1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask); 548 549 /// Set the debug location in the builder \p Ptr using the debug location in 550 /// \p V. If \p Ptr is None then it uses the class member's Builder. 551 void setDebugLocFromInst(const Value *V, 552 Optional<IRBuilder<> *> CustomBuilder = None); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Create the exit value of first order recurrences in the middle block and 593 /// update their users. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Create code for the loop exit value of the reduction. 597 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 598 599 /// Clear NSW/NUW flags from reduction instructions if necessary. 600 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 601 VPTransformState &State); 602 603 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 604 /// means we need to add the appropriate incoming value from the middle 605 /// block as exiting edges from the scalar epilogue loop (if present) are 606 /// already in place, and we exit the vector loop exclusively to the middle 607 /// block. 608 void fixLCSSAPHIs(VPTransformState &State); 609 610 /// Iteratively sink the scalarized operands of a predicated instruction into 611 /// the block that was created for it. 612 void sinkScalarOperands(Instruction *PredInst); 613 614 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 615 /// represented as. 616 void truncateToMinimalBitwidths(VPTransformState &State); 617 618 /// This function adds 619 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 620 /// to each vector element of Val. The sequence starts at StartIndex. 621 /// \p Opcode is relevant for FP induction variable. 622 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 623 Instruction::BinaryOps Opcode = 624 Instruction::BinaryOpsEnd); 625 626 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 627 /// variable on which to base the steps, \p Step is the size of the step, and 628 /// \p EntryVal is the value from the original loop that maps to the steps. 629 /// Note that \p EntryVal doesn't have to be an induction variable - it 630 /// can also be a truncate instruction. 631 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 632 const InductionDescriptor &ID, VPValue *Def, 633 VPValue *CastDef, VPTransformState &State); 634 635 /// Create a vector induction phi node based on an existing scalar one. \p 636 /// EntryVal is the value from the original loop that maps to the vector phi 637 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 638 /// truncate instruction, instead of widening the original IV, we widen a 639 /// version of the IV truncated to \p EntryVal's type. 640 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 641 Value *Step, Value *Start, 642 Instruction *EntryVal, VPValue *Def, 643 VPValue *CastDef, 644 VPTransformState &State); 645 646 /// Returns true if an instruction \p I should be scalarized instead of 647 /// vectorized for the chosen vectorization factor. 648 bool shouldScalarizeInstruction(Instruction *I) const; 649 650 /// Returns true if we should generate a scalar version of \p IV. 651 bool needsScalarInduction(Instruction *IV) const; 652 653 /// If there is a cast involved in the induction variable \p ID, which should 654 /// be ignored in the vectorized loop body, this function records the 655 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 656 /// cast. We had already proved that the casted Phi is equal to the uncasted 657 /// Phi in the vectorized loop (under a runtime guard), and therefore 658 /// there is no need to vectorize the cast - the same value can be used in the 659 /// vector loop for both the Phi and the cast. 660 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 661 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 662 /// 663 /// \p EntryVal is the value from the original loop that maps to the vector 664 /// phi node and is used to distinguish what is the IV currently being 665 /// processed - original one (if \p EntryVal is a phi corresponding to the 666 /// original IV) or the "newly-created" one based on the proof mentioned above 667 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 668 /// latter case \p EntryVal is a TruncInst and we must not record anything for 669 /// that IV, but it's error-prone to expect callers of this routine to care 670 /// about that, hence this explicit parameter. 671 void recordVectorLoopValueForInductionCast( 672 const InductionDescriptor &ID, const Instruction *EntryVal, 673 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 674 unsigned Part, unsigned Lane = UINT_MAX); 675 676 /// Generate a shuffle sequence that will reverse the vector Vec. 677 virtual Value *reverseVector(Value *Vec); 678 679 /// Returns (and creates if needed) the original loop trip count. 680 Value *getOrCreateTripCount(Loop *NewLoop); 681 682 /// Returns (and creates if needed) the trip count of the widened loop. 683 Value *getOrCreateVectorTripCount(Loop *NewLoop); 684 685 /// Returns a bitcasted value to the requested vector type. 686 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 687 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 688 const DataLayout &DL); 689 690 /// Emit a bypass check to see if the vector trip count is zero, including if 691 /// it overflows. 692 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 693 694 /// Emit a bypass check to see if all of the SCEV assumptions we've 695 /// had to make are correct. Returns the block containing the checks or 696 /// nullptr if no checks have been added. 697 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 698 699 /// Emit bypass checks to check any memory assumptions we may have made. 700 /// Returns the block containing the checks or nullptr if no checks have been 701 /// added. 702 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The unique ExitBlock of the scalar loop if one exists. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 870 /// Structure to hold information about generated runtime checks, responsible 871 /// for cleaning the checks, if vectorization turns out unprofitable. 872 GeneratedRTChecks &RTChecks; 873 }; 874 875 class InnerLoopUnroller : public InnerLoopVectorizer { 876 public: 877 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 878 LoopInfo *LI, DominatorTree *DT, 879 const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 882 LoopVectorizationLegality *LVL, 883 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 884 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 885 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 887 BFI, PSI, Check) {} 888 889 private: 890 Value *getBroadcastInstrs(Value *V) override; 891 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 892 Instruction::BinaryOps Opcode = 893 Instruction::BinaryOpsEnd) override; 894 Value *reverseVector(Value *Vec) override; 895 }; 896 897 /// Encapsulate information regarding vectorization of a loop and its epilogue. 898 /// This information is meant to be updated and used across two stages of 899 /// epilogue vectorization. 900 struct EpilogueLoopVectorizationInfo { 901 ElementCount MainLoopVF = ElementCount::getFixed(0); 902 unsigned MainLoopUF = 0; 903 ElementCount EpilogueVF = ElementCount::getFixed(0); 904 unsigned EpilogueUF = 0; 905 BasicBlock *MainLoopIterationCountCheck = nullptr; 906 BasicBlock *EpilogueIterationCountCheck = nullptr; 907 BasicBlock *SCEVSafetyCheck = nullptr; 908 BasicBlock *MemSafetyCheck = nullptr; 909 Value *TripCount = nullptr; 910 Value *VectorTripCount = nullptr; 911 912 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 913 ElementCount EVF, unsigned EUF) 914 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 915 assert(EUF == 1 && 916 "A high UF for the epilogue loop is likely not beneficial."); 917 } 918 }; 919 920 /// An extension of the inner loop vectorizer that creates a skeleton for a 921 /// vectorized loop that has its epilogue (residual) also vectorized. 922 /// The idea is to run the vplan on a given loop twice, firstly to setup the 923 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 924 /// from the first step and vectorize the epilogue. This is achieved by 925 /// deriving two concrete strategy classes from this base class and invoking 926 /// them in succession from the loop vectorizer planner. 927 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 928 public: 929 InnerLoopAndEpilogueVectorizer( 930 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 931 DominatorTree *DT, const TargetLibraryInfo *TLI, 932 const TargetTransformInfo *TTI, AssumptionCache *AC, 933 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 934 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 935 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 936 GeneratedRTChecks &Checks) 937 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 938 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 939 Checks), 940 EPI(EPI) {} 941 942 // Override this function to handle the more complex control flow around the 943 // three loops. 944 BasicBlock *createVectorizedLoopSkeleton() final override { 945 return createEpilogueVectorizedLoopSkeleton(); 946 } 947 948 /// The interface for creating a vectorized skeleton using one of two 949 /// different strategies, each corresponding to one execution of the vplan 950 /// as described above. 951 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 952 953 /// Holds and updates state information required to vectorize the main loop 954 /// and its epilogue in two separate passes. This setup helps us avoid 955 /// regenerating and recomputing runtime safety checks. It also helps us to 956 /// shorten the iteration-count-check path length for the cases where the 957 /// iteration count of the loop is so small that the main vector loop is 958 /// completely skipped. 959 EpilogueLoopVectorizationInfo &EPI; 960 }; 961 962 /// A specialized derived class of inner loop vectorizer that performs 963 /// vectorization of *main* loops in the process of vectorizing loops and their 964 /// epilogues. 965 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 966 public: 967 EpilogueVectorizerMainLoop( 968 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 DominatorTree *DT, const TargetLibraryInfo *TLI, 970 const TargetTransformInfo *TTI, AssumptionCache *AC, 971 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 972 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 973 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 974 GeneratedRTChecks &Check) 975 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 976 EPI, LVL, CM, BFI, PSI, Check) {} 977 /// Implements the interface for creating a vectorized skeleton using the 978 /// *main loop* strategy (ie the first pass of vplan execution). 979 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 980 981 protected: 982 /// Emits an iteration count bypass check once for the main loop (when \p 983 /// ForEpilogue is false) and once for the epilogue loop (when \p 984 /// ForEpilogue is true). 985 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 986 bool ForEpilogue); 987 void printDebugTracesAtStart() override; 988 void printDebugTracesAtEnd() override; 989 }; 990 991 // A specialized derived class of inner loop vectorizer that performs 992 // vectorization of *epilogue* loops in the process of vectorizing loops and 993 // their epilogues. 994 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 995 public: 996 EpilogueVectorizerEpilogueLoop( 997 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 998 DominatorTree *DT, const TargetLibraryInfo *TLI, 999 const TargetTransformInfo *TTI, AssumptionCache *AC, 1000 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1001 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1002 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1003 GeneratedRTChecks &Checks) 1004 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1005 EPI, LVL, CM, BFI, PSI, Checks) {} 1006 /// Implements the interface for creating a vectorized skeleton using the 1007 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1008 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1009 1010 protected: 1011 /// Emits an iteration count bypass check after the main vector loop has 1012 /// finished to see if there are any iterations left to execute by either 1013 /// the vector epilogue or the scalar epilogue. 1014 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1015 BasicBlock *Bypass, 1016 BasicBlock *Insert); 1017 void printDebugTracesAtStart() override; 1018 void printDebugTracesAtEnd() override; 1019 }; 1020 } // end namespace llvm 1021 1022 /// Look for a meaningful debug location on the instruction or it's 1023 /// operands. 1024 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1025 if (!I) 1026 return I; 1027 1028 DebugLoc Empty; 1029 if (I->getDebugLoc() != Empty) 1030 return I; 1031 1032 for (Use &Op : I->operands()) { 1033 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1034 if (OpInst->getDebugLoc() != Empty) 1035 return OpInst; 1036 } 1037 1038 return I; 1039 } 1040 1041 void InnerLoopVectorizer::setDebugLocFromInst( 1042 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1043 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1044 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1045 const DILocation *DIL = Inst->getDebugLoc(); 1046 1047 // When a FSDiscriminator is enabled, we don't need to add the multiply 1048 // factors to the discriminators. 1049 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1050 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1051 // FIXME: For scalable vectors, assume vscale=1. 1052 auto NewDIL = 1053 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1054 if (NewDIL) 1055 B->SetCurrentDebugLocation(NewDIL.getValue()); 1056 else 1057 LLVM_DEBUG(dbgs() 1058 << "Failed to create new discriminator: " 1059 << DIL->getFilename() << " Line: " << DIL->getLine()); 1060 } else 1061 B->SetCurrentDebugLocation(DIL); 1062 } else 1063 B->SetCurrentDebugLocation(DebugLoc()); 1064 } 1065 1066 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1067 /// is passed, the message relates to that particular instruction. 