1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 201 // that predication is preferred, and this lists all options. I.e., the 202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 203 // and predicate the instructions accordingly. If tail-folding fails, there are 204 // different fallback strategies depending on these values: 205 namespace PreferPredicateTy { 206 enum Option { 207 ScalarEpilogue = 0, 208 PredicateElseScalarEpilogue, 209 PredicateOrDontVectorize 210 }; 211 } // namespace PreferPredicateTy 212 213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 214 "prefer-predicate-over-epilogue", 215 cl::init(PreferPredicateTy::ScalarEpilogue), 216 cl::Hidden, 217 cl::desc("Tail-folding and predication preferences over creating a scalar " 218 "epilogue loop."), 219 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 220 "scalar-epilogue", 221 "Don't tail-predicate loops, create scalar epilogue"), 222 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 223 "predicate-else-scalar-epilogue", 224 "prefer tail-folding, create scalar epilogue if tail " 225 "folding fails."), 226 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 227 "predicate-dont-vectorize", 228 "prefers tail-folding, don't attempt vectorization if " 229 "tail-folding fails."))); 230 231 static cl::opt<bool> MaximizeBandwidth( 232 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 233 cl::desc("Maximize bandwidth when selecting vectorization factor which " 234 "will be determined by the smallest type in loop.")); 235 236 static cl::opt<bool> EnableInterleavedMemAccesses( 237 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 238 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 239 240 /// An interleave-group may need masking if it resides in a block that needs 241 /// predication, or in order to mask away gaps. 242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 243 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 245 246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 247 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 248 cl::desc("We don't interleave loops with a estimated constant trip count " 249 "below this number")); 250 251 static cl::opt<unsigned> ForceTargetNumScalarRegs( 252 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 253 cl::desc("A flag that overrides the target's number of scalar registers.")); 254 255 static cl::opt<unsigned> ForceTargetNumVectorRegs( 256 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of vector registers.")); 258 259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 260 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's max interleave factor for " 262 "scalar loops.")); 263 264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 265 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "vectorized loops.")); 268 269 static cl::opt<unsigned> ForceTargetInstructionCost( 270 "force-target-instruction-cost", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's expected cost for " 272 "an instruction to a single constant value. Mostly " 273 "useful for getting consistent testing.")); 274 275 static cl::opt<bool> ForceTargetSupportsScalableVectors( 276 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 277 cl::desc( 278 "Pretend that scalable vectors are supported, even if the target does " 279 "not support them. This flag should only be used for testing.")); 280 281 static cl::opt<unsigned> SmallLoopCost( 282 "small-loop-cost", cl::init(20), cl::Hidden, 283 cl::desc( 284 "The cost of a loop that is considered 'small' by the interleaver.")); 285 286 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 287 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 288 cl::desc("Enable the use of the block frequency analysis to access PGO " 289 "heuristics minimizing code growth in cold regions and being more " 290 "aggressive in hot regions.")); 291 292 // Runtime interleave loops for load/store throughput. 293 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 294 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 295 cl::desc( 296 "Enable runtime interleaving until load/store ports are saturated")); 297 298 /// Interleave small loops with scalar reductions. 299 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 300 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 301 cl::desc("Enable interleaving for loops with small iteration counts that " 302 "contain scalar reductions to expose ILP.")); 303 304 /// The number of stores in a loop that are allowed to need predication. 305 static cl::opt<unsigned> NumberOfStoresToPredicate( 306 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 307 cl::desc("Max number of stores to be predicated behind an if.")); 308 309 static cl::opt<bool> EnableIndVarRegisterHeur( 310 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 311 cl::desc("Count the induction variable only once when interleaving")); 312 313 static cl::opt<bool> EnableCondStoresVectorization( 314 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 315 cl::desc("Enable if predication of stores during vectorization.")); 316 317 static cl::opt<unsigned> MaxNestedScalarReductionIC( 318 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 319 cl::desc("The maximum interleave count to use when interleaving a scalar " 320 "reduction in a nested loop.")); 321 322 static cl::opt<bool> 323 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 324 cl::Hidden, 325 cl::desc("Prefer in-loop vector reductions, " 326 "overriding the targets preference.")); 327 328 static cl::opt<bool> PreferPredicatedReductionSelect( 329 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 330 cl::desc( 331 "Prefer predicating a reduction operation over an after loop select.")); 332 333 cl::opt<bool> EnableVPlanNativePath( 334 "enable-vplan-native-path", cl::init(false), cl::Hidden, 335 cl::desc("Enable VPlan-native vectorization path with " 336 "support for outer loop vectorization.")); 337 338 // FIXME: Remove this switch once we have divergence analysis. Currently we 339 // assume divergent non-backedge branches when this switch is true. 340 cl::opt<bool> EnableVPlanPredication( 341 "enable-vplan-predication", cl::init(false), cl::Hidden, 342 cl::desc("Enable VPlan-native vectorization path predicator with " 343 "support for outer loop vectorization.")); 344 345 // This flag enables the stress testing of the VPlan H-CFG construction in the 346 // VPlan-native vectorization path. It must be used in conjuction with 347 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 348 // verification of the H-CFGs built. 349 static cl::opt<bool> VPlanBuildStressTest( 350 "vplan-build-stress-test", cl::init(false), cl::Hidden, 351 cl::desc( 352 "Build VPlan for every supported loop nest in the function and bail " 353 "out right after the build (stress test the VPlan H-CFG construction " 354 "in the VPlan-native vectorization path).")); 355 356 cl::opt<bool> llvm::EnableLoopInterleaving( 357 "interleave-loops", cl::init(true), cl::Hidden, 358 cl::desc("Enable loop interleaving in Loop vectorization passes")); 359 cl::opt<bool> llvm::EnableLoopVectorization( 360 "vectorize-loops", cl::init(true), cl::Hidden, 361 cl::desc("Run the Loop vectorization passes")); 362 363 /// A helper function that returns the type of loaded or stored value. 364 static Type *getMemInstValueType(Value *I) { 365 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 366 "Expected Load or Store instruction"); 367 if (auto *LI = dyn_cast<LoadInst>(I)) 368 return LI->getType(); 369 return cast<StoreInst>(I)->getValueOperand()->getType(); 370 } 371 372 /// A helper function that returns true if the given type is irregular. The 373 /// type is irregular if its allocated size doesn't equal the store size of an 374 /// element of the corresponding vector type at the given vectorization factor. 375 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 376 // Determine if an array of VF elements of type Ty is "bitcast compatible" 377 // with a <VF x Ty> vector. 378 if (VF.isVector()) { 379 auto *VectorTy = VectorType::get(Ty, VF); 380 return TypeSize::get(VF.getKnownMinValue() * 381 DL.getTypeAllocSize(Ty).getFixedValue(), 382 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 383 } 384 385 // If the vectorization factor is one, we just check if an array of type Ty 386 // requires padding between elements. 387 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 388 } 389 390 /// A helper function that returns the reciprocal of the block probability of 391 /// predicated blocks. If we return X, we are assuming the predicated block 392 /// will execute once for every X iterations of the loop header. 393 /// 394 /// TODO: We should use actual block probability here, if available. Currently, 395 /// we always assume predicated blocks have a 50% chance of executing. 396 static unsigned getReciprocalPredBlockProb() { return 2; } 397 398 /// A helper function that returns an integer or floating-point constant with 399 /// value C. 400 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 401 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 402 : ConstantFP::get(Ty, C); 403 } 404 405 /// Returns "best known" trip count for the specified loop \p L as defined by 406 /// the following procedure: 407 /// 1) Returns exact trip count if it is known. 408 /// 2) Returns expected trip count according to profile data if any. 409 /// 3) Returns upper bound estimate if it is known. 410 /// 4) Returns None if all of the above failed. 411 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 412 // Check if exact trip count is known. 413 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 414 return ExpectedTC; 415 416 // Check if there is an expected trip count available from profile data. 417 if (LoopVectorizeWithBlockFrequency) 418 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 419 return EstimatedTC; 420 421 // Check if upper bound estimate is known. 422 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 423 return ExpectedTC; 424 425 return None; 426 } 427 428 // Forward declare GeneratedRTChecks. 429 class GeneratedRTChecks; 430 431 namespace llvm { 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop. 474 /// In the case of epilogue vectorization, this function is overriden to 475 /// handle the more complex control flow around the loops. 476 virtual BasicBlock *createVectorizedLoopSkeleton(); 477 478 /// Widen a single instruction within the innermost loop. 479 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 480 VPTransformState &State); 481 482 /// Widen a single call instruction within the innermost loop. 483 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 484 VPTransformState &State); 485 486 /// Widen a single select instruction within the innermost loop. 487 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 488 bool InvariantCond, VPTransformState &State); 489 490 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 491 void fixVectorizedLoop(VPTransformState &State); 492 493 // Return true if any runtime check is added. 494 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 495 496 /// A type for vectorized values in the new loop. Each value from the 497 /// original loop, when vectorized, is represented by UF vector values in the 498 /// new unrolled loop, where UF is the unroll factor. 499 using VectorParts = SmallVector<Value *, 2>; 500 501 /// Vectorize a single GetElementPtrInst based on information gathered and 502 /// decisions taken during planning. 503 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 504 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 505 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 506 507 /// Vectorize a single PHINode in a block. This method handles the induction 508 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 509 /// arbitrary length vectors. 510 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 511 VPValue *StartV, VPValue *Def, 512 VPTransformState &State); 513 514 /// A helper function to scalarize a single Instruction in the innermost loop. 515 /// Generates a sequence of scalar instances for each lane between \p MinLane 516 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 517 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 518 /// Instr's operands. 519 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 520 const VPIteration &Instance, bool IfPredicateInstr, 521 VPTransformState &State); 522 523 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 524 /// is provided, the integer induction variable will first be truncated to 525 /// the corresponding type. 526 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 527 VPValue *Def, VPValue *CastDef, 528 VPTransformState &State); 529 530 /// Construct the vector value of a scalarized value \p V one lane at a time. 531 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 532 VPTransformState &State); 533 534 /// Try to vectorize interleaved access group \p Group with the base address 535 /// given in \p Addr, optionally masking the vector operations if \p 536 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 537 /// values in the vectorized loop. 538 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 539 ArrayRef<VPValue *> VPDefs, 540 VPTransformState &State, VPValue *Addr, 541 ArrayRef<VPValue *> StoredValues, 542 VPValue *BlockInMask = nullptr); 543 544 /// Vectorize Load and Store instructions with the base address given in \p 545 /// Addr, optionally masking the vector operations if \p BlockInMask is 546 /// non-null. Use \p State to translate given VPValues to IR values in the 547 /// vectorized loop. 548 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 549 VPValue *Def, VPValue *Addr, 550 VPValue *StoredValue, VPValue *BlockInMask); 551 552 /// Set the debug location in the builder using the debug location in 553 /// the instruction. 554 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 555 556 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 557 void fixNonInductionPHIs(VPTransformState &State); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 protected: 567 friend class LoopVectorizationPlanner; 568 569 /// A small list of PHINodes. 570 using PhiVector = SmallVector<PHINode *, 4>; 571 572 /// A type for scalarized values in the new loop. Each value from the 573 /// original loop, when scalarized, is represented by UF x VF scalar values 574 /// in the new unrolled loop, where UF is the unroll factor and VF is the 575 /// vectorization factor. 576 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 577 578 /// Set up the values of the IVs correctly when exiting the vector loop. 579 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 580 Value *CountRoundDown, Value *EndValue, 581 BasicBlock *MiddleBlock); 582 583 /// Create a new induction variable inside L. 584 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 585 Value *Step, Instruction *DL); 586 587 /// Handle all cross-iteration phis in the header. 588 void fixCrossIterationPHIs(VPTransformState &State); 589 590 /// Fix a first-order recurrence. This is the second phase of vectorizing 591 /// this phi node. 592 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 593 594 /// Fix a reduction cross-iteration phi. This is the second phase of 595 /// vectorizing this phi node. 596 void fixReduction(PHINode *Phi, VPTransformState &State); 597 598 /// Clear NSW/NUW flags from reduction instructions if necessary. 599 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 600 VPTransformState &State); 601 602 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 603 /// means we need to add the appropriate incoming value from the middle 604 /// block as exiting edges from the scalar epilogue loop (if present) are 605 /// already in place, and we exit the vector loop exclusively to the middle 606 /// block. 607 void fixLCSSAPHIs(VPTransformState &State); 608 609 /// Iteratively sink the scalarized operands of a predicated instruction into 610 /// the block that was created for it. 611 void sinkScalarOperands(Instruction *PredInst); 612 613 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 614 /// represented as. 615 void truncateToMinimalBitwidths(VPTransformState &State); 616 617 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 618 /// to each vector element of Val. The sequence starts at StartIndex. 619 /// \p Opcode is relevant for FP induction variable. 620 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 621 Instruction::BinaryOps Opcode = 622 Instruction::BinaryOpsEnd); 623 624 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 625 /// variable on which to base the steps, \p Step is the size of the step, and 626 /// \p EntryVal is the value from the original loop that maps to the steps. 627 /// Note that \p EntryVal doesn't have to be an induction variable - it 628 /// can also be a truncate instruction. 629 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 630 const InductionDescriptor &ID, VPValue *Def, 631 VPValue *CastDef, VPTransformState &State); 632 633 /// Create a vector induction phi node based on an existing scalar one. \p 634 /// EntryVal is the value from the original loop that maps to the vector phi 635 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 636 /// truncate instruction, instead of widening the original IV, we widen a 637 /// version of the IV truncated to \p EntryVal's type. 638 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 639 Value *Step, Value *Start, 640 Instruction *EntryVal, VPValue *Def, 641 VPValue *CastDef, 642 VPTransformState &State); 643 644 /// Returns true if an instruction \p I should be scalarized instead of 645 /// vectorized for the chosen vectorization factor. 646 bool shouldScalarizeInstruction(Instruction *I) const; 647 648 /// Returns true if we should generate a scalar version of \p IV. 649 bool needsScalarInduction(Instruction *IV) const; 650 651 /// If there is a cast involved in the induction variable \p ID, which should 652 /// be ignored in the vectorized loop body, this function records the 653 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 654 /// cast. We had already proved that the casted Phi is equal to the uncasted 655 /// Phi in the vectorized loop (under a runtime guard), and therefore 656 /// there is no need to vectorize the cast - the same value can be used in the 657 /// vector loop for both the Phi and the cast. 658 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 659 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 660 /// 661 /// \p EntryVal is the value from the original loop that maps to the vector 662 /// phi node and is used to distinguish what is the IV currently being 663 /// processed - original one (if \p EntryVal is a phi corresponding to the 664 /// original IV) or the "newly-created" one based on the proof mentioned above 665 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 666 /// latter case \p EntryVal is a TruncInst and we must not record anything for 667 /// that IV, but it's error-prone to expect callers of this routine to care 668 /// about that, hence this explicit parameter. 669 void recordVectorLoopValueForInductionCast( 670 const InductionDescriptor &ID, const Instruction *EntryVal, 671 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 672 unsigned Part, unsigned Lane = UINT_MAX); 673 674 /// Generate a shuffle sequence that will reverse the vector Vec. 675 virtual Value *reverseVector(Value *Vec); 676 677 /// Returns (and creates if needed) the original loop trip count. 678 Value *getOrCreateTripCount(Loop *NewLoop); 679 680 /// Returns (and creates if needed) the trip count of the widened loop. 681 Value *getOrCreateVectorTripCount(Loop *NewLoop); 682 683 /// Returns a bitcasted value to the requested vector type. 684 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 685 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 686 const DataLayout &DL); 687 688 /// Emit a bypass check to see if the vector trip count is zero, including if 689 /// it overflows. 690 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 691 692 /// Emit a bypass check to see if all of the SCEV assumptions we've 693 /// had to make are correct. Returns the block containing the checks or 694 /// nullptr if no checks have been added. 695 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 696 697 /// Emit bypass checks to check any memory assumptions we may have made. 698 /// Returns the block containing the checks or nullptr if no checks have been 699 /// added. 700 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Compute the transformed value of Index at offset StartValue using step 703 /// StepValue. 704 /// For integer induction, returns StartValue + Index * StepValue. 705 /// For pointer induction, returns StartValue[Index * StepValue]. 706 /// FIXME: The newly created binary instructions should contain nsw/nuw 707 /// flags, which can be found from the original scalar operations. 708 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 709 const DataLayout &DL, 710 const InductionDescriptor &ID) const; 711 712 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 713 /// vector loop preheader, middle block and scalar preheader. Also 714 /// allocate a loop object for the new vector loop and return it. 715 Loop *createVectorLoopSkeleton(StringRef Prefix); 716 717 /// Create new phi nodes for the induction variables to resume iteration count 718 /// in the scalar epilogue, from where the vectorized loop left off (given by 719 /// \p VectorTripCount). 720 /// In cases where the loop skeleton is more complicated (eg. epilogue 721 /// vectorization) and the resume values can come from an additional bypass 722 /// block, the \p AdditionalBypass pair provides information about the bypass 723 /// block and the end value on the edge from bypass to this loop. 724 void createInductionResumeValues( 725 Loop *L, Value *VectorTripCount, 726 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 727 728 /// Complete the loop skeleton by adding debug MDs, creating appropriate 729 /// conditional branches in the middle block, preparing the builder and 730 /// running the verifier. Take in the vector loop \p L as argument, and return 731 /// the preheader of the completed vector loop. 732 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 733 734 /// Add additional metadata to \p To that was not present on \p Orig. 735 /// 736 /// Currently this is used to add the noalias annotations based on the 737 /// inserted memchecks. Use this for instructions that are *cloned* into the 738 /// vector loop. 739 void addNewMetadata(Instruction *To, const Instruction *Orig); 740 741 /// Add metadata from one instruction to another. 742 /// 743 /// This includes both the original MDs from \p From and additional ones (\see 744 /// addNewMetadata). Use this for *newly created* instructions in the vector 745 /// loop. 746 void addMetadata(Instruction *To, Instruction *From); 747 748 /// Similar to the previous function but it adds the metadata to a 749 /// vector of instructions. 750 void addMetadata(ArrayRef<Value *> To, Instruction *From); 751 752 /// Allow subclasses to override and print debug traces before/after vplan 753 /// execution, when trace information is requested. 754 virtual void printDebugTracesAtStart(){}; 755 virtual void printDebugTracesAtEnd(){}; 756 757 /// The original loop. 758 Loop *OrigLoop; 759 760 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 761 /// dynamic knowledge to simplify SCEV expressions and converts them to a 762 /// more usable form. 763 PredicatedScalarEvolution &PSE; 764 765 /// Loop Info. 766 LoopInfo *LI; 767 768 /// Dominator Tree. 769 DominatorTree *DT; 770 771 /// Alias Analysis. 772 AAResults *AA; 773 774 /// Target Library Info. 775 const TargetLibraryInfo *TLI; 776 777 /// Target Transform Info. 778 const TargetTransformInfo *TTI; 779 780 /// Assumption Cache. 781 AssumptionCache *AC; 782 783 /// Interface to emit optimization remarks. 784 OptimizationRemarkEmitter *ORE; 785 786 /// LoopVersioning. It's only set up (non-null) if memchecks were 787 /// used. 788 /// 789 /// This is currently only used to add no-alias metadata based on the 790 /// memchecks. The actually versioning is performed manually. 791 std::unique_ptr<LoopVersioning> LVer; 792 793 /// The vectorization SIMD factor to use. Each vector will have this many 794 /// vector elements. 795 ElementCount VF; 796 797 /// The vectorization unroll factor to use. Each scalar is vectorized to this 798 /// many different vector instructions. 799 unsigned UF; 800 801 /// The builder that we use 802 IRBuilder<> Builder; 803 804 // --- Vectorization state --- 805 806 /// The vector-loop preheader. 807 BasicBlock *LoopVectorPreHeader; 808 809 /// The scalar-loop preheader. 810 BasicBlock *LoopScalarPreHeader; 811 812 /// Middle Block between the vector and the scalar. 813 BasicBlock *LoopMiddleBlock; 814 815 /// The (unique) ExitBlock of the scalar loop. Note that 816 /// there can be multiple exiting edges reaching this block. 817 BasicBlock *LoopExitBlock; 818 819 /// The vector loop body. 820 BasicBlock *LoopVectorBody; 821 822 /// The scalar loop body. 823 BasicBlock *LoopScalarBody; 824 825 /// A list of all bypass blocks. The first block is the entry of the loop. 826 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 827 828 /// The new Induction variable which was added to the new block. 829 PHINode *Induction = nullptr; 830 831 /// The induction variable of the old basic block. 832 PHINode *OldInduction = nullptr; 833 834 /// Store instructions that were predicated. 835 SmallVector<Instruction *, 4> PredicatedInstructions; 836 837 /// Trip count of the original loop. 838 Value *TripCount = nullptr; 839 840 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 841 Value *VectorTripCount = nullptr; 842 843 /// The legality analysis. 844 LoopVectorizationLegality *Legal; 845 846 /// The profitablity analysis. 847 LoopVectorizationCostModel *Cost; 848 849 // Record whether runtime checks are added. 850 bool AddedSafetyChecks = false; 851 852 // Holds the end values for each induction variable. We save the end values 853 // so we can later fix-up the external users of the induction variables. 854 DenseMap<PHINode *, Value *> IVEndValues; 855 856 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 857 // fixed up at the end of vector code generation. 858 SmallVector<PHINode *, 8> OrigPHIsToFix; 859 860 /// BFI and PSI are used to check for profile guided size optimizations. 861 BlockFrequencyInfo *BFI; 862 ProfileSummaryInfo *PSI; 863 864 // Whether this loop should be optimized for size based on profile guided size 865 // optimizatios. 866 bool OptForSizeBasedOnProfile; 867 868 /// Structure to hold information about generated runtime checks, responsible 869 /// for cleaning the checks, if vectorization turns out unprofitable. 870 GeneratedRTChecks &RTChecks; 871 }; 872 873 class InnerLoopUnroller : public InnerLoopVectorizer { 874 public: 875 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 876 LoopInfo *LI, DominatorTree *DT, 877 const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, AssumptionCache *AC, 879 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 880 LoopVectorizationLegality *LVL, 881 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 882 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 883 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 884 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 885 BFI, PSI, Check) {} 886 887 private: 888 Value *getBroadcastInstrs(Value *V) override; 889 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 890 Instruction::BinaryOps Opcode = 891 Instruction::BinaryOpsEnd) override; 892 Value *reverseVector(Value *Vec) override; 893 }; 894 895 /// Encapsulate information regarding vectorization of a loop and its epilogue. 896 /// This information is meant to be updated and used across two stages of 897 /// epilogue vectorization. 898 struct EpilogueLoopVectorizationInfo { 899 ElementCount MainLoopVF = ElementCount::getFixed(0); 900 unsigned MainLoopUF = 0; 901 ElementCount EpilogueVF = ElementCount::getFixed(0); 902 unsigned EpilogueUF = 0; 903 BasicBlock *MainLoopIterationCountCheck = nullptr; 904 BasicBlock *EpilogueIterationCountCheck = nullptr; 905 BasicBlock *SCEVSafetyCheck = nullptr; 906 BasicBlock *MemSafetyCheck = nullptr; 907 Value *TripCount = nullptr; 908 Value *VectorTripCount = nullptr; 909 910 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 911 unsigned EUF) 912 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 913 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 914 assert(EUF == 1 && 915 "A high UF for the epilogue loop is likely not beneficial."); 916 } 917 }; 918 919 /// An extension of the inner loop vectorizer that creates a skeleton for a 920 /// vectorized loop that has its epilogue (residual) also vectorized. 921 /// The idea is to run the vplan on a given loop twice, firstly to setup the 922 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 923 /// from the first step and vectorize the epilogue. This is achieved by 924 /// deriving two concrete strategy classes from this base class and invoking 925 /// them in succession from the loop vectorizer planner. 926 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 927 public: 928 InnerLoopAndEpilogueVectorizer( 929 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 930 DominatorTree *DT, const TargetLibraryInfo *TLI, 931 const TargetTransformInfo *TTI, AssumptionCache *AC, 932 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 933 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 934 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 935 GeneratedRTChecks &Checks) 936 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 937 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 938 Checks), 939 EPI(EPI) {} 940 941 // Override this function to handle the more complex control flow around the 942 // three loops. 943 BasicBlock *createVectorizedLoopSkeleton() final override { 944 return createEpilogueVectorizedLoopSkeleton(); 945 } 946 947 /// The interface for creating a vectorized skeleton using one of two 948 /// different strategies, each corresponding to one execution of the vplan 949 /// as described above. 950 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 951 952 /// Holds and updates state information required to vectorize the main loop 953 /// and its epilogue in two separate passes. This setup helps us avoid 954 /// regenerating and recomputing runtime safety checks. It also helps us to 955 /// shorten the iteration-count-check path length for the cases where the 956 /// iteration count of the loop is so small that the main vector loop is 957 /// completely skipped. 958 EpilogueLoopVectorizationInfo &EPI; 959 }; 960 961 /// A specialized derived class of inner loop vectorizer that performs 962 /// vectorization of *main* loops in the process of vectorizing loops and their 963 /// epilogues. 964 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 965 public: 966 EpilogueVectorizerMainLoop( 967 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 968 DominatorTree *DT, const TargetLibraryInfo *TLI, 969 const TargetTransformInfo *TTI, AssumptionCache *AC, 970 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 971 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 972 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 973 GeneratedRTChecks &Check) 974 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 975 EPI, LVL, CM, BFI, PSI, Check) {} 976 /// Implements the interface for creating a vectorized skeleton using the 977 /// *main loop* strategy (ie the first pass of vplan execution). 978 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 979 980 protected: 981 /// Emits an iteration count bypass check once for the main loop (when \p 982 /// ForEpilogue is false) and once for the epilogue loop (when \p 983 /// ForEpilogue is true). 984 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 985 bool ForEpilogue); 986 void printDebugTracesAtStart() override; 987 void printDebugTracesAtEnd() override; 988 }; 989 990 // A specialized derived class of inner loop vectorizer that performs 991 // vectorization of *epilogue* loops in the process of vectorizing loops and 992 // their epilogues. 993 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 994 public: 995 EpilogueVectorizerEpilogueLoop( 996 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 997 DominatorTree *DT, const TargetLibraryInfo *TLI, 998 const TargetTransformInfo *TTI, AssumptionCache *AC, 999 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1000 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1001 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1002 GeneratedRTChecks &Checks) 1003 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1004 EPI, LVL, CM, BFI, PSI, Checks) {} 1005 /// Implements the interface for creating a vectorized skeleton using the 1006 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1007 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1008 1009 protected: 1010 /// Emits an iteration count bypass check after the main vector loop has 1011 /// finished to see if there are any iterations left to execute by either 1012 /// the vector epilogue or the scalar epilogue. 1013 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1014 BasicBlock *Bypass, 1015 BasicBlock *Insert); 1016 void printDebugTracesAtStart() override; 1017 void printDebugTracesAtEnd() override; 1018 }; 1019 } // end namespace llvm 1020 1021 /// Look for a meaningful debug location on the instruction or it's 1022 /// operands. 1023 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1024 if (!I) 1025 return I; 1026 1027 DebugLoc Empty; 1028 if (I->getDebugLoc() != Empty) 1029 return I; 1030 1031 for (Use &Op : I->operands()) { 1032 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1033 if (OpInst->getDebugLoc() != Empty) 1034 return OpInst; 1035 } 1036 1037 return I; 1038 } 1039 1040 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1041 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1042 const DILocation *DIL = Inst->getDebugLoc(); 1043 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1044 !isa<DbgInfoIntrinsic>(Inst)) { 1045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1046 auto NewDIL = 1047 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1048 if (NewDIL) 1049 B.SetCurrentDebugLocation(NewDIL.getValue()); 1050 else 1051 LLVM_DEBUG(dbgs() 1052 << "Failed to create new discriminator: " 1053 << DIL->getFilename() << " Line: " << DIL->getLine()); 1054 } 1055 else 1056 B.SetCurrentDebugLocation(DIL); 1057 } else 1058 B.SetCurrentDebugLocation(DebugLoc()); 1059 } 1060 1061 /// Write a record \p DebugMsg about vectorization failure to the debug 1062 /// output stream. If \p I is passed, it is an instruction that prevents 1063 /// vectorization. 1064 #ifndef NDEBUG 1065 static void debugVectorizationFailure(const StringRef DebugMsg, 1066 Instruction *I) { 1067 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1068 if (I != nullptr) 1069 dbgs() << " " << *I; 1070 else 1071 dbgs() << '.'; 1072 dbgs() << '\n'; 1073 } 1074 #endif 1075 1076 /// Create an analysis remark that explains why vectorization failed 1077 /// 1078 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1079 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1080 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1081 /// the location of the remark. \return the remark object that can be 1082 /// streamed to. 1083 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1084 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1085 Value *CodeRegion = TheLoop->getHeader(); 1086 DebugLoc DL = TheLoop->getStartLoc(); 1087 1088 if (I) { 1089 CodeRegion = I->getParent(); 1090 // If there is no debug location attached to the instruction, revert back to 1091 // using the loop's. 1092 if (I->getDebugLoc()) 1093 DL = I->getDebugLoc(); 1094 } 1095 1096 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1097 R << "loop not vectorized: "; 1098 return R; 1099 } 1100 1101 /// Return a value for Step multiplied by VF. 1102 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1103 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1104 Constant *StepVal = ConstantInt::get( 1105 Step->getType(), 1106 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1107 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1108 } 1109 1110 namespace llvm { 1111 1112 /// Return the runtime value for VF. 1113 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1114 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1115 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1116 } 1117 1118 void reportVectorizationFailure(const StringRef DebugMsg, 1119 const StringRef OREMsg, const StringRef ORETag, 1120 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1121 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1122 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1123 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1124 ORETag, TheLoop, I) << OREMsg); 1125 } 1126 1127 } // end namespace llvm 1128 1129 #ifndef NDEBUG 1130 /// \return string containing a file name and a line # for the given loop. 1131 static std::string getDebugLocString(const Loop *L) { 1132 std::string Result; 1133 if (L) { 1134 raw_string_ostream OS(Result); 1135 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1136 LoopDbgLoc.print(OS); 1137 else 1138 // Just print the module name. 1139 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1140 OS.flush(); 1141 } 1142 return Result; 1143 } 1144 #endif 1145 1146 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1147 const Instruction *Orig) { 1148 // If the loop was versioned with memchecks, add the corresponding no-alias 1149 // metadata. 1150 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1151 LVer->annotateInstWithNoAlias(To, Orig); 1152 } 1153 1154 void InnerLoopVectorizer::addMetadata(Instruction *To, 1155 Instruction *From) { 1156 propagateMetadata(To, From); 1157 addNewMetadata(To, From); 1158 } 1159 1160 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1161 Instruction *From) { 1162 for (Value *V : To) { 1163 if (Instruction *I = dyn_cast<Instruction>(V)) 1164 addMetadata(I, From); 1165 } 1166 } 1167 1168 namespace llvm { 1169 1170 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1171 // lowered. 1172 enum ScalarEpilogueLowering { 1173 1174 // The default: allowing scalar epilogues. 1175 CM_ScalarEpilogueAllowed, 1176 1177 // Vectorization with OptForSize: don't allow epilogues. 1178 CM_ScalarEpilogueNotAllowedOptSize, 1179 1180 // A special case of vectorisation with OptForSize: loops with a very small 1181 // trip count are considered for vectorization under OptForSize, thereby 1182 // making sure the cost of their loop body is dominant, free of runtime 1183 // guards and scalar iteration overheads. 1184 CM_ScalarEpilogueNotAllowedLowTripLoop, 1185 1186 // Loop hint predicate indicating an epilogue is undesired. 1187 CM_ScalarEpilogueNotNeededUsePredicate, 1188 1189 // Directive indicating we must either tail fold or not vectorize 1190 CM_ScalarEpilogueNotAllowedUsePredicate 1191 }; 1192 1193 /// LoopVectorizationCostModel - estimates the expected speedups due to 1194 /// vectorization. 1195 /// In many cases vectorization is not profitable. This can happen because of 1196 /// a number of reasons. In this class we mainly attempt to predict the 1197 /// expected speedup/slowdowns due to the supported instruction set. We use the 1198 /// TargetTransformInfo to query the different backends for the cost of 1199 /// different operations. 1200 class LoopVectorizationCostModel { 1201 public: 1202 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1203 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1204 LoopVectorizationLegality *Legal, 1205 const TargetTransformInfo &TTI, 1206 const TargetLibraryInfo *TLI, DemandedBits *DB, 1207 AssumptionCache *AC, 1208 OptimizationRemarkEmitter *ORE, const Function *F, 1209 const LoopVectorizeHints *Hints, 1210 InterleavedAccessInfo &IAI) 1211 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1212 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1213 Hints(Hints), InterleaveInfo(IAI) {} 1214 1215 /// \return An upper bound for the vectorization factor, or None if 1216 /// vectorization and interleaving should be avoided up front. 1217 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1218 1219 /// \return True if runtime checks are required for vectorization, and false 1220 /// otherwise. 1221 bool runtimeChecksRequired(); 1222 1223 /// \return The most profitable vectorization factor and the cost of that VF. 1224 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1225 /// then this vectorization factor will be selected if vectorization is 1226 /// possible. 1227 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1228 VectorizationFactor 1229 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1230 const LoopVectorizationPlanner &LVP); 1231 1232 /// Setup cost-based decisions for user vectorization factor. 1233 void selectUserVectorizationFactor(ElementCount UserVF) { 1234 collectUniformsAndScalars(UserVF); 1235 collectInstsToScalarize(UserVF); 1236 } 1237 1238 /// \return The size (in bits) of the smallest and widest types in the code 1239 /// that needs to be vectorized. We ignore values that remain scalar such as 1240 /// 64 bit loop indices. 1241 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1242 1243 /// \return The desired interleave count. 1244 /// If interleave count has been specified by metadata it will be returned. 1245 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1246 /// are the selected vectorization factor and the cost of the selected VF. 1247 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1248 1249 /// Memory access instruction may be vectorized in more than one way. 1250 /// Form of instruction after vectorization depends on cost. 1251 /// This function takes cost-based decisions for Load/Store instructions 1252 /// and collects them in a map. This decisions map is used for building 1253 /// the lists of loop-uniform and loop-scalar instructions. 1254 /// The calculated cost is saved with widening decision in order to 1255 /// avoid redundant calculations. 1256 void setCostBasedWideningDecision(ElementCount VF); 1257 1258 /// A struct that represents some properties of the register usage 1259 /// of a loop. 1260 struct RegisterUsage { 1261 /// Holds the number of loop invariant values that are used in the loop. 1262 /// The key is ClassID of target-provided register class. 1263 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1264 /// Holds the maximum number of concurrent live intervals in the loop. 1265 /// The key is ClassID of target-provided register class. 1266 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1267 }; 1268 1269 /// \return Returns information about the register usages of the loop for the 1270 /// given vectorization factors. 1271 SmallVector<RegisterUsage, 8> 1272 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1273 1274 /// Collect values we want to ignore in the cost model. 1275 void collectValuesToIgnore(); 1276 1277 /// Split reductions into those that happen in the loop, and those that happen 1278 /// outside. In loop reductions are collected into InLoopReductionChains. 1279 void collectInLoopReductions(); 1280 1281 /// \returns The smallest bitwidth each instruction can be represented with. 1282 /// The vector equivalents of these instructions should be truncated to this 1283 /// type. 1284 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1285 return MinBWs; 1286 } 1287 1288 /// \returns True if it is more profitable to scalarize instruction \p I for 1289 /// vectorization factor \p VF. 1290 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1291 assert(VF.isVector() && 1292 "Profitable to scalarize relevant only for VF > 1."); 1293 1294 // Cost model is not run in the VPlan-native path - return conservative 1295 // result until this changes. 1296 if (EnableVPlanNativePath) 1297 return false; 1298 1299 auto Scalars = InstsToScalarize.find(VF); 1300 assert(Scalars != InstsToScalarize.end() && 1301 "VF not yet analyzed for scalarization profitability"); 1302 return Scalars->second.find(I) != Scalars->second.end(); 1303 } 1304 1305 /// Returns true if \p I is known to be uniform after vectorization. 1306 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1307 if (VF.isScalar()) 1308 return true; 1309 1310 // Cost model is not run in the VPlan-native path - return conservative 1311 // result until this changes. 1312 if (EnableVPlanNativePath) 1313 return false; 1314 1315 auto UniformsPerVF = Uniforms.find(VF); 1316 assert(UniformsPerVF != Uniforms.end() && 1317 "VF not yet analyzed for uniformity"); 1318 return UniformsPerVF->second.count(I); 1319 } 1320 1321 /// Returns true if \p I is known to be scalar after vectorization. 1322 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1323 if (VF.isScalar()) 1324 return true; 1325 1326 // Cost model is not run in the VPlan-native path - return conservative 1327 // result until this changes. 1328 if (EnableVPlanNativePath) 1329 return false; 1330 1331 auto ScalarsPerVF = Scalars.find(VF); 1332 assert(ScalarsPerVF != Scalars.end() && 1333 "Scalar values are not calculated for VF"); 1334 return ScalarsPerVF->second.count(I); 1335 } 1336 1337 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1338 /// for vectorization factor \p VF. 1339 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1340 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1341 !isProfitableToScalarize(I, VF) && 1342 !isScalarAfterVectorization(I, VF); 1343 } 1344 1345 /// Decision that was taken during cost calculation for memory instruction. 1346 enum InstWidening { 1347 CM_Unknown, 1348 CM_Widen, // For consecutive accesses with stride +1. 1349 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1350 CM_Interleave, 1351 CM_GatherScatter, 1352 CM_Scalarize 1353 }; 1354 1355 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1356 /// instruction \p I and vector width \p VF. 1357 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1358 InstructionCost Cost) { 1359 assert(VF.isVector() && "Expected VF >=2"); 1360 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1361 } 1362 1363 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1364 /// interleaving group \p Grp and vector width \p VF. 1365 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1366 ElementCount VF, InstWidening W, 1367 InstructionCost Cost) { 1368 assert(VF.isVector() && "Expected VF >=2"); 1369 /// Broadcast this decicion to all instructions inside the group. 1370 /// But the cost will be assigned to one instruction only. 1371 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1372 if (auto *I = Grp->getMember(i)) { 1373 if (Grp->getInsertPos() == I) 1374 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1375 else 1376 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1377 } 1378 } 1379 } 1380 1381 /// Return the cost model decision for the given instruction \p I and vector 1382 /// width \p VF. Return CM_Unknown if this instruction did not pass 1383 /// through the cost modeling. 1384 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1385 assert(VF.isVector() && "Expected VF to be a vector VF"); 1386 // Cost model is not run in the VPlan-native path - return conservative 1387 // result until this changes. 1388 if (EnableVPlanNativePath) 1389 return CM_GatherScatter; 1390 1391 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1392 auto Itr = WideningDecisions.find(InstOnVF); 1393 if (Itr == WideningDecisions.end()) 1394 return CM_Unknown; 1395 return Itr->second.first; 1396 } 1397 1398 /// Return the vectorization cost for the given instruction \p I and vector 1399 /// width \p VF. 1400 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1403 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1404 "The cost is not calculated"); 1405 return WideningDecisions[InstOnVF].second; 1406 } 1407 1408 /// Return True if instruction \p I is an optimizable truncate whose operand 1409 /// is an induction variable. Such a truncate will be removed by adding a new 1410 /// induction variable with the destination type. 1411 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1412 // If the instruction is not a truncate, return false. 