /// This class does not look at the profitability of vectorization, only the 399 /// legality. This class has two main kinds of checks: 400 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 401 /// will change the order of memory accesses in a way that will change the 402 /// correctness of the program. 403 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 404 /// checks for a number of different conditions, such as the availability of a 405 /// single induction variable, that all types are supported and vectorize-able, 406 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 407 /// This class is also used by InnerLoopVectorizer for identifying 408 /// induction variable and the different reduction variables. 409 class LoopVectorizationLegality { 410 public: 411 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL, 412 DominatorTree *DT, TargetLibraryInfo *TLI) 413 : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI), 414 Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false), 415 MaxSafeDepDistBytes(-1U), LoadSpeculation(L, DT) {} 416 417 /// This enum represents the kinds of reductions that we support. 418 enum ReductionKind { 419 RK_NoReduction, ///< Not a reduction. 420 RK_IntegerAdd, ///< Sum of integers. 421 RK_IntegerMult, ///< Product of integers. 422 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 423 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 424 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 425 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 426 RK_FloatAdd, ///< Sum of floats. 427 RK_FloatMult, ///< Product of floats. 428 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 429 }; 430 431 /// This enum represents the kinds of inductions that we support. 432 enum InductionKind { 433 IK_NoInduction, ///< Not an induction variable. 434 IK_IntInduction, ///< Integer induction variable. Step = 1. 435 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 436 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 437 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 438 }; 439 440 // This enum represents the kind of minmax reduction. 441 enum MinMaxReductionKind { 442 MRK_Invalid, 443 MRK_UIntMin, 444 MRK_UIntMax, 445 MRK_SIntMin, 446 MRK_SIntMax, 447 MRK_FloatMin, 448 MRK_FloatMax 449 }; 450 451 /// This POD struct holds information about reduction variables. 452 struct ReductionDescriptor { 453 ReductionDescriptor() : StartValue(0), LoopExitInstr(0), 454 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 455 456 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 457 MinMaxReductionKind MK) 458 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 459 460 // The starting value of the reduction. 461 // It does not have to be zero! 462 TrackingVH<Value> StartValue; 463 // The instruction who's value is used outside the loop. 464 Instruction *LoopExitInstr; 465 // The kind of the reduction. 466 ReductionKind Kind; 467 // If this a min/max reduction the kind of reduction. 468 MinMaxReductionKind MinMaxKind; 469 }; 470 471 /// This POD struct holds information about a potential reduction operation. 472 struct ReductionInstDesc { 473 ReductionInstDesc(bool IsRedux, Instruction *I) : 474 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 475 476 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 477 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 478 479 // Is this instruction a reduction candidate. 480 bool IsReduction; 481 // The last instruction in a min/max pattern (select of the select(icmp()) 482 // pattern), or the current reduction instruction otherwise. 483 Instruction *PatternLastInst; 484 // If this is a min/max pattern the comparison predicate. 485 MinMaxReductionKind MinMaxKind; 486 }; 487 488 // This POD struct holds information about the memory runtime legality 489 // check that a group of pointers do not overlap. 490 struct RuntimePointerCheck { 491 RuntimePointerCheck() : Need(false) {} 492 493 /// Reset the state of the pointer runtime information. 494 void reset() { 495 Need = false; 496 Pointers.clear(); 497 Starts.clear(); 498 Ends.clear(); 499 } 500 501 /// Insert a pointer and calculate the start and end SCEVs. 502 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 503 unsigned DepSetId); 504 505 /// This flag indicates if we need to add the runtime check. 506 bool Need; 507 /// Holds the pointers that we need to check. 508 SmallVector<TrackingVH<Value>, 2> Pointers; 509 /// Holds the pointer value at the beginning of the loop. 510 SmallVector<const SCEV*, 2> Starts; 511 /// Holds the pointer value at the end of the loop. 512 SmallVector<const SCEV*, 2> Ends; 513 /// Holds the information if this pointer is used for writing to memory. 514 SmallVector<bool, 2> IsWritePtr; 515 /// Holds the id of the set of pointers that could be dependent because of a 516 /// shared underlying object. 517 SmallVector<unsigned, 2> DependencySetId; 518 }; 519 520 /// A POD for saving information about induction variables. 521 struct InductionInfo { 522 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 523 InductionInfo() : StartValue(0), IK(IK_NoInduction) {} 524 /// Start value. 525 TrackingVH<Value> StartValue; 526 /// Induction kind. 527 InductionKind IK; 528 }; 529 530 /// ReductionList contains the reduction descriptors for all 531 /// of the reductions that were found in the loop. 532 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 533 534 /// InductionList saves induction variables and maps them to the 535 /// induction descriptor. 536 typedef MapVector<PHINode*, InductionInfo> InductionList; 537 538 /// Returns true if it is legal to vectorize this loop. 539 /// This does not mean that it is profitable to vectorize this 540 /// loop, only that it is legal to do so. 541 bool canVectorize(); 542 543 /// Returns the Induction variable. 544 PHINode *getInduction() { return Induction; } 545 546 /// Returns the reduction variables found in the loop. 547 ReductionList *getReductionVars() { return &Reductions; } 548 549 /// Returns the induction variables found in the loop. 550 InductionList *getInductionVars() { return &Inductions; } 551 552 /// Returns the widest induction type. 553 Type *getWidestInductionType() { return WidestIndTy; } 554 555 /// Returns True if V is an induction variable in this loop. 556 bool isInductionVariable(const Value *V); 557 558 /// Return true if the block BB needs to be predicated in order for the loop 559 /// to be vectorized. 560 bool blockNeedsPredication(BasicBlock *BB); 561 562 /// Check if this pointer is consecutive when vectorizing. This happens 563 /// when the last index of the GEP is the induction variable, or that the 564 /// pointer itself is an induction variable. 565 /// This check allows us to vectorize A[idx] into a wide load/store. 566 /// Returns: 567 /// 0 - Stride is unknown or non consecutive. 568 /// 1 - Address is consecutive. 569 /// -1 - Address is consecutive, and decreasing. 570 int isConsecutivePtr(Value *Ptr); 571 572 /// Returns true if the value V is uniform within the loop. 573 bool isUniform(Value *V); 574 575 /// Returns true if this instruction will remain scalar after vectorization. 576 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 577 578 /// Returns the information that we collected about runtime memory check. 579 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 580 581 /// This function returns the identity element (or neutral element) for 582 /// the operation K. 583 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 584 585 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 586 587 private: 588 /// Check if a single basic block loop is vectorizable. 589 /// At this point we know that this is a loop with a constant trip count 590 /// and we only need to check individual instructions. 591 bool canVectorizeInstrs(); 592 593 /// When we vectorize loops we may change the order in which 594 /// we read and write from memory. This method checks if it is 595 /// legal to vectorize the code, considering only memory constrains. 596 /// Returns true if the loop is vectorizable 597 bool canVectorizeMemory(); 598 599 /// Return true if we can vectorize this loop using the IF-conversion 600 /// transformation. 601 bool canVectorizeWithIfConvert(); 602 603 /// Collect the variables that need to stay uniform after vectorization. 604 void collectLoopUniforms(); 605 606 /// Return true if all of the instructions in the block can be speculatively 607 /// executed. 608 bool blockCanBePredicated(BasicBlock *BB); 609 610 /// Returns True, if 'Phi' is the kind of reduction variable for type 611 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 612 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 613 /// Returns a struct describing if the instruction 'I' can be a reduction 614 /// variable of type 'Kind'. If the reduction is a min/max pattern of 615 /// select(icmp()) this function advances the instruction pointer 'I' from the 616 /// compare instruction to the select instruction and stores this pointer in 617 /// 'PatternLastInst' member of the returned struct. 618 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 619 ReductionInstDesc &Desc); 620 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 621 /// pattern corresponding to a min(X, Y) or max(X, Y). 622 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 623 ReductionInstDesc &Prev); 624 /// Returns the induction kind of Phi. This function may return NoInduction 625 /// if the PHI is not an induction variable. 626 InductionKind isInductionVariable(PHINode *Phi); 627 628 /// The loop that we evaluate. 629 Loop *TheLoop; 630 /// Scev analysis. 631 ScalarEvolution *SE; 632 /// DataLayout analysis. 633 DataLayout *DL; 634 /// Dominators. 635 DominatorTree *DT; 636 /// Target Library Info. 637 TargetLibraryInfo *TLI; 638 639 // --- vectorization state --- // 640 641 /// Holds the integer induction variable. This is the counter of the 642 /// loop. 643 PHINode *Induction; 644 /// Holds the reduction variables. 645 ReductionList Reductions; 646 /// Holds all of the induction variables that we found in the loop. 647 /// Notice that inductions don't need to start at zero and that induction 648 /// variables can be pointers. 649 InductionList Inductions; 650 /// Holds the widest induction type encountered. 651 Type *WidestIndTy; 652 653 /// Allowed outside users. This holds the reduction 654 /// vars which can be accessed from outside the loop. 655 SmallPtrSet<Value*, 4> AllowedExit; 656 /// This set holds the variables which are known to be uniform after 657 /// vectorization. 658 SmallPtrSet<Instruction*, 4> Uniforms; 659 /// We need to check that all of the pointers in this list are disjoint 660 /// at runtime. 661 RuntimePointerCheck PtrRtCheck; 662 /// Can we assume the absence of NaNs. 663 bool HasFunNoNaNAttr; 664 665 unsigned MaxSafeDepDistBytes; 666 667 /// Utility to determine whether loads can be speculated. 668 LoadHoisting LoadSpeculation; 669 }; 670 671 /// LoopVectorizationCostModel - estimates the expected speedups due to 672 /// vectorization. 673 /// In many cases vectorization is not profitable. This can happen because of 674 /// a number of reasons. In this class we mainly attempt to predict the 675 /// expected speedup/slowdowns due to the supported instruction set. We use the 676 /// TargetTransformInfo to query the different backends for the cost of 677 /// different operations. 678 class LoopVectorizationCostModel { 679 public: 680 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 681 LoopVectorizationLegality *Legal, 682 const TargetTransformInfo &TTI, 683 DataLayout *DL, const TargetLibraryInfo *TLI) 684 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {} 685 686 /// Information about vectorization costs 687 struct VectorizationFactor { 688 unsigned Width; // Vector width with best cost 689 unsigned Cost; // Cost of the loop with that width 690 }; 691 /// \return The most profitable vectorization factor and the cost of that VF. 692 /// This method checks every power of two up to VF. If UserVF is not ZERO 693 /// then this vectorization factor will be selected if vectorization is 694 /// possible. 695 VectorizationFactor selectVectorizationFactor(bool OptForSize, 696 unsigned UserVF); 697 698 /// \return The size (in bits) of the widest type in the code that 699 /// needs to be vectorized. We ignore values that remain scalar such as 700 /// 64 bit loop indices. 701 unsigned getWidestType(); 702 703 /// \return The most profitable unroll factor. 704 /// If UserUF is non-zero then this method finds the best unroll-factor 705 /// based on register pressure and other parameters. 706 /// VF and LoopCost are the selected vectorization factor and the cost of the 707 /// selected VF. 708 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF, 709 unsigned LoopCost); 710 711 /// \brief A struct that represents some properties of the register usage 712 /// of a loop. 713 struct RegisterUsage { 714 /// Holds the number of loop invariant values that are used in the loop. 715 unsigned LoopInvariantRegs; 716 /// Holds the maximum number of concurrent live intervals in the loop. 717 unsigned MaxLocalUsers; 718 /// Holds the number of instructions in the loop. 719 unsigned NumInstructions; 720 }; 721 722 /// \return information about the register usage of the loop. 723 RegisterUsage calculateRegisterUsage(); 724 725 private: 726 /// Returns the expected execution cost. The unit of the cost does 727 /// not matter because we use the 'cost' units to compare different 728 /// vector widths. The cost that is returned is *not* normalized by 729 /// the factor width. 730 unsigned expectedCost(unsigned VF); 731 732 /// Returns the execution time cost of an instruction for a given vector 733 /// width. Vector width of one means scalar. 734 unsigned getInstructionCost(Instruction *I, unsigned VF); 735 736 /// A helper function for converting Scalar types to vector types. 737 /// If the incoming type is void, we return void. If the VF is 1, we return 738 /// the scalar type. 739 static Type* ToVectorTy(Type *Scalar, unsigned VF); 740 741 /// Returns whether the instruction is a load or store and will be a emitted 742 /// as a vector operation. 743 bool isConsecutiveLoadOrStore(Instruction *I); 744 745 /// The loop that we evaluate. 746 Loop *TheLoop; 747 /// Scev analysis. 748 ScalarEvolution *SE; 749 /// Loop Info analysis. 750 LoopInfo *LI; 751 /// Vectorization legality. 752 LoopVectorizationLegality *Legal; 753 /// Vector target information. 754 const TargetTransformInfo &TTI; 755 /// Target data layout information. 756 DataLayout *DL; 757 /// Target Library Info. 758 const TargetLibraryInfo *TLI; 759 }; 760 761 /// Utility class for getting and setting loop vectorizer hints in the form 762 /// of loop metadata. 763 struct LoopVectorizeHints { 764 /// Vectorization width. 765 unsigned Width; 766 /// Vectorization unroll factor. 767 unsigned Unroll; 768 769 LoopVectorizeHints(const Loop *L) 770 : Width(VectorizationFactor) 771 , Unroll(VectorizationUnroll) 772 , LoopID(L->getLoopID()) { 773 getHints(L); 774 // The command line options override any loop metadata except for when 775 // width == 1 which is used to indicate the loop is already vectorized. 776 if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1) 777 Width = VectorizationFactor; 778 if (VectorizationUnroll.getNumOccurrences() > 0) 779 Unroll = VectorizationUnroll; 780 } 781 782 /// Return the loop vectorizer metadata prefix. 783 static StringRef Prefix() { return "llvm.vectorizer."; } 784 785 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) { 786 SmallVector<Value*, 2> Vals; 787 Vals.push_back(MDString::get(Context, Name)); 788 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V)); 789 return MDNode::get(Context, Vals); 790 } 791 792 /// Mark the loop L as already vectorized by setting the width to 1. 793 void setAlreadyVectorized(Loop *L) { 794 LLVMContext &Context = L->getHeader()->getContext(); 795 796 Width = 1; 797 798 // Create a new loop id with one more operand for the already_vectorized 799 // hint. If the loop already has a loop id then copy the existing operands. 800 SmallVector<Value*, 4> Vals(1); 801 if (LoopID) 802 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) 803 Vals.push_back(LoopID->getOperand(i)); 804 805 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width)); 806 807 MDNode *NewLoopID = MDNode::get(Context, Vals); 808 // Set operand 0 to refer to the loop id itself. 809 NewLoopID->replaceOperandWith(0, NewLoopID); 810 811 L->setLoopID(NewLoopID); 812 if (LoopID) 813 LoopID->replaceAllUsesWith(NewLoopID); 814 815 LoopID = NewLoopID; 816 } 817 818 private: 819 MDNode *LoopID; 820 821 /// Find hints specified in the loop metadata. 822 void getHints(const Loop *L) { 823 if (!LoopID) 824 return; 825 826 // First operand should refer to the loop id itself. 827 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 828 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 829 830 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 831 const MDString *S = 0; 832 SmallVector<Value*, 4> Args; 833 834 // The expected hint is either a MDString or a MDNode with the first 835 // operand a MDString. 836 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 837 if (!MD || MD->getNumOperands() == 0) 838 continue; 839 S = dyn_cast<MDString>(MD->getOperand(0)); 840 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 841 Args.push_back(MD->getOperand(i)); 842 } else { 843 S = dyn_cast<MDString>(LoopID->getOperand(i)); 844 assert(Args.size() == 0 && "too many arguments for MDString"); 845 } 846 847 if (!S) 848 continue; 849 850 // Check if the hint starts with the vectorizer prefix. 851 StringRef Hint = S->getString(); 852 if (!Hint.startswith(Prefix())) 853 continue; 854 // Remove the prefix. 855 Hint = Hint.substr(Prefix().size(), StringRef::npos); 856 857 if (Args.size() == 1) 858 getHint(Hint, Args[0]); 859 } 860 } 861 862 // Check string hint with one operand. 863 void getHint(StringRef Hint, Value *Arg) { 864 const ConstantInt *C = dyn_cast<ConstantInt>(Arg); 865 if (!C) return; 866 unsigned Val = C->getZExtValue(); 867 868 if (Hint == "width") { 869 assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth && 870 "Invalid width metadata"); 871 Width = Val; 872 } else if (Hint == "unroll") { 873 assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor && 874 "Invalid unroll metadata"); 875 Unroll = Val; 876 } else 877 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint); 878 } 879 }; 880 881 /// The LoopVectorize Pass. 882 struct LoopVectorize : public LoopPass { 883 /// Pass identification, replacement for typeid 884 static char ID; 885 886 explicit LoopVectorize() : LoopPass(ID) { 887 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 888 } 889 890 ScalarEvolution *SE; 891 DataLayout *DL; 892 LoopInfo *LI; 893 TargetTransformInfo *TTI; 894 DominatorTree *DT; 895 TargetLibraryInfo *TLI; 896 897 virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { 898 // We only vectorize innermost loops. 