1068 #ifndef NDEBUG 1069 static void debugVectorizationMessage(const StringRef Prefix, 1070 const StringRef DebugMsg, 1071 Instruction *I) { 1072 dbgs() << "LV: " << Prefix << DebugMsg; 1073 if (I != nullptr) 1074 dbgs() << " " << *I; 1075 else 1076 dbgs() << '.'; 1077 dbgs() << '\n'; 1078 } 1079 #endif 1080 1081 /// Create an analysis remark that explains why vectorization failed 1082 /// 1083 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1084 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1085 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1086 /// the location of the remark. \return the remark object that can be 1087 /// streamed to. 1088 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1089 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1090 Value *CodeRegion = TheLoop->getHeader(); 1091 DebugLoc DL = TheLoop->getStartLoc(); 1092 1093 if (I) { 1094 CodeRegion = I->getParent(); 1095 // If there is no debug location attached to the instruction, revert back to 1096 // using the loop's. 1097 if (I->getDebugLoc()) 1098 DL = I->getDebugLoc(); 1099 } 1100 1101 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1102 } 1103 1104 /// Return a value for Step multiplied by VF. 1105 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1106 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1107 Constant *StepVal = ConstantInt::get( 1108 Step->getType(), 1109 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1110 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1111 } 1112 1113 namespace llvm { 1114 1115 /// Return the runtime value for VF. 1116 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1117 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1118 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1119 } 1120 1121 void reportVectorizationFailure(const StringRef DebugMsg, 1122 const StringRef OREMsg, const StringRef ORETag, 1123 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1124 Instruction *I) { 1125 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1126 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1127 ORE->emit( 1128 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1129 << "loop not vectorized: " << OREMsg); 1130 } 1131 1132 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1133 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1134 Instruction *I) { 1135 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1136 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1137 ORE->emit( 1138 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1139 << Msg); 1140 } 1141 1142 } // end namespace llvm 1143 1144 #ifndef NDEBUG 1145 /// \return string containing a file name and a line # for the given loop. 1146 static std::string getDebugLocString(const Loop *L) { 1147 std::string Result; 1148 if (L) { 1149 raw_string_ostream OS(Result); 1150 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1151 LoopDbgLoc.print(OS); 1152 else 1153 // Just print the module name. 1154 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1155 OS.flush(); 1156 } 1157 return Result; 1158 } 1159 #endif 1160 1161 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1162 const Instruction *Orig) { 1163 // If the loop was versioned with memchecks, add the corresponding no-alias 1164 // metadata. 1165 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1166 LVer->annotateInstWithNoAlias(To, Orig); 1167 } 1168 1169 void InnerLoopVectorizer::addMetadata(Instruction *To, 1170 Instruction *From) { 1171 propagateMetadata(To, From); 1172 addNewMetadata(To, From); 1173 } 1174 1175 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1176 Instruction *From) { 1177 for (Value *V : To) { 1178 if (Instruction *I = dyn_cast<Instruction>(V)) 1179 addMetadata(I, From); 1180 } 1181 } 1182 1183 namespace llvm { 1184 1185 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1186 // lowered. 1187 enum ScalarEpilogueLowering { 1188 1189 // The default: allowing scalar epilogues. 1190 CM_ScalarEpilogueAllowed, 1191 1192 // Vectorization with OptForSize: don't allow epilogues. 1193 CM_ScalarEpilogueNotAllowedOptSize, 1194 1195 // A special case of vectorisation with OptForSize: loops with a very small 1196 // trip count are considered for vectorization under OptForSize, thereby 1197 // making sure the cost of their loop body is dominant, free of runtime 1198 // guards and scalar iteration overheads. 1199 CM_ScalarEpilogueNotAllowedLowTripLoop, 1200 1201 // Loop hint predicate indicating an epilogue is undesired. 1202 CM_ScalarEpilogueNotNeededUsePredicate, 1203 1204 // Directive indicating we must either tail fold or not vectorize 1205 CM_ScalarEpilogueNotAllowedUsePredicate 1206 }; 1207 1208 /// ElementCountComparator creates a total ordering for ElementCount 1209 /// for the purposes of using it in a set structure. 1210 struct ElementCountComparator { 1211 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1212 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1213 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1214 } 1215 }; 1216 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1217 1218 /// LoopVectorizationCostModel - estimates the expected speedups due to 1219 /// vectorization. 1220 /// In many cases vectorization is not profitable. This can happen because of 1221 /// a number of reasons. In this class we mainly attempt to predict the 1222 /// expected speedup/slowdowns due to the supported instruction set. We use the 1223 /// TargetTransformInfo to query the different backends for the cost of 1224 /// different operations. 1225 class LoopVectorizationCostModel { 1226 public: 1227 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1228 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1229 LoopVectorizationLegality *Legal, 1230 const TargetTransformInfo &TTI, 1231 const TargetLibraryInfo *TLI, DemandedBits *DB, 1232 AssumptionCache *AC, 1233 OptimizationRemarkEmitter *ORE, const Function *F, 1234 const LoopVectorizeHints *Hints, 1235 InterleavedAccessInfo &IAI) 1236 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1237 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1238 Hints(Hints), InterleaveInfo(IAI) {} 1239 1240 /// \return An upper bound for the vectorization factors (both fixed and 1241 /// scalable). If the factors are 0, vectorization and interleaving should be 1242 /// avoided up front. 1243 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1244 1245 /// \return True if runtime checks are required for vectorization, and false 1246 /// otherwise. 1247 bool runtimeChecksRequired(); 1248 1249 /// \return The most profitable vectorization factor and the cost of that VF. 1250 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1251 /// then this vectorization factor will be selected if vectorization is 1252 /// possible. 1253 VectorizationFactor 1254 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1255 1256 VectorizationFactor 1257 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1258 const LoopVectorizationPlanner &LVP); 1259 1260 /// Setup cost-based decisions for user vectorization factor. 1261 /// \return true if the UserVF is a feasible VF to be chosen. 1262 bool selectUserVectorizationFactor(ElementCount UserVF) { 1263 collectUniformsAndScalars(UserVF); 1264 collectInstsToScalarize(UserVF); 1265 return expectedCost(UserVF).first.isValid(); 1266 } 1267 1268 /// \return The size (in bits) of the smallest and widest types in the code 1269 /// that needs to be vectorized. We ignore values that remain scalar such as 1270 /// 64 bit loop indices. 1271 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1272 1273 /// \return The desired interleave count. 1274 /// If interleave count has been specified by metadata it will be returned. 1275 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1276 /// are the selected vectorization factor and the cost of the selected VF. 1277 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1278 1279 /// Memory access instruction may be vectorized in more than one way. 1280 /// Form of instruction after vectorization depends on cost. 1281 /// This function takes cost-based decisions for Load/Store instructions 1282 /// and collects them in a map. This decisions map is used for building 1283 /// the lists of loop-uniform and loop-scalar instructions. 1284 /// The calculated cost is saved with widening decision in order to 1285 /// avoid redundant calculations. 1286 void setCostBasedWideningDecision(ElementCount VF); 1287 1288 /// A struct that represents some properties of the register usage 1289 /// of a loop. 1290 struct RegisterUsage { 1291 /// Holds the number of loop invariant values that are used in the loop. 1292 /// The key is ClassID of target-provided register class. 1293 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1294 /// Holds the maximum number of concurrent live intervals in the loop. 1295 /// The key is ClassID of target-provided register class. 1296 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1297 }; 1298 1299 /// \return Returns information about the register usages of the loop for the 1300 /// given vectorization factors. 1301 SmallVector<RegisterUsage, 8> 1302 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1303 1304 /// Collect values we want to ignore in the cost model. 1305 void collectValuesToIgnore(); 1306 1307 /// Collect all element types in the loop for which widening is needed. 1308 void collectElementTypesForWidening(); 1309 1310 /// Split reductions into those that happen in the loop, and those that happen 1311 /// outside. In loop reductions are collected into InLoopReductionChains. 1312 void collectInLoopReductions(); 1313 1314 /// Returns true if we should use strict in-order reductions for the given 1315 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1316 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1317 /// of FP operations. 1318 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1319 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1320 } 1321 1322 /// \returns The smallest bitwidth each instruction can be represented with. 1323 /// The vector equivalents of these instructions should be truncated to this 1324 /// type. 1325 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1326 return MinBWs; 1327 } 1328 1329 /// \returns True if it is more profitable to scalarize instruction \p I for 1330 /// vectorization factor \p VF. 1331 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1332 assert(VF.isVector() && 1333 "Profitable to scalarize relevant only for VF > 1."); 1334 1335 // Cost model is not run in the VPlan-native path - return conservative 1336 // result until this changes. 1337 if (EnableVPlanNativePath) 1338 return false; 1339 1340 auto Scalars = InstsToScalarize.find(VF); 1341 assert(Scalars != InstsToScalarize.end() && 1342 "VF not yet analyzed for scalarization profitability"); 1343 return Scalars->second.find(I) != Scalars->second.end(); 1344 } 1345 1346 /// Returns true if \p I is known to be uniform after vectorization. 1347 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1348 if (VF.isScalar()) 1349 return true; 1350 1351 // Cost model is not run in the VPlan-native path - return conservative 1352 // result until this changes. 1353 if (EnableVPlanNativePath) 1354 return false; 1355 1356 auto UniformsPerVF = Uniforms.find(VF); 1357 assert(UniformsPerVF != Uniforms.end() && 1358 "VF not yet analyzed for uniformity"); 1359 return UniformsPerVF->second.count(I); 1360 } 1361 1362 /// Returns true if \p I is known to be scalar after vectorization. 1363 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1364 if (VF.isScalar()) 1365 return true; 1366 1367 // Cost model is not run in the VPlan-native path - return conservative 1368 // result until this changes. 1369 if (EnableVPlanNativePath) 1370 return false; 1371 1372 auto ScalarsPerVF = Scalars.find(VF); 1373 assert(ScalarsPerVF != Scalars.end() && 1374 "Scalar values are not calculated for VF"); 1375 return ScalarsPerVF->second.count(I); 1376 } 1377 1378 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1379 /// for vectorization factor \p VF. 1380 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1381 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1382 !isProfitableToScalarize(I, VF) && 1383 !isScalarAfterVectorization(I, VF); 1384 } 1385 1386 /// Decision that was taken during cost calculation for memory instruction. 1387 enum InstWidening { 1388 CM_Unknown, 1389 CM_Widen, // For consecutive accesses with stride +1. 1390 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1391 CM_Interleave, 1392 CM_GatherScatter, 1393 CM_Scalarize 1394 }; 1395 1396 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1397 /// instruction \p I and vector width \p VF. 1398 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1399 InstructionCost Cost) { 1400 assert(VF.isVector() && "Expected VF >=2"); 1401 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1402 } 1403 1404 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1405 /// interleaving group \p Grp and vector width \p VF. 1406 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1407 ElementCount VF, InstWidening W, 1408 InstructionCost Cost) { 1409 assert(VF.isVector() && "Expected VF >=2"); 1410 /// Broadcast this decicion to all instructions inside the group. 1411 /// But the cost will be assigned to one instruction only. 1412 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1413 if (auto *I = Grp->getMember(i)) { 1414 if (Grp->getInsertPos() == I) 1415 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1416 else 1417 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1418 } 1419 } 1420 } 1421 1422 /// Return the cost model decision for the given instruction \p I and vector 1423 /// width \p VF. Return CM_Unknown if this instruction did not pass 1424 /// through the cost modeling. 