1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 // There is a development effort going on to migrate loop vectorizer to the 30 // VPlan infrastructure and to introduce outer loop vectorization support (see 31 // docs/Proposal/VectorizationPlan.rst and 32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 33 // purpose, we temporarily introduced the VPlan-native vectorization path: an 34 // alternative vectorization path that is natively implemented on top of the 35 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // The reduction-variable vectorization is based on the paper: 40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 41 // 42 // Variable uniformity checks are inspired by: 43 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 44 // 45 // The interleaved access vectorization is based on the paper: 46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 47 // Data for SIMD 48 // 49 // Other ideas/concepts are from: 50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 51 // 52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 53 // Vectorizing Compilers. 54 // 55 //===----------------------------------------------------------------------===// 56 57 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 58 #include "LoopVectorizationPlanner.h" 59 #include "VPRecipeBuilder.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanHCFGTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SetVector.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ScalarEvolution.h" 91 #include "llvm/Analysis/ScalarEvolutionExpander.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/LLVMContext.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/Pass.h" 125 #include "llvm/Support/Casting.h" 126 #include "llvm/Support/CommandLine.h" 127 #include "llvm/Support/Compiler.h" 128 #include "llvm/Support/Debug.h" 129 #include "llvm/Support/ErrorHandling.h" 130 #include "llvm/Support/MathExtras.h" 131 #include "llvm/Support/raw_ostream.h" 132 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 133 #include "llvm/Transforms/Utils/LoopSimplify.h" 134 #include "llvm/Transforms/Utils/LoopUtils.h" 135 #include "llvm/Transforms/Utils/LoopVersioning.h" 136 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 137 #include <algorithm> 138 #include <cassert> 139 #include <cstdint> 140 #include <cstdlib> 141 #include <functional> 142 #include <iterator> 143 #include <limits> 144 #include <memory> 145 #include <string> 146 #include <tuple> 147 #include <utility> 148 #include <vector> 149 150 using namespace llvm; 151 152 #define LV_NAME "loop-vectorize" 153 #define DEBUG_TYPE LV_NAME 154 155 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 156 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 157 158 /// Loops with a known constant trip count below this number are vectorized only 159 /// if no scalar iteration overheads are incurred. 160 static cl::opt<unsigned> TinyTripCountVectorThreshold( 161 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 162 cl::desc("Loops with a constant trip count that is smaller than this " 163 "value are vectorized only if no scalar iteration overheads " 164 "are incurred.")); 165 166 static cl::opt<bool> MaximizeBandwidth( 167 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 168 cl::desc("Maximize bandwidth when selecting vectorization factor which " 169 "will be determined by the smallest type in loop.")); 170 171 static cl::opt<bool> EnableInterleavedMemAccesses( 172 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 173 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 174 175 /// We don't interleave loops with a known constant trip count below this 176 /// number. 177 static const unsigned TinyTripCountInterleaveThreshold = 128; 178 179 static cl::opt<unsigned> ForceTargetNumScalarRegs( 180 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 181 cl::desc("A flag that overrides the target's number of scalar registers.")); 182 183 static cl::opt<unsigned> ForceTargetNumVectorRegs( 184 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's number of vector registers.")); 186 187 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 188 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 189 cl::desc("A flag that overrides the target's max interleave factor for " 190 "scalar loops.")); 191 192 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 193 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 194 cl::desc("A flag that overrides the target's max interleave factor for " 195 "vectorized loops.")); 196 197 static cl::opt<unsigned> ForceTargetInstructionCost( 198 "force-target-instruction-cost", cl::init(0), cl::Hidden, 199 cl::desc("A flag that overrides the target's expected cost for " 200 "an instruction to a single constant value. Mostly " 201 "useful for getting consistent testing.")); 202 203 static cl::opt<unsigned> SmallLoopCost( 204 "small-loop-cost", cl::init(20), cl::Hidden, 205 cl::desc( 206 "The cost of a loop that is considered 'small' by the interleaver.")); 207 208 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 209 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 210 cl::desc("Enable the use of the block frequency analysis to access PGO " 211 "heuristics minimizing code growth in cold regions and being more " 212 "aggressive in hot regions.")); 213 214 // Runtime interleave loops for load/store throughput. 215 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 216 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 217 cl::desc( 218 "Enable runtime interleaving until load/store ports are saturated")); 219 220 /// The number of stores in a loop that are allowed to need predication. 221 static cl::opt<unsigned> NumberOfStoresToPredicate( 222 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 223 cl::desc("Max number of stores to be predicated behind an if.")); 224 225 static cl::opt<bool> EnableIndVarRegisterHeur( 226 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 227 cl::desc("Count the induction variable only once when interleaving")); 228 229 static cl::opt<bool> EnableCondStoresVectorization( 230 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 231 cl::desc("Enable if predication of stores during vectorization.")); 232 233 static cl::opt<unsigned> MaxNestedScalarReductionIC( 234 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 235 cl::desc("The maximum interleave count to use when interleaving a scalar " 236 "reduction in a nested loop.")); 237 238 cl::opt<bool> EnableVPlanNativePath( 239 "enable-vplan-native-path", cl::init(false), cl::Hidden, 240 cl::desc("Enable VPlan-native vectorization path with " 241 "support for outer loop vectorization.")); 242 243 // This flag enables the stress testing of the VPlan H-CFG construction in the 244 // VPlan-native vectorization path. It must be used in conjuction with 245 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 246 // verification of the H-CFGs built. 247 static cl::opt<bool> VPlanBuildStressTest( 248 "vplan-build-stress-test", cl::init(false), cl::Hidden, 249 cl::desc( 250 "Build VPlan for every supported loop nest in the function and bail " 251 "out right after the build (stress test the VPlan H-CFG construction " 252 "in the VPlan-native vectorization path).")); 253 254 /// A helper function for converting Scalar types to vector types. 255 /// If the incoming type is void, we return void. If the VF is 1, we return 256 /// the scalar type. 257 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 258 if (Scalar->isVoidTy() || VF == 1) 259 return Scalar; 260 return VectorType::get(Scalar, VF); 261 } 262 263 /// A helper function that returns the type of loaded or stored value. 264 static Type *getMemInstValueType(Value *I) { 265 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 266 "Expected Load or Store instruction"); 267 if (auto *LI = dyn_cast<LoadInst>(I)) 268 return LI->getType(); 269 return cast<StoreInst>(I)->getValueOperand()->getType(); 270 } 271 272 /// A helper function that returns true if the given type is irregular. The 273 /// type is irregular if its allocated size doesn't equal the store size of an 274 /// element of the corresponding vector type at the given vectorization factor. 275 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 276 // Determine if an array of VF elements of type Ty is "bitcast compatible" 277 // with a <VF x Ty> vector. 278 if (VF > 1) { 279 auto *VectorTy = VectorType::get(Ty, VF); 280 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 281 } 282 283 // If the vectorization factor is one, we just check if an array of type Ty 284 // requires padding between elements. 285 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 286 } 287 288 /// A helper function that returns the reciprocal of the block probability of 289 /// predicated blocks. If we return X, we are assuming the predicated block 290 /// will execute once for every X iterations of the loop header. 291 /// 292 /// TODO: We should use actual block probability here, if available. Currently, 293 /// we always assume predicated blocks have a 50% chance of executing. 294 static unsigned getReciprocalPredBlockProb() { return 2; } 295 296 /// A helper function that adds a 'fast' flag to floating-point operations. 297 static Value *addFastMathFlag(Value *V) { 298 if (isa<FPMathOperator>(V)) { 299 FastMathFlags Flags; 300 Flags.setFast(); 301 cast<Instruction>(V)->setFastMathFlags(Flags); 302 } 303 return V; 304 } 305 306 /// A helper function that returns an integer or floating-point constant with 307 /// value C. 308 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 309 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 310 : ConstantFP::get(Ty, C); 311 } 312 313 namespace llvm { 314 315 /// InnerLoopVectorizer vectorizes loops which contain only one basic 316 /// block to a specified vectorization factor (VF). 317 /// This class performs the widening of scalars into vectors, or multiple 318 /// scalars. This class also implements the following features: 319 /// * It inserts an epilogue loop for handling loops that don't have iteration 320 /// counts that are known to be a multiple of the vectorization factor. 321 /// * It handles the code generation for reduction variables. 322 /// * Scalarization (implementation using scalars) of un-vectorizable 323 /// instructions. 324 /// InnerLoopVectorizer does not perform any vectorization-legality 325 /// checks, and relies on the caller to check for the different legality 326 /// aspects. The InnerLoopVectorizer relies on the 327 /// LoopVectorizationLegality class to provide information about the induction 328 /// and reduction variables that were found to a given vectorization factor. 329 class InnerLoopVectorizer { 330 public: 331 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 332 LoopInfo *LI, DominatorTree *DT, 333 const TargetLibraryInfo *TLI, 334 const TargetTransformInfo *TTI, AssumptionCache *AC, 335 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 336 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 337 LoopVectorizationCostModel *CM) 338 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 339 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 340 Builder(PSE.getSE()->getContext()), 341 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 342 virtual ~InnerLoopVectorizer() = default; 343 344 /// Create a new empty loop. Unlink the old loop and connect the new one. 345 /// Return the pre-header block of the new loop. 346 BasicBlock *createVectorizedLoopSkeleton(); 347 348 /// Widen a single instruction within the innermost loop. 349 void widenInstruction(Instruction &I); 350 351 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 352 void fixVectorizedLoop(); 353 354 // Return true if any runtime check is added. 355 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 356 357 /// A type for vectorized values in the new loop. Each value from the 358 /// original loop, when vectorized, is represented by UF vector values in the 359 /// new unrolled loop, where UF is the unroll factor. 360 using VectorParts = SmallVector<Value *, 2>; 361 362 /// Vectorize a single PHINode in a block. This method handles the induction 363 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 364 /// arbitrary length vectors. 365 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 366 367 /// A helper function to scalarize a single Instruction in the innermost loop. 368 /// Generates a sequence of scalar instances for each lane between \p MinLane 369 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 370 /// inclusive.. 371 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 372 bool IfPredicateInstr); 373 374 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 375 /// is provided, the integer induction variable will first be truncated to 376 /// the corresponding type. 377 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 378 379 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 380 /// vector or scalar value on-demand if one is not yet available. When 381 /// vectorizing a loop, we visit the definition of an instruction before its 382 /// uses. When visiting the definition, we either vectorize or scalarize the 383 /// instruction, creating an entry for it in the corresponding map. (In some 384 /// cases, such as induction variables, we will create both vector and scalar 385 /// entries.) Then, as we encounter uses of the definition, we derive values 386 /// for each scalar or vector use unless such a value is already available. 387 /// For example, if we scalarize a definition and one of its uses is vector, 388 /// we build the required vector on-demand with an insertelement sequence 389 /// when visiting the use. Otherwise, if the use is scalar, we can use the 390 /// existing scalar definition. 391 /// 392 /// Return a value in the new loop corresponding to \p V from the original 393 /// loop at unroll index \p Part. If the value has already been vectorized, 394 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 395 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 396 /// a new vector value on-demand by inserting the scalar values into a vector 397 /// with an insertelement sequence. If the value has been neither vectorized 398 /// nor scalarized, it must be loop invariant, so we simply broadcast the 399 /// value into a vector. 400 Value *getOrCreateVectorValue(Value *V, unsigned Part); 401 402 /// Return a value in the new loop corresponding to \p V from the original 403 /// loop at unroll and vector indices \p Instance. If the value has been 404 /// vectorized but not scalarized, the necessary extractelement instruction 405 /// will be generated. 406 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 407 408 /// Construct the vector value of a scalarized value \p V one lane at a time. 409 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 410 411 /// Try to vectorize the interleaved access group that \p Instr belongs to. 412 void vectorizeInterleaveGroup(Instruction *Instr); 413 414 /// Vectorize Load and Store instructions, optionally masking the vector 415 /// operations if \p BlockInMask is non-null. 416 void vectorizeMemoryInstruction(Instruction *Instr, 417 VectorParts *BlockInMask = nullptr); 418 419 /// Set the debug location in the builder using the debug location in 420 /// the instruction. 421 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 422 423 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 424 void fixNonInductionPHIs(void); 425 426 protected: 427 friend class LoopVectorizationPlanner; 428 429 /// A small list of PHINodes. 430 using PhiVector = SmallVector<PHINode *, 4>; 431 432 /// A type for scalarized values in the new loop. Each value from the 433 /// original loop, when scalarized, is represented by UF x VF scalar values 434 /// in the new unrolled loop, where UF is the unroll factor and VF is the 435 /// vectorization factor. 436 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 437 438 /// Set up the values of the IVs correctly when exiting the vector loop. 439 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 440 Value *CountRoundDown, Value *EndValue, 441 BasicBlock *MiddleBlock); 442 443 /// Create a new induction variable inside L. 444 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 445 Value *Step, Instruction *DL); 446 447 /// Handle all cross-iteration phis in the header. 448 void fixCrossIterationPHIs(); 449 450 /// Fix a first-order recurrence. This is the second phase of vectorizing 451 /// this phi node. 452 void fixFirstOrderRecurrence(PHINode *Phi); 453 454 /// Fix a reduction cross-iteration phi. This is the second phase of 455 /// vectorizing this phi node. 456 void fixReduction(PHINode *Phi); 457 458 /// The Loop exit block may have single value PHI nodes with some 459 /// incoming value. While vectorizing we only handled real values 460 /// that were defined inside the loop and we should have one value for 461 /// each predecessor of its parent basic block. See PR14725. 462 void fixLCSSAPHIs(); 463 464 /// Iteratively sink the scalarized operands of a predicated instruction into 465 /// the block that was created for it. 466 void sinkScalarOperands(Instruction *PredInst); 467 468 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 469 /// represented as. 470 void truncateToMinimalBitwidths(); 471 472 /// Insert the new loop to the loop hierarchy and pass manager 473 /// and update the analysis passes. 474 void updateAnalysis(); 475 476 /// Create a broadcast instruction. This method generates a broadcast 477 /// instruction (shuffle) for loop invariant values and for the induction 478 /// value. If this is the induction variable then we extend it to N, N+1, ... 479 /// this is needed because each iteration in the loop corresponds to a SIMD 480 /// element. 481 virtual Value *getBroadcastInstrs(Value *V); 482 483 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 484 /// to each vector element of Val. The sequence starts at StartIndex. 485 /// \p Opcode is relevant for FP induction variable. 486 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 487 Instruction::BinaryOps Opcode = 488 Instruction::BinaryOpsEnd); 489 490 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 491 /// variable on which to base the steps, \p Step is the size of the step, and 492 /// \p EntryVal is the value from the original loop that maps to the steps. 493 /// Note that \p EntryVal doesn't have to be an induction variable - it 494 /// can also be a truncate instruction. 495 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 496 const InductionDescriptor &ID); 497 498 /// Create a vector induction phi node based on an existing scalar one. \p 499 /// EntryVal is the value from the original loop that maps to the vector phi 500 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 501 /// truncate instruction, instead of widening the original IV, we widen a 502 /// version of the IV truncated to \p EntryVal's type. 503 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 504 Value *Step, Instruction *EntryVal); 505 506 /// Returns true if an instruction \p I should be scalarized instead of 507 /// vectorized for the chosen vectorization factor. 508 bool shouldScalarizeInstruction(Instruction *I) const; 509 510 /// Returns true if we should generate a scalar version of \p IV. 511 bool needsScalarInduction(Instruction *IV) const; 512 513 /// If there is a cast involved in the induction variable \p ID, which should 514 /// be ignored in the vectorized loop body, this function records the 515 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 516 /// cast. We had already proved that the casted Phi is equal to the uncasted 517 /// Phi in the vectorized loop (under a runtime guard), and therefore 518 /// there is no need to vectorize the cast - the same value can be used in the 519 /// vector loop for both the Phi and the cast. 520 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 521 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 522 /// 523 /// \p EntryVal is the value from the original loop that maps to the vector 524 /// phi node and is used to distinguish what is the IV currently being 525 /// processed - original one (if \p EntryVal is a phi corresponding to the 526 /// original IV) or the "newly-created" one based on the proof mentioned above 527 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 528 /// latter case \p EntryVal is a TruncInst and we must not record anything for 529 /// that IV, but it's error-prone to expect callers of this routine to care 530 /// about that, hence this explicit parameter. 531 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 532 const Instruction *EntryVal, 533 Value *VectorLoopValue, 534 unsigned Part, 535 unsigned Lane = UINT_MAX); 536 537 /// Generate a shuffle sequence that will reverse the vector Vec. 538 virtual Value *reverseVector(Value *Vec); 539 540 /// Returns (and creates if needed) the original loop trip count. 541 Value *getOrCreateTripCount(Loop *NewLoop); 542 543 /// Returns (and creates if needed) the trip count of the widened loop. 544 Value *getOrCreateVectorTripCount(Loop *NewLoop); 545 546 /// Returns a bitcasted value to the requested vector type. 547 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 548 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 549 const DataLayout &DL); 550 551 /// Emit a bypass check to see if the vector trip count is zero, including if 552 /// it overflows. 553 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 554 555 /// Emit a bypass check to see if all of the SCEV assumptions we've 556 /// had to make are correct. 557 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 558 559 /// Emit bypass checks to check any memory assumptions we may have made. 560 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 561 562 /// Compute the transformed value of Index at offset StartValue using step 563 /// StepValue. 564 /// For integer induction, returns StartValue + Index * StepValue. 565 /// For pointer induction, returns StartValue[Index * StepValue]. 566 /// FIXME: The newly created binary instructions should contain nsw/nuw 567 /// flags, which can be found from the original scalar operations. 568 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 569 const DataLayout &DL, 570 const InductionDescriptor &ID) const; 571 572 /// Add additional metadata to \p To that was not present on \p Orig. 573 /// 574 /// Currently this is used to add the noalias annotations based on the 575 /// inserted memchecks. Use this for instructions that are *cloned* into the 576 /// vector loop. 577 void addNewMetadata(Instruction *To, const Instruction *Orig); 578 579 /// Add metadata from one instruction to another. 580 /// 581 /// This includes both the original MDs from \p From and additional ones (\see 582 /// addNewMetadata). Use this for *newly created* instructions in the vector 583 /// loop. 584 void addMetadata(Instruction *To, Instruction *From); 585 586 /// Similar to the previous function but it adds the metadata to a 587 /// vector of instructions. 588 void addMetadata(ArrayRef<Value *> To, Instruction *From); 589 590 /// The original loop. 591 Loop *OrigLoop; 592 593 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 594 /// dynamic knowledge to simplify SCEV expressions and converts them to a 595 /// more usable form. 596 PredicatedScalarEvolution &PSE; 597 598 /// Loop Info. 599 LoopInfo *LI; 600 601 /// Dominator Tree. 602 DominatorTree *DT; 603 604 /// Alias Analysis. 605 AliasAnalysis *AA; 606 607 /// Target Library Info. 608 const TargetLibraryInfo *TLI; 609 610 /// Target Transform Info. 611 const TargetTransformInfo *TTI; 612 613 /// Assumption Cache. 614 AssumptionCache *AC; 615 616 /// Interface to emit optimization remarks. 617 OptimizationRemarkEmitter *ORE; 618 619 /// LoopVersioning. It's only set up (non-null) if memchecks were 620 /// used. 621 /// 622 /// This is currently only used to add no-alias metadata based on the 623 /// memchecks. The actually versioning is performed manually. 624 std::unique_ptr<LoopVersioning> LVer; 625 626 /// The vectorization SIMD factor to use. Each vector will have this many 627 /// vector elements. 628 unsigned VF; 629 630 /// The vectorization unroll factor to use. Each scalar is vectorized to this 631 /// many different vector instructions. 632 unsigned UF; 633 634 /// The builder that we use 635 IRBuilder<> Builder; 636 637 // --- Vectorization state --- 638 639 /// The vector-loop preheader. 640 BasicBlock *LoopVectorPreHeader; 641 642 /// The scalar-loop preheader. 643 BasicBlock *LoopScalarPreHeader; 644 645 /// Middle Block between the vector and the scalar. 646 BasicBlock *LoopMiddleBlock; 647 648 /// The ExitBlock of the scalar loop. 649 BasicBlock *LoopExitBlock; 650 651 /// The vector loop body. 652 BasicBlock *LoopVectorBody; 653 654 /// The scalar loop body. 655 BasicBlock *LoopScalarBody; 656 657 /// A list of all bypass blocks. The first block is the entry of the loop. 658 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 659 660 /// The new Induction variable which was added to the new block. 661 PHINode *Induction = nullptr; 662 663 /// The induction variable of the old basic block. 664 PHINode *OldInduction = nullptr; 665 666 /// Maps values from the original loop to their corresponding values in the 667 /// vectorized loop. A key value can map to either vector values, scalar 668 /// values or both kinds of values, depending on whether the key was 669 /// vectorized and scalarized. 670 VectorizerValueMap VectorLoopValueMap; 671 672 /// Store instructions that were predicated. 673 SmallVector<Instruction *, 4> PredicatedInstructions; 674 675 /// Trip count of the original loop. 676 Value *TripCount = nullptr; 677 678 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 679 Value *VectorTripCount = nullptr; 680 681 /// The legality analysis. 682 LoopVectorizationLegality *Legal; 683 684 /// The profitablity analysis. 685 LoopVectorizationCostModel *Cost; 686 687 // Record whether runtime checks are added. 688 bool AddedSafetyChecks = false; 689 690 // Holds the end values for each induction variable. We save the end values 691 // so we can later fix-up the external users of the induction variables. 692 DenseMap<PHINode *, Value *> IVEndValues; 693 694 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 695 // fixed up at the end of vector code generation. 696 SmallVector<PHINode *, 8> OrigPHIsToFix; 697 }; 698 699 class InnerLoopUnroller : public InnerLoopVectorizer { 700 public: 701 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 702 LoopInfo *LI, DominatorTree *DT, 703 const TargetLibraryInfo *TLI, 704 const TargetTransformInfo *TTI, AssumptionCache *AC, 705 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 706 LoopVectorizationLegality *LVL, 707 LoopVectorizationCostModel *CM) 708 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 709 UnrollFactor, LVL, CM) {} 710 711 private: 712 Value *getBroadcastInstrs(Value *V) override; 713 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 714 Instruction::BinaryOps Opcode = 715 Instruction::BinaryOpsEnd) override; 716 Value *reverseVector(Value *Vec) override; 717 }; 718 719 } // end namespace llvm 720 721 /// Look for a meaningful debug location on the instruction or it's 722 /// operands. 723 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 724 if (!I) 725 return I; 726 727 DebugLoc Empty; 728 if (I->getDebugLoc() != Empty) 729 return I; 730 731 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 732 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 733 if (OpInst->getDebugLoc() != Empty) 734 return OpInst; 735 } 736 737 return I; 738 } 739 740 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 741 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 742 const DILocation *DIL = Inst->getDebugLoc(); 743 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 744 !isa<DbgInfoIntrinsic>(Inst)) 745 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 746 else 747 B.SetCurrentDebugLocation(DIL); 748 } else 749 B.SetCurrentDebugLocation(DebugLoc()); 750 } 751 752 #ifndef NDEBUG 753 /// \return string containing a file name and a line # for the given loop. 754 static std::string getDebugLocString(const Loop *L) { 755 std::string Result; 756 if (L) { 757 raw_string_ostream OS(Result); 758 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 759 LoopDbgLoc.print(OS); 760 else 761 // Just print the module name. 762 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 763 OS.flush(); 764 } 765 return Result; 766 } 767 #endif 768 769 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 770 const Instruction *Orig) { 771 // If the loop was versioned with memchecks, add the corresponding no-alias 772 // metadata. 773 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 774 LVer->annotateInstWithNoAlias(To, Orig); 775 } 776 777 void InnerLoopVectorizer::addMetadata(Instruction *To, 778 Instruction *From) { 779 propagateMetadata(To, From); 780 addNewMetadata(To, From); 781 } 782 783 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 784 Instruction *From) { 785 for (Value *V : To) { 786 if (Instruction *I = dyn_cast<Instruction>(V)) 787 addMetadata(I, From); 788 } 789 } 790 791 static void emitMissedWarning(Function *F, Loop *L, 792 const LoopVectorizeHints &LH, 793 OptimizationRemarkEmitter *ORE) { 794 LH.emitRemarkWithHints(); 795 796 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 797 if (LH.getWidth() != 1) 798 ORE->emit(DiagnosticInfoOptimizationFailure( 799 DEBUG_TYPE, "FailedRequestedVectorization", 800 L->getStartLoc(), L->getHeader()) 801 << "loop not vectorized: " 802 << "failed explicitly specified loop vectorization"); 803 else if (LH.getInterleave() != 1) 804 ORE->emit(DiagnosticInfoOptimizationFailure( 805 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 806 L->getHeader()) 807 << "loop not interleaved: " 808 << "failed explicitly specified loop interleaving"); 809 } 810 } 811 812 namespace llvm { 813 814 /// LoopVectorizationCostModel - estimates the expected speedups due to 815 /// vectorization. 816 /// In many cases vectorization is not profitable. This can happen because of 817 /// a number of reasons. In this class we mainly attempt to predict the 818 /// expected speedup/slowdowns due to the supported instruction set. We use the 819 /// TargetTransformInfo to query the different backends for the cost of 820 /// different operations. 821 class LoopVectorizationCostModel { 822 public: 823 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 824 LoopInfo *LI, LoopVectorizationLegality *Legal, 825 const TargetTransformInfo &TTI, 826 const TargetLibraryInfo *TLI, DemandedBits *DB, 827 AssumptionCache *AC, 828 OptimizationRemarkEmitter *ORE, const Function *F, 829 const LoopVectorizeHints *Hints, 830 InterleavedAccessInfo &IAI) 831 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 832 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {} 833 834 /// \return An upper bound for the vectorization factor, or None if 835 /// vectorization should be avoided up front. 836 Optional<unsigned> computeMaxVF(bool OptForSize); 837 838 /// \return The most profitable vectorization factor and the cost of that VF. 839 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 840 /// then this vectorization factor will be selected if vectorization is 841 /// possible. 842 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 843 844 /// Setup cost-based decisions for user vectorization factor. 845 void selectUserVectorizationFactor(unsigned UserVF) { 846 collectUniformsAndScalars(UserVF); 847 collectInstsToScalarize(UserVF); 848 } 849 850 /// \return The size (in bits) of the smallest and widest types in the code 851 /// that needs to be vectorized. We ignore values that remain scalar such as 852 /// 64 bit loop indices. 853 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 854 855 /// \return The desired interleave count. 856 /// If interleave count has been specified by metadata it will be returned. 857 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 858 /// are the selected vectorization factor and the cost of the selected VF. 859 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 860 unsigned LoopCost); 861 862 /// Memory access instruction may be vectorized in more than one way. 863 /// Form of instruction after vectorization depends on cost. 864 /// This function takes cost-based decisions for Load/Store instructions 865 /// and collects them in a map. This decisions map is used for building 866 /// the lists of loop-uniform and loop-scalar instructions. 867 /// The calculated cost is saved with widening decision in order to 868 /// avoid redundant calculations. 869 void setCostBasedWideningDecision(unsigned VF); 870 871 /// A struct that represents some properties of the register usage 872 /// of a loop. 873 struct RegisterUsage { 874 /// Holds the number of loop invariant values that are used in the loop. 875 unsigned LoopInvariantRegs; 876 877 /// Holds the maximum number of concurrent live intervals in the loop. 878 unsigned MaxLocalUsers; 879 }; 880 881 /// \return Returns information about the register usages of the loop for the 882 /// given vectorization factors. 883 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 884 885 /// Collect values we want to ignore in the cost model. 886 void collectValuesToIgnore(); 887 888 /// \returns The smallest bitwidth each instruction can be represented with. 889 /// The vector equivalents of these instructions should be truncated to this 890 /// type. 891 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 892 return MinBWs; 893 } 894 895 /// \returns True if it is more profitable to scalarize instruction \p I for 896 /// vectorization factor \p VF. 897 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 898 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 899 900 // Cost model is not run in the VPlan-native path - return conservative 901 // result until this changes. 902 if (EnableVPlanNativePath) 903 return false; 904 905 auto Scalars = InstsToScalarize.find(VF); 906 assert(Scalars != InstsToScalarize.end() && 907 "VF not yet analyzed for scalarization profitability"); 908 return Scalars->second.find(I) != Scalars->second.end(); 909 } 910 911 /// Returns true if \p I is known to be uniform after vectorization. 912 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 913 if (VF == 1) 914 return true; 915 916 // Cost model is not run in the VPlan-native path - return conservative 917 // result until this changes. 918 if (EnableVPlanNativePath) 919 return false; 920 921 auto UniformsPerVF = Uniforms.find(VF); 922 assert(UniformsPerVF != Uniforms.end() && 923 "VF not yet analyzed for uniformity"); 924 return UniformsPerVF->second.find(I) != UniformsPerVF->second.end(); 925 } 926 927 /// Returns true if \p I is known to be scalar after vectorization. 928 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 929 if (VF == 1) 930 return true; 931 932 // Cost model is not run in the VPlan-native path - return conservative 933 // result until this changes. 934 if (EnableVPlanNativePath) 935 return false; 936 937 auto ScalarsPerVF = Scalars.find(VF); 938 assert(ScalarsPerVF != Scalars.end() && 939 "Scalar values are not calculated for VF"); 940 return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end(); 941 } 942 943 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 944 /// for vectorization factor \p VF. 945 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 946 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 947 !isProfitableToScalarize(I, VF) && 948 !isScalarAfterVectorization(I, VF); 949 } 950 951 /// Decision that was taken during cost calculation for memory instruction. 952 enum InstWidening { 953 CM_Unknown, 954 CM_Widen, // For consecutive accesses with stride +1. 955 CM_Widen_Reverse, // For consecutive accesses with stride -1. 