899 if (!L->empty()) 900 return false; 901 902 SE = &getAnalysis<ScalarEvolution>(); 903 DL = getAnalysisIfAvailable<DataLayout>(); 904 LI = &getAnalysis<LoopInfo>(); 905 TTI = &getAnalysis<TargetTransformInfo>(); 906 DT = &getAnalysis<DominatorTree>(); 907 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 908 909 if (DL == NULL) { 910 DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout"); 911 return false; 912 } 913 914 DEBUG(dbgs() << "LV: Checking a loop in \"" << 915 L->getHeader()->getParent()->getName() << "\"\n"); 916 917 LoopVectorizeHints Hints(L); 918 919 if (Hints.Width == 1) { 920 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 921 return false; 922 } 923 924 // Check if it is legal to vectorize the loop. 925 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI); 926 if (!LVL.canVectorize()) { 927 DEBUG(dbgs() << "LV: Not vectorizing.\n"); 928 return false; 929 } 930 931 // Use the cost model. 932 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI); 933 934 // Check the function attributes to find out if this function should be 935 // optimized for size. 936 Function *F = L->getHeader()->getParent(); 937 Attribute::AttrKind SzAttr = Attribute::OptimizeForSize; 938 Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat; 939 unsigned FnIndex = AttributeSet::FunctionIndex; 940 bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr); 941 bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr); 942 943 if (NoFloat) { 944 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 945 "attribute is used.\n"); 946 return false; 947 } 948 949 // Select the optimal vectorization factor. 950 LoopVectorizationCostModel::VectorizationFactor VF; 951 VF = CM.selectVectorizationFactor(OptForSize, Hints.Width); 952 // Select the unroll factor. 953 unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width, 954 VF.Cost); 955 956 if (VF.Width == 1) { 957 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 958 return false; 959 } 960 961 DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<< 962 F->getParent()->getModuleIdentifier()<<"\n"); 963 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n"); 964 965 // If we decided that it is *legal* to vectorize the loop then do it. 966 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 967 LB.vectorize(&LVL); 968 969 // Mark the loop as already vectorized to avoid vectorizing again. 970 Hints.setAlreadyVectorized(L); 971 972 DEBUG(verifyFunction(*L->getHeader()->getParent())); 973 return true; 974 } 975 976 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 977 LoopPass::getAnalysisUsage(AU); 978 AU.addRequiredID(LoopSimplifyID); 979 AU.addRequiredID(LCSSAID); 980 AU.addRequired<DominatorTree>(); 981 AU.addRequired<LoopInfo>(); 982 AU.addRequired<ScalarEvolution>(); 983 AU.addRequired<TargetTransformInfo>(); 984 AU.addPreserved<LoopInfo>(); 985 AU.addPreserved<DominatorTree>(); 986 } 987 988 }; 989 990 } // end anonymous namespace 991 992 //===----------------------------------------------------------------------===// 993 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 994 // LoopVectorizationCostModel. 995 //===----------------------------------------------------------------------===// 996 997 void 998 LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, 999 Loop *Lp, Value *Ptr, 1000 bool WritePtr, 1001 unsigned DepSetId) { 1002 const SCEV *Sc = SE->getSCEV(Ptr); 1003 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1004 assert(AR && "Invalid addrec expression"); 1005 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1006 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1007 Pointers.push_back(Ptr); 1008 Starts.push_back(AR->getStart()); 1009 Ends.push_back(ScEnd); 1010 IsWritePtr.push_back(WritePtr); 1011 DependencySetId.push_back(DepSetId); 1012 } 1013 1014 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1015 // Save the current insertion location. 1016 Instruction *Loc = Builder.GetInsertPoint(); 1017 1018 // We need to place the broadcast of invariant variables outside the loop. 1019 Instruction *Instr = dyn_cast<Instruction>(V); 1020 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 1021 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1022 1023 // Place the code for broadcasting invariant variables in the new preheader. 1024 if (Invariant) 1025 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1026 1027 // Broadcast the scalar into all locations in the vector. 1028 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1029 1030 // Restore the builder insertion point. 1031 if (Invariant) 1032 Builder.SetInsertPoint(Loc); 1033 1034 return Shuf; 1035 } 1036 1037 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1038 bool Negate) { 1039 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1040 assert(Val->getType()->getScalarType()->isIntegerTy() && 1041 "Elem must be an integer"); 1042 // Create the types. 1043 Type *ITy = Val->getType()->getScalarType(); 1044 VectorType *Ty = cast<VectorType>(Val->getType()); 1045 int VLen = Ty->getNumElements(); 1046 SmallVector<Constant*, 8> Indices; 1047 1048 // Create a vector of consecutive numbers from zero to VF. 1049 for (int i = 0; i < VLen; ++i) { 1050 int64_t Idx = Negate ? (-i) : i; 1051 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1052 } 1053 1054 // Add the consecutive indices to the vector value. 1055 Constant *Cv = ConstantVector::get(Indices); 1056 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1057 return Builder.CreateAdd(Val, Cv, "induction"); 1058 } 1059 1060 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1061 assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); 1062 // Make sure that the pointer does not point to structs. 1063 if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) 1064 return 0; 1065 1066 // If this value is a pointer induction variable we know it is consecutive. 1067 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1068 if (Phi && Inductions.count(Phi)) { 1069 InductionInfo II = Inductions[Phi]; 1070 if (IK_PtrInduction == II.IK) 1071 return 1; 1072 else if (IK_ReversePtrInduction == II.IK) 1073 return -1; 1074 } 1075 1076 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1077 if (!Gep) 1078 return 0; 1079 1080 unsigned NumOperands = Gep->getNumOperands(); 1081 Value *LastIndex = Gep->getOperand(NumOperands - 1); 1082 1083 Value *GpPtr = Gep->getPointerOperand(); 1084 // If this GEP value is a consecutive pointer induction variable and all of 1085 // the indices are constant then we know it is consecutive. We can 1086 Phi = dyn_cast<PHINode>(GpPtr); 1087 if (Phi && Inductions.count(Phi)) { 1088 1089 // Make sure that the pointer does not point to structs. 1090 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1091 if (GepPtrType->getElementType()->isAggregateType()) 1092 return 0; 1093 1094 // Make sure that all of the index operands are loop invariant. 1095 for (unsigned i = 1; i < NumOperands; ++i) 1096 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1097 return 0; 1098 1099 InductionInfo II = Inductions[Phi]; 1100 if (IK_PtrInduction == II.IK) 1101 return 1; 1102 else if (IK_ReversePtrInduction == II.IK) 1103 return -1; 1104 } 1105 1106 // Check that all of the gep indices are uniform except for the last. 1107 for (unsigned i = 0; i < NumOperands - 1; ++i) 1108 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1109 return 0; 1110 1111 // We can emit wide load/stores only if the last index is the induction 1112 // variable. 1113 const SCEV *Last = SE->getSCEV(LastIndex); 1114 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1115 const SCEV *Step = AR->getStepRecurrence(*SE); 1116 1117 // The memory is consecutive because the last index is consecutive 1118 // and all other indices are loop invariant. 1119 if (Step->isOne()) 1120 return 1; 1121 if (Step->isAllOnesValue()) 1122 return -1; 1123 } 1124 1125 return 0; 1126 } 1127 1128 bool LoopVectorizationLegality::isUniform(Value *V) { 1129 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1130 } 1131 1132 InnerLoopVectorizer::VectorParts& 1133 InnerLoopVectorizer::getVectorValue(Value *V) { 1134 assert(V != Induction && "The new induction variable should not be used."); 1135 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1136 1137 // If we have this scalar in the map, return it. 1138 if (WidenMap.has(V)) 1139 return WidenMap.get(V); 1140 1141 // If this scalar is unknown, assume that it is a constant or that it is 1142 // loop invariant. Broadcast V and save the value for future uses. 1143 Value *B = getBroadcastInstrs(V); 1144 return WidenMap.splat(V, B); 1145 } 1146 1147 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1148 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1149 SmallVector<Constant*, 8> ShuffleMask; 1150 for (unsigned i = 0; i < VF; ++i) 1151 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1152 1153 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1154 ConstantVector::get(ShuffleMask), 1155 "reverse"); 1156 } 1157 1158 1159 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 1160 LoopVectorizationLegality *Legal) { 1161 // Attempt to issue a wide load. 1162 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1163 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1164 1165 assert((LI || SI) && "Invalid Load/Store instruction"); 1166 1167 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1168 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1169 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1170 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1171 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1172 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1173 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1174 1175 if (ScalarAllocatedSize != VectorElementSize) 1176 return scalarizeInstruction(Instr); 1177 1178 // If the pointer is loop invariant or if it is non consecutive, 1179 // scalarize the load. 1180 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1181 bool Reverse = ConsecutiveStride < 0; 1182 bool UniformLoad = LI && Legal->isUniform(Ptr); 1183 if (!ConsecutiveStride || UniformLoad) 1184 return scalarizeInstruction(Instr); 1185 1186 Constant *Zero = Builder.getInt32(0); 1187 VectorParts &Entry = WidenMap.get(Instr); 1188 1189 // Handle consecutive loads/stores. 1190 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1191 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1192 Value *PtrOperand = Gep->getPointerOperand(); 1193 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1194 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1195 1196 // Create the new GEP with the new induction variable. 1197 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1198 Gep2->setOperand(0, FirstBasePtr); 1199 Gep2->setName("gep.indvar.base"); 1200 Ptr = Builder.Insert(Gep2); 1201 } else if (Gep) { 1202 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1203 OrigLoop) && "Base ptr must be invariant"); 1204 1205 // The last index does not have to be the induction. It can be 1206 // consecutive and be a function of the index. For example A[I+1]; 1207 unsigned NumOperands = Gep->getNumOperands(); 1208 1209 Value *LastGepOperand = Gep->getOperand(NumOperands - 1); 1210 VectorParts &GEPParts = getVectorValue(LastGepOperand); 1211 Value *LastIndex = GEPParts[0]; 1212 LastIndex = Builder.CreateExtractElement(LastIndex, Zero); 1213 1214 // Create the new GEP with the new induction variable. 1215 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1216 Gep2->setOperand(NumOperands - 1, LastIndex); 1217 Gep2->setName("gep.indvar.idx"); 1218 Ptr = Builder.Insert(Gep2); 1219 } else { 1220 // Use the induction element ptr. 1221 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1222 VectorParts &PtrVal = getVectorValue(Ptr); 1223 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1224 } 1225 1226 // Handle Stores: 1227 if (SI) { 1228 assert(!Legal->isUniform(SI->getPointerOperand()) && 1229 "We do not allow storing to uniform addresses"); 1230 1231 VectorParts &StoredVal = getVectorValue(SI->getValueOperand()); 1232 for (unsigned Part = 0; Part < UF; ++Part) { 1233 // Calculate the pointer for the specific unroll-part. 1234 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1235 1236 if (Reverse) { 1237 // If we store to reverse consecutive memory locations then we need 1238 // to reverse the order of elements in the stored value. 1239 StoredVal[Part] = reverseVector(StoredVal[Part]); 1240 // If the address is consecutive but reversed, then the 1241 // wide store needs to start at the last vector element. 1242 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1243 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1244 } 1245 1246 Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 1247 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment); 1248 } 1249 } 1250 1251 for (unsigned Part = 0; Part < UF; ++Part) { 1252 // Calculate the pointer for the specific unroll-part. 1253 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1254 1255 if (Reverse) { 1256 // If the address is consecutive but reversed, then the 1257 // wide store needs to start at the last vector element. 1258 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1259 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1260 } 1261 1262 Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 1263 Value *LI = Builder.CreateLoad(VecPtr, "wide.load"); 1264 cast<LoadInst>(LI)->setAlignment(Alignment); 1265 Entry[Part] = Reverse ? reverseVector(LI) : LI; 1266 } 1267 } 1268 1269 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { 1270 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1271 // Holds vector parameters or scalars, in case of uniform vals. 1272 SmallVector<VectorParts, 4> Params; 1273 1274 // Find all of the vectorized parameters. 1275 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1276 Value *SrcOp = Instr->getOperand(op); 1277 1278 // If we are accessing the old induction variable, use the new one. 1279 if (SrcOp == OldInduction) { 1280 Params.push_back(getVectorValue(SrcOp)); 1281 continue; 1282 } 1283 1284 // Try using previously calculated values. 1285 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1286 1287 // If the src is an instruction that appeared earlier in the basic block 1288 // then it should already be vectorized. 1289 if (SrcInst && OrigLoop->contains(SrcInst)) { 1290 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1291 // The parameter is a vector value from earlier. 1292 Params.push_back(WidenMap.get(SrcInst)); 1293 } else { 1294 // The parameter is a scalar from outside the loop. Maybe even a constant. 1295 VectorParts Scalars; 1296 Scalars.append(UF, SrcOp); 1297 Params.push_back(Scalars); 1298 } 1299 } 1300 1301 assert(Params.size() == Instr->getNumOperands() && 1302 "Invalid number of operands"); 1303 1304 // Does this instruction return a value ? 1305 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1306 1307 Value *UndefVec = IsVoidRetTy ? 0 : 1308 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1309 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1310 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1311 1312 // For each vector unroll 'part': 1313 for (unsigned Part = 0; Part < UF; ++Part) { 1314 // For each scalar that we create: 1315 for (unsigned Width = 0; Width < VF; ++Width) { 1316 Instruction *Cloned = Instr->clone(); 1317 if (!IsVoidRetTy) 1318 Cloned->setName(Instr->getName() + ".cloned"); 1319 // Replace the operands of the cloned instrucions with extracted scalars. 1320 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1321 Value *Op = Params[op][Part]; 1322 // Param is a vector. Need to extract the right lane. 1323 if (Op->getType()->isVectorTy()) 1324 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1325 Cloned->setOperand(op, Op); 1326 } 1327 1328 // Place the cloned scalar in the new loop. 1329 Builder.Insert(Cloned); 1330 1331 // If the original scalar returns a value we need to place it in a vector 1332 // so that future users will be able to use it. 1333 if (!IsVoidRetTy) 1334 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1335 Builder.getInt32(Width)); 1336 } 1337 } 1338 } 1339 1340 Instruction * 1341 InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal, 1342 Instruction *Loc) { 1343 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 1344 Legal->getRuntimePointerCheck(); 1345 1346 if (!PtrRtCheck->Need) 1347 return NULL; 1348 1349 unsigned NumPointers = PtrRtCheck->Pointers.size(); 1350 SmallVector<TrackingVH<Value> , 2> Starts; 1351 SmallVector<TrackingVH<Value> , 2> Ends; 1352 1353 SCEVExpander Exp(*SE, "induction"); 1354 1355 // Use this type for pointer arithmetic. 1356 Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0); 1357 1358 for (unsigned i = 0; i < NumPointers; ++i) { 1359 Value *Ptr = PtrRtCheck->Pointers[i]; 1360 const SCEV *Sc = SE->getSCEV(Ptr); 1361 1362 if (SE->isLoopInvariant(Sc, OrigLoop)) { 1363 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 1364 *Ptr <<"\n"); 1365 Starts.push_back(Ptr); 1366 Ends.push_back(Ptr); 1367 } else { 1368 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n"); 1369 1370 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 1371 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 1372 Starts.push_back(Start); 1373 Ends.push_back(End); 1374 } 1375 } 1376 1377 IRBuilder<> ChkBuilder(Loc); 1378 // Our instructions might fold to a constant. 1379 Value *MemoryRuntimeCheck = 0; 1380 for (unsigned i = 0; i < NumPointers; ++i) { 1381 for (unsigned j = i+1; j < NumPointers; ++j) { 1382 // No need to check if two readonly pointers intersect. 1383 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 1384 continue; 1385 1386 // Only need to check pointers between two different dependency sets. 1387 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 1388 continue; 1389 1390 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc"); 1391 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc"); 1392 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy, "bc"); 1393 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy, "bc"); 1394 1395 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 1396 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 1397 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 1398 if (MemoryRuntimeCheck) 1399 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 1400 "conflict.rdx"); 1401 MemoryRuntimeCheck = IsConflict; 1402 } 1403 } 1404 1405 // We have to do this trickery because the IRBuilder might fold the check to a 1406 // constant expression in which case there is no Instruction anchored in a 1407 // the block. 1408 LLVMContext &Ctx = Loc->getContext(); 1409 Instruction * Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 1410 ConstantInt::getTrue(Ctx)); 1411 ChkBuilder.Insert(Check, "memcheck.conflict"); 1412 return Check; 1413 } 1414 1415 void 1416 InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { 1417 /* 1418 In this function we generate a new loop. The new loop will contain 1419 the vectorized instructions while the old loop will continue to run the 1420 scalar remainder. 1421 1422 [ ] <-- vector loop bypass (may consist of multiple blocks). 1423 / | 1424 / v 1425 | [ ] <-- vector pre header. 1426 | | 1427 | v 1428 | [ ] \ 1429 | [ ]_| <-- vector loop. 1430 | | 1431 \ v 1432 >[ ] <--- middle-block. 1433 / | 1434 / v 1435 | [ ] <--- new preheader. 