1413 auto *Trunc = dyn_cast<TruncInst>(I); 1414 if (!Trunc) 1415 return false; 1416 1417 // Get the source and destination types of the truncate. 1418 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1419 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1420 1421 // If the truncate is free for the given types, return false. Replacing a 1422 // free truncate with an induction variable would add an induction variable 1423 // update instruction to each iteration of the loop. We exclude from this 1424 // check the primary induction variable since it will need an update 1425 // instruction regardless. 1426 Value *Op = Trunc->getOperand(0); 1427 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1428 return false; 1429 1430 // If the truncated value is not an induction variable, return false. 1431 return Legal->isInductionPhi(Op); 1432 } 1433 1434 /// Collects the instructions to scalarize for each predicated instruction in 1435 /// the loop. 1436 void collectInstsToScalarize(ElementCount VF); 1437 1438 /// Collect Uniform and Scalar values for the given \p VF. 1439 /// The sets depend on CM decision for Load/Store instructions 1440 /// that may be vectorized as interleave, gather-scatter or scalarized. 1441 void collectUniformsAndScalars(ElementCount VF) { 1442 // Do the analysis once. 1443 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1444 return; 1445 setCostBasedWideningDecision(VF); 1446 collectLoopUniforms(VF); 1447 collectLoopScalars(VF); 1448 } 1449 1450 /// Returns true if the target machine supports masked store operation 1451 /// for the given \p DataType and kind of access to \p Ptr. 1452 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1453 return Legal->isConsecutivePtr(Ptr) && 1454 TTI.isLegalMaskedStore(DataType, Alignment); 1455 } 1456 1457 /// Returns true if the target machine supports masked load operation 1458 /// for the given \p DataType and kind of access to \p Ptr. 1459 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1460 return Legal->isConsecutivePtr(Ptr) && 1461 TTI.isLegalMaskedLoad(DataType, Alignment); 1462 } 1463 1464 /// Returns true if the target machine supports masked scatter operation 1465 /// for the given \p DataType. 1466 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1467 return TTI.isLegalMaskedScatter(DataType, Alignment); 1468 } 1469 1470 /// Returns true if the target machine supports masked gather operation 1471 /// for the given \p DataType. 1472 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1473 return TTI.isLegalMaskedGather(DataType, Alignment); 1474 } 1475 1476 /// Returns true if the target machine can represent \p V as a masked gather 1477 /// or scatter operation. 1478 bool isLegalGatherOrScatter(Value *V) { 1479 bool LI = isa<LoadInst>(V); 1480 bool SI = isa<StoreInst>(V); 1481 if (!LI && !SI) 1482 return false; 1483 auto *Ty = getMemInstValueType(V); 1484 Align Align = getLoadStoreAlignment(V); 1485 return (LI && isLegalMaskedGather(Ty, Align)) || 1486 (SI && isLegalMaskedScatter(Ty, Align)); 1487 } 1488 1489 /// Returns true if the target machine supports all of the reduction 1490 /// variables found for the given VF. 1491 bool canVectorizeReductions(ElementCount VF) { 1492 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1493 RecurrenceDescriptor RdxDesc = Reduction.second; 1494 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1495 })); 1496 } 1497 1498 /// Returns true if \p I is an instruction that will be scalarized with 1499 /// predication. Such instructions include conditional stores and 1500 /// instructions that may divide by zero. 1501 /// If a non-zero VF has been calculated, we check if I will be scalarized 1502 /// predication for that VF. 1503 bool isScalarWithPredication(Instruction *I, 1504 ElementCount VF = ElementCount::getFixed(1)); 1505 1506 // Returns true if \p I is an instruction that will be predicated either 1507 // through scalar predication or masked load/store or masked gather/scatter. 1508 // Superset of instructions that return true for isScalarWithPredication. 1509 bool isPredicatedInst(Instruction *I) { 1510 if (!blockNeedsPredication(I->getParent())) 1511 return false; 1512 // Loads and stores that need some form of masked operation are predicated 1513 // instructions. 1514 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1515 return Legal->isMaskRequired(I); 1516 return isScalarWithPredication(I); 1517 } 1518 1519 /// Returns true if \p I is a memory instruction with consecutive memory 1520 /// access that can be widened. 1521 bool 1522 memoryInstructionCanBeWidened(Instruction *I, 1523 ElementCount VF = ElementCount::getFixed(1)); 1524 1525 /// Returns true if \p I is a memory instruction in an interleaved-group 1526 /// of memory accesses that can be vectorized with wide vector loads/stores 1527 /// and shuffles. 1528 bool 1529 interleavedAccessCanBeWidened(Instruction *I, 1530 ElementCount VF = ElementCount::getFixed(1)); 1531 1532 /// Check if \p Instr belongs to any interleaved access group. 1533 bool isAccessInterleaved(Instruction *Instr) { 1534 return InterleaveInfo.isInterleaved(Instr); 1535 } 1536 1537 /// Get the interleaved access group that \p Instr belongs to. 1538 const InterleaveGroup<Instruction> * 1539 getInterleavedAccessGroup(Instruction *Instr) { 1540 return InterleaveInfo.getInterleaveGroup(Instr); 1541 } 1542 1543 /// Returns true if we're required to use a scalar epilogue for at least 1544 /// the final iteration of the original loop. 1545 bool requiresScalarEpilogue() const { 1546 if (!isScalarEpilogueAllowed()) 1547 return false; 1548 // If we might exit from anywhere but the latch, must run the exiting 1549 // iteration in scalar form. 1550 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1551 return true; 1552 return InterleaveInfo.requiresScalarEpilogue(); 1553 } 1554 1555 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1556 /// loop hint annotation. 1557 bool isScalarEpilogueAllowed() const { 1558 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1559 } 1560 1561 /// Returns true if all loop blocks should be masked to fold tail loop. 1562 bool foldTailByMasking() const { return FoldTailByMasking; } 1563 1564 bool blockNeedsPredication(BasicBlock *BB) { 1565 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1566 } 1567 1568 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1569 /// nodes to the chain of instructions representing the reductions. Uses a 1570 /// MapVector to ensure deterministic iteration order. 1571 using ReductionChainMap = 1572 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1573 1574 /// Return the chain of instructions representing an inloop reduction. 1575 const ReductionChainMap &getInLoopReductionChains() const { 1576 return InLoopReductionChains; 1577 } 1578 1579 /// Returns true if the Phi is part of an inloop reduction. 1580 bool isInLoopReduction(PHINode *Phi) const { 1581 return InLoopReductionChains.count(Phi); 1582 } 1583 1584 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1585 /// with factor VF. Return the cost of the instruction, including 1586 /// scalarization overhead if it's needed. 1587 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1588 1589 /// Estimate cost of a call instruction CI if it were vectorized with factor 1590 /// VF. Return the cost of the instruction, including scalarization overhead 1591 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1592 /// scalarized - 1593 /// i.e. either vector version isn't available, or is too expensive. 1594 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1595 bool &NeedToScalarize); 1596 1597 /// Invalidates decisions already taken by the cost model. 1598 void invalidateCostModelingDecisions() { 1599 WideningDecisions.clear(); 1600 Uniforms.clear(); 1601 Scalars.clear(); 1602 } 1603 1604 private: 1605 unsigned NumPredStores = 0; 1606 1607 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1608 /// than zero. One is returned if vectorization should best be avoided due 1609 /// to cost. 1610 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1611 ElementCount UserVF); 1612 1613 /// The vectorization cost is a combination of the cost itself and a boolean 1614 /// indicating whether any of the contributing operations will actually 1615 /// operate on 1616 /// vector values after type legalization in the backend. If this latter value 1617 /// is 1618 /// false, then all operations will be scalarized (i.e. no vectorization has 1619 /// actually taken place). 1620 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1621 1622 /// Returns the expected execution cost. The unit of the cost does 1623 /// not matter because we use the 'cost' units to compare different 1624 /// vector widths. The cost that is returned is *not* normalized by 1625 /// the factor width. 1626 VectorizationCostTy expectedCost(ElementCount VF); 1627 1628 /// Returns the execution time cost of an instruction for a given vector 1629 /// width. Vector width of one means scalar. 1630 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1631 1632 /// The cost-computation logic from getInstructionCost which provides 1633 /// the vector type as an output parameter. 1634 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1635 Type *&VectorTy); 1636 1637 /// Return the cost of instructions in an inloop reduction pattern, if I is 1638 /// part of that pattern. 1639 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1640 Type *VectorTy, 1641 TTI::TargetCostKind CostKind); 1642 1643 /// Calculate vectorization cost of memory instruction \p I. 1644 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1645 1646 /// The cost computation for scalarized memory instruction. 1647 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost computation for interleaving group of memory instructions. 1650 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1651 1652 /// The cost computation for Gather/Scatter instruction. 1653 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1654 1655 /// The cost computation for widening instruction \p I with consecutive 1656 /// memory access. 1657 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1658 1659 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1660 /// Load: scalar load + broadcast. 1661 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1662 /// element) 1663 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1664 1665 /// Estimate the overhead of scalarizing an instruction. This is a 1666 /// convenience wrapper for the type-based getScalarizationOverhead API. 1667 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1668 1669 /// Returns whether the instruction is a load or store and will be a emitted 1670 /// as a vector operation. 1671 bool isConsecutiveLoadOrStore(Instruction *I); 1672 1673 /// Returns true if an artificially high cost for emulated masked memrefs 1674 /// should be used. 1675 bool useEmulatedMaskMemRefHack(Instruction *I); 1676 1677 /// Map of scalar integer values to the smallest bitwidth they can be legally 1678 /// represented as. The vector equivalents of these values should be truncated 1679 /// to this type. 1680 MapVector<Instruction *, uint64_t> MinBWs; 1681 1682 /// A type representing the costs for instructions if they were to be 1683 /// scalarized rather than vectorized. The entries are Instruction-Cost 1684 /// pairs. 1685 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1686 1687 /// A set containing all BasicBlocks that are known to present after 1688 /// vectorization as a predicated block. 1689 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1690 1691 /// Records whether it is allowed to have the original scalar loop execute at 1692 /// least once. This may be needed as a fallback loop in case runtime 1693 /// aliasing/dependence checks fail, or to handle the tail/remainder 1694 /// iterations when the trip count is unknown or doesn't divide by the VF, 1695 /// or as a peel-loop to handle gaps in interleave-groups. 1696 /// Under optsize and when the trip count is very small we don't allow any 1697 /// iterations to execute in the scalar loop. 1698 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1699 1700 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1701 bool FoldTailByMasking = false; 1702 1703 /// A map holding scalar costs for different vectorization factors. The 1704 /// presence of a cost for an instruction in the mapping indicates that the 1705 /// instruction will be scalarized when vectorizing with the associated 1706 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1707 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1708 1709 /// Holds the instructions known to be uniform after vectorization. 1710 /// The data is collected per VF. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1712 1713 /// Holds the instructions known to be scalar after vectorization. 1714 /// The data is collected per VF. 1715 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1716 1717 /// Holds the instructions (address computations) that are forced to be 1718 /// scalarized. 1719 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1720 1721 /// PHINodes of the reductions that should be expanded in-loop along with 1722 /// their associated chains of reduction operations, in program order from top 1723 /// (PHI) to bottom 1724 ReductionChainMap InLoopReductionChains; 1725 1726 /// A Map of inloop reduction operations and their immediate chain operand. 1727 /// FIXME: This can be removed once reductions can be costed correctly in 1728 /// vplan. This was added to allow quick lookup to the inloop operations, 1729 /// without having to loop through InLoopReductionChains. 1730 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1731 1732 /// Returns the expected difference in cost from scalarizing the expression 1733 /// feeding a predicated instruction \p PredInst. The instructions to 1734 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1735 /// non-negative return value implies the expression will be scalarized. 1736 /// Currently, only single-use chains are considered for scalarization. 1737 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1738 ElementCount VF); 1739 1740 /// Collect the instructions that are uniform after vectorization. An 1741 /// instruction is uniform if we represent it with a single scalar value in 1742 /// the vectorized loop corresponding to each vector iteration. Examples of 1743 /// uniform instructions include pointer operands of consecutive or 1744 /// interleaved memory accesses. Note that although uniformity implies an 1745 /// instruction will be scalar, the reverse is not true. In general, a 1746 /// scalarized instruction will be represented by VF scalar values in the 1747 /// vectorized loop, each corresponding to an iteration of the original 1748 /// scalar loop. 1749 void collectLoopUniforms(ElementCount VF); 1750 1751 /// Collect the instructions that are scalar after vectorization. An 1752 /// instruction is scalar if it is known to be uniform or will be scalarized 1753 /// during vectorization. Non-uniform scalarized instructions will be 1754 /// represented by VF values in the vectorized loop, each corresponding to an 1755 /// iteration of the original scalar loop. 1756 void collectLoopScalars(ElementCount VF); 1757 1758 /// Keeps cost model vectorization decision and cost for instructions. 1759 /// Right now it is used for memory instructions only. 1760 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1761 std::pair<InstWidening, InstructionCost>>; 1762 1763 DecisionList WideningDecisions; 1764 1765 /// Returns true if \p V is expected to be vectorized and it needs to be 1766 /// extracted. 1767 bool needsExtract(Value *V, ElementCount VF) const { 1768 Instruction *I = dyn_cast<Instruction>(V); 1769 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1770 TheLoop->isLoopInvariant(I)) 1771 return false; 1772 1773 // Assume we can vectorize V (and hence we need extraction) if the 1774 // scalars are not computed yet. This can happen, because it is called 1775 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1776 // the scalars are collected. That should be a safe assumption in most 1777 // cases, because we check if the operands have vectorizable types 1778 // beforehand in LoopVectorizationLegality. 1779 return Scalars.find(VF) == Scalars.end() || 1780 !isScalarAfterVectorization(I, VF); 1781 }; 1782 1783 /// Returns a range containing only operands needing to be extracted. 1784 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1785 ElementCount VF) { 1786 return SmallVector<Value *, 4>(make_filter_range( 1787 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1788 } 1789 1790 /// Determines if we have the infrastructure to vectorize loop \p L and its 1791 /// epilogue, assuming the main loop is vectorized by \p VF. 1792 bool isCandidateForEpilogueVectorization(const Loop &L, 1793 const ElementCount VF) const; 1794 1795 /// Returns true if epilogue vectorization is considered profitable, and 1796 /// false otherwise. 1797 /// \p VF is the vectorization factor chosen for the original loop. 1798 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1799 1800 public: 1801 /// The loop that we evaluate. 1802 Loop *TheLoop; 1803 1804 /// Predicated scalar evolution analysis. 1805 PredicatedScalarEvolution &PSE; 1806 1807 /// Loop Info analysis. 1808 LoopInfo *LI; 1809 1810 /// Vectorization legality. 1811 LoopVectorizationLegality *Legal; 1812 1813 /// Vector target information. 1814 const TargetTransformInfo &TTI; 1815 1816 /// Target Library Info. 1817 const TargetLibraryInfo *TLI; 1818 1819 /// Demanded bits analysis. 1820 DemandedBits *DB; 1821 1822 /// Assumption cache. 1823 AssumptionCache *AC; 1824 1825 /// Interface to emit optimization remarks. 1826 OptimizationRemarkEmitter *ORE; 1827 1828 const Function *TheFunction; 1829 1830 /// Loop Vectorize Hint. 1831 const LoopVectorizeHints *Hints; 1832 1833 /// The interleave access information contains groups of interleaved accesses 1834 /// with the same stride and close to each other. 1835 InterleavedAccessInfo &InterleaveInfo; 1836 1837 /// Values to ignore in the cost model. 1838 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1839 1840 /// Values to ignore in the cost model when VF > 1. 1841 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1842 1843 /// Profitable vector factors. 1844 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1845 }; 1846 } // end namespace llvm 1847 1848 /// Helper struct to manage generating runtime checks for vectorization. 1849 /// 1850 /// The runtime checks are created up-front in temporary blocks to allow better 1851 /// estimating the cost and un-linked from the existing IR. After deciding to 1852 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1853 /// temporary blocks are completely removed. 1854 class GeneratedRTChecks { 1855 /// Basic block which contains the generated SCEV checks, if any. 1856 BasicBlock *SCEVCheckBlock = nullptr; 1857 1858 /// The value representing the result of the generated SCEV checks. If it is 1859 /// nullptr, either no SCEV checks have been generated or they have been used. 1860 Value *SCEVCheckCond = nullptr; 1861 1862 /// Basic block which contains the generated memory runtime checks, if any. 1863 BasicBlock *MemCheckBlock = nullptr; 1864 1865 /// The value representing the result of the generated memory runtime checks. 1866 /// If it is nullptr, either no memory runtime checks have been generated or 1867 /// they have been used. 1868 Instruction *MemRuntimeCheckCond = nullptr; 1869 1870 DominatorTree *DT; 1871 LoopInfo *LI; 1872 1873 SCEVExpander SCEVExp; 1874 SCEVExpander MemCheckExp; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 const DataLayout &DL) 1879 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVUnionPredicate &UnionPred) { 1889 1890 BasicBlock *LoopHeader = L->getHeader(); 1891 BasicBlock *Preheader = L->getLoopPreheader(); 1892 1893 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1894 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1895 // may be used by SCEVExpander. The blocks will be un-linked from their 1896 // predecessors and removed from LI & DT at the end of the function. 1897 if (!UnionPred.isAlwaysTrue()) { 1898 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1899 nullptr, "vector.scevcheck"); 1900 1901 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1902 &UnionPred, SCEVCheckBlock->getTerminator()); 1903 } 1904 1905 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1906 if (RtPtrChecking.Need) { 1907 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1908 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1909 "vector.memcheck"); 1910 1911 std::tie(std::ignore, MemRuntimeCheckCond) = 1912 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1913 RtPtrChecking.getChecks(), MemCheckExp); 1914 assert(MemRuntimeCheckCond && 1915 "no RT checks generated although RtPtrChecking " 1916 "claimed checks are required"); 1917 } 1918 1919 if (!MemCheckBlock && !SCEVCheckBlock) 1920 return; 1921 1922 // Unhook the temporary block with the checks, update various places 1923 // accordingly. 1924 if (SCEVCheckBlock) 1925 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1926 if (MemCheckBlock) 1927 MemCheckBlock->replaceAllUsesWith(Preheader); 1928 1929 if (SCEVCheckBlock) { 1930 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1931 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1932 Preheader->getTerminator()->eraseFromParent(); 1933 } 1934 if (MemCheckBlock) { 1935 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1936 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1937 Preheader->getTerminator()->eraseFromParent(); 1938 } 1939 1940 DT->changeImmediateDominator(LoopHeader, Preheader); 1941 if (MemCheckBlock) { 1942 DT->eraseNode(MemCheckBlock); 1943 LI->removeBlock(MemCheckBlock); 1944 } 1945 if (SCEVCheckBlock) { 1946 DT->eraseNode(SCEVCheckBlock); 1947 LI->removeBlock(SCEVCheckBlock); 1948 } 1949 } 1950 1951 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1952 /// unused. 1953 ~GeneratedRTChecks() { 1954 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1955 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 1956 if (!SCEVCheckCond) 1957 SCEVCleaner.markResultUsed(); 1958 1959 if (!MemRuntimeCheckCond) 1960 MemCheckCleaner.markResultUsed(); 1961 1962 if (MemRuntimeCheckCond) { 1963 auto &SE = *MemCheckExp.getSE(); 1964 // Memory runtime check generation creates compares that use expanded 1965 // values. Remove them before running the SCEVExpanderCleaners. 1966 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 1967 if (MemCheckExp.isInsertedInstruction(&I)) 1968 continue; 1969 SE.forgetValue(&I); 1970 SE.eraseValueFromMap(&I); 1971 I.eraseFromParent(); 1972 } 1973 } 1974 MemCheckCleaner.cleanup(); 1975 SCEVCleaner.cleanup(); 1976 1977 if (SCEVCheckCond) 1978 SCEVCheckBlock->eraseFromParent(); 1979 if (MemRuntimeCheckCond) 1980 MemCheckBlock->eraseFromParent(); 1981 } 1982 1983 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 1984 /// adjusts the branches to branch to the vector preheader or \p Bypass, 1985 /// depending on the generated condition. 1986 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 1987 BasicBlock *LoopVectorPreHeader, 1988 BasicBlock *LoopExitBlock) { 1989 if (!SCEVCheckCond) 1990 return nullptr; 1991 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 1992 if (C->isZero()) 1993 return nullptr; 1994 1995 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 1996 1997 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 1998 // Create new preheader for vector loop. 1999 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2000 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2001 2002 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2003 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2004 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2005 SCEVCheckBlock); 2006 2007 DT->addNewBlock(SCEVCheckBlock, Pred); 2008 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2009 2010 ReplaceInstWithInst( 2011 SCEVCheckBlock->getTerminator(), 2012 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2013 // Mark the check as used, to prevent it from being removed during cleanup. 2014 SCEVCheckCond = nullptr; 2015 return SCEVCheckBlock; 2016 } 2017 2018 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2019 /// the branches to branch to the vector preheader or \p Bypass, depending on 2020 /// the generated condition. 2021 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2022 BasicBlock *LoopVectorPreHeader) { 2023 // Check if we generated code that checks in runtime if arrays overlap. 2024 if (!MemRuntimeCheckCond) 2025 return nullptr; 2026 2027 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2028 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2029 MemCheckBlock); 2030 2031 DT->addNewBlock(MemCheckBlock, Pred); 2032 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2033 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2034 2035 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2036 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2037 2038 ReplaceInstWithInst( 2039 MemCheckBlock->getTerminator(), 2040 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2041 MemCheckBlock->getTerminator()->setDebugLoc( 2042 Pred->getTerminator()->getDebugLoc()); 2043 2044 // Mark the check as used, to prevent it from being removed during cleanup. 2045 MemRuntimeCheckCond = nullptr; 2046 return MemCheckBlock; 2047 } 2048 }; 2049 2050 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2051 // vectorization. The loop needs to be annotated with #pragma omp simd 2052 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2053 // vector length information is not provided, vectorization is not considered 2054 // explicit. Interleave hints are not allowed either. These limitations will be 2055 // relaxed in the future. 2056 // Please, note that we are currently forced to abuse the pragma 'clang 2057 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2058 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2059 // provides *explicit vectorization hints* (LV can bypass legal checks and 2060 // assume that vectorization is legal). However, both hints are implemented 2061 // using the same metadata (llvm.loop.vectorize, processed by 2062 // LoopVectorizeHints). This will be fixed in the future when the native IR 2063 // representation for pragma 'omp simd' is introduced. 2064 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2065 OptimizationRemarkEmitter *ORE) { 2066 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2067 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2068 2069 // Only outer loops with an explicit vectorization hint are supported. 2070 // Unannotated outer loops are ignored. 2071 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2072 return false; 2073 2074 Function *Fn = OuterLp->getHeader()->getParent(); 2075 if (!Hints.allowVectorization(Fn, OuterLp, 2076 true /*VectorizeOnlyWhenForced*/)) { 2077 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2078 return false; 2079 } 2080 2081 if (Hints.getInterleave() > 1) { 2082 // TODO: Interleave support is future work. 2083 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2084 "outer loops.\n"); 2085 Hints.emitRemarkWithHints(); 2086 return false; 2087 } 2088 2089 return true; 2090 } 2091 2092 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2093 OptimizationRemarkEmitter *ORE, 2094 SmallVectorImpl<Loop *> &V) { 2095 // Collect inner loops and outer loops without irreducible control flow. For 2096 // now, only collect outer loops that have explicit vectorization hints. If we 2097 // are stress testing the VPlan H-CFG construction, we collect the outermost 2098 // loop of every loop nest. 2099 if (L.isInnermost() || VPlanBuildStressTest || 2100 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2101 LoopBlocksRPO RPOT(&L); 2102 RPOT.perform(LI); 2103 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2104 V.push_back(&L); 2105 // TODO: Collect inner loops inside marked outer loops in case 2106 // vectorization fails for the outer loop. Do not invoke 2107 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2108 // already known to be reducible. We can use an inherited attribute for 2109 // that. 2110 return; 2111 } 2112 } 2113 for (Loop *InnerL : L) 2114 collectSupportedLoops(*InnerL, LI, ORE, V); 2115 } 2116 2117 namespace { 2118 2119 /// The LoopVectorize Pass. 2120 struct LoopVectorize : public FunctionPass { 2121 /// Pass identification, replacement for typeid 2122 static char ID; 2123 2124 LoopVectorizePass Impl; 2125 2126 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2127 bool VectorizeOnlyWhenForced = false) 2128 : FunctionPass(ID), 2129 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2130 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2131 } 2132 2133 bool runOnFunction(Function &F) override { 2134 if (skipFunction(F)) 2135 return false; 2136 2137 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2138 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2139 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2140 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2141 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2142 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2143 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2144 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2145 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2146 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2147 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2148 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2149 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2150 2151 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2152 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2153 2154 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2155 GetLAA, *ORE, PSI).MadeAnyChange; 2156 } 2157 2158 void getAnalysisUsage(AnalysisUsage &AU) const override { 2159 AU.addRequired<AssumptionCacheTracker>(); 2160 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2161 AU.addRequired<DominatorTreeWrapperPass>(); 2162 AU.addRequired<LoopInfoWrapperPass>(); 2163 AU.addRequired<ScalarEvolutionWrapperPass>(); 2164 AU.addRequired<TargetTransformInfoWrapperPass>(); 2165 AU.addRequired<AAResultsWrapperPass>(); 2166 AU.addRequired<LoopAccessLegacyAnalysis>(); 2167 AU.addRequired<DemandedBitsWrapperPass>(); 2168 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2169 AU.addRequired<InjectTLIMappingsLegacy>(); 2170 2171 // We currently do not preserve loopinfo/dominator analyses with outer loop 2172 // vectorization. Until this is addressed, mark these analyses as preserved 2173 // only for non-VPlan-native path. 2174 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2175 if (!EnableVPlanNativePath) { 2176 AU.addPreserved<LoopInfoWrapperPass>(); 2177 AU.addPreserved<DominatorTreeWrapperPass>(); 2178 } 2179 2180 AU.addPreserved<BasicAAWrapperPass>(); 2181 AU.addPreserved<GlobalsAAWrapperPass>(); 2182 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2183 } 2184 }; 2185 2186 } // end anonymous namespace 2187 2188 //===----------------------------------------------------------------------===// 2189 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2190 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2191 //===----------------------------------------------------------------------===// 2192 2193 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2194 // We need to place the broadcast of invariant variables outside the loop, 2195 // but only if it's proven safe to do so. Else, broadcast will be inside 2196 // vector loop body. 2197 Instruction *Instr = dyn_cast<Instruction>(V); 2198 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2199 (!Instr || 2200 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2201 // Place the code for broadcasting invariant variables in the new preheader. 2202 IRBuilder<>::InsertPointGuard Guard(Builder); 2203 if (SafeToHoist) 2204 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2205 2206 // Broadcast the scalar into all locations in the vector. 2207 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2208 2209 return Shuf; 2210 } 2211 2212 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2213 const InductionDescriptor &II, Value *Step, Value *Start, 2214 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2215 VPTransformState &State) { 2216 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2217 "Expected either an induction phi-node or a truncate of it!"); 2218 2219 // Construct the initial value of the vector IV in the vector loop preheader 2220 auto CurrIP = Builder.saveIP(); 2221 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2222 if (isa<TruncInst>(EntryVal)) { 2223 assert(Start->getType()->isIntegerTy() && 2224 "Truncation requires an integer type"); 2225 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2226 Step = Builder.CreateTrunc(Step, TruncType); 2227 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2228 } 2229 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2230 Value *SteppedStart = 2231 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2232 2233 // We create vector phi nodes for both integer and floating-point induction 2234 // variables. Here, we determine the kind of arithmetic we will perform. 2235 Instruction::BinaryOps AddOp; 2236 Instruction::BinaryOps MulOp; 2237 if (Step->getType()->isIntegerTy()) { 2238 AddOp = Instruction::Add; 2239 MulOp = Instruction::Mul; 2240 } else { 2241 AddOp = II.getInductionOpcode(); 2242 MulOp = Instruction::FMul; 2243 } 2244 2245 // Multiply the vectorization factor by the step using integer or 2246 // floating-point arithmetic as appropriate. 2247 Value *ConstVF = 2248 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2249 Value *Mul = Builder.CreateBinOp(MulOp, Step, ConstVF); 2250 2251 // Create a vector splat to use in the induction update. 2252 // 2253 // FIXME: If the step is non-constant, we create the vector splat with 2254 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2255 // handle a constant vector splat. 2256 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2257 Value *SplatVF = isa<Constant>(Mul) 2258 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2259 : Builder.CreateVectorSplat(VF, Mul); 2260 Builder.restoreIP(CurrIP); 2261 2262 // We may need to add the step a number of times, depending on the unroll 2263 // factor. The last of those goes into the PHI. 2264 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2265 &*LoopVectorBody->getFirstInsertionPt()); 2266 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2267 Instruction *LastInduction = VecInd; 2268 for (unsigned Part = 0; Part < UF; ++Part) { 2269 State.set(Def, LastInduction, Part); 2270 2271 if (isa<TruncInst>(EntryVal)) 2272 addMetadata(LastInduction, EntryVal); 2273 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2274 State, Part); 2275 2276 LastInduction = cast<Instruction>( 2277 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2278 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2279 } 2280 2281 // Move the last step to the end of the latch block. This ensures consistent 2282 // placement of all induction updates. 2283 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2284 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2285 auto *ICmp = cast<Instruction>(Br->getCondition()); 2286 LastInduction->moveBefore(ICmp); 2287 LastInduction->setName("vec.ind.next"); 2288 2289 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2290 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2291 } 2292 2293 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2294 return Cost->isScalarAfterVectorization(I, VF) || 2295 Cost->isProfitableToScalarize(I, VF); 2296 } 2297 2298 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2299 if (shouldScalarizeInstruction(IV)) 2300 return true; 2301 auto isScalarInst = [&](User *U) -> bool { 2302 auto *I = cast<Instruction>(U); 2303 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2304 }; 2305 return llvm::any_of(IV->users(), isScalarInst); 2306 } 2307 2308 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2309 const InductionDescriptor &ID, const Instruction *EntryVal, 2310 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2311 unsigned Part, unsigned Lane) { 2312 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2313 "Expected either an induction phi-node or a truncate of it!"); 2314 2315 // This induction variable is not the phi from the original loop but the 2316 // newly-created IV based on the proof that casted Phi is equal to the 2317 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2318 // re-uses the same InductionDescriptor that original IV uses but we don't 2319 // have to do any recording in this case - that is done when original IV is 2320 // processed. 2321 if (isa<TruncInst>(EntryVal)) 2322 return; 2323 2324 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2325 if (Casts.empty()) 2326 return; 2327 // Only the first Cast instruction in the Casts vector is of interest. 2328 // The rest of the Casts (if exist) have no uses outside the 2329 // induction update chain itself. 2330 if (Lane < UINT_MAX) 2331 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2332 else 2333 State.set(CastDef, VectorLoopVal, Part); 2334 } 2335 2336 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2337 TruncInst *Trunc, VPValue *Def, 2338 VPValue *CastDef, 2339 VPTransformState &State) { 2340 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2341 "Primary induction variable must have an integer type"); 2342 2343 auto II = Legal->getInductionVars().find(IV); 2344 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2345 2346 auto ID = II->second; 2347 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2348 2349 // The value from the original loop to which we are mapping the new induction 2350 // variable. 2351 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2352 2353 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2354 2355 // Generate code for the induction step. Note that induction steps are 2356 // required to be loop-invariant 2357 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2358 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2359 "Induction step should be loop invariant"); 2360 if (PSE.getSE()->isSCEVable(IV->getType())) { 2361 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2362 return Exp.expandCodeFor(Step, Step->getType(), 2363 LoopVectorPreHeader->getTerminator()); 2364 } 2365 return cast<SCEVUnknown>(Step)->getValue(); 2366 }; 2367 2368 // The scalar value to broadcast. This is derived from the canonical 2369 // induction variable. If a truncation type is given, truncate the canonical 2370 // induction variable and step. Otherwise, derive these values from the 2371 // induction descriptor. 2372 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2373 Value *ScalarIV = Induction; 2374 if (IV != OldInduction) { 2375 ScalarIV = IV->getType()->isIntegerTy() 2376 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2377 : Builder.CreateCast(Instruction::SIToFP, Induction, 2378 IV->getType()); 2379 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2380 ScalarIV->setName("offset.idx"); 2381 } 2382 if (Trunc) { 2383 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2384 assert(Step->getType()->isIntegerTy() && 2385 "Truncation requires an integer step"); 2386 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2387 Step = Builder.CreateTrunc(Step, TruncType); 2388 } 2389 return ScalarIV; 2390 }; 2391 2392 // Create the vector values from the scalar IV, in the absence of creating a 2393 // vector IV. 2394 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2395 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2396 for (unsigned Part = 0; Part < UF; ++Part) { 2397 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2398 Value *EntryPart = 2399 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2400 ID.getInductionOpcode()); 2401 State.set(Def, EntryPart, Part); 2402 if (Trunc) 2403 addMetadata(EntryPart, Trunc); 2404 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2405 State, Part); 2406 } 2407 }; 2408 2409 // Fast-math-flags propagate from the original induction instruction. 2410 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2411 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2412 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2413 2414 // Now do the actual transformations, and start with creating the step value. 2415 Value *Step = CreateStepValue(ID.getStep()); 2416 if (VF.isZero() || VF.isScalar()) { 2417 Value *ScalarIV = CreateScalarIV(Step); 2418 CreateSplatIV(ScalarIV, Step); 2419 return; 2420 } 2421 2422 // Determine if we want a scalar version of the induction variable. This is 2423 // true if the induction variable itself is not widened, or if it has at 2424 // least one user in the loop that is not widened. 2425 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2426 if (!NeedsScalarIV) { 2427 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2428 State); 2429 return; 2430 } 2431 2432 // Try to create a new independent vector induction variable. If we can't 2433 // create the phi node, we will splat the scalar induction variable in each 2434 // loop iteration. 2435 if (!shouldScalarizeInstruction(EntryVal)) { 2436 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2437 State); 2438 Value *ScalarIV = CreateScalarIV(Step); 2439 // Create scalar steps that can be used by instructions we will later 2440 // scalarize. Note that the addition of the scalar steps will not increase 2441 // the number of instructions in the loop in the common case prior to 2442 // InstCombine. We will be trading one vector extract for each scalar step. 2443 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2444 return; 2445 } 2446 2447 // All IV users are scalar instructions, so only emit a scalar IV, not a 2448 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2449 // predicate used by the masked loads/stores. 2450 Value *ScalarIV = CreateScalarIV(Step); 2451 if (!Cost->isScalarEpilogueAllowed()) 2452 CreateSplatIV(ScalarIV, Step); 2453 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2454 } 2455 2456 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2457 Instruction::BinaryOps BinOp) { 2458 // Create and check the types. 2459 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2460 int VLen = ValVTy->getNumElements(); 2461 2462 Type *STy = Val->getType()->getScalarType(); 2463 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2464 "Induction Step must be an integer or FP"); 2465 assert(Step->getType() == STy && "Step has wrong type"); 2466 2467 SmallVector<Constant *, 8> Indices; 2468 2469 if (STy->isIntegerTy()) { 2470 // Create a vector of consecutive numbers from zero to VF. 2471 for (int i = 0; i < VLen; ++i) 2472 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2473 2474 // Add the consecutive indices to the vector value. 2475 Constant *Cv = ConstantVector::get(Indices); 2476 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2477 Step = Builder.CreateVectorSplat(VLen, Step); 2478 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2479 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2480 // which can be found from the original scalar operations. 2481 Step = Builder.CreateMul(Cv, Step); 2482 return Builder.CreateAdd(Val, Step, "induction"); 2483 } 2484 2485 // Floating point induction. 2486 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2487 "Binary Opcode should be specified for FP induction"); 2488 // Create a vector of consecutive numbers from zero to VF. 2489 for (int i = 0; i < VLen; ++i) 2490 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2491 2492 // Add the consecutive indices to the vector value. 2493 // Floating-point operations inherit FMF via the builder's flags. 2494 Constant *Cv = ConstantVector::get(Indices); 2495 Step = Builder.CreateVectorSplat(VLen, Step); 2496 Value *MulOp = Builder.CreateFMul(Cv, Step); 2497 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2498 } 2499 2500 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2501 Instruction *EntryVal, 2502 const InductionDescriptor &ID, 2503 VPValue *Def, VPValue *CastDef, 2504 VPTransformState &State) { 2505 // We shouldn't have to build scalar steps if we aren't vectorizing. 2506 assert(VF.isVector() && "VF should be greater than one"); 2507 // Get the value type and ensure it and the step have the same integer type. 2508 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2509 assert(ScalarIVTy == Step->getType() && 2510 "Val and Step should have the same type"); 2511 2512 // We build scalar steps for both integer and floating-point induction 2513 // variables. Here, we determine the kind of arithmetic we will perform. 2514 Instruction::BinaryOps AddOp; 2515 Instruction::BinaryOps MulOp; 2516 if (ScalarIVTy->isIntegerTy()) { 2517 AddOp = Instruction::Add; 2518 MulOp = Instruction::Mul; 2519 } else { 2520 AddOp = ID.getInductionOpcode(); 2521 MulOp = Instruction::FMul; 2522 } 2523 2524 // Determine the number of scalars we need to generate for each unroll 2525 // iteration. If EntryVal is uniform, we only need to generate the first 2526 // lane. Otherwise, we generate all VF values. 2527 unsigned Lanes = 2528 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2529 ? 1 2530 : VF.getKnownMinValue(); 2531 assert((!VF.isScalable() || Lanes == 1) && 2532 "Should never scalarize a scalable vector"); 2533 // Compute the scalar steps and save the results in State. 2534 for (unsigned Part = 0; Part < UF; ++Part) { 2535 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2536 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2537 ScalarIVTy->getScalarSizeInBits()); 2538 Value *StartIdx = 2539 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2540 if (ScalarIVTy->isFloatingPointTy()) 2541 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2542 StartIdx = Builder.CreateBinOp( 2543 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2544 // The step returned by `createStepForVF` is a runtime-evaluated value 2545 // when VF is scalable. Otherwise, it should be folded into a Constant. 2546 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2547 "Expected StartIdx to be folded to a constant when VF is not " 2548 "scalable"); 2549 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2550 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2551 State.set(Def, Add, VPIteration(Part, Lane)); 2552 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2553 Part, Lane); 2554 } 2555 } 2556 } 2557 2558 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2559 const VPIteration &Instance, 2560 VPTransformState &State) { 2561 Value *ScalarInst = State.get(Def, Instance); 2562 Value *VectorValue = State.get(Def, Instance.Part); 2563 VectorValue = Builder.CreateInsertElement( 2564 VectorValue, ScalarInst, 2565 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2566 State.set(Def, VectorValue, Instance.Part); 2567 } 2568 2569 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2570 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2571 return Builder.CreateVectorReverse(Vec, "reverse"); 2572 } 2573 2574 // Return whether we allow using masked interleave-groups (for dealing with 2575 // strided loads/stores that reside in predicated blocks, or for dealing 2576 // with gaps). 2577 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2578 // If an override option has been passed in for interleaved accesses, use it. 2579 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2580 return EnableMaskedInterleavedMemAccesses; 2581 2582 return TTI.enableMaskedInterleavedAccessVectorization(); 2583 } 2584 2585 // Try to vectorize the interleave group that \p Instr belongs to. 2586 // 2587 // E.g. Translate following interleaved load group (factor = 3): 2588 // for (i = 0; i < N; i+=3) { 2589 // R = Pic[i]; // Member of index 0 2590 // G = Pic[i+1]; // Member of index 1 2591 // B = Pic[i+2]; // Member of index 2 2592 // ... // do something to R, G, B 2593 // } 2594 // To: 2595 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2596 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2597 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2598 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2599 // 2600 // Or translate following interleaved store group (factor = 3): 2601 // for (i = 0; i < N; i+=3) { 2602 // ... do something to R, G, B 2603 // Pic[i] = R; // Member of index 0 2604 // Pic[i+1] = G; // Member of index 1 2605 // Pic[i+2] = B; // Member of index 2 2606 // } 2607 // To: 2608 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2609 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2610 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2611 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2612 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2613 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2614 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2615 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2616 VPValue *BlockInMask) { 2617 Instruction *Instr = Group->getInsertPos(); 2618 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2619 2620 // Prepare for the vector type of the interleaved load/store. 