956 CM_Interleave, 957 CM_GatherScatter, 958 CM_Scalarize 959 }; 960 961 /// Save vectorization decision \p W and \p Cost taken by the cost model for 962 /// instruction \p I and vector width \p VF. 963 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 964 unsigned Cost) { 965 assert(VF >= 2 && "Expected VF >=2"); 966 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 967 } 968 969 /// Save vectorization decision \p W and \p Cost taken by the cost model for 970 /// interleaving group \p Grp and vector width \p VF. 971 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 972 InstWidening W, unsigned Cost) { 973 assert(VF >= 2 && "Expected VF >=2"); 974 /// Broadcast this decicion to all instructions inside the group. 975 /// But the cost will be assigned to one instruction only. 976 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 977 if (auto *I = Grp->getMember(i)) { 978 if (Grp->getInsertPos() == I) 979 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 980 else 981 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 982 } 983 } 984 } 985 986 /// Return the cost model decision for the given instruction \p I and vector 987 /// width \p VF. Return CM_Unknown if this instruction did not pass 988 /// through the cost modeling. 989 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 990 assert(VF >= 2 && "Expected VF >=2"); 991 992 // Cost model is not run in the VPlan-native path - return conservative 993 // result until this changes. 994 if (EnableVPlanNativePath) 995 return CM_GatherScatter; 996 997 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 998 auto Itr = WideningDecisions.find(InstOnVF); 999 if (Itr == WideningDecisions.end()) 1000 return CM_Unknown; 1001 return Itr->second.first; 1002 } 1003 1004 /// Return the vectorization cost for the given instruction \p I and vector 1005 /// width \p VF. 1006 unsigned getWideningCost(Instruction *I, unsigned VF) { 1007 assert(VF >= 2 && "Expected VF >=2"); 1008 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1009 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1010 "The cost is not calculated"); 1011 return WideningDecisions[InstOnVF].second; 1012 } 1013 1014 /// Return True if instruction \p I is an optimizable truncate whose operand 1015 /// is an induction variable. Such a truncate will be removed by adding a new 1016 /// induction variable with the destination type. 1017 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1018 // If the instruction is not a truncate, return false. 1019 auto *Trunc = dyn_cast<TruncInst>(I); 1020 if (!Trunc) 1021 return false; 1022 1023 // Get the source and destination types of the truncate. 1024 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1025 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1026 1027 // If the truncate is free for the given types, return false. Replacing a 1028 // free truncate with an induction variable would add an induction variable 1029 // update instruction to each iteration of the loop. We exclude from this 1030 // check the primary induction variable since it will need an update 1031 // instruction regardless. 1032 Value *Op = Trunc->getOperand(0); 1033 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1034 return false; 1035 1036 // If the truncated value is not an induction variable, return false. 1037 return Legal->isInductionPhi(Op); 1038 } 1039 1040 /// Collects the instructions to scalarize for each predicated instruction in 1041 /// the loop. 1042 void collectInstsToScalarize(unsigned VF); 1043 1044 /// Collect Uniform and Scalar values for the given \p VF. 1045 /// The sets depend on CM decision for Load/Store instructions 1046 /// that may be vectorized as interleave, gather-scatter or scalarized. 1047 void collectUniformsAndScalars(unsigned VF) { 1048 // Do the analysis once. 1049 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1050 return; 1051 setCostBasedWideningDecision(VF); 1052 collectLoopUniforms(VF); 1053 collectLoopScalars(VF); 1054 } 1055 1056 /// Returns true if the target machine supports masked store operation 1057 /// for the given \p DataType and kind of access to \p Ptr. 1058 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1059 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType); 1060 } 1061 1062 /// Returns true if the target machine supports masked load operation 1063 /// for the given \p DataType and kind of access to \p Ptr. 1064 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1065 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType); 1066 } 1067 1068 /// Returns true if the target machine supports masked scatter operation 1069 /// for the given \p DataType. 1070 bool isLegalMaskedScatter(Type *DataType) { 1071 return TTI.isLegalMaskedScatter(DataType); 1072 } 1073 1074 /// Returns true if the target machine supports masked gather operation 1075 /// for the given \p DataType. 1076 bool isLegalMaskedGather(Type *DataType) { 1077 return TTI.isLegalMaskedGather(DataType); 1078 } 1079 1080 /// Returns true if the target machine can represent \p V as a masked gather 1081 /// or scatter operation. 1082 bool isLegalGatherOrScatter(Value *V) { 1083 bool LI = isa<LoadInst>(V); 1084 bool SI = isa<StoreInst>(V); 1085 if (!LI && !SI) 1086 return false; 1087 auto *Ty = getMemInstValueType(V); 1088 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1089 } 1090 1091 /// Returns true if \p I is an instruction that will be scalarized with 1092 /// predication. Such instructions include conditional stores and 1093 /// instructions that may divide by zero. 1094 /// If a non-zero VF has been calculated, we check if I will be scalarized 1095 /// predication for that VF. 1096 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1097 1098 // Returns true if \p I is an instruction that will be predicated either 1099 // through scalar predication or masked load/store or masked gather/scatter. 1100 // Superset of instructions that return true for isScalarWithPredication. 1101 bool isPredicatedInst(Instruction *I) { 1102 if (!Legal->blockNeedsPredication(I->getParent())) 1103 return false; 1104 // Loads and stores that need some form of masked operation are predicated 1105 // instructions. 1106 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1107 return Legal->isMaskRequired(I); 1108 return isScalarWithPredication(I); 1109 } 1110 1111 /// Returns true if \p I is a memory instruction with consecutive memory 1112 /// access that can be widened. 1113 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1114 1115 /// Check if \p Instr belongs to any interleaved access group. 1116 bool isAccessInterleaved(Instruction *Instr) { 1117 return InterleaveInfo.isInterleaved(Instr); 1118 } 1119 1120 /// Get the interleaved access group that \p Instr belongs to. 1121 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1122 return InterleaveInfo.getInterleaveGroup(Instr); 1123 } 1124 1125 /// Returns true if an interleaved group requires a scalar iteration 1126 /// to handle accesses with gaps. 1127 bool requiresScalarEpilogue() const { 1128 return InterleaveInfo.requiresScalarEpilogue(); 1129 } 1130 1131 private: 1132 unsigned NumPredStores = 0; 1133 1134 /// \return An upper bound for the vectorization factor, larger than zero. 1135 /// One is returned if vectorization should best be avoided due to cost. 1136 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1137 1138 /// The vectorization cost is a combination of the cost itself and a boolean 1139 /// indicating whether any of the contributing operations will actually 1140 /// operate on 1141 /// vector values after type legalization in the backend. If this latter value 1142 /// is 1143 /// false, then all operations will be scalarized (i.e. no vectorization has 1144 /// actually taken place). 1145 using VectorizationCostTy = std::pair<unsigned, bool>; 1146 1147 /// Returns the expected execution cost. The unit of the cost does 1148 /// not matter because we use the 'cost' units to compare different 1149 /// vector widths. The cost that is returned is *not* normalized by 1150 /// the factor width. 1151 VectorizationCostTy expectedCost(unsigned VF); 1152 1153 /// Returns the execution time cost of an instruction for a given vector 1154 /// width. Vector width of one means scalar. 1155 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1156 1157 /// The cost-computation logic from getInstructionCost which provides 1158 /// the vector type as an output parameter. 1159 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1160 1161 /// Calculate vectorization cost of memory instruction \p I. 1162 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1163 1164 /// The cost computation for scalarized memory instruction. 1165 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1166 1167 /// The cost computation for interleaving group of memory instructions. 1168 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1169 1170 /// The cost computation for Gather/Scatter instruction. 1171 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1172 1173 /// The cost computation for widening instruction \p I with consecutive 1174 /// memory access. 1175 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1176 1177 /// The cost calculation for Load instruction \p I with uniform pointer - 1178 /// scalar load + broadcast. 1179 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1180 1181 /// Returns whether the instruction is a load or store and will be a emitted 1182 /// as a vector operation. 1183 bool isConsecutiveLoadOrStore(Instruction *I); 1184 1185 /// Returns true if an artificially high cost for emulated masked memrefs 1186 /// should be used. 1187 bool useEmulatedMaskMemRefHack(Instruction *I); 1188 1189 /// Create an analysis remark that explains why vectorization failed 1190 /// 1191 /// \p RemarkName is the identifier for the remark. \return the remark object 1192 /// that can be streamed to. 1193 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 1194 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1195 RemarkName, TheLoop); 1196 } 1197 1198 /// Map of scalar integer values to the smallest bitwidth they can be legally 1199 /// represented as. The vector equivalents of these values should be truncated 1200 /// to this type. 1201 MapVector<Instruction *, uint64_t> MinBWs; 1202 1203 /// A type representing the costs for instructions if they were to be 1204 /// scalarized rather than vectorized. The entries are Instruction-Cost 1205 /// pairs. 1206 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1207 1208 /// A set containing all BasicBlocks that are known to present after 1209 /// vectorization as a predicated block. 1210 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1211 1212 /// A map holding scalar costs for different vectorization factors. The 1213 /// presence of a cost for an instruction in the mapping indicates that the 1214 /// instruction will be scalarized when vectorizing with the associated 1215 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1216 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1217 1218 /// Holds the instructions known to be uniform after vectorization. 1219 /// The data is collected per VF. 1220 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1221 1222 /// Holds the instructions known to be scalar after vectorization. 1223 /// The data is collected per VF. 1224 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1225 1226 /// Holds the instructions (address computations) that are forced to be 1227 /// scalarized. 1228 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1229 1230 /// Returns the expected difference in cost from scalarizing the expression 1231 /// feeding a predicated instruction \p PredInst. The instructions to 1232 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1233 /// non-negative return value implies the expression will be scalarized. 1234 /// Currently, only single-use chains are considered for scalarization. 1235 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1236 unsigned VF); 1237 1238 /// Collect the instructions that are uniform after vectorization. An 1239 /// instruction is uniform if we represent it with a single scalar value in 1240 /// the vectorized loop corresponding to each vector iteration. Examples of 1241 /// uniform instructions include pointer operands of consecutive or 1242 /// interleaved memory accesses. Note that although uniformity implies an 1243 /// instruction will be scalar, the reverse is not true. In general, a 1244 /// scalarized instruction will be represented by VF scalar values in the 1245 /// vectorized loop, each corresponding to an iteration of the original 1246 /// scalar loop. 1247 void collectLoopUniforms(unsigned VF); 1248 1249 /// Collect the instructions that are scalar after vectorization. An 1250 /// instruction is scalar if it is known to be uniform or will be scalarized 1251 /// during vectorization. Non-uniform scalarized instructions will be 1252 /// represented by VF values in the vectorized loop, each corresponding to an 1253 /// iteration of the original scalar loop. 1254 void collectLoopScalars(unsigned VF); 1255 1256 /// Keeps cost model vectorization decision and cost for instructions. 1257 /// Right now it is used for memory instructions only. 1258 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1259 std::pair<InstWidening, unsigned>>; 1260 1261 DecisionList WideningDecisions; 1262 1263 public: 1264 /// The loop that we evaluate. 1265 Loop *TheLoop; 1266 1267 /// Predicated scalar evolution analysis. 1268 PredicatedScalarEvolution &PSE; 1269 1270 /// Loop Info analysis. 1271 LoopInfo *LI; 1272 1273 /// Vectorization legality. 1274 LoopVectorizationLegality *Legal; 1275 1276 /// Vector target information. 1277 const TargetTransformInfo &TTI; 1278 1279 /// Target Library Info. 1280 const TargetLibraryInfo *TLI; 1281 1282 /// Demanded bits analysis. 1283 DemandedBits *DB; 1284 1285 /// Assumption cache. 1286 AssumptionCache *AC; 1287 1288 /// Interface to emit optimization remarks. 1289 OptimizationRemarkEmitter *ORE; 1290 1291 const Function *TheFunction; 1292 1293 /// Loop Vectorize Hint. 1294 const LoopVectorizeHints *Hints; 1295 1296 /// The interleave access information contains groups of interleaved accesses 1297 /// with the same stride and close to each other. 1298 InterleavedAccessInfo &InterleaveInfo; 1299 1300 /// Values to ignore in the cost model. 1301 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1302 1303 /// Values to ignore in the cost model when VF > 1. 1304 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1305 }; 1306 1307 } // end namespace llvm 1308 1309 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1310 // vectorization. The loop needs to be annotated with #pragma omp simd 1311 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1312 // vector length information is not provided, vectorization is not considered 1313 // explicit. Interleave hints are not allowed either. These limitations will be 1314 // relaxed in the future. 1315 // Please, note that we are currently forced to abuse the pragma 'clang 1316 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1317 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1318 // provides *explicit vectorization hints* (LV can bypass legal checks and 1319 // assume that vectorization is legal). However, both hints are implemented 1320 // using the same metadata (llvm.loop.vectorize, processed by 1321 // LoopVectorizeHints). This will be fixed in the future when the native IR 1322 // representation for pragma 'omp simd' is introduced. 1323 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1324 OptimizationRemarkEmitter *ORE) { 1325 assert(!OuterLp->empty() && "This is not an outer loop"); 1326 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1327 1328 // Only outer loops with an explicit vectorization hint are supported. 1329 // Unannotated outer loops are ignored. 1330 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1331 return false; 1332 1333 Function *Fn = OuterLp->getHeader()->getParent(); 1334 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) { 1335 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1336 return false; 1337 } 1338 1339 if (!Hints.getWidth()) { 1340 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n"); 1341 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1342 return false; 1343 } 1344 1345 if (Hints.getInterleave() > 1) { 1346 // TODO: Interleave support is future work. 1347 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1348 "outer loops.\n"); 1349 emitMissedWarning(Fn, OuterLp, Hints, ORE); 1350 return false; 1351 } 1352 1353 return true; 1354 } 1355 1356 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1357 OptimizationRemarkEmitter *ORE, 1358 SmallVectorImpl<Loop *> &V) { 1359 // Collect inner loops and outer loops without irreducible control flow. For 1360 // now, only collect outer loops that have explicit vectorization hints. If we 1361 // are stress testing the VPlan H-CFG construction, we collect the outermost 1362 // loop of every loop nest. 1363 if (L.empty() || VPlanBuildStressTest || 1364 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1365 LoopBlocksRPO RPOT(&L); 1366 RPOT.perform(LI); 1367 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1368 V.push_back(&L); 1369 // TODO: Collect inner loops inside marked outer loops in case 1370 // vectorization fails for the outer loop. Do not invoke 1371 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1372 // already known to be reducible. We can use an inherited attribute for 1373 // that. 1374 return; 1375 } 1376 } 1377 for (Loop *InnerL : L) 1378 collectSupportedLoops(*InnerL, LI, ORE, V); 1379 } 1380 1381 namespace { 1382 1383 /// The LoopVectorize Pass. 1384 struct LoopVectorize : public FunctionPass { 1385 /// Pass identification, replacement for typeid 1386 static char ID; 1387 1388 LoopVectorizePass Impl; 1389 1390 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1391 : FunctionPass(ID) { 1392 Impl.DisableUnrolling = NoUnrolling; 1393 Impl.AlwaysVectorize = AlwaysVectorize; 1394 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1395 } 1396 1397 bool runOnFunction(Function &F) override { 1398 if (skipFunction(F)) 1399 return false; 1400 1401 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1402 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1403 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1404 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1405 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1406 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1407 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 1408 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1409 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1410 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1411 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1412 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1413 1414 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1415 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1416 1417 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1418 GetLAA, *ORE); 1419 } 1420 1421 void getAnalysisUsage(AnalysisUsage &AU) const override { 1422 AU.addRequired<AssumptionCacheTracker>(); 1423 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1424 AU.addRequired<DominatorTreeWrapperPass>(); 1425 AU.addRequired<LoopInfoWrapperPass>(); 1426 AU.addRequired<ScalarEvolutionWrapperPass>(); 1427 AU.addRequired<TargetTransformInfoWrapperPass>(); 1428 AU.addRequired<AAResultsWrapperPass>(); 1429 AU.addRequired<LoopAccessLegacyAnalysis>(); 1430 AU.addRequired<DemandedBitsWrapperPass>(); 1431 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1432 1433 // We currently do not preserve loopinfo/dominator analyses with outer loop 1434 // vectorization. Until this is addressed, mark these analyses as preserved 1435 // only for non-VPlan-native path. 1436 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1437 if (!EnableVPlanNativePath) { 1438 AU.addPreserved<LoopInfoWrapperPass>(); 1439 AU.addPreserved<DominatorTreeWrapperPass>(); 1440 } 1441 1442 AU.addPreserved<BasicAAWrapperPass>(); 1443 AU.addPreserved<GlobalsAAWrapperPass>(); 1444 } 1445 }; 1446 1447 } // end anonymous namespace 1448 1449 //===----------------------------------------------------------------------===// 1450 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1451 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1452 //===----------------------------------------------------------------------===// 1453 1454 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1455 // We need to place the broadcast of invariant variables outside the loop, 1456 // but only if it's proven safe to do so. Else, broadcast will be inside 1457 // vector loop body. 1458 Instruction *Instr = dyn_cast<Instruction>(V); 1459 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1460 (!Instr || 1461 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1462 // Place the code for broadcasting invariant variables in the new preheader. 1463 IRBuilder<>::InsertPointGuard Guard(Builder); 1464 if (SafeToHoist) 1465 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1466 1467 // Broadcast the scalar into all locations in the vector. 1468 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1469 1470 return Shuf; 1471 } 1472 1473 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1474 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1475 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1476 "Expected either an induction phi-node or a truncate of it!"); 1477 Value *Start = II.getStartValue(); 1478 1479 // Construct the initial value of the vector IV in the vector loop preheader 1480 auto CurrIP = Builder.saveIP(); 1481 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1482 if (isa<TruncInst>(EntryVal)) { 1483 assert(Start->getType()->isIntegerTy() && 1484 "Truncation requires an integer type"); 1485 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1486 Step = Builder.CreateTrunc(Step, TruncType); 1487 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1488 } 1489 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1490 Value *SteppedStart = 1491 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1492 1493 // We create vector phi nodes for both integer and floating-point induction 1494 // variables. Here, we determine the kind of arithmetic we will perform. 1495 Instruction::BinaryOps AddOp; 1496 Instruction::BinaryOps MulOp; 1497 if (Step->getType()->isIntegerTy()) { 1498 AddOp = Instruction::Add; 1499 MulOp = Instruction::Mul; 1500 } else { 1501 AddOp = II.getInductionOpcode(); 1502 MulOp = Instruction::FMul; 1503 } 1504 1505 // Multiply the vectorization factor by the step using integer or 1506 // floating-point arithmetic as appropriate. 1507 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1508 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1509 1510 // Create a vector splat to use in the induction update. 1511 // 1512 // FIXME: If the step is non-constant, we create the vector splat with 1513 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1514 // handle a constant vector splat. 1515 Value *SplatVF = isa<Constant>(Mul) 1516 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1517 : Builder.CreateVectorSplat(VF, Mul); 1518 Builder.restoreIP(CurrIP); 1519 1520 // We may need to add the step a number of times, depending on the unroll 1521 // factor. The last of those goes into the PHI. 1522 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1523 &*LoopVectorBody->getFirstInsertionPt()); 1524 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1525 Instruction *LastInduction = VecInd; 1526 for (unsigned Part = 0; Part < UF; ++Part) { 1527 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1528 1529 if (isa<TruncInst>(EntryVal)) 1530 addMetadata(LastInduction, EntryVal); 1531 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1532 1533 LastInduction = cast<Instruction>(addFastMathFlag( 1534 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1535 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1536 } 1537 1538 // Move the last step to the end of the latch block. This ensures consistent 1539 // placement of all induction updates. 1540 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1541 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1542 auto *ICmp = cast<Instruction>(Br->getCondition()); 1543 LastInduction->moveBefore(ICmp); 1544 LastInduction->setName("vec.ind.next"); 1545 1546 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1547 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1548 } 1549 1550 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1551 return Cost->isScalarAfterVectorization(I, VF) || 1552 Cost->isProfitableToScalarize(I, VF); 1553 } 1554 1555 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1556 if (shouldScalarizeInstruction(IV)) 1557 return true; 1558 auto isScalarInst = [&](User *U) -> bool { 1559 auto *I = cast<Instruction>(U); 1560 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1561 }; 1562 return llvm::any_of(IV->users(), isScalarInst); 1563 } 1564 1565 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1566 const InductionDescriptor &ID, const Instruction *EntryVal, 1567 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1568 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1569 "Expected either an induction phi-node or a truncate of it!"); 1570 1571 // This induction variable is not the phi from the original loop but the 1572 // newly-created IV based on the proof that casted Phi is equal to the 1573 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1574 // re-uses the same InductionDescriptor that original IV uses but we don't 1575 // have to do any recording in this case - that is done when original IV is 1576 // processed. 1577 if (isa<TruncInst>(EntryVal)) 1578 return; 1579 1580 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1581 if (Casts.empty()) 1582 return; 1583 // Only the first Cast instruction in the Casts vector is of interest. 1584 // The rest of the Casts (if exist) have no uses outside the 1585 // induction update chain itself. 1586 Instruction *CastInst = *Casts.begin(); 1587 if (Lane < UINT_MAX) 1588 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1589 else 1590 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1591 } 1592 1593 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1594 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1595 "Primary induction variable must have an integer type"); 1596 1597 auto II = Legal->getInductionVars()->find(IV); 1598 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 1599 1600 auto ID = II->second; 1601 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1602 1603 // The scalar value to broadcast. This will be derived from the canonical 1604 // induction variable. 1605 Value *ScalarIV = nullptr; 1606 1607 // The value from the original loop to which we are mapping the new induction 1608 // variable. 1609 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1610 1611 // True if we have vectorized the induction variable. 1612 auto VectorizedIV = false; 1613 1614 // Determine if we want a scalar version of the induction variable. This is 1615 // true if the induction variable itself is not widened, or if it has at 1616 // least one user in the loop that is not widened. 1617 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 1618 1619 // Generate code for the induction step. Note that induction steps are 1620 // required to be loop-invariant 1621 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 1622 "Induction step should be loop invariant"); 1623 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1624 Value *Step = nullptr; 1625 if (PSE.getSE()->isSCEVable(IV->getType())) { 1626 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1627 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 1628 LoopVectorPreHeader->getTerminator()); 1629 } else { 1630 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 1631 } 1632 1633 // Try to create a new independent vector induction variable. If we can't 1634 // create the phi node, we will splat the scalar induction variable in each 1635 // loop iteration. 1636 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 1637 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1638 VectorizedIV = true; 1639 } 1640 1641 // If we haven't yet vectorized the induction variable, or if we will create 1642 // a scalar one, we need to define the scalar induction variable and step 1643 // values. If we were given a truncation type, truncate the canonical 1644 // induction variable and step. Otherwise, derive these values from the 1645 // induction descriptor. 1646 if (!VectorizedIV || NeedsScalarIV) { 1647 ScalarIV = Induction; 1648 if (IV != OldInduction) { 1649 ScalarIV = IV->getType()->isIntegerTy() 1650 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1651 : Builder.CreateCast(Instruction::SIToFP, Induction, 1652 IV->getType()); 1653 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1654 ScalarIV->setName("offset.idx"); 1655 } 1656 if (Trunc) { 1657 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1658 assert(Step->getType()->isIntegerTy() && 1659 "Truncation requires an integer step"); 1660 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1661 Step = Builder.CreateTrunc(Step, TruncType); 1662 } 1663 } 1664 1665 // If we haven't yet vectorized the induction variable, splat the scalar 1666 // induction variable, and build the necessary step vectors. 1667 // TODO: Don't do it unless the vectorized IV is really required. 1668 if (!VectorizedIV) { 1669 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1670 for (unsigned Part = 0; Part < UF; ++Part) { 1671 Value *EntryPart = 1672 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1673 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1674 if (Trunc) 1675 addMetadata(EntryPart, Trunc); 1676 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1677 } 1678 } 1679 1680 // If an induction variable is only used for counting loop iterations or 1681 // calculating addresses, it doesn't need to be widened. Create scalar steps 1682 // that can be used by instructions we will later scalarize. Note that the 1683 // addition of the scalar steps will not increase the number of instructions 1684 // in the loop in the common case prior to InstCombine. We will be trading 1685 // one vector extract for each scalar step. 1686 if (NeedsScalarIV) 1687 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1688 } 1689 1690 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1691 Instruction::BinaryOps BinOp) { 1692 // Create and check the types. 1693 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1694 int VLen = Val->getType()->getVectorNumElements(); 1695 1696 Type *STy = Val->getType()->getScalarType(); 1697 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1698 "Induction Step must be an integer or FP"); 1699 assert(Step->getType() == STy && "Step has wrong type"); 1700 1701 SmallVector<Constant *, 8> Indices; 1702 1703 if (STy->isIntegerTy()) { 1704 // Create a vector of consecutive numbers from zero to VF. 1705 for (int i = 0; i < VLen; ++i) 1706 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1707 1708 // Add the consecutive indices to the vector value. 1709 Constant *Cv = ConstantVector::get(Indices); 1710 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1711 Step = Builder.CreateVectorSplat(VLen, Step); 1712 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1713 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1714 // which can be found from the original scalar operations. 1715 Step = Builder.CreateMul(Cv, Step); 1716 return Builder.CreateAdd(Val, Step, "induction"); 1717 } 1718 1719 // Floating point induction. 1720 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1721 "Binary Opcode should be specified for FP induction"); 1722 // Create a vector of consecutive numbers from zero to VF. 1723 for (int i = 0; i < VLen; ++i) 1724 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1725 1726 // Add the consecutive indices to the vector value. 1727 Constant *Cv = ConstantVector::get(Indices); 1728 1729 Step = Builder.CreateVectorSplat(VLen, Step); 1730 1731 // Floating point operations had to be 'fast' to enable the induction. 1732 FastMathFlags Flags; 1733 Flags.setFast(); 1734 1735 Value *MulOp = Builder.CreateFMul(Cv, Step); 1736 if (isa<Instruction>(MulOp)) 1737 // Have to check, MulOp may be a constant 1738 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1739 1740 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1741 if (isa<Instruction>(BOp)) 1742 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1743 return BOp; 1744 } 1745 1746 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1747 Instruction *EntryVal, 1748 const InductionDescriptor &ID) { 1749 // We shouldn't have to build scalar steps if we aren't vectorizing. 1750 assert(VF > 1 && "VF should be greater than one"); 1751 1752 // Get the value type and ensure it and the step have the same integer type. 1753 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1754 assert(ScalarIVTy == Step->getType() && 1755 "Val and Step should have the same type"); 1756 1757 // We build scalar steps for both integer and floating-point induction 1758 // variables. Here, we determine the kind of arithmetic we will perform. 1759 Instruction::BinaryOps AddOp; 1760 Instruction::BinaryOps MulOp; 1761 if (ScalarIVTy->isIntegerTy()) { 1762 AddOp = Instruction::Add; 1763 MulOp = Instruction::Mul; 1764 } else { 1765 AddOp = ID.getInductionOpcode(); 1766 MulOp = Instruction::FMul; 1767 } 1768 1769 // Determine the number of scalars we need to generate for each unroll 1770 // iteration. If EntryVal is uniform, we only need to generate the first 1771 // lane. Otherwise, we generate all VF values. 1772 unsigned Lanes = 1773 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 1774 : VF; 1775 // Compute the scalar steps and save the results in VectorLoopValueMap. 1776 for (unsigned Part = 0; Part < UF; ++Part) { 1777 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 1778 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 1779 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 1780 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 1781 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 1782 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 1783 } 1784 } 1785 } 1786 1787 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 1788 assert(V != Induction && "The new induction variable should not be used."); 1789 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1790 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1791 1792 // If we have a stride that is replaced by one, do it here. Defer this for 1793 // the VPlan-native path until we start running Legal checks in that path. 1794 if (!EnableVPlanNativePath && Legal->hasStride(V)) 1795 V = ConstantInt::get(V->getType(), 1); 1796 1797 // If we have a vector mapped to this value, return it. 1798 if (VectorLoopValueMap.hasVectorValue(V, Part)) 1799 return VectorLoopValueMap.getVectorValue(V, Part); 1800 1801 // If the value has not been vectorized, check if it has been scalarized 1802 // instead. If it has been scalarized, and we actually need the value in 1803 // vector form, we will construct the vector values on demand. 1804 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 1805 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 1806 1807 // If we've scalarized a value, that value should be an instruction. 1808 auto *I = cast<Instruction>(V); 1809 1810 // If we aren't vectorizing, we can just copy the scalar map values over to 1811 // the vector map. 1812 if (VF == 1) { 1813 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 1814 return ScalarValue; 1815 } 1816 1817 // Get the last scalar instruction we generated for V and Part. If the value 1818 // is known to be uniform after vectorization, this corresponds to lane zero 1819 // of the Part unroll iteration. Otherwise, the last instruction is the one 1820 // we created for the last vector lane of the Part unroll iteration. 