1436 | | 1437 | v 1438 | [ ] \ 1439 | [ ]_| <-- old scalar loop to handle remainder. 1440 \ | 1441 \ v 1442 >[ ] <-- exit block. 1443 ... 1444 */ 1445 1446 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 1447 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 1448 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 1449 assert(ExitBlock && "Must have an exit block"); 1450 1451 // Some loops have a single integer induction variable, while other loops 1452 // don't. One example is c++ iterators that often have multiple pointer 1453 // induction variables. In the code below we also support a case where we 1454 // don't have a single induction variable. 1455 OldInduction = Legal->getInduction(); 1456 Type *IdxTy = Legal->getWidestInductionType(); 1457 1458 // Find the loop boundaries. 1459 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 1460 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 1461 1462 // Get the total trip count from the count by adding 1. 1463 ExitCount = SE->getAddExpr(ExitCount, 1464 SE->getConstant(ExitCount->getType(), 1)); 1465 1466 // Expand the trip count and place the new instructions in the preheader. 1467 // Notice that the pre-header does not change, only the loop body. 1468 SCEVExpander Exp(*SE, "induction"); 1469 1470 // Count holds the overall loop count (N). 1471 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 1472 BypassBlock->getTerminator()); 1473 1474 // The loop index does not have to start at Zero. Find the original start 1475 // value from the induction PHI node. If we don't have an induction variable 1476 // then we know that it starts at zero. 1477 Builder.SetInsertPoint(BypassBlock->getTerminator()); 1478 Value *StartIdx = ExtendedIdx = OldInduction ? 1479 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 1480 IdxTy): 1481 ConstantInt::get(IdxTy, 0); 1482 1483 assert(BypassBlock && "Invalid loop structure"); 1484 LoopBypassBlocks.push_back(BypassBlock); 1485 1486 // Split the single block loop into the two loop structure described above. 1487 BasicBlock *VectorPH = 1488 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 1489 BasicBlock *VecBody = 1490 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 1491 BasicBlock *MiddleBlock = 1492 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 1493 BasicBlock *ScalarPH = 1494 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 1495 1496 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 1497 // inside the loop. 1498 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 1499 1500 // Generate the induction variable. 1501 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 1502 // The loop step is equal to the vectorization factor (num of SIMD elements) 1503 // times the unroll factor (num of SIMD instructions). 1504 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 1505 1506 // This is the IR builder that we use to add all of the logic for bypassing 1507 // the new vector loop. 1508 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 1509 1510 // We may need to extend the index in case there is a type mismatch. 1511 // We know that the count starts at zero and does not overflow. 1512 if (Count->getType() != IdxTy) { 1513 // The exit count can be of pointer type. Convert it to the correct 1514 // integer type. 1515 if (ExitCount->getType()->isPointerTy()) 1516 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 1517 else 1518 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 1519 } 1520 1521 // Add the start index to the loop count to get the new end index. 1522 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 1523 1524 // Now we need to generate the expression for N - (N % VF), which is 1525 // the part that the vectorized body will execute. 1526 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 1527 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 1528 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 1529 "end.idx.rnd.down"); 1530 1531 // Now, compare the new count to zero. If it is zero skip the vector loop and 1532 // jump to the scalar loop. 1533 Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, 1534 "cmp.zero"); 1535 1536 BasicBlock *LastBypassBlock = BypassBlock; 1537 1538 // Generate the code that checks in runtime if arrays overlap. We put the 1539 // checks into a separate block to make the more common case of few elements 1540 // faster. 1541 Instruction *MemRuntimeCheck = addRuntimeCheck(Legal, 1542 BypassBlock->getTerminator()); 1543 if (MemRuntimeCheck) { 1544 // Create a new block containing the memory check. 1545 BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck, 1546 "vector.memcheck"); 1547 LoopBypassBlocks.push_back(CheckBlock); 1548 1549 // Replace the branch into the memory check block with a conditional branch 1550 // for the "few elements case". 1551 Instruction *OldTerm = BypassBlock->getTerminator(); 1552 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 1553 OldTerm->eraseFromParent(); 1554 1555 Cmp = MemRuntimeCheck; 1556 LastBypassBlock = CheckBlock; 1557 } 1558 1559 LastBypassBlock->getTerminator()->eraseFromParent(); 1560 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 1561 LastBypassBlock); 1562 1563 // We are going to resume the execution of the scalar loop. 1564 // Go over all of the induction variables that we found and fix the 1565 // PHIs that are left in the scalar version of the loop. 1566 // The starting values of PHI nodes depend on the counter of the last 1567 // iteration in the vectorized loop. 1568 // If we come from a bypass edge then we need to start from the original 1569 // start value. 1570 1571 // This variable saves the new starting index for the scalar loop. 1572 PHINode *ResumeIndex = 0; 1573 LoopVectorizationLegality::InductionList::iterator I, E; 1574 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 1575 // Set builder to point to last bypass block. 1576 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 1577 for (I = List->begin(), E = List->end(); I != E; ++I) { 1578 PHINode *OrigPhi = I->first; 1579 LoopVectorizationLegality::InductionInfo II = I->second; 1580 1581 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 1582 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 1583 MiddleBlock->getTerminator()); 1584 // We might have extended the type of the induction variable but we need a 1585 // truncated version for the scalar loop. 1586 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 1587 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 1588 MiddleBlock->getTerminator()) : 0; 1589 1590 Value *EndValue = 0; 1591 switch (II.IK) { 1592 case LoopVectorizationLegality::IK_NoInduction: 1593 llvm_unreachable("Unknown induction"); 1594 case LoopVectorizationLegality::IK_IntInduction: { 1595 // Handle the integer induction counter. 1596 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 1597 1598 // We have the canonical induction variable. 1599 if (OrigPhi == OldInduction) { 1600 // Create a truncated version of the resume value for the scalar loop, 1601 // we might have promoted the type to a larger width. 1602 EndValue = 1603 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 1604 // The new PHI merges the original incoming value, in case of a bypass, 1605 // or the value at the end of the vectorized loop. 1606 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1607 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1608 TruncResumeVal->addIncoming(EndValue, VecBody); 1609 1610 // We know what the end value is. 1611 EndValue = IdxEndRoundDown; 1612 // We also know which PHI node holds it. 1613 ResumeIndex = ResumeVal; 1614 break; 1615 } 1616 1617 // Not the canonical induction variable - add the vector loop count to the 1618 // start value. 1619 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1620 II.StartValue->getType(), 1621 "cast.crd"); 1622 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 1623 break; 1624 } 1625 case LoopVectorizationLegality::IK_ReverseIntInduction: { 1626 // Convert the CountRoundDown variable to the PHI size. 1627 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 1628 II.StartValue->getType(), 1629 "cast.crd"); 1630 // Handle reverse integer induction counter. 1631 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 1632 break; 1633 } 1634 case LoopVectorizationLegality::IK_PtrInduction: { 1635 // For pointer induction variables, calculate the offset using 1636 // the end index. 1637 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 1638 "ptr.ind.end"); 1639 break; 1640 } 1641 case LoopVectorizationLegality::IK_ReversePtrInduction: { 1642 // The value at the end of the loop for the reverse pointer is calculated 1643 // by creating a GEP with a negative index starting from the start value. 1644 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 1645 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 1646 "rev.ind.end"); 1647 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 1648 "rev.ptr.ind.end"); 1649 break; 1650 } 1651 }// end of case 1652 1653 // The new PHI merges the original incoming value, in case of a bypass, 1654 // or the value at the end of the vectorized loop. 1655 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) { 1656 if (OrigPhi == OldInduction) 1657 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 1658 else 1659 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 1660 } 1661 ResumeVal->addIncoming(EndValue, VecBody); 1662 1663 // Fix the scalar body counter (PHI node). 1664 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 1665 // The old inductions phi node in the scalar body needs the truncated value. 1666 if (OrigPhi == OldInduction) 1667 OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal); 1668 else 1669 OrigPhi->setIncomingValue(BlockIdx, ResumeVal); 1670 } 1671 1672 // If we are generating a new induction variable then we also need to 1673 // generate the code that calculates the exit value. This value is not 1674 // simply the end of the counter because we may skip the vectorized body 1675 // in case of a runtime check. 1676 if (!OldInduction){ 1677 assert(!ResumeIndex && "Unexpected resume value found"); 1678 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 1679 MiddleBlock->getTerminator()); 1680 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 1681 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 1682 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 1683 } 1684 1685 // Make sure that we found the index where scalar loop needs to continue. 1686 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 1687 "Invalid resume Index"); 1688 1689 // Add a check in the middle block to see if we have completed 1690 // all of the iterations in the first vector loop. 1691 // If (N - N%VF) == N, then we *don't* need to run the remainder. 1692 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 1693 ResumeIndex, "cmp.n", 1694 MiddleBlock->getTerminator()); 1695 1696 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 1697 // Remove the old terminator. 1698 MiddleBlock->getTerminator()->eraseFromParent(); 1699 1700 // Create i+1 and fill the PHINode. 1701 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 1702 Induction->addIncoming(StartIdx, VectorPH); 1703 Induction->addIncoming(NextIdx, VecBody); 1704 // Create the compare. 1705 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 1706 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 1707 1708 // Now we have two terminators. Remove the old one from the block. 1709 VecBody->getTerminator()->eraseFromParent(); 1710 1711 // Get ready to start creating new instructions into the vectorized body. 1712 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 1713 1714 // Create and register the new vector loop. 1715 Loop* Lp = new Loop(); 1716 Loop *ParentLoop = OrigLoop->getParentLoop(); 1717 1718 // Insert the new loop into the loop nest and register the new basic blocks. 1719 if (ParentLoop) { 1720 ParentLoop->addChildLoop(Lp); 1721 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 1722 ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase()); 1723 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 1724 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 1725 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 1726 } else { 1727 LI->addTopLevelLoop(Lp); 1728 } 1729 1730 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 1731 1732 // Save the state. 1733 LoopVectorPreHeader = VectorPH; 1734 LoopScalarPreHeader = ScalarPH; 1735 LoopMiddleBlock = MiddleBlock; 1736 LoopExitBlock = ExitBlock; 1737 LoopVectorBody = VecBody; 1738 LoopScalarBody = OldBasicBlock; 1739 } 1740 1741 /// This function returns the identity element (or neutral element) for 1742 /// the operation K. 1743 Constant* 1744 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 1745 switch (K) { 1746 case RK_IntegerXor: 1747 case RK_IntegerAdd: 1748 case RK_IntegerOr: 1749 // Adding, Xoring, Oring zero to a number does not change it. 1750 return ConstantInt::get(Tp, 0); 1751 case RK_IntegerMult: 1752 // Multiplying a number by 1 does not change it. 1753 return ConstantInt::get(Tp, 1); 1754 case RK_IntegerAnd: 1755 // AND-ing a number with an all-1 value does not change it. 1756 return ConstantInt::get(Tp, -1, true); 1757 case RK_FloatMult: 1758 // Multiplying a number by 1 does not change it. 1759 return ConstantFP::get(Tp, 1.0L); 1760 case RK_FloatAdd: 1761 // Adding zero to a number does not change it. 1762 return ConstantFP::get(Tp, 0.0L); 1763 default: 1764 llvm_unreachable("Unknown reduction kind"); 1765 } 1766 } 1767 1768 static Intrinsic::ID 1769 getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) { 1770 // If we have an intrinsic call, check if it is trivially vectorizable. 1771 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 1772 switch (II->getIntrinsicID()) { 1773 case Intrinsic::sqrt: 1774 case Intrinsic::sin: 1775 case Intrinsic::cos: 1776 case Intrinsic::exp: 1777 case Intrinsic::exp2: 1778 case Intrinsic::log: 1779 case Intrinsic::log10: 1780 case Intrinsic::log2: 1781 case Intrinsic::fabs: 1782 case Intrinsic::floor: 1783 case Intrinsic::ceil: 1784 case Intrinsic::trunc: 1785 case Intrinsic::rint: 1786 case Intrinsic::nearbyint: 1787 case Intrinsic::pow: 1788 case Intrinsic::fma: 1789 case Intrinsic::fmuladd: 1790 return II->getIntrinsicID(); 1791 default: 1792 return Intrinsic::not_intrinsic; 1793 } 1794 } 1795 1796 if (!TLI) 1797 return Intrinsic::not_intrinsic; 1798 1799 LibFunc::Func Func; 1800 Function *F = CI->getCalledFunction(); 1801 // We're going to make assumptions on the semantics of the functions, check 1802 // that the target knows that it's available in this environment. 1803 if (!F || !TLI->getLibFunc(F->getName(), Func)) 1804 return Intrinsic::not_intrinsic; 1805 1806 // Otherwise check if we have a call to a function that can be turned into a 1807 // vector intrinsic. 1808 switch (Func) { 1809 default: 1810 break; 1811 case LibFunc::sin: 1812 case LibFunc::sinf: 1813 case LibFunc::sinl: 1814 return Intrinsic::sin; 1815 case LibFunc::cos: 1816 case LibFunc::cosf: 1817 case LibFunc::cosl: 1818 return Intrinsic::cos; 1819 case LibFunc::exp: 1820 case LibFunc::expf: 1821 case LibFunc::expl: 1822 return Intrinsic::exp; 1823 case LibFunc::exp2: 1824 case LibFunc::exp2f: 1825 case LibFunc::exp2l: 1826 return Intrinsic::exp2; 1827 case LibFunc::log: 1828 case LibFunc::logf: 1829 case LibFunc::logl: 1830 return Intrinsic::log; 1831 case LibFunc::log10: 1832 case LibFunc::log10f: 1833 case LibFunc::log10l: 1834 return Intrinsic::log10; 1835 case LibFunc::log2: 1836 case LibFunc::log2f: 1837 case LibFunc::log2l: 1838 return Intrinsic::log2; 1839 case LibFunc::fabs: 1840 case LibFunc::fabsf: 1841 case LibFunc::fabsl: 1842 return Intrinsic::fabs; 1843 case LibFunc::floor: 1844 case LibFunc::floorf: 1845 case LibFunc::floorl: 1846 return Intrinsic::floor; 1847 case LibFunc::ceil: 1848 case LibFunc::ceilf: 1849 case LibFunc::ceill: 1850 return Intrinsic::ceil; 1851 case LibFunc::trunc: 1852 case LibFunc::truncf: 1853 case LibFunc::truncl: 1854 return Intrinsic::trunc; 1855 case LibFunc::rint: 1856 case LibFunc::rintf: 1857 case LibFunc::rintl: 1858 return Intrinsic::rint; 1859 case LibFunc::nearbyint: 1860 case LibFunc::nearbyintf: 1861 case LibFunc::nearbyintl: 1862 return Intrinsic::nearbyint; 1863 case LibFunc::pow: 1864 case LibFunc::powf: 1865 case LibFunc::powl: 1866 return Intrinsic::pow; 1867 } 1868 1869 return Intrinsic::not_intrinsic; 1870 } 1871 1872 /// This function translates the reduction kind to an LLVM binary operator. 1873 static unsigned 1874 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 1875 switch (Kind) { 1876 case LoopVectorizationLegality::RK_IntegerAdd: 1877 return Instruction::Add; 1878 case LoopVectorizationLegality::RK_IntegerMult: 1879 return Instruction::Mul; 1880 case LoopVectorizationLegality::RK_IntegerOr: 1881 return Instruction::Or; 1882 case LoopVectorizationLegality::RK_IntegerAnd: 1883 return Instruction::And; 1884 case LoopVectorizationLegality::RK_IntegerXor: 1885 return Instruction::Xor; 1886 case LoopVectorizationLegality::RK_FloatMult: 1887 return Instruction::FMul; 1888 case LoopVectorizationLegality::RK_FloatAdd: 1889 return Instruction::FAdd; 1890 case LoopVectorizationLegality::RK_IntegerMinMax: 1891 return Instruction::ICmp; 1892 case LoopVectorizationLegality::RK_FloatMinMax: 1893 return Instruction::FCmp; 1894 default: 1895 llvm_unreachable("Unknown reduction operation"); 1896 } 1897 } 1898 1899 Value *createMinMaxOp(IRBuilder<> &Builder, 1900 LoopVectorizationLegality::MinMaxReductionKind RK, 1901 Value *Left, 1902 Value *Right) { 1903 CmpInst::Predicate P = CmpInst::ICMP_NE; 1904 switch (RK) { 1905 default: 1906 llvm_unreachable("Unknown min/max reduction kind"); 1907 case LoopVectorizationLegality::MRK_UIntMin: 1908 P = CmpInst::ICMP_ULT; 1909 break; 1910 case LoopVectorizationLegality::MRK_UIntMax: 1911 P = CmpInst::ICMP_UGT; 1912 break; 1913 case LoopVectorizationLegality::MRK_SIntMin: 1914 P = CmpInst::ICMP_SLT; 1915 break; 1916 case LoopVectorizationLegality::MRK_SIntMax: 1917 P = CmpInst::ICMP_SGT; 1918 break; 1919 case LoopVectorizationLegality::MRK_FloatMin: 1920 P = CmpInst::FCMP_OLT; 1921 break; 1922 case LoopVectorizationLegality::MRK_FloatMax: 1923 P = CmpInst::FCMP_OGT; 1924 break; 1925 } 1926 1927 Value *Cmp; 1928 if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax) 1929 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 1930 else 1931 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 1932 1933 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 1934 return Select; 1935 } 1936 1937 void 1938 InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { 1939 //===------------------------------------------------===// 1940 // 1941 // Notice: any optimization or new instruction that go 1942 // into the code below should be also be implemented in 1943 // the cost-model. 1944 // 1945 //===------------------------------------------------===// 1946 Constant *Zero = Builder.getInt32(0); 1947 1948 // In order to support reduction variables we need to be able to vectorize 1949 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 1950 // stages. First, we create a new vector PHI node with no incoming edges. 