1425 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1426 assert(VF.isVector() && "Expected VF to be a vector VF"); 1427 // Cost model is not run in the VPlan-native path - return conservative 1428 // result until this changes. 1429 if (EnableVPlanNativePath) 1430 return CM_GatherScatter; 1431 1432 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1433 auto Itr = WideningDecisions.find(InstOnVF); 1434 if (Itr == WideningDecisions.end()) 1435 return CM_Unknown; 1436 return Itr->second.first; 1437 } 1438 1439 /// Return the vectorization cost for the given instruction \p I and vector 1440 /// width \p VF. 1441 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1442 assert(VF.isVector() && "Expected VF >=2"); 1443 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1444 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1445 "The cost is not calculated"); 1446 return WideningDecisions[InstOnVF].second; 1447 } 1448 1449 /// Return True if instruction \p I is an optimizable truncate whose operand 1450 /// is an induction variable. Such a truncate will be removed by adding a new 1451 /// induction variable with the destination type. 1452 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1453 // If the instruction is not a truncate, return false. 1454 auto *Trunc = dyn_cast<TruncInst>(I); 1455 if (!Trunc) 1456 return false; 1457 1458 // Get the source and destination types of the truncate. 1459 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1460 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1461 1462 // If the truncate is free for the given types, return false. Replacing a 1463 // free truncate with an induction variable would add an induction variable 1464 // update instruction to each iteration of the loop. We exclude from this 1465 // check the primary induction variable since it will need an update 1466 // instruction regardless. 1467 Value *Op = Trunc->getOperand(0); 1468 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1469 return false; 1470 1471 // If the truncated value is not an induction variable, return false. 1472 return Legal->isInductionPhi(Op); 1473 } 1474 1475 /// Collects the instructions to scalarize for each predicated instruction in 1476 /// the loop. 1477 void collectInstsToScalarize(ElementCount VF); 1478 1479 /// Collect Uniform and Scalar values for the given \p VF. 1480 /// The sets depend on CM decision for Load/Store instructions 1481 /// that may be vectorized as interleave, gather-scatter or scalarized. 1482 void collectUniformsAndScalars(ElementCount VF) { 1483 // Do the analysis once. 1484 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1485 return; 1486 setCostBasedWideningDecision(VF); 1487 collectLoopUniforms(VF); 1488 collectLoopScalars(VF); 1489 } 1490 1491 /// Returns true if the target machine supports masked store operation 1492 /// for the given \p DataType and kind of access to \p Ptr. 1493 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1494 return Legal->isConsecutivePtr(DataType, Ptr) && 1495 TTI.isLegalMaskedStore(DataType, Alignment); 1496 } 1497 1498 /// Returns true if the target machine supports masked load operation 1499 /// for the given \p DataType and kind of access to \p Ptr. 1500 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1501 return Legal->isConsecutivePtr(DataType, Ptr) && 1502 TTI.isLegalMaskedLoad(DataType, Alignment); 1503 } 1504 1505 /// Returns true if the target machine can represent \p V as a masked gather 1506 /// or scatter operation. 1507 bool isLegalGatherOrScatter(Value *V) { 1508 bool LI = isa<LoadInst>(V); 1509 bool SI = isa<StoreInst>(V); 1510 if (!LI && !SI) 1511 return false; 1512 auto *Ty = getLoadStoreType(V); 1513 Align Align = getLoadStoreAlignment(V); 1514 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1515 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1516 } 1517 1518 /// Returns true if the target machine supports all of the reduction 1519 /// variables found for the given VF. 1520 bool canVectorizeReductions(ElementCount VF) const { 1521 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1522 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1523 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1524 })); 1525 } 1526 1527 /// Returns true if \p I is an instruction that will be scalarized with 1528 /// predication. Such instructions include conditional stores and 1529 /// instructions that may divide by zero. 1530 /// If a non-zero VF has been calculated, we check if I will be scalarized 1531 /// predication for that VF. 1532 bool isScalarWithPredication(Instruction *I) const; 1533 1534 // Returns true if \p I is an instruction that will be predicated either 1535 // through scalar predication or masked load/store or masked gather/scatter. 1536 // Superset of instructions that return true for isScalarWithPredication. 1537 bool isPredicatedInst(Instruction *I) { 1538 if (!blockNeedsPredication(I->getParent())) 1539 return false; 1540 // Loads and stores that need some form of masked operation are predicated 1541 // instructions. 1542 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1543 return Legal->isMaskRequired(I); 1544 return isScalarWithPredication(I); 1545 } 1546 1547 /// Returns true if \p I is a memory instruction with consecutive memory 1548 /// access that can be widened. 1549 bool 1550 memoryInstructionCanBeWidened(Instruction *I, 1551 ElementCount VF = ElementCount::getFixed(1)); 1552 1553 /// Returns true if \p I is a memory instruction in an interleaved-group 1554 /// of memory accesses that can be vectorized with wide vector loads/stores 1555 /// and shuffles. 1556 bool 1557 interleavedAccessCanBeWidened(Instruction *I, 1558 ElementCount VF = ElementCount::getFixed(1)); 1559 1560 /// Check if \p Instr belongs to any interleaved access group. 1561 bool isAccessInterleaved(Instruction *Instr) { 1562 return InterleaveInfo.isInterleaved(Instr); 1563 } 1564 1565 /// Get the interleaved access group that \p Instr belongs to. 1566 const InterleaveGroup<Instruction> * 1567 getInterleavedAccessGroup(Instruction *Instr) { 1568 return InterleaveInfo.getInterleaveGroup(Instr); 1569 } 1570 1571 /// Returns true if we're required to use a scalar epilogue for at least 1572 /// the final iteration of the original loop. 1573 bool requiresScalarEpilogue(ElementCount VF) const { 1574 if (!isScalarEpilogueAllowed()) 1575 return false; 1576 // If we might exit from anywhere but the latch, must run the exiting 1577 // iteration in scalar form. 1578 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1579 return true; 1580 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1581 } 1582 1583 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1584 /// loop hint annotation. 1585 bool isScalarEpilogueAllowed() const { 1586 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1587 } 1588 1589 /// Returns true if all loop blocks should be masked to fold tail loop. 1590 bool foldTailByMasking() const { return FoldTailByMasking; } 1591 1592 bool blockNeedsPredication(BasicBlock *BB) const { 1593 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1594 } 1595 1596 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1597 /// nodes to the chain of instructions representing the reductions. Uses a 1598 /// MapVector to ensure deterministic iteration order. 1599 using ReductionChainMap = 1600 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1601 1602 /// Return the chain of instructions representing an inloop reduction. 1603 const ReductionChainMap &getInLoopReductionChains() const { 1604 return InLoopReductionChains; 1605 } 1606 1607 /// Returns true if the Phi is part of an inloop reduction. 1608 bool isInLoopReduction(PHINode *Phi) const { 1609 return InLoopReductionChains.count(Phi); 1610 } 1611 1612 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1613 /// with factor VF. Return the cost of the instruction, including 1614 /// scalarization overhead if it's needed. 1615 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1616 1617 /// Estimate cost of a call instruction CI if it were vectorized with factor 1618 /// VF. Return the cost of the instruction, including scalarization overhead 1619 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1620 /// scalarized - 1621 /// i.e. either vector version isn't available, or is too expensive. 1622 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1623 bool &NeedToScalarize) const; 1624 1625 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1626 /// that of B. 1627 bool isMoreProfitable(const VectorizationFactor &A, 1628 const VectorizationFactor &B) const; 1629 1630 /// Invalidates decisions already taken by the cost model. 1631 void invalidateCostModelingDecisions() { 1632 WideningDecisions.clear(); 1633 Uniforms.clear(); 1634 Scalars.clear(); 1635 } 1636 1637 private: 1638 unsigned NumPredStores = 0; 1639 1640 /// \return An upper bound for the vectorization factors for both 1641 /// fixed and scalable vectorization, where the minimum-known number of 1642 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1643 /// disabled or unsupported, then the scalable part will be equal to 1644 /// ElementCount::getScalable(0). 1645 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1646 ElementCount UserVF); 1647 1648 /// \return the maximized element count based on the targets vector 1649 /// registers and the loop trip-count, but limited to a maximum safe VF. 1650 /// This is a helper function of computeFeasibleMaxVF. 1651 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1652 /// issue that occurred on one of the buildbots which cannot be reproduced 1653 /// without having access to the properietary compiler (see comments on 1654 /// D98509). The issue is currently under investigation and this workaround 1655 /// will be removed as soon as possible. 1656 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1657 unsigned SmallestType, 1658 unsigned WidestType, 1659 const ElementCount &MaxSafeVF); 1660 1661 /// \return the maximum legal scalable VF, based on the safe max number 1662 /// of elements. 1663 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1664 1665 /// The vectorization cost is a combination of the cost itself and a boolean 1666 /// indicating whether any of the contributing operations will actually 1667 /// operate on vector values after type legalization in the backend. If this 1668 /// latter value is false, then all operations will be scalarized (i.e. no 1669 /// vectorization has actually taken place). 1670 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1671 1672 /// Returns the expected execution cost. The unit of the cost does 1673 /// not matter because we use the 'cost' units to compare different 1674 /// vector widths. The cost that is returned is *not* normalized by 1675 /// the factor width. If \p Invalid is not nullptr, this function 1676 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1677 /// each instruction that has an Invalid cost for the given VF. 1678 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1679 VectorizationCostTy 1680 expectedCost(ElementCount VF, 1681 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1682 1683 /// Returns the execution time cost of an instruction for a given vector 1684 /// width. Vector width of one means scalar. 1685 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1686 1687 /// The cost-computation logic from getInstructionCost which provides 1688 /// the vector type as an output parameter. 1689 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1690 Type *&VectorTy); 1691 1692 /// Return the cost of instructions in an inloop reduction pattern, if I is 1693 /// part of that pattern. 1694 Optional<InstructionCost> 1695 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1696 TTI::TargetCostKind CostKind); 1697 1698 /// Calculate vectorization cost of memory instruction \p I. 1699 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1700 1701 /// The cost computation for scalarized memory instruction. 1702 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1703 1704 /// The cost computation for interleaving group of memory instructions. 1705 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1706 1707 /// The cost computation for Gather/Scatter instruction. 1708 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1709 1710 /// The cost computation for widening instruction \p I with consecutive 1711 /// memory access. 1712 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1713 1714 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1715 /// Load: scalar load + broadcast. 1716 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1717 /// element) 1718 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1719 1720 /// Estimate the overhead of scalarizing an instruction. This is a 1721 /// convenience wrapper for the type-based getScalarizationOverhead API. 1722 InstructionCost getScalarizationOverhead(Instruction *I, 1723 ElementCount VF) const; 1724 1725 /// Returns whether the instruction is a load or store and will be a emitted 1726 /// as a vector operation. 1727 bool isConsecutiveLoadOrStore(Instruction *I); 1728 1729 /// Returns true if an artificially high cost for emulated masked memrefs 1730 /// should be used. 1731 bool useEmulatedMaskMemRefHack(Instruction *I); 1732 1733 /// Map of scalar integer values to the smallest bitwidth they can be legally 1734 /// represented as. The vector equivalents of these values should be truncated 1735 /// to this type. 1736 MapVector<Instruction *, uint64_t> MinBWs; 1737 1738 /// A type representing the costs for instructions if they were to be 1739 /// scalarized rather than vectorized. The entries are Instruction-Cost 1740 /// pairs. 1741 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1742 1743 /// A set containing all BasicBlocks that are known to present after 1744 /// vectorization as a predicated block. 