1821 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 1822 auto *LastInst = cast<Instruction>( 1823 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 1824 1825 // Set the insert point after the last scalarized instruction. This ensures 1826 // the insertelement sequence will directly follow the scalar definitions. 1827 auto OldIP = Builder.saveIP(); 1828 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 1829 Builder.SetInsertPoint(&*NewIP); 1830 1831 // However, if we are vectorizing, we need to construct the vector values. 1832 // If the value is known to be uniform after vectorization, we can just 1833 // broadcast the scalar value corresponding to lane zero for each unroll 1834 // iteration. Otherwise, we construct the vector values using insertelement 1835 // instructions. Since the resulting vectors are stored in 1836 // VectorLoopValueMap, we will only generate the insertelements once. 1837 Value *VectorValue = nullptr; 1838 if (Cost->isUniformAfterVectorization(I, VF)) { 1839 VectorValue = getBroadcastInstrs(ScalarValue); 1840 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 1841 } else { 1842 // Initialize packing with insertelements to start from undef. 1843 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 1844 VectorLoopValueMap.setVectorValue(V, Part, Undef); 1845 for (unsigned Lane = 0; Lane < VF; ++Lane) 1846 packScalarIntoVectorValue(V, {Part, Lane}); 1847 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 1848 } 1849 Builder.restoreIP(OldIP); 1850 return VectorValue; 1851 } 1852 1853 // If this scalar is unknown, assume that it is a constant or that it is 1854 // loop invariant. Broadcast V and save the value for future uses. 1855 Value *B = getBroadcastInstrs(V); 1856 VectorLoopValueMap.setVectorValue(V, Part, B); 1857 return B; 1858 } 1859 1860 Value * 1861 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 1862 const VPIteration &Instance) { 1863 // If the value is not an instruction contained in the loop, it should 1864 // already be scalar. 1865 if (OrigLoop->isLoopInvariant(V)) 1866 return V; 1867 1868 assert(Instance.Lane > 0 1869 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 1870 : true && "Uniform values only have lane zero"); 1871 1872 // If the value from the original loop has not been vectorized, it is 1873 // represented by UF x VF scalar values in the new loop. Return the requested 1874 // scalar value. 1875 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 1876 return VectorLoopValueMap.getScalarValue(V, Instance); 1877 1878 // If the value has not been scalarized, get its entry in VectorLoopValueMap 1879 // for the given unroll part. If this entry is not a vector type (i.e., the 1880 // vectorization factor is one), there is no need to generate an 1881 // extractelement instruction. 1882 auto *U = getOrCreateVectorValue(V, Instance.Part); 1883 if (!U->getType()->isVectorTy()) { 1884 assert(VF == 1 && "Value not scalarized has non-vector type"); 1885 return U; 1886 } 1887 1888 // Otherwise, the value from the original loop has been vectorized and is 1889 // represented by UF vector values. Extract and return the requested scalar 1890 // value from the appropriate vector lane. 1891 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 1892 } 1893 1894 void InnerLoopVectorizer::packScalarIntoVectorValue( 1895 Value *V, const VPIteration &Instance) { 1896 assert(V != Induction && "The new induction variable should not be used."); 1897 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 1898 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 1899 1900 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 1901 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 1902 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 1903 Builder.getInt32(Instance.Lane)); 1904 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 1905 } 1906 1907 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1908 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1909 SmallVector<Constant *, 8> ShuffleMask; 1910 for (unsigned i = 0; i < VF; ++i) 1911 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1912 1913 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1914 ConstantVector::get(ShuffleMask), 1915 "reverse"); 1916 } 1917 1918 // Try to vectorize the interleave group that \p Instr belongs to. 1919 // 1920 // E.g. Translate following interleaved load group (factor = 3): 1921 // for (i = 0; i < N; i+=3) { 1922 // R = Pic[i]; // Member of index 0 1923 // G = Pic[i+1]; // Member of index 1 1924 // B = Pic[i+2]; // Member of index 2 1925 // ... // do something to R, G, B 1926 // } 1927 // To: 1928 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1929 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 1930 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 1931 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 1932 // 1933 // Or translate following interleaved store group (factor = 3): 1934 // for (i = 0; i < N; i+=3) { 1935 // ... do something to R, G, B 1936 // Pic[i] = R; // Member of index 0 1937 // Pic[i+1] = G; // Member of index 1 1938 // Pic[i+2] = B; // Member of index 2 1939 // } 1940 // To: 1941 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 1942 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 1943 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 1944 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 1945 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 1946 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 1947 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr); 1948 assert(Group && "Fail to get an interleaved access group."); 1949 1950 // Skip if current instruction is not the insert position. 1951 if (Instr != Group->getInsertPos()) 1952 return; 1953 1954 const DataLayout &DL = Instr->getModule()->getDataLayout(); 1955 Value *Ptr = getLoadStorePointerOperand(Instr); 1956 1957 // Prepare for the vector type of the interleaved load/store. 1958 Type *ScalarTy = getMemInstValueType(Instr); 1959 unsigned InterleaveFactor = Group->getFactor(); 1960 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 1961 Type *PtrTy = VecTy->getPointerTo(getLoadStoreAddressSpace(Instr)); 1962 1963 // Prepare for the new pointers. 1964 setDebugLocFromInst(Builder, Ptr); 1965 SmallVector<Value *, 2> NewPtrs; 1966 unsigned Index = Group->getIndex(Instr); 1967 1968 // If the group is reverse, adjust the index to refer to the last vector lane 1969 // instead of the first. We adjust the index from the first vector lane, 1970 // rather than directly getting the pointer for lane VF - 1, because the 1971 // pointer operand of the interleaved access is supposed to be uniform. For 1972 // uniform instructions, we're only required to generate a value for the 1973 // first vector lane in each unroll iteration. 1974 if (Group->isReverse()) 1975 Index += (VF - 1) * Group->getFactor(); 1976 1977 bool InBounds = false; 1978 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 1979 InBounds = gep->isInBounds(); 1980 1981 for (unsigned Part = 0; Part < UF; Part++) { 1982 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 1983 1984 // Notice current instruction could be any index. Need to adjust the address 1985 // to the member of index 0. 1986 // 1987 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 1988 // b = A[i]; // Member of index 0 1989 // Current pointer is pointed to A[i+1], adjust it to A[i]. 1990 // 1991 // E.g. A[i+1] = a; // Member of index 1 1992 // A[i] = b; // Member of index 0 1993 // A[i+2] = c; // Member of index 2 (Current instruction) 1994 // Current pointer is pointed to A[i+2], adjust it to A[i]. 1995 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 1996 if (InBounds) 1997 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true); 1998 1999 // Cast to the vector pointer type. 2000 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2001 } 2002 2003 setDebugLocFromInst(Builder, Instr); 2004 Value *UndefVec = UndefValue::get(VecTy); 2005 2006 // Vectorize the interleaved load group. 2007 if (isa<LoadInst>(Instr)) { 2008 // For each unroll part, create a wide load for the group. 2009 SmallVector<Value *, 2> NewLoads; 2010 for (unsigned Part = 0; Part < UF; Part++) { 2011 auto *NewLoad = Builder.CreateAlignedLoad( 2012 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2013 Group->addMetadata(NewLoad); 2014 NewLoads.push_back(NewLoad); 2015 } 2016 2017 // For each member in the group, shuffle out the appropriate data from the 2018 // wide loads. 2019 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2020 Instruction *Member = Group->getMember(I); 2021 2022 // Skip the gaps in the group. 2023 if (!Member) 2024 continue; 2025 2026 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2027 for (unsigned Part = 0; Part < UF; Part++) { 2028 Value *StridedVec = Builder.CreateShuffleVector( 2029 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2030 2031 // If this member has different type, cast the result type. 2032 if (Member->getType() != ScalarTy) { 2033 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2034 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2035 } 2036 2037 if (Group->isReverse()) 2038 StridedVec = reverseVector(StridedVec); 2039 2040 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2041 } 2042 } 2043 return; 2044 } 2045 2046 // The sub vector type for current instruction. 2047 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2048 2049 // Vectorize the interleaved store group. 2050 for (unsigned Part = 0; Part < UF; Part++) { 2051 // Collect the stored vector from each member. 2052 SmallVector<Value *, 4> StoredVecs; 2053 for (unsigned i = 0; i < InterleaveFactor; i++) { 2054 // Interleaved store group doesn't allow a gap, so each index has a member 2055 Instruction *Member = Group->getMember(i); 2056 assert(Member && "Fail to get a member from an interleaved store group"); 2057 2058 Value *StoredVec = getOrCreateVectorValue( 2059 cast<StoreInst>(Member)->getValueOperand(), Part); 2060 if (Group->isReverse()) 2061 StoredVec = reverseVector(StoredVec); 2062 2063 // If this member has different type, cast it to a unified type. 2064 2065 if (StoredVec->getType() != SubVT) 2066 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2067 2068 StoredVecs.push_back(StoredVec); 2069 } 2070 2071 // Concatenate all vectors into a wide vector. 2072 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2073 2074 // Interleave the elements in the wide vector. 2075 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2076 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2077 "interleaved.vec"); 2078 2079 Instruction *NewStoreInstr = 2080 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2081 2082 Group->addMetadata(NewStoreInstr); 2083 } 2084 } 2085 2086 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2087 VectorParts *BlockInMask) { 2088 // Attempt to issue a wide load. 2089 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2090 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2091 2092 assert((LI || SI) && "Invalid Load/Store instruction"); 2093 2094 LoopVectorizationCostModel::InstWidening Decision = 2095 Cost->getWideningDecision(Instr, VF); 2096 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2097 "CM decision should be taken at this point"); 2098 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2099 return vectorizeInterleaveGroup(Instr); 2100 2101 Type *ScalarDataTy = getMemInstValueType(Instr); 2102 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2103 Value *Ptr = getLoadStorePointerOperand(Instr); 2104 unsigned Alignment = getLoadStoreAlignment(Instr); 2105 // An alignment of 0 means target abi alignment. We need to use the scalar's 2106 // target abi alignment in such a case. 2107 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2108 if (!Alignment) 2109 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2110 unsigned AddressSpace = getLoadStoreAddressSpace(Instr); 2111 2112 // Determine if the pointer operand of the access is either consecutive or 2113 // reverse consecutive. 2114 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2115 bool ConsecutiveStride = 2116 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2117 bool CreateGatherScatter = 2118 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2119 2120 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2121 // gather/scatter. Otherwise Decision should have been to Scalarize. 2122 assert((ConsecutiveStride || CreateGatherScatter) && 2123 "The instruction should be scalarized"); 2124 2125 // Handle consecutive loads/stores. 2126 if (ConsecutiveStride) 2127 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 2128 2129 VectorParts Mask; 2130 bool isMaskRequired = BlockInMask; 2131 if (isMaskRequired) 2132 Mask = *BlockInMask; 2133 2134 bool InBounds = false; 2135 if (auto *gep = dyn_cast<GetElementPtrInst>( 2136 getLoadStorePointerOperand(Instr)->stripPointerCasts())) 2137 InBounds = gep->isInBounds(); 2138 2139 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2140 // Calculate the pointer for the specific unroll-part. 2141 GetElementPtrInst *PartPtr = nullptr; 2142 2143 if (Reverse) { 2144 // If the address is consecutive but reversed, then the 2145 // wide store needs to start at the last vector element. 2146 PartPtr = cast<GetElementPtrInst>( 2147 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF))); 2148 PartPtr->setIsInBounds(InBounds); 2149 PartPtr = cast<GetElementPtrInst>( 2150 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF))); 2151 PartPtr->setIsInBounds(InBounds); 2152 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2153 Mask[Part] = reverseVector(Mask[Part]); 2154 } else { 2155 PartPtr = cast<GetElementPtrInst>( 2156 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF))); 2157 PartPtr->setIsInBounds(InBounds); 2158 } 2159 2160 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2161 }; 2162 2163 // Handle Stores: 2164 if (SI) { 2165 setDebugLocFromInst(Builder, SI); 2166 2167 for (unsigned Part = 0; Part < UF; ++Part) { 2168 Instruction *NewSI = nullptr; 2169 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 2170 if (CreateGatherScatter) { 2171 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2172 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2173 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2174 MaskPart); 2175 } else { 2176 if (Reverse) { 2177 // If we store to reverse consecutive memory locations, then we need 2178 // to reverse the order of elements in the stored value. 2179 StoredVal = reverseVector(StoredVal); 2180 // We don't want to update the value in the map as it might be used in 2181 // another expression. So don't call resetVectorValue(StoredVal). 2182 } 2183 auto *VecPtr = CreateVecPtr(Part, Ptr); 2184 if (isMaskRequired) 2185 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2186 Mask[Part]); 2187 else 2188 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2189 } 2190 addMetadata(NewSI, SI); 2191 } 2192 return; 2193 } 2194 2195 // Handle loads. 2196 assert(LI && "Must have a load instruction"); 2197 setDebugLocFromInst(Builder, LI); 2198 for (unsigned Part = 0; Part < UF; ++Part) { 2199 Value *NewLI; 2200 if (CreateGatherScatter) { 2201 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 2202 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 2203 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2204 nullptr, "wide.masked.gather"); 2205 addMetadata(NewLI, LI); 2206 } else { 2207 auto *VecPtr = CreateVecPtr(Part, Ptr); 2208 if (isMaskRequired) 2209 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2210 UndefValue::get(DataTy), 2211 "wide.masked.load"); 2212 else 2213 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2214 2215 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2216 addMetadata(NewLI, LI); 2217 if (Reverse) 2218 NewLI = reverseVector(NewLI); 2219 } 2220 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2221 } 2222 } 2223 2224 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2225 const VPIteration &Instance, 2226 bool IfPredicateInstr) { 2227 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2228 2229 setDebugLocFromInst(Builder, Instr); 2230 2231 // Does this instruction return a value ? 2232 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2233 2234 Instruction *Cloned = Instr->clone(); 2235 if (!IsVoidRetTy) 2236 Cloned->setName(Instr->getName() + ".cloned"); 2237 2238 // Replace the operands of the cloned instructions with their scalar 2239 // equivalents in the new loop. 2240 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2241 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 2242 Cloned->setOperand(op, NewOp); 2243 } 2244 addNewMetadata(Cloned, Instr); 2245 2246 // Place the cloned scalar in the new loop. 2247 Builder.Insert(Cloned); 2248 2249 // Add the cloned scalar to the scalar map entry. 2250 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2251 2252 // If we just cloned a new assumption, add it the assumption cache. 2253 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2254 if (II->getIntrinsicID() == Intrinsic::assume) 2255 AC->registerAssumption(II); 2256 2257 // End if-block. 2258 if (IfPredicateInstr) 2259 PredicatedInstructions.push_back(Cloned); 2260 } 2261 2262 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2263 Value *End, Value *Step, 2264 Instruction *DL) { 2265 BasicBlock *Header = L->getHeader(); 2266 BasicBlock *Latch = L->getLoopLatch(); 2267 // As we're just creating this loop, it's possible no latch exists 2268 // yet. If so, use the header as this will be a single block loop. 2269 if (!Latch) 2270 Latch = Header; 2271 2272 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2273 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2274 setDebugLocFromInst(Builder, OldInst); 2275 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2276 2277 Builder.SetInsertPoint(Latch->getTerminator()); 2278 setDebugLocFromInst(Builder, OldInst); 2279 2280 // Create i+1 and fill the PHINode. 2281 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2282 Induction->addIncoming(Start, L->getLoopPreheader()); 2283 Induction->addIncoming(Next, Latch); 2284 // Create the compare. 2285 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2286 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2287 2288 // Now we have two terminators. Remove the old one from the block. 2289 Latch->getTerminator()->eraseFromParent(); 2290 2291 return Induction; 2292 } 2293 2294 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2295 if (TripCount) 2296 return TripCount; 2297 2298 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2299 // Find the loop boundaries. 2300 ScalarEvolution *SE = PSE.getSE(); 2301 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2302 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2303 "Invalid loop count"); 2304 2305 Type *IdxTy = Legal->getWidestInductionType(); 2306 assert(IdxTy && "No type for induction"); 2307 2308 // The exit count might have the type of i64 while the phi is i32. This can 2309 // happen if we have an induction variable that is sign extended before the 2310 // compare. The only way that we get a backedge taken count is that the 2311 // induction variable was signed and as such will not overflow. In such a case 2312 // truncation is legal. 2313 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2314 IdxTy->getPrimitiveSizeInBits()) 2315 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2316 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2317 2318 // Get the total trip count from the count by adding 1. 2319 const SCEV *ExitCount = SE->getAddExpr( 2320 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2321 2322 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2323 2324 // Expand the trip count and place the new instructions in the preheader. 2325 // Notice that the pre-header does not change, only the loop body. 2326 SCEVExpander Exp(*SE, DL, "induction"); 2327 2328 // Count holds the overall loop count (N). 2329 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2330 L->getLoopPreheader()->getTerminator()); 2331 2332 if (TripCount->getType()->isPointerTy()) 2333 TripCount = 2334 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2335 L->getLoopPreheader()->getTerminator()); 2336 2337 return TripCount; 2338 } 2339 2340 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2341 if (VectorTripCount) 2342 return VectorTripCount; 2343 2344 Value *TC = getOrCreateTripCount(L); 2345 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2346 2347 // Now we need to generate the expression for the part of the loop that the 2348 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2349 // iterations are not required for correctness, or N - Step, otherwise. Step 2350 // is equal to the vectorization factor (number of SIMD elements) times the 2351 // unroll factor (number of SIMD instructions). 2352 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2353 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2354 2355 // If there is a non-reversed interleaved group that may speculatively access 2356 // memory out-of-bounds, we need to ensure that there will be at least one 2357 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2358 // the trip count, we set the remainder to be equal to the step. If the step 2359 // does not evenly divide the trip count, no adjustment is necessary since 2360 // there will already be scalar iterations. Note that the minimum iterations 2361 // check ensures that N >= Step. 2362 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2363 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2364 R = Builder.CreateSelect(IsZero, Step, R); 2365 } 2366 2367 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2368 2369 return VectorTripCount; 2370 } 2371 2372 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2373 const DataLayout &DL) { 2374 // Verify that V is a vector type with same number of elements as DstVTy. 2375 unsigned VF = DstVTy->getNumElements(); 2376 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2377 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2378 Type *SrcElemTy = SrcVecTy->getElementType(); 2379 Type *DstElemTy = DstVTy->getElementType(); 2380 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2381 "Vector elements must have same size"); 2382 2383 // Do a direct cast if element types are castable. 2384 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2385 return Builder.CreateBitOrPointerCast(V, DstVTy); 2386 } 2387 // V cannot be directly casted to desired vector type. 2388 // May happen when V is a floating point vector but DstVTy is a vector of 2389 // pointers or vice-versa. Handle this using a two-step bitcast using an 2390 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2391 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2392 "Only one type should be a pointer type"); 2393 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2394 "Only one type should be a floating point type"); 2395 Type *IntTy = 2396 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2397 VectorType *VecIntTy = VectorType::get(IntTy, VF); 2398 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2399 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2400 } 2401 2402 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2403 BasicBlock *Bypass) { 2404 Value *Count = getOrCreateTripCount(L); 2405 BasicBlock *BB = L->getLoopPreheader(); 2406 IRBuilder<> Builder(BB->getTerminator()); 2407 2408 // Generate code to check if the loop's trip count is less than VF * UF, or 2409 // equal to it in case a scalar epilogue is required; this implies that the 2410 // vector trip count is zero. This check also covers the case where adding one 2411 // to the backedge-taken count overflowed leading to an incorrect trip count 2412 // of zero. In this case we will also jump to the scalar loop. 2413 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2414 : ICmpInst::ICMP_ULT; 2415 Value *CheckMinIters = Builder.CreateICmp( 2416 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2417 2418 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2419 // Update dominator tree immediately if the generated block is a 2420 // LoopBypassBlock because SCEV expansions to generate loop bypass 2421 // checks may query it before the current function is finished. 2422 DT->addNewBlock(NewBB, BB); 2423 if (L->getParentLoop()) 2424 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2425 ReplaceInstWithInst(BB->getTerminator(), 2426 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2427 LoopBypassBlocks.push_back(BB); 2428 } 2429 2430 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2431 BasicBlock *BB = L->getLoopPreheader(); 2432 2433 // Generate the code to check that the SCEV assumptions that we made. 2434 // We want the new basic block to start at the first instruction in a 2435 // sequence of instructions that form a check. 2436 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2437 "scev.check"); 2438 Value *SCEVCheck = 2439 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 2440 2441 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2442 if (C->isZero()) 2443 return; 2444 2445 // Create a new block containing the stride check. 2446 BB->setName("vector.scevcheck"); 2447 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2448 // Update dominator tree immediately if the generated block is a 2449 // LoopBypassBlock because SCEV expansions to generate loop bypass 2450 // checks may query it before the current function is finished. 2451 DT->addNewBlock(NewBB, BB); 2452 if (L->getParentLoop()) 2453 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2454 ReplaceInstWithInst(BB->getTerminator(), 2455 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 2456 LoopBypassBlocks.push_back(BB); 2457 AddedSafetyChecks = true; 2458 } 2459 2460 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2461 // VPlan-native path does not do any analysis for runtime checks currently. 2462 if (EnableVPlanNativePath) 2463 return; 2464 2465 BasicBlock *BB = L->getLoopPreheader(); 2466 2467 // Generate the code that checks in runtime if arrays overlap. We put the 2468 // checks into a separate block to make the more common case of few elements 2469 // faster. 2470 Instruction *FirstCheckInst; 2471 Instruction *MemRuntimeCheck; 2472 std::tie(FirstCheckInst, MemRuntimeCheck) = 2473 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 2474 if (!MemRuntimeCheck) 2475 return; 2476 2477 // Create a new block containing the memory check. 2478 BB->setName("vector.memcheck"); 2479 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 2480 // Update dominator tree immediately if the generated block is a 2481 // LoopBypassBlock because SCEV expansions to generate loop bypass 2482 // checks may query it before the current function is finished. 2483 DT->addNewBlock(NewBB, BB); 2484 if (L->getParentLoop()) 2485 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2486 ReplaceInstWithInst(BB->getTerminator(), 2487 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 2488 LoopBypassBlocks.push_back(BB); 2489 AddedSafetyChecks = true; 2490 2491 // We currently don't use LoopVersioning for the actual loop cloning but we 2492 // still use it to add the noalias metadata. 2493 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2494 PSE.getSE()); 2495 LVer->prepareNoAliasMetadata(); 2496 } 2497 2498 Value *InnerLoopVectorizer::emitTransformedIndex( 2499 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2500 const InductionDescriptor &ID) const { 2501 2502 SCEVExpander Exp(*SE, DL, "induction"); 2503 auto Step = ID.getStep(); 2504 auto StartValue = ID.getStartValue(); 2505 assert(Index->getType() == Step->getType() && 2506 "Index type does not match StepValue type"); 2507 switch (ID.getKind()) { 2508 case InductionDescriptor::IK_IntInduction: { 2509 assert(Index->getType() == StartValue->getType() && 2510 "Index type does not match StartValue type"); 2511 2512 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution 2513 // and calculate (Start + Index * Step) for all cases, without 2514 // special handling for "isOne" and "isMinusOne". 2515 // But in the real life the result code getting worse. We mix SCEV 2516 // expressions and ADD/SUB operations and receive redundant 2517 // intermediate values being calculated in different ways and 2518 // Instcombine is unable to reduce them all. 2519 2520 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2521 return B.CreateSub(StartValue, Index); 2522 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne()) 2523 return B.CreateAdd(StartValue, Index); 2524 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), 2525 SE->getMulExpr(Step, SE->getSCEV(Index))); 2526 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); 2527 } 2528 case InductionDescriptor::IK_PtrInduction: { 2529 assert(isa<SCEVConstant>(Step) && 2530 "Expected constant step for pointer induction"); 2531 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); 2532 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); 2533 return B.CreateGEP(nullptr, StartValue, Index); 2534 } 2535 case InductionDescriptor::IK_FpInduction: { 2536 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2537 auto InductionBinOp = ID.getInductionBinOp(); 2538 assert(InductionBinOp && 2539 (InductionBinOp->getOpcode() == Instruction::FAdd || 2540 InductionBinOp->getOpcode() == Instruction::FSub) && 2541 "Original bin op should be defined for FP induction"); 2542 2543 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2544 2545 // Floating point operations had to be 'fast' to enable the induction. 2546 FastMathFlags Flags; 2547 Flags.setFast(); 2548 2549 Value *MulExp = B.CreateFMul(StepValue, Index); 2550 if (isa<Instruction>(MulExp)) 2551 // We have to check, the MulExp may be a constant. 2552 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2553 2554 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2555 "induction"); 2556 if (isa<Instruction>(BOp)) 2557 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2558 2559 return BOp; 2560 } 2561 case InductionDescriptor::IK_NoInduction: 2562 return nullptr; 2563 } 2564 llvm_unreachable("invalid enum"); 2565 } 2566 2567 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2568 /* 2569 In this function we generate a new loop. The new loop will contain 2570 the vectorized instructions while the old loop will continue to run the 2571 scalar remainder. 2572 2573 [ ] <-- loop iteration number check. 2574 / | 2575 / v 2576 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2577 | / | 2578 | / v 2579 || [ ] <-- vector pre header. 2580 |/ | 2581 | v 2582 | [ ] \ 2583 | [ ]_| <-- vector loop. 2584 | | 2585 | v 2586 | -[ ] <--- middle-block. 2587 | / | 2588 | / v 2589 -|- >[ ] <--- new preheader. 2590 | | 2591 | v 2592 | [ ] \ 2593 | [ ]_| <-- old scalar loop to handle remainder. 2594 \ | 2595 \ v 2596 >[ ] <-- exit block. 2597 ... 2598 */ 2599 2600 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2601 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2602 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2603 assert(VectorPH && "Invalid loop structure"); 2604 assert(ExitBlock && "Must have an exit block"); 2605 2606 // Some loops have a single integer induction variable, while other loops 2607 // don't. One example is c++ iterators that often have multiple pointer 2608 // induction variables. In the code below we also support a case where we 2609 // don't have a single induction variable. 2610 // 2611 // We try to obtain an induction variable from the original loop as hard 2612 // as possible. However if we don't find one that: 2613 // - is an integer 2614 // - counts from zero, stepping by one 2615 // - is the size of the widest induction variable type 2616 // then we create a new one. 2617 OldInduction = Legal->getPrimaryInduction(); 2618 Type *IdxTy = Legal->getWidestInductionType(); 2619 2620 // Split the single block loop into the two loop structure described above. 2621 BasicBlock *VecBody = 2622 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2623 BasicBlock *MiddleBlock = 2624 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2625 BasicBlock *ScalarPH = 2626 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2627 2628 // Create and register the new vector loop. 2629 Loop *Lp = LI->AllocateLoop(); 2630 Loop *ParentLoop = OrigLoop->getParentLoop(); 2631 2632 // Insert the new loop into the loop nest and register the new basic blocks 2633 // before calling any utilities such as SCEV that require valid LoopInfo. 2634 if (ParentLoop) { 2635 ParentLoop->addChildLoop(Lp); 2636 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2637 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2638 } else { 2639 LI->addTopLevelLoop(Lp); 2640 } 2641 Lp->addBasicBlockToLoop(VecBody, *LI); 2642 2643 // Find the loop boundaries. 2644 Value *Count = getOrCreateTripCount(Lp); 2645 2646 Value *StartIdx = ConstantInt::get(IdxTy, 0); 2647 2648 // Now, compare the new count to zero. If it is zero skip the vector loop and 2649 // jump to the scalar loop. This check also covers the case where the 2650 // backedge-taken count is uint##_max: adding one to it will overflow leading 2651 // to an incorrect trip count of zero. In this (rare) case we will also jump 2652 // to the scalar loop. 2653 emitMinimumIterationCountCheck(Lp, ScalarPH); 2654 2655 // Generate the code to check any assumptions that we've made for SCEV 2656 // expressions. 2657 emitSCEVChecks(Lp, ScalarPH); 2658 2659 // Generate the code that checks in runtime if arrays overlap. We put the 2660 // checks into a separate block to make the more common case of few elements 2661 // faster. 2662 emitMemRuntimeChecks(Lp, ScalarPH); 2663 2664 // Generate the induction variable. 2665 // The loop step is equal to the vectorization factor (num of SIMD elements) 2666 // times the unroll factor (num of SIMD instructions). 2667 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 2668 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2669 Induction = 2670 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 2671 getDebugLocFromInstOrOperands(OldInduction)); 2672 2673 // We are going to resume the execution of the scalar loop. 2674 // Go over all of the induction variables that we found and fix the 2675 // PHIs that are left in the scalar version of the loop. 2676 // The starting values of PHI nodes depend on the counter of the last 2677 // iteration in the vectorized loop. 2678 // If we come from a bypass edge then we need to start from the original 2679 // start value. 2680 2681 // This variable saves the new starting index for the scalar loop. It is used 2682 // to test if there are any tail iterations left once the vector loop has 2683 // completed. 2684 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2685 for (auto &InductionEntry : *List) { 2686 PHINode *OrigPhi = InductionEntry.first; 2687 InductionDescriptor II = InductionEntry.second; 2688 2689 // Create phi nodes to merge from the backedge-taken check block. 2690 PHINode *BCResumeVal = PHINode::Create( 2691 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 2692 // Copy original phi DL over to the new one. 2693 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 2694 Value *&EndValue = IVEndValues[OrigPhi]; 2695 if (OrigPhi == OldInduction) { 2696 // We know what the end value is. 2697 EndValue = CountRoundDown; 2698 } else { 2699 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 2700 Type *StepType = II.getStep()->getType(); 2701 Instruction::CastOps CastOp = 2702 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 2703 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 2704 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2705 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 2706 EndValue->setName("ind.end"); 2707 } 2708 2709 // The new PHI merges the original incoming value, in case of a bypass, 2710 // or the value at the end of the vectorized loop. 2711 BCResumeVal->addIncoming(EndValue, MiddleBlock); 2712 2713 // Fix the scalar body counter (PHI node). 