1951 // We use this value when we vectorize all of the instructions that use the 1952 // PHI. Next, after all of the instructions in the block are complete we 1953 // add the new incoming edges to the PHI. At this point all of the 1954 // instructions in the basic block are vectorized, so we can use them to 1955 // construct the PHI. 1956 PhiVector RdxPHIsToFix; 1957 1958 // Scan the loop in a topological order to ensure that defs are vectorized 1959 // before users. 1960 LoopBlocksDFS DFS(OrigLoop); 1961 DFS.perform(LI); 1962 1963 // Vectorize all of the blocks in the original loop. 1964 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 1965 be = DFS.endRPO(); bb != be; ++bb) 1966 vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix); 1967 1968 // At this point every instruction in the original loop is widened to 1969 // a vector form. We are almost done. Now, we need to fix the PHI nodes 1970 // that we vectorized. The PHI nodes are currently empty because we did 1971 // not want to introduce cycles. Notice that the remaining PHI nodes 1972 // that we need to fix are reduction variables. 1973 1974 // Create the 'reduced' values for each of the induction vars. 1975 // The reduced values are the vector values that we scalarize and combine 1976 // after the loop is finished. 1977 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 1978 it != e; ++it) { 1979 PHINode *RdxPhi = *it; 1980 assert(RdxPhi && "Unable to recover vectorized PHI"); 1981 1982 // Find the reduction variable descriptor. 1983 assert(Legal->getReductionVars()->count(RdxPhi) && 1984 "Unable to find the reduction variable"); 1985 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 1986 (*Legal->getReductionVars())[RdxPhi]; 1987 1988 // We need to generate a reduction vector from the incoming scalar. 1989 // To do so, we need to generate the 'identity' vector and overide 1990 // one of the elements with the incoming scalar reduction. We need 1991 // to do it in the vector-loop preheader. 1992 Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator()); 1993 1994 // This is the vector-clone of the value that leaves the loop. 1995 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 1996 Type *VecTy = VectorExit[0]->getType(); 1997 1998 // Find the reduction identity variable. Zero for addition, or, xor, 1999 // one for multiplication, -1 for And. 2000 Value *Identity; 2001 Value *VectorStart; 2002 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2003 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2004 // MinMax reduction have the start value as their identify. 2005 VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue, 2006 "minmax.ident"); 2007 } else { 2008 Constant *Iden = 2009 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2010 VecTy->getScalarType()); 2011 Identity = ConstantVector::getSplat(VF, Iden); 2012 2013 // This vector is the Identity vector where the first element is the 2014 // incoming scalar reduction. 2015 VectorStart = Builder.CreateInsertElement(Identity, 2016 RdxDesc.StartValue, Zero); 2017 } 2018 2019 // Fix the vector-loop phi. 2020 // We created the induction variable so we know that the 2021 // preheader is the first entry. 2022 BasicBlock *VecPreheader = Induction->getIncomingBlock(0); 2023 2024 // Reductions do not have to start at zero. They can start with 2025 // any loop invariant values. 2026 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2027 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2028 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2029 VectorParts &Val = getVectorValue(LoopVal); 2030 for (unsigned part = 0; part < UF; ++part) { 2031 // Make sure to add the reduction stat value only to the 2032 // first unroll part. 2033 Value *StartVal = (part == 0) ? VectorStart : Identity; 2034 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader); 2035 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody); 2036 } 2037 2038 // Before each round, move the insertion point right between 2039 // the PHIs and the values we are going to write. 2040 // This allows us to write both PHINodes and the extractelement 2041 // instructions. 2042 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2043 2044 VectorParts RdxParts; 2045 for (unsigned part = 0; part < UF; ++part) { 2046 // This PHINode contains the vectorized reduction variable, or 2047 // the initial value vector, if we bypass the vector loop. 2048 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2049 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2050 Value *StartVal = (part == 0) ? VectorStart : Identity; 2051 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 2052 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2053 NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody); 2054 RdxParts.push_back(NewPhi); 2055 } 2056 2057 // Reduce all of the unrolled parts into a single vector. 2058 Value *ReducedPartRdx = RdxParts[0]; 2059 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2060 for (unsigned part = 1; part < UF; ++part) { 2061 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2062 ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op, 2063 RdxParts[part], ReducedPartRdx, 2064 "bin.rdx"); 2065 else 2066 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2067 ReducedPartRdx, RdxParts[part]); 2068 } 2069 2070 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2071 // and vector ops, reducing the set of values being computed by half each 2072 // round. 2073 assert(isPowerOf2_32(VF) && 2074 "Reduction emission only supported for pow2 vectors!"); 2075 Value *TmpVec = ReducedPartRdx; 2076 SmallVector<Constant*, 32> ShuffleMask(VF, 0); 2077 for (unsigned i = VF; i != 1; i >>= 1) { 2078 // Move the upper half of the vector to the lower half. 2079 for (unsigned j = 0; j != i/2; ++j) 2080 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2081 2082 // Fill the rest of the mask with undef. 2083 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2084 UndefValue::get(Builder.getInt32Ty())); 2085 2086 Value *Shuf = 2087 Builder.CreateShuffleVector(TmpVec, 2088 UndefValue::get(TmpVec->getType()), 2089 ConstantVector::get(ShuffleMask), 2090 "rdx.shuf"); 2091 2092 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2093 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf, 2094 "bin.rdx"); 2095 else 2096 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2097 } 2098 2099 // The result is in the first element of the vector. 2100 Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 2101 2102 // Now, we need to fix the users of the reduction variable 2103 // inside and outside of the scalar remainder loop. 2104 // We know that the loop is in LCSSA form. We need to update the 2105 // PHI nodes in the exit blocks. 2106 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2107 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2108 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2109 if (!LCSSAPhi) continue; 2110 2111 // All PHINodes need to have a single entry edge, or two if 2112 // we already fixed them. 2113 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2114 2115 // We found our reduction value exit-PHI. Update it with the 2116 // incoming bypass edge. 2117 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2118 // Add an edge coming from the bypass. 2119 LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock); 2120 break; 2121 } 2122 }// end of the LCSSA phi scan. 2123 2124 // Fix the scalar loop reduction variable with the incoming reduction sum 2125 // from the vector body and from the backedge value. 2126 int IncomingEdgeBlockIdx = 2127 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2128 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2129 // Pick the other block. 2130 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2131 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0); 2132 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2133 }// end of for each redux variable. 2134 2135 // The Loop exit block may have single value PHI nodes where the incoming 2136 // value is 'undef'. While vectorizing we only handled real values that 2137 // were defined inside the loop. Here we handle the 'undef case'. 2138 // See PR14725. 2139 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2140 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2141 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2142 if (!LCSSAPhi) continue; 2143 if (LCSSAPhi->getNumIncomingValues() == 1) 2144 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2145 LoopMiddleBlock); 2146 } 2147 } 2148 2149 InnerLoopVectorizer::VectorParts 2150 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2151 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2152 "Invalid edge"); 2153 2154 VectorParts SrcMask = createBlockInMask(Src); 2155 2156 // The terminator has to be a branch inst! 2157 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2158 assert(BI && "Unexpected terminator found"); 2159 2160 if (BI->isConditional()) { 2161 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2162 2163 if (BI->getSuccessor(0) != Dst) 2164 for (unsigned part = 0; part < UF; ++part) 2165 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2166 2167 for (unsigned part = 0; part < UF; ++part) 2168 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2169 return EdgeMask; 2170 } 2171 2172 return SrcMask; 2173 } 2174 2175 InnerLoopVectorizer::VectorParts 2176 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2177 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2178 2179 // Loop incoming mask is all-one. 2180 if (OrigLoop->getHeader() == BB) { 2181 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2182 return getVectorValue(C); 2183 } 2184 2185 // This is the block mask. We OR all incoming edges, and with zero. 2186 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2187 VectorParts BlockMask = getVectorValue(Zero); 2188 2189 // For each pred: 2190 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2191 VectorParts EM = createEdgeMask(*it, BB); 2192 for (unsigned part = 0; part < UF; ++part) 2193 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2194 } 2195 2196 return BlockMask; 2197 } 2198 2199 void 2200 InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal, 2201 BasicBlock *BB, PhiVector *PV) { 2202 // For each instruction in the old loop. 2203 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 2204 VectorParts &Entry = WidenMap.get(it); 2205 switch (it->getOpcode()) { 2206 case Instruction::Br: 2207 // Nothing to do for PHIs and BR, since we already took care of the 2208 // loop control flow instructions. 2209 continue; 2210 case Instruction::PHI:{ 2211 PHINode* P = cast<PHINode>(it); 2212 // Handle reduction variables: 2213 if (Legal->getReductionVars()->count(P)) { 2214 for (unsigned part = 0; part < UF; ++part) { 2215 // This is phase one of vectorizing PHIs. 2216 Type *VecTy = VectorType::get(it->getType(), VF); 2217 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2218 LoopVectorBody-> getFirstInsertionPt()); 2219 } 2220 PV->push_back(P); 2221 continue; 2222 } 2223 2224 // Check for PHI nodes that are lowered to vector selects. 2225 if (P->getParent() != OrigLoop->getHeader()) { 2226 // We know that all PHIs in non header blocks are converted into 2227 // selects, so we don't have to worry about the insertion order and we 2228 // can just use the builder. 2229 // At this point we generate the predication tree. There may be 2230 // duplications since this is a simple recursive scan, but future 2231 // optimizations will clean it up. 2232 2233 unsigned NumIncoming = P->getNumIncomingValues(); 2234 2235 // Generate a sequence of selects of the form: 2236 // SELECT(Mask3, In3, 2237 // SELECT(Mask2, In2, 2238 // ( ...))) 2239 for (unsigned In = 0; In < NumIncoming; In++) { 2240 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2241 P->getParent()); 2242 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2243 2244 for (unsigned part = 0; part < UF; ++part) { 2245 // We might have single edge PHIs (blocks) - use an identity 2246 // 'select' for the first PHI operand. 2247 if (In == 0) 2248 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2249 In0[part]); 2250 else 2251 // Select between the current value and the previous incoming edge 2252 // based on the incoming mask. 2253 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2254 Entry[part], "predphi"); 2255 } 2256 } 2257 continue; 2258 } 2259 2260 // This PHINode must be an induction variable. 2261 // Make sure that we know about it. 2262 assert(Legal->getInductionVars()->count(P) && 2263 "Not an induction variable"); 2264 2265 LoopVectorizationLegality::InductionInfo II = 2266 Legal->getInductionVars()->lookup(P); 2267 2268 switch (II.IK) { 2269 case LoopVectorizationLegality::IK_NoInduction: 2270 llvm_unreachable("Unknown induction"); 2271 case LoopVectorizationLegality::IK_IntInduction: { 2272 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2273 Type *PhiTy = P->getType(); 2274 Value *Broadcasted; 2275 if (P == OldInduction) { 2276 // Handle the canonical induction variable. We might have had to 2277 // extend the type. 2278 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2279 } else { 2280 // Handle other induction variables that are now based on the 2281 // canonical one. 2282 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2283 "normalized.idx"); 2284 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2285 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 2286 "offset.idx"); 2287 } 2288 Broadcasted = getBroadcastInstrs(Broadcasted); 2289 // After broadcasting the induction variable we need to make the vector 2290 // consecutive by adding 0, 1, 2, etc. 2291 for (unsigned part = 0; part < UF; ++part) 2292 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 2293 continue; 2294 } 2295 case LoopVectorizationLegality::IK_ReverseIntInduction: 2296 case LoopVectorizationLegality::IK_PtrInduction: 2297 case LoopVectorizationLegality::IK_ReversePtrInduction: 2298 // Handle reverse integer and pointer inductions. 2299 Value *StartIdx = ExtendedIdx; 2300 // This is the normalized GEP that starts counting at zero. 2301 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 2302 "normalized.idx"); 2303 2304 // Handle the reverse integer induction variable case. 2305 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 2306 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 2307 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 2308 "resize.norm.idx"); 2309 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 2310 "reverse.idx"); 2311 2312 // This is a new value so do not hoist it out. 2313 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 2314 // After broadcasting the induction variable we need to make the 2315 // vector consecutive by adding ... -3, -2, -1, 0. 2316 for (unsigned part = 0; part < UF; ++part) 2317 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 2318 true); 2319 continue; 2320 } 2321 2322 // Handle the pointer induction variable case. 2323 assert(P->getType()->isPointerTy() && "Unexpected type."); 2324 2325 // Is this a reverse induction ptr or a consecutive induction ptr. 2326 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 2327 II.IK); 2328 2329 // This is the vector of results. Notice that we don't generate 2330 // vector geps because scalar geps result in better code. 2331 for (unsigned part = 0; part < UF; ++part) { 2332 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 2333 for (unsigned int i = 0; i < VF; ++i) { 2334 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 2335 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 2336 Value *GlobalIdx; 2337 if (!Reverse) 2338 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 2339 else 2340 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 2341 2342 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 2343 "next.gep"); 2344 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 2345 Builder.getInt32(i), 2346 "insert.gep"); 2347 } 2348 Entry[part] = VecVal; 2349 } 2350 continue; 2351 } 2352 2353 }// End of PHI. 2354 2355 case Instruction::Add: 2356 case Instruction::FAdd: 2357 case Instruction::Sub: 2358 case Instruction::FSub: 2359 case Instruction::Mul: 2360 case Instruction::FMul: 2361 case Instruction::UDiv: 2362 case Instruction::SDiv: 2363 case Instruction::FDiv: 2364 case Instruction::URem: 2365 case Instruction::SRem: 2366 case Instruction::FRem: 2367 case Instruction::Shl: 2368 case Instruction::LShr: 2369 case Instruction::AShr: 2370 case Instruction::And: 2371 case Instruction::Or: 2372 case Instruction::Xor: { 2373 // Just widen binops. 2374 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 2375 VectorParts &A = getVectorValue(it->getOperand(0)); 2376 VectorParts &B = getVectorValue(it->getOperand(1)); 2377 2378 // Use this vector value for all users of the original instruction. 2379 for (unsigned Part = 0; Part < UF; ++Part) { 2380 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 2381 2382 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef. 2383 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V); 2384 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) { 2385 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); 2386 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); 2387 } 2388 if (VecOp && isa<PossiblyExactOperator>(VecOp)) 2389 VecOp->setIsExact(BinOp->isExact()); 2390 2391 Entry[Part] = V; 2392 } 2393 break; 2394 } 2395 case Instruction::Select: { 2396 // Widen selects. 2397 // If the selector is loop invariant we can create a select 2398 // instruction with a scalar condition. Otherwise, use vector-select. 2399 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 2400 OrigLoop); 2401 2402 // The condition can be loop invariant but still defined inside the 2403 // loop. This means that we can't just use the original 'cond' value. 2404 // We have to take the 'vectorized' value and pick the first lane. 2405 // Instcombine will make this a no-op. 2406 VectorParts &Cond = getVectorValue(it->getOperand(0)); 2407 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 2408 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 2409 Value *ScalarCond = Builder.CreateExtractElement(Cond[0], 2410 Builder.getInt32(0)); 2411 for (unsigned Part = 0; Part < UF; ++Part) { 2412 Entry[Part] = Builder.CreateSelect( 2413 InvariantCond ? ScalarCond : Cond[Part], 2414 Op0[Part], 2415 Op1[Part]); 2416 } 2417 break; 2418 } 2419 2420 case Instruction::ICmp: 2421 case Instruction::FCmp: { 2422 // Widen compares. Generate vector compares. 