1745 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1746 1747 /// Records whether it is allowed to have the original scalar loop execute at 1748 /// least once. This may be needed as a fallback loop in case runtime 1749 /// aliasing/dependence checks fail, or to handle the tail/remainder 1750 /// iterations when the trip count is unknown or doesn't divide by the VF, 1751 /// or as a peel-loop to handle gaps in interleave-groups. 1752 /// Under optsize and when the trip count is very small we don't allow any 1753 /// iterations to execute in the scalar loop. 1754 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1755 1756 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1757 bool FoldTailByMasking = false; 1758 1759 /// A map holding scalar costs for different vectorization factors. The 1760 /// presence of a cost for an instruction in the mapping indicates that the 1761 /// instruction will be scalarized when vectorizing with the associated 1762 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1763 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1764 1765 /// Holds the instructions known to be uniform after vectorization. 1766 /// The data is collected per VF. 1767 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1768 1769 /// Holds the instructions known to be scalar after vectorization. 1770 /// The data is collected per VF. 1771 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1772 1773 /// Holds the instructions (address computations) that are forced to be 1774 /// scalarized. 1775 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1776 1777 /// PHINodes of the reductions that should be expanded in-loop along with 1778 /// their associated chains of reduction operations, in program order from top 1779 /// (PHI) to bottom 1780 ReductionChainMap InLoopReductionChains; 1781 1782 /// A Map of inloop reduction operations and their immediate chain operand. 1783 /// FIXME: This can be removed once reductions can be costed correctly in 1784 /// vplan. This was added to allow quick lookup to the inloop operations, 1785 /// without having to loop through InLoopReductionChains. 1786 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1787 1788 /// Returns the expected difference in cost from scalarizing the expression 1789 /// feeding a predicated instruction \p PredInst. The instructions to 1790 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1791 /// non-negative return value implies the expression will be scalarized. 1792 /// Currently, only single-use chains are considered for scalarization. 1793 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1794 ElementCount VF); 1795 1796 /// Collect the instructions that are uniform after vectorization. An 1797 /// instruction is uniform if we represent it with a single scalar value in 1798 /// the vectorized loop corresponding to each vector iteration. Examples of 1799 /// uniform instructions include pointer operands of consecutive or 1800 /// interleaved memory accesses. Note that although uniformity implies an 1801 /// instruction will be scalar, the reverse is not true. In general, a 1802 /// scalarized instruction will be represented by VF scalar values in the 1803 /// vectorized loop, each corresponding to an iteration of the original 1804 /// scalar loop. 1805 void collectLoopUniforms(ElementCount VF); 1806 1807 /// Collect the instructions that are scalar after vectorization. An 1808 /// instruction is scalar if it is known to be uniform or will be scalarized 1809 /// during vectorization. Non-uniform scalarized instructions will be 1810 /// represented by VF values in the vectorized loop, each corresponding to an 1811 /// iteration of the original scalar loop. 1812 void collectLoopScalars(ElementCount VF); 1813 1814 /// Keeps cost model vectorization decision and cost for instructions. 1815 /// Right now it is used for memory instructions only. 1816 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1817 std::pair<InstWidening, InstructionCost>>; 1818 1819 DecisionList WideningDecisions; 1820 1821 /// Returns true if \p V is expected to be vectorized and it needs to be 1822 /// extracted. 1823 bool needsExtract(Value *V, ElementCount VF) const { 1824 Instruction *I = dyn_cast<Instruction>(V); 1825 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1826 TheLoop->isLoopInvariant(I)) 1827 return false; 1828 1829 // Assume we can vectorize V (and hence we need extraction) if the 1830 // scalars are not computed yet. This can happen, because it is called 1831 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1832 // the scalars are collected. That should be a safe assumption in most 1833 // cases, because we check if the operands have vectorizable types 1834 // beforehand in LoopVectorizationLegality. 1835 return Scalars.find(VF) == Scalars.end() || 1836 !isScalarAfterVectorization(I, VF); 1837 }; 1838 1839 /// Returns a range containing only operands needing to be extracted. 1840 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1841 ElementCount VF) const { 1842 return SmallVector<Value *, 4>(make_filter_range( 1843 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1844 } 1845 1846 /// Determines if we have the infrastructure to vectorize loop \p L and its 1847 /// epilogue, assuming the main loop is vectorized by \p VF. 1848 bool isCandidateForEpilogueVectorization(const Loop &L, 1849 const ElementCount VF) const; 1850 1851 /// Returns true if epilogue vectorization is considered profitable, and 1852 /// false otherwise. 1853 /// \p VF is the vectorization factor chosen for the original loop. 1854 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1855 1856 public: 1857 /// The loop that we evaluate. 1858 Loop *TheLoop; 1859 1860 /// Predicated scalar evolution analysis. 1861 PredicatedScalarEvolution &PSE; 1862 1863 /// Loop Info analysis. 1864 LoopInfo *LI; 1865 1866 /// Vectorization legality. 1867 LoopVectorizationLegality *Legal; 1868 1869 /// Vector target information. 1870 const TargetTransformInfo &TTI; 1871 1872 /// Target Library Info. 1873 const TargetLibraryInfo *TLI; 1874 1875 /// Demanded bits analysis. 1876 DemandedBits *DB; 1877 1878 /// Assumption cache. 1879 AssumptionCache *AC; 1880 1881 /// Interface to emit optimization remarks. 1882 OptimizationRemarkEmitter *ORE; 1883 1884 const Function *TheFunction; 1885 1886 /// Loop Vectorize Hint. 1887 const LoopVectorizeHints *Hints; 1888 1889 /// The interleave access information contains groups of interleaved accesses 1890 /// with the same stride and close to each other. 1891 InterleavedAccessInfo &InterleaveInfo; 1892 1893 /// Values to ignore in the cost model. 1894 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1895 1896 /// Values to ignore in the cost model when VF > 1. 1897 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1898 1899 /// All element types found in the loop. 1900 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1901 1902 /// Profitable vector factors. 1903 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1904 }; 1905 } // end namespace llvm 1906 1907 /// Helper struct to manage generating runtime checks for vectorization. 1908 /// 1909 /// The runtime checks are created up-front in temporary blocks to allow better 1910 /// estimating the cost and un-linked from the existing IR. After deciding to 1911 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1912 /// temporary blocks are completely removed. 1913 class GeneratedRTChecks { 1914 /// Basic block which contains the generated SCEV checks, if any. 1915 BasicBlock *SCEVCheckBlock = nullptr; 1916 1917 /// The value representing the result of the generated SCEV checks. If it is 1918 /// nullptr, either no SCEV checks have been generated or they have been used. 1919 Value *SCEVCheckCond = nullptr; 1920 1921 /// Basic block which contains the generated memory runtime checks, if any. 1922 BasicBlock *MemCheckBlock = nullptr; 1923 1924 /// The value representing the result of the generated memory runtime checks. 1925 /// If it is nullptr, either no memory runtime checks have been generated or 1926 /// they have been used. 1927 Instruction *MemRuntimeCheckCond = nullptr; 1928 1929 DominatorTree *DT; 1930 LoopInfo *LI; 1931 1932 SCEVExpander SCEVExp; 1933 SCEVExpander MemCheckExp; 1934 1935 public: 1936 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1937 const DataLayout &DL) 1938 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1939 MemCheckExp(SE, DL, "scev.check") {} 1940 1941 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1942 /// accurately estimate the cost of the runtime checks. The blocks are 1943 /// un-linked from the IR and is added back during vector code generation. If 1944 /// there is no vector code generation, the check blocks are removed 1945 /// completely. 1946 void Create(Loop *L, const LoopAccessInfo &LAI, 1947 const SCEVUnionPredicate &UnionPred) { 1948 1949 BasicBlock *LoopHeader = L->getHeader(); 1950 BasicBlock *Preheader = L->getLoopPreheader(); 1951 1952 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1953 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1954 // may be used by SCEVExpander. The blocks will be un-linked from their 1955 // predecessors and removed from LI & DT at the end of the function. 1956 if (!UnionPred.isAlwaysTrue()) { 1957 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1958 nullptr, "vector.scevcheck"); 1959 1960 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1961 &UnionPred, SCEVCheckBlock->getTerminator()); 1962 } 1963 1964 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1965 if (RtPtrChecking.Need) { 1966 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1967 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1968 "vector.memcheck"); 1969 1970 std::tie(std::ignore, MemRuntimeCheckCond) = 1971 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1972 RtPtrChecking.getChecks(), MemCheckExp); 1973 assert(MemRuntimeCheckCond && 1974 "no RT checks generated although RtPtrChecking " 1975 "claimed checks are required"); 1976 } 1977 1978 if (!MemCheckBlock && !SCEVCheckBlock) 1979 return; 1980 1981 // Unhook the temporary block with the checks, update various places 1982 // accordingly. 1983 if (SCEVCheckBlock) 1984 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1985 if (MemCheckBlock) 1986 MemCheckBlock->replaceAllUsesWith(Preheader); 1987 1988 if (SCEVCheckBlock) { 1989 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1990 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1991 Preheader->getTerminator()->eraseFromParent(); 1992 } 1993 if (MemCheckBlock) { 1994 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1995 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1996 Preheader->getTerminator()->eraseFromParent(); 1997 } 1998 1999 DT->changeImmediateDominator(LoopHeader, Preheader); 2000 if (MemCheckBlock) { 2001 DT->eraseNode(MemCheckBlock); 2002 LI->removeBlock(MemCheckBlock); 2003 } 2004 if (SCEVCheckBlock) { 2005 DT->eraseNode(SCEVCheckBlock); 2006 LI->removeBlock(SCEVCheckBlock); 2007 } 2008 } 2009 2010 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2011 /// unused. 2012 ~GeneratedRTChecks() { 2013 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2014 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2015 if (!SCEVCheckCond) 2016 SCEVCleaner.markResultUsed(); 2017 2018 if (!MemRuntimeCheckCond) 2019 MemCheckCleaner.markResultUsed(); 2020 2021 if (MemRuntimeCheckCond) { 2022 auto &SE = *MemCheckExp.getSE(); 2023 // Memory runtime check generation creates compares that use expanded 2024 // values. Remove them before running the SCEVExpanderCleaners. 2025 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2026 if (MemCheckExp.isInsertedInstruction(&I)) 2027 continue; 2028 SE.forgetValue(&I); 2029 SE.eraseValueFromMap(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2051 if (C->isZero()) 2052 return nullptr; 2053 2054 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2055 2056 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2057 // Create new preheader for vector loop. 2058 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2059 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2060 2061 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2062 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2063 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2064 SCEVCheckBlock); 2065 2066 DT->addNewBlock(SCEVCheckBlock, Pred); 2067 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2068 2069 ReplaceInstWithInst( 2070 SCEVCheckBlock->getTerminator(), 2071 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2072 // Mark the check as used, to prevent it from being removed during cleanup. 2073 SCEVCheckCond = nullptr; 2074 return SCEVCheckBlock; 2075 } 2076 2077 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2078 /// the branches to branch to the vector preheader or \p Bypass, depending on 2079 /// the generated condition. 2080 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2081 BasicBlock *LoopVectorPreHeader) { 2082 // Check if we generated code that checks in runtime if arrays overlap. 2083 if (!MemRuntimeCheckCond) 2084 return nullptr; 2085 2086 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2087 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2088 MemCheckBlock); 2089 2090 DT->addNewBlock(MemCheckBlock, Pred); 2091 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2092 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2093 2094 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2095 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2096 2097 ReplaceInstWithInst( 2098 MemCheckBlock->getTerminator(), 2099 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2100 MemCheckBlock->getTerminator()->setDebugLoc( 2101 Pred->getTerminator()->getDebugLoc()); 2102 2103 // Mark the check as used, to prevent it from being removed during cleanup. 