2714 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2715 2716 // The old induction's phi node in the scalar body needs the truncated 2717 // value. 2718 for (BasicBlock *BB : LoopBypassBlocks) 2719 BCResumeVal->addIncoming(II.getStartValue(), BB); 2720 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2721 } 2722 2723 // Add a check in the middle block to see if we have completed 2724 // all of the iterations in the first vector loop. 2725 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2726 Value *CmpN = 2727 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 2728 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 2729 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2730 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2731 2732 // Get ready to start creating new instructions into the vectorized body. 2733 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 2734 2735 // Save the state. 2736 LoopVectorPreHeader = Lp->getLoopPreheader(); 2737 LoopScalarPreHeader = ScalarPH; 2738 LoopMiddleBlock = MiddleBlock; 2739 LoopExitBlock = ExitBlock; 2740 LoopVectorBody = VecBody; 2741 LoopScalarBody = OldBasicBlock; 2742 2743 // Keep all loop hints from the original loop on the vector loop (we'll 2744 // replace the vectorizer-specific hints below). 2745 if (MDNode *LID = OrigLoop->getLoopID()) 2746 Lp->setLoopID(LID); 2747 2748 LoopVectorizeHints Hints(Lp, true, *ORE); 2749 Hints.setAlreadyVectorized(); 2750 2751 return LoopVectorPreHeader; 2752 } 2753 2754 // Fix up external users of the induction variable. At this point, we are 2755 // in LCSSA form, with all external PHIs that use the IV having one input value, 2756 // coming from the remainder loop. We need those PHIs to also have a correct 2757 // value for the IV when arriving directly from the middle block. 2758 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 2759 const InductionDescriptor &II, 2760 Value *CountRoundDown, Value *EndValue, 2761 BasicBlock *MiddleBlock) { 2762 // There are two kinds of external IV usages - those that use the value 2763 // computed in the last iteration (the PHI) and those that use the penultimate 2764 // value (the value that feeds into the phi from the loop latch). 2765 // We allow both, but they, obviously, have different values. 2766 2767 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 2768 2769 DenseMap<Value *, Value *> MissingVals; 2770 2771 // An external user of the last iteration's value should see the value that 2772 // the remainder loop uses to initialize its own IV. 2773 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 2774 for (User *U : PostInc->users()) { 2775 Instruction *UI = cast<Instruction>(U); 2776 if (!OrigLoop->contains(UI)) { 2777 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2778 MissingVals[UI] = EndValue; 2779 } 2780 } 2781 2782 // An external user of the penultimate value need to see EndValue - Step. 2783 // The simplest way to get this is to recompute it from the constituent SCEVs, 2784 // that is Start + (Step * (CRD - 1)). 2785 for (User *U : OrigPhi->users()) { 2786 auto *UI = cast<Instruction>(U); 2787 if (!OrigLoop->contains(UI)) { 2788 const DataLayout &DL = 2789 OrigLoop->getHeader()->getModule()->getDataLayout(); 2790 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 2791 2792 IRBuilder<> B(MiddleBlock->getTerminator()); 2793 Value *CountMinusOne = B.CreateSub( 2794 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 2795 Value *CMO = 2796 !II.getStep()->getType()->isIntegerTy() 2797 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 2798 II.getStep()->getType()) 2799 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 2800 CMO->setName("cast.cmo"); 2801 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 2802 Escape->setName("ind.escape"); 2803 MissingVals[UI] = Escape; 2804 } 2805 } 2806 2807 for (auto &I : MissingVals) { 2808 PHINode *PHI = cast<PHINode>(I.first); 2809 // One corner case we have to handle is two IVs "chasing" each-other, 2810 // that is %IV2 = phi [...], [ %IV1, %latch ] 2811 // In this case, if IV1 has an external use, we need to avoid adding both 2812 // "last value of IV1" and "penultimate value of IV2". So, verify that we 2813 // don't already have an incoming value for the middle block. 2814 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 2815 PHI->addIncoming(I.second, MiddleBlock); 2816 } 2817 } 2818 2819 namespace { 2820 2821 struct CSEDenseMapInfo { 2822 static bool canHandle(const Instruction *I) { 2823 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2824 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2825 } 2826 2827 static inline Instruction *getEmptyKey() { 2828 return DenseMapInfo<Instruction *>::getEmptyKey(); 2829 } 2830 2831 static inline Instruction *getTombstoneKey() { 2832 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2833 } 2834 2835 static unsigned getHashValue(const Instruction *I) { 2836 assert(canHandle(I) && "Unknown instruction!"); 2837 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2838 I->value_op_end())); 2839 } 2840 2841 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 2842 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2843 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2844 return LHS == RHS; 2845 return LHS->isIdenticalTo(RHS); 2846 } 2847 }; 2848 2849 } // end anonymous namespace 2850 2851 ///Perform cse of induction variable instructions. 2852 static void cse(BasicBlock *BB) { 2853 // Perform simple cse. 2854 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2855 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2856 Instruction *In = &*I++; 2857 2858 if (!CSEDenseMapInfo::canHandle(In)) 2859 continue; 2860 2861 // Check if we can replace this instruction with any of the 2862 // visited instructions. 2863 if (Instruction *V = CSEMap.lookup(In)) { 2864 In->replaceAllUsesWith(V); 2865 In->eraseFromParent(); 2866 continue; 2867 } 2868 2869 CSEMap[In] = In; 2870 } 2871 } 2872 2873 /// Estimate the overhead of scalarizing an instruction. This is a 2874 /// convenience wrapper for the type-based getScalarizationOverhead API. 2875 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 2876 const TargetTransformInfo &TTI) { 2877 if (VF == 1) 2878 return 0; 2879 2880 unsigned Cost = 0; 2881 Type *RetTy = ToVectorTy(I->getType(), VF); 2882 if (!RetTy->isVoidTy() && 2883 (!isa<LoadInst>(I) || 2884 !TTI.supportsEfficientVectorElementLoadStore())) 2885 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 2886 2887 if (CallInst *CI = dyn_cast<CallInst>(I)) { 2888 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 2889 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 2890 } 2891 else if (!isa<StoreInst>(I) || 2892 !TTI.supportsEfficientVectorElementLoadStore()) { 2893 SmallVector<const Value *, 4> Operands(I->operand_values()); 2894 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 2895 } 2896 2897 return Cost; 2898 } 2899 2900 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2901 // Return the cost of the instruction, including scalarization overhead if it's 2902 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2903 // i.e. either vector version isn't available, or is too expensive. 2904 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2905 const TargetTransformInfo &TTI, 2906 const TargetLibraryInfo *TLI, 2907 bool &NeedToScalarize) { 2908 Function *F = CI->getCalledFunction(); 2909 StringRef FnName = CI->getCalledFunction()->getName(); 2910 Type *ScalarRetTy = CI->getType(); 2911 SmallVector<Type *, 4> Tys, ScalarTys; 2912 for (auto &ArgOp : CI->arg_operands()) 2913 ScalarTys.push_back(ArgOp->getType()); 2914 2915 // Estimate cost of scalarized vector call. The source operands are assumed 2916 // to be vectors, so we need to extract individual elements from there, 2917 // execute VF scalar calls, and then gather the result into the vector return 2918 // value. 2919 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2920 if (VF == 1) 2921 return ScalarCallCost; 2922 2923 // Compute corresponding vector type for return value and arguments. 2924 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2925 for (Type *ScalarTy : ScalarTys) 2926 Tys.push_back(ToVectorTy(ScalarTy, VF)); 2927 2928 // Compute costs of unpacking argument values for the scalar calls and 2929 // packing the return values to a vector. 2930 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 2931 2932 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 2933 2934 // If we can't emit a vector call for this function, then the currently found 2935 // cost is the cost we need to return. 2936 NeedToScalarize = true; 2937 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 2938 return Cost; 2939 2940 // If the corresponding vector cost is cheaper, return its cost. 2941 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 2942 if (VectorCallCost < Cost) { 2943 NeedToScalarize = false; 2944 return VectorCallCost; 2945 } 2946 return Cost; 2947 } 2948 2949 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 2950 // factor VF. Return the cost of the instruction, including scalarization 2951 // overhead if it's needed. 2952 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 2953 const TargetTransformInfo &TTI, 2954 const TargetLibraryInfo *TLI) { 2955 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 2956 assert(ID && "Expected intrinsic call!"); 2957 2958 FastMathFlags FMF; 2959 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 2960 FMF = FPMO->getFastMathFlags(); 2961 2962 SmallVector<Value *, 4> Operands(CI->arg_operands()); 2963 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 2964 } 2965 2966 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 2967 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 2968 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 2969 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 2970 } 2971 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 2972 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 2973 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 2974 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 2975 } 2976 2977 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 2978 // For every instruction `I` in MinBWs, truncate the operands, create a 2979 // truncated version of `I` and reextend its result. InstCombine runs 2980 // later and will remove any ext/trunc pairs. 2981 SmallPtrSet<Value *, 4> Erased; 2982 for (const auto &KV : Cost->getMinimalBitwidths()) { 2983 // If the value wasn't vectorized, we must maintain the original scalar 2984 // type. The absence of the value from VectorLoopValueMap indicates that it 2985 // wasn't vectorized. 2986 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 2987 continue; 2988 for (unsigned Part = 0; Part < UF; ++Part) { 2989 Value *I = getOrCreateVectorValue(KV.first, Part); 2990 if (Erased.find(I) != Erased.end() || I->use_empty() || 2991 !isa<Instruction>(I)) 2992 continue; 2993 Type *OriginalTy = I->getType(); 2994 Type *ScalarTruncatedTy = 2995 IntegerType::get(OriginalTy->getContext(), KV.second); 2996 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 2997 OriginalTy->getVectorNumElements()); 2998 if (TruncatedTy == OriginalTy) 2999 continue; 3000 3001 IRBuilder<> B(cast<Instruction>(I)); 3002 auto ShrinkOperand = [&](Value *V) -> Value * { 3003 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3004 if (ZI->getSrcTy() == TruncatedTy) 3005 return ZI->getOperand(0); 3006 return B.CreateZExtOrTrunc(V, TruncatedTy); 3007 }; 3008 3009 // The actual instruction modification depends on the instruction type, 3010 // unfortunately. 3011 Value *NewI = nullptr; 3012 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3013 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3014 ShrinkOperand(BO->getOperand(1))); 3015 3016 // Any wrapping introduced by shrinking this operation shouldn't be 3017 // considered undefined behavior. So, we can't unconditionally copy 3018 // arithmetic wrapping flags to NewI. 3019 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3020 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3021 NewI = 3022 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3023 ShrinkOperand(CI->getOperand(1))); 3024 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3025 NewI = B.CreateSelect(SI->getCondition(), 3026 ShrinkOperand(SI->getTrueValue()), 3027 ShrinkOperand(SI->getFalseValue())); 3028 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3029 switch (CI->getOpcode()) { 3030 default: 3031 llvm_unreachable("Unhandled cast!"); 3032 case Instruction::Trunc: 3033 NewI = ShrinkOperand(CI->getOperand(0)); 3034 break; 3035 case Instruction::SExt: 3036 NewI = B.CreateSExtOrTrunc( 3037 CI->getOperand(0), 3038 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3039 break; 3040 case Instruction::ZExt: 3041 NewI = B.CreateZExtOrTrunc( 3042 CI->getOperand(0), 3043 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3044 break; 3045 } 3046 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3047 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3048 auto *O0 = B.CreateZExtOrTrunc( 3049 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3050 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3051 auto *O1 = B.CreateZExtOrTrunc( 3052 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3053 3054 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3055 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3056 // Don't do anything with the operands, just extend the result. 3057 continue; 3058 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3059 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3060 auto *O0 = B.CreateZExtOrTrunc( 3061 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3062 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3063 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3064 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3065 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3066 auto *O0 = B.CreateZExtOrTrunc( 3067 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3068 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3069 } else { 3070 // If we don't know what to do, be conservative and don't do anything. 3071 continue; 3072 } 3073 3074 // Lastly, extend the result. 3075 NewI->takeName(cast<Instruction>(I)); 3076 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3077 I->replaceAllUsesWith(Res); 3078 cast<Instruction>(I)->eraseFromParent(); 3079 Erased.insert(I); 3080 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3081 } 3082 } 3083 3084 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3085 for (const auto &KV : Cost->getMinimalBitwidths()) { 3086 // If the value wasn't vectorized, we must maintain the original scalar 3087 // type. The absence of the value from VectorLoopValueMap indicates that it 3088 // wasn't vectorized. 3089 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3090 continue; 3091 for (unsigned Part = 0; Part < UF; ++Part) { 3092 Value *I = getOrCreateVectorValue(KV.first, Part); 3093 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3094 if (Inst && Inst->use_empty()) { 3095 Value *NewI = Inst->getOperand(0); 3096 Inst->eraseFromParent(); 3097 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3098 } 3099 } 3100 } 3101 } 3102 3103 void InnerLoopVectorizer::fixVectorizedLoop() { 3104 // Insert truncates and extends for any truncated instructions as hints to 3105 // InstCombine. 3106 if (VF > 1) 3107 truncateToMinimalBitwidths(); 3108 3109 // Fix widened non-induction PHIs by setting up the PHI operands. 3110 if (OrigPHIsToFix.size()) { 3111 assert(EnableVPlanNativePath && 3112 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3113 fixNonInductionPHIs(); 3114 } 3115 3116 // At this point every instruction in the original loop is widened to a 3117 // vector form. Now we need to fix the recurrences in the loop. These PHI 3118 // nodes are currently empty because we did not want to introduce cycles. 3119 // This is the second stage of vectorizing recurrences. 3120 fixCrossIterationPHIs(); 3121 3122 // Update the dominator tree. 3123 // 3124 // FIXME: After creating the structure of the new loop, the dominator tree is 3125 // no longer up-to-date, and it remains that way until we update it 3126 // here. An out-of-date dominator tree is problematic for SCEV, 3127 // because SCEVExpander uses it to guide code generation. The 3128 // vectorizer use SCEVExpanders in several places. Instead, we should 3129 // keep the dominator tree up-to-date as we go. 3130 updateAnalysis(); 3131 3132 // Fix-up external users of the induction variables. 3133 for (auto &Entry : *Legal->getInductionVars()) 3134 fixupIVUsers(Entry.first, Entry.second, 3135 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3136 IVEndValues[Entry.first], LoopMiddleBlock); 3137 3138 fixLCSSAPHIs(); 3139 for (Instruction *PI : PredicatedInstructions) 3140 sinkScalarOperands(&*PI); 3141 3142 // Remove redundant induction instructions. 3143 cse(LoopVectorBody); 3144 } 3145 3146 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3147 // In order to support recurrences we need to be able to vectorize Phi nodes. 3148 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3149 // stage #2: We now need to fix the recurrences by adding incoming edges to 3150 // the currently empty PHI nodes. At this point every instruction in the 3151 // original loop is widened to a vector form so we can use them to construct 3152 // the incoming edges. 3153 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3154 // Handle first-order recurrences and reductions that need to be fixed. 3155 if (Legal->isFirstOrderRecurrence(&Phi)) 3156 fixFirstOrderRecurrence(&Phi); 3157 else if (Legal->isReductionVariable(&Phi)) 3158 fixReduction(&Phi); 3159 } 3160 } 3161 3162 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3163 // This is the second phase of vectorizing first-order recurrences. An 3164 // overview of the transformation is described below. Suppose we have the 3165 // following loop. 3166 // 3167 // for (int i = 0; i < n; ++i) 3168 // b[i] = a[i] - a[i - 1]; 3169 // 3170 // There is a first-order recurrence on "a". For this loop, the shorthand 3171 // scalar IR looks like: 3172 // 3173 // scalar.ph: 3174 // s_init = a[-1] 3175 // br scalar.body 3176 // 3177 // scalar.body: 3178 // i = phi [0, scalar.ph], [i+1, scalar.body] 3179 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3180 // s2 = a[i] 3181 // b[i] = s2 - s1 3182 // br cond, scalar.body, ... 3183 // 3184 // In this example, s1 is a recurrence because it's value depends on the 3185 // previous iteration. In the first phase of vectorization, we created a 3186 // temporary value for s1. We now complete the vectorization and produce the 3187 // shorthand vector IR shown below (for VF = 4, UF = 1). 3188 // 3189 // vector.ph: 3190 // v_init = vector(..., ..., ..., a[-1]) 3191 // br vector.body 3192 // 3193 // vector.body 3194 // i = phi [0, vector.ph], [i+4, vector.body] 3195 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3196 // v2 = a[i, i+1, i+2, i+3]; 3197 // v3 = vector(v1(3), v2(0, 1, 2)) 3198 // b[i, i+1, i+2, i+3] = v2 - v3 3199 // br cond, vector.body, middle.block 3200 // 3201 // middle.block: 3202 // x = v2(3) 3203 // br scalar.ph 3204 // 3205 // scalar.ph: 3206 // s_init = phi [x, middle.block], [a[-1], otherwise] 3207 // br scalar.body 3208 // 3209 // After execution completes the vector loop, we extract the next value of 3210 // the recurrence (x) to use as the initial value in the scalar loop. 3211 3212 // Get the original loop preheader and single loop latch. 3213 auto *Preheader = OrigLoop->getLoopPreheader(); 3214 auto *Latch = OrigLoop->getLoopLatch(); 3215 3216 // Get the initial and previous values of the scalar recurrence. 3217 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3218 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3219 3220 // Create a vector from the initial value. 3221 auto *VectorInit = ScalarInit; 3222 if (VF > 1) { 3223 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3224 VectorInit = Builder.CreateInsertElement( 3225 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3226 Builder.getInt32(VF - 1), "vector.recur.init"); 3227 } 3228 3229 // We constructed a temporary phi node in the first phase of vectorization. 3230 // This phi node will eventually be deleted. 3231 Builder.SetInsertPoint( 3232 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3233 3234 // Create a phi node for the new recurrence. The current value will either be 3235 // the initial value inserted into a vector or loop-varying vector value. 3236 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3237 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3238 3239 // Get the vectorized previous value of the last part UF - 1. It appears last 3240 // among all unrolled iterations, due to the order of their construction. 3241 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3242 3243 // Set the insertion point after the previous value if it is an instruction. 3244 // Note that the previous value may have been constant-folded so it is not 3245 // guaranteed to be an instruction in the vector loop. Also, if the previous 3246 // value is a phi node, we should insert after all the phi nodes to avoid 3247 // breaking basic block verification. 3248 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 3249 isa<PHINode>(PreviousLastPart)) 3250 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3251 else 3252 Builder.SetInsertPoint( 3253 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 3254 3255 // We will construct a vector for the recurrence by combining the values for 3256 // the current and previous iterations. This is the required shuffle mask. 3257 SmallVector<Constant *, 8> ShuffleMask(VF); 3258 ShuffleMask[0] = Builder.getInt32(VF - 1); 3259 for (unsigned I = 1; I < VF; ++I) 3260 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3261 3262 // The vector from which to take the initial value for the current iteration 3263 // (actual or unrolled). Initially, this is the vector phi node. 3264 Value *Incoming = VecPhi; 3265 3266 // Shuffle the current and previous vector and update the vector parts. 3267 for (unsigned Part = 0; Part < UF; ++Part) { 3268 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3269 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3270 auto *Shuffle = 3271 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3272 ConstantVector::get(ShuffleMask)) 3273 : Incoming; 3274 PhiPart->replaceAllUsesWith(Shuffle); 3275 cast<Instruction>(PhiPart)->eraseFromParent(); 3276 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3277 Incoming = PreviousPart; 3278 } 3279 3280 // Fix the latch value of the new recurrence in the vector loop. 3281 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3282 3283 // Extract the last vector element in the middle block. This will be the 3284 // initial value for the recurrence when jumping to the scalar loop. 3285 auto *ExtractForScalar = Incoming; 3286 if (VF > 1) { 3287 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3288 ExtractForScalar = Builder.CreateExtractElement( 3289 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3290 } 3291 // Extract the second last element in the middle block if the 3292 // Phi is used outside the loop. We need to extract the phi itself 3293 // and not the last element (the phi update in the current iteration). This 3294 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3295 // when the scalar loop is not run at all. 3296 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3297 if (VF > 1) 3298 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3299 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3300 // When loop is unrolled without vectorizing, initialize 3301 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3302 // `Incoming`. This is analogous to the vectorized case above: extracting the 3303 // second last element when VF > 1. 3304 else if (UF > 1) 3305 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3306 3307 // Fix the initial value of the original recurrence in the scalar loop. 3308 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3309 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3310 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3311 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3312 Start->addIncoming(Incoming, BB); 3313 } 3314 3315 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3316 Phi->setName("scalar.recur"); 3317 3318 // Finally, fix users of the recurrence outside the loop. The users will need 3319 // either the last value of the scalar recurrence or the last value of the 3320 // vector recurrence we extracted in the middle block. Since the loop is in 3321 // LCSSA form, we just need to find all the phi nodes for the original scalar 3322 // recurrence in the exit block, and then add an edge for the middle block. 3323 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3324 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3325 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3326 } 3327 } 3328 } 3329 3330 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3331 Constant *Zero = Builder.getInt32(0); 3332 3333 // Get it's reduction variable descriptor. 3334 assert(Legal->isReductionVariable(Phi) && 3335 "Unable to find the reduction variable"); 3336 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3337 3338 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3339 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3340 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3341 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3342 RdxDesc.getMinMaxRecurrenceKind(); 3343 setDebugLocFromInst(Builder, ReductionStartValue); 3344 3345 // We need to generate a reduction vector from the incoming scalar. 3346 // To do so, we need to generate the 'identity' vector and override 3347 // one of the elements with the incoming scalar reduction. We need 3348 // to do it in the vector-loop preheader. 3349 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3350 3351 // This is the vector-clone of the value that leaves the loop. 3352 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3353 3354 // Find the reduction identity variable. Zero for addition, or, xor, 3355 // one for multiplication, -1 for And. 3356 Value *Identity; 3357 Value *VectorStart; 3358 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3359 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3360 // MinMax reduction have the start value as their identify. 3361 if (VF == 1) { 3362 VectorStart = Identity = ReductionStartValue; 3363 } else { 3364 VectorStart = Identity = 3365 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3366 } 3367 } else { 3368 // Handle other reduction kinds: 3369 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3370 RK, VecTy->getScalarType()); 3371 if (VF == 1) { 3372 Identity = Iden; 3373 // This vector is the Identity vector where the first element is the 3374 // incoming scalar reduction. 3375 VectorStart = ReductionStartValue; 3376 } else { 3377 Identity = ConstantVector::getSplat(VF, Iden); 3378 3379 // This vector is the Identity vector where the first element is the 3380 // incoming scalar reduction. 3381 VectorStart = 3382 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3383 } 3384 } 3385 3386 // Fix the vector-loop phi. 3387 3388 // Reductions do not have to start at zero. They can start with 3389 // any loop invariant values. 3390 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3391 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3392 for (unsigned Part = 0; Part < UF; ++Part) { 3393 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3394 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3395 // Make sure to add the reduction stat value only to the 3396 // first unroll part. 3397 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3398 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3399 cast<PHINode>(VecRdxPhi) 3400 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3401 } 3402 3403 // Before each round, move the insertion point right between 3404 // the PHIs and the values we are going to write. 3405 // This allows us to write both PHINodes and the extractelement 3406 // instructions. 3407 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3408 3409 setDebugLocFromInst(Builder, LoopExitInst); 3410 3411 // If the vector reduction can be performed in a smaller type, we truncate 3412 // then extend the loop exit value to enable InstCombine to evaluate the 3413 // entire expression in the smaller type. 3414 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3415 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3416 Builder.SetInsertPoint( 3417 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3418 VectorParts RdxParts(UF); 3419 for (unsigned Part = 0; Part < UF; ++Part) { 3420 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3421 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3422 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3423 : Builder.CreateZExt(Trunc, VecTy); 3424 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3425 UI != RdxParts[Part]->user_end();) 3426 if (*UI != Trunc) { 3427 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3428 RdxParts[Part] = Extnd; 3429 } else { 3430 ++UI; 3431 } 3432 } 3433 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3434 for (unsigned Part = 0; Part < UF; ++Part) { 3435 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3436 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3437 } 3438 } 3439 3440 // Reduce all of the unrolled parts into a single vector. 3441 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3442 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3443 setDebugLocFromInst(Builder, ReducedPartRdx); 3444 for (unsigned Part = 1; Part < UF; ++Part) { 3445 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3446 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3447 // Floating point operations had to be 'fast' to enable the reduction. 3448 ReducedPartRdx = addFastMathFlag( 3449 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3450 ReducedPartRdx, "bin.rdx")); 3451 else 3452 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3453 RdxPart); 3454 } 3455 3456 if (VF > 1) { 3457 bool NoNaN = Legal->hasFunNoNaNAttr(); 3458 ReducedPartRdx = 3459 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3460 // If the reduction can be performed in a smaller type, we need to extend 3461 // the reduction to the wider type before we branch to the original loop. 3462 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3463 ReducedPartRdx = 3464 RdxDesc.isSigned() 3465 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3466 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3467 } 3468 3469 // Create a phi node that merges control-flow from the backedge-taken check 3470 // block and the middle block. 3471 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3472 LoopScalarPreHeader->getTerminator()); 3473 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3474 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3475 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3476 3477 // Now, we need to fix the users of the reduction variable 3478 // inside and outside of the scalar remainder loop. 3479 // We know that the loop is in LCSSA form. We need to update the 3480 // PHI nodes in the exit blocks. 3481 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3482 // All PHINodes need to have a single entry edge, or two if 3483 // we already fixed them. 3484 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3485 3486 // We found a reduction value exit-PHI. Update it with the 3487 // incoming bypass edge. 3488 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3489 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3490 } // end of the LCSSA phi scan. 3491 3492 // Fix the scalar loop reduction variable with the incoming reduction sum 3493 // from the vector body and from the backedge value. 3494 int IncomingEdgeBlockIdx = 3495 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3496 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3497 // Pick the other block. 3498 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3499 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3500 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3501 } 3502 3503 void InnerLoopVectorizer::fixLCSSAPHIs() { 3504 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3505 if (LCSSAPhi.getNumIncomingValues() == 1) { 3506 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3507 // Non-instruction incoming values will have only one value. 3508 unsigned LastLane = 0; 3509 if (isa<Instruction>(IncomingValue)) 3510 LastLane = Cost->isUniformAfterVectorization( 3511 cast<Instruction>(IncomingValue), VF) 3512 ? 0 3513 : VF - 1; 3514 // Can be a loop invariant incoming value or the last scalar value to be 3515 // extracted from the vectorized loop. 3516 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3517 Value *lastIncomingValue = 3518 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3519 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3520 } 3521 } 3522 } 3523 3524 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3525 // The basic block and loop containing the predicated instruction. 3526 auto *PredBB = PredInst->getParent(); 3527 auto *VectorLoop = LI->getLoopFor(PredBB); 3528 3529 // Initialize a worklist with the operands of the predicated instruction. 3530 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3531 3532 // Holds instructions that we need to analyze again. An instruction may be 3533 // reanalyzed if we don't yet know if we can sink it or not. 3534 SmallVector<Instruction *, 8> InstsToReanalyze; 3535 3536 // Returns true if a given use occurs in the predicated block. Phi nodes use 3537 // their operands in their corresponding predecessor blocks. 3538 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3539 auto *I = cast<Instruction>(U.getUser()); 3540 BasicBlock *BB = I->getParent(); 3541 if (auto *Phi = dyn_cast<PHINode>(I)) 3542 BB = Phi->getIncomingBlock( 3543 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3544 return BB == PredBB; 3545 }; 3546 3547 // Iteratively sink the scalarized operands of the predicated instruction 3548 // into the block we created for it. When an instruction is sunk, it's 3549 // operands are then added to the worklist. The algorithm ends after one pass 3550 // through the worklist doesn't sink a single instruction. 3551 bool Changed; 3552 do { 3553 // Add the instructions that need to be reanalyzed to the worklist, and 3554 // reset the changed indicator. 3555 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 3556 InstsToReanalyze.clear(); 3557 Changed = false; 3558 3559 while (!Worklist.empty()) { 3560 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 3561 3562 // We can't sink an instruction if it is a phi node, is already in the 3563 // predicated block, is not in the loop, or may have side effects. 3564 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 3565 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 3566 continue; 3567 3568 // It's legal to sink the instruction if all its uses occur in the 3569 // predicated block. Otherwise, there's nothing to do yet, and we may 3570 // need to reanalyze the instruction. 3571 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 3572 InstsToReanalyze.push_back(I); 3573 continue; 3574 } 3575 3576 // Move the instruction to the beginning of the predicated block, and add 3577 // it's operands to the worklist. 3578 I->moveBefore(&*PredBB->getFirstInsertionPt()); 3579 Worklist.insert(I->op_begin(), I->op_end()); 3580 3581 // The sinking may have enabled other instructions to be sunk, so we will 3582 // need to iterate. 