2423 bool FCmp = (it->getOpcode() == Instruction::FCmp); 2424 CmpInst *Cmp = dyn_cast<CmpInst>(it); 2425 VectorParts &A = getVectorValue(it->getOperand(0)); 2426 VectorParts &B = getVectorValue(it->getOperand(1)); 2427 for (unsigned Part = 0; Part < UF; ++Part) { 2428 Value *C = 0; 2429 if (FCmp) 2430 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 2431 else 2432 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 2433 Entry[Part] = C; 2434 } 2435 break; 2436 } 2437 2438 case Instruction::Store: 2439 case Instruction::Load: 2440 vectorizeMemoryInstruction(it, Legal); 2441 break; 2442 case Instruction::ZExt: 2443 case Instruction::SExt: 2444 case Instruction::FPToUI: 2445 case Instruction::FPToSI: 2446 case Instruction::FPExt: 2447 case Instruction::PtrToInt: 2448 case Instruction::IntToPtr: 2449 case Instruction::SIToFP: 2450 case Instruction::UIToFP: 2451 case Instruction::Trunc: 2452 case Instruction::FPTrunc: 2453 case Instruction::BitCast: { 2454 CastInst *CI = dyn_cast<CastInst>(it); 2455 /// Optimize the special case where the source is the induction 2456 /// variable. Notice that we can only optimize the 'trunc' case 2457 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 2458 /// c. other casts depend on pointer size. 2459 if (CI->getOperand(0) == OldInduction && 2460 it->getOpcode() == Instruction::Trunc) { 2461 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 2462 CI->getType()); 2463 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 2464 for (unsigned Part = 0; Part < UF; ++Part) 2465 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 2466 break; 2467 } 2468 /// Vectorize casts. 2469 Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); 2470 2471 VectorParts &A = getVectorValue(it->getOperand(0)); 2472 for (unsigned Part = 0; Part < UF; ++Part) 2473 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 2474 break; 2475 } 2476 2477 case Instruction::Call: { 2478 // Ignore dbg intrinsics. 2479 if (isa<DbgInfoIntrinsic>(it)) 2480 break; 2481 2482 Module *M = BB->getParent()->getParent(); 2483 CallInst *CI = cast<CallInst>(it); 2484 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 2485 assert(ID && "Not an intrinsic call!"); 2486 for (unsigned Part = 0; Part < UF; ++Part) { 2487 SmallVector<Value*, 4> Args; 2488 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 2489 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 2490 Args.push_back(Arg[Part]); 2491 } 2492 Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) }; 2493 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 2494 Entry[Part] = Builder.CreateCall(F, Args); 2495 } 2496 break; 2497 } 2498 2499 default: 2500 // All other instructions are unsupported. Scalarize them. 2501 scalarizeInstruction(it); 2502 break; 2503 }// end of switch. 2504 }// end of for_each instr. 2505 } 2506 2507 void InnerLoopVectorizer::updateAnalysis() { 2508 // Forget the original basic block. 2509 SE->forgetLoop(OrigLoop); 2510 2511 // Update the dominator tree information. 2512 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 2513 "Entry does not dominate exit."); 2514 2515 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2516 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 2517 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 2518 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 2519 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front()); 2520 DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); 2521 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 2522 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 2523 2524 DEBUG(DT->verifyAnalysis()); 2525 } 2526 2527 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 2528 if (!EnableIfConversion) 2529 return false; 2530 2531 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 2532 std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector(); 2533 2534 // Collect the blocks that need predication. 2535 for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { 2536 BasicBlock *BB = LoopBlocks[i]; 2537 2538 // We don't support switch statements inside loops. 2539 if (!isa<BranchInst>(BB->getTerminator())) 2540 return false; 2541 2542 // We must be able to predicate all blocks that need to be predicated. 2543 if (blockNeedsPredication(BB) && !blockCanBePredicated(BB)) 2544 return false; 2545 } 2546 2547 // Check that we can actually speculate the hoistable loads. 2548 if (!LoadSpeculation.canHoistAllLoads()) 2549 return false; 2550 2551 // We can if-convert this loop. 2552 return true; 2553 } 2554 2555 bool LoopVectorizationLegality::canVectorize() { 2556 // We must have a loop in canonical form. Loops with indirectbr in them cannot 2557 // be canonicalized. 2558 if (!TheLoop->getLoopPreheader()) 2559 return false; 2560 2561 // We can only vectorize innermost loops. 2562 if (TheLoop->getSubLoopsVector().size()) 2563 return false; 2564 2565 // We must have a single backedge. 2566 if (TheLoop->getNumBackEdges() != 1) 2567 return false; 2568 2569 // We must have a single exiting block. 2570 if (!TheLoop->getExitingBlock()) 2571 return false; 2572 2573 unsigned NumBlocks = TheLoop->getNumBlocks(); 2574 2575 // Check if we can if-convert non single-bb loops. 2576 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 2577 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 2578 return false; 2579 } 2580 2581 // We need to have a loop header. 2582 BasicBlock *Latch = TheLoop->getLoopLatch(); 2583 DEBUG(dbgs() << "LV: Found a loop: " << 2584 TheLoop->getHeader()->getName() << "\n"); 2585 2586 // ScalarEvolution needs to be able to find the exit count. 2587 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 2588 if (ExitCount == SE->getCouldNotCompute()) { 2589 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 2590 return false; 2591 } 2592 2593 // Do not loop-vectorize loops with a tiny trip count. 2594 unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); 2595 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 2596 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << 2597 "This loop is not worth vectorizing.\n"); 2598 return false; 2599 } 2600 2601 // Check if we can vectorize the instructions and CFG in this loop. 2602 if (!canVectorizeInstrs()) { 2603 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 2604 return false; 2605 } 2606 2607 // Go over each instruction and look at memory deps. 2608 if (!canVectorizeMemory()) { 2609 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 2610 return false; 2611 } 2612 2613 // Collect all of the variables that remain uniform after vectorization. 2614 collectLoopUniforms(); 2615 2616 DEBUG(dbgs() << "LV: We can vectorize this loop" << 2617 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 2618 <<"!\n"); 2619 2620 // Okay! We can vectorize. At this point we don't have any other mem analysis 2621 // which may limit our maximum vectorization factor, so just return true with 2622 // no restrictions. 2623 return true; 2624 } 2625 2626 static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) { 2627 if (Ty->isPointerTy()) 2628 return DL.getIntPtrType(Ty->getContext()); 2629 return Ty; 2630 } 2631 2632 static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) { 2633 Ty0 = convertPointerToIntegerType(DL, Ty0); 2634 Ty1 = convertPointerToIntegerType(DL, Ty1); 2635 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 2636 return Ty0; 2637 return Ty1; 2638 } 2639 2640 /// \brief Check that the instruction has outside loop users and is not an 2641 /// identified reduction variable. 2642 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 2643 SmallPtrSet<Value *, 4> &Reductions) { 2644 // Reduction instructions are allowed to have exit users. All other 2645 // instructions must not have external users. 2646 if (!Reductions.count(Inst)) 2647 //Check that all of the users of the loop are inside the BB. 2648 for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end(); 2649 I != E; ++I) { 2650 Instruction *U = cast<Instruction>(*I); 2651 // This user may be a reduction exit value. 2652 if (!TheLoop->contains(U)) { 2653 DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); 2654 return true; 2655 } 2656 } 2657 return false; 2658 } 2659 2660 bool LoopVectorizationLegality::canVectorizeInstrs() { 2661 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 2662 BasicBlock *Header = TheLoop->getHeader(); 2663 2664 // Look for the attribute signaling the absence of NaNs. 2665 Function &F = *Header->getParent(); 2666 if (F.hasFnAttribute("no-nans-fp-math")) 2667 HasFunNoNaNAttr = F.getAttributes().getAttribute( 2668 AttributeSet::FunctionIndex, 2669 "no-nans-fp-math").getValueAsString() == "true"; 2670 2671 // For each block in the loop. 2672 for (Loop::block_iterator bb = TheLoop->block_begin(), 2673 be = TheLoop->block_end(); bb != be; ++bb) { 2674 2675 // Scan the instructions in the block and look for hazards. 2676 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 2677 ++it) { 2678 2679 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 2680 Type *PhiTy = Phi->getType(); 2681 // Check that this PHI type is allowed. 2682 if (!PhiTy->isIntegerTy() && 2683 !PhiTy->isFloatingPointTy() && 2684 !PhiTy->isPointerTy()) { 2685 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 2686 return false; 2687 } 2688 2689 // If this PHINode is not in the header block, then we know that we 2690 // can convert it to select during if-conversion. No need to check if 2691 // the PHIs in this block are induction or reduction variables. 2692 if (*bb != Header) { 2693 // Check that this instruction has no outside users or is an 2694 // identified reduction value with an outside user. 2695 if(!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2696 continue; 2697 return false; 2698 } 2699 2700 // We only allow if-converted PHIs with more than two incoming values. 2701 if (Phi->getNumIncomingValues() != 2) { 2702 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 2703 return false; 2704 } 2705 2706 // This is the value coming from the preheader. 2707 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 2708 // Check if this is an induction variable. 2709 InductionKind IK = isInductionVariable(Phi); 2710 2711 if (IK_NoInduction != IK) { 2712 // Get the widest type. 2713 if (!WidestIndTy) 2714 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 2715 else 2716 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 2717 2718 // Int inductions are special because we only allow one IV. 2719 if (IK == IK_IntInduction) { 2720 // Use the phi node with the widest type as induction. Use the last 2721 // one if there are multiple (no good reason for doing this other 2722 // than it is expedient). 2723 if (!Induction || PhiTy == WidestIndTy) 2724 Induction = Phi; 2725 } 2726 2727 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 2728 Inductions[Phi] = InductionInfo(StartValue, IK); 2729 continue; 2730 } 2731 2732 if (AddReductionVar(Phi, RK_IntegerAdd)) { 2733 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 2734 continue; 2735 } 2736 if (AddReductionVar(Phi, RK_IntegerMult)) { 2737 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 2738 continue; 2739 } 2740 if (AddReductionVar(Phi, RK_IntegerOr)) { 2741 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 2742 continue; 2743 } 2744 if (AddReductionVar(Phi, RK_IntegerAnd)) { 2745 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 2746 continue; 2747 } 2748 if (AddReductionVar(Phi, RK_IntegerXor)) { 2749 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 2750 continue; 2751 } 2752 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 2753 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 2754 continue; 2755 } 2756 if (AddReductionVar(Phi, RK_FloatMult)) { 2757 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 2758 continue; 2759 } 2760 if (AddReductionVar(Phi, RK_FloatAdd)) { 2761 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 2762 continue; 2763 } 2764 if (AddReductionVar(Phi, RK_FloatMinMax)) { 2765 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<"\n"); 2766 continue; 2767 } 2768 2769 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 2770 return false; 2771 }// end of PHI handling 2772 2773 // We still don't handle functions. However, we can ignore dbg intrinsic 2774 // calls and we do handle certain intrinsic and libm functions. 2775 CallInst *CI = dyn_cast<CallInst>(it); 2776 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 2777 DEBUG(dbgs() << "LV: Found a call site.\n"); 2778 return false; 2779 } 2780 2781 // Check that the instruction return type is vectorizable. 2782 if (!VectorType::isValidElementType(it->getType()) && 2783 !it->getType()->isVoidTy()) { 2784 DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); 2785 return false; 2786 } 2787 2788 // Check that the stored type is vectorizable. 2789 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 2790 Type *T = ST->getValueOperand()->getType(); 2791 if (!VectorType::isValidElementType(T)) 2792 return false; 2793 } 2794 2795 // Reduction instructions are allowed to have exit users. 2796 // All other instructions must not have external users. 2797 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) 2798 return false; 2799 2800 } // next instr. 2801 2802 } 2803 2804 if (!Induction) { 2805 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 2806 if (Inductions.empty()) 2807 return false; 2808 } 2809 2810 return true; 2811 } 2812 2813 void LoopVectorizationLegality::collectLoopUniforms() { 2814 // We now know that the loop is vectorizable! 2815 // Collect variables that will remain uniform after vectorization. 2816 std::vector<Value*> Worklist; 2817 BasicBlock *Latch = TheLoop->getLoopLatch(); 2818 2819 // Start with the conditional branch and walk up the block. 2820 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 2821 2822 while (Worklist.size()) { 2823 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 2824 Worklist.pop_back(); 2825 2826 // Look at instructions inside this loop. 2827 // Stop when reaching PHI nodes. 2828 // TODO: we need to follow values all over the loop, not only in this block. 2829 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 2830 continue; 2831 2832 // This is a known uniform. 2833 Uniforms.insert(I); 2834 2835 // Insert all operands. 2836 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 2837 } 2838 } 2839 2840 /// \brief Analyses memory accesses in a loop. 2841 /// 2842 /// Checks whether run time pointer checks are needed and builds sets for data 2843 /// dependence checking. 2844 class AccessAnalysis { 2845 public: 2846 /// \brief Read or write access location. 2847 typedef std::pair<Value*, char> MemAccessInfo; 2848 2849 /// \brief Set of potential dependent memory accesses. 2850 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 2851 2852 AccessAnalysis(DataLayout *Dl, DepCandidates &DA) : 2853 DL(Dl), DepCands(DA), AreAllWritesIdentified(true), 2854 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {} 2855 2856 /// \brief Register a load and whether it is only read from. 2857 void addLoad(Value *Ptr, bool IsReadOnly) { 2858 Accesses.insert(std::make_pair(Ptr, false)); 2859 if (IsReadOnly) 2860 ReadOnlyPtr.insert(Ptr); 2861 } 2862 2863 /// \brief Register a store. 2864 void addStore(Value *Ptr) { 2865 Accesses.insert(std::make_pair(Ptr, true)); 2866 } 2867 2868 /// \brief Check whether we can check the pointers at runtime for 2869 /// non-intersection. 2870 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 2871 unsigned &NumComparisons, ScalarEvolution *SE, 2872 Loop *TheLoop); 2873 2874 /// \brief Goes over all memory accesses, checks whether a RT check is needed 2875 /// and builds sets of dependent accesses. 2876 void buildDependenceSets() { 2877 // Process read-write pointers first. 2878 processMemAccesses(false); 2879 // Next, process read pointers. 2880 processMemAccesses(true); 2881 } 2882 2883 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 2884 2885 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 2886 2887 DenseSet<MemAccessInfo> &getDependenciesToCheck() { return CheckDeps; } 2888 2889 private: 2890 typedef SetVector<MemAccessInfo> PtrAccessSet; 2891 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 2892 2893 /// \brief Go over all memory access or only the deferred ones if 2894 /// \p UseDeferred is true and check whether runtime pointer checks are needed 2895 /// and build sets of dependency check candidates. 2896 void processMemAccesses(bool UseDeferred); 2897 2898 /// Set of all accesses. 2899 PtrAccessSet Accesses; 2900 2901 /// Set of access to check after all writes have been processed. 2902 PtrAccessSet DeferredAccesses; 2903 2904 /// Map of pointers to last access encountered. 2905 UnderlyingObjToAccessMap ObjToLastAccess; 2906 2907 /// Set of accesses that need a further dependence check. 2908 DenseSet<MemAccessInfo> CheckDeps; 2909 2910 /// Set of pointers that are read only. 2911 SmallPtrSet<Value*, 16> ReadOnlyPtr; 2912 2913 /// Set of underlying objects already written to. 2914 SmallPtrSet<Value*, 16> WriteObjects; 2915 2916 DataLayout *DL; 2917 2918 /// Sets of potentially dependent accesses - members of one set share an 2919 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 2920 /// dependence check. 2921 DepCandidates &DepCands; 2922 2923 bool AreAllWritesIdentified; 2924 bool AreAllReadsIdentified; 2925 bool IsRTCheckNeeded; 2926 }; 2927 2928 /// \brief Check whether a pointer can participate in a runtime bounds check. 2929 static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) { 2930 const SCEV *PtrScev = SE->getSCEV(Ptr); 2931 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 2932 if (!AR) 2933 return false; 2934 2935 return AR->isAffine(); 2936 } 2937 2938 bool AccessAnalysis::canCheckPtrAtRT( 2939 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 2940 unsigned &NumComparisons, ScalarEvolution *SE, 2941 Loop *TheLoop) { 2942 // Find pointers with computable bounds. We are going to use this information 2943 // to place a runtime bound check. 2944 unsigned NumReadPtrChecks = 0; 2945 unsigned NumWritePtrChecks = 0; 2946 bool CanDoRT = true; 2947 2948 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 2949 // We assign consecutive id to access from different dependence sets. 2950 // Accesses within the same set don't need a runtime check. 2951 unsigned RunningDepId = 1; 2952 DenseMap<Value *, unsigned> DepSetId; 2953 2954 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end(); 2955 AI != AE; ++AI) { 2956 const MemAccessInfo &Access = *AI; 2957 Value *Ptr = Access.first; 2958 bool IsWrite = Access.second; 2959 2960 // Just add write checks if we have both. 2961 if (!IsWrite && Accesses.count(std::make_pair(Ptr, true))) 2962 continue; 2963 2964 if (IsWrite) 2965 ++NumWritePtrChecks; 2966 else 2967 ++NumReadPtrChecks; 2968 2969 if (hasComputableBounds(SE, Ptr)) { 2970 // The id of the dependence set. 2971 unsigned DepId; 2972 2973 if (IsDepCheckNeeded) { 2974 Value *Leader = DepCands.getLeaderValue(Access).first; 2975 unsigned &LeaderId = DepSetId[Leader]; 2976 if (!LeaderId) 2977 LeaderId = RunningDepId++; 2978 DepId = LeaderId; 2979 } else 2980 // Each access has its own dependence set. 2981 DepId = RunningDepId++; 2982 2983 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId); 2984 2985 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n"); 2986 } else { 2987 CanDoRT = false; 2988 } 2989 } 2990 2991 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 2992 NumComparisons = 0; // Only one dependence set. 2993 else 2994 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks + 2995 NumWritePtrChecks - 1)); 2996 return CanDoRT; 2997 } 2998 2999 static bool isFunctionScopeIdentifiedObject(Value *Ptr) { 3000 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr); 3001 } 3002 3003 void AccessAnalysis::processMemAccesses(bool UseDeferred) { 3004 // We process the set twice: first we process read-write pointers, last we 3005 // process read-only pointers. This allows us to skip dependence tests for 3006 // read-only pointers. 