2104 MemRuntimeCheckCond = nullptr; 2105 return MemCheckBlock; 2106 } 2107 }; 2108 2109 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2110 // vectorization. The loop needs to be annotated with #pragma omp simd 2111 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2112 // vector length information is not provided, vectorization is not considered 2113 // explicit. Interleave hints are not allowed either. These limitations will be 2114 // relaxed in the future. 2115 // Please, note that we are currently forced to abuse the pragma 'clang 2116 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2117 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2118 // provides *explicit vectorization hints* (LV can bypass legal checks and 2119 // assume that vectorization is legal). However, both hints are implemented 2120 // using the same metadata (llvm.loop.vectorize, processed by 2121 // LoopVectorizeHints). This will be fixed in the future when the native IR 2122 // representation for pragma 'omp simd' is introduced. 2123 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2124 OptimizationRemarkEmitter *ORE) { 2125 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2126 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2127 2128 // Only outer loops with an explicit vectorization hint are supported. 2129 // Unannotated outer loops are ignored. 2130 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2131 return false; 2132 2133 Function *Fn = OuterLp->getHeader()->getParent(); 2134 if (!Hints.allowVectorization(Fn, OuterLp, 2135 true /*VectorizeOnlyWhenForced*/)) { 2136 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2137 return false; 2138 } 2139 2140 if (Hints.getInterleave() > 1) { 2141 // TODO: Interleave support is future work. 2142 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2143 "outer loops.\n"); 2144 Hints.emitRemarkWithHints(); 2145 return false; 2146 } 2147 2148 return true; 2149 } 2150 2151 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2152 OptimizationRemarkEmitter *ORE, 2153 SmallVectorImpl<Loop *> &V) { 2154 // Collect inner loops and outer loops without irreducible control flow. For 2155 // now, only collect outer loops that have explicit vectorization hints. If we 2156 // are stress testing the VPlan H-CFG construction, we collect the outermost 2157 // loop of every loop nest. 2158 if (L.isInnermost() || VPlanBuildStressTest || 2159 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2160 LoopBlocksRPO RPOT(&L); 2161 RPOT.perform(LI); 2162 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2163 V.push_back(&L); 2164 // TODO: Collect inner loops inside marked outer loops in case 2165 // vectorization fails for the outer loop. Do not invoke 2166 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2167 // already known to be reducible. We can use an inherited attribute for 2168 // that. 2169 return; 2170 } 2171 } 2172 for (Loop *InnerL : L) 2173 collectSupportedLoops(*InnerL, LI, ORE, V); 2174 } 2175 2176 namespace { 2177 2178 /// The LoopVectorize Pass. 2179 struct LoopVectorize : public FunctionPass { 2180 /// Pass identification, replacement for typeid 2181 static char ID; 2182 2183 LoopVectorizePass Impl; 2184 2185 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2186 bool VectorizeOnlyWhenForced = false) 2187 : FunctionPass(ID), 2188 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2189 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2190 } 2191 2192 bool runOnFunction(Function &F) override { 2193 if (skipFunction(F)) 2194 return false; 2195 2196 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2197 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2198 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2199 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2200 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2201 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2202 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2203 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2204 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2205 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2206 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2207 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2208 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2209 2210 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2211 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2212 2213 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2214 GetLAA, *ORE, PSI).MadeAnyChange; 2215 } 2216 2217 void getAnalysisUsage(AnalysisUsage &AU) const override { 2218 AU.addRequired<AssumptionCacheTracker>(); 2219 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2220 AU.addRequired<DominatorTreeWrapperPass>(); 2221 AU.addRequired<LoopInfoWrapperPass>(); 2222 AU.addRequired<ScalarEvolutionWrapperPass>(); 2223 AU.addRequired<TargetTransformInfoWrapperPass>(); 2224 AU.addRequired<AAResultsWrapperPass>(); 2225 AU.addRequired<LoopAccessLegacyAnalysis>(); 2226 AU.addRequired<DemandedBitsWrapperPass>(); 2227 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2228 AU.addRequired<InjectTLIMappingsLegacy>(); 2229 2230 // We currently do not preserve loopinfo/dominator analyses with outer loop 2231 // vectorization. Until this is addressed, mark these analyses as preserved 2232 // only for non-VPlan-native path. 2233 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2234 if (!EnableVPlanNativePath) { 2235 AU.addPreserved<LoopInfoWrapperPass>(); 2236 AU.addPreserved<DominatorTreeWrapperPass>(); 2237 } 2238 2239 AU.addPreserved<BasicAAWrapperPass>(); 2240 AU.addPreserved<GlobalsAAWrapperPass>(); 2241 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2242 } 2243 }; 2244 2245 } // end anonymous namespace 2246 2247 //===----------------------------------------------------------------------===// 2248 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2249 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2250 //===----------------------------------------------------------------------===// 2251 2252 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2253 // We need to place the broadcast of invariant variables outside the loop, 2254 // but only if it's proven safe to do so. Else, broadcast will be inside 2255 // vector loop body. 2256 Instruction *Instr = dyn_cast<Instruction>(V); 2257 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2258 (!Instr || 2259 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2260 // Place the code for broadcasting invariant variables in the new preheader. 2261 IRBuilder<>::InsertPointGuard Guard(Builder); 2262 if (SafeToHoist) 2263 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2264 2265 // Broadcast the scalar into all locations in the vector. 2266 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2267 2268 return Shuf; 2269 } 2270 2271 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2272 const InductionDescriptor &II, Value *Step, Value *Start, 2273 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2274 VPTransformState &State) { 2275 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2276 "Expected either an induction phi-node or a truncate of it!"); 2277 2278 // Construct the initial value of the vector IV in the vector loop preheader 2279 auto CurrIP = Builder.saveIP(); 2280 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2281 if (isa<TruncInst>(EntryVal)) { 2282 assert(Start->getType()->isIntegerTy() && 2283 "Truncation requires an integer type"); 2284 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2285 Step = Builder.CreateTrunc(Step, TruncType); 2286 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2287 } 2288 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2289 Value *SteppedStart = 2290 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2291 2292 // We create vector phi nodes for both integer and floating-point induction 2293 // variables. Here, we determine the kind of arithmetic we will perform. 2294 Instruction::BinaryOps AddOp; 2295 Instruction::BinaryOps MulOp; 2296 if (Step->getType()->isIntegerTy()) { 2297 AddOp = Instruction::Add; 2298 MulOp = Instruction::Mul; 2299 } else { 2300 AddOp = II.getInductionOpcode(); 2301 MulOp = Instruction::FMul; 2302 } 2303 2304 // Multiply the vectorization factor by the step using integer or 2305 // floating-point arithmetic as appropriate. 2306 Type *StepType = Step->getType(); 2307 if (Step->getType()->isFloatingPointTy()) 2308 StepType = IntegerType::get(StepType->getContext(), 2309 StepType->getScalarSizeInBits()); 2310 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2311 if (Step->getType()->isFloatingPointTy()) 2312 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2313 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2314 2315 // Create a vector splat to use in the induction update. 2316 // 2317 // FIXME: If the step is non-constant, we create the vector splat with 2318 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2319 // handle a constant vector splat. 2320 Value *SplatVF = isa<Constant>(Mul) 2321 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2322 : Builder.CreateVectorSplat(VF, Mul); 2323 Builder.restoreIP(CurrIP); 2324 2325 // We may need to add the step a number of times, depending on the unroll 2326 // factor. The last of those goes into the PHI. 2327 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2328 &*LoopVectorBody->getFirstInsertionPt()); 2329 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2330 Instruction *LastInduction = VecInd; 2331 for (unsigned Part = 0; Part < UF; ++Part) { 2332 State.set(Def, LastInduction, Part); 2333 2334 if (isa<TruncInst>(EntryVal)) 2335 addMetadata(LastInduction, EntryVal); 2336 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2337 State, Part); 2338 2339 LastInduction = cast<Instruction>( 2340 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2341 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2342 } 2343 2344 // Move the last step to the end of the latch block. This ensures consistent 2345 // placement of all induction updates. 2346 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2347 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2348 auto *ICmp = cast<Instruction>(Br->getCondition()); 2349 LastInduction->moveBefore(ICmp); 2350 LastInduction->setName("vec.ind.next"); 2351 2352 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2353 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2354 } 2355 2356 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2357 return Cost->isScalarAfterVectorization(I, VF) || 2358 Cost->isProfitableToScalarize(I, VF); 2359 } 2360 2361 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2362 if (shouldScalarizeInstruction(IV)) 2363 return true; 2364 auto isScalarInst = [&](User *U) -> bool { 2365 auto *I = cast<Instruction>(U); 2366 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2367 }; 2368 return llvm::any_of(IV->users(), isScalarInst); 2369 } 2370 2371 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2372 const InductionDescriptor &ID, const Instruction *EntryVal, 2373 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2374 unsigned Part, unsigned Lane) { 2375 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2376 "Expected either an induction phi-node or a truncate of it!"); 2377 2378 // This induction variable is not the phi from the original loop but the 2379 // newly-created IV based on the proof that casted Phi is equal to the 2380 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2381 // re-uses the same InductionDescriptor that original IV uses but we don't 2382 // have to do any recording in this case - that is done when original IV is 2383 // processed. 2384 if (isa<TruncInst>(EntryVal)) 2385 return; 2386 2387 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2388 if (Casts.empty()) 2389 return; 2390 // Only the first Cast instruction in the Casts vector is of interest. 2391 // The rest of the Casts (if exist) have no uses outside the 2392 // induction update chain itself. 2393 if (Lane < UINT_MAX) 2394 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2395 else 2396 State.set(CastDef, VectorLoopVal, Part); 2397 } 2398 2399 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2400 TruncInst *Trunc, VPValue *Def, 2401 VPValue *CastDef, 2402 VPTransformState &State) { 2403 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2404 "Primary induction variable must have an integer type"); 2405 2406 auto II = Legal->getInductionVars().find(IV); 2407 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2408 2409 auto ID = II->second; 2410 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2411 2412 // The value from the original loop to which we are mapping the new induction 2413 // variable. 2414 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2415 2416 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2417 2418 // Generate code for the induction step. Note that induction steps are 2419 // required to be loop-invariant 2420 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2421 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2422 "Induction step should be loop invariant"); 2423 if (PSE.getSE()->isSCEVable(IV->getType())) { 2424 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2425 return Exp.expandCodeFor(Step, Step->getType(), 2426 LoopVectorPreHeader->getTerminator()); 2427 } 2428 return cast<SCEVUnknown>(Step)->getValue(); 2429 }; 2430 2431 // The scalar value to broadcast. This is derived from the canonical 2432 // induction variable. If a truncation type is given, truncate the canonical 2433 // induction variable and step. Otherwise, derive these values from the 2434 // induction descriptor. 