3583 Changed = true; 3584 } 3585 } while (Changed); 3586 } 3587 3588 void InnerLoopVectorizer::fixNonInductionPHIs() { 3589 for (PHINode *OrigPhi : OrigPHIsToFix) { 3590 PHINode *NewPhi = 3591 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 3592 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 3593 3594 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 3595 predecessors(OrigPhi->getParent())); 3596 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 3597 predecessors(NewPhi->getParent())); 3598 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 3599 "Scalar and Vector BB should have the same number of predecessors"); 3600 3601 // The insertion point in Builder may be invalidated by the time we get 3602 // here. Force the Builder insertion point to something valid so that we do 3603 // not run into issues during insertion point restore in 3604 // getOrCreateVectorValue calls below. 3605 Builder.SetInsertPoint(NewPhi); 3606 3607 // The predecessor order is preserved and we can rely on mapping between 3608 // scalar and vector block predecessors. 3609 for (unsigned i = 0; i < NumIncomingValues; ++i) { 3610 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 3611 3612 // When looking up the new scalar/vector values to fix up, use incoming 3613 // values from original phi. 3614 Value *ScIncV = 3615 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 3616 3617 // Scalar incoming value may need a broadcast 3618 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 3619 NewPhi->addIncoming(NewIncV, NewPredBB); 3620 } 3621 } 3622 } 3623 3624 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 3625 unsigned VF) { 3626 PHINode *P = cast<PHINode>(PN); 3627 if (EnableVPlanNativePath) { 3628 // Currently we enter here in the VPlan-native path for non-induction 3629 // PHIs where all control flow is uniform. We simply widen these PHIs. 3630 // Create a vector phi with no operands - the vector phi operands will be 3631 // set at the end of vector code generation. 3632 Type *VecTy = 3633 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3634 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 3635 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 3636 OrigPHIsToFix.push_back(P); 3637 3638 return; 3639 } 3640 3641 assert(PN->getParent() == OrigLoop->getHeader() && 3642 "Non-header phis should have been handled elsewhere"); 3643 3644 // In order to support recurrences we need to be able to vectorize Phi nodes. 3645 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3646 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 3647 // this value when we vectorize all of the instructions that use the PHI. 3648 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 3649 for (unsigned Part = 0; Part < UF; ++Part) { 3650 // This is phase one of vectorizing PHIs. 3651 Type *VecTy = 3652 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 3653 Value *EntryPart = PHINode::Create( 3654 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 3655 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 3656 } 3657 return; 3658 } 3659 3660 setDebugLocFromInst(Builder, P); 3661 3662 // This PHINode must be an induction variable. 3663 // Make sure that we know about it. 3664 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 3665 3666 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 3667 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3668 3669 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3670 // which can be found from the original scalar operations. 3671 switch (II.getKind()) { 3672 case InductionDescriptor::IK_NoInduction: 3673 llvm_unreachable("Unknown induction"); 3674 case InductionDescriptor::IK_IntInduction: 3675 case InductionDescriptor::IK_FpInduction: 3676 llvm_unreachable("Integer/fp induction is handled elsewhere."); 3677 case InductionDescriptor::IK_PtrInduction: { 3678 // Handle the pointer induction variable case. 3679 assert(P->getType()->isPointerTy() && "Unexpected type."); 3680 // This is the normalized GEP that starts counting at zero. 3681 Value *PtrInd = Induction; 3682 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 3683 // Determine the number of scalars we need to generate for each unroll 3684 // iteration. If the instruction is uniform, we only need to generate the 3685 // first lane. Otherwise, we generate all VF values. 3686 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 3687 // These are the scalar results. Notice that we don't generate vector GEPs 3688 // because scalar GEPs result in better code. 3689 for (unsigned Part = 0; Part < UF; ++Part) { 3690 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3691 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 3692 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 3693 Value *SclrGep = 3694 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 3695 SclrGep->setName("next.gep"); 3696 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 3697 } 3698 } 3699 return; 3700 } 3701 } 3702 } 3703 3704 /// A helper function for checking whether an integer division-related 3705 /// instruction may divide by zero (in which case it must be predicated if 3706 /// executed conditionally in the scalar code). 3707 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 3708 /// Non-zero divisors that are non compile-time constants will not be 3709 /// converted into multiplication, so we will still end up scalarizing 3710 /// the division, but can do so w/o predication. 3711 static bool mayDivideByZero(Instruction &I) { 3712 assert((I.getOpcode() == Instruction::UDiv || 3713 I.getOpcode() == Instruction::SDiv || 3714 I.getOpcode() == Instruction::URem || 3715 I.getOpcode() == Instruction::SRem) && 3716 "Unexpected instruction"); 3717 Value *Divisor = I.getOperand(1); 3718 auto *CInt = dyn_cast<ConstantInt>(Divisor); 3719 return !CInt || CInt->isZero(); 3720 } 3721 3722 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 3723 switch (I.getOpcode()) { 3724 case Instruction::Br: 3725 case Instruction::PHI: 3726 llvm_unreachable("This instruction is handled by a different recipe."); 3727 case Instruction::GetElementPtr: { 3728 // Construct a vector GEP by widening the operands of the scalar GEP as 3729 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 3730 // results in a vector of pointers when at least one operand of the GEP 3731 // is vector-typed. Thus, to keep the representation compact, we only use 3732 // vector-typed operands for loop-varying values. 3733 auto *GEP = cast<GetElementPtrInst>(&I); 3734 3735 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 3736 // If we are vectorizing, but the GEP has only loop-invariant operands, 3737 // the GEP we build (by only using vector-typed operands for 3738 // loop-varying values) would be a scalar pointer. Thus, to ensure we 3739 // produce a vector of pointers, we need to either arbitrarily pick an 3740 // operand to broadcast, or broadcast a clone of the original GEP. 3741 // Here, we broadcast a clone of the original. 3742 // 3743 // TODO: If at some point we decide to scalarize instructions having 3744 // loop-invariant operands, this special case will no longer be 3745 // required. We would add the scalarization decision to 3746 // collectLoopScalars() and teach getVectorValue() to broadcast 3747 // the lane-zero scalar value. 3748 auto *Clone = Builder.Insert(GEP->clone()); 3749 for (unsigned Part = 0; Part < UF; ++Part) { 3750 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 3751 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 3752 addMetadata(EntryPart, GEP); 3753 } 3754 } else { 3755 // If the GEP has at least one loop-varying operand, we are sure to 3756 // produce a vector of pointers. But if we are only unrolling, we want 3757 // to produce a scalar GEP for each unroll part. Thus, the GEP we 3758 // produce with the code below will be scalar (if VF == 1) or vector 3759 // (otherwise). Note that for the unroll-only case, we still maintain 3760 // values in the vector mapping with initVector, as we do for other 3761 // instructions. 3762 for (unsigned Part = 0; Part < UF; ++Part) { 3763 // The pointer operand of the new GEP. If it's loop-invariant, we 3764 // won't broadcast it. 3765 auto *Ptr = 3766 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 3767 ? GEP->getPointerOperand() 3768 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 3769 3770 // Collect all the indices for the new GEP. If any index is 3771 // loop-invariant, we won't broadcast it. 3772 SmallVector<Value *, 4> Indices; 3773 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 3774 if (OrigLoop->isLoopInvariant(U.get())) 3775 Indices.push_back(U.get()); 3776 else 3777 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 3778 } 3779 3780 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 3781 // but it should be a vector, otherwise. 3782 auto *NewGEP = GEP->isInBounds() 3783 ? Builder.CreateInBoundsGEP(Ptr, Indices) 3784 : Builder.CreateGEP(Ptr, Indices); 3785 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 3786 "NewGEP is not a pointer vector"); 3787 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 3788 addMetadata(NewGEP, GEP); 3789 } 3790 } 3791 3792 break; 3793 } 3794 case Instruction::UDiv: 3795 case Instruction::SDiv: 3796 case Instruction::SRem: 3797 case Instruction::URem: 3798 case Instruction::Add: 3799 case Instruction::FAdd: 3800 case Instruction::Sub: 3801 case Instruction::FSub: 3802 case Instruction::Mul: 3803 case Instruction::FMul: 3804 case Instruction::FDiv: 3805 case Instruction::FRem: 3806 case Instruction::Shl: 3807 case Instruction::LShr: 3808 case Instruction::AShr: 3809 case Instruction::And: 3810 case Instruction::Or: 3811 case Instruction::Xor: { 3812 // Just widen binops. 3813 auto *BinOp = cast<BinaryOperator>(&I); 3814 setDebugLocFromInst(Builder, BinOp); 3815 3816 for (unsigned Part = 0; Part < UF; ++Part) { 3817 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 3818 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 3819 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 3820 3821 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3822 VecOp->copyIRFlags(BinOp); 3823 3824 // Use this vector value for all users of the original instruction. 3825 VectorLoopValueMap.setVectorValue(&I, Part, V); 3826 addMetadata(V, BinOp); 3827 } 3828 3829 break; 3830 } 3831 case Instruction::Select: { 3832 // Widen selects. 3833 // If the selector is loop invariant we can create a select 3834 // instruction with a scalar condition. Otherwise, use vector-select. 3835 auto *SE = PSE.getSE(); 3836 bool InvariantCond = 3837 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 3838 setDebugLocFromInst(Builder, &I); 3839 3840 // The condition can be loop invariant but still defined inside the 3841 // loop. This means that we can't just use the original 'cond' value. 3842 // We have to take the 'vectorized' value and pick the first lane. 3843 // Instcombine will make this a no-op. 3844 3845 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 3846 3847 for (unsigned Part = 0; Part < UF; ++Part) { 3848 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 3849 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 3850 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 3851 Value *Sel = 3852 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 3853 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 3854 addMetadata(Sel, &I); 3855 } 3856 3857 break; 3858 } 3859 3860 case Instruction::ICmp: 3861 case Instruction::FCmp: { 3862 // Widen compares. Generate vector compares. 3863 bool FCmp = (I.getOpcode() == Instruction::FCmp); 3864 auto *Cmp = dyn_cast<CmpInst>(&I); 3865 setDebugLocFromInst(Builder, Cmp); 3866 for (unsigned Part = 0; Part < UF; ++Part) { 3867 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 3868 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 3869 Value *C = nullptr; 3870 if (FCmp) { 3871 // Propagate fast math flags. 3872 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3873 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 3874 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 3875 } else { 3876 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 3877 } 3878 VectorLoopValueMap.setVectorValue(&I, Part, C); 3879 addMetadata(C, &I); 3880 } 3881 3882 break; 3883 } 3884 3885 case Instruction::ZExt: 3886 case Instruction::SExt: 3887 case Instruction::FPToUI: 3888 case Instruction::FPToSI: 3889 case Instruction::FPExt: 3890 case Instruction::PtrToInt: 3891 case Instruction::IntToPtr: 3892 case Instruction::SIToFP: 3893 case Instruction::UIToFP: 3894 case Instruction::Trunc: 3895 case Instruction::FPTrunc: 3896 case Instruction::BitCast: { 3897 auto *CI = dyn_cast<CastInst>(&I); 3898 setDebugLocFromInst(Builder, CI); 3899 3900 /// Vectorize casts. 3901 Type *DestTy = 3902 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 3903 3904 for (unsigned Part = 0; Part < UF; ++Part) { 3905 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 3906 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 3907 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 3908 addMetadata(Cast, &I); 3909 } 3910 break; 3911 } 3912 3913 case Instruction::Call: { 3914 // Ignore dbg intrinsics. 3915 if (isa<DbgInfoIntrinsic>(I)) 3916 break; 3917 setDebugLocFromInst(Builder, &I); 3918 3919 Module *M = I.getParent()->getParent()->getParent(); 3920 auto *CI = cast<CallInst>(&I); 3921 3922 StringRef FnName = CI->getCalledFunction()->getName(); 3923 Function *F = CI->getCalledFunction(); 3924 Type *RetTy = ToVectorTy(CI->getType(), VF); 3925 SmallVector<Type *, 4> Tys; 3926 for (Value *ArgOperand : CI->arg_operands()) 3927 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 3928 3929 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3930 3931 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3932 // version of the instruction. 3933 // Is it beneficial to perform intrinsic call compared to lib call? 3934 bool NeedToScalarize; 3935 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3936 bool UseVectorIntrinsic = 3937 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3938 assert((UseVectorIntrinsic || !NeedToScalarize) && 3939 "Instruction should be scalarized elsewhere."); 3940 3941 for (unsigned Part = 0; Part < UF; ++Part) { 3942 SmallVector<Value *, 4> Args; 3943 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3944 Value *Arg = CI->getArgOperand(i); 3945 // Some intrinsics have a scalar argument - don't replace it with a 3946 // vector. 3947 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 3948 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 3949 Args.push_back(Arg); 3950 } 3951 3952 Function *VectorF; 3953 if (UseVectorIntrinsic) { 3954 // Use vector version of the intrinsic. 3955 Type *TysForDecl[] = {CI->getType()}; 3956 if (VF > 1) 3957 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3958 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3959 } else { 3960 // Use vector version of the library call. 3961 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3962 assert(!VFnName.empty() && "Vector function name is empty."); 3963 VectorF = M->getFunction(VFnName); 3964 if (!VectorF) { 3965 // Generate a declaration 3966 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3967 VectorF = 3968 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3969 VectorF->copyAttributesFrom(F); 3970 } 3971 } 3972 assert(VectorF && "Can't create vector function."); 3973 3974 SmallVector<OperandBundleDef, 1> OpBundles; 3975 CI->getOperandBundlesAsDefs(OpBundles); 3976 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 3977 3978 if (isa<FPMathOperator>(V)) 3979 V->copyFastMathFlags(CI); 3980 3981 VectorLoopValueMap.setVectorValue(&I, Part, V); 3982 addMetadata(V, &I); 3983 } 3984 3985 break; 3986 } 3987 3988 default: 3989 // This instruction is not vectorized by simple widening. 3990 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 3991 llvm_unreachable("Unhandled instruction!"); 3992 } // end of switch. 3993 } 3994 3995 void InnerLoopVectorizer::updateAnalysis() { 3996 // Forget the original basic block. 3997 PSE.getSE()->forgetLoop(OrigLoop); 3998 3999 // DT is not kept up-to-date for outer loop vectorization 4000 if (EnableVPlanNativePath) 4001 return; 4002 4003 // Update the dominator tree information. 4004 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4005 "Entry does not dominate exit."); 4006 4007 DT->addNewBlock(LoopMiddleBlock, 4008 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4009 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4010 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4011 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4012 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 4013 } 4014 4015 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4016 // We should not collect Scalars more than once per VF. Right now, this 4017 // function is called from collectUniformsAndScalars(), which already does 4018 // this check. Collecting Scalars for VF=1 does not make any sense. 4019 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4020 "This function should not be visited twice for the same VF"); 4021 4022 SmallSetVector<Instruction *, 8> Worklist; 4023 4024 // These sets are used to seed the analysis with pointers used by memory 4025 // accesses that will remain scalar. 4026 SmallSetVector<Instruction *, 8> ScalarPtrs; 4027 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4028 4029 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4030 // The pointer operands of loads and stores will be scalar as long as the 4031 // memory access is not a gather or scatter operation. The value operand of a 4032 // store will remain scalar if the store is scalarized. 4033 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4034 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4035 assert(WideningDecision != CM_Unknown && 4036 "Widening decision should be ready at this moment"); 4037 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4038 if (Ptr == Store->getValueOperand()) 4039 return WideningDecision == CM_Scalarize; 4040 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4041 "Ptr is neither a value or pointer operand"); 4042 return WideningDecision != CM_GatherScatter; 4043 }; 4044 4045 // A helper that returns true if the given value is a bitcast or 4046 // getelementptr instruction contained in the loop. 4047 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4048 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4049 isa<GetElementPtrInst>(V)) && 4050 !TheLoop->isLoopInvariant(V); 4051 }; 4052 4053 // A helper that evaluates a memory access's use of a pointer. If the use 4054 // will be a scalar use, and the pointer is only used by memory accesses, we 4055 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4056 // PossibleNonScalarPtrs. 4057 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4058 // We only care about bitcast and getelementptr instructions contained in 4059 // the loop. 4060 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4061 return; 4062 4063 // If the pointer has already been identified as scalar (e.g., if it was 4064 // also identified as uniform), there's nothing to do. 4065 auto *I = cast<Instruction>(Ptr); 4066 if (Worklist.count(I)) 4067 return; 4068 4069 // If the use of the pointer will be a scalar use, and all users of the 4070 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4071 // place the pointer in PossibleNonScalarPtrs. 4072 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4073 return isa<LoadInst>(U) || isa<StoreInst>(U); 4074 })) 4075 ScalarPtrs.insert(I); 4076 else 4077 PossibleNonScalarPtrs.insert(I); 4078 }; 4079 4080 // We seed the scalars analysis with three classes of instructions: (1) 4081 // instructions marked uniform-after-vectorization, (2) bitcast and 4082 // getelementptr instructions used by memory accesses requiring a scalar use, 4083 // and (3) pointer induction variables and their update instructions (we 4084 // currently only scalarize these). 4085 // 4086 // (1) Add to the worklist all instructions that have been identified as 4087 // uniform-after-vectorization. 4088 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4089 4090 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4091 // memory accesses requiring a scalar use. The pointer operands of loads and 4092 // stores will be scalar as long as the memory accesses is not a gather or 4093 // scatter operation. The value operand of a store will remain scalar if the 4094 // store is scalarized. 4095 for (auto *BB : TheLoop->blocks()) 4096 for (auto &I : *BB) { 4097 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4098 evaluatePtrUse(Load, Load->getPointerOperand()); 4099 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4100 evaluatePtrUse(Store, Store->getPointerOperand()); 4101 evaluatePtrUse(Store, Store->getValueOperand()); 4102 } 4103 } 4104 for (auto *I : ScalarPtrs) 4105 if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) { 4106 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4107 Worklist.insert(I); 4108 } 4109 4110 // (3) Add to the worklist all pointer induction variables and their update 4111 // instructions. 4112 // 4113 // TODO: Once we are able to vectorize pointer induction variables we should 4114 // no longer insert them into the worklist here. 4115 auto *Latch = TheLoop->getLoopLatch(); 4116 for (auto &Induction : *Legal->getInductionVars()) { 4117 auto *Ind = Induction.first; 4118 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4119 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 4120 continue; 4121 Worklist.insert(Ind); 4122 Worklist.insert(IndUpdate); 4123 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4124 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4125 << "\n"); 4126 } 4127 4128 // Insert the forced scalars. 4129 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4130 // induction variable when the PHI user is scalarized. 4131 auto ForcedScalar = ForcedScalars.find(VF); 4132 if (ForcedScalar != ForcedScalars.end()) 4133 for (auto *I : ForcedScalar->second) 4134 Worklist.insert(I); 4135 4136 // Expand the worklist by looking through any bitcasts and getelementptr 4137 // instructions we've already identified as scalar. This is similar to the 4138 // expansion step in collectLoopUniforms(); however, here we're only 4139 // expanding to include additional bitcasts and getelementptr instructions. 4140 unsigned Idx = 0; 4141 while (Idx != Worklist.size()) { 4142 Instruction *Dst = Worklist[Idx++]; 4143 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4144 continue; 4145 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4146 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4147 auto *J = cast<Instruction>(U); 4148 return !TheLoop->contains(J) || Worklist.count(J) || 4149 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4150 isScalarUse(J, Src)); 4151 })) { 4152 Worklist.insert(Src); 4153 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4154 } 4155 } 4156 4157 // An induction variable will remain scalar if all users of the induction 4158 // variable and induction variable update remain scalar. 4159 for (auto &Induction : *Legal->getInductionVars()) { 4160 auto *Ind = Induction.first; 4161 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4162 4163 // We already considered pointer induction variables, so there's no reason 4164 // to look at their users again. 4165 // 4166 // TODO: Once we are able to vectorize pointer induction variables we 4167 // should no longer skip over them here. 4168 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 4169 continue; 4170 4171 // Determine if all users of the induction variable are scalar after 4172 // vectorization. 4173 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4174 auto *I = cast<Instruction>(U); 4175 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4176 }); 4177 if (!ScalarInd) 4178 continue; 4179 4180 // Determine if all users of the induction variable update instruction are 4181 // scalar after vectorization. 4182 auto ScalarIndUpdate = 4183 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4184 auto *I = cast<Instruction>(U); 4185 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4186 }); 4187 if (!ScalarIndUpdate) 4188 continue; 4189 4190 // The induction variable and its update instruction will remain scalar. 4191 Worklist.insert(Ind); 4192 Worklist.insert(IndUpdate); 4193 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4194 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4195 << "\n"); 4196 } 4197 4198 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4199 } 4200 4201 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4202 if (!Legal->blockNeedsPredication(I->getParent())) 4203 return false; 4204 switch(I->getOpcode()) { 4205 default: 4206 break; 4207 case Instruction::Load: 4208 case Instruction::Store: { 4209 if (!Legal->isMaskRequired(I)) 4210 return false; 4211 auto *Ptr = getLoadStorePointerOperand(I); 4212 auto *Ty = getMemInstValueType(I); 4213 // We have already decided how to vectorize this instruction, get that 4214 // result. 4215 if (VF > 1) { 4216 InstWidening WideningDecision = getWideningDecision(I, VF); 4217 assert(WideningDecision != CM_Unknown && 4218 "Widening decision should be ready at this moment"); 4219 return WideningDecision == CM_Scalarize; 4220 } 4221 return isa<LoadInst>(I) ? 4222 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty)) 4223 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty)); 4224 } 4225 case Instruction::UDiv: 4226 case Instruction::SDiv: 4227 case Instruction::SRem: 4228 case Instruction::URem: 4229 return mayDivideByZero(*I); 4230 } 4231 return false; 4232 } 4233 4234 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4235 unsigned VF) { 4236 // Get and ensure we have a valid memory instruction. 4237 LoadInst *LI = dyn_cast<LoadInst>(I); 4238 StoreInst *SI = dyn_cast<StoreInst>(I); 4239 assert((LI || SI) && "Invalid memory instruction"); 4240 4241 auto *Ptr = getLoadStorePointerOperand(I); 4242 4243 // In order to be widened, the pointer should be consecutive, first of all. 4244 if (!Legal->isConsecutivePtr(Ptr)) 4245 return false; 4246 4247 // If the instruction is a store located in a predicated block, it will be 4248 // scalarized. 4249 if (isScalarWithPredication(I)) 4250 return false; 4251 4252 // If the instruction's allocated size doesn't equal it's type size, it 4253 // requires padding and will be scalarized. 4254 auto &DL = I->getModule()->getDataLayout(); 4255 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4256 if (hasIrregularType(ScalarTy, DL, VF)) 4257 return false; 4258 4259 return true; 4260 } 4261 4262 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4263 // We should not collect Uniforms more than once per VF. Right now, 4264 // this function is called from collectUniformsAndScalars(), which 4265 // already does this check. Collecting Uniforms for VF=1 does not make any 4266 // sense. 4267 4268 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4269 "This function should not be visited twice for the same VF"); 4270 4271 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4272 // not analyze again. Uniforms.count(VF) will return 1. 4273 Uniforms[VF].clear(); 4274 4275 // We now know that the loop is vectorizable! 4276 // Collect instructions inside the loop that will remain uniform after 4277 // vectorization. 4278 4279 // Global values, params and instructions outside of current loop are out of 4280 // scope. 4281 auto isOutOfScope = [&](Value *V) -> bool { 4282 Instruction *I = dyn_cast<Instruction>(V); 4283 return (!I || !TheLoop->contains(I)); 4284 }; 4285 4286 SetVector<Instruction *> Worklist; 4287 BasicBlock *Latch = TheLoop->getLoopLatch(); 4288 4289 // Start with the conditional branch. If the branch condition is an 4290 // instruction contained in the loop that is only used by the branch, it is 4291 // uniform. 4292 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4293 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 4294 Worklist.insert(Cmp); 4295 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 4296 } 4297 4298 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4299 // are pointers that are treated like consecutive pointers during 4300 // vectorization. The pointer operands of interleaved accesses are an 4301 // example. 4302 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4303 4304 // Holds pointer operands of instructions that are possibly non-uniform. 4305 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4306 4307 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4308 InstWidening WideningDecision = getWideningDecision(I, VF); 4309 assert(WideningDecision != CM_Unknown && 4310 "Widening decision should be ready at this moment"); 4311 4312 return (WideningDecision == CM_Widen || 4313 WideningDecision == CM_Widen_Reverse || 4314 WideningDecision == CM_Interleave); 4315 }; 4316 // Iterate over the instructions in the loop, and collect all 4317 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4318 // that a consecutive-like pointer operand will be scalarized, we collect it 4319 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4320 // getelementptr instruction can be used by both vectorized and scalarized 4321 // memory instructions. For example, if a loop loads and stores from the same 4322 // location, but the store is conditional, the store will be scalarized, and 4323 // the getelementptr won't remain uniform. 4324 for (auto *BB : TheLoop->blocks()) 4325 for (auto &I : *BB) { 4326 // If there's no pointer operand, there's nothing to do. 4327 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4328 if (!Ptr) 4329 continue; 4330 4331 // True if all users of Ptr are memory accesses that have Ptr as their 4332 // pointer operand. 4333 auto UsersAreMemAccesses = 4334 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4335 return getLoadStorePointerOperand(U) == Ptr; 4336 }); 4337 4338 // Ensure the memory instruction will not be scalarized or used by 4339 // gather/scatter, making its pointer operand non-uniform. If the pointer 4340 // operand is used by any instruction other than a memory access, we 4341 // conservatively assume the pointer operand may be non-uniform. 4342 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4343 PossibleNonUniformPtrs.insert(Ptr); 4344 4345 // If the memory instruction will be vectorized and its pointer operand 4346 // is consecutive-like, or interleaving - the pointer operand should 4347 // remain uniform. 4348 else 4349 ConsecutiveLikePtrs.insert(Ptr); 4350 } 4351 4352 // Add to the Worklist all consecutive and consecutive-like pointers that 4353 // aren't also identified as possibly non-uniform. 4354 for (auto *V : ConsecutiveLikePtrs) 4355 if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end()) { 4356 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 4357 Worklist.insert(V); 4358 } 4359 4360 // Expand Worklist in topological order: whenever a new instruction 4361 // is added , its users should be already inside Worklist. It ensures 4362 // a uniform instruction will only be used by uniform instructions. 4363 unsigned idx = 0; 4364 while (idx != Worklist.size()) { 4365 Instruction *I = Worklist[idx++]; 4366 4367 for (auto OV : I->operand_values()) { 4368 // isOutOfScope operands cannot be uniform instructions. 4369 if (isOutOfScope(OV)) 4370 continue; 4371 // First order recurrence Phi's should typically be considered 4372 // non-uniform. 4373 auto *OP = dyn_cast<PHINode>(OV); 4374 if (OP && Legal->isFirstOrderRecurrence(OP)) 4375 continue; 4376 // If all the users of the operand are uniform, then add the 4377 // operand into the uniform worklist. 4378 auto *OI = cast<Instruction>(OV); 4379 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4380 auto *J = cast<Instruction>(U); 4381 return Worklist.count(J) || 4382 (OI == getLoadStorePointerOperand(J) && 4383 isUniformDecision(J, VF)); 4384 })) { 4385 Worklist.insert(OI); 4386 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 4387 } 4388 } 4389 } 4390 4391 // Returns true if Ptr is the pointer operand of a memory access instruction 4392 // I, and I is known to not require scalarization. 4393 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4394 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4395 }; 4396 4397 // For an instruction to be added into Worklist above, all its users inside 4398 // the loop should also be in Worklist. However, this condition cannot be 4399 // true for phi nodes that form a cyclic dependence. We must process phi 4400 // nodes separately. An induction variable will remain uniform if all users 4401 // of the induction variable and induction variable update remain uniform. 4402 // The code below handles both pointer and non-pointer induction variables. 4403 for (auto &Induction : *Legal->getInductionVars()) { 4404 auto *Ind = Induction.first; 4405 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4406 4407 // Determine if all users of the induction variable are uniform after 4408 // vectorization. 4409 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4410 auto *I = cast<Instruction>(U); 4411 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4412 isVectorizedMemAccessUse(I, Ind); 4413 }); 4414 if (!UniformInd) 4415 continue; 4416 4417 // Determine if all users of the induction variable update instruction are 4418 // uniform after vectorization. 4419 auto UniformIndUpdate = 4420 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4421 auto *I = cast<Instruction>(U); 4422 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4423 isVectorizedMemAccessUse(I, IndUpdate); 4424 }); 4425 if (!UniformIndUpdate) 4426 continue; 4427 4428 // The induction variable and its update instruction will remain uniform. 4429 Worklist.insert(Ind); 4430 Worklist.insert(IndUpdate); 4431 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 4432 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate 4433 << "\n"); 4434 } 4435 4436 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4437 } 4438 4439 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 4440 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4441 // TODO: It may by useful to do since it's still likely to be dynamically 4442 // uniform if the target can skip. 4443 LLVM_DEBUG( 4444 dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 4445 4446 ORE->emit( 4447 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 4448 << "runtime pointer checks needed. Not enabled for divergent target"); 4449 4450 return None; 4451 } 4452 4453 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4454 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 4455 return computeFeasibleMaxVF(OptForSize, TC); 4456 4457 if (Legal->getRuntimePointerChecking()->Need) { 4458 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 4459 << "runtime pointer checks needed. Enable vectorization of this " 4460 "loop with '#pragma clang loop vectorize(enable)' when " 4461 "compiling with -Os/-Oz"); 4462 LLVM_DEBUG( 4463 dbgs() 4464 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 4465 return None; 4466 } 4467 4468 // If we optimize the program for size, avoid creating the tail loop. 4469 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4470 4471 // If we don't know the precise trip count, don't try to vectorize. 4472 if (TC < 2) { 4473 ORE->emit( 4474 createMissedAnalysis("UnknownLoopCountComplexCFG") 4475 << "unable to calculate the loop count due to complex control flow"); 4476 LLVM_DEBUG( 4477 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4478 return None; 4479 } 4480 4481 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 4482 4483 if (TC % MaxVF != 0) { 4484 // If the trip count that we found modulo the vectorization factor is not 4485 // zero then we require a tail. 4486 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 4487 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 4488 // smaller MaxVF that does not require a scalar epilog. 