2621 Type *ScalarTy = getMemInstValueType(Instr); 2622 unsigned InterleaveFactor = Group->getFactor(); 2623 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2624 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2625 2626 // Prepare for the new pointers. 2627 SmallVector<Value *, 2> AddrParts; 2628 unsigned Index = Group->getIndex(Instr); 2629 2630 // TODO: extend the masked interleaved-group support to reversed access. 2631 assert((!BlockInMask || !Group->isReverse()) && 2632 "Reversed masked interleave-group not supported."); 2633 2634 // If the group is reverse, adjust the index to refer to the last vector lane 2635 // instead of the first. We adjust the index from the first vector lane, 2636 // rather than directly getting the pointer for lane VF - 1, because the 2637 // pointer operand of the interleaved access is supposed to be uniform. For 2638 // uniform instructions, we're only required to generate a value for the 2639 // first vector lane in each unroll iteration. 2640 assert(!VF.isScalable() && 2641 "scalable vector reverse operation is not implemented"); 2642 if (Group->isReverse()) 2643 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2644 2645 for (unsigned Part = 0; Part < UF; Part++) { 2646 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2647 setDebugLocFromInst(Builder, AddrPart); 2648 2649 // Notice current instruction could be any index. Need to adjust the address 2650 // to the member of index 0. 2651 // 2652 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2653 // b = A[i]; // Member of index 0 2654 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2655 // 2656 // E.g. A[i+1] = a; // Member of index 1 2657 // A[i] = b; // Member of index 0 2658 // A[i+2] = c; // Member of index 2 (Current instruction) 2659 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2660 2661 bool InBounds = false; 2662 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2663 InBounds = gep->isInBounds(); 2664 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2665 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2666 2667 // Cast to the vector pointer type. 2668 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2669 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2670 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2671 } 2672 2673 setDebugLocFromInst(Builder, Instr); 2674 Value *PoisonVec = PoisonValue::get(VecTy); 2675 2676 Value *MaskForGaps = nullptr; 2677 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2678 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2679 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2680 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2681 } 2682 2683 // Vectorize the interleaved load group. 2684 if (isa<LoadInst>(Instr)) { 2685 // For each unroll part, create a wide load for the group. 2686 SmallVector<Value *, 2> NewLoads; 2687 for (unsigned Part = 0; Part < UF; Part++) { 2688 Instruction *NewLoad; 2689 if (BlockInMask || MaskForGaps) { 2690 assert(useMaskedInterleavedAccesses(*TTI) && 2691 "masked interleaved groups are not allowed."); 2692 Value *GroupMask = MaskForGaps; 2693 if (BlockInMask) { 2694 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2695 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2696 Value *ShuffledMask = Builder.CreateShuffleVector( 2697 BlockInMaskPart, 2698 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2699 "interleaved.mask"); 2700 GroupMask = MaskForGaps 2701 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2702 MaskForGaps) 2703 : ShuffledMask; 2704 } 2705 NewLoad = 2706 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2707 GroupMask, PoisonVec, "wide.masked.vec"); 2708 } 2709 else 2710 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2711 Group->getAlign(), "wide.vec"); 2712 Group->addMetadata(NewLoad); 2713 NewLoads.push_back(NewLoad); 2714 } 2715 2716 // For each member in the group, shuffle out the appropriate data from the 2717 // wide loads. 2718 unsigned J = 0; 2719 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2720 Instruction *Member = Group->getMember(I); 2721 2722 // Skip the gaps in the group. 2723 if (!Member) 2724 continue; 2725 2726 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2727 auto StrideMask = 2728 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2729 for (unsigned Part = 0; Part < UF; Part++) { 2730 Value *StridedVec = Builder.CreateShuffleVector( 2731 NewLoads[Part], StrideMask, "strided.vec"); 2732 2733 // If this member has different type, cast the result type. 2734 if (Member->getType() != ScalarTy) { 2735 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2736 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2737 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2738 } 2739 2740 if (Group->isReverse()) 2741 StridedVec = reverseVector(StridedVec); 2742 2743 State.set(VPDefs[J], StridedVec, Part); 2744 } 2745 ++J; 2746 } 2747 return; 2748 } 2749 2750 // The sub vector type for current instruction. 2751 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2752 auto *SubVT = VectorType::get(ScalarTy, VF); 2753 2754 // Vectorize the interleaved store group. 2755 for (unsigned Part = 0; Part < UF; Part++) { 2756 // Collect the stored vector from each member. 2757 SmallVector<Value *, 4> StoredVecs; 2758 for (unsigned i = 0; i < InterleaveFactor; i++) { 2759 // Interleaved store group doesn't allow a gap, so each index has a member 2760 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2761 2762 Value *StoredVec = State.get(StoredValues[i], Part); 2763 2764 if (Group->isReverse()) 2765 StoredVec = reverseVector(StoredVec); 2766 2767 // If this member has different type, cast it to a unified type. 2768 2769 if (StoredVec->getType() != SubVT) 2770 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2771 2772 StoredVecs.push_back(StoredVec); 2773 } 2774 2775 // Concatenate all vectors into a wide vector. 2776 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2777 2778 // Interleave the elements in the wide vector. 2779 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2780 Value *IVec = Builder.CreateShuffleVector( 2781 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2782 "interleaved.vec"); 2783 2784 Instruction *NewStoreInstr; 2785 if (BlockInMask) { 2786 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2787 Value *ShuffledMask = Builder.CreateShuffleVector( 2788 BlockInMaskPart, 2789 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2790 "interleaved.mask"); 2791 NewStoreInstr = Builder.CreateMaskedStore( 2792 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2793 } 2794 else 2795 NewStoreInstr = 2796 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2797 2798 Group->addMetadata(NewStoreInstr); 2799 } 2800 } 2801 2802 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2803 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2804 VPValue *StoredValue, VPValue *BlockInMask) { 2805 // Attempt to issue a wide load. 2806 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2807 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2808 2809 assert((LI || SI) && "Invalid Load/Store instruction"); 2810 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2811 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2812 2813 LoopVectorizationCostModel::InstWidening Decision = 2814 Cost->getWideningDecision(Instr, VF); 2815 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2816 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2817 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2818 "CM decision is not to widen the memory instruction"); 2819 2820 Type *ScalarDataTy = getMemInstValueType(Instr); 2821 2822 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2823 const Align Alignment = getLoadStoreAlignment(Instr); 2824 2825 // Determine if the pointer operand of the access is either consecutive or 2826 // reverse consecutive. 2827 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2828 bool ConsecutiveStride = 2829 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2830 bool CreateGatherScatter = 2831 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2832 2833 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2834 // gather/scatter. Otherwise Decision should have been to Scalarize. 2835 assert((ConsecutiveStride || CreateGatherScatter) && 2836 "The instruction should be scalarized"); 2837 (void)ConsecutiveStride; 2838 2839 VectorParts BlockInMaskParts(UF); 2840 bool isMaskRequired = BlockInMask; 2841 if (isMaskRequired) 2842 for (unsigned Part = 0; Part < UF; ++Part) 2843 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2844 2845 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2846 // Calculate the pointer for the specific unroll-part. 2847 GetElementPtrInst *PartPtr = nullptr; 2848 2849 bool InBounds = false; 2850 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2851 InBounds = gep->isInBounds(); 2852 if (Reverse) { 2853 // If the address is consecutive but reversed, then the 2854 // wide store needs to start at the last vector element. 2855 // RunTimeVF = VScale * VF.getKnownMinValue() 2856 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2857 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2858 // NumElt = -Part * RunTimeVF 2859 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2860 // LastLane = 1 - RunTimeVF 2861 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2862 PartPtr = 2863 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2864 PartPtr->setIsInBounds(InBounds); 2865 PartPtr = cast<GetElementPtrInst>( 2866 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2867 PartPtr->setIsInBounds(InBounds); 2868 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2869 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2870 } else { 2871 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2872 PartPtr = cast<GetElementPtrInst>( 2873 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2874 PartPtr->setIsInBounds(InBounds); 2875 } 2876 2877 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2878 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2879 }; 2880 2881 // Handle Stores: 2882 if (SI) { 2883 setDebugLocFromInst(Builder, SI); 2884 2885 for (unsigned Part = 0; Part < UF; ++Part) { 2886 Instruction *NewSI = nullptr; 2887 Value *StoredVal = State.get(StoredValue, Part); 2888 if (CreateGatherScatter) { 2889 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2890 Value *VectorGep = State.get(Addr, Part); 2891 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2892 MaskPart); 2893 } else { 2894 if (Reverse) { 2895 // If we store to reverse consecutive memory locations, then we need 2896 // to reverse the order of elements in the stored value. 2897 StoredVal = reverseVector(StoredVal); 2898 // We don't want to update the value in the map as it might be used in 2899 // another expression. So don't call resetVectorValue(StoredVal). 2900 } 2901 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2902 if (isMaskRequired) 2903 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2904 BlockInMaskParts[Part]); 2905 else 2906 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2907 } 2908 addMetadata(NewSI, SI); 2909 } 2910 return; 2911 } 2912 2913 // Handle loads. 2914 assert(LI && "Must have a load instruction"); 2915 setDebugLocFromInst(Builder, LI); 2916 for (unsigned Part = 0; Part < UF; ++Part) { 2917 Value *NewLI; 2918 if (CreateGatherScatter) { 2919 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2920 Value *VectorGep = State.get(Addr, Part); 2921 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2922 nullptr, "wide.masked.gather"); 2923 addMetadata(NewLI, LI); 2924 } else { 2925 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2926 if (isMaskRequired) 2927 NewLI = Builder.CreateMaskedLoad( 2928 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2929 "wide.masked.load"); 2930 else 2931 NewLI = 2932 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2933 2934 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2935 addMetadata(NewLI, LI); 2936 if (Reverse) 2937 NewLI = reverseVector(NewLI); 2938 } 2939 2940 State.set(Def, NewLI, Part); 2941 } 2942 } 2943 2944 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2945 VPUser &User, 2946 const VPIteration &Instance, 2947 bool IfPredicateInstr, 2948 VPTransformState &State) { 2949 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2950 2951 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2952 // the first lane and part. 2953 if (isa<NoAliasScopeDeclInst>(Instr)) 2954 if (!Instance.isFirstIteration()) 2955 return; 2956 2957 setDebugLocFromInst(Builder, Instr); 2958 2959 // Does this instruction return a value ? 2960 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2961 2962 Instruction *Cloned = Instr->clone(); 2963 if (!IsVoidRetTy) 2964 Cloned->setName(Instr->getName() + ".cloned"); 2965 2966 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2967 Builder.GetInsertPoint()); 2968 // Replace the operands of the cloned instructions with their scalar 2969 // equivalents in the new loop. 2970 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2971 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2972 auto InputInstance = Instance; 2973 if (!Operand || !OrigLoop->contains(Operand) || 2974 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2975 InputInstance.Lane = VPLane::getFirstLane(); 2976 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2977 Cloned->setOperand(op, NewOp); 2978 } 2979 addNewMetadata(Cloned, Instr); 2980 2981 // Place the cloned scalar in the new loop. 2982 Builder.Insert(Cloned); 2983 2984 State.set(Def, Cloned, Instance); 2985 2986 // If we just cloned a new assumption, add it the assumption cache. 2987 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2988 if (II->getIntrinsicID() == Intrinsic::assume) 2989 AC->registerAssumption(II); 2990 2991 // End if-block. 2992 if (IfPredicateInstr) 2993 PredicatedInstructions.push_back(Cloned); 2994 } 2995 2996 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2997 Value *End, Value *Step, 2998 Instruction *DL) { 2999 BasicBlock *Header = L->getHeader(); 3000 BasicBlock *Latch = L->getLoopLatch(); 3001 // As we're just creating this loop, it's possible no latch exists 3002 // yet. If so, use the header as this will be a single block loop. 3003 if (!Latch) 3004 Latch = Header; 3005 3006 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3007 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3008 setDebugLocFromInst(Builder, OldInst); 3009 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3010 3011 Builder.SetInsertPoint(Latch->getTerminator()); 3012 setDebugLocFromInst(Builder, OldInst); 3013 3014 // Create i+1 and fill the PHINode. 3015 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3016 Induction->addIncoming(Start, L->getLoopPreheader()); 3017 Induction->addIncoming(Next, Latch); 3018 // Create the compare. 3019 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3020 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3021 3022 // Now we have two terminators. Remove the old one from the block. 3023 Latch->getTerminator()->eraseFromParent(); 3024 3025 return Induction; 3026 } 3027 3028 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3029 if (TripCount) 3030 return TripCount; 3031 3032 assert(L && "Create Trip Count for null loop."); 3033 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3034 // Find the loop boundaries. 3035 ScalarEvolution *SE = PSE.getSE(); 3036 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3037 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3038 "Invalid loop count"); 3039 3040 Type *IdxTy = Legal->getWidestInductionType(); 3041 assert(IdxTy && "No type for induction"); 3042 3043 // The exit count might have the type of i64 while the phi is i32. This can 3044 // happen if we have an induction variable that is sign extended before the 3045 // compare. The only way that we get a backedge taken count is that the 3046 // induction variable was signed and as such will not overflow. In such a case 3047 // truncation is legal. 3048 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3049 IdxTy->getPrimitiveSizeInBits()) 3050 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3051 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3052 3053 // Get the total trip count from the count by adding 1. 3054 const SCEV *ExitCount = SE->getAddExpr( 3055 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3056 3057 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3058 3059 // Expand the trip count and place the new instructions in the preheader. 3060 // Notice that the pre-header does not change, only the loop body. 3061 SCEVExpander Exp(*SE, DL, "induction"); 3062 3063 // Count holds the overall loop count (N). 3064 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3065 L->getLoopPreheader()->getTerminator()); 3066 3067 if (TripCount->getType()->isPointerTy()) 3068 TripCount = 3069 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3070 L->getLoopPreheader()->getTerminator()); 3071 3072 return TripCount; 3073 } 3074 3075 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3076 if (VectorTripCount) 3077 return VectorTripCount; 3078 3079 Value *TC = getOrCreateTripCount(L); 3080 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3081 3082 Type *Ty = TC->getType(); 3083 // This is where we can make the step a runtime constant. 3084 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3085 3086 // If the tail is to be folded by masking, round the number of iterations N 3087 // up to a multiple of Step instead of rounding down. This is done by first 3088 // adding Step-1 and then rounding down. Note that it's ok if this addition 3089 // overflows: the vector induction variable will eventually wrap to zero given 3090 // that it starts at zero and its Step is a power of two; the loop will then 3091 // exit, with the last early-exit vector comparison also producing all-true. 3092 if (Cost->foldTailByMasking()) { 3093 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3094 "VF*UF must be a power of 2 when folding tail by masking"); 3095 assert(!VF.isScalable() && 3096 "Tail folding not yet supported for scalable vectors"); 3097 TC = Builder.CreateAdd( 3098 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3099 } 3100 3101 // Now we need to generate the expression for the part of the loop that the 3102 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3103 // iterations are not required for correctness, or N - Step, otherwise. Step 3104 // is equal to the vectorization factor (number of SIMD elements) times the 3105 // unroll factor (number of SIMD instructions). 3106 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3107 3108 // There are two cases where we need to ensure (at least) the last iteration 3109 // runs in the scalar remainder loop. Thus, if the step evenly divides 3110 // the trip count, we set the remainder to be equal to the step. If the step 3111 // does not evenly divide the trip count, no adjustment is necessary since 3112 // there will already be scalar iterations. Note that the minimum iterations 3113 // check ensures that N >= Step. The cases are: 3114 // 1) If there is a non-reversed interleaved group that may speculatively 3115 // access memory out-of-bounds. 3116 // 2) If any instruction may follow a conditionally taken exit. That is, if 3117 // the loop contains multiple exiting blocks, or a single exiting block 3118 // which is not the latch. 3119 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3120 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3121 R = Builder.CreateSelect(IsZero, Step, R); 3122 } 3123 3124 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3125 3126 return VectorTripCount; 3127 } 3128 3129 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3130 const DataLayout &DL) { 3131 // Verify that V is a vector type with same number of elements as DstVTy. 3132 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3133 unsigned VF = DstFVTy->getNumElements(); 3134 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3135 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3136 Type *SrcElemTy = SrcVecTy->getElementType(); 3137 Type *DstElemTy = DstFVTy->getElementType(); 3138 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3139 "Vector elements must have same size"); 3140 3141 // Do a direct cast if element types are castable. 3142 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3143 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3144 } 3145 // V cannot be directly casted to desired vector type. 3146 // May happen when V is a floating point vector but DstVTy is a vector of 3147 // pointers or vice-versa. Handle this using a two-step bitcast using an 3148 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3149 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3150 "Only one type should be a pointer type"); 3151 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3152 "Only one type should be a floating point type"); 3153 Type *IntTy = 3154 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3155 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3156 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3157 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3158 } 3159 3160 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3161 BasicBlock *Bypass) { 3162 Value *Count = getOrCreateTripCount(L); 3163 // Reuse existing vector loop preheader for TC checks. 3164 // Note that new preheader block is generated for vector loop. 3165 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3166 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3167 3168 // Generate code to check if the loop's trip count is less than VF * UF, or 3169 // equal to it in case a scalar epilogue is required; this implies that the 3170 // vector trip count is zero. This check also covers the case where adding one 3171 // to the backedge-taken count overflowed leading to an incorrect trip count 3172 // of zero. In this case we will also jump to the scalar loop. 3173 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3174 : ICmpInst::ICMP_ULT; 3175 3176 // If tail is to be folded, vector loop takes care of all iterations. 3177 Value *CheckMinIters = Builder.getFalse(); 3178 if (!Cost->foldTailByMasking()) { 3179 Value *Step = 3180 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3181 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3182 } 3183 // Create new preheader for vector loop. 3184 LoopVectorPreHeader = 3185 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3186 "vector.ph"); 3187 3188 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3189 DT->getNode(Bypass)->getIDom()) && 3190 "TC check is expected to dominate Bypass"); 3191 3192 // Update dominator for Bypass & LoopExit. 3193 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3194 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3195 3196 ReplaceInstWithInst( 3197 TCCheckBlock->getTerminator(), 3198 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3199 LoopBypassBlocks.push_back(TCCheckBlock); 3200 } 3201 3202 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3203 3204 BasicBlock *const SCEVCheckBlock = 3205 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3206 if (!SCEVCheckBlock) 3207 return nullptr; 3208 3209 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3210 (OptForSizeBasedOnProfile && 3211 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3212 "Cannot SCEV check stride or overflow when optimizing for size"); 3213 3214 3215 // Update dominator only if this is first RT check. 3216 if (LoopBypassBlocks.empty()) { 3217 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3218 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3219 } 3220 3221 LoopBypassBlocks.push_back(SCEVCheckBlock); 3222 AddedSafetyChecks = true; 3223 return SCEVCheckBlock; 3224 } 3225 3226 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3227 BasicBlock *Bypass) { 3228 // VPlan-native path does not do any analysis for runtime checks currently. 3229 if (EnableVPlanNativePath) 3230 return nullptr; 3231 3232 BasicBlock *const MemCheckBlock = 3233 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3234 3235 // Check if we generated code that checks in runtime if arrays overlap. We put 3236 // the checks into a separate block to make the more common case of few 3237 // elements faster. 3238 if (!MemCheckBlock) 3239 return nullptr; 3240 3241 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3242 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3243 "Cannot emit memory checks when optimizing for size, unless forced " 3244 "to vectorize."); 3245 ORE->emit([&]() { 3246 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3247 L->getStartLoc(), L->getHeader()) 3248 << "Code-size may be reduced by not forcing " 3249 "vectorization, or by source-code modifications " 3250 "eliminating the need for runtime checks " 3251 "(e.g., adding 'restrict')."; 3252 }); 3253 } 3254 3255 LoopBypassBlocks.push_back(MemCheckBlock); 3256 3257 AddedSafetyChecks = true; 3258 3259 // We currently don't use LoopVersioning for the actual loop cloning but we 3260 // still use it to add the noalias metadata. 3261 LVer = std::make_unique<LoopVersioning>( 3262 *Legal->getLAI(), 3263 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3264 DT, PSE.getSE()); 3265 LVer->prepareNoAliasMetadata(); 3266 return MemCheckBlock; 3267 } 3268 3269 Value *InnerLoopVectorizer::emitTransformedIndex( 3270 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3271 const InductionDescriptor &ID) const { 3272 3273 SCEVExpander Exp(*SE, DL, "induction"); 3274 auto Step = ID.getStep(); 3275 auto StartValue = ID.getStartValue(); 3276 assert(Index->getType() == Step->getType() && 3277 "Index type does not match StepValue type"); 3278 3279 // Note: the IR at this point is broken. We cannot use SE to create any new 3280 // SCEV and then expand it, hoping that SCEV's simplification will give us 3281 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3282 // lead to various SCEV crashes. So all we can do is to use builder and rely 3283 // on InstCombine for future simplifications. Here we handle some trivial 3284 // cases only. 3285 auto CreateAdd = [&B](Value *X, Value *Y) { 3286 assert(X->getType() == Y->getType() && "Types don't match!"); 3287 if (auto *CX = dyn_cast<ConstantInt>(X)) 3288 if (CX->isZero()) 3289 return Y; 3290 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3291 if (CY->isZero()) 3292 return X; 3293 return B.CreateAdd(X, Y); 3294 }; 3295 3296 auto CreateMul = [&B](Value *X, Value *Y) { 3297 assert(X->getType() == Y->getType() && "Types don't match!"); 3298 if (auto *CX = dyn_cast<ConstantInt>(X)) 3299 if (CX->isOne()) 3300 return Y; 3301 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3302 if (CY->isOne()) 3303 return X; 3304 return B.CreateMul(X, Y); 3305 }; 3306 3307 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3308 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3309 // the DomTree is not kept up-to-date for additional blocks generated in the 3310 // vector loop. By using the header as insertion point, we guarantee that the 3311 // expanded instructions dominate all their uses. 3312 auto GetInsertPoint = [this, &B]() { 3313 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3314 if (InsertBB != LoopVectorBody && 3315 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3316 return LoopVectorBody->getTerminator(); 3317 return &*B.GetInsertPoint(); 3318 }; 3319 3320 switch (ID.getKind()) { 3321 case InductionDescriptor::IK_IntInduction: { 3322 assert(Index->getType() == StartValue->getType() && 3323 "Index type does not match StartValue type"); 3324 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3325 return B.CreateSub(StartValue, Index); 3326 auto *Offset = CreateMul( 3327 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3328 return CreateAdd(StartValue, Offset); 3329 } 3330 case InductionDescriptor::IK_PtrInduction: { 3331 assert(isa<SCEVConstant>(Step) && 3332 "Expected constant step for pointer induction"); 3333 return B.CreateGEP( 3334 StartValue->getType()->getPointerElementType(), StartValue, 3335 CreateMul(Index, 3336 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3337 } 3338 case InductionDescriptor::IK_FpInduction: { 3339 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3340 auto InductionBinOp = ID.getInductionBinOp(); 3341 assert(InductionBinOp && 3342 (InductionBinOp->getOpcode() == Instruction::FAdd || 3343 InductionBinOp->getOpcode() == Instruction::FSub) && 3344 "Original bin op should be defined for FP induction"); 3345 3346 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3347 Value *MulExp = B.CreateFMul(StepValue, Index); 3348 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3349 "induction"); 3350 } 3351 case InductionDescriptor::IK_NoInduction: 3352 return nullptr; 3353 } 3354 llvm_unreachable("invalid enum"); 3355 } 3356 3357 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3358 LoopScalarBody = OrigLoop->getHeader(); 3359 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3360 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3361 assert(LoopExitBlock && "Must have an exit block"); 3362 assert(LoopVectorPreHeader && "Invalid loop structure"); 3363 3364 LoopMiddleBlock = 3365 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3366 LI, nullptr, Twine(Prefix) + "middle.block"); 3367 LoopScalarPreHeader = 3368 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3369 nullptr, Twine(Prefix) + "scalar.ph"); 3370 3371 // Set up branch from middle block to the exit and scalar preheader blocks. 3372 // completeLoopSkeleton will update the condition to use an iteration check, 3373 // if required to decide whether to execute the remainder. 3374 BranchInst *BrInst = 3375 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3376 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3377 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3378 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3379 3380 // We intentionally don't let SplitBlock to update LoopInfo since 3381 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3382 // LoopVectorBody is explicitly added to the correct place few lines later. 3383 LoopVectorBody = 3384 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3385 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3386 3387 // Update dominator for loop exit. 3388 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3389 3390 // Create and register the new vector loop. 3391 Loop *Lp = LI->AllocateLoop(); 3392 Loop *ParentLoop = OrigLoop->getParentLoop(); 3393 3394 // Insert the new loop into the loop nest and register the new basic blocks 3395 // before calling any utilities such as SCEV that require valid LoopInfo. 3396 if (ParentLoop) { 3397 ParentLoop->addChildLoop(Lp); 3398 } else { 3399 LI->addTopLevelLoop(Lp); 3400 } 3401 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3402 return Lp; 3403 } 3404 3405 void InnerLoopVectorizer::createInductionResumeValues( 3406 Loop *L, Value *VectorTripCount, 3407 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3408 assert(VectorTripCount && L && "Expected valid arguments"); 3409 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3410 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3411 "Inconsistent information about additional bypass."); 3412 // We are going to resume the execution of the scalar loop. 3413 // Go over all of the induction variables that we found and fix the 3414 // PHIs that are left in the scalar version of the loop. 3415 // The starting values of PHI nodes depend on the counter of the last 3416 // iteration in the vectorized loop. 3417 // If we come from a bypass edge then we need to start from the original 3418 // start value. 3419 for (auto &InductionEntry : Legal->getInductionVars()) { 3420 PHINode *OrigPhi = InductionEntry.first; 3421 InductionDescriptor II = InductionEntry.second; 3422 3423 // Create phi nodes to merge from the backedge-taken check block. 3424 PHINode *BCResumeVal = 3425 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3426 LoopScalarPreHeader->getTerminator()); 3427 // Copy original phi DL over to the new one. 3428 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3429 Value *&EndValue = IVEndValues[OrigPhi]; 3430 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3431 if (OrigPhi == OldInduction) { 3432 // We know what the end value is. 3433 EndValue = VectorTripCount; 3434 } else { 3435 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3436 3437 // Fast-math-flags propagate from the original induction instruction. 3438 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3439 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3440 3441 Type *StepType = II.getStep()->getType(); 3442 Instruction::CastOps CastOp = 3443 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3444 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3445 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3446 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3447 EndValue->setName("ind.end"); 3448 3449 // Compute the end value for the additional bypass (if applicable). 3450 if (AdditionalBypass.first) { 3451 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3452 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3453 StepType, true); 3454 CRD = 3455 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3456 EndValueFromAdditionalBypass = 3457 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3458 EndValueFromAdditionalBypass->setName("ind.end"); 3459 } 3460 } 3461 // The new PHI merges the original incoming value, in case of a bypass, 3462 // or the value at the end of the vectorized loop. 3463 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3464 3465 // Fix the scalar body counter (PHI node). 3466 // The old induction's phi node in the scalar body needs the truncated 3467 // value. 3468 for (BasicBlock *BB : LoopBypassBlocks) 3469 BCResumeVal->addIncoming(II.getStartValue(), BB); 3470 3471 if (AdditionalBypass.first) 3472 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3473 EndValueFromAdditionalBypass); 3474 3475 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3476 } 3477 } 3478 3479 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3480 MDNode *OrigLoopID) { 3481 assert(L && "Expected valid loop."); 3482 3483 // The trip counts should be cached by now. 3484 Value *Count = getOrCreateTripCount(L); 3485 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3486 3487 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3488 3489 // Add a check in the middle block to see if we have completed 3490 // all of the iterations in the first vector loop. 3491 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3492 // If tail is to be folded, we know we don't need to run the remainder. 3493 if (!Cost->foldTailByMasking()) { 3494 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3495 Count, VectorTripCount, "cmp.n", 3496 LoopMiddleBlock->getTerminator()); 3497 3498 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3499 // of the corresponding compare because they may have ended up with 3500 // different line numbers and we want to avoid awkward line stepping while 3501 // debugging. Eg. if the compare has got a line number inside the loop. 3502 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3503 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3504 } 3505 3506 // Get ready to start creating new instructions into the vectorized body. 3507 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3508 "Inconsistent vector loop preheader"); 3509 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3510 3511 Optional<MDNode *> VectorizedLoopID = 3512 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3513 LLVMLoopVectorizeFollowupVectorized}); 3514 if (VectorizedLoopID.hasValue()) { 3515 L->setLoopID(VectorizedLoopID.getValue()); 3516 3517 // Do not setAlreadyVectorized if loop attributes have been defined 3518 // explicitly. 3519 return LoopVectorPreHeader; 3520 } 3521 3522 // Keep all loop hints from the original loop on the vector loop (we'll 3523 // replace the vectorizer-specific hints below). 3524 if (MDNode *LID = OrigLoop->getLoopID()) 3525 L->setLoopID(LID); 3526 3527 LoopVectorizeHints Hints(L, true, *ORE); 3528 Hints.setAlreadyVectorized(); 3529 3530 #ifdef EXPENSIVE_CHECKS 3531 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3532 LI->verify(*DT); 3533 #endif 3534 3535 return LoopVectorPreHeader; 3536 } 3537 3538 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3539 /* 3540 In this function we generate a new loop. The new loop will contain 3541 the vectorized instructions while the old loop will continue to run the 3542 scalar remainder. 3543 3544 [ ] <-- loop iteration number check. 3545 / | 3546 / v 3547 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3548 | / | 3549 | / v 3550 || [ ] <-- vector pre header. 3551 |/ | 3552 | v 3553 | [ ] \ 3554 | [ ]_| <-- vector loop. 3555 | | 3556 | v 3557 | -[ ] <--- middle-block. 3558 | / | 3559 | / v 3560 -|- >[ ] <--- new preheader. 3561 | | 3562 | v 3563 | [ ] \ 3564 | [ ]_| <-- old scalar loop to handle remainder. 3565 \ | 3566 \ v 3567 >[ ] <-- exit block. 3568 ... 3569 */ 3570 3571 // Get the metadata of the original loop before it gets modified. 3572 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3573 3574 // Create an empty vector loop, and prepare basic blocks for the runtime 3575 // checks. 3576 Loop *Lp = createVectorLoopSkeleton(""); 3577 3578 // Now, compare the new count to zero. If it is zero skip the vector loop and 3579 // jump to the scalar loop. This check also covers the case where the 3580 // backedge-taken count is uint##_max: adding one to it will overflow leading 3581 // to an incorrect trip count of zero. In this (rare) case we will also jump 3582 // to the scalar loop. 3583 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3584 3585 // Generate the code to check any assumptions that we've made for SCEV 3586 // expressions. 3587 emitSCEVChecks(Lp, LoopScalarPreHeader); 3588 3589 // Generate the code that checks in runtime if arrays overlap. We put the 3590 // checks into a separate block to make the more common case of few elements 3591 // faster. 3592 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3593 3594 // Some loops have a single integer induction variable, while other loops 3595 // don't. One example is c++ iterators that often have multiple pointer 3596 // induction variables. In the code below we also support a case where we 3597 // don't have a single induction variable. 3598 // 3599 // We try to obtain an induction variable from the original loop as hard 3600 // as possible. However if we don't find one that: 3601 // - is an integer 3602 // - counts from zero, stepping by one 3603 // - is the size of the widest induction variable type 3604 // then we create a new one. 3605 OldInduction = Legal->getPrimaryInduction(); 3606 Type *IdxTy = Legal->getWidestInductionType(); 3607 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3608 // The loop step is equal to the vectorization factor (num of SIMD elements) 3609 // times the unroll factor (num of SIMD instructions). 3610 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3611 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3612 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3613 Induction = 3614 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3615 getDebugLocFromInstOrOperands(OldInduction)); 3616 3617 // Emit phis for the new starting index of the scalar loop. 3618 createInductionResumeValues(Lp, CountRoundDown); 3619 3620 return completeLoopSkeleton(Lp, OrigLoopID); 3621 } 3622 3623 // Fix up external users of the induction variable. At this point, we are 3624 // in LCSSA form, with all external PHIs that use the IV having one input value, 3625 // coming from the remainder loop. We need those PHIs to also have a correct 3626 // value for the IV when arriving directly from the middle block. 3627 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3628 const InductionDescriptor &II, 3629 Value *CountRoundDown, Value *EndValue, 3630 BasicBlock *MiddleBlock) { 3631 // There are two kinds of external IV usages - those that use the value 3632 // computed in the last iteration (the PHI) and those that use the penultimate 3633 // value (the value that feeds into the phi from the loop latch). 3634 // We allow both, but they, obviously, have different values. 3635 3636 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3637 3638 DenseMap<Value *, Value *> MissingVals; 3639 3640 // An external user of the last iteration's value should see the value that 3641 // the remainder loop uses to initialize its own IV. 3642 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3643 for (User *U : PostInc->users()) { 3644 Instruction *UI = cast<Instruction>(U); 3645 if (!OrigLoop->contains(UI)) { 3646 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3647 MissingVals[UI] = EndValue; 3648 } 3649 } 3650 3651 // An external user of the penultimate value need to see EndValue - Step. 3652 // The simplest way to get this is to recompute it from the constituent SCEVs, 3653 // that is Start + (Step * (CRD - 1)). 3654 for (User *U : OrigPhi->users()) { 3655 auto *UI = cast<Instruction>(U); 3656 if (!OrigLoop->contains(UI)) { 3657 const DataLayout &DL = 3658 OrigLoop->getHeader()->getModule()->getDataLayout(); 3659 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3660 3661 IRBuilder<> B(MiddleBlock->getTerminator()); 3662 3663 // Fast-math-flags propagate from the original induction instruction. 3664 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3665 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3666 3667 Value *CountMinusOne = B.CreateSub( 3668 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3669 Value *CMO = 3670 !II.getStep()->getType()->isIntegerTy() 3671 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3672 II.getStep()->getType()) 3673 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3674 CMO->setName("cast.cmo"); 3675 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3676 Escape->setName("ind.escape"); 3677 MissingVals[UI] = Escape; 3678 } 3679 } 3680 3681 for (auto &I : MissingVals) { 3682 PHINode *PHI = cast<PHINode>(I.first); 3683 // One corner case we have to handle is two IVs "chasing" each-other, 3684 // that is %IV2 = phi [...], [ %IV1, %latch ] 3685 // In this case, if IV1 has an external use, we need to avoid adding both 3686 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3687 // don't already have an incoming value for the middle block. 3688 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3689 PHI->addIncoming(I.second, MiddleBlock); 3690 } 3691 } 3692 3693 namespace { 3694 3695 struct CSEDenseMapInfo { 3696 static bool canHandle(const Instruction *I) { 3697 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3698 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3699 } 3700 3701 static inline Instruction *getEmptyKey() { 3702 return DenseMapInfo<Instruction *>::getEmptyKey(); 3703 } 3704 3705 static inline Instruction *getTombstoneKey() { 3706 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3707 } 3708 3709 static unsigned getHashValue(const Instruction *I) { 3710 assert(canHandle(I) && "Unknown instruction!"); 3711 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3712 I->value_op_end())); 3713 } 3714 3715 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3716 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3717 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3718 return LHS == RHS; 3719 return LHS->isIdenticalTo(RHS); 3720 } 3721 }; 3722 3723 } // end anonymous namespace 3724 3725 ///Perform cse of induction variable instructions. 3726 static void cse(BasicBlock *BB) { 3727 // Perform simple cse. 3728 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3729 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3730 Instruction *In = &*I++; 3731 3732 if (!CSEDenseMapInfo::canHandle(In)) 3733 continue; 3734 3735 // Check if we can replace this instruction with any of the 3736 // visited instructions. 3737 if (Instruction *V = CSEMap.lookup(In)) { 3738 In->replaceAllUsesWith(V); 3739 In->eraseFromParent(); 3740 continue; 3741 } 3742 3743 CSEMap[In] = In; 3744 } 3745 } 3746 3747 InstructionCost 3748 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3749 bool &NeedToScalarize) { 3750 Function *F = CI->getCalledFunction(); 3751 Type *ScalarRetTy = CI->getType(); 3752 SmallVector<Type *, 4> Tys, ScalarTys; 3753 for (auto &ArgOp : CI->arg_operands()) 3754 ScalarTys.push_back(ArgOp->getType()); 3755 3756 // Estimate cost of scalarized vector call. The source operands are assumed 3757 // to be vectors, so we need to extract individual elements from there, 3758 // execute VF scalar calls, and then gather the result into the vector return 3759 // value. 3760 InstructionCost ScalarCallCost = 3761 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3762 if (VF.isScalar()) 3763 return ScalarCallCost; 3764 3765 // Compute corresponding vector type for return value and arguments. 3766 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3767 for (Type *ScalarTy : ScalarTys) 3768 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3769 3770 // Compute costs of unpacking argument values for the scalar calls and 3771 // packing the return values to a vector. 3772 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3773 3774 InstructionCost Cost = 3775 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3776 3777 // If we can't emit a vector call for this function, then the currently found 3778 // cost is the cost we need to return. 3779 NeedToScalarize = true; 3780 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3781 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3782 3783 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3784 return Cost; 3785 3786 // If the corresponding vector cost is cheaper, return its cost. 3787 InstructionCost VectorCallCost = 3788 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3789 if (VectorCallCost < Cost) { 3790 NeedToScalarize = false; 3791 Cost = VectorCallCost; 3792 } 3793 return Cost; 3794 } 3795 3796 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3797 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3798 return Elt; 3799 return VectorType::get(Elt, VF); 3800 } 3801 3802 InstructionCost 3803 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3804 ElementCount VF) { 3805 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3806 assert(ID && "Expected intrinsic call!"); 3807 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3808 FastMathFlags FMF; 3809 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3810 FMF = FPMO->getFastMathFlags(); 3811 3812 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3813 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3814 SmallVector<Type *> ParamTys; 3815 std::transform(FTy->param_begin(), FTy->param_end(), 3816 std::back_inserter(ParamTys), 3817 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3818 3819 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3820 dyn_cast<IntrinsicInst>(CI)); 3821 return TTI.getIntrinsicInstrCost(CostAttrs, 3822 TargetTransformInfo::TCK_RecipThroughput); 3823 } 3824 3825 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3826 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3827 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3828 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3829 } 3830 3831 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3832 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3833 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3834 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3835 } 3836 3837 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3838 // For every instruction `I` in MinBWs, truncate the operands, create a 3839 // truncated version of `I` and reextend its result. InstCombine runs 3840 // later and will remove any ext/trunc pairs. 