3007 3008 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 3009 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) { 3010 const MemAccessInfo &Access = *AI; 3011 Value *Ptr = Access.first; 3012 bool IsWrite = Access.second; 3013 3014 DepCands.insert(Access); 3015 3016 // Memorize read-only pointers for later processing and skip them in the 3017 // first round (they need to be checked after we have seen all write 3018 // pointers). Note: we also mark pointer that are not consecutive as 3019 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the 3020 // second check for "!IsWrite". 3021 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 3022 if (!UseDeferred && IsReadOnlyPtr) { 3023 DeferredAccesses.insert(Access); 3024 continue; 3025 } 3026 3027 bool NeedDepCheck = false; 3028 // Check whether there is the possiblity of dependency because of underlying 3029 // objects being the same. 3030 typedef SmallVector<Value*, 16> ValueVector; 3031 ValueVector TempObjects; 3032 GetUnderlyingObjects(Ptr, TempObjects, DL); 3033 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end(); 3034 UI != UE; ++UI) { 3035 Value *UnderlyingObj = *UI; 3036 3037 // If this is a write then it needs to be an identified object. If this a 3038 // read and all writes (so far) are identified function scope objects we 3039 // don't need an identified underlying object but only an Argument (the 3040 // next write is going to invalidate this assumption if it is 3041 // unidentified). 3042 // This is a micro-optimization for the case where all writes are 3043 // identified and we have one argument pointer. 3044 // Otherwise, we do need a runtime check. 3045 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) || 3046 (!IsWrite && (!AreAllWritesIdentified || 3047 !isa<Argument>(UnderlyingObj)) && 3048 !isIdentifiedObject(UnderlyingObj))) { 3049 DEBUG(dbgs() << "LV: Found an unidentified " << 3050 (IsWrite ? "write" : "read" ) << " ptr:" << *UnderlyingObj << 3051 "\n"); 3052 IsRTCheckNeeded = (IsRTCheckNeeded || 3053 !isIdentifiedObject(UnderlyingObj) || 3054 !AreAllReadsIdentified); 3055 3056 if (IsWrite) 3057 AreAllWritesIdentified = false; 3058 if (!IsWrite) 3059 AreAllReadsIdentified = false; 3060 } 3061 3062 // If this is a write - check other reads and writes for conflicts. If 3063 // this is a read only check other writes for conflicts (but only if there 3064 // is no other write to the ptr - this is an optimization to catch "a[i] = 3065 // a[i] + " without having to do a dependence check). 3066 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj)) 3067 NeedDepCheck = true; 3068 3069 if (IsWrite) 3070 WriteObjects.insert(UnderlyingObj); 3071 3072 // Create sets of pointers connected by shared underlying objects. 3073 UnderlyingObjToAccessMap::iterator Prev = 3074 ObjToLastAccess.find(UnderlyingObj); 3075 if (Prev != ObjToLastAccess.end()) 3076 DepCands.unionSets(Access, Prev->second); 3077 3078 ObjToLastAccess[UnderlyingObj] = Access; 3079 } 3080 3081 if (NeedDepCheck) 3082 CheckDeps.insert(Access); 3083 } 3084 } 3085 3086 /// \brief Checks memory dependences among accesses to the same underlying 3087 /// object to determine whether there vectorization is legal or not (and at 3088 /// which vectorization factor). 3089 /// 3090 /// This class works under the assumption that we already checked that memory 3091 /// locations with different underlying pointers are "must-not alias". 3092 /// We use the ScalarEvolution framework to symbolically evalutate access 3093 /// functions pairs. Since we currently don't restructure the loop we can rely 3094 /// on the program order of memory accesses to determine their safety. 3095 /// At the moment we will only deem accesses as safe for: 3096 /// * A negative constant distance assuming program order. 3097 /// 3098 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 3099 /// a[i] = tmp; y = a[i]; 3100 /// 3101 /// The latter case is safe because later checks guarantuee that there can't 3102 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 3103 /// the same variable: a header phi can only be an induction or a reduction, a 3104 /// reduction can't have a memory sink, an induction can't have a memory 3105 /// source). This is important and must not be violated (or we have to 3106 /// resort to checking for cycles through memory). 3107 /// 3108 /// * A positive constant distance assuming program order that is bigger 3109 /// than the biggest memory access. 3110 /// 3111 /// tmp = a[i] OR b[i] = x 3112 /// a[i+2] = tmp y = b[i+2]; 3113 /// 3114 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 3115 /// 3116 /// * Zero distances and all accesses have the same size. 3117 /// 3118 class MemoryDepChecker { 3119 public: 3120 typedef std::pair<Value*, char> MemAccessInfo; 3121 3122 MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) : 3123 SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {} 3124 3125 /// \brief Register the location (instructions are given increasing numbers) 3126 /// of a write access. 3127 void addAccess(StoreInst *SI) { 3128 Value *Ptr = SI->getPointerOperand(); 3129 Accesses[std::make_pair(Ptr, true)].push_back(AccessIdx); 3130 InstMap.push_back(SI); 3131 ++AccessIdx; 3132 } 3133 3134 /// \brief Register the location (instructions are given increasing numbers) 3135 /// of a write access. 3136 void addAccess(LoadInst *LI) { 3137 Value *Ptr = LI->getPointerOperand(); 3138 Accesses[std::make_pair(Ptr, false)].push_back(AccessIdx); 3139 InstMap.push_back(LI); 3140 ++AccessIdx; 3141 } 3142 3143 /// \brief Check whether the dependencies between the accesses are safe. 3144 /// 3145 /// Only checks sets with elements in \p CheckDeps. 3146 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3147 DenseSet<MemAccessInfo> &CheckDeps); 3148 3149 /// \brief The maximum number of bytes of a vector register we can vectorize 3150 /// the accesses safely with. 3151 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 3152 3153 private: 3154 ScalarEvolution *SE; 3155 DataLayout *DL; 3156 const Loop *InnermostLoop; 3157 3158 /// \brief Maps access locations (ptr, read/write) to program order. 3159 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 3160 3161 /// \brief Memory access instructions in program order. 3162 SmallVector<Instruction *, 16> InstMap; 3163 3164 /// \brief The program order index to be used for the next instruction. 3165 unsigned AccessIdx; 3166 3167 // We can access this many bytes in parallel safely. 3168 unsigned MaxSafeDepDistBytes; 3169 3170 /// \brief Check whether there is a plausible dependence between the two 3171 /// accesses. 3172 /// 3173 /// Access \p A must happen before \p B in program order. The two indices 3174 /// identify the index into the program order map. 3175 /// 3176 /// This function checks whether there is a plausible dependence (or the 3177 /// absence of such can't be proved) between the two accesses. If there is a 3178 /// plausible dependence but the dependence distance is bigger than one 3179 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 3180 /// distance is smaller than any other distance encountered so far). 3181 /// Otherwise, this function returns true signaling a possible dependence. 3182 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 3183 const MemAccessInfo &B, unsigned BIdx); 3184 3185 /// \brief Check whether the data dependence could prevent store-load 3186 /// forwarding. 3187 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 3188 }; 3189 3190 static bool isInBoundsGep(Value *Ptr) { 3191 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 3192 return GEP->isInBounds(); 3193 return false; 3194 } 3195 3196 /// \brief Check whether the access through \p Ptr has a constant stride. 3197 static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr, 3198 const Loop *Lp) { 3199 const Type *PtrTy = Ptr->getType(); 3200 assert(PtrTy->isPointerTy() && "Unexpected non ptr"); 3201 3202 // Make sure that the pointer does not point to aggregate types. 3203 if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) { 3204 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr 3205 << "\n"); 3206 return 0; 3207 } 3208 3209 const SCEV *PtrScev = SE->getSCEV(Ptr); 3210 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 3211 if (!AR) { 3212 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 3213 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3214 return 0; 3215 } 3216 3217 // The accesss function must stride over the innermost loop. 3218 if (Lp != AR->getLoop()) { 3219 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << *Ptr 3220 << " SCEV: " << *PtrScev << "\n"); 3221 } 3222 3223 // The address calculation must not wrap. Otherwise, a dependence could be 3224 // inverted. An inbounds getelementptr that is a AddRec with a unit stride 3225 // cannot wrap per definition. The unit stride requirement is checked later. 3226 bool IsInBoundsGEP = isInBoundsGep(Ptr); 3227 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 3228 if (!IsNoWrapAddRec && !IsInBoundsGEP) { 3229 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 3230 << *Ptr << " SCEV: " << *PtrScev << "\n"); 3231 return 0; 3232 } 3233 3234 // Check the step is constant. 3235 const SCEV *Step = AR->getStepRecurrence(*SE); 3236 3237 // Calculate the pointer stride and check if it is consecutive. 3238 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 3239 if (!C) { 3240 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 3241 " SCEV: " << *PtrScev << "\n"); 3242 return 0; 3243 } 3244 3245 int64_t Size = DL->getTypeAllocSize(PtrTy->getPointerElementType()); 3246 const APInt &APStepVal = C->getValue()->getValue(); 3247 3248 // Huge step value - give up. 3249 if (APStepVal.getBitWidth() > 64) 3250 return 0; 3251 3252 int64_t StepVal = APStepVal.getSExtValue(); 3253 3254 // Strided access. 3255 int64_t Stride = StepVal / Size; 3256 int64_t Rem = StepVal % Size; 3257 if (Rem) 3258 return 0; 3259 3260 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 3261 // know we can't "wrap around the address space". 3262 if (!IsNoWrapAddRec && IsInBoundsGEP && Stride != 1 && Stride != -1) 3263 return 0; 3264 3265 return Stride; 3266 } 3267 3268 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 3269 unsigned TypeByteSize) { 3270 // If loads occur at a distance that is not a multiple of a feasible vector 3271 // factor store-load forwarding does not take place. 3272 // Positive dependences might cause troubles because vectorizing them might 3273 // prevent store-load forwarding making vectorized code run a lot slower. 3274 // a[i] = a[i-3] ^ a[i-8]; 3275 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 3276 // hence on your typical architecture store-load forwarding does not take 3277 // place. Vectorizing in such cases does not make sense. 3278 // Store-load forwarding distance. 3279 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 3280 // Maximum vector factor. 3281 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 3282 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 3283 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 3284 3285 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 3286 vf *= 2) { 3287 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 3288 MaxVFWithoutSLForwardIssues = (vf >>=1); 3289 break; 3290 } 3291 } 3292 3293 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 3294 DEBUG(dbgs() << "LV: Distance " << Distance << 3295 " that could cause a store-load forwarding conflict\n"); 3296 return true; 3297 } 3298 3299 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 3300 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 3301 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 3302 return false; 3303 } 3304 3305 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 3306 const MemAccessInfo &B, unsigned BIdx) { 3307 assert (AIdx < BIdx && "Must pass arguments in program order"); 3308 3309 Value *APtr = A.first; 3310 Value *BPtr = B.first; 3311 bool AIsWrite = A.second; 3312 bool BIsWrite = B.second; 3313 3314 // Two reads are independent. 3315 if (!AIsWrite && !BIsWrite) 3316 return false; 3317 3318 const SCEV *AScev = SE->getSCEV(APtr); 3319 const SCEV *BScev = SE->getSCEV(BPtr); 3320 3321 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop); 3322 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop); 3323 3324 const SCEV *Src = AScev; 3325 const SCEV *Sink = BScev; 3326 3327 // If the induction step is negative we have to invert source and sink of the 3328 // dependence. 3329 if (StrideAPtr < 0) { 3330 //Src = BScev; 3331 //Sink = AScev; 3332 std::swap(APtr, BPtr); 3333 std::swap(Src, Sink); 3334 std::swap(AIsWrite, BIsWrite); 3335 std::swap(AIdx, BIdx); 3336 std::swap(StrideAPtr, StrideBPtr); 3337 } 3338 3339 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 3340 3341 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 3342 << "(Induction step: " << StrideAPtr << ")\n"); 3343 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 3344 << *InstMap[BIdx] << ": " << *Dist << "\n"); 3345 3346 // Need consecutive accesses. We don't want to vectorize 3347 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 3348 // the address space. 3349 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 3350 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 3351 return true; 3352 } 3353 3354 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 3355 if (!C) { 3356 DEBUG(dbgs() << "LV: Dependence because of non constant distance\n"); 3357 return true; 3358 } 3359 3360 Type *ATy = APtr->getType()->getPointerElementType(); 3361 Type *BTy = BPtr->getType()->getPointerElementType(); 3362 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 3363 3364 // Negative distances are not plausible dependencies. 3365 const APInt &Val = C->getValue()->getValue(); 3366 if (Val.isNegative()) { 3367 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 3368 if (IsTrueDataDependence && 3369 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 3370 ATy != BTy)) 3371 return true; 3372 3373 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 3374 return false; 3375 } 3376 3377 // Write to the same location with the same size. 3378 // Could be improved to assert type sizes are the same (i32 == float, etc). 3379 if (Val == 0) { 3380 if (ATy == BTy) 3381 return false; 3382 DEBUG(dbgs() << "LV: Zero dependence difference but different types"); 3383 return true; 3384 } 3385 3386 assert(Val.isStrictlyPositive() && "Expect a positive value"); 3387 3388 // Positive distance bigger than max vectorization factor. 3389 if (ATy != BTy) { 3390 DEBUG(dbgs() << 3391 "LV: ReadWrite-Write positive dependency with different types"); 3392 return false; 3393 } 3394 3395 unsigned Distance = (unsigned) Val.getZExtValue(); 3396 3397 // Bail out early if passed-in parameters make vectorization not feasible. 3398 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 3399 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1; 3400 3401 // The distance must be bigger than the size needed for a vectorized version 3402 // of the operation and the size of the vectorized operation must not be 3403 // bigger than the currrent maximum size. 3404 if (Distance < 2*TypeByteSize || 3405 2*TypeByteSize > MaxSafeDepDistBytes || 3406 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 3407 DEBUG(dbgs() << "LV: Failure because of Positive distance " 3408 << Val.getSExtValue() << "\n"); 3409 return true; 3410 } 3411 3412 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 3413 Distance : MaxSafeDepDistBytes; 3414 3415 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 3416 if (IsTrueDataDependence && 3417 couldPreventStoreLoadForward(Distance, TypeByteSize)) 3418 return true; 3419 3420 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 3421 " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n"); 3422 3423 return false; 3424 } 3425 3426 bool 3427 MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 3428 DenseSet<MemAccessInfo> &CheckDeps) { 3429 3430 MaxSafeDepDistBytes = -1U; 3431 while (!CheckDeps.empty()) { 3432 MemAccessInfo CurAccess = *CheckDeps.begin(); 3433 3434 // Get the relevant memory access set. 3435 EquivalenceClasses<MemAccessInfo>::iterator I = 3436 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 3437 3438 // Check accesses within this set. 3439 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 3440 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 3441 3442 // Check every access pair. 3443 while (AI != AE) { 3444 CheckDeps.erase(*AI); 3445 EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI); 3446 while (OI != AE) { 3447 // Check every accessing instruction pair in program order. 3448 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 3449 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 3450 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 3451 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 3452 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2)) 3453 return false; 3454 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1)) 3455 return false; 3456 } 3457 ++OI; 3458 } 3459 AI++; 3460 } 3461 } 3462 return true; 3463 } 3464 3465 bool LoopVectorizationLegality::canVectorizeMemory() { 3466 3467 typedef SmallVector<Value*, 16> ValueVector; 3468 typedef SmallPtrSet<Value*, 16> ValueSet; 3469 3470 // Stores a pair of memory access location and whether the access is a store 3471 // (true) or a load (false). 3472 typedef std::pair<Value*, char> MemAccessInfo; 3473 typedef DenseSet<MemAccessInfo> PtrAccessSet; 3474 3475 // Holds the Load and Store *instructions*. 3476 ValueVector Loads; 3477 ValueVector Stores; 3478 3479 // Holds all the different accesses in the loop. 3480 unsigned NumReads = 0; 3481 unsigned NumReadWrites = 0; 3482 3483 PtrRtCheck.Pointers.clear(); 3484 PtrRtCheck.Need = false; 3485 3486 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 3487 MemoryDepChecker DepChecker(SE, DL, TheLoop); 3488 3489 // For each block. 3490 for (Loop::block_iterator bb = TheLoop->block_begin(), 3491 be = TheLoop->block_end(); bb != be; ++bb) { 3492 3493 // Scan the BB and collect legal loads and stores. 3494 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3495 ++it) { 3496 3497 // If this is a load, save it. If this instruction can read from memory 3498 // but is not a load, then we quit. Notice that we don't handle function 3499 // calls that read or write. 3500 if (it->mayReadFromMemory()) { 3501 LoadInst *Ld = dyn_cast<LoadInst>(it); 3502 if (!Ld) return false; 3503 if (!Ld->isSimple() && !IsAnnotatedParallel) { 3504 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 3505 return false; 3506 } 3507 Loads.push_back(Ld); 3508 DepChecker.addAccess(Ld); 3509 continue; 3510 } 3511 3512 // Save 'store' instructions. Abort if other instructions write to memory. 3513 if (it->mayWriteToMemory()) { 3514 StoreInst *St = dyn_cast<StoreInst>(it); 3515 if (!St) return false; 3516 if (!St->isSimple() && !IsAnnotatedParallel) { 3517 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 3518 return false; 3519 } 3520 Stores.push_back(St); 3521 DepChecker.addAccess(St); 3522 } 3523 } // next instr. 3524 } // next block. 