4489 4490 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 4491 << "cannot optimize for size and vectorize at the " 4492 "same time. Enable vectorization of this loop " 4493 "with '#pragma clang loop vectorize(enable)' " 4494 "when compiling with -Os/-Oz"); 4495 LLVM_DEBUG( 4496 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 4497 return None; 4498 } 4499 4500 return MaxVF; 4501 } 4502 4503 unsigned 4504 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 4505 unsigned ConstTripCount) { 4506 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4507 unsigned SmallestType, WidestType; 4508 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4509 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4510 4511 // Get the maximum safe dependence distance in bits computed by LAA. 4512 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4513 // the memory accesses that is most restrictive (involved in the smallest 4514 // dependence distance). 4515 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 4516 4517 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 4518 4519 unsigned MaxVectorSize = WidestRegister / WidestType; 4520 4521 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4522 << " / " << WidestType << " bits.\n"); 4523 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 4524 << WidestRegister << " bits.\n"); 4525 4526 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 4527 " into one vector!"); 4528 if (MaxVectorSize == 0) { 4529 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4530 MaxVectorSize = 1; 4531 return MaxVectorSize; 4532 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 4533 isPowerOf2_32(ConstTripCount)) { 4534 // We need to clamp the VF to be the ConstTripCount. There is no point in 4535 // choosing a higher viable VF as done in the loop below. 4536 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 4537 << ConstTripCount << "\n"); 4538 MaxVectorSize = ConstTripCount; 4539 return MaxVectorSize; 4540 } 4541 4542 unsigned MaxVF = MaxVectorSize; 4543 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) || 4544 (MaximizeBandwidth && !OptForSize)) { 4545 // Collect all viable vectorization factors larger than the default MaxVF 4546 // (i.e. MaxVectorSize). 4547 SmallVector<unsigned, 8> VFs; 4548 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 4549 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 4550 VFs.push_back(VS); 4551 4552 // For each VF calculate its register usage. 4553 auto RUs = calculateRegisterUsage(VFs); 4554 4555 // Select the largest VF which doesn't require more registers than existing 4556 // ones. 4557 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 4558 for (int i = RUs.size() - 1; i >= 0; --i) { 4559 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 4560 MaxVF = VFs[i]; 4561 break; 4562 } 4563 } 4564 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 4565 if (MaxVF < MinVF) { 4566 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 4567 << ") with target's minimum: " << MinVF << '\n'); 4568 MaxVF = MinVF; 4569 } 4570 } 4571 } 4572 return MaxVF; 4573 } 4574 4575 VectorizationFactor 4576 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 4577 float Cost = expectedCost(1).first; 4578 const float ScalarCost = Cost; 4579 unsigned Width = 1; 4580 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4581 4582 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4583 if (ForceVectorization && MaxVF > 1) { 4584 // Ignore scalar width, because the user explicitly wants vectorization. 4585 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 4586 // evaluation. 4587 Cost = std::numeric_limits<float>::max(); 4588 } 4589 4590 for (unsigned i = 2; i <= MaxVF; i *= 2) { 4591 // Notice that the vector loop needs to be executed less times, so 4592 // we need to divide the cost of the vector loops by the width of 4593 // the vector elements. 4594 VectorizationCostTy C = expectedCost(i); 4595 float VectorCost = C.first / (float)i; 4596 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 4597 << " costs: " << (int)VectorCost << ".\n"); 4598 if (!C.second && !ForceVectorization) { 4599 LLVM_DEBUG( 4600 dbgs() << "LV: Not considering vector loop of width " << i 4601 << " because it will not generate any vector instructions.\n"); 4602 continue; 4603 } 4604 if (VectorCost < Cost) { 4605 Cost = VectorCost; 4606 Width = i; 4607 } 4608 } 4609 4610 if (!EnableCondStoresVectorization && NumPredStores) { 4611 ORE->emit(createMissedAnalysis("ConditionalStore") 4612 << "store that is conditionally executed prevents vectorization"); 4613 LLVM_DEBUG( 4614 dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4615 Width = 1; 4616 Cost = ScalarCost; 4617 } 4618 4619 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4620 << "LV: Vectorization seems to be not beneficial, " 4621 << "but was forced by a user.\n"); 4622 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 4623 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 4624 return Factor; 4625 } 4626 4627 std::pair<unsigned, unsigned> 4628 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 4629 unsigned MinWidth = -1U; 4630 unsigned MaxWidth = 8; 4631 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4632 4633 // For each block. 4634 for (BasicBlock *BB : TheLoop->blocks()) { 4635 // For each instruction in the loop. 4636 for (Instruction &I : *BB) { 4637 Type *T = I.getType(); 4638 4639 // Skip ignored values. 4640 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end()) 4641 continue; 4642 4643 // Only examine Loads, Stores and PHINodes. 4644 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 4645 continue; 4646 4647 // Examine PHI nodes that are reduction variables. Update the type to 4648 // account for the recurrence type. 4649 if (auto *PN = dyn_cast<PHINode>(&I)) { 4650 if (!Legal->isReductionVariable(PN)) 4651 continue; 4652 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 4653 T = RdxDesc.getRecurrenceType(); 4654 } 4655 4656 // Examine the stored values. 4657 if (auto *ST = dyn_cast<StoreInst>(&I)) 4658 T = ST->getValueOperand()->getType(); 4659 4660 // Ignore loaded pointer types and stored pointer types that are not 4661 // vectorizable. 4662 // 4663 // FIXME: The check here attempts to predict whether a load or store will 4664 // be vectorized. We only know this for certain after a VF has 4665 // been selected. Here, we assume that if an access can be 4666 // vectorized, it will be. We should also look at extending this 4667 // optimization to non-pointer types. 4668 // 4669 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 4670 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 4671 continue; 4672 4673 MinWidth = std::min(MinWidth, 4674 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4675 MaxWidth = std::max(MaxWidth, 4676 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4677 } 4678 } 4679 4680 return {MinWidth, MaxWidth}; 4681 } 4682 4683 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4684 unsigned VF, 4685 unsigned LoopCost) { 4686 // -- The interleave heuristics -- 4687 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4688 // There are many micro-architectural considerations that we can't predict 4689 // at this level. For example, frontend pressure (on decode or fetch) due to 4690 // code size, or the number and capabilities of the execution ports. 4691 // 4692 // We use the following heuristics to select the interleave count: 4693 // 1. If the code has reductions, then we interleave to break the cross 4694 // iteration dependency. 4695 // 2. If the loop is really small, then we interleave to reduce the loop 4696 // overhead. 4697 // 3. We don't interleave if we think that we will spill registers to memory 4698 // due to the increased register pressure. 4699 4700 // When we optimize for size, we don't interleave. 4701 if (OptForSize) 4702 return 1; 4703 4704 // We used the distance for the interleave count. 4705 if (Legal->getMaxSafeDepDistBytes() != -1U) 4706 return 1; 4707 4708 // Do not interleave loops with a relatively small trip count. 4709 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4710 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4711 return 1; 4712 4713 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4714 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 4715 << " registers\n"); 4716 4717 if (VF == 1) { 4718 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4719 TargetNumRegisters = ForceTargetNumScalarRegs; 4720 } else { 4721 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4722 TargetNumRegisters = ForceTargetNumVectorRegs; 4723 } 4724 4725 RegisterUsage R = calculateRegisterUsage({VF})[0]; 4726 // We divide by these constants so assume that we have at least one 4727 // instruction that uses at least one register. 4728 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4729 4730 // We calculate the interleave count using the following formula. 4731 // Subtract the number of loop invariants from the number of available 4732 // registers. These registers are used by all of the interleaved instances. 4733 // Next, divide the remaining registers by the number of registers that is 4734 // required by the loop, in order to estimate how many parallel instances 4735 // fit without causing spills. All of this is rounded down if necessary to be 4736 // a power of two. We want power of two interleave count to simplify any 4737 // addressing operations or alignment considerations. 4738 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4739 R.MaxLocalUsers); 4740 4741 // Don't count the induction variable as interleaved. 4742 if (EnableIndVarRegisterHeur) 4743 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4744 std::max(1U, (R.MaxLocalUsers - 1))); 4745 4746 // Clamp the interleave ranges to reasonable counts. 4747 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4748 4749 // Check if the user has overridden the max. 4750 if (VF == 1) { 4751 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4752 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4753 } else { 4754 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4755 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4756 } 4757 4758 // If we did not calculate the cost for VF (because the user selected the VF) 4759 // then we calculate the cost of VF here. 4760 if (LoopCost == 0) 4761 LoopCost = expectedCost(VF).first; 4762 4763 // Clamp the calculated IC to be between the 1 and the max interleave count 4764 // that the target allows. 4765 if (IC > MaxInterleaveCount) 4766 IC = MaxInterleaveCount; 4767 else if (IC < 1) 4768 IC = 1; 4769 4770 // Interleave if we vectorized this loop and there is a reduction that could 4771 // benefit from interleaving. 4772 if (VF > 1 && !Legal->getReductionVars()->empty()) { 4773 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 4774 return IC; 4775 } 4776 4777 // Note that if we've already vectorized the loop we will have done the 4778 // runtime check and so interleaving won't require further checks. 4779 bool InterleavingRequiresRuntimePointerCheck = 4780 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 4781 4782 // We want to interleave small loops in order to reduce the loop overhead and 4783 // potentially expose ILP opportunities. 4784 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4785 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 4786 // We assume that the cost overhead is 1 and we use the cost model 4787 // to estimate the cost of the loop and interleave until the cost of the 4788 // loop overhead is about 5% of the cost of the loop. 4789 unsigned SmallIC = 4790 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4791 4792 // Interleave until store/load ports (estimated by max interleave count) are 4793 // saturated. 4794 unsigned NumStores = Legal->getNumStores(); 4795 unsigned NumLoads = Legal->getNumLoads(); 4796 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 4797 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 4798 4799 // If we have a scalar reduction (vector reductions are already dealt with 4800 // by this point), we can increase the critical path length if the loop 4801 // we're interleaving is inside another loop. Limit, by default to 2, so the 4802 // critical path only gets increased by one reduction operation. 4803 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 4804 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 4805 SmallIC = std::min(SmallIC, F); 4806 StoresIC = std::min(StoresIC, F); 4807 LoadsIC = std::min(LoadsIC, F); 4808 } 4809 4810 if (EnableLoadStoreRuntimeInterleave && 4811 std::max(StoresIC, LoadsIC) > SmallIC) { 4812 LLVM_DEBUG( 4813 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 4814 return std::max(StoresIC, LoadsIC); 4815 } 4816 4817 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 4818 return SmallIC; 4819 } 4820 4821 // Interleave if this is a large loop (small loops are already dealt with by 4822 // this point) that could benefit from interleaving. 4823 bool HasReductions = !Legal->getReductionVars()->empty(); 4824 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4825 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 4826 return IC; 4827 } 4828 4829 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 4830 return 1; 4831 } 4832 4833 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 4834 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 4835 // This function calculates the register usage by measuring the highest number 4836 // of values that are alive at a single location. Obviously, this is a very 4837 // rough estimation. We scan the loop in a topological order in order and 4838 // assign a number to each instruction. We use RPO to ensure that defs are 4839 // met before their users. We assume that each instruction that has in-loop 4840 // users starts an interval. We record every time that an in-loop value is 4841 // used, so we have a list of the first and last occurrences of each 4842 // instruction. Next, we transpose this data structure into a multi map that 4843 // holds the list of intervals that *end* at a specific location. This multi 4844 // map allows us to perform a linear search. We scan the instructions linearly 4845 // and record each time that a new interval starts, by placing it in a set. 4846 // If we find this value in the multi-map then we remove it from the set. 4847 // The max register usage is the maximum size of the set. 4848 // We also search for instructions that are defined outside the loop, but are 4849 // used inside the loop. We need this number separately from the max-interval 4850 // usage number because when we unroll, loop-invariant values do not take 4851 // more register. 4852 LoopBlocksDFS DFS(TheLoop); 4853 DFS.perform(LI); 4854 4855 RegisterUsage RU; 4856 4857 // Each 'key' in the map opens a new interval. The values 4858 // of the map are the index of the 'last seen' usage of the 4859 // instruction that is the key. 4860 using IntervalMap = DenseMap<Instruction *, unsigned>; 4861 4862 // Maps instruction to its index. 4863 DenseMap<unsigned, Instruction *> IdxToInstr; 4864 // Marks the end of each interval. 4865 IntervalMap EndPoint; 4866 // Saves the list of instruction indices that are used in the loop. 4867 SmallPtrSet<Instruction *, 8> Ends; 4868 // Saves the list of values that are used in the loop but are 4869 // defined outside the loop, such as arguments and constants. 4870 SmallPtrSet<Value *, 8> LoopInvariants; 4871 4872 unsigned Index = 0; 4873 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 4874 for (Instruction &I : *BB) { 4875 IdxToInstr[Index++] = &I; 4876 4877 // Save the end location of each USE. 4878 for (Value *U : I.operands()) { 4879 auto *Instr = dyn_cast<Instruction>(U); 4880 4881 // Ignore non-instruction values such as arguments, constants, etc. 4882 if (!Instr) 4883 continue; 4884 4885 // If this instruction is outside the loop then record it and continue. 4886 if (!TheLoop->contains(Instr)) { 4887 LoopInvariants.insert(Instr); 4888 continue; 4889 } 4890 4891 // Overwrite previous end points. 4892 EndPoint[Instr] = Index; 4893 Ends.insert(Instr); 4894 } 4895 } 4896 } 4897 4898 // Saves the list of intervals that end with the index in 'key'. 4899 using InstrList = SmallVector<Instruction *, 2>; 4900 DenseMap<unsigned, InstrList> TransposeEnds; 4901 4902 // Transpose the EndPoints to a list of values that end at each index. 4903 for (auto &Interval : EndPoint) 4904 TransposeEnds[Interval.second].push_back(Interval.first); 4905 4906 SmallPtrSet<Instruction *, 8> OpenIntervals; 4907 4908 // Get the size of the widest register. 4909 unsigned MaxSafeDepDist = -1U; 4910 if (Legal->getMaxSafeDepDistBytes() != -1U) 4911 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4912 unsigned WidestRegister = 4913 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 4914 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4915 4916 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 4917 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 4918 4919 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4920 4921 // A lambda that gets the register usage for the given type and VF. 4922 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 4923 if (Ty->isTokenTy()) 4924 return 0U; 4925 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 4926 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 4927 }; 4928 4929 for (unsigned int i = 0; i < Index; ++i) { 4930 Instruction *I = IdxToInstr[i]; 4931 4932 // Remove all of the instructions that end at this location. 4933 InstrList &List = TransposeEnds[i]; 4934 for (Instruction *ToRemove : List) 4935 OpenIntervals.erase(ToRemove); 4936 4937 // Ignore instructions that are never used within the loop. 4938 if (Ends.find(I) == Ends.end()) 4939 continue; 4940 4941 // Skip ignored values. 4942 if (ValuesToIgnore.find(I) != ValuesToIgnore.end()) 4943 continue; 4944 4945 // For each VF find the maximum usage of registers. 4946 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 4947 if (VFs[j] == 1) { 4948 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 4949 continue; 4950 } 4951 collectUniformsAndScalars(VFs[j]); 4952 // Count the number of live intervals. 4953 unsigned RegUsage = 0; 4954 for (auto Inst : OpenIntervals) { 4955 // Skip ignored values for VF > 1. 4956 if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end() || 4957 isScalarAfterVectorization(Inst, VFs[j])) 4958 continue; 4959 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 4960 } 4961 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 4962 } 4963 4964 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 4965 << OpenIntervals.size() << '\n'); 4966 4967 // Add the current instruction to the list of open intervals. 4968 OpenIntervals.insert(I); 4969 } 4970 4971 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 4972 unsigned Invariant = 0; 4973 if (VFs[i] == 1) 4974 Invariant = LoopInvariants.size(); 4975 else { 4976 for (auto Inst : LoopInvariants) 4977 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 4978 } 4979 4980 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 4981 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 4982 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant 4983 << '\n'); 4984 4985 RU.LoopInvariantRegs = Invariant; 4986 RU.MaxLocalUsers = MaxUsages[i]; 4987 RUs[i] = RU; 4988 } 4989 4990 return RUs; 4991 } 4992 4993 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 4994 // TODO: Cost model for emulated masked load/store is completely 4995 // broken. This hack guides the cost model to use an artificially 4996 // high enough value to practically disable vectorization with such 4997 // operations, except where previously deployed legality hack allowed 4998 // using very low cost values. This is to avoid regressions coming simply 4999 // from moving "masked load/store" check from legality to cost model. 5000 // Masked Load/Gather emulation was previously never allowed. 5001 // Limited number of Masked Store/Scatter emulation was allowed. 5002 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5003 return isa<LoadInst>(I) || 5004 (isa<StoreInst>(I) && 5005 NumPredStores > NumberOfStoresToPredicate); 5006 } 5007 5008 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5009 // If we aren't vectorizing the loop, or if we've already collected the 5010 // instructions to scalarize, there's nothing to do. Collection may already 5011 // have occurred if we have a user-selected VF and are now computing the 5012 // expected cost for interleaving. 5013 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5014 return; 5015 5016 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5017 // not profitable to scalarize any instructions, the presence of VF in the 5018 // map will indicate that we've analyzed it already. 5019 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5020 5021 // Find all the instructions that are scalar with predication in the loop and 5022 // determine if it would be better to not if-convert the blocks they are in. 5023 // If so, we also record the instructions to scalarize. 5024 for (BasicBlock *BB : TheLoop->blocks()) { 5025 if (!Legal->blockNeedsPredication(BB)) 5026 continue; 5027 for (Instruction &I : *BB) 5028 if (isScalarWithPredication(&I)) { 5029 ScalarCostsTy ScalarCosts; 5030 // Do not apply discount logic if hacked cost is needed 5031 // for emulated masked memrefs. 5032 if (!useEmulatedMaskMemRefHack(&I) && 5033 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5034 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5035 // Remember that BB will remain after vectorization. 5036 PredicatedBBsAfterVectorization.insert(BB); 5037 } 5038 } 5039 } 5040 5041 int LoopVectorizationCostModel::computePredInstDiscount( 5042 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5043 unsigned VF) { 5044 assert(!isUniformAfterVectorization(PredInst, VF) && 5045 "Instruction marked uniform-after-vectorization will be predicated"); 5046 5047 // Initialize the discount to zero, meaning that the scalar version and the 5048 // vector version cost the same. 5049 int Discount = 0; 5050 5051 // Holds instructions to analyze. The instructions we visit are mapped in 5052 // ScalarCosts. Those instructions are the ones that would be scalarized if 5053 // we find that the scalar version costs less. 5054 SmallVector<Instruction *, 8> Worklist; 5055 5056 // Returns true if the given instruction can be scalarized. 5057 auto canBeScalarized = [&](Instruction *I) -> bool { 5058 // We only attempt to scalarize instructions forming a single-use chain 5059 // from the original predicated block that would otherwise be vectorized. 5060 // Although not strictly necessary, we give up on instructions we know will 5061 // already be scalar to avoid traversing chains that are unlikely to be 5062 // beneficial. 5063 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5064 isScalarAfterVectorization(I, VF)) 5065 return false; 5066 5067 // If the instruction is scalar with predication, it will be analyzed 5068 // separately. We ignore it within the context of PredInst. 5069 if (isScalarWithPredication(I)) 5070 return false; 5071 5072 // If any of the instruction's operands are uniform after vectorization, 5073 // the instruction cannot be scalarized. This prevents, for example, a 5074 // masked load from being scalarized. 5075 // 5076 // We assume we will only emit a value for lane zero of an instruction 5077 // marked uniform after vectorization, rather than VF identical values. 5078 // Thus, if we scalarize an instruction that uses a uniform, we would 5079 // create uses of values corresponding to the lanes we aren't emitting code 5080 // for. This behavior can be changed by allowing getScalarValue to clone 5081 // the lane zero values for uniforms rather than asserting. 5082 for (Use &U : I->operands()) 5083 if (auto *J = dyn_cast<Instruction>(U.get())) 5084 if (isUniformAfterVectorization(J, VF)) 5085 return false; 5086 5087 // Otherwise, we can scalarize the instruction. 5088 return true; 5089 }; 5090 5091 // Returns true if an operand that cannot be scalarized must be extracted 5092 // from a vector. We will account for this scalarization overhead below. Note 5093 // that the non-void predicated instructions are placed in their own blocks, 5094 // and their return values are inserted into vectors. Thus, an extract would 5095 // still be required. 5096 auto needsExtract = [&](Instruction *I) -> bool { 5097 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 5098 }; 5099 5100 // Compute the expected cost discount from scalarizing the entire expression 5101 // feeding the predicated instruction. We currently only consider expressions 5102 // that are single-use instruction chains. 5103 Worklist.push_back(PredInst); 5104 while (!Worklist.empty()) { 5105 Instruction *I = Worklist.pop_back_val(); 5106 5107 // If we've already analyzed the instruction, there's nothing to do. 5108 if (ScalarCosts.find(I) != ScalarCosts.end()) 5109 continue; 5110 5111 // Compute the cost of the vector instruction. Note that this cost already 5112 // includes the scalarization overhead of the predicated instruction. 5113 unsigned VectorCost = getInstructionCost(I, VF).first; 5114 5115 // Compute the cost of the scalarized instruction. This cost is the cost of 5116 // the instruction as if it wasn't if-converted and instead remained in the 5117 // predicated block. We will scale this cost by block probability after 5118 // computing the scalarization overhead. 5119 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5120 5121 // Compute the scalarization overhead of needed insertelement instructions 5122 // and phi nodes. 5123 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5124 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 5125 true, false); 5126 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 5127 } 5128 5129 // Compute the scalarization overhead of needed extractelement 5130 // instructions. For each of the instruction's operands, if the operand can 5131 // be scalarized, add it to the worklist; otherwise, account for the 5132 // overhead. 5133 for (Use &U : I->operands()) 5134 if (auto *J = dyn_cast<Instruction>(U.get())) { 5135 assert(VectorType::isValidElementType(J->getType()) && 5136 "Instruction has non-scalar type"); 5137 if (canBeScalarized(J)) 5138 Worklist.push_back(J); 5139 else if (needsExtract(J)) 5140 ScalarCost += TTI.getScalarizationOverhead( 5141 ToVectorTy(J->getType(),VF), false, true); 5142 } 5143 5144 // Scale the total scalar cost by block probability. 5145 ScalarCost /= getReciprocalPredBlockProb(); 5146 5147 // Compute the discount. A non-negative discount means the vector version 5148 // of the instruction costs more, and scalarizing would be beneficial. 5149 Discount += VectorCost - ScalarCost; 5150 ScalarCosts[I] = ScalarCost; 5151 } 5152 5153 return Discount; 5154 } 5155 5156 LoopVectorizationCostModel::VectorizationCostTy 5157 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5158 VectorizationCostTy Cost; 5159 5160 // For each block. 5161 for (BasicBlock *BB : TheLoop->blocks()) { 5162 VectorizationCostTy BlockCost; 5163 5164 // For each instruction in the old loop. 5165 for (Instruction &I : BB->instructionsWithoutDebug()) { 5166 // Skip ignored values. 5167 if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() || 5168 (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end())) 5169 continue; 5170 5171 VectorizationCostTy C = getInstructionCost(&I, VF); 5172 5173 // Check if we should override the cost. 5174 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5175 C.first = ForceTargetInstructionCost; 5176 5177 BlockCost.first += C.first; 5178 BlockCost.second |= C.second; 5179 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5180 << " for VF " << VF << " For instruction: " << I 5181 << '\n'); 5182 } 5183 5184 // If we are vectorizing a predicated block, it will have been 5185 // if-converted. This means that the block's instructions (aside from 5186 // stores and instructions that may divide by zero) will now be 5187 // unconditionally executed. For the scalar case, we may not always execute 5188 // the predicated block. Thus, scale the block's cost by the probability of 5189 // executing it. 5190 if (VF == 1 && Legal->blockNeedsPredication(BB)) 5191 BlockCost.first /= getReciprocalPredBlockProb(); 5192 5193 Cost.first += BlockCost.first; 5194 Cost.second |= BlockCost.second; 5195 } 5196 5197 return Cost; 5198 } 5199 5200 /// Gets Address Access SCEV after verifying that the access pattern 5201 /// is loop invariant except the induction variable dependence. 5202 /// 5203 /// This SCEV can be sent to the Target in order to estimate the address 5204 /// calculation cost. 5205 static const SCEV *getAddressAccessSCEV( 5206 Value *Ptr, 5207 LoopVectorizationLegality *Legal, 5208 PredicatedScalarEvolution &PSE, 5209 const Loop *TheLoop) { 5210 5211 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5212 if (!Gep) 5213 return nullptr; 5214 5215 // We are looking for a gep with all loop invariant indices except for one 5216 // which should be an induction variable. 5217 auto SE = PSE.getSE(); 5218 unsigned NumOperands = Gep->getNumOperands(); 5219 for (unsigned i = 1; i < NumOperands; ++i) { 5220 Value *Opd = Gep->getOperand(i); 5221 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5222 !Legal->isInductionVariable(Opd)) 5223 return nullptr; 5224 } 5225 5226 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5227 return PSE.getSCEV(Ptr); 5228 } 5229 5230 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5231 return Legal->hasStride(I->getOperand(0)) || 5232 Legal->hasStride(I->getOperand(1)); 5233 } 5234 5235 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5236 unsigned VF) { 5237 Type *ValTy = getMemInstValueType(I); 5238 auto SE = PSE.getSE(); 5239 5240 unsigned Alignment = getLoadStoreAlignment(I); 5241 unsigned AS = getLoadStoreAddressSpace(I); 5242 Value *Ptr = getLoadStorePointerOperand(I); 5243 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5244 5245 // Figure out whether the access is strided and get the stride value 5246 // if it's known in compile time 5247 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5248 5249 // Get the cost of the scalar memory instruction and address computation. 5250 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5251 5252 Cost += VF * 5253 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 5254 AS, I); 5255 5256 // Get the overhead of the extractelement and insertelement instructions 5257 // we might create due to scalarization. 5258 Cost += getScalarizationOverhead(I, VF, TTI); 5259 5260 // If we have a predicated store, it may not be executed for each vector 5261 // lane. Scale the cost by the probability of executing the predicated 5262 // block. 5263 if (isPredicatedInst(I)) { 5264 Cost /= getReciprocalPredBlockProb(); 5265 5266 if (useEmulatedMaskMemRefHack(I)) 5267 // Artificially setting to a high enough value to practically disable 5268 // vectorization with such operations. 5269 Cost = 3000000; 5270 } 5271 5272 return Cost; 5273 } 5274 5275 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5276 unsigned VF) { 5277 Type *ValTy = getMemInstValueType(I); 5278 Type *VectorTy = ToVectorTy(ValTy, VF); 5279 unsigned Alignment = getLoadStoreAlignment(I); 5280 Value *Ptr = getLoadStorePointerOperand(I); 5281 unsigned AS = getLoadStoreAddressSpace(I); 5282 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5283 5284 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5285 "Stride should be 1 or -1 for consecutive memory access"); 5286 unsigned Cost = 0; 5287 if (Legal->isMaskRequired(I)) 5288 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5289 else 5290 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 5291 5292 bool Reverse = ConsecutiveStride < 0; 5293 if (Reverse) 5294 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5295 return Cost; 5296 } 5297 5298 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5299 unsigned VF) { 5300 LoadInst *LI = cast<LoadInst>(I); 5301 Type *ValTy = LI->getType(); 5302 Type *VectorTy = ToVectorTy(ValTy, VF); 5303 unsigned Alignment = LI->getAlignment(); 5304 unsigned AS = LI->getPointerAddressSpace(); 5305 5306 return TTI.getAddressComputationCost(ValTy) + 5307 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 5308 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5309 } 5310 5311 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5312 unsigned VF) { 5313 Type *ValTy = getMemInstValueType(I); 5314 Type *VectorTy = ToVectorTy(ValTy, VF); 5315 unsigned Alignment = getLoadStoreAlignment(I); 5316 Value *Ptr = getLoadStorePointerOperand(I); 5317 5318 return TTI.getAddressComputationCost(VectorTy) + 5319 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 5320 Legal->isMaskRequired(I), Alignment); 5321 } 5322 5323 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5324 unsigned VF) { 5325 Type *ValTy = getMemInstValueType(I); 5326 Type *VectorTy = ToVectorTy(ValTy, VF); 5327 unsigned AS = getLoadStoreAddressSpace(I); 5328 5329 auto Group = getInterleavedAccessGroup(I); 5330 assert(Group && "Fail to get an interleaved access group."); 5331 5332 unsigned InterleaveFactor = Group->getFactor(); 5333 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 5334 5335 // Holds the indices of existing members in an interleaved load group. 5336 // An interleaved store group doesn't need this as it doesn't allow gaps. 5337 SmallVector<unsigned, 4> Indices; 5338 if (isa<LoadInst>(I)) { 5339 for (unsigned i = 0; i < InterleaveFactor; i++) 5340 if (Group->getMember(i)) 5341 Indices.push_back(i); 5342 } 5343 5344 // Calculate the cost of the whole interleaved group. 5345 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 5346 Group->getFactor(), Indices, 5347 Group->getAlignment(), AS); 5348 5349 if (Group->isReverse()) 5350 Cost += Group->getNumMembers() * 5351 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5352 return Cost; 5353 } 5354 5355 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 5356 unsigned VF) { 5357 // Calculate scalar cost only. Vectorization cost should be ready at this 5358 // moment. 5359 if (VF == 1) { 5360 Type *ValTy = getMemInstValueType(I); 5361 unsigned Alignment = getLoadStoreAlignment(I); 5362 unsigned AS = getLoadStoreAddressSpace(I); 5363 5364 return TTI.getAddressComputationCost(ValTy) + 5365 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 5366 } 5367 return getWideningCost(I, VF); 5368 } 5369 5370 LoopVectorizationCostModel::VectorizationCostTy 5371 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5372 // If we know that this instruction will remain uniform, check the cost of 5373 // the scalar version. 5374 if (isUniformAfterVectorization(I, VF)) 5375 VF = 1; 5376 5377 if (VF > 1 && isProfitableToScalarize(I, VF)) 5378 return VectorizationCostTy(InstsToScalarize[VF][I], false); 5379 5380 // Forced scalars do not have any scalarization overhead. 5381 auto ForcedScalar = ForcedScalars.find(VF); 5382 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 5383 auto InstSet = ForcedScalar->second; 5384 if (InstSet.find(I) != InstSet.end()) 5385 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 5386 } 5387 5388 Type *VectorTy; 5389 unsigned C = getInstructionCost(I, VF, VectorTy); 5390 5391 bool TypeNotScalarized = 5392 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 5393 return VectorizationCostTy(C, TypeNotScalarized); 5394 } 5395 5396 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 5397 if (VF == 1) 5398 return; 5399 NumPredStores = 0; 5400 for (BasicBlock *BB : TheLoop->blocks()) { 5401 // For each instruction in the old loop. 5402 for (Instruction &I : *BB) { 5403 Value *Ptr = getLoadStorePointerOperand(&I); 5404 if (!Ptr) 5405 continue; 5406 5407 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 5408 NumPredStores++; 5409 5410 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr) && 5411 // Conditional loads should be scalarized and predicated. 