3841 SmallPtrSet<Value *, 4> Erased; 3842 for (const auto &KV : Cost->getMinimalBitwidths()) { 3843 // If the value wasn't vectorized, we must maintain the original scalar 3844 // type. The absence of the value from State indicates that it 3845 // wasn't vectorized. 3846 VPValue *Def = State.Plan->getVPValue(KV.first); 3847 if (!State.hasAnyVectorValue(Def)) 3848 continue; 3849 for (unsigned Part = 0; Part < UF; ++Part) { 3850 Value *I = State.get(Def, Part); 3851 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3852 continue; 3853 Type *OriginalTy = I->getType(); 3854 Type *ScalarTruncatedTy = 3855 IntegerType::get(OriginalTy->getContext(), KV.second); 3856 auto *TruncatedTy = FixedVectorType::get( 3857 ScalarTruncatedTy, 3858 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3859 if (TruncatedTy == OriginalTy) 3860 continue; 3861 3862 IRBuilder<> B(cast<Instruction>(I)); 3863 auto ShrinkOperand = [&](Value *V) -> Value * { 3864 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3865 if (ZI->getSrcTy() == TruncatedTy) 3866 return ZI->getOperand(0); 3867 return B.CreateZExtOrTrunc(V, TruncatedTy); 3868 }; 3869 3870 // The actual instruction modification depends on the instruction type, 3871 // unfortunately. 3872 Value *NewI = nullptr; 3873 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3874 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3875 ShrinkOperand(BO->getOperand(1))); 3876 3877 // Any wrapping introduced by shrinking this operation shouldn't be 3878 // considered undefined behavior. So, we can't unconditionally copy 3879 // arithmetic wrapping flags to NewI. 3880 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3881 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3882 NewI = 3883 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3884 ShrinkOperand(CI->getOperand(1))); 3885 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3886 NewI = B.CreateSelect(SI->getCondition(), 3887 ShrinkOperand(SI->getTrueValue()), 3888 ShrinkOperand(SI->getFalseValue())); 3889 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3890 switch (CI->getOpcode()) { 3891 default: 3892 llvm_unreachable("Unhandled cast!"); 3893 case Instruction::Trunc: 3894 NewI = ShrinkOperand(CI->getOperand(0)); 3895 break; 3896 case Instruction::SExt: 3897 NewI = B.CreateSExtOrTrunc( 3898 CI->getOperand(0), 3899 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3900 break; 3901 case Instruction::ZExt: 3902 NewI = B.CreateZExtOrTrunc( 3903 CI->getOperand(0), 3904 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3905 break; 3906 } 3907 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3908 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3909 ->getNumElements(); 3910 auto *O0 = B.CreateZExtOrTrunc( 3911 SI->getOperand(0), 3912 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3913 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3914 ->getNumElements(); 3915 auto *O1 = B.CreateZExtOrTrunc( 3916 SI->getOperand(1), 3917 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3918 3919 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3920 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3921 // Don't do anything with the operands, just extend the result. 3922 continue; 3923 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3924 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3925 ->getNumElements(); 3926 auto *O0 = B.CreateZExtOrTrunc( 3927 IE->getOperand(0), 3928 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3929 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3930 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3931 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3932 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3933 ->getNumElements(); 3934 auto *O0 = B.CreateZExtOrTrunc( 3935 EE->getOperand(0), 3936 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3937 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3938 } else { 3939 // If we don't know what to do, be conservative and don't do anything. 3940 continue; 3941 } 3942 3943 // Lastly, extend the result. 3944 NewI->takeName(cast<Instruction>(I)); 3945 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3946 I->replaceAllUsesWith(Res); 3947 cast<Instruction>(I)->eraseFromParent(); 3948 Erased.insert(I); 3949 State.reset(Def, Res, Part); 3950 } 3951 } 3952 3953 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3954 for (const auto &KV : Cost->getMinimalBitwidths()) { 3955 // If the value wasn't vectorized, we must maintain the original scalar 3956 // type. The absence of the value from State indicates that it 3957 // wasn't vectorized. 3958 VPValue *Def = State.Plan->getVPValue(KV.first); 3959 if (!State.hasAnyVectorValue(Def)) 3960 continue; 3961 for (unsigned Part = 0; Part < UF; ++Part) { 3962 Value *I = State.get(Def, Part); 3963 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3964 if (Inst && Inst->use_empty()) { 3965 Value *NewI = Inst->getOperand(0); 3966 Inst->eraseFromParent(); 3967 State.reset(Def, NewI, Part); 3968 } 3969 } 3970 } 3971 } 3972 3973 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3974 // Insert truncates and extends for any truncated instructions as hints to 3975 // InstCombine. 3976 if (VF.isVector()) 3977 truncateToMinimalBitwidths(State); 3978 3979 // Fix widened non-induction PHIs by setting up the PHI operands. 3980 if (OrigPHIsToFix.size()) { 3981 assert(EnableVPlanNativePath && 3982 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3983 fixNonInductionPHIs(State); 3984 } 3985 3986 // At this point every instruction in the original loop is widened to a 3987 // vector form. Now we need to fix the recurrences in the loop. These PHI 3988 // nodes are currently empty because we did not want to introduce cycles. 3989 // This is the second stage of vectorizing recurrences. 3990 fixCrossIterationPHIs(State); 3991 3992 // Forget the original basic block. 3993 PSE.getSE()->forgetLoop(OrigLoop); 3994 3995 // Fix-up external users of the induction variables. 3996 for (auto &Entry : Legal->getInductionVars()) 3997 fixupIVUsers(Entry.first, Entry.second, 3998 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3999 IVEndValues[Entry.first], LoopMiddleBlock); 4000 4001 fixLCSSAPHIs(State); 4002 for (Instruction *PI : PredicatedInstructions) 4003 sinkScalarOperands(&*PI); 4004 4005 // Remove redundant induction instructions. 4006 cse(LoopVectorBody); 4007 4008 // Set/update profile weights for the vector and remainder loops as original 4009 // loop iterations are now distributed among them. Note that original loop 4010 // represented by LoopScalarBody becomes remainder loop after vectorization. 4011 // 4012 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4013 // end up getting slightly roughened result but that should be OK since 4014 // profile is not inherently precise anyway. Note also possible bypass of 4015 // vector code caused by legality checks is ignored, assigning all the weight 4016 // to the vector loop, optimistically. 4017 // 4018 // For scalable vectorization we can't know at compile time how many iterations 4019 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4020 // vscale of '1'. 4021 setProfileInfoAfterUnrolling( 4022 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4023 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4024 } 4025 4026 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4027 // In order to support recurrences we need to be able to vectorize Phi nodes. 4028 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4029 // stage #2: We now need to fix the recurrences by adding incoming edges to 4030 // the currently empty PHI nodes. At this point every instruction in the 4031 // original loop is widened to a vector form so we can use them to construct 4032 // the incoming edges. 4033 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4034 // Handle first-order recurrences and reductions that need to be fixed. 4035 if (Legal->isFirstOrderRecurrence(&Phi)) 4036 fixFirstOrderRecurrence(&Phi, State); 4037 else if (Legal->isReductionVariable(&Phi)) 4038 fixReduction(&Phi, State); 4039 } 4040 } 4041 4042 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4043 VPTransformState &State) { 4044 // This is the second phase of vectorizing first-order recurrences. An 4045 // overview of the transformation is described below. Suppose we have the 4046 // following loop. 4047 // 4048 // for (int i = 0; i < n; ++i) 4049 // b[i] = a[i] - a[i - 1]; 4050 // 4051 // There is a first-order recurrence on "a". For this loop, the shorthand 4052 // scalar IR looks like: 4053 // 4054 // scalar.ph: 4055 // s_init = a[-1] 4056 // br scalar.body 4057 // 4058 // scalar.body: 4059 // i = phi [0, scalar.ph], [i+1, scalar.body] 4060 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4061 // s2 = a[i] 4062 // b[i] = s2 - s1 4063 // br cond, scalar.body, ... 4064 // 4065 // In this example, s1 is a recurrence because it's value depends on the 4066 // previous iteration. In the first phase of vectorization, we created a 4067 // temporary value for s1. We now complete the vectorization and produce the 4068 // shorthand vector IR shown below (for VF = 4, UF = 1). 4069 // 4070 // vector.ph: 4071 // v_init = vector(..., ..., ..., a[-1]) 4072 // br vector.body 4073 // 4074 // vector.body 4075 // i = phi [0, vector.ph], [i+4, vector.body] 4076 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4077 // v2 = a[i, i+1, i+2, i+3]; 4078 // v3 = vector(v1(3), v2(0, 1, 2)) 4079 // b[i, i+1, i+2, i+3] = v2 - v3 4080 // br cond, vector.body, middle.block 4081 // 4082 // middle.block: 4083 // x = v2(3) 4084 // br scalar.ph 4085 // 4086 // scalar.ph: 4087 // s_init = phi [x, middle.block], [a[-1], otherwise] 4088 // br scalar.body 4089 // 4090 // After execution completes the vector loop, we extract the next value of 4091 // the recurrence (x) to use as the initial value in the scalar loop. 4092 4093 // Get the original loop preheader and single loop latch. 4094 auto *Preheader = OrigLoop->getLoopPreheader(); 4095 auto *Latch = OrigLoop->getLoopLatch(); 4096 4097 // Get the initial and previous values of the scalar recurrence. 4098 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4099 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4100 4101 // Create a vector from the initial value. 4102 auto *VectorInit = ScalarInit; 4103 if (VF.isVector()) { 4104 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4105 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4106 VectorInit = Builder.CreateInsertElement( 4107 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4108 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4109 } 4110 4111 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4112 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4113 // We constructed a temporary phi node in the first phase of vectorization. 4114 // This phi node will eventually be deleted. 4115 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4116 4117 // Create a phi node for the new recurrence. The current value will either be 4118 // the initial value inserted into a vector or loop-varying vector value. 4119 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4120 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4121 4122 // Get the vectorized previous value of the last part UF - 1. It appears last 4123 // among all unrolled iterations, due to the order of their construction. 4124 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4125 4126 // Find and set the insertion point after the previous value if it is an 4127 // instruction. 4128 BasicBlock::iterator InsertPt; 4129 // Note that the previous value may have been constant-folded so it is not 4130 // guaranteed to be an instruction in the vector loop. 4131 // FIXME: Loop invariant values do not form recurrences. We should deal with 4132 // them earlier. 4133 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4134 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4135 else { 4136 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4137 if (isa<PHINode>(PreviousLastPart)) 4138 // If the previous value is a phi node, we should insert after all the phi 4139 // nodes in the block containing the PHI to avoid breaking basic block 4140 // verification. Note that the basic block may be different to 4141 // LoopVectorBody, in case we predicate the loop. 4142 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4143 else 4144 InsertPt = ++PreviousInst->getIterator(); 4145 } 4146 Builder.SetInsertPoint(&*InsertPt); 4147 4148 // We will construct a vector for the recurrence by combining the values for 4149 // the current and previous iterations. This is the required shuffle mask. 4150 assert(!VF.isScalable()); 4151 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4152 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4153 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4154 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4155 4156 // The vector from which to take the initial value for the current iteration 4157 // (actual or unrolled). Initially, this is the vector phi node. 4158 Value *Incoming = VecPhi; 4159 4160 // Shuffle the current and previous vector and update the vector parts. 4161 for (unsigned Part = 0; Part < UF; ++Part) { 4162 Value *PreviousPart = State.get(PreviousDef, Part); 4163 Value *PhiPart = State.get(PhiDef, Part); 4164 auto *Shuffle = 4165 VF.isVector() 4166 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4167 : Incoming; 4168 PhiPart->replaceAllUsesWith(Shuffle); 4169 cast<Instruction>(PhiPart)->eraseFromParent(); 4170 State.reset(PhiDef, Shuffle, Part); 4171 Incoming = PreviousPart; 4172 } 4173 4174 // Fix the latch value of the new recurrence in the vector loop. 4175 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4176 4177 // Extract the last vector element in the middle block. This will be the 4178 // initial value for the recurrence when jumping to the scalar loop. 4179 auto *ExtractForScalar = Incoming; 4180 if (VF.isVector()) { 4181 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4182 ExtractForScalar = Builder.CreateExtractElement( 4183 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4184 "vector.recur.extract"); 4185 } 4186 // Extract the second last element in the middle block if the 4187 // Phi is used outside the loop. We need to extract the phi itself 4188 // and not the last element (the phi update in the current iteration). This 4189 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4190 // when the scalar loop is not run at all. 4191 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4192 if (VF.isVector()) 4193 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4194 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4195 "vector.recur.extract.for.phi"); 4196 // When loop is unrolled without vectorizing, initialize 4197 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4198 // `Incoming`. This is analogous to the vectorized case above: extracting the 4199 // second last element when VF > 1. 4200 else if (UF > 1) 4201 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4202 4203 // Fix the initial value of the original recurrence in the scalar loop. 4204 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4205 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4206 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4207 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4208 Start->addIncoming(Incoming, BB); 4209 } 4210 4211 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4212 Phi->setName("scalar.recur"); 4213 4214 // Finally, fix users of the recurrence outside the loop. The users will need 4215 // either the last value of the scalar recurrence or the last value of the 4216 // vector recurrence we extracted in the middle block. Since the loop is in 4217 // LCSSA form, we just need to find all the phi nodes for the original scalar 4218 // recurrence in the exit block, and then add an edge for the middle block. 4219 // Note that LCSSA does not imply single entry when the original scalar loop 4220 // had multiple exiting edges (as we always run the last iteration in the 4221 // scalar epilogue); in that case, the exiting path through middle will be 4222 // dynamically dead and the value picked for the phi doesn't matter. 4223 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4224 if (any_of(LCSSAPhi.incoming_values(), 4225 [Phi](Value *V) { return V == Phi; })) 4226 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4227 } 4228 4229 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4230 // Get it's reduction variable descriptor. 4231 assert(Legal->isReductionVariable(Phi) && 4232 "Unable to find the reduction variable"); 4233 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4234 4235 RecurKind RK = RdxDesc.getRecurrenceKind(); 4236 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4237 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4238 setDebugLocFromInst(Builder, ReductionStartValue); 4239 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4240 4241 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4242 // This is the vector-clone of the value that leaves the loop. 4243 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4244 4245 // Wrap flags are in general invalid after vectorization, clear them. 4246 clearReductionWrapFlags(RdxDesc, State); 4247 4248 // Fix the vector-loop phi. 4249 4250 // Reductions do not have to start at zero. They can start with 4251 // any loop invariant values. 4252 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4253 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4254 4255 for (unsigned Part = 0; Part < UF; ++Part) { 4256 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4257 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4258 cast<PHINode>(VecRdxPhi) 4259 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4260 } 4261 4262 // Before each round, move the insertion point right between 4263 // the PHIs and the values we are going to write. 4264 // This allows us to write both PHINodes and the extractelement 4265 // instructions. 4266 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4267 4268 setDebugLocFromInst(Builder, LoopExitInst); 4269 4270 // If tail is folded by masking, the vector value to leave the loop should be 4271 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4272 // instead of the former. For an inloop reduction the reduction will already 4273 // be predicated, and does not need to be handled here. 4274 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4275 for (unsigned Part = 0; Part < UF; ++Part) { 4276 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4277 Value *Sel = nullptr; 4278 for (User *U : VecLoopExitInst->users()) { 4279 if (isa<SelectInst>(U)) { 4280 assert(!Sel && "Reduction exit feeding two selects"); 4281 Sel = U; 4282 } else 4283 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4284 } 4285 assert(Sel && "Reduction exit feeds no select"); 4286 State.reset(LoopExitInstDef, Sel, Part); 4287 4288 // If the target can create a predicated operator for the reduction at no 4289 // extra cost in the loop (for example a predicated vadd), it can be 4290 // cheaper for the select to remain in the loop than be sunk out of it, 4291 // and so use the select value for the phi instead of the old 4292 // LoopExitValue. 4293 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4294 if (PreferPredicatedReductionSelect || 4295 TTI->preferPredicatedReductionSelect( 4296 RdxDesc.getOpcode(), Phi->getType(), 4297 TargetTransformInfo::ReductionFlags())) { 4298 auto *VecRdxPhi = 4299 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4300 VecRdxPhi->setIncomingValueForBlock( 4301 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4302 } 4303 } 4304 } 4305 4306 // If the vector reduction can be performed in a smaller type, we truncate 4307 // then extend the loop exit value to enable InstCombine to evaluate the 4308 // entire expression in the smaller type. 4309 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4310 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4311 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4312 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4313 Builder.SetInsertPoint( 4314 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4315 VectorParts RdxParts(UF); 4316 for (unsigned Part = 0; Part < UF; ++Part) { 4317 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4318 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4319 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4320 : Builder.CreateZExt(Trunc, VecTy); 4321 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4322 UI != RdxParts[Part]->user_end();) 4323 if (*UI != Trunc) { 4324 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4325 RdxParts[Part] = Extnd; 4326 } else { 4327 ++UI; 4328 } 4329 } 4330 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4331 for (unsigned Part = 0; Part < UF; ++Part) { 4332 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4333 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4334 } 4335 } 4336 4337 // Reduce all of the unrolled parts into a single vector. 4338 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4339 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4340 4341 // The middle block terminator has already been assigned a DebugLoc here (the 4342 // OrigLoop's single latch terminator). We want the whole middle block to 4343 // appear to execute on this line because: (a) it is all compiler generated, 4344 // (b) these instructions are always executed after evaluating the latch 4345 // conditional branch, and (c) other passes may add new predecessors which 4346 // terminate on this line. This is the easiest way to ensure we don't 4347 // accidentally cause an extra step back into the loop while debugging. 4348 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4349 { 4350 // Floating-point operations should have some FMF to enable the reduction. 4351 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4352 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4353 for (unsigned Part = 1; Part < UF; ++Part) { 4354 Value *RdxPart = State.get(LoopExitInstDef, Part); 4355 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4356 ReducedPartRdx = Builder.CreateBinOp( 4357 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4358 } else { 4359 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4360 } 4361 } 4362 } 4363 4364 // Create the reduction after the loop. Note that inloop reductions create the 4365 // target reduction in the loop using a Reduction recipe. 4366 if (VF.isVector() && !IsInLoopReductionPhi) { 4367 ReducedPartRdx = 4368 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4369 // If the reduction can be performed in a smaller type, we need to extend 4370 // the reduction to the wider type before we branch to the original loop. 4371 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4372 ReducedPartRdx = 4373 RdxDesc.isSigned() 4374 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4375 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4376 } 4377 4378 // Create a phi node that merges control-flow from the backedge-taken check 4379 // block and the middle block. 4380 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4381 LoopScalarPreHeader->getTerminator()); 4382 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4383 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4384 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4385 4386 // Now, we need to fix the users of the reduction variable 4387 // inside and outside of the scalar remainder loop. 4388 4389 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4390 // in the exit blocks. See comment on analogous loop in 4391 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4392 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4393 if (any_of(LCSSAPhi.incoming_values(), 4394 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4395 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4396 4397 // Fix the scalar loop reduction variable with the incoming reduction sum 4398 // from the vector body and from the backedge value. 4399 int IncomingEdgeBlockIdx = 4400 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4401 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4402 // Pick the other block. 4403 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4404 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4405 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4406 } 4407 4408 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4409 VPTransformState &State) { 4410 RecurKind RK = RdxDesc.getRecurrenceKind(); 4411 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4412 return; 4413 4414 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4415 assert(LoopExitInstr && "null loop exit instruction"); 4416 SmallVector<Instruction *, 8> Worklist; 4417 SmallPtrSet<Instruction *, 8> Visited; 4418 Worklist.push_back(LoopExitInstr); 4419 Visited.insert(LoopExitInstr); 4420 4421 while (!Worklist.empty()) { 4422 Instruction *Cur = Worklist.pop_back_val(); 4423 if (isa<OverflowingBinaryOperator>(Cur)) 4424 for (unsigned Part = 0; Part < UF; ++Part) { 4425 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4426 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4427 } 4428 4429 for (User *U : Cur->users()) { 4430 Instruction *UI = cast<Instruction>(U); 4431 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4432 Visited.insert(UI).second) 4433 Worklist.push_back(UI); 4434 } 4435 } 4436 } 4437 4438 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4439 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4440 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4441 // Some phis were already hand updated by the reduction and recurrence 4442 // code above, leave them alone. 4443 continue; 4444 4445 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4446 // Non-instruction incoming values will have only one value. 4447 4448 VPLane Lane = VPLane::getFirstLane(); 4449 if (isa<Instruction>(IncomingValue) && 4450 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4451 VF)) 4452 Lane = VPLane::getLastLaneForVF(VF); 4453 4454 // Can be a loop invariant incoming value or the last scalar value to be 4455 // extracted from the vectorized loop. 4456 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4457 Value *lastIncomingValue = 4458 OrigLoop->isLoopInvariant(IncomingValue) 4459 ? IncomingValue 4460 : State.get(State.Plan->getVPValue(IncomingValue), 4461 VPIteration(UF - 1, Lane)); 4462 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4463 } 4464 } 4465 4466 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4467 // The basic block and loop containing the predicated instruction. 4468 auto *PredBB = PredInst->getParent(); 4469 auto *VectorLoop = LI->getLoopFor(PredBB); 4470 4471 // Initialize a worklist with the operands of the predicated instruction. 4472 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4473 4474 // Holds instructions that we need to analyze again. An instruction may be 4475 // reanalyzed if we don't yet know if we can sink it or not. 4476 SmallVector<Instruction *, 8> InstsToReanalyze; 4477 4478 // Returns true if a given use occurs in the predicated block. Phi nodes use 4479 // their operands in their corresponding predecessor blocks. 4480 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4481 auto *I = cast<Instruction>(U.getUser()); 4482 BasicBlock *BB = I->getParent(); 4483 if (auto *Phi = dyn_cast<PHINode>(I)) 4484 BB = Phi->getIncomingBlock( 4485 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4486 return BB == PredBB; 4487 }; 4488 4489 // Iteratively sink the scalarized operands of the predicated instruction 4490 // into the block we created for it. When an instruction is sunk, it's 4491 // operands are then added to the worklist. The algorithm ends after one pass 4492 // through the worklist doesn't sink a single instruction. 4493 bool Changed; 4494 do { 4495 // Add the instructions that need to be reanalyzed to the worklist, and 4496 // reset the changed indicator. 4497 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4498 InstsToReanalyze.clear(); 4499 Changed = false; 4500 4501 while (!Worklist.empty()) { 4502 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4503 4504 // We can't sink an instruction if it is a phi node, is already in the 4505 // predicated block, is not in the loop, or may have side effects. 4506 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4507 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4508 continue; 4509 4510 // It's legal to sink the instruction if all its uses occur in the 4511 // predicated block. Otherwise, there's nothing to do yet, and we may 4512 // need to reanalyze the instruction. 4513 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4514 InstsToReanalyze.push_back(I); 4515 continue; 4516 } 4517 4518 // Move the instruction to the beginning of the predicated block, and add 4519 // it's operands to the worklist. 4520 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4521 Worklist.insert(I->op_begin(), I->op_end()); 4522 4523 // The sinking may have enabled other instructions to be sunk, so we will 4524 // need to iterate. 4525 Changed = true; 4526 } 4527 } while (Changed); 4528 } 4529 4530 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4531 for (PHINode *OrigPhi : OrigPHIsToFix) { 4532 VPWidenPHIRecipe *VPPhi = 4533 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4534 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4535 // Make sure the builder has a valid insert point. 4536 Builder.SetInsertPoint(NewPhi); 4537 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4538 VPValue *Inc = VPPhi->getIncomingValue(i); 4539 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4540 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4541 } 4542 } 4543 } 4544 4545 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4546 VPUser &Operands, unsigned UF, 4547 ElementCount VF, bool IsPtrLoopInvariant, 4548 SmallBitVector &IsIndexLoopInvariant, 4549 VPTransformState &State) { 4550 // Construct a vector GEP by widening the operands of the scalar GEP as 4551 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4552 // results in a vector of pointers when at least one operand of the GEP 4553 // is vector-typed. Thus, to keep the representation compact, we only use 4554 // vector-typed operands for loop-varying values. 4555 4556 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4557 // If we are vectorizing, but the GEP has only loop-invariant operands, 4558 // the GEP we build (by only using vector-typed operands for 4559 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4560 // produce a vector of pointers, we need to either arbitrarily pick an 4561 // operand to broadcast, or broadcast a clone of the original GEP. 4562 // Here, we broadcast a clone of the original. 4563 // 4564 // TODO: If at some point we decide to scalarize instructions having 4565 // loop-invariant operands, this special case will no longer be 4566 // required. We would add the scalarization decision to 4567 // collectLoopScalars() and teach getVectorValue() to broadcast 4568 // the lane-zero scalar value. 4569 auto *Clone = Builder.Insert(GEP->clone()); 4570 for (unsigned Part = 0; Part < UF; ++Part) { 4571 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4572 State.set(VPDef, EntryPart, Part); 4573 addMetadata(EntryPart, GEP); 4574 } 4575 } else { 4576 // If the GEP has at least one loop-varying operand, we are sure to 4577 // produce a vector of pointers. But if we are only unrolling, we want 4578 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4579 // produce with the code below will be scalar (if VF == 1) or vector 4580 // (otherwise). Note that for the unroll-only case, we still maintain 4581 // values in the vector mapping with initVector, as we do for other 4582 // instructions. 4583 for (unsigned Part = 0; Part < UF; ++Part) { 4584 // The pointer operand of the new GEP. If it's loop-invariant, we 4585 // won't broadcast it. 4586 auto *Ptr = IsPtrLoopInvariant 4587 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4588 : State.get(Operands.getOperand(0), Part); 4589 4590 // Collect all the indices for the new GEP. If any index is 4591 // loop-invariant, we won't broadcast it. 4592 SmallVector<Value *, 4> Indices; 4593 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4594 VPValue *Operand = Operands.getOperand(I); 4595 if (IsIndexLoopInvariant[I - 1]) 4596 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4597 else 4598 Indices.push_back(State.get(Operand, Part)); 4599 } 4600 4601 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4602 // but it should be a vector, otherwise. 4603 auto *NewGEP = 4604 GEP->isInBounds() 4605 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4606 Indices) 4607 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4608 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4609 "NewGEP is not a pointer vector"); 4610 State.set(VPDef, NewGEP, Part); 4611 addMetadata(NewGEP, GEP); 4612 } 4613 } 4614 } 4615 4616 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4617 RecurrenceDescriptor *RdxDesc, 4618 VPValue *StartVPV, VPValue *Def, 4619 VPTransformState &State) { 4620 PHINode *P = cast<PHINode>(PN); 4621 if (EnableVPlanNativePath) { 4622 // Currently we enter here in the VPlan-native path for non-induction 4623 // PHIs where all control flow is uniform. We simply widen these PHIs. 4624 // Create a vector phi with no operands - the vector phi operands will be 4625 // set at the end of vector code generation. 4626 Type *VecTy = (State.VF.isScalar()) 4627 ? PN->getType() 4628 : VectorType::get(PN->getType(), State.VF); 4629 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4630 State.set(Def, VecPhi, 0); 4631 OrigPHIsToFix.push_back(P); 4632 4633 return; 4634 } 4635 4636 assert(PN->getParent() == OrigLoop->getHeader() && 4637 "Non-header phis should have been handled elsewhere"); 4638 4639 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4640 // In order to support recurrences we need to be able to vectorize Phi nodes. 4641 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4642 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4643 // this value when we vectorize all of the instructions that use the PHI. 4644 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4645 Value *Iden = nullptr; 4646 bool ScalarPHI = 4647 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4648 Type *VecTy = 4649 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4650 4651 if (RdxDesc) { 4652 assert(Legal->isReductionVariable(P) && StartV && 4653 "RdxDesc should only be set for reduction variables; in that case " 4654 "a StartV is also required"); 4655 RecurKind RK = RdxDesc->getRecurrenceKind(); 4656 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4657 // MinMax reduction have the start value as their identify. 4658 if (ScalarPHI) { 4659 Iden = StartV; 4660 } else { 4661 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4662 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4663 StartV = Iden = 4664 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4665 } 4666 } else { 4667 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4668 RK, VecTy->getScalarType()); 4669 Iden = IdenC; 4670 4671 if (!ScalarPHI) { 4672 Iden = ConstantVector::getSplat(State.VF, IdenC); 4673 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4674 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4675 Constant *Zero = Builder.getInt32(0); 4676 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4677 } 4678 } 4679 } 4680 4681 for (unsigned Part = 0; Part < State.UF; ++Part) { 4682 // This is phase one of vectorizing PHIs. 4683 Value *EntryPart = PHINode::Create( 4684 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4685 State.set(Def, EntryPart, Part); 4686 if (StartV) { 4687 // Make sure to add the reduction start value only to the 4688 // first unroll part. 4689 Value *StartVal = (Part == 0) ? StartV : Iden; 4690 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4691 } 4692 } 4693 return; 4694 } 4695 4696 assert(!Legal->isReductionVariable(P) && 4697 "reductions should be handled above"); 4698 4699 setDebugLocFromInst(Builder, P); 4700 4701 // This PHINode must be an induction variable. 4702 // Make sure that we know about it. 4703 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4704 4705 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4706 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4707 4708 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4709 // which can be found from the original scalar operations. 4710 switch (II.getKind()) { 4711 case InductionDescriptor::IK_NoInduction: 4712 llvm_unreachable("Unknown induction"); 4713 case InductionDescriptor::IK_IntInduction: 4714 case InductionDescriptor::IK_FpInduction: 4715 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4716 case InductionDescriptor::IK_PtrInduction: { 4717 // Handle the pointer induction variable case. 4718 assert(P->getType()->isPointerTy() && "Unexpected type."); 4719 4720 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4721 // This is the normalized GEP that starts counting at zero. 4722 Value *PtrInd = 4723 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4724 // Determine the number of scalars we need to generate for each unroll 4725 // iteration. If the instruction is uniform, we only need to generate the 4726 // first lane. Otherwise, we generate all VF values. 4727 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4728 ? 1 4729 : State.VF.getKnownMinValue(); 4730 for (unsigned Part = 0; Part < UF; ++Part) { 4731 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4732 Constant *Idx = ConstantInt::get( 4733 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4734 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4735 Value *SclrGep = 4736 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4737 SclrGep->setName("next.gep"); 4738 State.set(Def, SclrGep, VPIteration(Part, Lane)); 4739 } 4740 } 4741 return; 4742 } 4743 assert(isa<SCEVConstant>(II.getStep()) && 4744 "Induction step not a SCEV constant!"); 4745 Type *PhiType = II.getStep()->getType(); 4746 4747 // Build a pointer phi 4748 Value *ScalarStartValue = II.getStartValue(); 4749 Type *ScStValueType = ScalarStartValue->getType(); 4750 PHINode *NewPointerPhi = 4751 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4752 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4753 4754 // A pointer induction, performed by using a gep 4755 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4756 Instruction *InductionLoc = LoopLatch->getTerminator(); 4757 const SCEV *ScalarStep = II.getStep(); 4758 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4759 Value *ScalarStepValue = 4760 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4761 Value *InductionGEP = GetElementPtrInst::Create( 4762 ScStValueType->getPointerElementType(), NewPointerPhi, 4763 Builder.CreateMul( 4764 ScalarStepValue, 4765 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4766 "ptr.ind", InductionLoc); 4767 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4768 4769 // Create UF many actual address geps that use the pointer 4770 // phi as base and a vectorized version of the step value 4771 // (<step*0, ..., step*N>) as offset. 4772 for (unsigned Part = 0; Part < State.UF; ++Part) { 4773 SmallVector<Constant *, 8> Indices; 4774 // Create a vector of consecutive numbers from zero to VF. 4775 for (unsigned i = 0; i < State.VF.getKnownMinValue(); ++i) 4776 Indices.push_back( 4777 ConstantInt::get(PhiType, i + Part * State.VF.getKnownMinValue())); 4778 Constant *StartOffset = ConstantVector::get(Indices); 4779 4780 Value *GEP = Builder.CreateGEP( 4781 ScStValueType->getPointerElementType(), NewPointerPhi, 4782 Builder.CreateMul(StartOffset, 4783 Builder.CreateVectorSplat( 4784 State.VF.getKnownMinValue(), ScalarStepValue), 4785 "vector.gep")); 4786 State.set(Def, GEP, Part); 4787 } 4788 } 4789 } 4790 } 4791 4792 /// A helper function for checking whether an integer division-related 4793 /// instruction may divide by zero (in which case it must be predicated if 4794 /// executed conditionally in the scalar code). 4795 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4796 /// Non-zero divisors that are non compile-time constants will not be 4797 /// converted into multiplication, so we will still end up scalarizing 4798 /// the division, but can do so w/o predication. 4799 static bool mayDivideByZero(Instruction &I) { 4800 assert((I.getOpcode() == Instruction::UDiv || 4801 I.getOpcode() == Instruction::SDiv || 4802 I.getOpcode() == Instruction::URem || 4803 I.getOpcode() == Instruction::SRem) && 4804 "Unexpected instruction"); 4805 Value *Divisor = I.getOperand(1); 4806 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4807 return !CInt || CInt->isZero(); 4808 } 4809 4810 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4811 VPUser &User, 4812 VPTransformState &State) { 4813 switch (I.getOpcode()) { 4814 case Instruction::Call: 4815 case Instruction::Br: 4816 case Instruction::PHI: 4817 case Instruction::GetElementPtr: 4818 case Instruction::Select: 4819 llvm_unreachable("This instruction is handled by a different recipe."); 4820 case Instruction::UDiv: 4821 case Instruction::SDiv: 4822 case Instruction::SRem: 4823 case Instruction::URem: 4824 case Instruction::Add: 4825 case Instruction::FAdd: 4826 case Instruction::Sub: 4827 case Instruction::FSub: 4828 case Instruction::FNeg: 4829 case Instruction::Mul: 4830 case Instruction::FMul: 4831 case Instruction::FDiv: 4832 case Instruction::FRem: 4833 case Instruction::Shl: 4834 case Instruction::LShr: 4835 case Instruction::AShr: 4836 case Instruction::And: 4837 case Instruction::Or: 4838 case Instruction::Xor: { 4839 // Just widen unops and binops. 4840 setDebugLocFromInst(Builder, &I); 4841 4842 for (unsigned Part = 0; Part < UF; ++Part) { 4843 SmallVector<Value *, 2> Ops; 4844 for (VPValue *VPOp : User.operands()) 4845 Ops.push_back(State.get(VPOp, Part)); 4846 4847 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4848 4849 if (auto *VecOp = dyn_cast<Instruction>(V)) 4850 VecOp->copyIRFlags(&I); 4851 4852 // Use this vector value for all users of the original instruction. 4853 State.set(Def, V, Part); 4854 addMetadata(V, &I); 4855 } 4856 4857 break; 4858 } 4859 case Instruction::ICmp: 4860 case Instruction::FCmp: { 4861 // Widen compares. Generate vector compares. 4862 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4863 auto *Cmp = cast<CmpInst>(&I); 4864 setDebugLocFromInst(Builder, Cmp); 4865 for (unsigned Part = 0; Part < UF; ++Part) { 4866 Value *A = State.get(User.getOperand(0), Part); 4867 Value *B = State.get(User.getOperand(1), Part); 4868 Value *C = nullptr; 4869 if (FCmp) { 4870 // Propagate fast math flags. 4871 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4872 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4873 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4874 } else { 4875 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4876 } 4877 State.set(Def, C, Part); 4878 addMetadata(C, &I); 4879 } 4880 4881 break; 4882 } 4883 4884 case Instruction::ZExt: 4885 case Instruction::SExt: 4886 case Instruction::FPToUI: 4887 case Instruction::FPToSI: 4888 case Instruction::FPExt: 4889 case Instruction::PtrToInt: 4890 case Instruction::IntToPtr: 4891 case Instruction::SIToFP: 4892 case Instruction::UIToFP: 4893 case Instruction::Trunc: 4894 case Instruction::FPTrunc: 4895 case Instruction::BitCast: { 4896 auto *CI = cast<CastInst>(&I); 4897 setDebugLocFromInst(Builder, CI); 4898 4899 /// Vectorize casts. 4900 Type *DestTy = 4901 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4902 4903 for (unsigned Part = 0; Part < UF; ++Part) { 4904 Value *A = State.get(User.getOperand(0), Part); 4905 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4906 State.set(Def, Cast, Part); 4907 addMetadata(Cast, &I); 4908 } 4909 break; 4910 } 4911 default: 4912 // This instruction is not vectorized by simple widening. 4913 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4914 llvm_unreachable("Unhandled instruction!"); 4915 } // end of switch. 4916 } 4917 4918 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4919 VPUser &ArgOperands, 4920 VPTransformState &State) { 4921 assert(!isa<DbgInfoIntrinsic>(I) && 4922 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4923 setDebugLocFromInst(Builder, &I); 4924 4925 Module *M = I.getParent()->getParent()->getParent(); 4926 auto *CI = cast<CallInst>(&I); 4927 4928 SmallVector<Type *, 4> Tys; 4929 for (Value *ArgOperand : CI->arg_operands()) 4930 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4931 4932 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4933 4934 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4935 // version of the instruction. 4936 // Is it beneficial to perform intrinsic call compared to lib call? 4937 bool NeedToScalarize = false; 4938 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4939 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4940 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4941 assert((UseVectorIntrinsic || !NeedToScalarize) && 4942 "Instruction should be scalarized elsewhere."); 4943 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4944 "Cannot have invalid costs while widening"); 4945 4946 for (unsigned Part = 0; Part < UF; ++Part) { 4947 SmallVector<Value *, 4> Args; 4948 for (auto &I : enumerate(ArgOperands.operands())) { 4949 // Some intrinsics have a scalar argument - don't replace it with a 4950 // vector. 4951 Value *Arg; 4952 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4953 Arg = State.get(I.value(), Part); 4954 else 4955 Arg = State.get(I.value(), VPIteration(0, 0)); 4956 Args.push_back(Arg); 4957 } 4958 4959 Function *VectorF; 4960 if (UseVectorIntrinsic) { 4961 // Use vector version of the intrinsic. 4962 Type *TysForDecl[] = {CI->getType()}; 4963 if (VF.isVector()) 4964 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4965 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4966 assert(VectorF && "Can't retrieve vector intrinsic."); 4967 } else { 4968 // Use vector version of the function call. 4969 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4970 #ifndef NDEBUG 4971 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4972 "Can't create vector function."); 4973 #endif 4974 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4975 } 4976 SmallVector<OperandBundleDef, 1> OpBundles; 4977 CI->getOperandBundlesAsDefs(OpBundles); 4978 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4979 4980 if (isa<FPMathOperator>(V)) 4981 V->copyFastMathFlags(CI); 4982 4983 State.set(Def, V, Part); 4984 addMetadata(V, &I); 4985 } 4986 } 4987 4988 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4989 VPUser &Operands, 4990 bool InvariantCond, 4991 VPTransformState &State) { 4992 setDebugLocFromInst(Builder, &I); 4993 4994 // The condition can be loop invariant but still defined inside the 4995 // loop. This means that we can't just use the original 'cond' value. 4996 // We have to take the 'vectorized' value and pick the first lane. 4997 // Instcombine will make this a no-op. 4998 auto *InvarCond = InvariantCond 4999 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5000 : nullptr; 5001 5002 for (unsigned Part = 0; Part < UF; ++Part) { 5003 Value *Cond = 5004 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5005 Value *Op0 = State.get(Operands.getOperand(1), Part); 5006 Value *Op1 = State.get(Operands.getOperand(2), Part); 5007 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5008 State.set(VPDef, Sel, Part); 5009 addMetadata(Sel, &I); 5010 } 5011 } 5012 5013 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5014 // We should not collect Scalars more than once per VF. Right now, this 5015 // function is called from collectUniformsAndScalars(), which already does 5016 // this check. Collecting Scalars for VF=1 does not make any sense. 