3525 3526 // Now we have two lists that hold the loads and the stores. 3527 // Next, we find the pointers that they use. 3528 3529 // Check if we see any stores. If there are no stores, then we don't 3530 // care if the pointers are *restrict*. 3531 if (!Stores.size()) { 3532 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 3533 return true; 3534 } 3535 3536 AccessAnalysis::DepCandidates DependentAccesses; 3537 AccessAnalysis Accesses(DL, DependentAccesses); 3538 3539 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 3540 // multiple times on the same object. If the ptr is accessed twice, once 3541 // for read and once for write, it will only appear once (on the write 3542 // list). This is okay, since we are going to check for conflicts between 3543 // writes and between reads and writes, but not between reads and reads. 3544 ValueSet Seen; 3545 3546 ValueVector::iterator I, IE; 3547 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 3548 StoreInst *ST = cast<StoreInst>(*I); 3549 Value* Ptr = ST->getPointerOperand(); 3550 3551 if (isUniform(Ptr)) { 3552 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 3553 return false; 3554 } 3555 3556 // If we did *not* see this pointer before, insert it to the read-write 3557 // list. At this phase it is only a 'write' list. 3558 if (Seen.insert(Ptr)) { 3559 ++NumReadWrites; 3560 Accesses.addStore(Ptr); 3561 } 3562 } 3563 3564 if (IsAnnotatedParallel) { 3565 DEBUG(dbgs() 3566 << "LV: A loop annotated parallel, ignore memory dependency " 3567 << "checks.\n"); 3568 return true; 3569 } 3570 3571 SmallPtrSet<Value *, 16> ReadOnlyPtr; 3572 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 3573 LoadInst *LD = cast<LoadInst>(*I); 3574 Value* Ptr = LD->getPointerOperand(); 3575 // If we did *not* see this pointer before, insert it to the 3576 // read list. If we *did* see it before, then it is already in 3577 // the read-write list. This allows us to vectorize expressions 3578 // such as A[i] += x; Because the address of A[i] is a read-write 3579 // pointer. This only works if the index of A[i] is consecutive. 3580 // If the address of i is unknown (for example A[B[i]]) then we may 3581 // read a few words, modify, and write a few words, and some of the 3582 // words may be written to the same address. 3583 bool IsReadOnlyPtr = false; 3584 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) { 3585 ++NumReads; 3586 IsReadOnlyPtr = true; 3587 } 3588 Accesses.addLoad(Ptr, IsReadOnlyPtr); 3589 } 3590 3591 // If we write (or read-write) to a single destination and there are no 3592 // other reads in this loop then is it safe to vectorize. 3593 if (NumReadWrites == 1 && NumReads == 0) { 3594 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 3595 return true; 3596 } 3597 3598 // Build dependence sets and check whether we need a runtime pointer bounds 3599 // check. 3600 Accesses.buildDependenceSets(); 3601 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 3602 3603 // Find pointers with computable bounds. We are going to use this information 3604 // to place a runtime bound check. 3605 unsigned NumComparisons = 0; 3606 bool CanDoRT = false; 3607 if (NeedRTCheck) 3608 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop); 3609 3610 3611 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 3612 " pointer comparisons.\n"); 3613 3614 // If we only have one set of dependences to check pointers among we don't 3615 // need a runtime check. 3616 if (NumComparisons == 0 && NeedRTCheck) 3617 NeedRTCheck = false; 3618 3619 // Check that we did not collect too many pointers or found a unsizeable 3620 // pointer. 3621 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 3622 PtrRtCheck.reset(); 3623 CanDoRT = false; 3624 } 3625 3626 if (CanDoRT) { 3627 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 3628 } 3629 3630 if (NeedRTCheck && !CanDoRT) { 3631 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 3632 "the array bounds.\n"); 3633 PtrRtCheck.reset(); 3634 return false; 3635 } 3636 3637 PtrRtCheck.Need = NeedRTCheck; 3638 3639 bool CanVecMem = true; 3640 if (Accesses.isDependencyCheckNeeded()) { 3641 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 3642 CanVecMem = DepChecker.areDepsSafe(DependentAccesses, 3643 Accesses.getDependenciesToCheck()); 3644 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 3645 } 3646 3647 DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") << 3648 " need a runtime memory check.\n"); 3649 3650 return CanVecMem; 3651 } 3652 3653 static bool hasMultipleUsesOf(Instruction *I, 3654 SmallPtrSet<Instruction *, 8> &Insts) { 3655 unsigned NumUses = 0; 3656 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3657 if (Insts.count(dyn_cast<Instruction>(*Use))) 3658 ++NumUses; 3659 if (NumUses > 1) 3660 return true; 3661 } 3662 3663 return false; 3664 } 3665 3666 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) { 3667 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3668 if (!Set.count(dyn_cast<Instruction>(*Use))) 3669 return false; 3670 return true; 3671 } 3672 3673 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3674 ReductionKind Kind) { 3675 if (Phi->getNumIncomingValues() != 2) 3676 return false; 3677 3678 // Reduction variables are only found in the loop header block. 3679 if (Phi->getParent() != TheLoop->getHeader()) 3680 return false; 3681 3682 // Obtain the reduction start value from the value that comes from the loop 3683 // preheader. 3684 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3685 3686 // ExitInstruction is the single value which is used outside the loop. 3687 // We only allow for a single reduction value to be used outside the loop. 3688 // This includes users of the reduction, variables (which form a cycle 3689 // which ends in the phi node). 3690 Instruction *ExitInstruction = 0; 3691 // Indicates that we found a reduction operation in our scan. 3692 bool FoundReduxOp = false; 3693 3694 // We start with the PHI node and scan for all of the users of this 3695 // instruction. All users must be instructions that can be used as reduction 3696 // variables (such as ADD). We must have a single out-of-block user. The cycle 3697 // must include the original PHI. 3698 bool FoundStartPHI = false; 3699 3700 // To recognize min/max patterns formed by a icmp select sequence, we store 3701 // the number of instruction we saw from the recognized min/max pattern, 3702 // to make sure we only see exactly the two instructions. 3703 unsigned NumCmpSelectPatternInst = 0; 3704 ReductionInstDesc ReduxDesc(false, 0); 3705 3706 SmallPtrSet<Instruction *, 8> VisitedInsts; 3707 SmallVector<Instruction *, 8> Worklist; 3708 Worklist.push_back(Phi); 3709 VisitedInsts.insert(Phi); 3710 3711 // A value in the reduction can be used: 3712 // - By the reduction: 3713 // - Reduction operation: 3714 // - One use of reduction value (safe). 3715 // - Multiple use of reduction value (not safe). 3716 // - PHI: 3717 // - All uses of the PHI must be the reduction (safe). 3718 // - Otherwise, not safe. 3719 // - By one instruction outside of the loop (safe). 3720 // - By further instructions outside of the loop (not safe). 3721 // - By an instruction that is not part of the reduction (not safe). 3722 // This is either: 3723 // * An instruction type other than PHI or the reduction operation. 3724 // * A PHI in the header other than the initial PHI. 3725 while (!Worklist.empty()) { 3726 Instruction *Cur = Worklist.back(); 3727 Worklist.pop_back(); 3728 3729 // No Users. 3730 // If the instruction has no users then this is a broken chain and can't be 3731 // a reduction variable. 3732 if (Cur->use_empty()) 3733 return false; 3734 3735 bool IsAPhi = isa<PHINode>(Cur); 3736 3737 // A header PHI use other than the original PHI. 3738 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3739 return false; 3740 3741 // Reductions of instructions such as Div, and Sub is only possible if the 3742 // LHS is the reduction variable. 3743 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3744 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3745 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3746 return false; 3747 3748 // Any reduction instruction must be of one of the allowed kinds. 3749 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3750 if (!ReduxDesc.IsReduction) 3751 return false; 3752 3753 // A reduction operation must only have one use of the reduction value. 3754 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3755 hasMultipleUsesOf(Cur, VisitedInsts)) 3756 return false; 3757 3758 // All inputs to a PHI node must be a reduction value. 3759 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3760 return false; 3761 3762 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3763 isa<SelectInst>(Cur))) 3764 ++NumCmpSelectPatternInst; 3765 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3766 isa<SelectInst>(Cur))) 3767 ++NumCmpSelectPatternInst; 3768 3769 // Check whether we found a reduction operator. 3770 FoundReduxOp |= !IsAPhi; 3771 3772 // Process users of current instruction. Push non PHI nodes after PHI nodes 3773 // onto the stack. This way we are going to have seen all inputs to PHI 3774 // nodes once we get to them. 3775 SmallVector<Instruction *, 8> NonPHIs; 3776 SmallVector<Instruction *, 8> PHIs; 3777 for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E; 3778 ++UI) { 3779 Instruction *Usr = cast<Instruction>(*UI); 3780 3781 // Check if we found the exit user. 3782 BasicBlock *Parent = Usr->getParent(); 3783 if (!TheLoop->contains(Parent)) { 3784 // Exit if you find multiple outside users. 3785 if (ExitInstruction != 0) 3786 return false; 3787 ExitInstruction = Cur; 3788 continue; 3789 } 3790 3791 // Process instructions only once (termination). 3792 if (VisitedInsts.insert(Usr)) { 3793 if (isa<PHINode>(Usr)) 3794 PHIs.push_back(Usr); 3795 else 3796 NonPHIs.push_back(Usr); 3797 } 3798 // Remember that we completed the cycle. 3799 if (Usr == Phi) 3800 FoundStartPHI = true; 3801 } 3802 Worklist.append(PHIs.begin(), PHIs.end()); 3803 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 3804 } 3805 3806 // This means we have seen one but not the other instruction of the 3807 // pattern or more than just a select and cmp. 3808 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 3809 NumCmpSelectPatternInst != 2) 3810 return false; 3811 3812 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 3813 return false; 3814 3815 // We found a reduction var if we have reached the original phi node and we 3816 // only have a single instruction with out-of-loop users. 3817 3818 // This instruction is allowed to have out-of-loop users. 3819 AllowedExit.insert(ExitInstruction); 3820 3821 // Save the description of this reduction variable. 3822 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 3823 ReduxDesc.MinMaxKind); 3824 Reductions[Phi] = RD; 3825 // We've ended the cycle. This is a reduction variable if we have an 3826 // outside user and it has a binary op. 3827 3828 return true; 3829 } 3830 3831 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 3832 /// pattern corresponding to a min(X, Y) or max(X, Y). 3833 LoopVectorizationLegality::ReductionInstDesc 3834 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 3835 ReductionInstDesc &Prev) { 3836 3837 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 3838 "Expect a select instruction"); 3839 Instruction *Cmp = 0; 3840 SelectInst *Select = 0; 3841 3842 // We must handle the select(cmp()) as a single instruction. Advance to the 3843 // select. 3844 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 3845 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin()))) 3846 return ReductionInstDesc(false, I); 3847 return ReductionInstDesc(Select, Prev.MinMaxKind); 3848 } 3849 3850 // Only handle single use cases for now. 3851 if (!(Select = dyn_cast<SelectInst>(I))) 3852 return ReductionInstDesc(false, I); 3853 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 3854 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 3855 return ReductionInstDesc(false, I); 3856 if (!Cmp->hasOneUse()) 3857 return ReductionInstDesc(false, I); 3858 3859 Value *CmpLeft; 3860 Value *CmpRight; 3861 3862 // Look for a min/max pattern. 3863 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3864 return ReductionInstDesc(Select, MRK_UIntMin); 3865 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3866 return ReductionInstDesc(Select, MRK_UIntMax); 3867 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3868 return ReductionInstDesc(Select, MRK_SIntMax); 3869 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3870 return ReductionInstDesc(Select, MRK_SIntMin); 3871 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3872 return ReductionInstDesc(Select, MRK_FloatMin); 3873 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3874 return ReductionInstDesc(Select, MRK_FloatMax); 3875 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3876 return ReductionInstDesc(Select, MRK_FloatMin); 3877 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 3878 return ReductionInstDesc(Select, MRK_FloatMax); 3879 3880 return ReductionInstDesc(false, I); 3881 } 3882 3883 LoopVectorizationLegality::ReductionInstDesc 3884 LoopVectorizationLegality::isReductionInstr(Instruction *I, 3885 ReductionKind Kind, 3886 ReductionInstDesc &Prev) { 3887 bool FP = I->getType()->isFloatingPointTy(); 3888 bool FastMath = (FP && I->isCommutative() && I->isAssociative()); 3889 switch (I->getOpcode()) { 3890 default: 3891 return ReductionInstDesc(false, I); 3892 case Instruction::PHI: 3893 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 3894 Kind != RK_FloatMinMax)) 3895 return ReductionInstDesc(false, I); 3896 return ReductionInstDesc(I, Prev.MinMaxKind); 3897 case Instruction::Sub: 3898 case Instruction::Add: 3899 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 3900 case Instruction::Mul: 3901 return ReductionInstDesc(Kind == RK_IntegerMult, I); 3902 case Instruction::And: 3903 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 3904 case Instruction::Or: 3905 return ReductionInstDesc(Kind == RK_IntegerOr, I); 3906 case Instruction::Xor: 3907 return ReductionInstDesc(Kind == RK_IntegerXor, I); 3908 case Instruction::FMul: 3909 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 3910 case Instruction::FAdd: 3911 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 3912 case Instruction::FCmp: 3913 case Instruction::ICmp: 3914 case Instruction::Select: 3915 if (Kind != RK_IntegerMinMax && 3916 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 3917 return ReductionInstDesc(false, I); 3918 return isMinMaxSelectCmpPattern(I, Prev); 3919 } 3920 } 3921 3922 LoopVectorizationLegality::InductionKind 3923 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 3924 Type *PhiTy = Phi->getType(); 3925 // We only handle integer and pointer inductions variables. 3926 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 3927 return IK_NoInduction; 3928 3929 // Check that the PHI is consecutive. 3930 const SCEV *PhiScev = SE->getSCEV(Phi); 3931 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 3932 if (!AR) { 3933 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 3934 return IK_NoInduction; 3935 } 3936 const SCEV *Step = AR->getStepRecurrence(*SE); 3937 3938 // Integer inductions need to have a stride of one. 3939 if (PhiTy->isIntegerTy()) { 3940 if (Step->isOne()) 3941 return IK_IntInduction; 3942 if (Step->isAllOnesValue()) 3943 return IK_ReverseIntInduction; 3944 return IK_NoInduction; 3945 } 3946 3947 // Calculate the pointer stride and check if it is consecutive. 3948 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 3949 if (!C) 3950 return IK_NoInduction; 3951 3952 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 3953 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); 3954 if (C->getValue()->equalsInt(Size)) 3955 return IK_PtrInduction; 3956 else if (C->getValue()->equalsInt(0 - Size)) 3957 return IK_ReversePtrInduction; 3958 3959 return IK_NoInduction; 3960 } 3961 3962 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 3963 Value *In0 = const_cast<Value*>(V); 3964 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 3965 if (!PN) 3966 return false; 3967 3968 return Inductions.count(PN); 3969 } 3970 3971 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 3972 assert(TheLoop->contains(BB) && "Unknown block used"); 3973 3974 // Blocks that do not dominate the latch need predication. 3975 BasicBlock* Latch = TheLoop->getLoopLatch(); 3976 return !DT->dominates(BB, Latch); 3977 } 3978 3979 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) { 3980 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3981 // We might be able to hoist the load. 3982 if (it->mayReadFromMemory() && !LoadSpeculation.isHoistableLoad(it)) 3983 return false; 3984 3985 // We don't predicate stores at the moment. 3986 if (it->mayWriteToMemory() || it->mayThrow()) 3987 return false; 3988 3989 // The instructions below can trap. 3990 switch (it->getOpcode()) { 3991 default: continue; 3992 case Instruction::UDiv: 3993 case Instruction::SDiv: 3994 case Instruction::URem: 3995 case Instruction::SRem: 3996 return false; 3997 } 3998 } 3999 4000 return true; 4001 } 4002 4003 LoopVectorizationCostModel::VectorizationFactor 4004 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, 4005 unsigned UserVF) { 4006 // Width 1 means no vectorize 4007 VectorizationFactor Factor = { 1U, 0U }; 4008 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4009 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4010 return Factor; 4011 } 4012 4013 // Find the trip count. 4014 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); 4015 DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n"); 4016 4017 unsigned WidestType = getWidestType(); 4018 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4019 unsigned MaxSafeDepDist = -1U; 4020 if (Legal->getMaxSafeDepDistBytes() != -1U) 4021 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4022 WidestRegister = WidestRegister < MaxSafeDepDist ? WidestRegister : MaxSafeDepDist; 4023 unsigned MaxVectorSize = WidestRegister / WidestType; 4024 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4025 DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n"); 4026 4027 if (MaxVectorSize == 0) { 4028 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4029 MaxVectorSize = 1; 4030 } 4031 4032 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements" 4033 " into one vector!"); 4034 4035 unsigned VF = MaxVectorSize; 4036 4037 // If we optimize the program for size, avoid creating the tail loop. 4038 if (OptForSize) { 4039 // If we are unable to calculate the trip count then don't try to vectorize. 4040 if (TC < 2) { 4041 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4042 return Factor; 4043 } 4044 4045 // Find the maximum SIMD width that can fit within the trip count. 