5412 // isScalarWithPredication cannot be used here since masked 5413 // gather/scatters are not considered scalar with predication. 5414 !Legal->blockNeedsPredication(I.getParent())) { 5415 // Scalar load + broadcast 5416 unsigned Cost = getUniformMemOpCost(&I, VF); 5417 setWideningDecision(&I, VF, CM_Scalarize, Cost); 5418 continue; 5419 } 5420 5421 // We assume that widening is the best solution when possible. 5422 if (memoryInstructionCanBeWidened(&I, VF)) { 5423 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 5424 int ConsecutiveStride = 5425 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 5426 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5427 "Expected consecutive stride."); 5428 InstWidening Decision = 5429 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 5430 setWideningDecision(&I, VF, Decision, Cost); 5431 continue; 5432 } 5433 5434 // Choose between Interleaving, Gather/Scatter or Scalarization. 5435 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 5436 unsigned NumAccesses = 1; 5437 if (isAccessInterleaved(&I)) { 5438 auto Group = getInterleavedAccessGroup(&I); 5439 assert(Group && "Fail to get an interleaved access group."); 5440 5441 // Make one decision for the whole group. 5442 if (getWideningDecision(&I, VF) != CM_Unknown) 5443 continue; 5444 5445 NumAccesses = Group->getNumMembers(); 5446 InterleaveCost = getInterleaveGroupCost(&I, VF); 5447 } 5448 5449 unsigned GatherScatterCost = 5450 isLegalGatherOrScatter(&I) 5451 ? getGatherScatterCost(&I, VF) * NumAccesses 5452 : std::numeric_limits<unsigned>::max(); 5453 5454 unsigned ScalarizationCost = 5455 getMemInstScalarizationCost(&I, VF) * NumAccesses; 5456 5457 // Choose better solution for the current VF, 5458 // write down this decision and use it during vectorization. 5459 unsigned Cost; 5460 InstWidening Decision; 5461 if (InterleaveCost <= GatherScatterCost && 5462 InterleaveCost < ScalarizationCost) { 5463 Decision = CM_Interleave; 5464 Cost = InterleaveCost; 5465 } else if (GatherScatterCost < ScalarizationCost) { 5466 Decision = CM_GatherScatter; 5467 Cost = GatherScatterCost; 5468 } else { 5469 Decision = CM_Scalarize; 5470 Cost = ScalarizationCost; 5471 } 5472 // If the instructions belongs to an interleave group, the whole group 5473 // receives the same decision. The whole group receives the cost, but 5474 // the cost will actually be assigned to one instruction. 5475 if (auto Group = getInterleavedAccessGroup(&I)) 5476 setWideningDecision(Group, VF, Decision, Cost); 5477 else 5478 setWideningDecision(&I, VF, Decision, Cost); 5479 } 5480 } 5481 5482 // Make sure that any load of address and any other address computation 5483 // remains scalar unless there is gather/scatter support. This avoids 5484 // inevitable extracts into address registers, and also has the benefit of 5485 // activating LSR more, since that pass can't optimize vectorized 5486 // addresses. 5487 if (TTI.prefersVectorizedAddressing()) 5488 return; 5489 5490 // Start with all scalar pointer uses. 5491 SmallPtrSet<Instruction *, 8> AddrDefs; 5492 for (BasicBlock *BB : TheLoop->blocks()) 5493 for (Instruction &I : *BB) { 5494 Instruction *PtrDef = 5495 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 5496 if (PtrDef && TheLoop->contains(PtrDef) && 5497 getWideningDecision(&I, VF) != CM_GatherScatter) 5498 AddrDefs.insert(PtrDef); 5499 } 5500 5501 // Add all instructions used to generate the addresses. 5502 SmallVector<Instruction *, 4> Worklist; 5503 for (auto *I : AddrDefs) 5504 Worklist.push_back(I); 5505 while (!Worklist.empty()) { 5506 Instruction *I = Worklist.pop_back_val(); 5507 for (auto &Op : I->operands()) 5508 if (auto *InstOp = dyn_cast<Instruction>(Op)) 5509 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 5510 AddrDefs.insert(InstOp).second) 5511 Worklist.push_back(InstOp); 5512 } 5513 5514 for (auto *I : AddrDefs) { 5515 if (isa<LoadInst>(I)) { 5516 // Setting the desired widening decision should ideally be handled in 5517 // by cost functions, but since this involves the task of finding out 5518 // if the loaded register is involved in an address computation, it is 5519 // instead changed here when we know this is the case. 5520 InstWidening Decision = getWideningDecision(I, VF); 5521 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 5522 // Scalarize a widened load of address. 5523 setWideningDecision(I, VF, CM_Scalarize, 5524 (VF * getMemoryInstructionCost(I, 1))); 5525 else if (auto Group = getInterleavedAccessGroup(I)) { 5526 // Scalarize an interleave group of address loads. 5527 for (unsigned I = 0; I < Group->getFactor(); ++I) { 5528 if (Instruction *Member = Group->getMember(I)) 5529 setWideningDecision(Member, VF, CM_Scalarize, 5530 (VF * getMemoryInstructionCost(Member, 1))); 5531 } 5532 } 5533 } else 5534 // Make sure I gets scalarized and a cost estimate without 5535 // scalarization overhead. 5536 ForcedScalars[VF].insert(I); 5537 } 5538 } 5539 5540 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5541 unsigned VF, 5542 Type *&VectorTy) { 5543 Type *RetTy = I->getType(); 5544 if (canTruncateToMinimalBitwidth(I, VF)) 5545 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5546 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 5547 auto SE = PSE.getSE(); 5548 5549 // TODO: We need to estimate the cost of intrinsic calls. 5550 switch (I->getOpcode()) { 5551 case Instruction::GetElementPtr: 5552 // We mark this instruction as zero-cost because the cost of GEPs in 5553 // vectorized code depends on whether the corresponding memory instruction 5554 // is scalarized or not. Therefore, we handle GEPs with the memory 5555 // instruction cost. 5556 return 0; 5557 case Instruction::Br: { 5558 // In cases of scalarized and predicated instructions, there will be VF 5559 // predicated blocks in the vectorized loop. Each branch around these 5560 // blocks requires also an extract of its vector compare i1 element. 5561 bool ScalarPredicatedBB = false; 5562 BranchInst *BI = cast<BranchInst>(I); 5563 if (VF > 1 && BI->isConditional() && 5564 (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) != 5565 PredicatedBBsAfterVectorization.end() || 5566 PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) != 5567 PredicatedBBsAfterVectorization.end())) 5568 ScalarPredicatedBB = true; 5569 5570 if (ScalarPredicatedBB) { 5571 // Return cost for branches around scalarized and predicated blocks. 5572 Type *Vec_i1Ty = 5573 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 5574 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 5575 (TTI.getCFInstrCost(Instruction::Br) * VF)); 5576 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 5577 // The back-edge branch will remain, as will all scalar branches. 5578 return TTI.getCFInstrCost(Instruction::Br); 5579 else 5580 // This branch will be eliminated by if-conversion. 5581 return 0; 5582 // Note: We currently assume zero cost for an unconditional branch inside 5583 // a predicated block since it will become a fall-through, although we 5584 // may decide in the future to call TTI for all branches. 5585 } 5586 case Instruction::PHI: { 5587 auto *Phi = cast<PHINode>(I); 5588 5589 // First-order recurrences are replaced by vector shuffles inside the loop. 5590 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5591 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5592 VectorTy, VF - 1, VectorTy); 5593 5594 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 5595 // converted into select instructions. We require N - 1 selects per phi 5596 // node, where N is the number of incoming values. 5597 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 5598 return (Phi->getNumIncomingValues() - 1) * 5599 TTI.getCmpSelInstrCost( 5600 Instruction::Select, ToVectorTy(Phi->getType(), VF), 5601 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 5602 5603 return TTI.getCFInstrCost(Instruction::PHI); 5604 } 5605 case Instruction::UDiv: 5606 case Instruction::SDiv: 5607 case Instruction::URem: 5608 case Instruction::SRem: 5609 // If we have a predicated instruction, it may not be executed for each 5610 // vector lane. Get the scalarization cost and scale this amount by the 5611 // probability of executing the predicated block. If the instruction is not 5612 // predicated, we fall through to the next case. 5613 if (VF > 1 && isScalarWithPredication(I)) { 5614 unsigned Cost = 0; 5615 5616 // These instructions have a non-void type, so account for the phi nodes 5617 // that we will create. This cost is likely to be zero. The phi node 5618 // cost, if any, should be scaled by the block probability because it 5619 // models a copy at the end of each predicated block. 5620 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 5621 5622 // The cost of the non-predicated instruction. 5623 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 5624 5625 // The cost of insertelement and extractelement instructions needed for 5626 // scalarization. 5627 Cost += getScalarizationOverhead(I, VF, TTI); 5628 5629 // Scale the cost by the probability of executing the predicated blocks. 5630 // This assumes the predicated block for each vector lane is equally 5631 // likely. 5632 return Cost / getReciprocalPredBlockProb(); 5633 } 5634 LLVM_FALLTHROUGH; 5635 case Instruction::Add: 5636 case Instruction::FAdd: 5637 case Instruction::Sub: 5638 case Instruction::FSub: 5639 case Instruction::Mul: 5640 case Instruction::FMul: 5641 case Instruction::FDiv: 5642 case Instruction::FRem: 5643 case Instruction::Shl: 5644 case Instruction::LShr: 5645 case Instruction::AShr: 5646 case Instruction::And: 5647 case Instruction::Or: 5648 case Instruction::Xor: { 5649 // Since we will replace the stride by 1 the multiplication should go away. 5650 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5651 return 0; 5652 // Certain instructions can be cheaper to vectorize if they have a constant 5653 // second vector operand. One example of this are shifts on x86. 5654 TargetTransformInfo::OperandValueKind Op1VK = 5655 TargetTransformInfo::OK_AnyValue; 5656 TargetTransformInfo::OperandValueKind Op2VK = 5657 TargetTransformInfo::OK_AnyValue; 5658 TargetTransformInfo::OperandValueProperties Op1VP = 5659 TargetTransformInfo::OP_None; 5660 TargetTransformInfo::OperandValueProperties Op2VP = 5661 TargetTransformInfo::OP_None; 5662 Value *Op2 = I->getOperand(1); 5663 5664 // Check for a splat or for a non uniform vector of constants. 5665 if (isa<ConstantInt>(Op2)) { 5666 ConstantInt *CInt = cast<ConstantInt>(Op2); 5667 if (CInt && CInt->getValue().isPowerOf2()) 5668 Op2VP = TargetTransformInfo::OP_PowerOf2; 5669 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5670 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5671 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5672 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5673 if (SplatValue) { 5674 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5675 if (CInt && CInt->getValue().isPowerOf2()) 5676 Op2VP = TargetTransformInfo::OP_PowerOf2; 5677 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5678 } 5679 } else if (Legal->isUniform(Op2)) { 5680 Op2VK = TargetTransformInfo::OK_UniformValue; 5681 } 5682 SmallVector<const Value *, 4> Operands(I->operand_values()); 5683 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5684 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 5685 Op2VK, Op1VP, Op2VP, Operands); 5686 } 5687 case Instruction::Select: { 5688 SelectInst *SI = cast<SelectInst>(I); 5689 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5690 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5691 Type *CondTy = SI->getCondition()->getType(); 5692 if (!ScalarCond) 5693 CondTy = VectorType::get(CondTy, VF); 5694 5695 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 5696 } 5697 case Instruction::ICmp: 5698 case Instruction::FCmp: { 5699 Type *ValTy = I->getOperand(0)->getType(); 5700 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5701 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 5702 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 5703 VectorTy = ToVectorTy(ValTy, VF); 5704 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 5705 } 5706 case Instruction::Store: 5707 case Instruction::Load: { 5708 unsigned Width = VF; 5709 if (Width > 1) { 5710 InstWidening Decision = getWideningDecision(I, Width); 5711 assert(Decision != CM_Unknown && 5712 "CM decision should be taken at this point"); 5713 if (Decision == CM_Scalarize) 5714 Width = 1; 5715 } 5716 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 5717 return getMemoryInstructionCost(I, VF); 5718 } 5719 case Instruction::ZExt: 5720 case Instruction::SExt: 5721 case Instruction::FPToUI: 5722 case Instruction::FPToSI: 5723 case Instruction::FPExt: 5724 case Instruction::PtrToInt: 5725 case Instruction::IntToPtr: 5726 case Instruction::SIToFP: 5727 case Instruction::UIToFP: 5728 case Instruction::Trunc: 5729 case Instruction::FPTrunc: 5730 case Instruction::BitCast: { 5731 // We optimize the truncation of induction variables having constant 5732 // integer steps. The cost of these truncations is the same as the scalar 5733 // operation. 5734 if (isOptimizableIVTruncate(I, VF)) { 5735 auto *Trunc = cast<TruncInst>(I); 5736 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 5737 Trunc->getSrcTy(), Trunc); 5738 } 5739 5740 Type *SrcScalarTy = I->getOperand(0)->getType(); 5741 Type *SrcVecTy = 5742 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 5743 if (canTruncateToMinimalBitwidth(I, VF)) { 5744 // This cast is going to be shrunk. This may remove the cast or it might 5745 // turn it into slightly different cast. For example, if MinBW == 16, 5746 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 5747 // 5748 // Calculate the modified src and dest types. 5749 Type *MinVecTy = VectorTy; 5750 if (I->getOpcode() == Instruction::Trunc) { 5751 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 5752 VectorTy = 5753 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5754 } else if (I->getOpcode() == Instruction::ZExt || 5755 I->getOpcode() == Instruction::SExt) { 5756 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 5757 VectorTy = 5758 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 5759 } 5760 } 5761 5762 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 5763 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 5764 } 5765 case Instruction::Call: { 5766 bool NeedToScalarize; 5767 CallInst *CI = cast<CallInst>(I); 5768 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5769 if (getVectorIntrinsicIDForCall(CI, TLI)) 5770 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5771 return CallCost; 5772 } 5773 default: 5774 // The cost of executing VF copies of the scalar instruction. This opcode 5775 // is unknown. Assume that it is the same as 'mul'. 5776 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 5777 getScalarizationOverhead(I, VF, TTI); 5778 } // end of switch. 5779 } 5780 5781 char LoopVectorize::ID = 0; 5782 5783 static const char lv_name[] = "Loop Vectorization"; 5784 5785 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5786 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5787 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 5788 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 5789 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 5790 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5791 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5792 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5793 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5794 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5795 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 5796 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 5797 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 5798 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5799 5800 namespace llvm { 5801 5802 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5803 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5804 } 5805 5806 } // end namespace llvm 5807 5808 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5809 // Check if the pointer operand of a load or store instruction is 5810 // consecutive. 5811 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 5812 return Legal->isConsecutivePtr(Ptr); 5813 return false; 5814 } 5815 5816 void LoopVectorizationCostModel::collectValuesToIgnore() { 5817 // Ignore ephemeral values. 5818 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 5819 5820 // Ignore type-promoting instructions we identified during reduction 5821 // detection. 5822 for (auto &Reduction : *Legal->getReductionVars()) { 5823 RecurrenceDescriptor &RedDes = Reduction.second; 5824 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 5825 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 5826 } 5827 // Ignore type-casting instructions we identified during induction 5828 // detection. 5829 for (auto &Induction : *Legal->getInductionVars()) { 5830 InductionDescriptor &IndDes = Induction.second; 5831 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 5832 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 5833 } 5834 } 5835 5836 VectorizationFactor 5837 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize, 5838 unsigned UserVF) { 5839 // Width 1 means no vectorization, cost 0 means uncomputed cost. 5840 const VectorizationFactor NoVectorization = {1U, 0U}; 5841 5842 // Outer loop handling: They may require CFG and instruction level 5843 // transformations before even evaluating whether vectorization is profitable. 5844 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 5845 // the vectorization pipeline. 5846 if (!OrigLoop->empty()) { 5847 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing. 5848 // This won't be necessary when UserVF is not required in the VPlan-native 5849 // path. 5850 if (VPlanBuildStressTest && !UserVF) 5851 UserVF = 4; 5852 5853 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 5854 assert(UserVF && "Expected UserVF for outer loop vectorization."); 5855 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5856 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5857 buildVPlans(UserVF, UserVF); 5858 5859 // For VPlan build stress testing, we bail out after VPlan construction. 5860 if (VPlanBuildStressTest) 5861 return NoVectorization; 5862 5863 return {UserVF, 0}; 5864 } 5865 5866 LLVM_DEBUG( 5867 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 5868 "VPlan-native path.\n"); 5869 return NoVectorization; 5870 } 5871 5872 VectorizationFactor 5873 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 5874 assert(OrigLoop->empty() && "Inner loop expected."); 5875 // Width 1 means no vectorization, cost 0 means uncomputed cost. 5876 const VectorizationFactor NoVectorization = {1U, 0U}; 5877 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 5878 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 5879 return NoVectorization; 5880 5881 if (UserVF) { 5882 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5883 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5884 // Collect the instructions (and their associated costs) that will be more 5885 // profitable to scalarize. 5886 CM.selectUserVectorizationFactor(UserVF); 5887 buildVPlansWithVPRecipes(UserVF, UserVF); 5888 LLVM_DEBUG(printPlans(dbgs())); 5889 return {UserVF, 0}; 5890 } 5891 5892 unsigned MaxVF = MaybeMaxVF.getValue(); 5893 assert(MaxVF != 0 && "MaxVF is zero."); 5894 5895 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 5896 // Collect Uniform and Scalar instructions after vectorization with VF. 5897 CM.collectUniformsAndScalars(VF); 5898 5899 // Collect the instructions (and their associated costs) that will be more 5900 // profitable to scalarize. 5901 if (VF > 1) 5902 CM.collectInstsToScalarize(VF); 5903 } 5904 5905 buildVPlansWithVPRecipes(1, MaxVF); 5906 LLVM_DEBUG(printPlans(dbgs())); 5907 if (MaxVF == 1) 5908 return NoVectorization; 5909 5910 // Select the optimal vectorization factor. 5911 return CM.selectVectorizationFactor(MaxVF); 5912 } 5913 5914 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 5915 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 5916 << '\n'); 5917 BestVF = VF; 5918 BestUF = UF; 5919 5920 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 5921 return !Plan->hasVF(VF); 5922 }); 5923 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 5924 } 5925 5926 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 5927 DominatorTree *DT) { 5928 // Perform the actual loop transformation. 5929 5930 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 5931 VPCallbackILV CallbackILV(ILV); 5932 5933 VPTransformState State{BestVF, BestUF, LI, 5934 DT, ILV.Builder, ILV.VectorLoopValueMap, 5935 &ILV, CallbackILV}; 5936 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 5937 5938 //===------------------------------------------------===// 5939 // 5940 // Notice: any optimization or new instruction that go 5941 // into the code below should also be implemented in 5942 // the cost-model. 5943 // 5944 //===------------------------------------------------===// 5945 5946 // 2. Copy and widen instructions from the old loop into the new loop. 5947 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 5948 VPlans.front()->execute(&State); 5949 5950 // 3. Fix the vectorized code: take care of header phi's, live-outs, 5951 // predication, updating analyses. 5952 ILV.fixVectorizedLoop(); 5953 } 5954 5955 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 5956 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 5957 BasicBlock *Latch = OrigLoop->getLoopLatch(); 5958 5959 // We create new control-flow for the vectorized loop, so the original 5960 // condition will be dead after vectorization if it's only used by the 5961 // branch. 5962 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5963 if (Cmp && Cmp->hasOneUse()) 5964 DeadInstructions.insert(Cmp); 5965 5966 // We create new "steps" for induction variable updates to which the original 5967 // induction variables map. An original update instruction will be dead if 5968 // all its users except the induction variable are dead. 5969 for (auto &Induction : *Legal->getInductionVars()) { 5970 PHINode *Ind = Induction.first; 5971 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5972 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5973 return U == Ind || DeadInstructions.find(cast<Instruction>(U)) != 5974 DeadInstructions.end(); 5975 })) 5976 DeadInstructions.insert(IndUpdate); 5977 5978 // We record as "Dead" also the type-casting instructions we had identified 5979 // during induction analysis. We don't need any handling for them in the 5980 // vectorized loop because we have proven that, under a proper runtime 5981 // test guarding the vectorized loop, the value of the phi, and the casted 5982 // value of the phi, are the same. The last instruction in this casting chain 5983 // will get its scalar/vector/widened def from the scalar/vector/widened def 5984 // of the respective phi node. Any other casts in the induction def-use chain 5985 // have no other uses outside the phi update chain, and will be ignored. 5986 InductionDescriptor &IndDes = Induction.second; 5987 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 5988 DeadInstructions.insert(Casts.begin(), Casts.end()); 5989 } 5990 } 5991 5992 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 5993 5994 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 5995 5996 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 5997 Instruction::BinaryOps BinOp) { 5998 // When unrolling and the VF is 1, we only need to add a simple scalar. 5999 Type *Ty = Val->getType(); 6000 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6001 6002 if (Ty->isFloatingPointTy()) { 6003 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6004 6005 // Floating point operations had to be 'fast' to enable the unrolling. 6006 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6007 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6008 } 6009 Constant *C = ConstantInt::get(Ty, StartIdx); 6010 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6011 } 6012 6013 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6014 SmallVector<Metadata *, 4> MDs; 6015 // Reserve first location for self reference to the LoopID metadata node. 6016 MDs.push_back(nullptr); 6017 bool IsUnrollMetadata = false; 6018 MDNode *LoopID = L->getLoopID(); 6019 if (LoopID) { 6020 // First find existing loop unrolling disable metadata. 6021 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6022 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6023 if (MD) { 6024 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6025 IsUnrollMetadata = 6026 S && S->getString().startswith("llvm.loop.unroll.disable"); 6027 } 6028 MDs.push_back(LoopID->getOperand(i)); 6029 } 6030 } 6031 6032 if (!IsUnrollMetadata) { 6033 // Add runtime unroll disable metadata. 6034 LLVMContext &Context = L->getHeader()->getContext(); 6035 SmallVector<Metadata *, 1> DisableOperands; 6036 DisableOperands.push_back( 6037 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6038 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6039 MDs.push_back(DisableNode); 6040 MDNode *NewLoopID = MDNode::get(Context, MDs); 6041 // Set operand 0 to refer to the loop id itself. 6042 NewLoopID->replaceOperandWith(0, NewLoopID); 6043 L->setLoopID(NewLoopID); 6044 } 6045 } 6046 6047 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6048 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6049 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6050 bool PredicateAtRangeStart = Predicate(Range.Start); 6051 6052 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6053 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6054 Range.End = TmpVF; 6055 break; 6056 } 6057 6058 return PredicateAtRangeStart; 6059 } 6060 6061 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6062 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6063 /// of VF's starting at a given VF and extending it as much as possible. Each 6064 /// vectorization decision can potentially shorten this sub-range during 6065 /// buildVPlan(). 6066 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6067 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6068 VFRange SubRange = {VF, MaxVF + 1}; 6069 VPlans.push_back(buildVPlan(SubRange)); 6070 VF = SubRange.End; 6071 } 6072 } 6073 6074 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6075 VPlanPtr &Plan) { 6076 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6077 6078 // Look for cached value. 6079 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6080 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6081 if (ECEntryIt != EdgeMaskCache.end()) 6082 return ECEntryIt->second; 6083 6084 VPValue *SrcMask = createBlockInMask(Src, Plan); 6085 6086 // The terminator has to be a branch inst! 6087 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6088 assert(BI && "Unexpected terminator found"); 6089 6090 if (!BI->isConditional()) 6091 return EdgeMaskCache[Edge] = SrcMask; 6092 6093 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6094 assert(EdgeMask && "No Edge Mask found for condition"); 6095 6096 if (BI->getSuccessor(0) != Dst) 6097 EdgeMask = Builder.createNot(EdgeMask); 6098 6099 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6100 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6101 6102 return EdgeMaskCache[Edge] = EdgeMask; 6103 } 6104 6105 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6106 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6107 6108 // Look for cached value. 6109 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6110 if (BCEntryIt != BlockMaskCache.end()) 6111 return BCEntryIt->second; 6112 6113 // All-one mask is modelled as no-mask following the convention for masked 6114 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6115 VPValue *BlockMask = nullptr; 6116 6117 // Loop incoming mask is all-one. 6118 if (OrigLoop->getHeader() == BB) 6119 return BlockMaskCache[BB] = BlockMask; 6120 6121 // This is the block mask. We OR all incoming edges. 6122 for (auto *Predecessor : predecessors(BB)) { 6123 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6124 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6125 return BlockMaskCache[BB] = EdgeMask; 6126 6127 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6128 BlockMask = EdgeMask; 6129 continue; 6130 } 6131 6132 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6133 } 6134 6135 return BlockMaskCache[BB] = BlockMask; 6136 } 6137 6138 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I, 6139 VFRange &Range) { 6140 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I); 6141 if (!IG) 6142 return nullptr; 6143 6144 // Now check if IG is relevant for VF's in the given range. 6145 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 6146 return [=](unsigned VF) -> bool { 6147 return (VF >= 2 && // Query is illegal for VF == 1 6148 CM.getWideningDecision(I, VF) == 6149 LoopVectorizationCostModel::CM_Interleave); 6150 }; 6151 }; 6152 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range)) 6153 return nullptr; 6154 6155 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 6156 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 6157 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 6158 assert(I == IG->getInsertPos() && 6159 "Generating a recipe for an adjunct member of an interleave group"); 6160 6161 return new VPInterleaveRecipe(IG); 6162 } 6163 6164 VPWidenMemoryInstructionRecipe * 6165 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6166 VPlanPtr &Plan) { 6167 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 6168 return nullptr; 6169 6170 auto willWiden = [&](unsigned VF) -> bool { 6171 if (VF == 1) 6172 return false; 6173 if (CM.isScalarAfterVectorization(I, VF) || 6174 CM.isProfitableToScalarize(I, VF)) 6175 return false; 6176 LoopVectorizationCostModel::InstWidening Decision = 6177 CM.getWideningDecision(I, VF); 6178 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6179 "CM decision should be taken at this point."); 6180 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 6181 "Interleave memory opportunity should be caught earlier."); 6182 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6183 }; 6184 6185 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6186 return nullptr; 6187 6188 VPValue *Mask = nullptr; 6189 if (Legal->isMaskRequired(I)) 6190 Mask = createBlockInMask(I->getParent(), Plan); 6191 6192 return new VPWidenMemoryInstructionRecipe(*I, Mask); 6193 } 6194 6195 VPWidenIntOrFpInductionRecipe * 6196 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) { 6197 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 6198 // Check if this is an integer or fp induction. If so, build the recipe that 6199 // produces its scalar and vector values. 6200 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 6201 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6202 II.getKind() == InductionDescriptor::IK_FpInduction) 6203 return new VPWidenIntOrFpInductionRecipe(Phi); 6204 6205 return nullptr; 6206 } 6207 6208 // Optimize the special case where the source is a constant integer 6209 // induction variable. Notice that we can only optimize the 'trunc' case 6210 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6211 // (c) other casts depend on pointer size. 6212 6213 // Determine whether \p K is a truncation based on an induction variable that 6214 // can be optimized. 6215 auto isOptimizableIVTruncate = 6216 [&](Instruction *K) -> std::function<bool(unsigned)> { 6217 return 6218 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6219 }; 6220 6221 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange( 6222 isOptimizableIVTruncate(I), Range)) 6223 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6224 cast<TruncInst>(I)); 6225 return nullptr; 6226 } 6227 6228 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) { 6229 PHINode *Phi = dyn_cast<PHINode>(I); 6230 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 6231 return nullptr; 6232 6233 // We know that all PHIs in non-header blocks are converted into selects, so 6234 // we don't have to worry about the insertion order and we can just use the 6235 // builder. At this point we generate the predication tree. There may be 6236 // duplications since this is a simple recursive scan, but future 6237 // optimizations will clean it up. 6238 6239 SmallVector<VPValue *, 2> Masks; 6240 unsigned NumIncoming = Phi->getNumIncomingValues(); 6241 for (unsigned In = 0; In < NumIncoming; In++) { 6242 VPValue *EdgeMask = 6243 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6244 assert((EdgeMask || NumIncoming == 1) && 6245 "Multiple predecessors with one having a full mask"); 6246 if (EdgeMask) 6247 Masks.push_back(EdgeMask); 6248 } 6249 return new VPBlendRecipe(Phi, Masks); 6250 } 6251 6252 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 6253 VFRange &Range) { 6254 6255 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6256 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6257 6258 if (IsPredicated) 6259 return false; 6260 6261 auto IsVectorizableOpcode = [](unsigned Opcode) { 6262 switch (Opcode) { 6263 case Instruction::Add: 6264 case Instruction::And: 6265 case Instruction::AShr: 6266 case Instruction::BitCast: 6267 case Instruction::Br: 6268 case Instruction::Call: 6269 case Instruction::FAdd: 6270 case Instruction::FCmp: 6271 case Instruction::FDiv: 6272 case Instruction::FMul: 6273 case Instruction::FPExt: 6274 case Instruction::FPToSI: 6275 case Instruction::FPToUI: 6276 case Instruction::FPTrunc: 6277 case Instruction::FRem: 6278 case Instruction::FSub: 6279 case Instruction::GetElementPtr: 6280 case Instruction::ICmp: 6281 case Instruction::IntToPtr: 6282 case Instruction::Load: 6283 case Instruction::LShr: 6284 case Instruction::Mul: 6285 case Instruction::Or: 6286 case Instruction::PHI: 6287 case Instruction::PtrToInt: 6288 case Instruction::SDiv: 6289 case Instruction::Select: 6290 case Instruction::SExt: 6291 case Instruction::Shl: 6292 case Instruction::SIToFP: 6293 case Instruction::SRem: 6294 case Instruction::Store: 6295 case Instruction::Sub: 6296 case Instruction::Trunc: 6297 case Instruction::UDiv: 6298 case Instruction::UIToFP: 6299 case Instruction::URem: 6300 case Instruction::Xor: 6301 case Instruction::ZExt: 6302 return true; 6303 } 6304 return false; 6305 }; 6306 6307 if (!IsVectorizableOpcode(I->getOpcode())) 6308 return false; 6309 6310 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6311 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6312 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6313 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6314 return false; 6315 } 6316 6317 auto willWiden = [&](unsigned VF) -> bool { 6318 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 6319 CM.isProfitableToScalarize(I, VF))) 6320 return false; 6321 if (CallInst *CI = dyn_cast<CallInst>(I)) { 6322 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6323 // The following case may be scalarized depending on the VF. 6324 // The flag shows whether we use Intrinsic or a usual Call for vectorized 6325 // version of the instruction. 6326 // Is it beneficial to perform intrinsic call compared to lib call? 6327 bool NeedToScalarize; 6328 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 6329 bool UseVectorIntrinsic = 6330 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 6331 return UseVectorIntrinsic || !NeedToScalarize; 6332 } 6333 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 6334 assert(CM.getWideningDecision(I, VF) == 6335 LoopVectorizationCostModel::CM_Scalarize && 6336 "Memory widening decisions should have been taken care by now"); 6337 return false; 6338 } 6339 return true; 6340 }; 6341 6342 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6343 return false; 6344 6345 // Success: widen this instruction. We optimize the common case where 6346 // consecutive instructions can be represented by a single recipe. 