5017 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5018 "This function should not be visited twice for the same VF"); 5019 5020 SmallSetVector<Instruction *, 8> Worklist; 5021 5022 // These sets are used to seed the analysis with pointers used by memory 5023 // accesses that will remain scalar. 5024 SmallSetVector<Instruction *, 8> ScalarPtrs; 5025 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5026 auto *Latch = TheLoop->getLoopLatch(); 5027 5028 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5029 // The pointer operands of loads and stores will be scalar as long as the 5030 // memory access is not a gather or scatter operation. The value operand of a 5031 // store will remain scalar if the store is scalarized. 5032 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5033 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5034 assert(WideningDecision != CM_Unknown && 5035 "Widening decision should be ready at this moment"); 5036 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5037 if (Ptr == Store->getValueOperand()) 5038 return WideningDecision == CM_Scalarize; 5039 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5040 "Ptr is neither a value or pointer operand"); 5041 return WideningDecision != CM_GatherScatter; 5042 }; 5043 5044 // A helper that returns true if the given value is a bitcast or 5045 // getelementptr instruction contained in the loop. 5046 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5047 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5048 isa<GetElementPtrInst>(V)) && 5049 !TheLoop->isLoopInvariant(V); 5050 }; 5051 5052 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5053 if (!isa<PHINode>(Ptr) || 5054 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5055 return false; 5056 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5057 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5058 return false; 5059 return isScalarUse(MemAccess, Ptr); 5060 }; 5061 5062 // A helper that evaluates a memory access's use of a pointer. If the 5063 // pointer is actually the pointer induction of a loop, it is being 5064 // inserted into Worklist. If the use will be a scalar use, and the 5065 // pointer is only used by memory accesses, we place the pointer in 5066 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5067 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5068 if (isScalarPtrInduction(MemAccess, Ptr)) { 5069 Worklist.insert(cast<Instruction>(Ptr)); 5070 Instruction *Update = cast<Instruction>( 5071 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5072 Worklist.insert(Update); 5073 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5074 << "\n"); 5075 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5076 << "\n"); 5077 return; 5078 } 5079 // We only care about bitcast and getelementptr instructions contained in 5080 // the loop. 5081 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5082 return; 5083 5084 // If the pointer has already been identified as scalar (e.g., if it was 5085 // also identified as uniform), there's nothing to do. 5086 auto *I = cast<Instruction>(Ptr); 5087 if (Worklist.count(I)) 5088 return; 5089 5090 // If the use of the pointer will be a scalar use, and all users of the 5091 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5092 // place the pointer in PossibleNonScalarPtrs. 5093 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5094 return isa<LoadInst>(U) || isa<StoreInst>(U); 5095 })) 5096 ScalarPtrs.insert(I); 5097 else 5098 PossibleNonScalarPtrs.insert(I); 5099 }; 5100 5101 // We seed the scalars analysis with three classes of instructions: (1) 5102 // instructions marked uniform-after-vectorization and (2) bitcast, 5103 // getelementptr and (pointer) phi instructions used by memory accesses 5104 // requiring a scalar use. 5105 // 5106 // (1) Add to the worklist all instructions that have been identified as 5107 // uniform-after-vectorization. 5108 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5109 5110 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5111 // memory accesses requiring a scalar use. The pointer operands of loads and 5112 // stores will be scalar as long as the memory accesses is not a gather or 5113 // scatter operation. The value operand of a store will remain scalar if the 5114 // store is scalarized. 5115 for (auto *BB : TheLoop->blocks()) 5116 for (auto &I : *BB) { 5117 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5118 evaluatePtrUse(Load, Load->getPointerOperand()); 5119 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5120 evaluatePtrUse(Store, Store->getPointerOperand()); 5121 evaluatePtrUse(Store, Store->getValueOperand()); 5122 } 5123 } 5124 for (auto *I : ScalarPtrs) 5125 if (!PossibleNonScalarPtrs.count(I)) { 5126 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5127 Worklist.insert(I); 5128 } 5129 5130 // Insert the forced scalars. 5131 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5132 // induction variable when the PHI user is scalarized. 5133 auto ForcedScalar = ForcedScalars.find(VF); 5134 if (ForcedScalar != ForcedScalars.end()) 5135 for (auto *I : ForcedScalar->second) 5136 Worklist.insert(I); 5137 5138 // Expand the worklist by looking through any bitcasts and getelementptr 5139 // instructions we've already identified as scalar. This is similar to the 5140 // expansion step in collectLoopUniforms(); however, here we're only 5141 // expanding to include additional bitcasts and getelementptr instructions. 5142 unsigned Idx = 0; 5143 while (Idx != Worklist.size()) { 5144 Instruction *Dst = Worklist[Idx++]; 5145 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5146 continue; 5147 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5148 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5149 auto *J = cast<Instruction>(U); 5150 return !TheLoop->contains(J) || Worklist.count(J) || 5151 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5152 isScalarUse(J, Src)); 5153 })) { 5154 Worklist.insert(Src); 5155 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5156 } 5157 } 5158 5159 // An induction variable will remain scalar if all users of the induction 5160 // variable and induction variable update remain scalar. 5161 for (auto &Induction : Legal->getInductionVars()) { 5162 auto *Ind = Induction.first; 5163 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5164 5165 // If tail-folding is applied, the primary induction variable will be used 5166 // to feed a vector compare. 5167 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5168 continue; 5169 5170 // Determine if all users of the induction variable are scalar after 5171 // vectorization. 5172 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5173 auto *I = cast<Instruction>(U); 5174 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5175 }); 5176 if (!ScalarInd) 5177 continue; 5178 5179 // Determine if all users of the induction variable update instruction are 5180 // scalar after vectorization. 5181 auto ScalarIndUpdate = 5182 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5183 auto *I = cast<Instruction>(U); 5184 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5185 }); 5186 if (!ScalarIndUpdate) 5187 continue; 5188 5189 // The induction variable and its update instruction will remain scalar. 5190 Worklist.insert(Ind); 5191 Worklist.insert(IndUpdate); 5192 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5193 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5194 << "\n"); 5195 } 5196 5197 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5198 } 5199 5200 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5201 ElementCount VF) { 5202 if (!blockNeedsPredication(I->getParent())) 5203 return false; 5204 switch(I->getOpcode()) { 5205 default: 5206 break; 5207 case Instruction::Load: 5208 case Instruction::Store: { 5209 if (!Legal->isMaskRequired(I)) 5210 return false; 5211 auto *Ptr = getLoadStorePointerOperand(I); 5212 auto *Ty = getMemInstValueType(I); 5213 // We have already decided how to vectorize this instruction, get that 5214 // result. 5215 if (VF.isVector()) { 5216 InstWidening WideningDecision = getWideningDecision(I, VF); 5217 assert(WideningDecision != CM_Unknown && 5218 "Widening decision should be ready at this moment"); 5219 return WideningDecision == CM_Scalarize; 5220 } 5221 const Align Alignment = getLoadStoreAlignment(I); 5222 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5223 isLegalMaskedGather(Ty, Alignment)) 5224 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5225 isLegalMaskedScatter(Ty, Alignment)); 5226 } 5227 case Instruction::UDiv: 5228 case Instruction::SDiv: 5229 case Instruction::SRem: 5230 case Instruction::URem: 5231 return mayDivideByZero(*I); 5232 } 5233 return false; 5234 } 5235 5236 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5237 Instruction *I, ElementCount VF) { 5238 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5239 assert(getWideningDecision(I, VF) == CM_Unknown && 5240 "Decision should not be set yet."); 5241 auto *Group = getInterleavedAccessGroup(I); 5242 assert(Group && "Must have a group."); 5243 5244 // If the instruction's allocated size doesn't equal it's type size, it 5245 // requires padding and will be scalarized. 5246 auto &DL = I->getModule()->getDataLayout(); 5247 auto *ScalarTy = getMemInstValueType(I); 5248 if (hasIrregularType(ScalarTy, DL, VF)) 5249 return false; 5250 5251 // Check if masking is required. 5252 // A Group may need masking for one of two reasons: it resides in a block that 5253 // needs predication, or it was decided to use masking to deal with gaps. 5254 bool PredicatedAccessRequiresMasking = 5255 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5256 bool AccessWithGapsRequiresMasking = 5257 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5258 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5259 return true; 5260 5261 // If masked interleaving is required, we expect that the user/target had 5262 // enabled it, because otherwise it either wouldn't have been created or 5263 // it should have been invalidated by the CostModel. 5264 assert(useMaskedInterleavedAccesses(TTI) && 5265 "Masked interleave-groups for predicated accesses are not enabled."); 5266 5267 auto *Ty = getMemInstValueType(I); 5268 const Align Alignment = getLoadStoreAlignment(I); 5269 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5270 : TTI.isLegalMaskedStore(Ty, Alignment); 5271 } 5272 5273 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5274 Instruction *I, ElementCount VF) { 5275 // Get and ensure we have a valid memory instruction. 5276 LoadInst *LI = dyn_cast<LoadInst>(I); 5277 StoreInst *SI = dyn_cast<StoreInst>(I); 5278 assert((LI || SI) && "Invalid memory instruction"); 5279 5280 auto *Ptr = getLoadStorePointerOperand(I); 5281 5282 // In order to be widened, the pointer should be consecutive, first of all. 5283 if (!Legal->isConsecutivePtr(Ptr)) 5284 return false; 5285 5286 // If the instruction is a store located in a predicated block, it will be 5287 // scalarized. 5288 if (isScalarWithPredication(I)) 5289 return false; 5290 5291 // If the instruction's allocated size doesn't equal it's type size, it 5292 // requires padding and will be scalarized. 5293 auto &DL = I->getModule()->getDataLayout(); 5294 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5295 if (hasIrregularType(ScalarTy, DL, VF)) 5296 return false; 5297 5298 return true; 5299 } 5300 5301 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5302 // We should not collect Uniforms more than once per VF. Right now, 5303 // this function is called from collectUniformsAndScalars(), which 5304 // already does this check. Collecting Uniforms for VF=1 does not make any 5305 // sense. 5306 5307 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5308 "This function should not be visited twice for the same VF"); 5309 5310 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5311 // not analyze again. Uniforms.count(VF) will return 1. 5312 Uniforms[VF].clear(); 5313 5314 // We now know that the loop is vectorizable! 5315 // Collect instructions inside the loop that will remain uniform after 5316 // vectorization. 5317 5318 // Global values, params and instructions outside of current loop are out of 5319 // scope. 5320 auto isOutOfScope = [&](Value *V) -> bool { 5321 Instruction *I = dyn_cast<Instruction>(V); 5322 return (!I || !TheLoop->contains(I)); 5323 }; 5324 5325 SetVector<Instruction *> Worklist; 5326 BasicBlock *Latch = TheLoop->getLoopLatch(); 5327 5328 // Instructions that are scalar with predication must not be considered 5329 // uniform after vectorization, because that would create an erroneous 5330 // replicating region where only a single instance out of VF should be formed. 5331 // TODO: optimize such seldom cases if found important, see PR40816. 5332 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5333 if (isOutOfScope(I)) { 5334 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5335 << *I << "\n"); 5336 return; 5337 } 5338 if (isScalarWithPredication(I, VF)) { 5339 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5340 << *I << "\n"); 5341 return; 5342 } 5343 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5344 Worklist.insert(I); 5345 }; 5346 5347 // Start with the conditional branch. If the branch condition is an 5348 // instruction contained in the loop that is only used by the branch, it is 5349 // uniform. 5350 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5351 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5352 addToWorklistIfAllowed(Cmp); 5353 5354 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5355 InstWidening WideningDecision = getWideningDecision(I, VF); 5356 assert(WideningDecision != CM_Unknown && 5357 "Widening decision should be ready at this moment"); 5358 5359 // A uniform memory op is itself uniform. We exclude uniform stores 5360 // here as they demand the last lane, not the first one. 5361 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5362 assert(WideningDecision == CM_Scalarize); 5363 return true; 5364 } 5365 5366 return (WideningDecision == CM_Widen || 5367 WideningDecision == CM_Widen_Reverse || 5368 WideningDecision == CM_Interleave); 5369 }; 5370 5371 5372 // Returns true if Ptr is the pointer operand of a memory access instruction 5373 // I, and I is known to not require scalarization. 5374 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5375 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5376 }; 5377 5378 // Holds a list of values which are known to have at least one uniform use. 5379 // Note that there may be other uses which aren't uniform. A "uniform use" 5380 // here is something which only demands lane 0 of the unrolled iterations; 5381 // it does not imply that all lanes produce the same value (e.g. this is not 5382 // the usual meaning of uniform) 5383 SmallPtrSet<Value *, 8> HasUniformUse; 5384 5385 // Scan the loop for instructions which are either a) known to have only 5386 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5387 for (auto *BB : TheLoop->blocks()) 5388 for (auto &I : *BB) { 5389 // If there's no pointer operand, there's nothing to do. 5390 auto *Ptr = getLoadStorePointerOperand(&I); 5391 if (!Ptr) 5392 continue; 5393 5394 // A uniform memory op is itself uniform. We exclude uniform stores 5395 // here as they demand the last lane, not the first one. 5396 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5397 addToWorklistIfAllowed(&I); 5398 5399 if (isUniformDecision(&I, VF)) { 5400 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5401 HasUniformUse.insert(Ptr); 5402 } 5403 } 5404 5405 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5406 // demanding) users. Since loops are assumed to be in LCSSA form, this 5407 // disallows uses outside the loop as well. 5408 for (auto *V : HasUniformUse) { 5409 if (isOutOfScope(V)) 5410 continue; 5411 auto *I = cast<Instruction>(V); 5412 auto UsersAreMemAccesses = 5413 llvm::all_of(I->users(), [&](User *U) -> bool { 5414 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5415 }); 5416 if (UsersAreMemAccesses) 5417 addToWorklistIfAllowed(I); 5418 } 5419 5420 // Expand Worklist in topological order: whenever a new instruction 5421 // is added , its users should be already inside Worklist. It ensures 5422 // a uniform instruction will only be used by uniform instructions. 5423 unsigned idx = 0; 5424 while (idx != Worklist.size()) { 5425 Instruction *I = Worklist[idx++]; 5426 5427 for (auto OV : I->operand_values()) { 5428 // isOutOfScope operands cannot be uniform instructions. 5429 if (isOutOfScope(OV)) 5430 continue; 5431 // First order recurrence Phi's should typically be considered 5432 // non-uniform. 5433 auto *OP = dyn_cast<PHINode>(OV); 5434 if (OP && Legal->isFirstOrderRecurrence(OP)) 5435 continue; 5436 // If all the users of the operand are uniform, then add the 5437 // operand into the uniform worklist. 5438 auto *OI = cast<Instruction>(OV); 5439 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5440 auto *J = cast<Instruction>(U); 5441 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5442 })) 5443 addToWorklistIfAllowed(OI); 5444 } 5445 } 5446 5447 // For an instruction to be added into Worklist above, all its users inside 5448 // the loop should also be in Worklist. However, this condition cannot be 5449 // true for phi nodes that form a cyclic dependence. We must process phi 5450 // nodes separately. An induction variable will remain uniform if all users 5451 // of the induction variable and induction variable update remain uniform. 5452 // The code below handles both pointer and non-pointer induction variables. 5453 for (auto &Induction : Legal->getInductionVars()) { 5454 auto *Ind = Induction.first; 5455 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5456 5457 // Determine if all users of the induction variable are uniform after 5458 // vectorization. 5459 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5460 auto *I = cast<Instruction>(U); 5461 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5462 isVectorizedMemAccessUse(I, Ind); 5463 }); 5464 if (!UniformInd) 5465 continue; 5466 5467 // Determine if all users of the induction variable update instruction are 5468 // uniform after vectorization. 5469 auto UniformIndUpdate = 5470 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5471 auto *I = cast<Instruction>(U); 5472 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5473 isVectorizedMemAccessUse(I, IndUpdate); 5474 }); 5475 if (!UniformIndUpdate) 5476 continue; 5477 5478 // The induction variable and its update instruction will remain uniform. 5479 addToWorklistIfAllowed(Ind); 5480 addToWorklistIfAllowed(IndUpdate); 5481 } 5482 5483 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5484 } 5485 5486 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5487 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5488 5489 if (Legal->getRuntimePointerChecking()->Need) { 5490 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5491 "runtime pointer checks needed. Enable vectorization of this " 5492 "loop with '#pragma clang loop vectorize(enable)' when " 5493 "compiling with -Os/-Oz", 5494 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5495 return true; 5496 } 5497 5498 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5499 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5500 "runtime SCEV checks needed. Enable vectorization of this " 5501 "loop with '#pragma clang loop vectorize(enable)' when " 5502 "compiling with -Os/-Oz", 5503 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5504 return true; 5505 } 5506 5507 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5508 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5509 reportVectorizationFailure("Runtime stride check for small trip count", 5510 "runtime stride == 1 checks needed. Enable vectorization of " 5511 "this loop without such check by compiling with -Os/-Oz", 5512 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5513 return true; 5514 } 5515 5516 return false; 5517 } 5518 5519 Optional<ElementCount> 5520 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5521 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5522 // TODO: It may by useful to do since it's still likely to be dynamically 5523 // uniform if the target can skip. 5524 reportVectorizationFailure( 5525 "Not inserting runtime ptr check for divergent target", 5526 "runtime pointer checks needed. Not enabled for divergent target", 5527 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5528 return None; 5529 } 5530 5531 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5532 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5533 if (TC == 1) { 5534 reportVectorizationFailure("Single iteration (non) loop", 5535 "loop trip count is one, irrelevant for vectorization", 5536 "SingleIterationLoop", ORE, TheLoop); 5537 return None; 5538 } 5539 5540 switch (ScalarEpilogueStatus) { 5541 case CM_ScalarEpilogueAllowed: 5542 return computeFeasibleMaxVF(TC, UserVF); 5543 case CM_ScalarEpilogueNotAllowedUsePredicate: 5544 LLVM_FALLTHROUGH; 5545 case CM_ScalarEpilogueNotNeededUsePredicate: 5546 LLVM_DEBUG( 5547 dbgs() << "LV: vector predicate hint/switch found.\n" 5548 << "LV: Not allowing scalar epilogue, creating predicated " 5549 << "vector loop.\n"); 5550 break; 5551 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5552 // fallthrough as a special case of OptForSize 5553 case CM_ScalarEpilogueNotAllowedOptSize: 5554 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5555 LLVM_DEBUG( 5556 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5557 else 5558 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5559 << "count.\n"); 5560 5561 // Bail if runtime checks are required, which are not good when optimising 5562 // for size. 5563 if (runtimeChecksRequired()) 5564 return None; 5565 5566 break; 5567 } 5568 5569 // The only loops we can vectorize without a scalar epilogue, are loops with 5570 // a bottom-test and a single exiting block. We'd have to handle the fact 5571 // that not every instruction executes on the last iteration. This will 5572 // require a lane mask which varies through the vector loop body. (TODO) 5573 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5574 // If there was a tail-folding hint/switch, but we can't fold the tail by 5575 // masking, fallback to a vectorization with a scalar epilogue. 5576 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5577 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5578 "scalar epilogue instead.\n"); 5579 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5580 return computeFeasibleMaxVF(TC, UserVF); 5581 } 5582 return None; 5583 } 5584 5585 // Now try the tail folding 5586 5587 // Invalidate interleave groups that require an epilogue if we can't mask 5588 // the interleave-group. 5589 if (!useMaskedInterleavedAccesses(TTI)) { 5590 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5591 "No decisions should have been taken at this point"); 5592 // Note: There is no need to invalidate any cost modeling decisions here, as 5593 // non where taken so far. 5594 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5595 } 5596 5597 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5598 assert(!MaxVF.isScalable() && 5599 "Scalable vectors do not yet support tail folding"); 5600 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5601 "MaxVF must be a power of 2"); 5602 unsigned MaxVFtimesIC = 5603 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5604 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5605 // chose. 5606 ScalarEvolution *SE = PSE.getSE(); 5607 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5608 const SCEV *ExitCount = SE->getAddExpr( 5609 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5610 const SCEV *Rem = SE->getURemExpr( 5611 SE->applyLoopGuards(ExitCount, TheLoop), 5612 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5613 if (Rem->isZero()) { 5614 // Accept MaxVF if we do not have a tail. 5615 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5616 return MaxVF; 5617 } 5618 5619 // If we don't know the precise trip count, or if the trip count that we 5620 // found modulo the vectorization factor is not zero, try to fold the tail 5621 // by masking. 5622 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5623 if (Legal->prepareToFoldTailByMasking()) { 5624 FoldTailByMasking = true; 5625 return MaxVF; 5626 } 5627 5628 // If there was a tail-folding hint/switch, but we can't fold the tail by 5629 // masking, fallback to a vectorization with a scalar epilogue. 5630 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5631 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5632 "scalar epilogue instead.\n"); 5633 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5634 return MaxVF; 5635 } 5636 5637 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5638 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5639 return None; 5640 } 5641 5642 if (TC == 0) { 5643 reportVectorizationFailure( 5644 "Unable to calculate the loop count due to complex control flow", 5645 "unable to calculate the loop count due to complex control flow", 5646 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5647 return None; 5648 } 5649 5650 reportVectorizationFailure( 5651 "Cannot optimize for size and vectorize at the same time.", 5652 "cannot optimize for size and vectorize at the same time. " 5653 "Enable vectorization of this loop with '#pragma clang loop " 5654 "vectorize(enable)' when compiling with -Os/-Oz", 5655 "NoTailLoopWithOptForSize", ORE, TheLoop); 5656 return None; 5657 } 5658 5659 ElementCount 5660 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5661 ElementCount UserVF) { 5662 bool IgnoreScalableUserVF = UserVF.isScalable() && 5663 !TTI.supportsScalableVectors() && 5664 !ForceTargetSupportsScalableVectors; 5665 if (IgnoreScalableUserVF) { 5666 LLVM_DEBUG( 5667 dbgs() << "LV: Ignoring VF=" << UserVF 5668 << " because target does not support scalable vectors.\n"); 5669 ORE->emit([&]() { 5670 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5671 TheLoop->getStartLoc(), 5672 TheLoop->getHeader()) 5673 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5674 << " because target does not support scalable vectors."; 5675 }); 5676 } 5677 5678 // Beyond this point two scenarios are handled. If UserVF isn't specified 5679 // then a suitable VF is chosen. If UserVF is specified and there are 5680 // dependencies, check if it's legal. However, if a UserVF is specified and 5681 // there are no dependencies, then there's nothing to do. 5682 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5683 if (!canVectorizeReductions(UserVF)) { 5684 reportVectorizationFailure( 5685 "LV: Scalable vectorization not supported for the reduction " 5686 "operations found in this loop. Using fixed-width " 5687 "vectorization instead.", 5688 "Scalable vectorization not supported for the reduction operations " 5689 "found in this loop. Using fixed-width vectorization instead.", 5690 "ScalableVFUnfeasible", ORE, TheLoop); 5691 return computeFeasibleMaxVF( 5692 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5693 } 5694 5695 if (Legal->isSafeForAnyVectorWidth()) 5696 return UserVF; 5697 } 5698 5699 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5700 unsigned SmallestType, WidestType; 5701 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5702 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5703 5704 // Get the maximum safe dependence distance in bits computed by LAA. 5705 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5706 // the memory accesses that is most restrictive (involved in the smallest 5707 // dependence distance). 5708 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5709 5710 // If the user vectorization factor is legally unsafe, clamp it to a safe 5711 // value. Otherwise, return as is. 5712 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5713 unsigned MaxSafeElements = 5714 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5715 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5716 5717 if (UserVF.isScalable()) { 5718 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5719 5720 // Scale VF by vscale before checking if it's safe. 5721 MaxSafeVF = ElementCount::getScalable( 5722 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5723 5724 if (MaxSafeVF.isZero()) { 5725 // The dependence distance is too small to use scalable vectors, 5726 // fallback on fixed. 5727 LLVM_DEBUG( 5728 dbgs() 5729 << "LV: Max legal vector width too small, scalable vectorization " 5730 "unfeasible. Using fixed-width vectorization instead.\n"); 5731 ORE->emit([&]() { 5732 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5733 TheLoop->getStartLoc(), 5734 TheLoop->getHeader()) 5735 << "Max legal vector width too small, scalable vectorization " 5736 << "unfeasible. Using fixed-width vectorization instead."; 5737 }); 5738 return computeFeasibleMaxVF( 5739 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5740 } 5741 } 5742 5743 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5744 5745 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5746 return UserVF; 5747 5748 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5749 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5750 << ".\n"); 5751 ORE->emit([&]() { 5752 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5753 TheLoop->getStartLoc(), 5754 TheLoop->getHeader()) 5755 << "User-specified vectorization factor " 5756 << ore::NV("UserVectorizationFactor", UserVF) 5757 << " is unsafe, clamping to maximum safe vectorization factor " 5758 << ore::NV("VectorizationFactor", MaxSafeVF); 5759 }); 5760 return MaxSafeVF; 5761 } 5762 5763 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5764 5765 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5766 // Note that both WidestRegister and WidestType may not be a powers of 2. 5767 auto MaxVectorSize = 5768 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5769 5770 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5771 << " / " << WidestType << " bits.\n"); 5772 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5773 << WidestRegister << " bits.\n"); 5774 5775 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5776 "Did not expect to pack so many elements" 5777 " into one vector!"); 5778 if (MaxVectorSize.getFixedValue() == 0) { 5779 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5780 return ElementCount::getFixed(1); 5781 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5782 isPowerOf2_32(ConstTripCount)) { 5783 // We need to clamp the VF to be the ConstTripCount. There is no point in 5784 // choosing a higher viable VF as done in the loop below. 5785 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5786 << ConstTripCount << "\n"); 5787 return ElementCount::getFixed(ConstTripCount); 5788 } 5789 5790 ElementCount MaxVF = MaxVectorSize; 5791 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5792 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5793 // Collect all viable vectorization factors larger than the default MaxVF 5794 // (i.e. MaxVectorSize). 5795 SmallVector<ElementCount, 8> VFs; 5796 auto MaxVectorSizeMaxBW = 5797 ElementCount::getFixed(WidestRegister / SmallestType); 5798 for (ElementCount VS = MaxVectorSize * 2; 5799 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5800 VFs.push_back(VS); 5801 5802 // For each VF calculate its register usage. 5803 auto RUs = calculateRegisterUsage(VFs); 5804 5805 // Select the largest VF which doesn't require more registers than existing 5806 // ones. 5807 for (int i = RUs.size() - 1; i >= 0; --i) { 5808 bool Selected = true; 5809 for (auto &pair : RUs[i].MaxLocalUsers) { 5810 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5811 if (pair.second > TargetNumRegisters) 5812 Selected = false; 5813 } 5814 if (Selected) { 5815 MaxVF = VFs[i]; 5816 break; 5817 } 5818 } 5819 if (ElementCount MinVF = 5820 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5821 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5822 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5823 << ") with target's minimum: " << MinVF << '\n'); 5824 MaxVF = MinVF; 5825 } 5826 } 5827 } 5828 return MaxVF; 5829 } 5830 5831 VectorizationFactor 5832 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5833 // FIXME: This can be fixed for scalable vectors later, because at this stage 5834 // the LoopVectorizer will only consider vectorizing a loop with scalable 5835 // vectors when the loop has a hint to enable vectorization for a given VF. 5836 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5837 5838 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5839 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5840 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5841 5842 auto Width = ElementCount::getFixed(1); 5843 const float ScalarCost = *ExpectedCost.getValue(); 5844 float Cost = ScalarCost; 5845 5846 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5847 if (ForceVectorization && MaxVF.isVector()) { 5848 // Ignore scalar width, because the user explicitly wants vectorization. 5849 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5850 // evaluation. 5851 Cost = std::numeric_limits<float>::max(); 5852 } 5853 5854 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5855 i *= 2) { 5856 // Notice that the vector loop needs to be executed less times, so 5857 // we need to divide the cost of the vector loops by the width of 5858 // the vector elements. 5859 VectorizationCostTy C = expectedCost(i); 5860 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5861 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5862 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5863 << " costs: " << (int)VectorCost << ".\n"); 5864 if (!C.second && !ForceVectorization) { 5865 LLVM_DEBUG( 5866 dbgs() << "LV: Not considering vector loop of width " << i 5867 << " because it will not generate any vector instructions.\n"); 5868 continue; 5869 } 5870 5871 // If profitable add it to ProfitableVF list. 5872 if (VectorCost < ScalarCost) { 5873 ProfitableVFs.push_back(VectorizationFactor( 5874 {i, (unsigned)VectorCost})); 5875 } 5876 5877 if (VectorCost < Cost) { 5878 Cost = VectorCost; 5879 Width = i; 5880 } 5881 } 5882 5883 if (!EnableCondStoresVectorization && NumPredStores) { 5884 reportVectorizationFailure("There are conditional stores.", 5885 "store that is conditionally executed prevents vectorization", 5886 "ConditionalStore", ORE, TheLoop); 5887 Width = ElementCount::getFixed(1); 5888 Cost = ScalarCost; 5889 } 5890 5891 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5892 << "LV: Vectorization seems to be not beneficial, " 5893 << "but was forced by a user.\n"); 5894 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5895 VectorizationFactor Factor = {Width, 5896 (unsigned)(Width.getKnownMinValue() * Cost)}; 5897 return Factor; 5898 } 5899 5900 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5901 const Loop &L, ElementCount VF) const { 5902 // Cross iteration phis such as reductions need special handling and are 5903 // currently unsupported. 5904 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5905 return Legal->isFirstOrderRecurrence(&Phi) || 5906 Legal->isReductionVariable(&Phi); 5907 })) 5908 return false; 5909 5910 // Phis with uses outside of the loop require special handling and are 5911 // currently unsupported. 5912 for (auto &Entry : Legal->getInductionVars()) { 5913 // Look for uses of the value of the induction at the last iteration. 5914 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5915 for (User *U : PostInc->users()) 5916 if (!L.contains(cast<Instruction>(U))) 5917 return false; 5918 // Look for uses of penultimate value of the induction. 5919 for (User *U : Entry.first->users()) 5920 if (!L.contains(cast<Instruction>(U))) 5921 return false; 5922 } 5923 5924 // Induction variables that are widened require special handling that is 5925 // currently not supported. 5926 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5927 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5928 this->isProfitableToScalarize(Entry.first, VF)); 5929 })) 5930 return false; 5931 5932 return true; 5933 } 5934 5935 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5936 const ElementCount VF) const { 5937 // FIXME: We need a much better cost-model to take different parameters such 5938 // as register pressure, code size increase and cost of extra branches into 5939 // account. For now we apply a very crude heuristic and only consider loops 5940 // with vectorization factors larger than a certain value. 5941 // We also consider epilogue vectorization unprofitable for targets that don't 5942 // consider interleaving beneficial (eg. MVE). 5943 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5944 return false; 5945 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5946 return true; 5947 return false; 5948 } 5949 5950 VectorizationFactor 5951 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5952 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5953 VectorizationFactor Result = VectorizationFactor::Disabled(); 5954 if (!EnableEpilogueVectorization) { 5955 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5956 return Result; 5957 } 5958 5959 if (!isScalarEpilogueAllowed()) { 5960 LLVM_DEBUG( 5961 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5962 "allowed.\n";); 5963 return Result; 5964 } 5965 5966 // FIXME: This can be fixed for scalable vectors later, because at this stage 5967 // the LoopVectorizer will only consider vectorizing a loop with scalable 5968 // vectors when the loop has a hint to enable vectorization for a given VF. 5969 if (MainLoopVF.isScalable()) { 5970 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5971 "yet supported.\n"); 5972 return Result; 5973 } 5974 5975 // Not really a cost consideration, but check for unsupported cases here to 5976 // simplify the logic. 5977 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5978 LLVM_DEBUG( 5979 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5980 "not a supported candidate.\n";); 5981 return Result; 5982 } 5983 5984 if (EpilogueVectorizationForceVF > 1) { 5985 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5986 if (LVP.hasPlanWithVFs( 5987 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5988 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5989 else { 5990 LLVM_DEBUG( 5991 dbgs() 5992 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5993 return Result; 5994 } 5995 } 5996 5997 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5998 TheLoop->getHeader()->getParent()->hasMinSize()) { 5999 LLVM_DEBUG( 6000 dbgs() 6001 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6002 return Result; 6003 } 6004 6005 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6006 return Result; 6007 6008 for (auto &NextVF : ProfitableVFs) 6009 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6010 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6011 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6012 Result = NextVF; 6013 6014 if (Result != VectorizationFactor::Disabled()) 6015 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6016 << Result.Width.getFixedValue() << "\n";); 6017 return Result; 6018 } 6019 6020 std::pair<unsigned, unsigned> 6021 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6022 unsigned MinWidth = -1U; 6023 unsigned MaxWidth = 8; 6024 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6025 6026 // For each block. 6027 for (BasicBlock *BB : TheLoop->blocks()) { 6028 // For each instruction in the loop. 6029 for (Instruction &I : BB->instructionsWithoutDebug()) { 6030 Type *T = I.getType(); 6031 6032 // Skip ignored values. 6033 if (ValuesToIgnore.count(&I)) 6034 continue; 6035 6036 // Only examine Loads, Stores and PHINodes. 6037 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6038 continue; 6039 6040 // Examine PHI nodes that are reduction variables. Update the type to 6041 // account for the recurrence type. 6042 if (auto *PN = dyn_cast<PHINode>(&I)) { 6043 if (!Legal->isReductionVariable(PN)) 6044 continue; 6045 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6046 if (PreferInLoopReductions || 6047 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6048 RdxDesc.getRecurrenceType(), 6049 TargetTransformInfo::ReductionFlags())) 6050 continue; 6051 T = RdxDesc.getRecurrenceType(); 6052 } 6053 6054 // Examine the stored values. 6055 if (auto *ST = dyn_cast<StoreInst>(&I)) 6056 T = ST->getValueOperand()->getType(); 6057 6058 // Ignore loaded pointer types and stored pointer types that are not 6059 // vectorizable. 6060 // 6061 // FIXME: The check here attempts to predict whether a load or store will 6062 // be vectorized. We only know this for certain after a VF has 6063 // been selected. Here, we assume that if an access can be 6064 // vectorized, it will be. We should also look at extending this 6065 // optimization to non-pointer types. 6066 // 6067 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6068 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6069 continue; 6070 6071 MinWidth = std::min(MinWidth, 6072 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6073 MaxWidth = std::max(MaxWidth, 6074 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6075 } 6076 } 6077 6078 return {MinWidth, MaxWidth}; 6079 } 6080 6081 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6082 unsigned LoopCost) { 6083 // -- The interleave heuristics -- 6084 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6085 // There are many micro-architectural considerations that we can't predict 6086 // at this level. For example, frontend pressure (on decode or fetch) due to 6087 // code size, or the number and capabilities of the execution ports. 6088 // 6089 // We use the following heuristics to select the interleave count: 6090 // 1. If the code has reductions, then we interleave to break the cross 6091 // iteration dependency. 6092 // 2. If the loop is really small, then we interleave to reduce the loop 6093 // overhead. 6094 // 3. We don't interleave if we think that we will spill registers to memory 6095 // due to the increased register pressure. 6096 6097 if (!isScalarEpilogueAllowed()) 6098 return 1; 6099 6100 // We used the distance for the interleave count. 6101 if (Legal->getMaxSafeDepDistBytes() != -1U) 6102 return 1; 6103 6104 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6105 const bool HasReductions = !Legal->getReductionVars().empty(); 6106 // Do not interleave loops with a relatively small known or estimated trip 6107 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6108 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6109 // because with the above conditions interleaving can expose ILP and break 6110 // cross iteration dependences for reductions. 6111 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6112 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6113 return 1; 6114 6115 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6116 // We divide by these constants so assume that we have at least one 6117 // instruction that uses at least one register. 6118 for (auto& pair : R.MaxLocalUsers) { 6119 pair.second = std::max(pair.second, 1U); 6120 } 6121 6122 // We calculate the interleave count using the following formula. 6123 // Subtract the number of loop invariants from the number of available 6124 // registers. These registers are used by all of the interleaved instances. 6125 // Next, divide the remaining registers by the number of registers that is 6126 // required by the loop, in order to estimate how many parallel instances 6127 // fit without causing spills. All of this is rounded down if necessary to be 6128 // a power of two. We want power of two interleave count to simplify any 6129 // addressing operations or alignment considerations. 6130 // We also want power of two interleave counts to ensure that the induction 6131 // variable of the vector loop wraps to zero, when tail is folded by masking; 6132 // this currently happens when OptForSize, in which case IC is set to 1 above. 6133 unsigned IC = UINT_MAX; 6134 6135 for (auto& pair : R.MaxLocalUsers) { 6136 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6137 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6138 << " registers of " 6139 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6140 if (VF.isScalar()) { 6141 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6142 TargetNumRegisters = ForceTargetNumScalarRegs; 6143 } else { 6144 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6145 TargetNumRegisters = ForceTargetNumVectorRegs; 6146 } 6147 unsigned MaxLocalUsers = pair.second; 6148 unsigned LoopInvariantRegs = 0; 6149 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6150 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6151 6152 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6153 // Don't count the induction variable as interleaved. 6154 if (EnableIndVarRegisterHeur) { 6155 TmpIC = 6156 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6157 std::max(1U, (MaxLocalUsers - 1))); 6158 } 6159 6160 IC = std::min(IC, TmpIC); 6161 } 6162 6163 // Clamp the interleave ranges to reasonable counts. 6164 unsigned MaxInterleaveCount = 6165 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6166 6167 // Check if the user has overridden the max. 6168 if (VF.isScalar()) { 6169 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6170 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6171 } else { 6172 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6173 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6174 } 6175 6176 // If trip count is known or estimated compile time constant, limit the 6177 // interleave count to be less than the trip count divided by VF, provided it 6178 // is at least 1. 6179 // 6180 // For scalable vectors we can't know if interleaving is beneficial. It may 6181 // not be beneficial for small loops if none of the lanes in the second vector 6182 // iterations is enabled. However, for larger loops, there is likely to be a 6183 // similar benefit as for fixed-width vectors. For now, we choose to leave 6184 // the InterleaveCount as if vscale is '1', although if some information about 6185 // the vector is known (e.g. min vector size), we can make a better decision. 6186 if (BestKnownTC) { 6187 MaxInterleaveCount = 6188 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6189 // Make sure MaxInterleaveCount is greater than 0. 6190 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6191 } 6192 6193 assert(MaxInterleaveCount > 0 && 6194 "Maximum interleave count must be greater than 0"); 6195 6196 // Clamp the calculated IC to be between the 1 and the max interleave count 6197 // that the target and trip count allows. 6198 if (IC > MaxInterleaveCount) 6199 IC = MaxInterleaveCount; 6200 else 6201 // Make sure IC is greater than 0. 6202 IC = std::max(1u, IC); 6203 6204 assert(IC > 0 && "Interleave count must be greater than 0."); 6205 6206 // If we did not calculate the cost for VF (because the user selected the VF) 6207 // then we calculate the cost of VF here. 6208 if (LoopCost == 0) { 6209 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6210 LoopCost = *expectedCost(VF).first.getValue(); 6211 } 6212 6213 assert(LoopCost && "Non-zero loop cost expected"); 6214 6215 // Interleave if we vectorized this loop and there is a reduction that could 6216 // benefit from interleaving. 6217 if (VF.isVector() && HasReductions) { 6218 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6219 return IC; 6220 } 6221 6222 // Note that if we've already vectorized the loop we will have done the 6223 // runtime check and so interleaving won't require further checks. 6224 bool InterleavingRequiresRuntimePointerCheck = 6225 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6226 6227 // We want to interleave small loops in order to reduce the loop overhead and 6228 // potentially expose ILP opportunities. 6229 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6230 << "LV: IC is " << IC << '\n' 6231 << "LV: VF is " << VF << '\n'); 6232 const bool AggressivelyInterleaveReductions = 6233 TTI.enableAggressiveInterleaving(HasReductions); 6234 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6235 // We assume that the cost overhead is 1 and we use the cost model 6236 // to estimate the cost of the loop and interleave until the cost of the 6237 // loop overhead is about 5% of the cost of the loop. 6238 unsigned SmallIC = 6239 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6240 6241 // Interleave until store/load ports (estimated by max interleave count) are 6242 // saturated. 