2435 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2436 Value *ScalarIV = Induction; 2437 if (IV != OldInduction) { 2438 ScalarIV = IV->getType()->isIntegerTy() 2439 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2440 : Builder.CreateCast(Instruction::SIToFP, Induction, 2441 IV->getType()); 2442 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2443 ScalarIV->setName("offset.idx"); 2444 } 2445 if (Trunc) { 2446 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2447 assert(Step->getType()->isIntegerTy() && 2448 "Truncation requires an integer step"); 2449 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2450 Step = Builder.CreateTrunc(Step, TruncType); 2451 } 2452 return ScalarIV; 2453 }; 2454 2455 // Create the vector values from the scalar IV, in the absence of creating a 2456 // vector IV. 2457 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2458 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2459 for (unsigned Part = 0; Part < UF; ++Part) { 2460 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2461 Value *EntryPart = 2462 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2463 ID.getInductionOpcode()); 2464 State.set(Def, EntryPart, Part); 2465 if (Trunc) 2466 addMetadata(EntryPart, Trunc); 2467 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2468 State, Part); 2469 } 2470 }; 2471 2472 // Fast-math-flags propagate from the original induction instruction. 2473 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2474 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2475 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2476 2477 // Now do the actual transformations, and start with creating the step value. 2478 Value *Step = CreateStepValue(ID.getStep()); 2479 if (VF.isZero() || VF.isScalar()) { 2480 Value *ScalarIV = CreateScalarIV(Step); 2481 CreateSplatIV(ScalarIV, Step); 2482 return; 2483 } 2484 2485 // Determine if we want a scalar version of the induction variable. This is 2486 // true if the induction variable itself is not widened, or if it has at 2487 // least one user in the loop that is not widened. 2488 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2489 if (!NeedsScalarIV) { 2490 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2491 State); 2492 return; 2493 } 2494 2495 // Try to create a new independent vector induction variable. If we can't 2496 // create the phi node, we will splat the scalar induction variable in each 2497 // loop iteration. 2498 if (!shouldScalarizeInstruction(EntryVal)) { 2499 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2500 State); 2501 Value *ScalarIV = CreateScalarIV(Step); 2502 // Create scalar steps that can be used by instructions we will later 2503 // scalarize. Note that the addition of the scalar steps will not increase 2504 // the number of instructions in the loop in the common case prior to 2505 // InstCombine. We will be trading one vector extract for each scalar step. 2506 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2507 return; 2508 } 2509 2510 // All IV users are scalar instructions, so only emit a scalar IV, not a 2511 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2512 // predicate used by the masked loads/stores. 2513 Value *ScalarIV = CreateScalarIV(Step); 2514 if (!Cost->isScalarEpilogueAllowed()) 2515 CreateSplatIV(ScalarIV, Step); 2516 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2517 } 2518 2519 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2520 Instruction::BinaryOps BinOp) { 2521 // Create and check the types. 2522 auto *ValVTy = cast<VectorType>(Val->getType()); 2523 ElementCount VLen = ValVTy->getElementCount(); 2524 2525 Type *STy = Val->getType()->getScalarType(); 2526 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2527 "Induction Step must be an integer or FP"); 2528 assert(Step->getType() == STy && "Step has wrong type"); 2529 2530 SmallVector<Constant *, 8> Indices; 2531 2532 // Create a vector of consecutive numbers from zero to VF. 2533 VectorType *InitVecValVTy = ValVTy; 2534 Type *InitVecValSTy = STy; 2535 if (STy->isFloatingPointTy()) { 2536 InitVecValSTy = 2537 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2538 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2539 } 2540 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2541 2542 // Add on StartIdx 2543 Value *StartIdxSplat = Builder.CreateVectorSplat( 2544 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2545 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2546 2547 if (STy->isIntegerTy()) { 2548 Step = Builder.CreateVectorSplat(VLen, Step); 2549 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2550 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2551 // which can be found from the original scalar operations. 2552 Step = Builder.CreateMul(InitVec, Step); 2553 return Builder.CreateAdd(Val, Step, "induction"); 2554 } 2555 2556 // Floating point induction. 2557 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2558 "Binary Opcode should be specified for FP induction"); 2559 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2560 Step = Builder.CreateVectorSplat(VLen, Step); 2561 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2562 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2563 } 2564 2565 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2566 Instruction *EntryVal, 2567 const InductionDescriptor &ID, 2568 VPValue *Def, VPValue *CastDef, 2569 VPTransformState &State) { 2570 // We shouldn't have to build scalar steps if we aren't vectorizing. 2571 assert(VF.isVector() && "VF should be greater than one"); 2572 // Get the value type and ensure it and the step have the same integer type. 2573 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2574 assert(ScalarIVTy == Step->getType() && 2575 "Val and Step should have the same type"); 2576 2577 // We build scalar steps for both integer and floating-point induction 2578 // variables. Here, we determine the kind of arithmetic we will perform. 2579 Instruction::BinaryOps AddOp; 2580 Instruction::BinaryOps MulOp; 2581 if (ScalarIVTy->isIntegerTy()) { 2582 AddOp = Instruction::Add; 2583 MulOp = Instruction::Mul; 2584 } else { 2585 AddOp = ID.getInductionOpcode(); 2586 MulOp = Instruction::FMul; 2587 } 2588 2589 // Determine the number of scalars we need to generate for each unroll 2590 // iteration. If EntryVal is uniform, we only need to generate the first 2591 // lane. Otherwise, we generate all VF values. 2592 bool IsUniform = 2593 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2594 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2595 // Compute the scalar steps and save the results in State. 2596 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2597 ScalarIVTy->getScalarSizeInBits()); 2598 Type *VecIVTy = nullptr; 2599 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2600 if (!IsUniform && VF.isScalable()) { 2601 VecIVTy = VectorType::get(ScalarIVTy, VF); 2602 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2603 SplatStep = Builder.CreateVectorSplat(VF, Step); 2604 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2605 } 2606 2607 for (unsigned Part = 0; Part < UF; ++Part) { 2608 Value *StartIdx0 = 2609 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2610 2611 if (!IsUniform && VF.isScalable()) { 2612 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2613 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2614 if (ScalarIVTy->isFloatingPointTy()) 2615 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2616 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2617 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2618 State.set(Def, Add, Part); 2619 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2620 Part); 2621 // It's useful to record the lane values too for the known minimum number 2622 // of elements so we do those below. This improves the code quality when 2623 // trying to extract the first element, for example. 2624 } 2625 2626 if (ScalarIVTy->isFloatingPointTy()) 2627 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2628 2629 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2630 Value *StartIdx = Builder.CreateBinOp( 2631 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2632 // The step returned by `createStepForVF` is a runtime-evaluated value 2633 // when VF is scalable. Otherwise, it should be folded into a Constant. 2634 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2635 "Expected StartIdx to be folded to a constant when VF is not " 2636 "scalable"); 2637 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2638 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2639 State.set(Def, Add, VPIteration(Part, Lane)); 2640 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2641 Part, Lane); 2642 } 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2647 const VPIteration &Instance, 2648 VPTransformState &State) { 2649 Value *ScalarInst = State.get(Def, Instance); 2650 Value *VectorValue = State.get(Def, Instance.Part); 2651 VectorValue = Builder.CreateInsertElement( 2652 VectorValue, ScalarInst, 2653 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2654 State.set(Def, VectorValue, Instance.Part); 2655 } 2656 2657 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2658 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2659 return Builder.CreateVectorReverse(Vec, "reverse"); 2660 } 2661 2662 // Return whether we allow using masked interleave-groups (for dealing with 2663 // strided loads/stores that reside in predicated blocks, or for dealing 2664 // with gaps). 2665 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2666 // If an override option has been passed in for interleaved accesses, use it. 2667 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2668 return EnableMaskedInterleavedMemAccesses; 2669 2670 return TTI.enableMaskedInterleavedAccessVectorization(); 2671 } 2672 2673 // Try to vectorize the interleave group that \p Instr belongs to. 2674 // 2675 // E.g. Translate following interleaved load group (factor = 3): 2676 // for (i = 0; i < N; i+=3) { 2677 // R = Pic[i]; // Member of index 0 2678 // G = Pic[i+1]; // Member of index 1 2679 // B = Pic[i+2]; // Member of index 2 2680 // ... // do something to R, G, B 2681 // } 2682 // To: 2683 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2684 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2685 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2686 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2687 // 2688 // Or translate following interleaved store group (factor = 3): 2689 // for (i = 0; i < N; i+=3) { 2690 // ... do something to R, G, B 2691 // Pic[i] = R; // Member of index 0 2692 // Pic[i+1] = G; // Member of index 1 2693 // Pic[i+2] = B; // Member of index 2 2694 // } 2695 // To: 2696 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2697 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2698 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2699 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2700 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2701 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2702 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2703 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2704 VPValue *BlockInMask) { 2705 Instruction *Instr = Group->getInsertPos(); 2706 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2707 2708 // Prepare for the vector type of the interleaved load/store. 2709 Type *ScalarTy = getLoadStoreType(Instr); 2710 unsigned InterleaveFactor = Group->getFactor(); 2711 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2712 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2713 2714 // Prepare for the new pointers. 2715 SmallVector<Value *, 2> AddrParts; 2716 unsigned Index = Group->getIndex(Instr); 2717 2718 // TODO: extend the masked interleaved-group support to reversed access. 2719 assert((!BlockInMask || !Group->isReverse()) && 2720 "Reversed masked interleave-group not supported."); 2721 2722 // If the group is reverse, adjust the index to refer to the last vector lane 2723 // instead of the first. We adjust the index from the first vector lane, 2724 // rather than directly getting the pointer for lane VF - 1, because the 2725 // pointer operand of the interleaved access is supposed to be uniform. For 2726 // uniform instructions, we're only required to generate a value for the 2727 // first vector lane in each unroll iteration. 2728 if (Group->isReverse()) 2729 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2730 2731 for (unsigned Part = 0; Part < UF; Part++) { 2732 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2733 setDebugLocFromInst(AddrPart); 2734 2735 // Notice current instruction could be any index. Need to adjust the address 2736 // to the member of index 0. 2737 // 2738 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2739 // b = A[i]; // Member of index 0 2740 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2741 // 2742 // E.g. A[i+1] = a; // Member of index 1 2743 // A[i] = b; // Member of index 0 2744 // A[i+2] = c; // Member of index 2 (Current instruction) 2745 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2746 2747 bool InBounds = false; 2748 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2749 InBounds = gep->isInBounds(); 2750 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2751 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2752 2753 // Cast to the vector pointer type. 2754 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2755 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2756 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2757 } 2758 2759 setDebugLocFromInst(Instr); 2760 Value *PoisonVec = PoisonValue::get(VecTy); 2761 2762 Value *MaskForGaps = nullptr; 2763 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2764 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2765 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2766 } 2767 2768 // Vectorize the interleaved load group. 2769 if (isa<LoadInst>(Instr)) { 2770 // For each unroll part, create a wide load for the group. 