6347 if (!VPBB->empty()) { 6348 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 6349 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 6350 return true; 6351 } 6352 6353 VPBB->appendRecipe(new VPWidenRecipe(I)); 6354 return true; 6355 } 6356 6357 VPBasicBlock *VPRecipeBuilder::handleReplication( 6358 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 6359 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 6360 VPlanPtr &Plan) { 6361 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 6362 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 6363 Range); 6364 6365 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6366 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 6367 6368 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 6369 6370 // Find if I uses a predicated instruction. If so, it will use its scalar 6371 // value. Avoid hoisting the insert-element which packs the scalar value into 6372 // a vector value, as that happens iff all users use the vector value. 6373 for (auto &Op : I->operands()) 6374 if (auto *PredInst = dyn_cast<Instruction>(Op)) 6375 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 6376 PredInst2Recipe[PredInst]->setAlsoPack(false); 6377 6378 // Finalize the recipe for Instr, first if it is not predicated. 6379 if (!IsPredicated) { 6380 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 6381 VPBB->appendRecipe(Recipe); 6382 return VPBB; 6383 } 6384 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 6385 assert(VPBB->getSuccessors().empty() && 6386 "VPBB has successors when handling predicated replication."); 6387 // Record predicated instructions for above packing optimizations. 6388 PredInst2Recipe[I] = Recipe; 6389 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 6390 VPBlockUtils::insertBlockAfter(Region, VPBB); 6391 auto *RegSucc = new VPBasicBlock(); 6392 VPBlockUtils::insertBlockAfter(RegSucc, Region); 6393 return RegSucc; 6394 } 6395 6396 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 6397 VPRecipeBase *PredRecipe, 6398 VPlanPtr &Plan) { 6399 // Instructions marked for predication are replicated and placed under an 6400 // if-then construct to prevent side-effects. 6401 6402 // Generate recipes to compute the block mask for this region. 6403 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 6404 6405 // Build the triangular if-then region. 6406 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 6407 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 6408 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 6409 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 6410 auto *PHIRecipe = 6411 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 6412 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 6413 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 6414 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 6415 6416 // Note: first set Entry as region entry and then connect successors starting 6417 // from it in order, to propagate the "parent" of each VPBasicBlock. 6418 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 6419 VPBlockUtils::connectBlocks(Pred, Exit); 6420 6421 return Region; 6422 } 6423 6424 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range, 6425 VPlanPtr &Plan, VPBasicBlock *VPBB) { 6426 VPRecipeBase *Recipe = nullptr; 6427 // Check if Instr should belong to an interleave memory recipe, or already 6428 // does. In the latter case Instr is irrelevant. 6429 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 6430 VPBB->appendRecipe(Recipe); 6431 return true; 6432 } 6433 6434 // Check if Instr is a memory operation that should be widened. 6435 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 6436 VPBB->appendRecipe(Recipe); 6437 return true; 6438 } 6439 6440 // Check if Instr should form some PHI recipe. 6441 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 6442 VPBB->appendRecipe(Recipe); 6443 return true; 6444 } 6445 if ((Recipe = tryToBlend(Instr, Plan))) { 6446 VPBB->appendRecipe(Recipe); 6447 return true; 6448 } 6449 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 6450 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 6451 return true; 6452 } 6453 6454 // Check if Instr is to be widened by a general VPWidenRecipe, after 6455 // having first checked for specific widening recipes that deal with 6456 // Interleave Groups, Inductions and Phi nodes. 6457 if (tryToWiden(Instr, VPBB, Range)) 6458 return true; 6459 6460 return false; 6461 } 6462 6463 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 6464 unsigned MaxVF) { 6465 assert(OrigLoop->empty() && "Inner loop expected."); 6466 6467 // Collect conditions feeding internal conditional branches; they need to be 6468 // represented in VPlan for it to model masking. 6469 SmallPtrSet<Value *, 1> NeedDef; 6470 6471 auto *Latch = OrigLoop->getLoopLatch(); 6472 for (BasicBlock *BB : OrigLoop->blocks()) { 6473 if (BB == Latch) 6474 continue; 6475 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6476 if (Branch && Branch->isConditional()) 6477 NeedDef.insert(Branch->getCondition()); 6478 } 6479 6480 // Collect instructions from the original loop that will become trivially dead 6481 // in the vectorized loop. We don't need to vectorize these instructions. For 6482 // example, original induction update instructions can become dead because we 6483 // separately emit induction "steps" when generating code for the new loop. 6484 // Similarly, we create a new latch condition when setting up the structure 6485 // of the new loop, so the old one can become dead. 6486 SmallPtrSet<Instruction *, 4> DeadInstructions; 6487 collectTriviallyDeadInstructions(DeadInstructions); 6488 6489 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6490 VFRange SubRange = {VF, MaxVF + 1}; 6491 VPlans.push_back( 6492 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions)); 6493 VF = SubRange.End; 6494 } 6495 } 6496 6497 LoopVectorizationPlanner::VPlanPtr 6498 LoopVectorizationPlanner::buildVPlanWithVPRecipes( 6499 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 6500 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6501 // Hold a mapping from predicated instructions to their recipes, in order to 6502 // fix their AlsoPack behavior if a user is determined to replicate and use a 6503 // scalar instead of vector value. 6504 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 6505 6506 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 6507 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 6508 6509 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 6510 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 6511 auto Plan = llvm::make_unique<VPlan>(VPBB); 6512 6513 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder); 6514 // Represent values that will have defs inside VPlan. 6515 for (Value *V : NeedDef) 6516 Plan->addVPValue(V); 6517 6518 // Scan the body of the loop in a topological order to visit each basic block 6519 // after having visited its predecessor basic blocks. 6520 LoopBlocksDFS DFS(OrigLoop); 6521 DFS.perform(LI); 6522 6523 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6524 // Relevant instructions from basic block BB will be grouped into VPRecipe 6525 // ingredients and fill a new VPBasicBlock. 6526 unsigned VPBBsForBB = 0; 6527 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 6528 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 6529 VPBB = FirstVPBBForBB; 6530 Builder.setInsertPoint(VPBB); 6531 6532 std::vector<Instruction *> Ingredients; 6533 6534 // Organize the ingredients to vectorize from current basic block in the 6535 // right order. 6536 for (Instruction &I : BB->instructionsWithoutDebug()) { 6537 Instruction *Instr = &I; 6538 6539 // First filter out irrelevant instructions, to ensure no recipes are 6540 // built for them. 6541 if (isa<BranchInst>(Instr) || 6542 DeadInstructions.find(Instr) != DeadInstructions.end()) 6543 continue; 6544 6545 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 6546 // member of the IG, do not construct any Recipe for it. 6547 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr); 6548 if (IG && Instr != IG->getInsertPos() && 6549 Range.Start >= 2 && // Query is illegal for VF == 1 6550 CM.getWideningDecision(Instr, Range.Start) == 6551 LoopVectorizationCostModel::CM_Interleave) { 6552 auto SinkCandidate = SinkAfterInverse.find(Instr); 6553 if (SinkCandidate != SinkAfterInverse.end()) 6554 Ingredients.push_back(SinkCandidate->second); 6555 continue; 6556 } 6557 6558 // Move instructions to handle first-order recurrences, step 1: avoid 6559 // handling this instruction until after we've handled the instruction it 6560 // should follow. 6561 auto SAIt = SinkAfter.find(Instr); 6562 if (SAIt != SinkAfter.end()) { 6563 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" 6564 << *SAIt->second 6565 << " to vectorize a 1st order recurrence.\n"); 6566 SinkAfterInverse[SAIt->second] = Instr; 6567 continue; 6568 } 6569 6570 Ingredients.push_back(Instr); 6571 6572 // Move instructions to handle first-order recurrences, step 2: push the 6573 // instruction to be sunk at its insertion point. 6574 auto SAInvIt = SinkAfterInverse.find(Instr); 6575 if (SAInvIt != SinkAfterInverse.end()) 6576 Ingredients.push_back(SAInvIt->second); 6577 } 6578 6579 // Introduce each ingredient into VPlan. 6580 for (Instruction *Instr : Ingredients) { 6581 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB)) 6582 continue; 6583 6584 // Otherwise, if all widening options failed, Instruction is to be 6585 // replicated. This may create a successor for VPBB. 6586 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 6587 Instr, Range, VPBB, PredInst2Recipe, Plan); 6588 if (NextVPBB != VPBB) { 6589 VPBB = NextVPBB; 6590 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 6591 : ""); 6592 } 6593 } 6594 } 6595 6596 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 6597 // may also be empty, such as the last one VPBB, reflecting original 6598 // basic-blocks with no recipes. 6599 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 6600 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 6601 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 6602 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 6603 delete PreEntry; 6604 6605 std::string PlanName; 6606 raw_string_ostream RSO(PlanName); 6607 unsigned VF = Range.Start; 6608 Plan->addVF(VF); 6609 RSO << "Initial VPlan for VF={" << VF; 6610 for (VF *= 2; VF < Range.End; VF *= 2) { 6611 Plan->addVF(VF); 6612 RSO << "," << VF; 6613 } 6614 RSO << "},UF>=1"; 6615 RSO.flush(); 6616 Plan->setName(PlanName); 6617 6618 return Plan; 6619 } 6620 6621 LoopVectorizationPlanner::VPlanPtr 6622 LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 6623 // Outer loop handling: They may require CFG and instruction level 6624 // transformations before even evaluating whether vectorization is profitable. 6625 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6626 // the vectorization pipeline. 6627 assert(!OrigLoop->empty()); 6628 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6629 6630 // Create new empty VPlan 6631 auto Plan = llvm::make_unique<VPlan>(); 6632 6633 // Build hierarchical CFG 6634 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 6635 HCFGBuilder.buildHierarchicalCFG(); 6636 6637 SmallPtrSet<Instruction *, 1> DeadInstructions; 6638 VPlanHCFGTransforms::VPInstructionsToVPRecipes( 6639 Plan, Legal->getInductionVars(), DeadInstructions); 6640 6641 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 6642 Plan->addVF(VF); 6643 6644 return Plan; 6645 } 6646 6647 Value* LoopVectorizationPlanner::VPCallbackILV:: 6648 getOrCreateVectorValues(Value *V, unsigned Part) { 6649 return ILV.getOrCreateVectorValue(V, Part); 6650 } 6651 6652 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 6653 O << " +\n" 6654 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 6655 IG->getInsertPos()->printAsOperand(O, false); 6656 O << "\\l\""; 6657 for (unsigned i = 0; i < IG->getFactor(); ++i) 6658 if (Instruction *I = IG->getMember(i)) 6659 O << " +\n" 6660 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 6661 } 6662 6663 void VPWidenRecipe::execute(VPTransformState &State) { 6664 for (auto &Instr : make_range(Begin, End)) 6665 State.ILV->widenInstruction(Instr); 6666 } 6667 6668 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 6669 assert(!State.Instance && "Int or FP induction being replicated."); 6670 State.ILV->widenIntOrFpInduction(IV, Trunc); 6671 } 6672 6673 void VPWidenPHIRecipe::execute(VPTransformState &State) { 6674 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 6675 } 6676 6677 void VPBlendRecipe::execute(VPTransformState &State) { 6678 State.ILV->setDebugLocFromInst(State.Builder, Phi); 6679 // We know that all PHIs in non-header blocks are converted into 6680 // selects, so we don't have to worry about the insertion order and we 6681 // can just use the builder. 6682 // At this point we generate the predication tree. There may be 6683 // duplications since this is a simple recursive scan, but future 6684 // optimizations will clean it up. 6685 6686 unsigned NumIncoming = Phi->getNumIncomingValues(); 6687 6688 assert((User || NumIncoming == 1) && 6689 "Multiple predecessors with predecessors having a full mask"); 6690 // Generate a sequence of selects of the form: 6691 // SELECT(Mask3, In3, 6692 // SELECT(Mask2, In2, 6693 // ( ...))) 6694 InnerLoopVectorizer::VectorParts Entry(State.UF); 6695 for (unsigned In = 0; In < NumIncoming; ++In) { 6696 for (unsigned Part = 0; Part < State.UF; ++Part) { 6697 // We might have single edge PHIs (blocks) - use an identity 6698 // 'select' for the first PHI operand. 6699 Value *In0 = 6700 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 6701 if (In == 0) 6702 Entry[Part] = In0; // Initialize with the first incoming value. 6703 else { 6704 // Select between the current value and the previous incoming edge 6705 // based on the incoming mask. 6706 Value *Cond = State.get(User->getOperand(In), Part); 6707 Entry[Part] = 6708 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 6709 } 6710 } 6711 } 6712 for (unsigned Part = 0; Part < State.UF; ++Part) 6713 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 6714 } 6715 6716 void VPInterleaveRecipe::execute(VPTransformState &State) { 6717 assert(!State.Instance && "Interleave group being replicated."); 6718 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 6719 } 6720 6721 void VPReplicateRecipe::execute(VPTransformState &State) { 6722 if (State.Instance) { // Generate a single instance. 6723 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 6724 // Insert scalar instance packing it into a vector. 6725 if (AlsoPack && State.VF > 1) { 6726 // If we're constructing lane 0, initialize to start from undef. 6727 if (State.Instance->Lane == 0) { 6728 Value *Undef = 6729 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 6730 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 6731 } 6732 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 6733 } 6734 return; 6735 } 6736 6737 // Generate scalar instances for all VF lanes of all UF parts, unless the 6738 // instruction is uniform inwhich case generate only the first lane for each 6739 // of the UF parts. 6740 unsigned EndLane = IsUniform ? 1 : State.VF; 6741 for (unsigned Part = 0; Part < State.UF; ++Part) 6742 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 6743 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 6744 } 6745 6746 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 6747 assert(State.Instance && "Branch on Mask works only on single instance."); 6748 6749 unsigned Part = State.Instance->Part; 6750 unsigned Lane = State.Instance->Lane; 6751 6752 Value *ConditionBit = nullptr; 6753 if (!User) // Block in mask is all-one. 6754 ConditionBit = State.Builder.getTrue(); 6755 else { 6756 VPValue *BlockInMask = User->getOperand(0); 6757 ConditionBit = State.get(BlockInMask, Part); 6758 if (ConditionBit->getType()->isVectorTy()) 6759 ConditionBit = State.Builder.CreateExtractElement( 6760 ConditionBit, State.Builder.getInt32(Lane)); 6761 } 6762 6763 // Replace the temporary unreachable terminator with a new conditional branch, 6764 // whose two destinations will be set later when they are created. 6765 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 6766 assert(isa<UnreachableInst>(CurrentTerminator) && 6767 "Expected to replace unreachable terminator with conditional branch."); 6768 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 6769 CondBr->setSuccessor(0, nullptr); 6770 ReplaceInstWithInst(CurrentTerminator, CondBr); 6771 } 6772 6773 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 6774 assert(State.Instance && "Predicated instruction PHI works per instance."); 6775 Instruction *ScalarPredInst = cast<Instruction>( 6776 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 6777 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 6778 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 6779 assert(PredicatingBB && "Predicated block has no single predecessor."); 6780 6781 // By current pack/unpack logic we need to generate only a single phi node: if 6782 // a vector value for the predicated instruction exists at this point it means 6783 // the instruction has vector users only, and a phi for the vector value is 6784 // needed. In this case the recipe of the predicated instruction is marked to 6785 // also do that packing, thereby "hoisting" the insert-element sequence. 6786 // Otherwise, a phi node for the scalar value is needed. 6787 unsigned Part = State.Instance->Part; 6788 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 6789 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 6790 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 6791 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 6792 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 6793 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 6794 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 6795 } else { 6796 Type *PredInstType = PredInst->getType(); 6797 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 6798 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 6799 Phi->addIncoming(ScalarPredInst, PredicatedBB); 6800 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 6801 } 6802 } 6803 6804 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 6805 if (!User) 6806 return State.ILV->vectorizeMemoryInstruction(&Instr); 6807 6808 // Last (and currently only) operand is a mask. 6809 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 6810 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 6811 for (unsigned Part = 0; Part < State.UF; ++Part) 6812 MaskValues[Part] = State.get(Mask, Part); 6813 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 6814 } 6815 6816 // Process the loop in the VPlan-native vectorization path. This path builds 6817 // VPlan upfront in the vectorization pipeline, which allows to apply 6818 // VPlan-to-VPlan transformations from the very beginning without modifying the 6819 // input LLVM IR. 6820 static bool processLoopInVPlanNativePath( 6821 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 6822 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 6823 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 6824 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) { 6825 6826 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 6827 Function *F = L->getHeader()->getParent(); 6828 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 6829 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 6830 &Hints, IAI); 6831 // Use the planner for outer loop vectorization. 6832 // TODO: CM is not used at this point inside the planner. Turn CM into an 6833 // optional argument if we don't need it in the future. 6834 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM); 6835 6836 // Get user vectorization factor. 6837 unsigned UserVF = Hints.getWidth(); 6838 6839 // Check the function attributes to find out if this function should be 6840 // optimized for size. 6841 bool OptForSize = 6842 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6843 6844 // Plan how to best vectorize, return the best VF and its cost. 6845 VectorizationFactor VF = LVP.planInVPlanNativePath(OptForSize, UserVF); 6846 6847 // If we are stress testing VPlan builds, do not attempt to generate vector 6848 // code. 6849 if (VPlanBuildStressTest) 6850 return false; 6851 6852 LVP.setBestPlan(VF.Width, 1); 6853 6854 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, UserVF, 1, LVL, 6855 &CM); 6856 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 6857 << L->getHeader()->getParent()->getName() << "\"\n"); 6858 LVP.executePlan(LB, DT); 6859 6860 // Mark the loop as already vectorized to avoid vectorizing again. 6861 Hints.setAlreadyVectorized(); 6862 6863 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 6864 return true; 6865 } 6866 6867 bool LoopVectorizePass::processLoop(Loop *L) { 6868 assert((EnableVPlanNativePath || L->empty()) && 6869 "VPlan-native path is not enabled. Only process inner loops."); 6870 6871 #ifndef NDEBUG 6872 const std::string DebugLocStr = getDebugLocString(L); 6873 #endif /* NDEBUG */ 6874 6875 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 6876 << L->getHeader()->getParent()->getName() << "\" from " 6877 << DebugLocStr << "\n"); 6878 6879 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 6880 6881 LLVM_DEBUG( 6882 dbgs() << "LV: Loop hints:" 6883 << " force=" 6884 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 6885 ? "disabled" 6886 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 6887 ? "enabled" 6888 : "?")) 6889 << " width=" << Hints.getWidth() 6890 << " unroll=" << Hints.getInterleave() << "\n"); 6891 6892 // Function containing loop 6893 Function *F = L->getHeader()->getParent(); 6894 6895 // Looking at the diagnostic output is the only way to determine if a loop 6896 // was vectorized (other than looking at the IR or machine code), so it 6897 // is important to generate an optimization remark for each loop. Most of 6898 // these messages are generated as OptimizationRemarkAnalysis. Remarks 6899 // generated as OptimizationRemark and OptimizationRemarkMissed are 6900 // less verbose reporting vectorized loops and unvectorized loops that may 6901 // benefit from vectorization, respectively. 6902 6903 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 6904 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 6905 return false; 6906 } 6907 6908 PredicatedScalarEvolution PSE(*SE, *L); 6909 6910 // Check if it is legal to vectorize the loop. 6911 LoopVectorizationRequirements Requirements(*ORE); 6912 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE, 6913 &Requirements, &Hints, DB, AC); 6914 if (!LVL.canVectorize(EnableVPlanNativePath)) { 6915 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 6916 emitMissedWarning(F, L, Hints, ORE); 6917 return false; 6918 } 6919 6920 // Check the function attributes to find out if this function should be 6921 // optimized for size. 6922 bool OptForSize = 6923 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 6924 6925 // Entrance to the VPlan-native vectorization path. Outer loops are processed 6926 // here. They may require CFG and instruction level transformations before 6927 // even evaluating whether vectorization is profitable. Since we cannot modify 6928 // the incoming IR, we need to build VPlan upfront in the vectorization 6929 // pipeline. 6930 if (!L->empty()) 6931 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 6932 ORE, Hints); 6933 6934 assert(L->empty() && "Inner loop expected."); 6935 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 6936 // count by optimizing for size, to minimize overheads. 6937 // Prefer constant trip counts over profile data, over upper bound estimate. 6938 unsigned ExpectedTC = 0; 6939 bool HasExpectedTC = false; 6940 if (const SCEVConstant *ConstExits = 6941 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) { 6942 const APInt &ExitsCount = ConstExits->getAPInt(); 6943 // We are interested in small values for ExpectedTC. Skip over those that 6944 // can't fit an unsigned. 6945 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) { 6946 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1; 6947 HasExpectedTC = true; 6948 } 6949 } 6950 // ExpectedTC may be large because it's bound by a variable. Check 6951 // profiling information to validate we should vectorize. 6952 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 6953 auto EstimatedTC = getLoopEstimatedTripCount(L); 6954 if (EstimatedTC) { 6955 ExpectedTC = *EstimatedTC; 6956 HasExpectedTC = true; 6957 } 6958 } 6959 if (!HasExpectedTC) { 6960 ExpectedTC = SE->getSmallConstantMaxTripCount(L); 6961 HasExpectedTC = (ExpectedTC > 0); 6962 } 6963 6964 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 6965 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 6966 << "This loop is worth vectorizing only if no scalar " 6967 << "iteration overheads are incurred."); 6968 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 6969 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 6970 else { 6971 LLVM_DEBUG(dbgs() << "\n"); 6972 // Loops with a very small trip count are considered for vectorization 6973 // under OptForSize, thereby making sure the cost of their loop body is 6974 // dominant, free of runtime guards and scalar iteration overheads. 6975 OptForSize = true; 6976 } 6977 } 6978 6979 // Check the function attributes to see if implicit floats are allowed. 6980 // FIXME: This check doesn't seem possibly correct -- what if the loop is 6981 // an integer loop and the vector instructions selected are purely integer 6982 // vector instructions? 6983 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 6984 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 6985 "attribute is used.\n"); 6986 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), 6987 "NoImplicitFloat", L) 6988 << "loop not vectorized due to NoImplicitFloat attribute"); 6989 emitMissedWarning(F, L, Hints, ORE); 6990 return false; 6991 } 6992 6993 // Check if the target supports potentially unsafe FP vectorization. 6994 // FIXME: Add a check for the type of safety issue (denormal, signaling) 6995 // for the target we're vectorizing for, to make sure none of the 6996 // additional fp-math flags can help. 6997 if (Hints.isPotentiallyUnsafe() && 6998 TTI->isFPVectorizationPotentiallyUnsafe()) { 6999 LLVM_DEBUG( 7000 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7001 ORE->emit( 7002 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7003 << "loop not vectorized due to unsafe FP support."); 7004 emitMissedWarning(F, L, Hints, ORE); 7005 return false; 7006 } 7007 7008 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7009 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7010 7011 // If an override option has been passed in for interleaved accesses, use it. 7012 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7013 UseInterleaved = EnableInterleavedMemAccesses; 7014 7015 // Analyze interleaved memory accesses. 7016 if (UseInterleaved) { 7017 IAI.analyzeInterleaving(); 7018 } 7019 7020 // Use the cost model. 7021 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7022 &Hints, IAI); 7023 CM.collectValuesToIgnore(); 7024 7025 // Use the planner for vectorization. 7026 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 7027 7028 // Get user vectorization factor. 7029 unsigned UserVF = Hints.getWidth(); 7030 7031 // Plan how to best vectorize, return the best VF and its cost. 7032 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 7033 7034 // Select the interleave count. 7035 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7036 7037 // Get user interleave count. 7038 unsigned UserIC = Hints.getInterleave(); 7039 7040 // Identify the diagnostic messages that should be produced. 7041 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7042 bool VectorizeLoop = true, InterleaveLoop = true; 7043 if (Requirements.doesNotMeet(F, L, Hints)) { 7044 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7045 "requirements.\n"); 7046 emitMissedWarning(F, L, Hints, ORE); 7047 return false; 7048 } 7049 7050 if (VF.Width == 1) { 7051 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7052 VecDiagMsg = std::make_pair( 7053 "VectorizationNotBeneficial", 7054 "the cost-model indicates that vectorization is not beneficial"); 7055 VectorizeLoop = false; 7056 } 7057 7058 if (IC == 1 && UserIC <= 1) { 7059 // Tell the user interleaving is not beneficial. 7060 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7061 IntDiagMsg = std::make_pair( 7062 "InterleavingNotBeneficial", 7063 "the cost-model indicates that interleaving is not beneficial"); 7064 InterleaveLoop = false; 7065 if (UserIC == 1) { 7066 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7067 IntDiagMsg.second += 7068 " and is explicitly disabled or interleave count is set to 1"; 7069 } 7070 } else if (IC > 1 && UserIC == 1) { 7071 // Tell the user interleaving is beneficial, but it explicitly disabled. 7072 LLVM_DEBUG( 7073 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7074 IntDiagMsg = std::make_pair( 7075 "InterleavingBeneficialButDisabled", 7076 "the cost-model indicates that interleaving is beneficial " 7077 "but is explicitly disabled or interleave count is set to 1"); 7078 InterleaveLoop = false; 7079 } 7080 7081 // Override IC if user provided an interleave count. 7082 IC = UserIC > 0 ? UserIC : IC; 7083 7084 // Emit diagnostic messages, if any. 7085 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7086 if (!VectorizeLoop && !InterleaveLoop) { 7087 // Do not vectorize or interleaving the loop. 7088 ORE->emit([&]() { 7089 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7090 L->getStartLoc(), L->getHeader()) 7091 << VecDiagMsg.second; 7092 }); 7093 ORE->emit([&]() { 7094 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7095 L->getStartLoc(), L->getHeader()) 7096 << IntDiagMsg.second; 7097 }); 7098 return false; 7099 } else if (!VectorizeLoop && InterleaveLoop) { 7100 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7101 ORE->emit([&]() { 7102 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7103 L->getStartLoc(), L->getHeader()) 7104 << VecDiagMsg.second; 7105 }); 7106 } else if (VectorizeLoop && !InterleaveLoop) { 7107 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7108 << ") in " << DebugLocStr << '\n'); 7109 ORE->emit([&]() { 7110 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7111 L->getStartLoc(), L->getHeader()) 7112 << IntDiagMsg.second; 7113 }); 7114 } else if (VectorizeLoop && InterleaveLoop) { 7115 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7116 << ") in " << DebugLocStr << '\n'); 7117 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7118 } 7119 7120 LVP.setBestPlan(VF.Width, IC); 7121 7122 using namespace ore; 7123 7124 if (!VectorizeLoop) { 7125 assert(IC > 1 && "interleave count should not be 1 or 0"); 7126 // If we decided that it is not legal to vectorize the loop, then 7127 // interleave it. 7128 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7129 &CM); 7130 LVP.executePlan(Unroller, DT); 7131 7132 ORE->emit([&]() { 7133 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7134 L->getHeader()) 7135 << "interleaved loop (interleaved count: " 7136 << NV("InterleaveCount", IC) << ")"; 7137 }); 7138 } else { 7139 // If we decided that it is *legal* to vectorize the loop, then do it. 7140 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7141 &LVL, &CM); 7142 LVP.executePlan(LB, DT); 7143 ++LoopsVectorized; 7144 7145 // Add metadata to disable runtime unrolling a scalar loop when there are 7146 // no runtime checks about strides and memory. A scalar loop that is 7147 // rarely used is not worth unrolling. 7148 if (!LB.areSafetyChecksAdded()) 7149 AddRuntimeUnrollDisableMetaData(L); 7150 7151 // Report the vectorization decision. 7152 ORE->emit([&]() { 7153 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7154 L->getHeader()) 7155 << "vectorized loop (vectorization width: " 7156 << NV("VectorizationFactor", VF.Width) 7157 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 7158 }); 7159 } 7160 7161 // Mark the loop as already vectorized to avoid vectorizing again. 7162 Hints.setAlreadyVectorized(); 7163 7164 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent())); 7165 return true; 7166 } 7167 7168 bool LoopVectorizePass::runImpl( 7169 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7170 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7171 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7172 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7173 OptimizationRemarkEmitter &ORE_) { 7174 SE = &SE_; 7175 LI = &LI_; 7176 TTI = &TTI_; 7177 DT = &DT_; 7178 BFI = &BFI_; 7179 TLI = TLI_; 7180 AA = &AA_; 7181 AC = &AC_; 7182 GetLAA = &GetLAA_; 7183 DB = &DB_; 7184 ORE = &ORE_; 7185 7186 // Don't attempt if 7187 // 1. the target claims to have no vector registers, and 7188 // 2. interleaving won't help ILP. 7189 // 7190 // The second condition is necessary because, even if the target has no 7191 // vector registers, loop vectorization may still enable scalar 7192 // interleaving. 7193 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7194 return false; 7195 7196 bool Changed = false; 7197 7198 // The vectorizer requires loops to be in simplified form. 7199 // Since simplification may add new inner loops, it has to run before the 7200 // legality and profitability checks. This means running the loop vectorizer 7201 // will simplify all loops, regardless of whether anything end up being 7202 // vectorized. 7203 for (auto &L : *LI) 7204 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7205 7206 // Build up a worklist of inner-loops to vectorize. This is necessary as 7207 // the act of vectorizing or partially unrolling a loop creates new loops 7208 // and can invalidate iterators across the loops. 7209 SmallVector<Loop *, 8> Worklist; 7210 7211 for (Loop *L : *LI) 7212 collectSupportedLoops(*L, LI, ORE, Worklist); 7213 7214 LoopsAnalyzed += Worklist.size(); 7215 7216 // Now walk the identified inner loops. 7217 while (!Worklist.empty()) { 7218 Loop *L = Worklist.pop_back_val(); 7219 7220 // For the inner loops we actually process, form LCSSA to simplify the 7221 // transform. 7222 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7223 7224 Changed |= processLoop(L); 7225 } 7226 7227 // Process each loop nest in the function. 7228 return Changed; 7229 } 7230 7231 PreservedAnalyses LoopVectorizePass::run(Function &F, 7232 FunctionAnalysisManager &AM) { 7233 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7234 auto &LI = AM.getResult<LoopAnalysis>(F); 7235 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7236 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7237 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7238 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7239 auto &AA = AM.getResult<AAManager>(F); 7240 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7241 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7242 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7243 7244 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7245 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7246 [&](Loop &L) -> const LoopAccessInfo & { 7247 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 7248 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7249 }; 7250 bool Changed = 7251 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7252 if (!Changed) 7253 return PreservedAnalyses::all(); 7254 PreservedAnalyses PA; 7255 7256 // We currently do not preserve loopinfo/dominator analyses with outer loop 7257 // vectorization. Until this is addressed, mark these analyses as preserved 7258 // only for non-VPlan-native path. 7259 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 7260 if (!EnableVPlanNativePath) { 7261 PA.preserve<LoopAnalysis>(); 7262 PA.preserve<DominatorTreeAnalysis>(); 7263 } 7264 PA.preserve<BasicAA>(); 7265 PA.preserve<GlobalsAA>(); 7266 return PA; 7267 } 7268