6243 unsigned NumStores = Legal->getNumStores(); 6244 unsigned NumLoads = Legal->getNumLoads(); 6245 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6246 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6247 6248 // If we have a scalar reduction (vector reductions are already dealt with 6249 // by this point), we can increase the critical path length if the loop 6250 // we're interleaving is inside another loop. Limit, by default to 2, so the 6251 // critical path only gets increased by one reduction operation. 6252 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6253 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6254 SmallIC = std::min(SmallIC, F); 6255 StoresIC = std::min(StoresIC, F); 6256 LoadsIC = std::min(LoadsIC, F); 6257 } 6258 6259 if (EnableLoadStoreRuntimeInterleave && 6260 std::max(StoresIC, LoadsIC) > SmallIC) { 6261 LLVM_DEBUG( 6262 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6263 return std::max(StoresIC, LoadsIC); 6264 } 6265 6266 // If there are scalar reductions and TTI has enabled aggressive 6267 // interleaving for reductions, we will interleave to expose ILP. 6268 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6269 AggressivelyInterleaveReductions) { 6270 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6271 // Interleave no less than SmallIC but not as aggressive as the normal IC 6272 // to satisfy the rare situation when resources are too limited. 6273 return std::max(IC / 2, SmallIC); 6274 } else { 6275 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6276 return SmallIC; 6277 } 6278 } 6279 6280 // Interleave if this is a large loop (small loops are already dealt with by 6281 // this point) that could benefit from interleaving. 6282 if (AggressivelyInterleaveReductions) { 6283 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6284 return IC; 6285 } 6286 6287 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6288 return 1; 6289 } 6290 6291 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6292 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6293 // This function calculates the register usage by measuring the highest number 6294 // of values that are alive at a single location. Obviously, this is a very 6295 // rough estimation. We scan the loop in a topological order in order and 6296 // assign a number to each instruction. We use RPO to ensure that defs are 6297 // met before their users. We assume that each instruction that has in-loop 6298 // users starts an interval. We record every time that an in-loop value is 6299 // used, so we have a list of the first and last occurrences of each 6300 // instruction. Next, we transpose this data structure into a multi map that 6301 // holds the list of intervals that *end* at a specific location. This multi 6302 // map allows us to perform a linear search. We scan the instructions linearly 6303 // and record each time that a new interval starts, by placing it in a set. 6304 // If we find this value in the multi-map then we remove it from the set. 6305 // The max register usage is the maximum size of the set. 6306 // We also search for instructions that are defined outside the loop, but are 6307 // used inside the loop. We need this number separately from the max-interval 6308 // usage number because when we unroll, loop-invariant values do not take 6309 // more register. 6310 LoopBlocksDFS DFS(TheLoop); 6311 DFS.perform(LI); 6312 6313 RegisterUsage RU; 6314 6315 // Each 'key' in the map opens a new interval. The values 6316 // of the map are the index of the 'last seen' usage of the 6317 // instruction that is the key. 6318 using IntervalMap = DenseMap<Instruction *, unsigned>; 6319 6320 // Maps instruction to its index. 6321 SmallVector<Instruction *, 64> IdxToInstr; 6322 // Marks the end of each interval. 6323 IntervalMap EndPoint; 6324 // Saves the list of instruction indices that are used in the loop. 6325 SmallPtrSet<Instruction *, 8> Ends; 6326 // Saves the list of values that are used in the loop but are 6327 // defined outside the loop, such as arguments and constants. 6328 SmallPtrSet<Value *, 8> LoopInvariants; 6329 6330 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6331 for (Instruction &I : BB->instructionsWithoutDebug()) { 6332 IdxToInstr.push_back(&I); 6333 6334 // Save the end location of each USE. 6335 for (Value *U : I.operands()) { 6336 auto *Instr = dyn_cast<Instruction>(U); 6337 6338 // Ignore non-instruction values such as arguments, constants, etc. 6339 if (!Instr) 6340 continue; 6341 6342 // If this instruction is outside the loop then record it and continue. 6343 if (!TheLoop->contains(Instr)) { 6344 LoopInvariants.insert(Instr); 6345 continue; 6346 } 6347 6348 // Overwrite previous end points. 6349 EndPoint[Instr] = IdxToInstr.size(); 6350 Ends.insert(Instr); 6351 } 6352 } 6353 } 6354 6355 // Saves the list of intervals that end with the index in 'key'. 6356 using InstrList = SmallVector<Instruction *, 2>; 6357 DenseMap<unsigned, InstrList> TransposeEnds; 6358 6359 // Transpose the EndPoints to a list of values that end at each index. 6360 for (auto &Interval : EndPoint) 6361 TransposeEnds[Interval.second].push_back(Interval.first); 6362 6363 SmallPtrSet<Instruction *, 8> OpenIntervals; 6364 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6365 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6366 6367 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6368 6369 // A lambda that gets the register usage for the given type and VF. 6370 const auto &TTICapture = TTI; 6371 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6372 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6373 return 0U; 6374 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6375 }; 6376 6377 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6378 Instruction *I = IdxToInstr[i]; 6379 6380 // Remove all of the instructions that end at this location. 6381 InstrList &List = TransposeEnds[i]; 6382 for (Instruction *ToRemove : List) 6383 OpenIntervals.erase(ToRemove); 6384 6385 // Ignore instructions that are never used within the loop. 6386 if (!Ends.count(I)) 6387 continue; 6388 6389 // Skip ignored values. 6390 if (ValuesToIgnore.count(I)) 6391 continue; 6392 6393 // For each VF find the maximum usage of registers. 6394 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6395 // Count the number of live intervals. 6396 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6397 6398 if (VFs[j].isScalar()) { 6399 for (auto Inst : OpenIntervals) { 6400 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6401 if (RegUsage.find(ClassID) == RegUsage.end()) 6402 RegUsage[ClassID] = 1; 6403 else 6404 RegUsage[ClassID] += 1; 6405 } 6406 } else { 6407 collectUniformsAndScalars(VFs[j]); 6408 for (auto Inst : OpenIntervals) { 6409 // Skip ignored values for VF > 1. 6410 if (VecValuesToIgnore.count(Inst)) 6411 continue; 6412 if (isScalarAfterVectorization(Inst, VFs[j])) { 6413 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6414 if (RegUsage.find(ClassID) == RegUsage.end()) 6415 RegUsage[ClassID] = 1; 6416 else 6417 RegUsage[ClassID] += 1; 6418 } else { 6419 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6420 if (RegUsage.find(ClassID) == RegUsage.end()) 6421 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6422 else 6423 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6424 } 6425 } 6426 } 6427 6428 for (auto& pair : RegUsage) { 6429 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6430 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6431 else 6432 MaxUsages[j][pair.first] = pair.second; 6433 } 6434 } 6435 6436 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6437 << OpenIntervals.size() << '\n'); 6438 6439 // Add the current instruction to the list of open intervals. 6440 OpenIntervals.insert(I); 6441 } 6442 6443 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6444 SmallMapVector<unsigned, unsigned, 4> Invariant; 6445 6446 for (auto Inst : LoopInvariants) { 6447 unsigned Usage = 6448 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6449 unsigned ClassID = 6450 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6451 if (Invariant.find(ClassID) == Invariant.end()) 6452 Invariant[ClassID] = Usage; 6453 else 6454 Invariant[ClassID] += Usage; 6455 } 6456 6457 LLVM_DEBUG({ 6458 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6459 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6460 << " item\n"; 6461 for (const auto &pair : MaxUsages[i]) { 6462 dbgs() << "LV(REG): RegisterClass: " 6463 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6464 << " registers\n"; 6465 } 6466 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6467 << " item\n"; 6468 for (const auto &pair : Invariant) { 6469 dbgs() << "LV(REG): RegisterClass: " 6470 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6471 << " registers\n"; 6472 } 6473 }); 6474 6475 RU.LoopInvariantRegs = Invariant; 6476 RU.MaxLocalUsers = MaxUsages[i]; 6477 RUs[i] = RU; 6478 } 6479 6480 return RUs; 6481 } 6482 6483 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6484 // TODO: Cost model for emulated masked load/store is completely 6485 // broken. This hack guides the cost model to use an artificially 6486 // high enough value to practically disable vectorization with such 6487 // operations, except where previously deployed legality hack allowed 6488 // using very low cost values. This is to avoid regressions coming simply 6489 // from moving "masked load/store" check from legality to cost model. 6490 // Masked Load/Gather emulation was previously never allowed. 6491 // Limited number of Masked Store/Scatter emulation was allowed. 6492 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6493 return isa<LoadInst>(I) || 6494 (isa<StoreInst>(I) && 6495 NumPredStores > NumberOfStoresToPredicate); 6496 } 6497 6498 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6499 // If we aren't vectorizing the loop, or if we've already collected the 6500 // instructions to scalarize, there's nothing to do. Collection may already 6501 // have occurred if we have a user-selected VF and are now computing the 6502 // expected cost for interleaving. 6503 if (VF.isScalar() || VF.isZero() || 6504 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6505 return; 6506 6507 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6508 // not profitable to scalarize any instructions, the presence of VF in the 6509 // map will indicate that we've analyzed it already. 6510 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6511 6512 // Find all the instructions that are scalar with predication in the loop and 6513 // determine if it would be better to not if-convert the blocks they are in. 6514 // If so, we also record the instructions to scalarize. 6515 for (BasicBlock *BB : TheLoop->blocks()) { 6516 if (!blockNeedsPredication(BB)) 6517 continue; 6518 for (Instruction &I : *BB) 6519 if (isScalarWithPredication(&I)) { 6520 ScalarCostsTy ScalarCosts; 6521 // Do not apply discount logic if hacked cost is needed 6522 // for emulated masked memrefs. 6523 if (!useEmulatedMaskMemRefHack(&I) && 6524 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6525 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6526 // Remember that BB will remain after vectorization. 6527 PredicatedBBsAfterVectorization.insert(BB); 6528 } 6529 } 6530 } 6531 6532 int LoopVectorizationCostModel::computePredInstDiscount( 6533 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6534 assert(!isUniformAfterVectorization(PredInst, VF) && 6535 "Instruction marked uniform-after-vectorization will be predicated"); 6536 6537 // Initialize the discount to zero, meaning that the scalar version and the 6538 // vector version cost the same. 6539 InstructionCost Discount = 0; 6540 6541 // Holds instructions to analyze. The instructions we visit are mapped in 6542 // ScalarCosts. Those instructions are the ones that would be scalarized if 6543 // we find that the scalar version costs less. 6544 SmallVector<Instruction *, 8> Worklist; 6545 6546 // Returns true if the given instruction can be scalarized. 6547 auto canBeScalarized = [&](Instruction *I) -> bool { 6548 // We only attempt to scalarize instructions forming a single-use chain 6549 // from the original predicated block that would otherwise be vectorized. 6550 // Although not strictly necessary, we give up on instructions we know will 6551 // already be scalar to avoid traversing chains that are unlikely to be 6552 // beneficial. 6553 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6554 isScalarAfterVectorization(I, VF)) 6555 return false; 6556 6557 // If the instruction is scalar with predication, it will be analyzed 6558 // separately. We ignore it within the context of PredInst. 6559 if (isScalarWithPredication(I)) 6560 return false; 6561 6562 // If any of the instruction's operands are uniform after vectorization, 6563 // the instruction cannot be scalarized. This prevents, for example, a 6564 // masked load from being scalarized. 6565 // 6566 // We assume we will only emit a value for lane zero of an instruction 6567 // marked uniform after vectorization, rather than VF identical values. 6568 // Thus, if we scalarize an instruction that uses a uniform, we would 6569 // create uses of values corresponding to the lanes we aren't emitting code 6570 // for. This behavior can be changed by allowing getScalarValue to clone 6571 // the lane zero values for uniforms rather than asserting. 6572 for (Use &U : I->operands()) 6573 if (auto *J = dyn_cast<Instruction>(U.get())) 6574 if (isUniformAfterVectorization(J, VF)) 6575 return false; 6576 6577 // Otherwise, we can scalarize the instruction. 6578 return true; 6579 }; 6580 6581 // Compute the expected cost discount from scalarizing the entire expression 6582 // feeding the predicated instruction. We currently only consider expressions 6583 // that are single-use instruction chains. 6584 Worklist.push_back(PredInst); 6585 while (!Worklist.empty()) { 6586 Instruction *I = Worklist.pop_back_val(); 6587 6588 // If we've already analyzed the instruction, there's nothing to do. 6589 if (ScalarCosts.find(I) != ScalarCosts.end()) 6590 continue; 6591 6592 // Compute the cost of the vector instruction. Note that this cost already 6593 // includes the scalarization overhead of the predicated instruction. 6594 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6595 6596 // Compute the cost of the scalarized instruction. This cost is the cost of 6597 // the instruction as if it wasn't if-converted and instead remained in the 6598 // predicated block. We will scale this cost by block probability after 6599 // computing the scalarization overhead. 6600 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6601 InstructionCost ScalarCost = 6602 VF.getKnownMinValue() * 6603 getInstructionCost(I, ElementCount::getFixed(1)).first; 6604 6605 // Compute the scalarization overhead of needed insertelement instructions 6606 // and phi nodes. 6607 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6608 ScalarCost += TTI.getScalarizationOverhead( 6609 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6610 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6611 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6612 ScalarCost += 6613 VF.getKnownMinValue() * 6614 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6615 } 6616 6617 // Compute the scalarization overhead of needed extractelement 6618 // instructions. For each of the instruction's operands, if the operand can 6619 // be scalarized, add it to the worklist; otherwise, account for the 6620 // overhead. 6621 for (Use &U : I->operands()) 6622 if (auto *J = dyn_cast<Instruction>(U.get())) { 6623 assert(VectorType::isValidElementType(J->getType()) && 6624 "Instruction has non-scalar type"); 6625 if (canBeScalarized(J)) 6626 Worklist.push_back(J); 6627 else if (needsExtract(J, VF)) { 6628 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6629 ScalarCost += TTI.getScalarizationOverhead( 6630 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6631 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6632 } 6633 } 6634 6635 // Scale the total scalar cost by block probability. 6636 ScalarCost /= getReciprocalPredBlockProb(); 6637 6638 // Compute the discount. A non-negative discount means the vector version 6639 // of the instruction costs more, and scalarizing would be beneficial. 6640 Discount += VectorCost - ScalarCost; 6641 ScalarCosts[I] = ScalarCost; 6642 } 6643 6644 return *Discount.getValue(); 6645 } 6646 6647 LoopVectorizationCostModel::VectorizationCostTy 6648 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6649 VectorizationCostTy Cost; 6650 6651 // For each block. 6652 for (BasicBlock *BB : TheLoop->blocks()) { 6653 VectorizationCostTy BlockCost; 6654 6655 // For each instruction in the old loop. 6656 for (Instruction &I : BB->instructionsWithoutDebug()) { 6657 // Skip ignored values. 6658 if (ValuesToIgnore.count(&I) || 6659 (VF.isVector() && VecValuesToIgnore.count(&I))) 6660 continue; 6661 6662 VectorizationCostTy C = getInstructionCost(&I, VF); 6663 6664 // Check if we should override the cost. 6665 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6666 C.first = InstructionCost(ForceTargetInstructionCost); 6667 6668 BlockCost.first += C.first; 6669 BlockCost.second |= C.second; 6670 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6671 << " for VF " << VF << " For instruction: " << I 6672 << '\n'); 6673 } 6674 6675 // If we are vectorizing a predicated block, it will have been 6676 // if-converted. This means that the block's instructions (aside from 6677 // stores and instructions that may divide by zero) will now be 6678 // unconditionally executed. For the scalar case, we may not always execute 6679 // the predicated block, if it is an if-else block. Thus, scale the block's 6680 // cost by the probability of executing it. blockNeedsPredication from 6681 // Legal is used so as to not include all blocks in tail folded loops. 6682 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6683 BlockCost.first /= getReciprocalPredBlockProb(); 6684 6685 Cost.first += BlockCost.first; 6686 Cost.second |= BlockCost.second; 6687 } 6688 6689 return Cost; 6690 } 6691 6692 /// Gets Address Access SCEV after verifying that the access pattern 6693 /// is loop invariant except the induction variable dependence. 6694 /// 6695 /// This SCEV can be sent to the Target in order to estimate the address 6696 /// calculation cost. 6697 static const SCEV *getAddressAccessSCEV( 6698 Value *Ptr, 6699 LoopVectorizationLegality *Legal, 6700 PredicatedScalarEvolution &PSE, 6701 const Loop *TheLoop) { 6702 6703 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6704 if (!Gep) 6705 return nullptr; 6706 6707 // We are looking for a gep with all loop invariant indices except for one 6708 // which should be an induction variable. 6709 auto SE = PSE.getSE(); 6710 unsigned NumOperands = Gep->getNumOperands(); 6711 for (unsigned i = 1; i < NumOperands; ++i) { 6712 Value *Opd = Gep->getOperand(i); 6713 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6714 !Legal->isInductionVariable(Opd)) 6715 return nullptr; 6716 } 6717 6718 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6719 return PSE.getSCEV(Ptr); 6720 } 6721 6722 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6723 return Legal->hasStride(I->getOperand(0)) || 6724 Legal->hasStride(I->getOperand(1)); 6725 } 6726 6727 InstructionCost 6728 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6729 ElementCount VF) { 6730 assert(VF.isVector() && 6731 "Scalarization cost of instruction implies vectorization."); 6732 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6733 Type *ValTy = getMemInstValueType(I); 6734 auto SE = PSE.getSE(); 6735 6736 unsigned AS = getLoadStoreAddressSpace(I); 6737 Value *Ptr = getLoadStorePointerOperand(I); 6738 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6739 6740 // Figure out whether the access is strided and get the stride value 6741 // if it's known in compile time 6742 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6743 6744 // Get the cost of the scalar memory instruction and address computation. 6745 InstructionCost Cost = 6746 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6747 6748 // Don't pass *I here, since it is scalar but will actually be part of a 6749 // vectorized loop where the user of it is a vectorized instruction. 6750 const Align Alignment = getLoadStoreAlignment(I); 6751 Cost += VF.getKnownMinValue() * 6752 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6753 AS, TTI::TCK_RecipThroughput); 6754 6755 // Get the overhead of the extractelement and insertelement instructions 6756 // we might create due to scalarization. 6757 Cost += getScalarizationOverhead(I, VF); 6758 6759 // If we have a predicated store, it may not be executed for each vector 6760 // lane. Scale the cost by the probability of executing the predicated 6761 // block. 6762 if (isPredicatedInst(I)) { 6763 Cost /= getReciprocalPredBlockProb(); 6764 6765 if (useEmulatedMaskMemRefHack(I)) 6766 // Artificially setting to a high enough value to practically disable 6767 // vectorization with such operations. 6768 Cost = 3000000; 6769 } 6770 6771 return Cost; 6772 } 6773 6774 InstructionCost 6775 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6776 ElementCount VF) { 6777 Type *ValTy = getMemInstValueType(I); 6778 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6779 Value *Ptr = getLoadStorePointerOperand(I); 6780 unsigned AS = getLoadStoreAddressSpace(I); 6781 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6782 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6783 6784 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6785 "Stride should be 1 or -1 for consecutive memory access"); 6786 const Align Alignment = getLoadStoreAlignment(I); 6787 InstructionCost Cost = 0; 6788 if (Legal->isMaskRequired(I)) 6789 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6790 CostKind); 6791 else 6792 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6793 CostKind, I); 6794 6795 bool Reverse = ConsecutiveStride < 0; 6796 if (Reverse) 6797 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6798 return Cost; 6799 } 6800 6801 InstructionCost 6802 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6803 ElementCount VF) { 6804 assert(Legal->isUniformMemOp(*I)); 6805 6806 Type *ValTy = getMemInstValueType(I); 6807 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6808 const Align Alignment = getLoadStoreAlignment(I); 6809 unsigned AS = getLoadStoreAddressSpace(I); 6810 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6811 if (isa<LoadInst>(I)) { 6812 return TTI.getAddressComputationCost(ValTy) + 6813 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6814 CostKind) + 6815 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6816 } 6817 StoreInst *SI = cast<StoreInst>(I); 6818 6819 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6820 return TTI.getAddressComputationCost(ValTy) + 6821 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6822 CostKind) + 6823 (isLoopInvariantStoreValue 6824 ? 0 6825 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6826 VF.getKnownMinValue() - 1)); 6827 } 6828 6829 InstructionCost 6830 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6831 ElementCount VF) { 6832 Type *ValTy = getMemInstValueType(I); 6833 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6834 const Align Alignment = getLoadStoreAlignment(I); 6835 const Value *Ptr = getLoadStorePointerOperand(I); 6836 6837 return TTI.getAddressComputationCost(VectorTy) + 6838 TTI.getGatherScatterOpCost( 6839 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6840 TargetTransformInfo::TCK_RecipThroughput, I); 6841 } 6842 6843 InstructionCost 6844 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6845 ElementCount VF) { 6846 // TODO: Once we have support for interleaving with scalable vectors 6847 // we can calculate the cost properly here. 6848 if (VF.isScalable()) 6849 return InstructionCost::getInvalid(); 6850 6851 Type *ValTy = getMemInstValueType(I); 6852 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6853 unsigned AS = getLoadStoreAddressSpace(I); 6854 6855 auto Group = getInterleavedAccessGroup(I); 6856 assert(Group && "Fail to get an interleaved access group."); 6857 6858 unsigned InterleaveFactor = Group->getFactor(); 6859 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6860 6861 // Holds the indices of existing members in an interleaved load group. 6862 // An interleaved store group doesn't need this as it doesn't allow gaps. 6863 SmallVector<unsigned, 4> Indices; 6864 if (isa<LoadInst>(I)) { 6865 for (unsigned i = 0; i < InterleaveFactor; i++) 6866 if (Group->getMember(i)) 6867 Indices.push_back(i); 6868 } 6869 6870 // Calculate the cost of the whole interleaved group. 6871 bool UseMaskForGaps = 6872 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6873 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6874 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6875 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6876 6877 if (Group->isReverse()) { 6878 // TODO: Add support for reversed masked interleaved access. 6879 assert(!Legal->isMaskRequired(I) && 6880 "Reverse masked interleaved access not supported."); 6881 Cost += Group->getNumMembers() * 6882 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6883 } 6884 return Cost; 6885 } 6886 6887 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6888 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6889 // Early exit for no inloop reductions 6890 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6891 return InstructionCost::getInvalid(); 6892 auto *VectorTy = cast<VectorType>(Ty); 6893 6894 // We are looking for a pattern of, and finding the minimal acceptable cost: 6895 // reduce(mul(ext(A), ext(B))) or 6896 // reduce(mul(A, B)) or 6897 // reduce(ext(A)) or 6898 // reduce(A). 6899 // The basic idea is that we walk down the tree to do that, finding the root 6900 // reduction instruction in InLoopReductionImmediateChains. From there we find 6901 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6902 // of the components. If the reduction cost is lower then we return it for the 6903 // reduction instruction and 0 for the other instructions in the pattern. If 6904 // it is not we return an invalid cost specifying the orignal cost method 6905 // should be used. 6906 Instruction *RetI = I; 6907 if ((RetI->getOpcode() == Instruction::SExt || 6908 RetI->getOpcode() == Instruction::ZExt)) { 6909 if (!RetI->hasOneUser()) 6910 return InstructionCost::getInvalid(); 6911 RetI = RetI->user_back(); 6912 } 6913 if (RetI->getOpcode() == Instruction::Mul && 6914 RetI->user_back()->getOpcode() == Instruction::Add) { 6915 if (!RetI->hasOneUser()) 6916 return InstructionCost::getInvalid(); 6917 RetI = RetI->user_back(); 6918 } 6919 6920 // Test if the found instruction is a reduction, and if not return an invalid 6921 // cost specifying the parent to use the original cost modelling. 6922 if (!InLoopReductionImmediateChains.count(RetI)) 6923 return InstructionCost::getInvalid(); 6924 6925 // Find the reduction this chain is a part of and calculate the basic cost of 6926 // the reduction on its own. 6927 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6928 Instruction *ReductionPhi = LastChain; 6929 while (!isa<PHINode>(ReductionPhi)) 6930 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6931 6932 RecurrenceDescriptor RdxDesc = 6933 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6934 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6935 VectorTy, false, CostKind); 6936 6937 // Get the operand that was not the reduction chain and match it to one of the 6938 // patterns, returning the better cost if it is found. 6939 Instruction *RedOp = RetI->getOperand(1) == LastChain 6940 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6941 : dyn_cast<Instruction>(RetI->getOperand(1)); 6942 6943 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6944 6945 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6946 !TheLoop->isLoopInvariant(RedOp)) { 6947 bool IsUnsigned = isa<ZExtInst>(RedOp); 6948 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6949 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6950 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6951 CostKind); 6952 6953 unsigned ExtCost = 6954 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6955 TTI::CastContextHint::None, CostKind, RedOp); 6956 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6957 return I == RetI ? *RedCost.getValue() : 0; 6958 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6959 Instruction *Mul = RedOp; 6960 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6961 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6962 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6963 Op0->getOpcode() == Op1->getOpcode() && 6964 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6965 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6966 bool IsUnsigned = isa<ZExtInst>(Op0); 6967 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6968 // reduce(mul(ext, ext)) 6969 unsigned ExtCost = 6970 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6971 TTI::CastContextHint::None, CostKind, Op0); 6972 InstructionCost MulCost = 6973 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6974 6975 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6976 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6977 CostKind); 6978 6979 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6980 return I == RetI ? *RedCost.getValue() : 0; 6981 } else { 6982 InstructionCost MulCost = 6983 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6984 6985 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6986 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6987 CostKind); 6988 6989 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6990 return I == RetI ? *RedCost.getValue() : 0; 6991 } 6992 } 6993 6994 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6995 } 6996 6997 InstructionCost 6998 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6999 ElementCount VF) { 7000 // Calculate scalar cost only. Vectorization cost should be ready at this 7001 // moment. 7002 if (VF.isScalar()) { 7003 Type *ValTy = getMemInstValueType(I); 7004 const Align Alignment = getLoadStoreAlignment(I); 7005 unsigned AS = getLoadStoreAddressSpace(I); 7006 7007 return TTI.getAddressComputationCost(ValTy) + 7008 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7009 TTI::TCK_RecipThroughput, I); 7010 } 7011 return getWideningCost(I, VF); 7012 } 7013 7014 LoopVectorizationCostModel::VectorizationCostTy 7015 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7016 ElementCount VF) { 7017 // If we know that this instruction will remain uniform, check the cost of 7018 // the scalar version. 7019 if (isUniformAfterVectorization(I, VF)) 7020 VF = ElementCount::getFixed(1); 7021 7022 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7023 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7024 7025 // Forced scalars do not have any scalarization overhead. 7026 auto ForcedScalar = ForcedScalars.find(VF); 7027 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7028 auto InstSet = ForcedScalar->second; 7029 if (InstSet.count(I)) 7030 return VectorizationCostTy( 7031 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7032 VF.getKnownMinValue()), 7033 false); 7034 } 7035 7036 Type *VectorTy; 7037 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7038 7039 bool TypeNotScalarized = 7040 VF.isVector() && VectorTy->isVectorTy() && 7041 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7042 return VectorizationCostTy(C, TypeNotScalarized); 7043 } 7044 7045 InstructionCost 7046 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7047 ElementCount VF) { 7048 7049 if (VF.isScalable()) 7050 return InstructionCost::getInvalid(); 7051 7052 if (VF.isScalar()) 7053 return 0; 7054 7055 InstructionCost Cost = 0; 7056 Type *RetTy = ToVectorTy(I->getType(), VF); 7057 if (!RetTy->isVoidTy() && 7058 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7059 Cost += TTI.getScalarizationOverhead( 7060 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7061 true, false); 7062 7063 // Some targets keep addresses scalar. 7064 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7065 return Cost; 7066 7067 // Some targets support efficient element stores. 7068 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7069 return Cost; 7070 7071 // Collect operands to consider. 7072 CallInst *CI = dyn_cast<CallInst>(I); 7073 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7074 7075 // Skip operands that do not require extraction/scalarization and do not incur 7076 // any overhead. 7077 SmallVector<Type *> Tys; 7078 for (auto *V : filterExtractingOperands(Ops, VF)) 7079 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7080 return Cost + TTI.getOperandsScalarizationOverhead( 7081 filterExtractingOperands(Ops, VF), Tys); 7082 } 7083 7084 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7085 if (VF.isScalar()) 7086 return; 7087 NumPredStores = 0; 7088 for (BasicBlock *BB : TheLoop->blocks()) { 7089 // For each instruction in the old loop. 7090 for (Instruction &I : *BB) { 7091 Value *Ptr = getLoadStorePointerOperand(&I); 7092 if (!Ptr) 7093 continue; 7094 7095 // TODO: We should generate better code and update the cost model for 7096 // predicated uniform stores. Today they are treated as any other 7097 // predicated store (see added test cases in 7098 // invariant-store-vectorization.ll). 7099 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7100 NumPredStores++; 7101 7102 if (Legal->isUniformMemOp(I)) { 7103 // TODO: Avoid replicating loads and stores instead of 7104 // relying on instcombine to remove them. 7105 // Load: Scalar load + broadcast 7106 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7107 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7108 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7109 continue; 7110 } 7111 7112 // We assume that widening is the best solution when possible. 7113 if (memoryInstructionCanBeWidened(&I, VF)) { 7114 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7115 int ConsecutiveStride = 7116 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7117 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7118 "Expected consecutive stride."); 7119 InstWidening Decision = 7120 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7121 setWideningDecision(&I, VF, Decision, Cost); 7122 continue; 7123 } 7124 7125 // Choose between Interleaving, Gather/Scatter or Scalarization. 7126 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7127 unsigned NumAccesses = 1; 7128 if (isAccessInterleaved(&I)) { 7129 auto Group = getInterleavedAccessGroup(&I); 7130 assert(Group && "Fail to get an interleaved access group."); 7131 7132 // Make one decision for the whole group. 7133 if (getWideningDecision(&I, VF) != CM_Unknown) 7134 continue; 7135 7136 NumAccesses = Group->getNumMembers(); 7137 if (interleavedAccessCanBeWidened(&I, VF)) 7138 InterleaveCost = getInterleaveGroupCost(&I, VF); 7139 } 7140 7141 InstructionCost GatherScatterCost = 7142 isLegalGatherOrScatter(&I) 7143 ? getGatherScatterCost(&I, VF) * NumAccesses 7144 : InstructionCost::getInvalid(); 7145 7146 InstructionCost ScalarizationCost = 7147 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7148 : InstructionCost::getInvalid(); 7149 7150 // Choose better solution for the current VF, 7151 // write down this decision and use it during vectorization. 7152 InstructionCost Cost; 7153 InstWidening Decision; 7154 if (InterleaveCost <= GatherScatterCost && 7155 InterleaveCost < ScalarizationCost) { 7156 Decision = CM_Interleave; 7157 Cost = InterleaveCost; 7158 } else if (GatherScatterCost < ScalarizationCost) { 7159 Decision = CM_GatherScatter; 7160 Cost = GatherScatterCost; 7161 } else { 7162 assert(!VF.isScalable() && 7163 "We cannot yet scalarise for scalable vectors"); 7164 Decision = CM_Scalarize; 7165 Cost = ScalarizationCost; 7166 } 7167 // If the instructions belongs to an interleave group, the whole group 7168 // receives the same decision. The whole group receives the cost, but 7169 // the cost will actually be assigned to one instruction. 7170 if (auto Group = getInterleavedAccessGroup(&I)) 7171 setWideningDecision(Group, VF, Decision, Cost); 7172 else 7173 setWideningDecision(&I, VF, Decision, Cost); 7174 } 7175 } 7176 7177 // Make sure that any load of address and any other address computation 7178 // remains scalar unless there is gather/scatter support. This avoids 7179 // inevitable extracts into address registers, and also has the benefit of 7180 // activating LSR more, since that pass can't optimize vectorized 7181 // addresses. 7182 if (TTI.prefersVectorizedAddressing()) 7183 return; 7184 7185 // Start with all scalar pointer uses. 7186 SmallPtrSet<Instruction *, 8> AddrDefs; 7187 for (BasicBlock *BB : TheLoop->blocks()) 7188 for (Instruction &I : *BB) { 7189 Instruction *PtrDef = 7190 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7191 if (PtrDef && TheLoop->contains(PtrDef) && 7192 getWideningDecision(&I, VF) != CM_GatherScatter) 7193 AddrDefs.insert(PtrDef); 7194 } 7195 7196 // Add all instructions used to generate the addresses. 7197 SmallVector<Instruction *, 4> Worklist; 7198 append_range(Worklist, AddrDefs); 7199 while (!Worklist.empty()) { 7200 Instruction *I = Worklist.pop_back_val(); 7201 for (auto &Op : I->operands()) 7202 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7203 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7204 AddrDefs.insert(InstOp).second) 7205 Worklist.push_back(InstOp); 7206 } 7207 7208 for (auto *I : AddrDefs) { 7209 if (isa<LoadInst>(I)) { 7210 // Setting the desired widening decision should ideally be handled in 7211 // by cost functions, but since this involves the task of finding out 7212 // if the loaded register is involved in an address computation, it is 7213 // instead changed here when we know this is the case. 7214 InstWidening Decision = getWideningDecision(I, VF); 7215 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7216 // Scalarize a widened load of address. 7217 setWideningDecision( 7218 I, VF, CM_Scalarize, 7219 (VF.getKnownMinValue() * 7220 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7221 else if (auto Group = getInterleavedAccessGroup(I)) { 7222 // Scalarize an interleave group of address loads. 7223 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7224 if (Instruction *Member = Group->getMember(I)) 7225 setWideningDecision( 7226 Member, VF, CM_Scalarize, 7227 (VF.getKnownMinValue() * 7228 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7229 } 7230 } 7231 } else 7232 // Make sure I gets scalarized and a cost estimate without 7233 // scalarization overhead. 7234 ForcedScalars[VF].insert(I); 7235 } 7236 } 7237 7238 InstructionCost 7239 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7240 Type *&VectorTy) { 7241 Type *RetTy = I->getType(); 7242 if (canTruncateToMinimalBitwidth(I, VF)) 7243 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7244 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7245 auto SE = PSE.getSE(); 7246 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7247 7248 // TODO: We need to estimate the cost of intrinsic calls. 7249 switch (I->getOpcode()) { 7250 case Instruction::GetElementPtr: 7251 // We mark this instruction as zero-cost because the cost of GEPs in 7252 // vectorized code depends on whether the corresponding memory instruction 7253 // is scalarized or not. Therefore, we handle GEPs with the memory 7254 // instruction cost. 7255 return 0; 7256 case Instruction::Br: { 7257 // In cases of scalarized and predicated instructions, there will be VF 7258 // predicated blocks in the vectorized loop. Each branch around these 7259 // blocks requires also an extract of its vector compare i1 element. 7260 bool ScalarPredicatedBB = false; 7261 BranchInst *BI = cast<BranchInst>(I); 7262 if (VF.isVector() && BI->isConditional() && 7263 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7264 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7265 ScalarPredicatedBB = true; 7266 7267 if (ScalarPredicatedBB) { 7268 // Return cost for branches around scalarized and predicated blocks. 7269 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7270 auto *Vec_i1Ty = 7271 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7272 return (TTI.getScalarizationOverhead( 7273 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7274 false, true) + 7275 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7276 VF.getKnownMinValue())); 7277 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7278 // The back-edge branch will remain, as will all scalar branches. 7279 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7280 else 7281 // This branch will be eliminated by if-conversion. 7282 return 0; 7283 // Note: We currently assume zero cost for an unconditional branch inside 7284 // a predicated block since it will become a fall-through, although we 7285 // may decide in the future to call TTI for all branches. 7286 } 7287 case Instruction::PHI: { 7288 auto *Phi = cast<PHINode>(I); 7289 7290 // First-order recurrences are replaced by vector shuffles inside the loop. 7291 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7292 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7293 return TTI.getShuffleCost( 7294 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7295 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7296 7297 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7298 // converted into select instructions. We require N - 1 selects per phi 7299 // node, where N is the number of incoming values. 7300 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7301 return (Phi->getNumIncomingValues() - 1) * 7302 TTI.getCmpSelInstrCost( 7303 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7304 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7305 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7306 7307 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7308 } 7309 case Instruction::UDiv: 7310 case Instruction::SDiv: 7311 case Instruction::URem: 7312 case Instruction::SRem: 7313 // If we have a predicated instruction, it may not be executed for each 7314 // vector lane. Get the scalarization cost and scale this amount by the 7315 // probability of executing the predicated block. If the instruction is not 7316 // predicated, we fall through to the next case. 7317 if (VF.isVector() && isScalarWithPredication(I)) { 7318 InstructionCost Cost = 0; 7319 7320 // These instructions have a non-void type, so account for the phi nodes 7321 // that we will create. This cost is likely to be zero. The phi node 7322 // cost, if any, should be scaled by the block probability because it 7323 // models a copy at the end of each predicated block. 7324 Cost += VF.getKnownMinValue() * 7325 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7326 7327 // The cost of the non-predicated instruction. 7328 Cost += VF.getKnownMinValue() * 7329 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7330 7331 // The cost of insertelement and extractelement instructions needed for 7332 // scalarization. 7333 Cost += getScalarizationOverhead(I, VF); 7334 7335 // Scale the cost by the probability of executing the predicated blocks. 7336 // This assumes the predicated block for each vector lane is equally 7337 // likely. 7338 return Cost / getReciprocalPredBlockProb(); 7339 } 7340 LLVM_FALLTHROUGH; 7341 case Instruction::Add: 7342 case Instruction::FAdd: 7343 case Instruction::Sub: 7344 case Instruction::FSub: 7345 case Instruction::Mul: 7346 case Instruction::FMul: 7347 case Instruction::FDiv: 7348 case Instruction::FRem: 7349 case Instruction::Shl: 7350 case Instruction::LShr: 7351 case Instruction::AShr: 7352 case Instruction::And: 7353 case Instruction::Or: 7354 case Instruction::Xor: { 7355 // Since we will replace the stride by 1 the multiplication should go away. 7356 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7357 return 0; 7358 7359 // Detect reduction patterns 7360 InstructionCost RedCost; 7361 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7362 .isValid()) 7363 return RedCost; 7364 7365 // Certain instructions can be cheaper to vectorize if they have a constant 7366 // second vector operand. One example of this are shifts on x86. 7367 Value *Op2 = I->getOperand(1); 7368 TargetTransformInfo::OperandValueProperties Op2VP; 7369 TargetTransformInfo::OperandValueKind Op2VK = 7370 TTI.getOperandInfo(Op2, Op2VP); 7371 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7372 Op2VK = TargetTransformInfo::OK_UniformValue; 7373 7374 SmallVector<const Value *, 4> Operands(I->operand_values()); 7375 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7376 return N * TTI.getArithmeticInstrCost( 7377 I->getOpcode(), VectorTy, CostKind, 7378 TargetTransformInfo::OK_AnyValue, 7379 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7380 } 7381 case Instruction::FNeg: { 7382 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7383 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7384 return N * TTI.getArithmeticInstrCost( 7385 I->getOpcode(), VectorTy, CostKind, 7386 TargetTransformInfo::OK_AnyValue, 7387 TargetTransformInfo::OK_AnyValue, 7388 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7389 I->getOperand(0), I); 7390 } 7391 case Instruction::Select: { 7392 SelectInst *SI = cast<SelectInst>(I); 7393 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7394 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7395 Type *CondTy = SI->getCondition()->getType(); 7396 if (!ScalarCond) 7397 CondTy = VectorType::get(CondTy, VF); 7398 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7399 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7400 } 7401 case Instruction::ICmp: 7402 case Instruction::FCmp: { 7403 Type *ValTy = I->getOperand(0)->getType(); 7404 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7405 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7406 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7407 VectorTy = ToVectorTy(ValTy, VF); 7408 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7409 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7410 } 7411 case Instruction::Store: 7412 case Instruction::Load: { 7413 ElementCount Width = VF; 7414 if (Width.isVector()) { 7415 InstWidening Decision = getWideningDecision(I, Width); 7416 assert(Decision != CM_Unknown && 7417 "CM decision should be taken at this point"); 7418 if (Decision == CM_Scalarize) 7419 Width = ElementCount::getFixed(1); 7420 } 7421 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7422 return getMemoryInstructionCost(I, VF); 7423 } 7424 case Instruction::ZExt: 7425 case Instruction::SExt: 7426 case Instruction::FPToUI: 7427 case Instruction::FPToSI: 7428 case Instruction::FPExt: 7429 case Instruction::PtrToInt: 7430 case Instruction::IntToPtr: 7431 case Instruction::SIToFP: 7432 case Instruction::UIToFP: 7433 case Instruction::Trunc: 7434 case Instruction::FPTrunc: 7435 case Instruction::BitCast: { 7436 // Computes the CastContextHint from a Load/Store instruction. 7437 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7438 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7439 "Expected a load or a store!"); 7440 7441 if (VF.isScalar() || !TheLoop->contains(I)) 7442 return TTI::CastContextHint::Normal; 7443 7444 switch (getWideningDecision(I, VF)) { 7445 case LoopVectorizationCostModel::CM_GatherScatter: 7446 return TTI::CastContextHint::GatherScatter; 7447 case LoopVectorizationCostModel::CM_Interleave: 7448 return TTI::CastContextHint::Interleave; 7449 case LoopVectorizationCostModel::CM_Scalarize: 7450 case LoopVectorizationCostModel::CM_Widen: 7451 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7452 : TTI::CastContextHint::Normal; 7453 case LoopVectorizationCostModel::CM_Widen_Reverse: 7454 return TTI::CastContextHint::Reversed; 7455 case LoopVectorizationCostModel::CM_Unknown: 7456 llvm_unreachable("Instr did not go through cost modelling?"); 7457 } 7458 7459 llvm_unreachable("Unhandled case!"); 7460 }; 7461 7462 unsigned Opcode = I->getOpcode(); 7463 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7464 // For Trunc, the context is the only user, which must be a StoreInst. 