2771 SmallVector<Value *, 2> NewLoads; 2772 for (unsigned Part = 0; Part < UF; Part++) { 2773 Instruction *NewLoad; 2774 if (BlockInMask || MaskForGaps) { 2775 assert(useMaskedInterleavedAccesses(*TTI) && 2776 "masked interleaved groups are not allowed."); 2777 Value *GroupMask = MaskForGaps; 2778 if (BlockInMask) { 2779 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2780 Value *ShuffledMask = Builder.CreateShuffleVector( 2781 BlockInMaskPart, 2782 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2783 "interleaved.mask"); 2784 GroupMask = MaskForGaps 2785 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2786 MaskForGaps) 2787 : ShuffledMask; 2788 } 2789 NewLoad = 2790 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2791 GroupMask, PoisonVec, "wide.masked.vec"); 2792 } 2793 else 2794 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2795 Group->getAlign(), "wide.vec"); 2796 Group->addMetadata(NewLoad); 2797 NewLoads.push_back(NewLoad); 2798 } 2799 2800 // For each member in the group, shuffle out the appropriate data from the 2801 // wide loads. 2802 unsigned J = 0; 2803 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2804 Instruction *Member = Group->getMember(I); 2805 2806 // Skip the gaps in the group. 2807 if (!Member) 2808 continue; 2809 2810 auto StrideMask = 2811 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2812 for (unsigned Part = 0; Part < UF; Part++) { 2813 Value *StridedVec = Builder.CreateShuffleVector( 2814 NewLoads[Part], StrideMask, "strided.vec"); 2815 2816 // If this member has different type, cast the result type. 2817 if (Member->getType() != ScalarTy) { 2818 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2819 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2820 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2821 } 2822 2823 if (Group->isReverse()) 2824 StridedVec = reverseVector(StridedVec); 2825 2826 State.set(VPDefs[J], StridedVec, Part); 2827 } 2828 ++J; 2829 } 2830 return; 2831 } 2832 2833 // The sub vector type for current instruction. 2834 auto *SubVT = VectorType::get(ScalarTy, VF); 2835 2836 // Vectorize the interleaved store group. 2837 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2838 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2839 "masked interleaved groups are not allowed."); 2840 assert((!MaskForGaps || !VF.isScalable()) && 2841 "masking gaps for scalable vectors is not yet supported."); 2842 for (unsigned Part = 0; Part < UF; Part++) { 2843 // Collect the stored vector from each member. 2844 SmallVector<Value *, 4> StoredVecs; 2845 for (unsigned i = 0; i < InterleaveFactor; i++) { 2846 assert((Group->getMember(i) || MaskForGaps) && 2847 "Fail to get a member from an interleaved store group"); 2848 Instruction *Member = Group->getMember(i); 2849 2850 // Skip the gaps in the group. 2851 if (!Member) { 2852 Value *Undef = PoisonValue::get(SubVT); 2853 StoredVecs.push_back(Undef); 2854 continue; 2855 } 2856 2857 Value *StoredVec = State.get(StoredValues[i], Part); 2858 2859 if (Group->isReverse()) 2860 StoredVec = reverseVector(StoredVec); 2861 2862 // If this member has different type, cast it to a unified type. 2863 2864 if (StoredVec->getType() != SubVT) 2865 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2866 2867 StoredVecs.push_back(StoredVec); 2868 } 2869 2870 // Concatenate all vectors into a wide vector. 2871 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2872 2873 // Interleave the elements in the wide vector. 2874 Value *IVec = Builder.CreateShuffleVector( 2875 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2876 "interleaved.vec"); 2877 2878 Instruction *NewStoreInstr; 2879 if (BlockInMask || MaskForGaps) { 2880 Value *GroupMask = MaskForGaps; 2881 if (BlockInMask) { 2882 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2883 Value *ShuffledMask = Builder.CreateShuffleVector( 2884 BlockInMaskPart, 2885 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2886 "interleaved.mask"); 2887 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2888 ShuffledMask, MaskForGaps) 2889 : ShuffledMask; 2890 } 2891 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2892 Group->getAlign(), GroupMask); 2893 } else 2894 NewStoreInstr = 2895 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2896 2897 Group->addMetadata(NewStoreInstr); 2898 } 2899 } 2900 2901 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2902 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2903 VPValue *StoredValue, VPValue *BlockInMask) { 2904 // Attempt to issue a wide load. 2905 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2906 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2907 2908 assert((LI || SI) && "Invalid Load/Store instruction"); 2909 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2910 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2911 2912 LoopVectorizationCostModel::InstWidening Decision = 2913 Cost->getWideningDecision(Instr, VF); 2914 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2915 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2916 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2917 "CM decision is not to widen the memory instruction"); 2918 2919 Type *ScalarDataTy = getLoadStoreType(Instr); 2920 2921 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2922 const Align Alignment = getLoadStoreAlignment(Instr); 2923 2924 // Determine if the pointer operand of the access is either consecutive or 2925 // reverse consecutive. 2926 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2927 bool ConsecutiveStride = 2928 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2929 bool CreateGatherScatter = 2930 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2931 2932 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2933 // gather/scatter. Otherwise Decision should have been to Scalarize. 2934 assert((ConsecutiveStride || CreateGatherScatter) && 2935 "The instruction should be scalarized"); 2936 (void)ConsecutiveStride; 2937 2938 VectorParts BlockInMaskParts(UF); 2939 bool isMaskRequired = BlockInMask; 2940 if (isMaskRequired) 2941 for (unsigned Part = 0; Part < UF; ++Part) 2942 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2943 2944 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2945 // Calculate the pointer for the specific unroll-part. 2946 GetElementPtrInst *PartPtr = nullptr; 2947 2948 bool InBounds = false; 2949 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2950 InBounds = gep->isInBounds(); 2951 if (Reverse) { 2952 // If the address is consecutive but reversed, then the 2953 // wide store needs to start at the last vector element. 2954 // RunTimeVF = VScale * VF.getKnownMinValue() 2955 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2956 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2957 // NumElt = -Part * RunTimeVF 2958 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2959 // LastLane = 1 - RunTimeVF 2960 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2961 PartPtr = 2962 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2963 PartPtr->setIsInBounds(InBounds); 2964 PartPtr = cast<GetElementPtrInst>( 2965 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2966 PartPtr->setIsInBounds(InBounds); 2967 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2968 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2969 } else { 2970 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2971 PartPtr = cast<GetElementPtrInst>( 2972 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2973 PartPtr->setIsInBounds(InBounds); 2974 } 2975 2976 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2977 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2978 }; 2979 2980 // Handle Stores: 2981 if (SI) { 2982 setDebugLocFromInst(SI); 2983 2984 for (unsigned Part = 0; Part < UF; ++Part) { 2985 Instruction *NewSI = nullptr; 2986 Value *StoredVal = State.get(StoredValue, Part); 2987 if (CreateGatherScatter) { 2988 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2989 Value *VectorGep = State.get(Addr, Part); 2990 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2991 MaskPart); 2992 } else { 2993 if (Reverse) { 2994 // If we store to reverse consecutive memory locations, then we need 2995 // to reverse the order of elements in the stored value. 2996 StoredVal = reverseVector(StoredVal); 2997 // We don't want to update the value in the map as it might be used in 2998 // another expression. So don't call resetVectorValue(StoredVal). 2999 } 3000 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3001 if (isMaskRequired) 3002 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3003 BlockInMaskParts[Part]); 3004 else 3005 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3006 } 3007 addMetadata(NewSI, SI); 3008 } 3009 return; 3010 } 3011 3012 // Handle loads. 3013 assert(LI && "Must have a load instruction"); 3014 setDebugLocFromInst(LI); 3015 for (unsigned Part = 0; Part < UF; ++Part) { 3016 Value *NewLI; 3017 if (CreateGatherScatter) { 3018 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3019 Value *VectorGep = State.get(Addr, Part); 3020 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3021 nullptr, "wide.masked.gather"); 3022 addMetadata(NewLI, LI); 3023 } else { 3024 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3025 if (isMaskRequired) 3026 NewLI = Builder.CreateMaskedLoad( 3027 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3028 PoisonValue::get(DataTy), "wide.masked.load"); 3029 else 3030 NewLI = 3031 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3032 3033 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3034 addMetadata(NewLI, LI); 3035 if (Reverse) 3036 NewLI = reverseVector(NewLI); 3037 } 3038 3039 State.set(Def, NewLI, Part); 3040 } 3041 } 3042 3043 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3044 VPUser &User, 3045 const VPIteration &Instance, 3046 bool IfPredicateInstr, 3047 VPTransformState &State) { 3048 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3049 3050 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3051 // the first lane and part. 3052 if (isa<NoAliasScopeDeclInst>(Instr)) 3053 if (!Instance.isFirstIteration()) 3054 return; 3055 3056 setDebugLocFromInst(Instr); 3057 3058 // Does this instruction return a value ? 3059 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3060 3061 Instruction *Cloned = Instr->clone(); 3062 if (!IsVoidRetTy) 3063 Cloned->setName(Instr->getName() + ".cloned"); 3064 3065 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3066 Builder.GetInsertPoint()); 3067 // Replace the operands of the cloned instructions with their scalar 3068 // equivalents in the new loop. 3069 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3070 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3071 auto InputInstance = Instance; 3072 if (!Operand || !OrigLoop->contains(Operand) || 3073 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3074 InputInstance.Lane = VPLane::getFirstLane(); 3075 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3076 Cloned->setOperand(op, NewOp); 3077 } 3078 addNewMetadata(Cloned, Instr); 3079 3080 // Place the cloned scalar in the new loop. 3081 Builder.Insert(Cloned); 3082 3083 State.set(Def, Cloned, Instance); 3084 3085 // If we just cloned a new assumption, add it the assumption cache. 3086 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3087 AC->registerAssumption(II); 3088 3089 // End if-block. 3090 if (IfPredicateInstr) 3091 PredicatedInstructions.push_back(Cloned); 3092 } 3093 3094 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3095 Value *End, Value *Step, 3096 Instruction *DL) { 3097 BasicBlock *Header = L->getHeader(); 3098 BasicBlock *Latch = L->getLoopLatch(); 3099 // As we're just creating this loop, it's possible no latch exists 3100 // yet. If so, use the header as this will be a single block loop. 3101 if (!Latch) 3102 Latch = Header; 3103 3104 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3105 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3106 setDebugLocFromInst(OldInst, &B); 3107 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3108 3109 B.SetInsertPoint(Latch->getTerminator()); 3110 setDebugLocFromInst(OldInst, &B); 3111 3112 // Create i+1 and fill the PHINode. 3113 // 3114 // If the tail is not folded, we know that End - Start >= Step (either 3115 // statically or through the minimum iteration checks). We also know that both 3116 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3117 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3118 // overflows and we can mark the induction increment as NUW. 3119 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3120 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3121 Induction->addIncoming(Start, L->getLoopPreheader()); 3122 Induction->addIncoming(Next, Latch); 3123 // Create the compare. 3124 Value *ICmp = B.CreateICmpEQ(Next, End); 3125 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3126 3127 // Now we have two terminators. Remove the old one from the block. 3128 Latch->getTerminator()->eraseFromParent(); 3129 3130 return Induction; 3131 } 3132 3133 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3134 if (TripCount) 3135 return TripCount; 3136 3137 assert(L && "Create Trip Count for null loop."); 3138 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3139 // Find the loop boundaries. 3140 ScalarEvolution *SE = PSE.getSE(); 3141 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3142 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3143 "Invalid loop count"); 3144 3145 Type *IdxTy = Legal->getWidestInductionType(); 3146 assert(IdxTy && "No type for induction"); 3147 3148 // The exit count might have the type of i64 while the phi is i32. This can 3149 // happen if we have an induction variable that is sign extended before the 3150 // compare. The only way that we get a backedge taken count is that the 3151 // induction variable was signed and as such will not overflow. In such a case 3152 // truncation is legal. 