4046 VF = TC % MaxVectorSize; 4047 4048 if (VF == 0) 4049 VF = MaxVectorSize; 4050 4051 // If the trip count that we found modulo the vectorization factor is not 4052 // zero then we require a tail. 4053 if (VF < 2) { 4054 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4055 return Factor; 4056 } 4057 } 4058 4059 if (UserVF != 0) { 4060 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4061 DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n"); 4062 4063 Factor.Width = UserVF; 4064 return Factor; 4065 } 4066 4067 float Cost = expectedCost(1); 4068 unsigned Width = 1; 4069 DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n"); 4070 for (unsigned i=2; i <= VF; i*=2) { 4071 // Notice that the vector loop needs to be executed less times, so 4072 // we need to divide the cost of the vector loops by the width of 4073 // the vector elements. 4074 float VectorCost = expectedCost(i) / (float)i; 4075 DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " << 4076 (int)VectorCost << ".\n"); 4077 if (VectorCost < Cost) { 4078 Cost = VectorCost; 4079 Width = i; 4080 } 4081 } 4082 4083 DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n"); 4084 Factor.Width = Width; 4085 Factor.Cost = Width * Cost; 4086 return Factor; 4087 } 4088 4089 unsigned LoopVectorizationCostModel::getWidestType() { 4090 unsigned MaxWidth = 8; 4091 4092 // For each block. 4093 for (Loop::block_iterator bb = TheLoop->block_begin(), 4094 be = TheLoop->block_end(); bb != be; ++bb) { 4095 BasicBlock *BB = *bb; 4096 4097 // For each instruction in the loop. 4098 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4099 Type *T = it->getType(); 4100 4101 // Only examine Loads, Stores and PHINodes. 4102 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4103 continue; 4104 4105 // Examine PHI nodes that are reduction variables. 4106 if (PHINode *PN = dyn_cast<PHINode>(it)) 4107 if (!Legal->getReductionVars()->count(PN)) 4108 continue; 4109 4110 // Examine the stored values. 4111 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4112 T = ST->getValueOperand()->getType(); 4113 4114 // Ignore loaded pointer types and stored pointer types that are not 4115 // consecutive. However, we do want to take consecutive stores/loads of 4116 // pointer vectors into account. 4117 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4118 continue; 4119 4120 MaxWidth = std::max(MaxWidth, 4121 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4122 } 4123 } 4124 4125 return MaxWidth; 4126 } 4127 4128 unsigned 4129 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4130 unsigned UserUF, 4131 unsigned VF, 4132 unsigned LoopCost) { 4133 4134 // -- The unroll heuristics -- 4135 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4136 // There are many micro-architectural considerations that we can't predict 4137 // at this level. For example frontend pressure (on decode or fetch) due to 4138 // code size, or the number and capabilities of the execution ports. 4139 // 4140 // We use the following heuristics to select the unroll factor: 4141 // 1. If the code has reductions the we unroll in order to break the cross 4142 // iteration dependency. 4143 // 2. If the loop is really small then we unroll in order to reduce the loop 4144 // overhead. 4145 // 3. We don't unroll if we think that we will spill registers to memory due 4146 // to the increased register pressure. 4147 4148 // Use the user preference, unless 'auto' is selected. 4149 if (UserUF != 0) 4150 return UserUF; 4151 4152 // When we optimize for size we don't unroll. 4153 if (OptForSize) 4154 return 1; 4155 4156 // We used the distance for the unroll factor. 4157 if (Legal->getMaxSafeDepDistBytes() != -1U) 4158 return 1; 4159 4160 // Do not unroll loops with a relatively small trip count. 4161 unsigned TC = SE->getSmallConstantTripCount(TheLoop, 4162 TheLoop->getLoopLatch()); 4163 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4164 return 1; 4165 4166 unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true); 4167 DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters << 4168 " vector registers\n"); 4169 4170 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4171 // We divide by these constants so assume that we have at least one 4172 // instruction that uses at least one register. 4173 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4174 R.NumInstructions = std::max(R.NumInstructions, 1U); 4175 4176 // We calculate the unroll factor using the following formula. 4177 // Subtract the number of loop invariants from the number of available 4178 // registers. These registers are used by all of the unrolled instances. 4179 // Next, divide the remaining registers by the number of registers that is 4180 // required by the loop, in order to estimate how many parallel instances 4181 // fit without causing spills. 4182 unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers; 4183 4184 // Clamp the unroll factor ranges to reasonable factors. 4185 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor(); 4186 4187 // If we did not calculate the cost for VF (because the user selected the VF) 4188 // then we calculate the cost of VF here. 4189 if (LoopCost == 0) 4190 LoopCost = expectedCost(VF); 4191 4192 // Clamp the calculated UF to be between the 1 and the max unroll factor 4193 // that the target allows. 4194 if (UF > MaxUnrollSize) 4195 UF = MaxUnrollSize; 4196 else if (UF < 1) 4197 UF = 1; 4198 4199 if (Legal->getReductionVars()->size()) { 4200 DEBUG(dbgs() << "LV: Unrolling because of reductions. \n"); 4201 return UF; 4202 } 4203 4204 // We want to unroll tiny loops in order to reduce the loop overhead. 4205 // We assume that the cost overhead is 1 and we use the cost model 4206 // to estimate the cost of the loop and unroll until the cost of the 4207 // loop overhead is about 5% of the cost of the loop. 4208 DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n"); 4209 if (LoopCost < 20) { 4210 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n"); 4211 unsigned NewUF = 20/LoopCost + 1; 4212 return std::min(NewUF, UF); 4213 } 4214 4215 DEBUG(dbgs() << "LV: Not Unrolling. \n"); 4216 return 1; 4217 } 4218 4219 LoopVectorizationCostModel::RegisterUsage 4220 LoopVectorizationCostModel::calculateRegisterUsage() { 4221 // This function calculates the register usage by measuring the highest number 4222 // of values that are alive at a single location. Obviously, this is a very 4223 // rough estimation. We scan the loop in a topological order in order and 4224 // assign a number to each instruction. We use RPO to ensure that defs are 4225 // met before their users. We assume that each instruction that has in-loop 4226 // users starts an interval. We record every time that an in-loop value is 4227 // used, so we have a list of the first and last occurrences of each 4228 // instruction. Next, we transpose this data structure into a multi map that 4229 // holds the list of intervals that *end* at a specific location. This multi 4230 // map allows us to perform a linear search. We scan the instructions linearly 4231 // and record each time that a new interval starts, by placing it in a set. 4232 // If we find this value in the multi-map then we remove it from the set. 4233 // The max register usage is the maximum size of the set. 4234 // We also search for instructions that are defined outside the loop, but are 4235 // used inside the loop. We need this number separately from the max-interval 4236 // usage number because when we unroll, loop-invariant values do not take 4237 // more register. 4238 LoopBlocksDFS DFS(TheLoop); 4239 DFS.perform(LI); 4240 4241 RegisterUsage R; 4242 R.NumInstructions = 0; 4243 4244 // Each 'key' in the map opens a new interval. The values 4245 // of the map are the index of the 'last seen' usage of the 4246 // instruction that is the key. 4247 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4248 // Maps instruction to its index. 4249 DenseMap<unsigned, Instruction*> IdxToInstr; 4250 // Marks the end of each interval. 4251 IntervalMap EndPoint; 4252 // Saves the list of instruction indices that are used in the loop. 4253 SmallSet<Instruction*, 8> Ends; 4254 // Saves the list of values that are used in the loop but are 4255 // defined outside the loop, such as arguments and constants. 4256 SmallPtrSet<Value*, 8> LoopInvariants; 4257 4258 unsigned Index = 0; 4259 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4260 be = DFS.endRPO(); bb != be; ++bb) { 4261 R.NumInstructions += (*bb)->size(); 4262 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4263 ++it) { 4264 Instruction *I = it; 4265 IdxToInstr[Index++] = I; 4266 4267 // Save the end location of each USE. 4268 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4269 Value *U = I->getOperand(i); 4270 Instruction *Instr = dyn_cast<Instruction>(U); 4271 4272 // Ignore non-instruction values such as arguments, constants, etc. 4273 if (!Instr) continue; 4274 4275 // If this instruction is outside the loop then record it and continue. 4276 if (!TheLoop->contains(Instr)) { 4277 LoopInvariants.insert(Instr); 4278 continue; 4279 } 4280 4281 // Overwrite previous end points. 4282 EndPoint[Instr] = Index; 4283 Ends.insert(Instr); 4284 } 4285 } 4286 } 4287 4288 // Saves the list of intervals that end with the index in 'key'. 4289 typedef SmallVector<Instruction*, 2> InstrList; 4290 DenseMap<unsigned, InstrList> TransposeEnds; 4291 4292 // Transpose the EndPoints to a list of values that end at each index. 4293 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4294 it != e; ++it) 4295 TransposeEnds[it->second].push_back(it->first); 4296 4297 SmallSet<Instruction*, 8> OpenIntervals; 4298 unsigned MaxUsage = 0; 4299 4300 4301 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4302 for (unsigned int i = 0; i < Index; ++i) { 4303 Instruction *I = IdxToInstr[i]; 4304 // Ignore instructions that are never used within the loop. 4305 if (!Ends.count(I)) continue; 4306 4307 // Remove all of the instructions that end at this location. 4308 InstrList &List = TransposeEnds[i]; 4309 for (unsigned int j=0, e = List.size(); j < e; ++j) 4310 OpenIntervals.erase(List[j]); 4311 4312 // Count the number of live interals. 4313 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4314 4315 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4316 OpenIntervals.size() <<"\n"); 4317 4318 // Add the current instruction to the list of open intervals. 4319 OpenIntervals.insert(I); 4320 } 4321 4322 unsigned Invariant = LoopInvariants.size(); 4323 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n"); 4324 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n"); 4325 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n"); 4326 4327 R.LoopInvariantRegs = Invariant; 4328 R.MaxLocalUsers = MaxUsage; 4329 return R; 4330 } 4331 4332 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4333 unsigned Cost = 0; 4334 4335 // For each block. 4336 for (Loop::block_iterator bb = TheLoop->block_begin(), 4337 be = TheLoop->block_end(); bb != be; ++bb) { 4338 unsigned BlockCost = 0; 4339 BasicBlock *BB = *bb; 4340 4341 // For each instruction in the old loop. 4342 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4343 // Skip dbg intrinsics. 4344 if (isa<DbgInfoIntrinsic>(it)) 4345 continue; 4346 4347 unsigned C = getInstructionCost(it, VF); 4348 Cost += C; 4349 DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " << 4350 VF << " For instruction: "<< *it << "\n"); 4351 } 4352 4353 // We assume that if-converted blocks have a 50% chance of being executed. 4354 // When the code is scalar then some of the blocks are avoided due to CF. 4355 // When the code is vectorized we execute all code paths. 4356 if (Legal->blockNeedsPredication(*bb) && VF == 1) 4357 BlockCost /= 2; 4358 4359 Cost += BlockCost; 4360 } 4361 4362 return Cost; 4363 } 4364 4365 unsigned 4366 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4367 // If we know that this instruction will remain uniform, check the cost of 4368 // the scalar version. 4369 if (Legal->isUniformAfterVectorization(I)) 4370 VF = 1; 4371 4372 Type *RetTy = I->getType(); 4373 Type *VectorTy = ToVectorTy(RetTy, VF); 4374 4375 // TODO: We need to estimate the cost of intrinsic calls. 4376 switch (I->getOpcode()) { 4377 case Instruction::GetElementPtr: 4378 // We mark this instruction as zero-cost because the cost of GEPs in 4379 // vectorized code depends on whether the corresponding memory instruction 4380 // is scalarized or not. Therefore, we handle GEPs with the memory 4381 // instruction cost. 4382 return 0; 4383 case Instruction::Br: { 4384 return TTI.getCFInstrCost(I->getOpcode()); 4385 } 4386 case Instruction::PHI: 4387 //TODO: IF-converted IFs become selects. 4388 return 0; 4389 case Instruction::Add: 4390 case Instruction::FAdd: 4391 case Instruction::Sub: 4392 case Instruction::FSub: 4393 case Instruction::Mul: 4394 case Instruction::FMul: 4395 case Instruction::UDiv: 4396 case Instruction::SDiv: 4397 case Instruction::FDiv: 4398 case Instruction::URem: 4399 case Instruction::SRem: 4400 case Instruction::FRem: 4401 case Instruction::Shl: 4402 case Instruction::LShr: 4403 case Instruction::AShr: 4404 case Instruction::And: 4405 case Instruction::Or: 4406 case Instruction::Xor: { 4407 // Certain instructions can be cheaper to vectorize if they have a constant 4408 // second vector operand. One example of this are shifts on x86. 4409 TargetTransformInfo::OperandValueKind Op1VK = 4410 TargetTransformInfo::OK_AnyValue; 4411 TargetTransformInfo::OperandValueKind Op2VK = 4412 TargetTransformInfo::OK_AnyValue; 4413 4414 if (isa<ConstantInt>(I->getOperand(1))) 4415 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4416 4417 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK); 4418 } 4419 case Instruction::Select: { 4420 SelectInst *SI = cast<SelectInst>(I); 4421 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4422 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4423 Type *CondTy = SI->getCondition()->getType(); 4424 if (!ScalarCond) 4425 CondTy = VectorType::get(CondTy, VF); 4426 4427 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4428 } 4429 case Instruction::ICmp: 4430 case Instruction::FCmp: { 4431 Type *ValTy = I->getOperand(0)->getType(); 4432 VectorTy = ToVectorTy(ValTy, VF); 4433 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4434 } 4435 case Instruction::Store: 4436 case Instruction::Load: { 4437 StoreInst *SI = dyn_cast<StoreInst>(I); 4438 LoadInst *LI = dyn_cast<LoadInst>(I); 4439 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4440 LI->getType()); 4441 VectorTy = ToVectorTy(ValTy, VF); 4442 4443 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4444 unsigned AS = SI ? SI->getPointerAddressSpace() : 4445 LI->getPointerAddressSpace(); 4446 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4447 // We add the cost of address computation here instead of with the gep 4448 // instruction because only here we know whether the operation is 4449 // scalarized. 4450 if (VF == 1) 4451 return TTI.getAddressComputationCost(VectorTy) + 4452 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4453 4454 // Scalarized loads/stores. 4455 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4456 bool Reverse = ConsecutiveStride < 0; 4457 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4458 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4459 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4460 unsigned Cost = 0; 4461 // The cost of extracting from the value vector and pointer vector. 4462 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4463 for (unsigned i = 0; i < VF; ++i) { 4464 // The cost of extracting the pointer operand. 4465 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4466 // In case of STORE, the cost of ExtractElement from the vector. 4467 // In case of LOAD, the cost of InsertElement into the returned 4468 // vector. 4469 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4470 Instruction::InsertElement, 4471 VectorTy, i); 4472 } 4473 4474 // The cost of the scalar loads/stores. 4475 Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType()); 4476 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4477 Alignment, AS); 4478 return Cost; 4479 } 4480 4481 // Wide load/stores. 4482 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4483 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4484 4485 if (Reverse) 4486 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4487 VectorTy, 0); 4488 return Cost; 4489 } 4490 case Instruction::ZExt: 4491 case Instruction::SExt: 4492 case Instruction::FPToUI: 4493 case Instruction::FPToSI: 4494 case Instruction::FPExt: 4495 case Instruction::PtrToInt: 4496 case Instruction::IntToPtr: 4497 case Instruction::SIToFP: 4498 case Instruction::UIToFP: 4499 case Instruction::Trunc: 4500 case Instruction::FPTrunc: 4501 case Instruction::BitCast: { 4502 // We optimize the truncation of induction variable. 4503 // The cost of these is the same as the scalar operation. 4504 if (I->getOpcode() == Instruction::Trunc && 4505 Legal->isInductionVariable(I->getOperand(0))) 4506 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4507 I->getOperand(0)->getType()); 4508 4509 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4510 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4511 } 4512 case Instruction::Call: { 4513 CallInst *CI = cast<CallInst>(I); 4514 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4515 assert(ID && "Not an intrinsic call!"); 4516 Type *RetTy = ToVectorTy(CI->getType(), VF); 4517 SmallVector<Type*, 4> Tys; 4518 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4519 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4520 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4521 } 4522 default: { 4523 // We are scalarizing the instruction. Return the cost of the scalar 4524 // instruction, plus the cost of insert and extract into vector 4525 // elements, times the vector width. 4526 unsigned Cost = 0; 4527 4528 if (!RetTy->isVoidTy() && VF != 1) { 4529 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4530 VectorTy); 4531 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4532 VectorTy); 4533 4534 // The cost of inserting the results plus extracting each one of the 4535 // operands. 4536 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4537 } 4538 4539 // The cost of executing VF copies of the scalar instruction. This opcode 4540 // is unknown. Assume that it is the same as 'mul'. 4541 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4542 return Cost; 4543 } 4544 }// end of switch. 4545 } 4546 4547 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 4548 if (Scalar->isVoidTy() || VF == 1) 4549 return Scalar; 4550 return VectorType::get(Scalar, VF); 4551 } 4552 4553 char LoopVectorize::ID = 0; 4554 static const char lv_name[] = "Loop Vectorization"; 4555 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 4556 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4557 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4558 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4559 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 4560 4561 namespace llvm { 4562 Pass *createLoopVectorizePass() { 4563 return new LoopVectorize(); 4564 } 4565 } 4566 4567 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 4568 // Check for a store. 4569 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 4570 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 4571 4572 // Check for a load. 4573 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 4574 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 4575 4576 return false; 4577 } 4578