7465 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7466 if (I->hasOneUse()) 7467 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7468 CCH = ComputeCCH(Store); 7469 } 7470 // For Z/Sext, the context is the operand, which must be a LoadInst. 7471 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7472 Opcode == Instruction::FPExt) { 7473 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7474 CCH = ComputeCCH(Load); 7475 } 7476 7477 // We optimize the truncation of induction variables having constant 7478 // integer steps. The cost of these truncations is the same as the scalar 7479 // operation. 7480 if (isOptimizableIVTruncate(I, VF)) { 7481 auto *Trunc = cast<TruncInst>(I); 7482 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7483 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7484 } 7485 7486 // Detect reduction patterns 7487 InstructionCost RedCost; 7488 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7489 .isValid()) 7490 return RedCost; 7491 7492 Type *SrcScalarTy = I->getOperand(0)->getType(); 7493 Type *SrcVecTy = 7494 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7495 if (canTruncateToMinimalBitwidth(I, VF)) { 7496 // This cast is going to be shrunk. This may remove the cast or it might 7497 // turn it into slightly different cast. For example, if MinBW == 16, 7498 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7499 // 7500 // Calculate the modified src and dest types. 7501 Type *MinVecTy = VectorTy; 7502 if (Opcode == Instruction::Trunc) { 7503 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7504 VectorTy = 7505 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7506 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7507 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7508 VectorTy = 7509 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7510 } 7511 } 7512 7513 unsigned N; 7514 if (isScalarAfterVectorization(I, VF)) { 7515 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7516 N = VF.getKnownMinValue(); 7517 } else 7518 N = 1; 7519 return N * 7520 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7521 } 7522 case Instruction::Call: { 7523 bool NeedToScalarize; 7524 CallInst *CI = cast<CallInst>(I); 7525 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7526 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7527 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7528 return std::min(CallCost, IntrinsicCost); 7529 } 7530 return CallCost; 7531 } 7532 case Instruction::ExtractValue: 7533 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7534 default: 7535 // The cost of executing VF copies of the scalar instruction. This opcode 7536 // is unknown. Assume that it is the same as 'mul'. 7537 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7538 Instruction::Mul, VectorTy, CostKind) + 7539 getScalarizationOverhead(I, VF); 7540 } // end of switch. 7541 } 7542 7543 char LoopVectorize::ID = 0; 7544 7545 static const char lv_name[] = "Loop Vectorization"; 7546 7547 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7548 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7549 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7550 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7553 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7555 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7558 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7559 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7560 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7561 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7562 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7563 7564 namespace llvm { 7565 7566 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7567 7568 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7569 bool VectorizeOnlyWhenForced) { 7570 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7571 } 7572 7573 } // end namespace llvm 7574 7575 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7576 // Check if the pointer operand of a load or store instruction is 7577 // consecutive. 7578 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7579 return Legal->isConsecutivePtr(Ptr); 7580 return false; 7581 } 7582 7583 void LoopVectorizationCostModel::collectValuesToIgnore() { 7584 // Ignore ephemeral values. 7585 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7586 7587 // Ignore type-promoting instructions we identified during reduction 7588 // detection. 7589 for (auto &Reduction : Legal->getReductionVars()) { 7590 RecurrenceDescriptor &RedDes = Reduction.second; 7591 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7592 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7593 } 7594 // Ignore type-casting instructions we identified during induction 7595 // detection. 7596 for (auto &Induction : Legal->getInductionVars()) { 7597 InductionDescriptor &IndDes = Induction.second; 7598 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7599 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7600 } 7601 } 7602 7603 void LoopVectorizationCostModel::collectInLoopReductions() { 7604 for (auto &Reduction : Legal->getReductionVars()) { 7605 PHINode *Phi = Reduction.first; 7606 RecurrenceDescriptor &RdxDesc = Reduction.second; 7607 7608 // We don't collect reductions that are type promoted (yet). 7609 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7610 continue; 7611 7612 // If the target would prefer this reduction to happen "in-loop", then we 7613 // want to record it as such. 7614 unsigned Opcode = RdxDesc.getOpcode(); 7615 if (!PreferInLoopReductions && 7616 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7617 TargetTransformInfo::ReductionFlags())) 7618 continue; 7619 7620 // Check that we can correctly put the reductions into the loop, by 7621 // finding the chain of operations that leads from the phi to the loop 7622 // exit value. 7623 SmallVector<Instruction *, 4> ReductionOperations = 7624 RdxDesc.getReductionOpChain(Phi, TheLoop); 7625 bool InLoop = !ReductionOperations.empty(); 7626 if (InLoop) { 7627 InLoopReductionChains[Phi] = ReductionOperations; 7628 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7629 Instruction *LastChain = Phi; 7630 for (auto *I : ReductionOperations) { 7631 InLoopReductionImmediateChains[I] = LastChain; 7632 LastChain = I; 7633 } 7634 } 7635 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7636 << " reduction for phi: " << *Phi << "\n"); 7637 } 7638 } 7639 7640 // TODO: we could return a pair of values that specify the max VF and 7641 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7642 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7643 // doesn't have a cost model that can choose which plan to execute if 7644 // more than one is generated. 7645 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7646 LoopVectorizationCostModel &CM) { 7647 unsigned WidestType; 7648 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7649 return WidestVectorRegBits / WidestType; 7650 } 7651 7652 VectorizationFactor 7653 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7654 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7655 ElementCount VF = UserVF; 7656 // Outer loop handling: They may require CFG and instruction level 7657 // transformations before even evaluating whether vectorization is profitable. 7658 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7659 // the vectorization pipeline. 7660 if (!OrigLoop->isInnermost()) { 7661 // If the user doesn't provide a vectorization factor, determine a 7662 // reasonable one. 7663 if (UserVF.isZero()) { 7664 VF = ElementCount::getFixed( 7665 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7666 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7667 7668 // Make sure we have a VF > 1 for stress testing. 7669 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7670 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7671 << "overriding computed VF.\n"); 7672 VF = ElementCount::getFixed(4); 7673 } 7674 } 7675 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7676 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7677 "VF needs to be a power of two"); 7678 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7679 << "VF " << VF << " to build VPlans.\n"); 7680 buildVPlans(VF, VF); 7681 7682 // For VPlan build stress testing, we bail out after VPlan construction. 7683 if (VPlanBuildStressTest) 7684 return VectorizationFactor::Disabled(); 7685 7686 return {VF, 0 /*Cost*/}; 7687 } 7688 7689 LLVM_DEBUG( 7690 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7691 "VPlan-native path.\n"); 7692 return VectorizationFactor::Disabled(); 7693 } 7694 7695 Optional<VectorizationFactor> 7696 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7697 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7698 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7699 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7700 return None; 7701 7702 // Invalidate interleave groups if all blocks of loop will be predicated. 7703 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7704 !useMaskedInterleavedAccesses(*TTI)) { 7705 LLVM_DEBUG( 7706 dbgs() 7707 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7708 "which requires masked-interleaved support.\n"); 7709 if (CM.InterleaveInfo.invalidateGroups()) 7710 // Invalidating interleave groups also requires invalidating all decisions 7711 // based on them, which includes widening decisions and uniform and scalar 7712 // values. 7713 CM.invalidateCostModelingDecisions(); 7714 } 7715 7716 ElementCount MaxVF = MaybeMaxVF.getValue(); 7717 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7718 7719 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7720 if (!UserVF.isZero() && 7721 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7722 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7723 // VFs here, this should be reverted to only use legal UserVFs once the 7724 // loop below supports scalable VFs. 7725 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7726 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7727 << " VF " << VF << ".\n"); 7728 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7729 "VF needs to be a power of two"); 7730 // Collect the instructions (and their associated costs) that will be more 7731 // profitable to scalarize. 7732 CM.selectUserVectorizationFactor(VF); 7733 CM.collectInLoopReductions(); 7734 buildVPlansWithVPRecipes(VF, VF); 7735 LLVM_DEBUG(printPlans(dbgs())); 7736 return {{VF, 0}}; 7737 } 7738 7739 assert(!MaxVF.isScalable() && 7740 "Scalable vectors not yet supported beyond this point"); 7741 7742 for (ElementCount VF = ElementCount::getFixed(1); 7743 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7744 // Collect Uniform and Scalar instructions after vectorization with VF. 7745 CM.collectUniformsAndScalars(VF); 7746 7747 // Collect the instructions (and their associated costs) that will be more 7748 // profitable to scalarize. 7749 if (VF.isVector()) 7750 CM.collectInstsToScalarize(VF); 7751 } 7752 7753 CM.collectInLoopReductions(); 7754 7755 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7756 LLVM_DEBUG(printPlans(dbgs())); 7757 if (MaxVF.isScalar()) 7758 return VectorizationFactor::Disabled(); 7759 7760 // Select the optimal vectorization factor. 7761 return CM.selectVectorizationFactor(MaxVF); 7762 } 7763 7764 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7765 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7766 << '\n'); 7767 BestVF = VF; 7768 BestUF = UF; 7769 7770 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7771 return !Plan->hasVF(VF); 7772 }); 7773 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7774 } 7775 7776 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7777 DominatorTree *DT) { 7778 // Perform the actual loop transformation. 7779 7780 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7781 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7782 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7783 7784 VPTransformState State{ 7785 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 7786 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7787 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7788 State.CanonicalIV = ILV.Induction; 7789 7790 ILV.printDebugTracesAtStart(); 7791 7792 //===------------------------------------------------===// 7793 // 7794 // Notice: any optimization or new instruction that go 7795 // into the code below should also be implemented in 7796 // the cost-model. 7797 // 7798 //===------------------------------------------------===// 7799 7800 // 2. Copy and widen instructions from the old loop into the new loop. 7801 VPlans.front()->execute(&State); 7802 7803 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7804 // predication, updating analyses. 7805 ILV.fixVectorizedLoop(State); 7806 7807 ILV.printDebugTracesAtEnd(); 7808 } 7809 7810 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7811 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7812 7813 // We create new control-flow for the vectorized loop, so the original exit 7814 // conditions will be dead after vectorization if it's only used by the 7815 // terminator 7816 SmallVector<BasicBlock*> ExitingBlocks; 7817 OrigLoop->getExitingBlocks(ExitingBlocks); 7818 for (auto *BB : ExitingBlocks) { 7819 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7820 if (!Cmp || !Cmp->hasOneUse()) 7821 continue; 7822 7823 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7824 if (!DeadInstructions.insert(Cmp).second) 7825 continue; 7826 7827 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7828 // TODO: can recurse through operands in general 7829 for (Value *Op : Cmp->operands()) { 7830 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7831 DeadInstructions.insert(cast<Instruction>(Op)); 7832 } 7833 } 7834 7835 // We create new "steps" for induction variable updates to which the original 7836 // induction variables map. An original update instruction will be dead if 7837 // all its users except the induction variable are dead. 7838 auto *Latch = OrigLoop->getLoopLatch(); 7839 for (auto &Induction : Legal->getInductionVars()) { 7840 PHINode *Ind = Induction.first; 7841 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7842 7843 // If the tail is to be folded by masking, the primary induction variable, 7844 // if exists, isn't dead: it will be used for masking. Don't kill it. 7845 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7846 continue; 7847 7848 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7849 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7850 })) 7851 DeadInstructions.insert(IndUpdate); 7852 7853 // We record as "Dead" also the type-casting instructions we had identified 7854 // during induction analysis. We don't need any handling for them in the 7855 // vectorized loop because we have proven that, under a proper runtime 7856 // test guarding the vectorized loop, the value of the phi, and the casted 7857 // value of the phi, are the same. The last instruction in this casting chain 7858 // will get its scalar/vector/widened def from the scalar/vector/widened def 7859 // of the respective phi node. Any other casts in the induction def-use chain 7860 // have no other uses outside the phi update chain, and will be ignored. 7861 InductionDescriptor &IndDes = Induction.second; 7862 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7863 DeadInstructions.insert(Casts.begin(), Casts.end()); 7864 } 7865 } 7866 7867 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7868 7869 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7870 7871 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7872 Instruction::BinaryOps BinOp) { 7873 // When unrolling and the VF is 1, we only need to add a simple scalar. 7874 Type *Ty = Val->getType(); 7875 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7876 7877 if (Ty->isFloatingPointTy()) { 7878 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7879 7880 // Floating-point operations inherit FMF via the builder's flags. 7881 Value *MulOp = Builder.CreateFMul(C, Step); 7882 return Builder.CreateBinOp(BinOp, Val, MulOp); 7883 } 7884 Constant *C = ConstantInt::get(Ty, StartIdx); 7885 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7886 } 7887 7888 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7889 SmallVector<Metadata *, 4> MDs; 7890 // Reserve first location for self reference to the LoopID metadata node. 7891 MDs.push_back(nullptr); 7892 bool IsUnrollMetadata = false; 7893 MDNode *LoopID = L->getLoopID(); 7894 if (LoopID) { 7895 // First find existing loop unrolling disable metadata. 7896 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7897 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7898 if (MD) { 7899 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7900 IsUnrollMetadata = 7901 S && S->getString().startswith("llvm.loop.unroll.disable"); 7902 } 7903 MDs.push_back(LoopID->getOperand(i)); 7904 } 7905 } 7906 7907 if (!IsUnrollMetadata) { 7908 // Add runtime unroll disable metadata. 7909 LLVMContext &Context = L->getHeader()->getContext(); 7910 SmallVector<Metadata *, 1> DisableOperands; 7911 DisableOperands.push_back( 7912 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7913 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7914 MDs.push_back(DisableNode); 7915 MDNode *NewLoopID = MDNode::get(Context, MDs); 7916 // Set operand 0 to refer to the loop id itself. 7917 NewLoopID->replaceOperandWith(0, NewLoopID); 7918 L->setLoopID(NewLoopID); 7919 } 7920 } 7921 7922 //===--------------------------------------------------------------------===// 7923 // EpilogueVectorizerMainLoop 7924 //===--------------------------------------------------------------------===// 7925 7926 /// This function is partially responsible for generating the control flow 7927 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7928 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7929 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7930 Loop *Lp = createVectorLoopSkeleton(""); 7931 7932 // Generate the code to check the minimum iteration count of the vector 7933 // epilogue (see below). 7934 EPI.EpilogueIterationCountCheck = 7935 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7936 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7937 7938 // Generate the code to check any assumptions that we've made for SCEV 7939 // expressions. 7940 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 7941 7942 // Generate the code that checks at runtime if arrays overlap. We put the 7943 // checks into a separate block to make the more common case of few elements 7944 // faster. 7945 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7946 7947 // Generate the iteration count check for the main loop, *after* the check 7948 // for the epilogue loop, so that the path-length is shorter for the case 7949 // that goes directly through the vector epilogue. The longer-path length for 7950 // the main loop is compensated for, by the gain from vectorizing the larger 7951 // trip count. Note: the branch will get updated later on when we vectorize 7952 // the epilogue. 7953 EPI.MainLoopIterationCountCheck = 7954 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7955 7956 // Generate the induction variable. 7957 OldInduction = Legal->getPrimaryInduction(); 7958 Type *IdxTy = Legal->getWidestInductionType(); 7959 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7960 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7961 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7962 EPI.VectorTripCount = CountRoundDown; 7963 Induction = 7964 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7965 getDebugLocFromInstOrOperands(OldInduction)); 7966 7967 // Skip induction resume value creation here because they will be created in 7968 // the second pass. If we created them here, they wouldn't be used anyway, 7969 // because the vplan in the second pass still contains the inductions from the 7970 // original loop. 7971 7972 return completeLoopSkeleton(Lp, OrigLoopID); 7973 } 7974 7975 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7976 LLVM_DEBUG({ 7977 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7978 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7979 << ", Main Loop UF:" << EPI.MainLoopUF 7980 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7981 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7982 }); 7983 } 7984 7985 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7986 DEBUG_WITH_TYPE(VerboseDebug, { 7987 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7988 }); 7989 } 7990 7991 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7992 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7993 assert(L && "Expected valid Loop."); 7994 assert(Bypass && "Expected valid bypass basic block."); 7995 unsigned VFactor = 7996 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7997 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7998 Value *Count = getOrCreateTripCount(L); 7999 // Reuse existing vector loop preheader for TC checks. 8000 // Note that new preheader block is generated for vector loop. 8001 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8002 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8003 8004 // Generate code to check if the loop's trip count is less than VF * UF of the 8005 // main vector loop. 8006 auto P = 8007 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8008 8009 Value *CheckMinIters = Builder.CreateICmp( 8010 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8011 "min.iters.check"); 8012 8013 if (!ForEpilogue) 8014 TCCheckBlock->setName("vector.main.loop.iter.check"); 8015 8016 // Create new preheader for vector loop. 8017 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8018 DT, LI, nullptr, "vector.ph"); 8019 8020 if (ForEpilogue) { 8021 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8022 DT->getNode(Bypass)->getIDom()) && 8023 "TC check is expected to dominate Bypass"); 8024 8025 // Update dominator for Bypass & LoopExit. 8026 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8027 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8028 8029 LoopBypassBlocks.push_back(TCCheckBlock); 8030 8031 // Save the trip count so we don't have to regenerate it in the 8032 // vec.epilog.iter.check. This is safe to do because the trip count 8033 // generated here dominates the vector epilog iter check. 8034 EPI.TripCount = Count; 8035 } 8036 8037 ReplaceInstWithInst( 8038 TCCheckBlock->getTerminator(), 8039 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8040 8041 return TCCheckBlock; 8042 } 8043 8044 //===--------------------------------------------------------------------===// 8045 // EpilogueVectorizerEpilogueLoop 8046 //===--------------------------------------------------------------------===// 8047 8048 /// This function is partially responsible for generating the control flow 8049 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8050 BasicBlock * 8051 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8052 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8053 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8054 8055 // Now, compare the remaining count and if there aren't enough iterations to 8056 // execute the vectorized epilogue skip to the scalar part. 8057 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8058 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8059 LoopVectorPreHeader = 8060 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8061 LI, nullptr, "vec.epilog.ph"); 8062 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8063 VecEpilogueIterationCountCheck); 8064 8065 // Adjust the control flow taking the state info from the main loop 8066 // vectorization into account. 8067 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8068 "expected this to be saved from the previous pass."); 8069 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8070 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8071 8072 DT->changeImmediateDominator(LoopVectorPreHeader, 8073 EPI.MainLoopIterationCountCheck); 8074 8075 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8076 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8077 8078 if (EPI.SCEVSafetyCheck) 8079 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8080 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8081 if (EPI.MemSafetyCheck) 8082 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8083 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8084 8085 DT->changeImmediateDominator( 8086 VecEpilogueIterationCountCheck, 8087 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8088 8089 DT->changeImmediateDominator(LoopScalarPreHeader, 8090 EPI.EpilogueIterationCountCheck); 8091 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8092 8093 // Keep track of bypass blocks, as they feed start values to the induction 8094 // phis in the scalar loop preheader. 8095 if (EPI.SCEVSafetyCheck) 8096 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8097 if (EPI.MemSafetyCheck) 8098 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8099 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8100 8101 // Generate a resume induction for the vector epilogue and put it in the 8102 // vector epilogue preheader 8103 Type *IdxTy = Legal->getWidestInductionType(); 8104 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8105 LoopVectorPreHeader->getFirstNonPHI()); 8106 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8107 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8108 EPI.MainLoopIterationCountCheck); 8109 8110 // Generate the induction variable. 8111 OldInduction = Legal->getPrimaryInduction(); 8112 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8113 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8114 Value *StartIdx = EPResumeVal; 8115 Induction = 8116 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8117 getDebugLocFromInstOrOperands(OldInduction)); 8118 8119 // Generate induction resume values. These variables save the new starting 8120 // indexes for the scalar loop. They are used to test if there are any tail 8121 // iterations left once the vector loop has completed. 8122 // Note that when the vectorized epilogue is skipped due to iteration count 8123 // check, then the resume value for the induction variable comes from 8124 // the trip count of the main vector loop, hence passing the AdditionalBypass 8125 // argument. 8126 createInductionResumeValues(Lp, CountRoundDown, 8127 {VecEpilogueIterationCountCheck, 8128 EPI.VectorTripCount} /* AdditionalBypass */); 8129 8130 AddRuntimeUnrollDisableMetaData(Lp); 8131 return completeLoopSkeleton(Lp, OrigLoopID); 8132 } 8133 8134 BasicBlock * 8135 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8136 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8137 8138 assert(EPI.TripCount && 8139 "Expected trip count to have been safed in the first pass."); 8140 assert( 8141 (!isa<Instruction>(EPI.TripCount) || 8142 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8143 "saved trip count does not dominate insertion point."); 8144 Value *TC = EPI.TripCount; 8145 IRBuilder<> Builder(Insert->getTerminator()); 8146 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8147 8148 // Generate code to check if the loop's trip count is less than VF * UF of the 8149 // vector epilogue loop. 8150 auto P = 8151 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8152 8153 Value *CheckMinIters = Builder.CreateICmp( 8154 P, Count, 8155 ConstantInt::get(Count->getType(), 8156 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8157 "min.epilog.iters.check"); 8158 8159 ReplaceInstWithInst( 8160 Insert->getTerminator(), 8161 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8162 8163 LoopBypassBlocks.push_back(Insert); 8164 return Insert; 8165 } 8166 8167 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8168 LLVM_DEBUG({ 8169 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8170 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8171 << ", Main Loop UF:" << EPI.MainLoopUF 8172 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8173 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8174 }); 8175 } 8176 8177 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8178 DEBUG_WITH_TYPE(VerboseDebug, { 8179 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8180 }); 8181 } 8182 8183 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8184 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8185 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8186 bool PredicateAtRangeStart = Predicate(Range.Start); 8187 8188 for (ElementCount TmpVF = Range.Start * 2; 8189 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8190 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8191 Range.End = TmpVF; 8192 break; 8193 } 8194 8195 return PredicateAtRangeStart; 8196 } 8197 8198 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8199 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8200 /// of VF's starting at a given VF and extending it as much as possible. Each 8201 /// vectorization decision can potentially shorten this sub-range during 8202 /// buildVPlan(). 8203 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8204 ElementCount MaxVF) { 8205 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8206 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8207 VFRange SubRange = {VF, MaxVFPlusOne}; 8208 VPlans.push_back(buildVPlan(SubRange)); 8209 VF = SubRange.End; 8210 } 8211 } 8212 8213 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8214 VPlanPtr &Plan) { 8215 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8216 8217 // Look for cached value. 8218 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8219 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8220 if (ECEntryIt != EdgeMaskCache.end()) 8221 return ECEntryIt->second; 8222 8223 VPValue *SrcMask = createBlockInMask(Src, Plan); 8224 8225 // The terminator has to be a branch inst! 8226 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8227 assert(BI && "Unexpected terminator found"); 8228 8229 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8230 return EdgeMaskCache[Edge] = SrcMask; 8231 8232 // If source is an exiting block, we know the exit edge is dynamically dead 8233 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8234 // adding uses of an otherwise potentially dead instruction. 8235 if (OrigLoop->isLoopExiting(Src)) 8236 return EdgeMaskCache[Edge] = SrcMask; 8237 8238 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8239 assert(EdgeMask && "No Edge Mask found for condition"); 8240 8241 if (BI->getSuccessor(0) != Dst) 8242 EdgeMask = Builder.createNot(EdgeMask); 8243 8244 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8245 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8246 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8247 // The select version does not introduce new UB if SrcMask is false and 8248 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8249 VPValue *False = Plan->getOrAddVPValue( 8250 ConstantInt::getFalse(BI->getCondition()->getType())); 8251 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8252 } 8253 8254 return EdgeMaskCache[Edge] = EdgeMask; 8255 } 8256 8257 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8258 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8259 8260 // Look for cached value. 8261 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8262 if (BCEntryIt != BlockMaskCache.end()) 8263 return BCEntryIt->second; 8264 8265 // All-one mask is modelled as no-mask following the convention for masked 8266 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8267 VPValue *BlockMask = nullptr; 8268 8269 if (OrigLoop->getHeader() == BB) { 8270 if (!CM.blockNeedsPredication(BB)) 8271 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8272 8273 // Create the block in mask as the first non-phi instruction in the block. 8274 VPBuilder::InsertPointGuard Guard(Builder); 8275 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8276 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8277 8278 // Introduce the early-exit compare IV <= BTC to form header block mask. 8279 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8280 // Start by constructing the desired canonical IV. 8281 VPValue *IV = nullptr; 8282 if (Legal->getPrimaryInduction()) 8283 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8284 else { 8285 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8286 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8287 IV = IVRecipe->getVPValue(); 8288 } 8289 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8290 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8291 8292 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8293 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8294 // as a second argument, we only pass the IV here and extract the 8295 // tripcount from the transform state where codegen of the VP instructions 8296 // happen. 8297 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8298 } else { 8299 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8300 } 8301 return BlockMaskCache[BB] = BlockMask; 8302 } 8303 8304 // This is the block mask. We OR all incoming edges. 8305 for (auto *Predecessor : predecessors(BB)) { 8306 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8307 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8308 return BlockMaskCache[BB] = EdgeMask; 8309 8310 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8311 BlockMask = EdgeMask; 8312 continue; 8313 } 8314 8315 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8316 } 8317 8318 return BlockMaskCache[BB] = BlockMask; 8319 } 8320 8321 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8322 VPlanPtr &Plan) { 8323 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8324 "Must be called with either a load or store"); 8325 8326 auto willWiden = [&](ElementCount VF) -> bool { 8327 if (VF.isScalar()) 8328 return false; 8329 LoopVectorizationCostModel::InstWidening Decision = 8330 CM.getWideningDecision(I, VF); 8331 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8332 "CM decision should be taken at this point."); 8333 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8334 return true; 8335 if (CM.isScalarAfterVectorization(I, VF) || 8336 CM.isProfitableToScalarize(I, VF)) 8337 return false; 8338 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8339 }; 8340 8341 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8342 return nullptr; 8343 8344 VPValue *Mask = nullptr; 8345 if (Legal->isMaskRequired(I)) 8346 Mask = createBlockInMask(I->getParent(), Plan); 8347 8348 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8349 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8350 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8351 8352 StoreInst *Store = cast<StoreInst>(I); 8353 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8354 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8355 } 8356 8357 VPWidenIntOrFpInductionRecipe * 8358 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8359 // Check if this is an integer or fp induction. If so, build the recipe that 8360 // produces its scalar and vector values. 8361 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8362 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8363 II.getKind() == InductionDescriptor::IK_FpInduction) { 8364 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8365 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8366 return new VPWidenIntOrFpInductionRecipe( 8367 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8368 } 8369 8370 return nullptr; 8371 } 8372 8373 VPWidenIntOrFpInductionRecipe * 8374 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8375 VPlan &Plan) const { 8376 // Optimize the special case where the source is a constant integer 8377 // induction variable. Notice that we can only optimize the 'trunc' case 8378 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8379 // (c) other casts depend on pointer size. 8380 8381 // Determine whether \p K is a truncation based on an induction variable that 8382 // can be optimized. 8383 auto isOptimizableIVTruncate = 8384 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8385 return [=](ElementCount VF) -> bool { 8386 return CM.isOptimizableIVTruncate(K, VF); 8387 }; 8388 }; 8389 8390 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8391 isOptimizableIVTruncate(I), Range)) { 8392 8393 InductionDescriptor II = 8394 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8395 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8396 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8397 Start, nullptr, I); 8398 } 8399 return nullptr; 8400 } 8401 8402 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8403 // If all incoming values are equal, the incoming VPValue can be used directly 8404 // instead of creating a new VPBlendRecipe. 8405 Value *FirstIncoming = Phi->getIncomingValue(0); 8406 if (all_of(Phi->incoming_values(), [FirstIncoming](const Value *Inc) { 8407 return FirstIncoming == Inc; 8408 })) { 8409 return Plan->getOrAddVPValue(Phi->getIncomingValue(0)); 8410 } 8411 8412 // We know that all PHIs in non-header blocks are converted into selects, so 8413 // we don't have to worry about the insertion order and we can just use the 8414 // builder. At this point we generate the predication tree. There may be 8415 // duplications since this is a simple recursive scan, but future 8416 // optimizations will clean it up. 8417 SmallVector<VPValue *, 2> Operands; 8418 unsigned NumIncoming = Phi->getNumIncomingValues(); 8419 8420 for (unsigned In = 0; In < NumIncoming; In++) { 8421 VPValue *EdgeMask = 8422 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8423 assert((EdgeMask || NumIncoming == 1) && 8424 "Multiple predecessors with one having a full mask"); 8425 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8426 if (EdgeMask) 8427 Operands.push_back(EdgeMask); 8428 } 8429 return toVPRecipeResult(new VPBlendRecipe(Phi, Operands)); 8430 } 8431 8432 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8433 VPlan &Plan) const { 8434 8435 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8436 [this, CI](ElementCount VF) { 8437 return CM.isScalarWithPredication(CI, VF); 8438 }, 8439 Range); 8440 8441 if (IsPredicated) 8442 return nullptr; 8443 8444 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8445 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8446 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8447 ID == Intrinsic::pseudoprobe || 8448 ID == Intrinsic::experimental_noalias_scope_decl)) 8449 return nullptr; 8450 8451 auto willWiden = [&](ElementCount VF) -> bool { 8452 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8453 // The following case may be scalarized depending on the VF. 8454 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8455 // version of the instruction. 8456 // Is it beneficial to perform intrinsic call compared to lib call? 8457 bool NeedToScalarize = false; 8458 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8459 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8460 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8461 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8462 "Cannot have invalid costs while widening"); 8463 return UseVectorIntrinsic || !NeedToScalarize; 8464 }; 8465 8466 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8467 return nullptr; 8468 8469 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8470 } 8471 8472 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8473 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8474 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8475 // Instruction should be widened, unless it is scalar after vectorization, 8476 // scalarization is profitable or it is predicated. 8477 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8478 return CM.isScalarAfterVectorization(I, VF) || 8479 CM.isProfitableToScalarize(I, VF) || 8480 CM.isScalarWithPredication(I, VF); 8481 }; 8482 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8483 Range); 8484 } 8485 8486 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8487 auto IsVectorizableOpcode = [](unsigned Opcode) { 8488 switch (Opcode) { 8489 case Instruction::Add: 8490 case Instruction::And: 8491 case Instruction::AShr: 8492 case Instruction::BitCast: 8493 case Instruction::FAdd: 8494 case Instruction::FCmp: 8495 case Instruction::FDiv: 8496 case Instruction::FMul: 8497 case Instruction::FNeg: 8498 case Instruction::FPExt: 8499 case Instruction::FPToSI: 8500 case Instruction::FPToUI: 8501 case Instruction::FPTrunc: 8502 case Instruction::FRem: 8503 case Instruction::FSub: 8504 case Instruction::ICmp: 8505 case Instruction::IntToPtr: 8506 case Instruction::LShr: 8507 case Instruction::Mul: 8508 case Instruction::Or: 8509 case Instruction::PtrToInt: 8510 case Instruction::SDiv: 8511 case Instruction::Select: 8512 case Instruction::SExt: 8513 case Instruction::Shl: 8514 case Instruction::SIToFP: 8515 case Instruction::SRem: 8516 case Instruction::Sub: 8517 case Instruction::Trunc: 8518 case Instruction::UDiv: 8519 case Instruction::UIToFP: 8520 case Instruction::URem: 8521 case Instruction::Xor: 8522 case Instruction::ZExt: 8523 return true; 8524 } 8525 return false; 8526 }; 8527 8528 if (!IsVectorizableOpcode(I->getOpcode())) 8529 return nullptr; 8530 8531 // Success: widen this instruction. 8532 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8533 } 8534 8535 VPBasicBlock *VPRecipeBuilder::handleReplication( 8536 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8537 VPlanPtr &Plan) { 8538 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8539 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8540 Range); 8541 8542 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8543 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8544 Range); 8545 8546 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8547 IsUniform, IsPredicated); 8548 setRecipe(I, Recipe); 8549 Plan->addVPValue(I, Recipe); 8550 8551 // Find if I uses a predicated instruction. If so, it will use its scalar 8552 // value. Avoid hoisting the insert-element which packs the scalar value into 8553 // a vector value, as that happens iff all users use the vector value. 8554 for (VPValue *Op : Recipe->operands()) { 8555 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8556 if (!PredR) 8557 continue; 8558 auto *RepR = 8559 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8560 assert(RepR->isPredicated() && 8561 "expected Replicate recipe to be predicated"); 8562 RepR->setAlsoPack(false); 8563 } 8564 8565 // Finalize the recipe for Instr, first if it is not predicated. 8566 if (!IsPredicated) { 8567 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8568 VPBB->appendRecipe(Recipe); 8569 return VPBB; 8570 } 8571 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8572 assert(VPBB->getSuccessors().empty() && 8573 "VPBB has successors when handling predicated replication."); 8574 // Record predicated instructions for above packing optimizations. 8575 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8576 VPBlockUtils::insertBlockAfter(Region, VPBB); 8577 auto *RegSucc = new VPBasicBlock(); 8578 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8579 return RegSucc; 8580 } 8581 8582 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8583 VPRecipeBase *PredRecipe, 8584 VPlanPtr &Plan) { 8585 // Instructions marked for predication are replicated and placed under an 8586 // if-then construct to prevent side-effects. 8587 8588 // Generate recipes to compute the block mask for this region. 8589 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8590 8591 // Build the triangular if-then region. 8592 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8593 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8594 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8595 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8596 auto *PHIRecipe = Instr->getType()->isVoidTy() 8597 ? nullptr 8598 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8599 if (PHIRecipe) { 8600 Plan->removeVPValueFor(Instr); 8601 Plan->addVPValue(Instr, PHIRecipe); 8602 } 8603 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8604 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8605 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8606 8607 // Note: first set Entry as region entry and then connect successors starting 8608 // from it in order, to propagate the "parent" of each VPBasicBlock. 8609 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8610 VPBlockUtils::connectBlocks(Pred, Exit); 8611 8612 return Region; 8613 } 8614 8615 VPRecipeOrVPValueTy VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8616 VFRange &Range, 8617 VPlanPtr &Plan) { 8618 // First, check for specific widening recipes that deal with calls, memory 8619 // operations, inductions and Phi nodes. 8620 if (auto *CI = dyn_cast<CallInst>(Instr)) 8621 return toVPRecipeResult(tryToWidenCall(CI, Range, *Plan)); 8622 8623 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8624 return toVPRecipeResult(tryToWidenMemory(Instr, Range, Plan)); 8625 8626 VPRecipeBase *Recipe; 8627 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8628 if (Phi->getParent() != OrigLoop->getHeader()) 8629 return tryToBlend(Phi, Plan); 8630 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8631 return toVPRecipeResult(Recipe); 8632 8633 if (Legal->isReductionVariable(Phi)) { 8634 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8635 VPValue *StartV = 8636 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8637 return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV)); 8638 } 8639 8640 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8641 } 8642 8643 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8644 cast<TruncInst>(Instr), Range, *Plan))) 8645 return toVPRecipeResult(Recipe); 8646 8647 if (!shouldWiden(Instr, Range)) 8648 return nullptr; 8649 8650 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8651 return toVPRecipeResult(new VPWidenGEPRecipe( 8652 GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop)); 8653 8654 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8655 bool InvariantCond = 8656 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8657 return toVPRecipeResult(new VPWidenSelectRecipe( 8658 *SI, Plan->mapToVPValues(SI->operands()), InvariantCond)); 8659 } 8660 8661 return toVPRecipeResult(tryToWiden(Instr, *Plan)); 8662 } 8663 8664 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8665 ElementCount MaxVF) { 8666 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8667 8668 // Collect instructions from the original loop that will become trivially dead 8669 // in the vectorized loop. We don't need to vectorize these instructions. For 8670 // example, original induction update instructions can become dead because we 8671 // separately emit induction "steps" when generating code for the new loop. 8672 // Similarly, we create a new latch condition when setting up the structure 8673 // of the new loop, so the old one can become dead. 8674 SmallPtrSet<Instruction *, 4> DeadInstructions; 8675 collectTriviallyDeadInstructions(DeadInstructions); 8676 8677 // Add assume instructions we need to drop to DeadInstructions, to prevent 8678 // them from being added to the VPlan. 8679 // TODO: We only need to drop assumes in blocks that get flattend. If the 8680 // control flow is preserved, we should keep them. 8681 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8682 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8683 8684 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8685 // Dead instructions do not need sinking. Remove them from SinkAfter. 8686 for (Instruction *I : DeadInstructions) 8687 SinkAfter.erase(I); 8688 8689 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8690 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8691 VFRange SubRange = {VF, MaxVFPlusOne}; 8692 VPlans.push_back( 8693 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8694 VF = SubRange.End; 8695 } 8696 } 8697 8698 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8699 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8700 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8701 8702 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8703 8704 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8705 8706 // --------------------------------------------------------------------------- 8707 // Pre-construction: record ingredients whose recipes we'll need to further 8708 // process after constructing the initial VPlan. 8709 // --------------------------------------------------------------------------- 8710 8711 // Mark instructions we'll need to sink later and their targets as 8712 // ingredients whose recipe we'll need to record. 8713 for (auto &Entry : SinkAfter) { 8714 RecipeBuilder.recordRecipeOf(Entry.first); 8715 RecipeBuilder.recordRecipeOf(Entry.second); 8716 } 8717 for (auto &Reduction : CM.getInLoopReductionChains()) { 8718 PHINode *Phi = Reduction.first; 8719 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8720 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8721 8722 RecipeBuilder.recordRecipeOf(Phi); 8723 for (auto &R : ReductionOperations) { 8724 RecipeBuilder.recordRecipeOf(R); 8725 // For min/max reducitons, where we have a pair of icmp/select, we also 8726 // need to record the ICmp recipe, so it can be removed later. 8727 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8728 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8729 } 8730 } 8731 8732 // For each interleave group which is relevant for this (possibly trimmed) 8733 // Range, add it to the set of groups to be later applied to the VPlan and add 8734 // placeholders for its members' Recipes which we'll be replacing with a 8735 // single VPInterleaveRecipe. 8736 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8737 auto applyIG = [IG, this](ElementCount VF) -> bool { 8738 return (VF.isVector() && // Query is illegal for VF == 1 8739 CM.getWideningDecision(IG->getInsertPos(), VF) == 8740 LoopVectorizationCostModel::CM_Interleave); 8741 }; 8742 if (!getDecisionAndClampRange(applyIG, Range)) 8743 continue; 8744 InterleaveGroups.insert(IG); 8745 for (unsigned i = 0; i < IG->getFactor(); i++) 8746 if (Instruction *Member = IG->getMember(i)) 8747 RecipeBuilder.recordRecipeOf(Member); 8748 }; 8749 8750 // --------------------------------------------------------------------------- 8751 // Build initial VPlan: Scan the body of the loop in a topological order to 8752 // visit each basic block after having visited its predecessor basic blocks. 8753 // --------------------------------------------------------------------------- 8754 8755 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8756 auto Plan = std::make_unique<VPlan>(); 8757 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8758 Plan->setEntry(VPBB); 8759 8760 // Scan the body of the loop in a topological order to visit each basic block 8761 // after having visited its predecessor basic blocks. 8762 LoopBlocksDFS DFS(OrigLoop); 8763 DFS.perform(LI); 8764 8765 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8766 // Relevant instructions from basic block BB will be grouped into VPRecipe 8767 // ingredients and fill a new VPBasicBlock. 8768 unsigned VPBBsForBB = 0; 8769 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8770 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8771 VPBB = FirstVPBBForBB; 8772 Builder.setInsertPoint(VPBB); 8773 8774 // Introduce each ingredient into VPlan. 8775 // TODO: Model and preserve debug instrinsics in VPlan. 8776 for (Instruction &I : BB->instructionsWithoutDebug()) { 8777 Instruction *Instr = &I; 8778 8779 // First filter out irrelevant instructions, to ensure no recipes are 8780 // built for them. 8781 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8782 continue; 8783 8784 if (auto RecipeOrValue = 8785 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8786 // If Instr can be simplified to an existing VPValue, use it. 8787 if (RecipeOrValue.is<VPValue *>()) { 8788 Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>()); 8789 continue; 8790 } 8791 // Otherwise, add the new recipe. 8792 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8793 for (auto *Def : Recipe->definedValues()) { 8794 auto *UV = Def->getUnderlyingValue(); 8795 Plan->addVPValue(UV, Def); 8796 } 8797 8798 RecipeBuilder.setRecipe(Instr, Recipe); 8799 VPBB->appendRecipe(Recipe); 8800 continue; 8801 } 8802 8803 // Otherwise, if all widening options failed, Instruction is to be 8804 // replicated. This may create a successor for VPBB. 8805 VPBasicBlock *NextVPBB = 8806 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8807 if (NextVPBB != VPBB) { 8808 VPBB = NextVPBB; 8809 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8810 : ""); 8811 } 8812 } 8813 } 8814 8815 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8816 // may also be empty, such as the last one VPBB, reflecting original 8817 // basic-blocks with no recipes. 8818 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8819 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8820 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8821 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8822 delete PreEntry; 8823 8824 // --------------------------------------------------------------------------- 8825 // Transform initial VPlan: Apply previously taken decisions, in order, to 8826 // bring the VPlan to its final state. 8827 // --------------------------------------------------------------------------- 8828 8829 // Apply Sink-After legal constraints. 8830 for (auto &Entry : SinkAfter) { 8831 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8832 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8833 // If the target is in a replication region, make sure to move Sink to the 8834 // block after it, not into the replication region itself. 8835 if (auto *Region = 8836 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8837 if (Region->isReplicator()) { 8838 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8839 VPBasicBlock *NextBlock = 8840 cast<VPBasicBlock>(Region->getSuccessors().front()); 8841 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8842 continue; 8843 } 8844 } 8845 Sink->moveAfter(Target); 8846 } 8847 8848 // Interleave memory: for each Interleave Group we marked earlier as relevant 8849 // for this VPlan, replace the Recipes widening its memory instructions with a 8850 // single VPInterleaveRecipe at its insertion point. 8851 for (auto IG : InterleaveGroups) { 8852 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8853 RecipeBuilder.getRecipe(IG->getInsertPos())); 8854 SmallVector<VPValue *, 4> StoredValues; 8855 for (unsigned i = 0; i < IG->getFactor(); ++i) 8856 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8857 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8858 8859 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8860 Recipe->getMask()); 8861 VPIG->insertBefore(Recipe); 8862 unsigned J = 0; 8863 for (unsigned i = 0; i < IG->getFactor(); ++i) 8864 if (Instruction *Member = IG->getMember(i)) { 8865 if (!Member->getType()->isVoidTy()) { 8866 VPValue *OriginalV = Plan->getVPValue(Member); 8867 Plan->removeVPValueFor(Member); 8868 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8869 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8870 J++; 8871 } 8872 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8873 } 8874 } 8875 8876 // Adjust the recipes for any inloop reductions. 8877 if (Range.Start.isVector()) 8878 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8879 8880 // Finally, if tail is folded by masking, introduce selects between the phi 8881 // and the live-out instruction of each reduction, at the end of the latch. 8882 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8883 Builder.setInsertPoint(VPBB); 8884 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8885 for (auto &Reduction : Legal->getReductionVars()) { 8886 if (CM.isInLoopReduction(Reduction.first)) 8887 continue; 8888 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8889 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8890 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8891 } 8892 } 8893 8894 std::string PlanName; 8895 raw_string_ostream RSO(PlanName); 8896 ElementCount VF = Range.Start; 8897 Plan->addVF(VF); 8898 RSO << "Initial VPlan for VF={" << VF; 8899 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8900 Plan->addVF(VF); 8901 RSO << "," << VF; 8902 } 8903 RSO << "},UF>=1"; 8904 RSO.flush(); 8905 Plan->setName(PlanName); 8906 8907 return Plan; 8908 } 8909 8910 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8911 // Outer loop handling: They may require CFG and instruction level 8912 // transformations before even evaluating whether vectorization is profitable. 8913 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8914 // the vectorization pipeline. 8915 assert(!OrigLoop->isInnermost()); 8916 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8917 8918 // Create new empty VPlan 8919 auto Plan = std::make_unique<VPlan>(); 8920 8921 // Build hierarchical CFG 8922 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8923 HCFGBuilder.buildHierarchicalCFG(); 8924 8925 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8926 VF *= 2) 8927 Plan->addVF(VF); 8928 8929 if (EnableVPlanPredication) { 8930 VPlanPredicator VPP(*Plan); 8931 VPP.predicate(); 8932 8933 // Avoid running transformation to recipes until masked code generation in 8934 // VPlan-native path is in place. 8935 return Plan; 8936 } 8937 8938 SmallPtrSet<Instruction *, 1> DeadInstructions; 8939 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 8940 Legal->getInductionVars(), 8941 DeadInstructions, *PSE.getSE()); 8942 return Plan; 8943 } 8944 8945 // Adjust the recipes for any inloop reductions. The chain of instructions 8946 // leading from the loop exit instr to the phi need to be converted to 8947 // reductions, with one operand being vector and the other being the scalar 8948 // reduction chain. 8949 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8950 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8951 for (auto &Reduction : CM.getInLoopReductionChains()) { 8952 PHINode *Phi = Reduction.first; 8953 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8954 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8955 8956 // ReductionOperations are orders top-down from the phi's use to the 8957 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8958 // which of the two operands will remain scalar and which will be reduced. 8959 // For minmax the chain will be the select instructions. 8960 Instruction *Chain = Phi; 8961 for (Instruction *R : ReductionOperations) { 8962 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8963 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8964 8965 VPValue *ChainOp = Plan->getVPValue(Chain); 8966 unsigned FirstOpId; 8967 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8968 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8969 "Expected to replace a VPWidenSelectSC"); 8970 FirstOpId = 1; 8971 } else { 8972 assert(isa<VPWidenRecipe>(WidenRecipe) && 8973 "Expected to replace a VPWidenSC"); 8974 FirstOpId = 0; 8975 } 8976 unsigned VecOpId = 8977 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8978 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8979 8980 auto *CondOp = CM.foldTailByMasking() 8981 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8982 : nullptr; 8983 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8984 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8985 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8986 Plan->removeVPValueFor(R); 8987 Plan->addVPValue(R, RedRecipe); 8988 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8989 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8990 WidenRecipe->eraseFromParent(); 8991 8992 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8993 VPRecipeBase *CompareRecipe = 8994 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8995 assert(isa<VPWidenRecipe>(CompareRecipe) && 8996 "Expected to replace a VPWidenSC"); 8997 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8998 "Expected no remaining users"); 8999 CompareRecipe->eraseFromParent(); 9000 } 9001 Chain = R; 9002 } 9003 } 9004 } 9005 9006 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9007 VPSlotTracker &SlotTracker) const { 9008 O << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9009 IG->getInsertPos()->printAsOperand(O, false); 9010 O << ", "; 9011 getAddr()->printAsOperand(O, SlotTracker); 9012 VPValue *Mask = getMask(); 9013 if (Mask) { 9014 O << ", "; 9015 Mask->printAsOperand(O, SlotTracker); 9016 } 9017 for (unsigned i = 0; i < IG->getFactor(); ++i) 9018 if (Instruction *I = IG->getMember(i)) 9019 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 9020 } 9021 9022 void VPWidenCallRecipe::execute(VPTransformState &State) { 9023 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9024 *this, State); 9025 } 9026 9027 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9028 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9029 this, *this, InvariantCond, State); 9030 } 9031 9032 void VPWidenRecipe::execute(VPTransformState &State) { 9033 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9034 } 9035 9036 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9037 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9038 *this, State.UF, State.VF, IsPtrLoopInvariant, 9039 IsIndexLoopInvariant, State); 9040 } 9041 9042 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9043 assert(!State.Instance && "Int or FP induction being replicated."); 9044 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9045 getTruncInst(), getVPValue(0), 9046 getCastValue(), State); 9047 } 9048 9049 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9050 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9051 getStartValue(), this, State); 9052 } 9053 9054 void VPBlendRecipe::execute(VPTransformState &State) { 9055 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9056 // We know that all PHIs in non-header blocks are converted into 9057 // selects, so we don't have to worry about the insertion order and we 9058 // can just use the builder. 9059 // At this point we generate the predication tree. There may be 9060 // duplications since this is a simple recursive scan, but future 9061 // optimizations will clean it up. 9062 9063 unsigned NumIncoming = getNumIncomingValues(); 9064 9065 // Generate a sequence of selects of the form: 9066 // SELECT(Mask3, In3, 9067 // SELECT(Mask2, In2, 9068 // SELECT(Mask1, In1, 9069 // In0))) 9070 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9071 // are essentially undef are taken from In0. 9072 InnerLoopVectorizer::VectorParts Entry(State.UF); 9073 for (unsigned In = 0; In < NumIncoming; ++In) { 9074 for (unsigned Part = 0; Part < State.UF; ++Part) { 9075 // We might have single edge PHIs (blocks) - use an identity 9076 // 'select' for the first PHI operand. 9077 Value *In0 = State.get(getIncomingValue(In), Part); 9078 if (In == 0) 9079 Entry[Part] = In0; // Initialize with the first incoming value. 9080 else { 9081 // Select between the current value and the previous incoming edge 9082 // based on the incoming mask. 9083 Value *Cond = State.get(getMask(In), Part); 9084 Entry[Part] = 9085 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9086 } 9087 } 9088 } 9089 for (unsigned Part = 0; Part < State.UF; ++Part) 9090 State.set(this, Entry[Part], Part); 9091 } 9092 9093 void VPInterleaveRecipe::execute(VPTransformState &State) { 9094 assert(!State.Instance && "Interleave group being replicated."); 9095 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9096 getStoredValues(), getMask()); 9097 } 9098 9099 void VPReductionRecipe::execute(VPTransformState &State) { 9100 assert(!State.Instance && "Reduction being replicated."); 9101 for (unsigned Part = 0; Part < State.UF; ++Part) { 9102 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9103 Value *NewVecOp = State.get(getVecOp(), Part); 9104 if (VPValue *Cond = getCondOp()) { 9105 Value *NewCond = State.get(Cond, Part); 9106 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9107 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9108 Kind, VecTy->getElementType()); 9109 Constant *IdenVec = 9110 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9111 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9112 NewVecOp = Select; 9113 } 9114 Value *NewRed = 9115 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9116 Value *PrevInChain = State.get(getChainOp(), Part); 9117 Value *NextInChain; 9118 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9119 NextInChain = 9120 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9121 NewRed, PrevInChain); 9122 } else { 9123 NextInChain = State.Builder.CreateBinOp( 9124 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9125 PrevInChain); 9126 } 9127 State.set(this, NextInChain, Part); 9128 } 9129 } 9130 9131 void VPReplicateRecipe::execute(VPTransformState &State) { 9132 if (State.Instance) { // Generate a single instance. 9133 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9134 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9135 *State.Instance, IsPredicated, State); 9136 // Insert scalar instance packing it into a vector. 9137 if (AlsoPack && State.VF.isVector()) { 9138 // If we're constructing lane 0, initialize to start from poison. 9139 if (State.Instance->Lane.isFirstLane()) { 9140 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9141 Value *Poison = PoisonValue::get( 9142 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9143 State.set(this, Poison, State.Instance->Part); 9144 } 9145 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9146 } 9147 return; 9148 } 9149 9150 // Generate scalar instances for all VF lanes of all UF parts, unless the 9151 // instruction is uniform inwhich case generate only the first lane for each 9152 // of the UF parts. 9153 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9154 assert((!State.VF.isScalable() || IsUniform) && 9155 "Can't scalarize a scalable vector"); 9156 for (unsigned Part = 0; Part < State.UF; ++Part) 9157 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9158 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9159 VPIteration(Part, Lane), IsPredicated, 9160 State); 9161 } 9162 9163 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9164 assert(State.Instance && "Branch on Mask works only on single instance."); 9165 9166 unsigned Part = State.Instance->Part; 9167 unsigned Lane = State.Instance->Lane.getKnownLane(); 9168 9169 Value *ConditionBit = nullptr; 9170 VPValue *BlockInMask = getMask(); 9171 if (BlockInMask) { 9172 ConditionBit = State.get(BlockInMask, Part); 9173 if (ConditionBit->getType()->isVectorTy()) 9174 ConditionBit = State.Builder.CreateExtractElement( 9175 ConditionBit, State.Builder.getInt32(Lane)); 9176 } else // Block in mask is all-one. 9177 ConditionBit = State.Builder.getTrue(); 9178 9179 // Replace the temporary unreachable terminator with a new conditional branch, 9180 // whose two destinations will be set later when they are created. 9181 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9182 assert(isa<UnreachableInst>(CurrentTerminator) && 9183 "Expected to replace unreachable terminator with conditional branch."); 9184 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9185 CondBr->setSuccessor(0, nullptr); 9186 ReplaceInstWithInst(CurrentTerminator, CondBr); 9187 } 9188 9189 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9190 assert(State.Instance && "Predicated instruction PHI works per instance."); 9191 Instruction *ScalarPredInst = 9192 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9193 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9194 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9195 assert(PredicatingBB && "Predicated block has no single predecessor."); 9196 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9197 "operand must be VPReplicateRecipe"); 9198 9199 // By current pack/unpack logic we need to generate only a single phi node: if 9200 // a vector value for the predicated instruction exists at this point it means 9201 // the instruction has vector users only, and a phi for the vector value is 9202 // needed. In this case the recipe of the predicated instruction is marked to 9203 // also do that packing, thereby "hoisting" the insert-element sequence. 9204 // Otherwise, a phi node for the scalar value is needed. 9205 unsigned Part = State.Instance->Part; 9206 if (State.hasVectorValue(getOperand(0), Part)) { 9207 Value *VectorValue = State.get(getOperand(0), Part); 9208 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9209 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9210 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9211 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9212 if (State.hasVectorValue(this, Part)) 9213 State.reset(this, VPhi, Part); 9214 else 9215 State.set(this, VPhi, Part); 9216 // NOTE: Currently we need to update the value of the operand, so the next 9217 // predicated iteration inserts its generated value in the correct vector. 9218 State.reset(getOperand(0), VPhi, Part); 9219 } else { 9220 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9221 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9222 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9223 PredicatingBB); 9224 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9225 if (State.hasScalarValue(this, *State.Instance)) 9226 State.reset(this, Phi, *State.Instance); 9227 else 9228 State.set(this, Phi, *State.Instance); 9229 // NOTE: Currently we need to update the value of the operand, so the next 9230 // predicated iteration inserts its generated value in the correct vector. 9231 State.reset(getOperand(0), Phi, *State.Instance); 9232 } 9233 } 9234 9235 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9236 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9237 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9238 StoredValue ? nullptr : getVPValue(), 9239 getAddr(), StoredValue, getMask()); 9240 } 9241 9242 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9243 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9244 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9245 // for predication. 9246 static ScalarEpilogueLowering getScalarEpilogueLowering( 9247 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9248 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9249 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9250 LoopVectorizationLegality &LVL) { 9251 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9252 // don't look at hints or options, and don't request a scalar epilogue. 9253 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9254 // LoopAccessInfo (due to code dependency and not being able to reliably get 9255 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9256 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9257 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9258 // back to the old way and vectorize with versioning when forced. See D81345.) 9259 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9260 PGSOQueryType::IRPass) && 9261 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9262 return CM_ScalarEpilogueNotAllowedOptSize; 9263 9264 // 2) If set, obey the directives 9265 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9266 switch (PreferPredicateOverEpilogue) { 9267 case PreferPredicateTy::ScalarEpilogue: 9268 return CM_ScalarEpilogueAllowed; 9269 case PreferPredicateTy::PredicateElseScalarEpilogue: 9270 return CM_ScalarEpilogueNotNeededUsePredicate; 9271 case PreferPredicateTy::PredicateOrDontVectorize: 9272 return CM_ScalarEpilogueNotAllowedUsePredicate; 9273 }; 9274 } 9275 9276 // 3) If set, obey the hints 9277 switch (Hints.getPredicate()) { 9278 case LoopVectorizeHints::FK_Enabled: 9279 return CM_ScalarEpilogueNotNeededUsePredicate; 9280 case LoopVectorizeHints::FK_Disabled: 9281 return CM_ScalarEpilogueAllowed; 9282 }; 9283 9284 // 4) if the TTI hook indicates this is profitable, request predication. 9285 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9286 LVL.getLAI())) 9287 return CM_ScalarEpilogueNotNeededUsePredicate; 9288 9289 return CM_ScalarEpilogueAllowed; 9290 } 9291 9292 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9293 // If Values have been set for this Def return the one relevant for \p Part. 9294 if (hasVectorValue(Def, Part)) 9295 return Data.PerPartOutput[Def][Part]; 9296 9297 if (!hasScalarValue(Def, {Part, 0})) { 9298 Value *IRV = Def->getLiveInIRValue(); 9299 Value *B = ILV->getBroadcastInstrs(IRV); 9300 set(Def, B, Part); 9301 return B; 9302 } 9303 9304 Value *ScalarValue = get(Def, {Part, 0}); 9305 // If we aren't vectorizing, we can just copy the scalar map values over 9306 // to the vector map. 9307 if (VF.isScalar()) { 9308 set(Def, ScalarValue, Part); 9309 return ScalarValue; 9310 } 9311 9312 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9313 bool IsUniform = RepR && RepR->isUniform(); 9314 9315 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9316 // Check if there is a scalar value for the selected lane. 9317 if (!hasScalarValue(Def, {Part, LastLane})) { 9318 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9319 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9320 "unexpected recipe found to be invariant"); 9321 IsUniform = true; 9322 LastLane = 0; 9323 } 9324 9325 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9326 9327 // Set the insert point after the last scalarized instruction. This 9328 // ensures the insertelement sequence will directly follow the scalar 9329 // definitions. 9330 auto OldIP = Builder.saveIP(); 9331 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9332 Builder.SetInsertPoint(&*NewIP); 9333 9334 // However, if we are vectorizing, we need to construct the vector values. 9335 // If the value is known to be uniform after vectorization, we can just 9336 // broadcast the scalar value corresponding to lane zero for each unroll 9337 // iteration. Otherwise, we construct the vector values using 9338 // insertelement instructions. Since the resulting vectors are stored in 9339 // State, we will only generate the insertelements once. 9340 Value *VectorValue = nullptr; 9341 if (IsUniform) { 9342 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9343 set(Def, VectorValue, Part); 9344 } else { 9345 // Initialize packing with insertelements to start from undef. 9346 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9347 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9348 set(Def, Undef, Part); 9349 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9350 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9351 VectorValue = get(Def, Part); 9352 } 9353 Builder.restoreIP(OldIP); 9354 return VectorValue; 9355 } 9356 9357 // Process the loop in the VPlan-native vectorization path. This path builds 9358 // VPlan upfront in the vectorization pipeline, which allows to apply 9359 // VPlan-to-VPlan transformations from the very beginning without modifying the 9360 // input LLVM IR. 9361 static bool processLoopInVPlanNativePath( 9362 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9363 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9364 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9365 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9366 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9367 9368 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9369 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9370 return false; 9371 } 9372 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9373 Function *F = L->getHeader()->getParent(); 9374 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9375 9376 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9377 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9378 9379 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9380 &Hints, IAI); 9381 // Use the planner for outer loop vectorization. 9382 // TODO: CM is not used at this point inside the planner. Turn CM into an 9383 // optional argument if we don't need it in the future. 9384 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9385 9386 // Get user vectorization factor. 9387 ElementCount UserVF = Hints.getWidth(); 9388 9389 // Plan how to best vectorize, return the best VF and its cost. 9390 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9391 9392 // If we are stress testing VPlan builds, do not attempt to generate vector 9393 // code. Masked vector code generation support will follow soon. 9394 // Also, do not attempt to vectorize if no vector code will be produced. 9395 if (VPlanBuildStressTest || EnableVPlanPredication || 9396 VectorizationFactor::Disabled() == VF) 9397 return false; 9398 9399 LVP.setBestPlan(VF.Width, 1); 9400 9401 { 9402 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9403 F->getParent()->getDataLayout()); 9404 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9405 &CM, BFI, PSI, Checks); 9406 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9407 << L->getHeader()->getParent()->getName() << "\"\n"); 9408 LVP.executePlan(LB, DT); 9409 } 9410 9411 // Mark the loop as already vectorized to avoid vectorizing again. 9412 Hints.setAlreadyVectorized(); 9413 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9414 return true; 9415 } 9416 9417 // Emit a remark if there are stores to floats that required a floating point 9418 // extension. If the vectorized loop was generated with floating point there 9419 // will be a performance penalty from the conversion overhead and the change in 9420 // the vector width. 9421 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9422 SmallVector<Instruction *, 4> Worklist; 9423 for (BasicBlock *BB : L->getBlocks()) { 9424 for (Instruction &Inst : *BB) { 9425 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9426 if (S->getValueOperand()->getType()->isFloatTy()) 9427 Worklist.push_back(S); 9428 } 9429 } 9430 } 9431 9432 // Traverse the floating point stores upwards searching, for floating point 9433 // conversions. 9434 SmallPtrSet<const Instruction *, 4> Visited; 9435 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9436 while (!Worklist.empty()) { 9437 auto *I = Worklist.pop_back_val(); 9438 if (!L->contains(I)) 9439 continue; 9440 if (!Visited.insert(I).second) 9441 continue; 9442 9443 // Emit a remark if the floating point store required a floating 9444 // point conversion. 9445 // TODO: More work could be done to identify the root cause such as a 9446 // constant or a function return type and point the user to it. 9447 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9448 ORE->emit([&]() { 9449 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9450 I->getDebugLoc(), L->getHeader()) 9451 << "floating point conversion changes vector width. " 9452 << "Mixed floating point precision requires an up/down " 9453 << "cast that will negatively impact performance."; 9454 }); 9455 9456 for (Use &Op : I->operands()) 9457 if (auto *OpI = dyn_cast<Instruction>(Op)) 9458 Worklist.push_back(OpI); 9459 } 9460 } 9461 9462 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9463 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9464 !EnableLoopInterleaving), 9465 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9466 !EnableLoopVectorization) {} 9467 9468 bool LoopVectorizePass::processLoop(Loop *L) { 9469 assert((EnableVPlanNativePath || L->isInnermost()) && 9470 "VPlan-native path is not enabled. Only process inner loops."); 9471 9472 #ifndef NDEBUG 9473 const std::string DebugLocStr = getDebugLocString(L); 9474 #endif /* NDEBUG */ 9475 9476 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9477 << L->getHeader()->getParent()->getName() << "\" from " 9478 << DebugLocStr << "\n"); 9479 9480 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9481 9482 LLVM_DEBUG( 9483 dbgs() << "LV: Loop hints:" 9484 << " force=" 9485 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9486 ? "disabled" 9487 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9488 ? "enabled" 9489 : "?")) 9490 << " width=" << Hints.getWidth() 9491 << " unroll=" << Hints.getInterleave() << "\n"); 9492 9493 // Function containing loop 9494 Function *F = L->getHeader()->getParent(); 9495 9496 // Looking at the diagnostic output is the only way to determine if a loop 9497 // was vectorized (other than looking at the IR or machine code), so it 9498 // is important to generate an optimization remark for each loop. Most of 9499 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9500 // generated as OptimizationRemark and OptimizationRemarkMissed are 9501 // less verbose reporting vectorized loops and unvectorized loops that may 9502 // benefit from vectorization, respectively. 9503 9504 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9505 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9506 return false; 9507 } 9508 9509 PredicatedScalarEvolution PSE(*SE, *L); 9510 9511 // Check if it is legal to vectorize the loop. 9512 LoopVectorizationRequirements Requirements(*ORE); 9513 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9514 &Requirements, &Hints, DB, AC, BFI, PSI); 9515 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9516 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9517 Hints.emitRemarkWithHints(); 9518 return false; 9519 } 9520 9521 // Check the function attributes and profiles to find out if this function 9522 // should be optimized for size. 9523 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9524 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9525 9526 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9527 // here. They may require CFG and instruction level transformations before 9528 // even evaluating whether vectorization is profitable. Since we cannot modify 9529 // the incoming IR, we need to build VPlan upfront in the vectorization 9530 // pipeline. 9531 if (!L->isInnermost()) 9532 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9533 ORE, BFI, PSI, Hints); 9534 9535 assert(L->isInnermost() && "Inner loop expected."); 9536 9537 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9538 // count by optimizing for size, to minimize overheads. 9539 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9540 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9541 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9542 << "This loop is worth vectorizing only if no scalar " 9543 << "iteration overheads are incurred."); 9544 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9545 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9546 else { 9547 LLVM_DEBUG(dbgs() << "\n"); 9548 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9549 } 9550 } 9551 9552 // Check the function attributes to see if implicit floats are allowed. 9553 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9554 // an integer loop and the vector instructions selected are purely integer 9555 // vector instructions? 9556 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9557 reportVectorizationFailure( 9558 "Can't vectorize when the NoImplicitFloat attribute is used", 9559 "loop not vectorized due to NoImplicitFloat attribute", 9560 "NoImplicitFloat", ORE, L); 9561 Hints.emitRemarkWithHints(); 9562 return false; 9563 } 9564 9565 // Check if the target supports potentially unsafe FP vectorization. 9566 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9567 // for the target we're vectorizing for, to make sure none of the 9568 // additional fp-math flags can help. 9569 if (Hints.isPotentiallyUnsafe() && 9570 TTI->isFPVectorizationPotentiallyUnsafe()) { 9571 reportVectorizationFailure( 9572 "Potentially unsafe FP op prevents vectorization", 9573 "loop not vectorized due to unsafe FP support.", 9574 "UnsafeFP", ORE, L); 9575 Hints.emitRemarkWithHints(); 9576 return false; 9577 } 9578 9579 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9580 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9581 9582 // If an override option has been passed in for interleaved accesses, use it. 9583 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9584 UseInterleaved = EnableInterleavedMemAccesses; 9585 9586 // Analyze interleaved memory accesses. 9587 if (UseInterleaved) { 9588 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9589 } 9590 9591 // Use the cost model. 9592 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9593 F, &Hints, IAI); 9594 CM.collectValuesToIgnore(); 9595 9596 // Use the planner for vectorization. 9597 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9598 9599 // Get user vectorization factor and interleave count. 9600 ElementCount UserVF = Hints.getWidth(); 9601 unsigned UserIC = Hints.getInterleave(); 9602 9603 // Plan how to best vectorize, return the best VF and its cost. 9604 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9605 9606 VectorizationFactor VF = VectorizationFactor::Disabled(); 9607 unsigned IC = 1; 9608 9609 if (MaybeVF) { 9610 VF = *MaybeVF; 9611 // Select the interleave count. 9612 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9613 } 9614 9615 // Identify the diagnostic messages that should be produced. 9616 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9617 bool VectorizeLoop = true, InterleaveLoop = true; 9618 if (Requirements.doesNotMeet(F, L, Hints)) { 9619 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9620 "requirements.\n"); 9621 Hints.emitRemarkWithHints(); 9622 return false; 9623 } 9624 9625 if (VF.Width.isScalar()) { 9626 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9627 VecDiagMsg = std::make_pair( 9628 "VectorizationNotBeneficial", 9629 "the cost-model indicates that vectorization is not beneficial"); 9630 VectorizeLoop = false; 9631 } 9632 9633 if (!MaybeVF && UserIC > 1) { 9634 // Tell the user interleaving was avoided up-front, despite being explicitly 9635 // requested. 9636 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9637 "interleaving should be avoided up front\n"); 9638 IntDiagMsg = std::make_pair( 9639 "InterleavingAvoided", 9640 "Ignoring UserIC, because interleaving was avoided up front"); 9641 InterleaveLoop = false; 9642 } else if (IC == 1 && UserIC <= 1) { 9643 // Tell the user interleaving is not beneficial. 9644 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9645 IntDiagMsg = std::make_pair( 9646 "InterleavingNotBeneficial", 9647 "the cost-model indicates that interleaving is not beneficial"); 9648 InterleaveLoop = false; 9649 if (UserIC == 1) { 9650 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9651 IntDiagMsg.second += 9652 " and is explicitly disabled or interleave count is set to 1"; 9653 } 9654 } else if (IC > 1 && UserIC == 1) { 9655 // Tell the user interleaving is beneficial, but it explicitly disabled. 9656 LLVM_DEBUG( 9657 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9658 IntDiagMsg = std::make_pair( 9659 "InterleavingBeneficialButDisabled", 9660 "the cost-model indicates that interleaving is beneficial " 9661 "but is explicitly disabled or interleave count is set to 1"); 9662 InterleaveLoop = false; 9663 } 9664 9665 // Override IC if user provided an interleave count. 9666 IC = UserIC > 0 ? UserIC : IC; 9667 9668 // Emit diagnostic messages, if any. 9669 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9670 if (!VectorizeLoop && !InterleaveLoop) { 9671 // Do not vectorize or interleaving the loop. 9672 ORE->emit([&]() { 9673 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9674 L->getStartLoc(), L->getHeader()) 9675 << VecDiagMsg.second; 9676 }); 9677 ORE->emit([&]() { 9678 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9679 L->getStartLoc(), L->getHeader()) 9680 << IntDiagMsg.second; 9681 }); 9682 return false; 9683 } else if (!VectorizeLoop && InterleaveLoop) { 9684 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9685 ORE->emit([&]() { 9686 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9687 L->getStartLoc(), L->getHeader()) 9688 << VecDiagMsg.second; 9689 }); 9690 } else if (VectorizeLoop && !InterleaveLoop) { 9691 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9692 << ") in " << DebugLocStr << '\n'); 9693 ORE->emit([&]() { 9694 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9695 L->getStartLoc(), L->getHeader()) 9696 << IntDiagMsg.second; 9697 }); 9698 } else if (VectorizeLoop && InterleaveLoop) { 9699 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9700 << ") in " << DebugLocStr << '\n'); 9701 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9702 } 9703 9704 bool DisableRuntimeUnroll = false; 9705 MDNode *OrigLoopID = L->getLoopID(); 9706 { 9707 // Optimistically generate runtime checks. Drop them if they turn out to not 9708 // be profitable. Limit the scope of Checks, so the cleanup happens 9709 // immediately after vector codegeneration is done. 9710 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9711 F->getParent()->getDataLayout()); 9712 if (!VF.Width.isScalar() || IC > 1) 9713 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 9714 LVP.setBestPlan(VF.Width, IC); 9715 9716 using namespace ore; 9717 if (!VectorizeLoop) { 9718 assert(IC > 1 && "interleave count should not be 1 or 0"); 9719 // If we decided that it is not legal to vectorize the loop, then 9720 // interleave it. 9721 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 9722 &CM, BFI, PSI, Checks); 9723 LVP.executePlan(Unroller, DT); 9724 9725 ORE->emit([&]() { 9726 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9727 L->getHeader()) 9728 << "interleaved loop (interleaved count: " 9729 << NV("InterleaveCount", IC) << ")"; 9730 }); 9731 } else { 9732 // If we decided that it is *legal* to vectorize the loop, then do it. 9733 9734 // Consider vectorizing the epilogue too if it's profitable. 9735 VectorizationFactor EpilogueVF = 9736 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9737 if (EpilogueVF.Width.isVector()) { 9738 9739 // The first pass vectorizes the main loop and creates a scalar epilogue 9740 // to be vectorized by executing the plan (potentially with a different 9741 // factor) again shortly afterwards. 9742 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9743 EpilogueVF.Width.getKnownMinValue(), 9744 1); 9745 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 9746 EPI, &LVL, &CM, BFI, PSI, Checks); 9747 9748 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9749 LVP.executePlan(MainILV, DT); 9750 ++LoopsVectorized; 9751 9752 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9753 formLCSSARecursively(*L, *DT, LI, SE); 9754 9755 // Second pass vectorizes the epilogue and adjusts the control flow 9756 // edges from the first pass. 9757 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9758 EPI.MainLoopVF = EPI.EpilogueVF; 9759 EPI.MainLoopUF = EPI.EpilogueUF; 9760 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9761 ORE, EPI, &LVL, &CM, BFI, PSI, 9762 Checks); 9763 LVP.executePlan(EpilogILV, DT); 9764 ++LoopsEpilogueVectorized; 9765 9766 if (!MainILV.areSafetyChecksAdded()) 9767 DisableRuntimeUnroll = true; 9768 } else { 9769 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9770 &LVL, &CM, BFI, PSI, Checks); 9771 LVP.executePlan(LB, DT); 9772 ++LoopsVectorized; 9773 9774 // Add metadata to disable runtime unrolling a scalar loop when there 9775 // are no runtime checks about strides and memory. A scalar loop that is 9776 // rarely used is not worth unrolling. 9777 if (!LB.areSafetyChecksAdded()) 9778 DisableRuntimeUnroll = true; 9779 } 9780 // Report the vectorization decision. 9781 ORE->emit([&]() { 9782 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9783 L->getHeader()) 9784 << "vectorized loop (vectorization width: " 9785 << NV("VectorizationFactor", VF.Width) 9786 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9787 }); 9788 } 9789 9790 if (ORE->allowExtraAnalysis(LV_NAME)) 9791 checkMixedPrecision(L, ORE); 9792 } 9793 9794 Optional<MDNode *> RemainderLoopID = 9795 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9796 LLVMLoopVectorizeFollowupEpilogue}); 9797 if (RemainderLoopID.hasValue()) { 9798 L->setLoopID(RemainderLoopID.getValue()); 9799 } else { 9800 if (DisableRuntimeUnroll) 9801 AddRuntimeUnrollDisableMetaData(L); 9802 9803 // Mark the loop as already vectorized to avoid vectorizing again. 9804 Hints.setAlreadyVectorized(); 9805 } 9806 9807 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9808 return true; 9809 } 9810 9811 LoopVectorizeResult LoopVectorizePass::runImpl( 9812 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9813 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9814 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9815 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9816 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9817 SE = &SE_; 9818 LI = &LI_; 9819 TTI = &TTI_; 9820 DT = &DT_; 9821 BFI = &BFI_; 9822 TLI = TLI_; 9823 AA = &AA_; 9824 AC = &AC_; 9825 GetLAA = &GetLAA_; 9826 DB = &DB_; 9827 ORE = &ORE_; 9828 PSI = PSI_; 9829 9830 // Don't attempt if 9831 // 1. the target claims to have no vector registers, and 9832 // 2. interleaving won't help ILP. 9833 // 9834 // The second condition is necessary because, even if the target has no 9835 // vector registers, loop vectorization may still enable scalar 9836 // interleaving. 9837 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9838 TTI->getMaxInterleaveFactor(1) < 2) 9839 return LoopVectorizeResult(false, false); 9840 9841 bool Changed = false, CFGChanged = false; 9842 9843 // The vectorizer requires loops to be in simplified form. 9844 // Since simplification may add new inner loops, it has to run before the 9845 // legality and profitability checks. This means running the loop vectorizer 9846 // will simplify all loops, regardless of whether anything end up being 9847 // vectorized. 9848 for (auto &L : *LI) 9849 Changed |= CFGChanged |= 9850 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9851 9852 // Build up a worklist of inner-loops to vectorize. This is necessary as 9853 // the act of vectorizing or partially unrolling a loop creates new loops 9854 // and can invalidate iterators across the loops. 9855 SmallVector<Loop *, 8> Worklist; 9856 9857 for (Loop *L : *LI) 9858 collectSupportedLoops(*L, LI, ORE, Worklist); 9859 9860 LoopsAnalyzed += Worklist.size(); 9861 9862 // Now walk the identified inner loops. 9863 while (!Worklist.empty()) { 9864 Loop *L = Worklist.pop_back_val(); 9865 9866 // For the inner loops we actually process, form LCSSA to simplify the 9867 // transform. 9868 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9869 9870 Changed |= CFGChanged |= processLoop(L); 9871 } 9872 9873 // Process each loop nest in the function. 9874 return LoopVectorizeResult(Changed, CFGChanged); 9875 } 9876 9877 PreservedAnalyses LoopVectorizePass::run(Function &F, 9878 FunctionAnalysisManager &AM) { 9879 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9880 auto &LI = AM.getResult<LoopAnalysis>(F); 9881 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9882 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9883 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9884 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9885 auto &AA = AM.getResult<AAManager>(F); 9886 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9887 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9888 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9889 MemorySSA *MSSA = EnableMSSALoopDependency 9890 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9891 : nullptr; 9892 9893 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9894 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9895 [&](Loop &L) -> const LoopAccessInfo & { 9896 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9897 TLI, TTI, nullptr, MSSA}; 9898 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9899 }; 9900 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9901 ProfileSummaryInfo *PSI = 9902 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9903 LoopVectorizeResult Result = 9904 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9905 if (!Result.MadeAnyChange) 9906 return PreservedAnalyses::all(); 9907 PreservedAnalyses PA; 9908 9909 // We currently do not preserve loopinfo/dominator analyses with outer loop 9910 // vectorization. Until this is addressed, mark these analyses as preserved 9911 // only for non-VPlan-native path. 9912 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9913 if (!EnableVPlanNativePath) { 9914 PA.preserve<LoopAnalysis>(); 9915 PA.preserve<DominatorTreeAnalysis>(); 9916 } 9917 PA.preserve<BasicAA>(); 9918 PA.preserve<GlobalsAA>(); 9919 if (!Result.MadeCFGChange) 9920 PA.preserveSet<CFGAnalyses>(); 9921 return PA; 9922 } 9923