3153 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3154 IdxTy->getPrimitiveSizeInBits()) 3155 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3156 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3157 3158 // Get the total trip count from the count by adding 1. 3159 const SCEV *ExitCount = SE->getAddExpr( 3160 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3161 3162 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3163 3164 // Expand the trip count and place the new instructions in the preheader. 3165 // Notice that the pre-header does not change, only the loop body. 3166 SCEVExpander Exp(*SE, DL, "induction"); 3167 3168 // Count holds the overall loop count (N). 3169 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3170 L->getLoopPreheader()->getTerminator()); 3171 3172 if (TripCount->getType()->isPointerTy()) 3173 TripCount = 3174 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3175 L->getLoopPreheader()->getTerminator()); 3176 3177 return TripCount; 3178 } 3179 3180 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3181 if (VectorTripCount) 3182 return VectorTripCount; 3183 3184 Value *TC = getOrCreateTripCount(L); 3185 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3186 3187 Type *Ty = TC->getType(); 3188 // This is where we can make the step a runtime constant. 3189 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3190 3191 // If the tail is to be folded by masking, round the number of iterations N 3192 // up to a multiple of Step instead of rounding down. This is done by first 3193 // adding Step-1 and then rounding down. Note that it's ok if this addition 3194 // overflows: the vector induction variable will eventually wrap to zero given 3195 // that it starts at zero and its Step is a power of two; the loop will then 3196 // exit, with the last early-exit vector comparison also producing all-true. 3197 if (Cost->foldTailByMasking()) { 3198 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3199 "VF*UF must be a power of 2 when folding tail by masking"); 3200 assert(!VF.isScalable() && 3201 "Tail folding not yet supported for scalable vectors"); 3202 TC = Builder.CreateAdd( 3203 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3204 } 3205 3206 // Now we need to generate the expression for the part of the loop that the 3207 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3208 // iterations are not required for correctness, or N - Step, otherwise. Step 3209 // is equal to the vectorization factor (number of SIMD elements) times the 3210 // unroll factor (number of SIMD instructions). 3211 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3212 3213 // There are cases where we *must* run at least one iteration in the remainder 3214 // loop. See the cost model for when this can happen. If the step evenly 3215 // divides the trip count, we set the remainder to be equal to the step. If 3216 // the step does not evenly divide the trip count, no adjustment is necessary 3217 // since there will already be scalar iterations. Note that the minimum 3218 // iterations check ensures that N >= Step. 3219 if (Cost->requiresScalarEpilogue(VF)) { 3220 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3221 R = Builder.CreateSelect(IsZero, Step, R); 3222 } 3223 3224 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3225 3226 return VectorTripCount; 3227 } 3228 3229 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3230 const DataLayout &DL) { 3231 // Verify that V is a vector type with same number of elements as DstVTy. 3232 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3233 unsigned VF = DstFVTy->getNumElements(); 3234 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3235 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3236 Type *SrcElemTy = SrcVecTy->getElementType(); 3237 Type *DstElemTy = DstFVTy->getElementType(); 3238 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3239 "Vector elements must have same size"); 3240 3241 // Do a direct cast if element types are castable. 3242 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3243 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3244 } 3245 // V cannot be directly casted to desired vector type. 3246 // May happen when V is a floating point vector but DstVTy is a vector of 3247 // pointers or vice-versa. Handle this using a two-step bitcast using an 3248 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3249 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3250 "Only one type should be a pointer type"); 3251 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3252 "Only one type should be a floating point type"); 3253 Type *IntTy = 3254 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3255 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3256 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3257 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3258 } 3259 3260 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3261 BasicBlock *Bypass) { 3262 Value *Count = getOrCreateTripCount(L); 3263 // Reuse existing vector loop preheader for TC checks. 3264 // Note that new preheader block is generated for vector loop. 3265 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3266 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3267 3268 // Generate code to check if the loop's trip count is less than VF * UF, or 3269 // equal to it in case a scalar epilogue is required; this implies that the 3270 // vector trip count is zero. This check also covers the case where adding one 3271 // to the backedge-taken count overflowed leading to an incorrect trip count 3272 // of zero. In this case we will also jump to the scalar loop. 3273 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3274 : ICmpInst::ICMP_ULT; 3275 3276 // If tail is to be folded, vector loop takes care of all iterations. 3277 Value *CheckMinIters = Builder.getFalse(); 3278 if (!Cost->foldTailByMasking()) { 3279 Value *Step = 3280 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3281 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3282 } 3283 // Create new preheader for vector loop. 3284 LoopVectorPreHeader = 3285 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3286 "vector.ph"); 3287 3288 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3289 DT->getNode(Bypass)->getIDom()) && 3290 "TC check is expected to dominate Bypass"); 3291 3292 // Update dominator for Bypass & LoopExit (if needed). 3293 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3294 if (!Cost->requiresScalarEpilogue(VF)) 3295 // If there is an epilogue which must run, there's no edge from the 3296 // middle block to exit blocks and thus no need to update the immediate 3297 // dominator of the exit blocks. 3298 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3299 3300 ReplaceInstWithInst( 3301 TCCheckBlock->getTerminator(), 3302 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3303 LoopBypassBlocks.push_back(TCCheckBlock); 3304 } 3305 3306 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3307 3308 BasicBlock *const SCEVCheckBlock = 3309 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3310 if (!SCEVCheckBlock) 3311 return nullptr; 3312 3313 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3314 (OptForSizeBasedOnProfile && 3315 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3316 "Cannot SCEV check stride or overflow when optimizing for size"); 3317 3318 3319 // Update dominator only if this is first RT check. 3320 if (LoopBypassBlocks.empty()) { 3321 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3322 if (!Cost->requiresScalarEpilogue(VF)) 3323 // If there is an epilogue which must run, there's no edge from the 3324 // middle block to exit blocks and thus no need to update the immediate 3325 // dominator of the exit blocks. 3326 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3327 } 3328 3329 LoopBypassBlocks.push_back(SCEVCheckBlock); 3330 AddedSafetyChecks = true; 3331 return SCEVCheckBlock; 3332 } 3333 3334 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3335 BasicBlock *Bypass) { 3336 // VPlan-native path does not do any analysis for runtime checks currently. 3337 if (EnableVPlanNativePath) 3338 return nullptr; 3339 3340 BasicBlock *const MemCheckBlock = 3341 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3342 3343 // Check if we generated code that checks in runtime if arrays overlap. We put 3344 // the checks into a separate block to make the more common case of few 3345 // elements faster. 3346 if (!MemCheckBlock) 3347 return nullptr; 3348 3349 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3350 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3351 "Cannot emit memory checks when optimizing for size, unless forced " 3352 "to vectorize."); 3353 ORE->emit([&]() { 3354 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3355 L->getStartLoc(), L->getHeader()) 3356 << "Code-size may be reduced by not forcing " 3357 "vectorization, or by source-code modifications " 3358 "eliminating the need for runtime checks " 3359 "(e.g., adding 'restrict')."; 3360 }); 3361 } 3362 3363 LoopBypassBlocks.push_back(MemCheckBlock); 3364 3365 AddedSafetyChecks = true; 3366 3367 // We currently don't use LoopVersioning for the actual loop cloning but we 3368 // still use it to add the noalias metadata. 3369 LVer = std::make_unique<LoopVersioning>( 3370 *Legal->getLAI(), 3371 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3372 DT, PSE.getSE()); 3373 LVer->prepareNoAliasMetadata(); 3374 return MemCheckBlock; 3375 } 3376 3377 Value *InnerLoopVectorizer::emitTransformedIndex( 3378 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3379 const InductionDescriptor &ID) const { 3380 3381 SCEVExpander Exp(*SE, DL, "induction"); 3382 auto Step = ID.getStep(); 3383 auto StartValue = ID.getStartValue(); 3384 assert(Index->getType()->getScalarType() == Step->getType() && 3385 "Index scalar type does not match StepValue type"); 3386 3387 // Note: the IR at this point is broken. We cannot use SE to create any new 3388 // SCEV and then expand it, hoping that SCEV's simplification will give us 3389 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3390 // lead to various SCEV crashes. So all we can do is to use builder and rely 3391 // on InstCombine for future simplifications. Here we handle some trivial 3392 // cases only. 3393 auto CreateAdd = [&B](Value *X, Value *Y) { 3394 assert(X->getType() == Y->getType() && "Types don't match!"); 3395 if (auto *CX = dyn_cast<ConstantInt>(X)) 3396 if (CX->isZero()) 3397 return Y; 3398 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3399 if (CY->isZero()) 3400 return X; 3401 return B.CreateAdd(X, Y); 3402 }; 3403 3404 // We allow X to be a vector type, in which case Y will potentially be 3405 // splatted into a vector with the same element count. 3406 auto CreateMul = [&B](Value *X, Value *Y) { 3407 assert(X->getType()->getScalarType() == Y->getType() && 3408 "Types don't match!"); 3409 if (auto *CX = dyn_cast<ConstantInt>(X)) 3410 if (CX->isOne()) 3411 return Y; 3412 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3413 if (CY->isOne()) 3414 return X; 3415 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3416 if (XVTy && !isa<VectorType>(Y->getType())) 3417 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3418 return B.CreateMul(X, Y); 3419 }; 3420 3421 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3422 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3423 // the DomTree is not kept up-to-date for additional blocks generated in the 3424 // vector loop. By using the header as insertion point, we guarantee that the 3425 // expanded instructions dominate all their uses. 3426 auto GetInsertPoint = [this, &B]() { 3427 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3428 if (InsertBB != LoopVectorBody && 3429 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3430 return LoopVectorBody->getTerminator(); 3431 return &*B.GetInsertPoint(); 3432 }; 3433 3434 switch (ID.getKind()) { 3435 case InductionDescriptor::IK_IntInduction: { 3436 assert(!isa<VectorType>(Index->getType()) && 3437 "Vector indices not supported for integer inductions yet"); 3438 assert(Index->getType() == StartValue->getType() && 3439 "Index type does not match StartValue type"); 3440 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3441 return B.CreateSub(StartValue, Index); 3442 auto *Offset = CreateMul( 3443 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3444 return CreateAdd(StartValue, Offset); 3445 } 3446 case InductionDescriptor::IK_PtrInduction: { 3447 assert(isa<SCEVConstant>(Step) && 3448 "Expected constant step for pointer induction"); 3449 return B.CreateGEP( 3450 ID.getElementType(), StartValue, 3451 CreateMul(Index, 3452 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3453 GetInsertPoint()))); 3454 } 3455 case InductionDescriptor::IK_FpInduction: { 3456 assert(!isa<VectorType>(Index->getType()) && 3457 "Vector indices not supported for FP inductions yet"); 3458 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3459 auto InductionBinOp = ID.getInductionBinOp(); 3460 assert(InductionBinOp && 3461 (InductionBinOp->getOpcode() == Instruction::FAdd || 3462 InductionBinOp->getOpcode() == Instruction::FSub) && 3463 "Original bin op should be defined for FP induction"); 3464 3465 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3466 Value *MulExp = B.CreateFMul(StepValue, Index); 3467 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3468 "induction"); 3469 } 3470 case InductionDescriptor::IK_NoInduction: 3471 return nullptr; 3472 } 3473 llvm_unreachable("invalid enum"); 3474 } 3475 3476 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3477 LoopScalarBody = OrigLoop->getHeader(); 3478 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3479 assert(LoopVectorPreHeader && "Invalid loop structure"); 3480 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3481 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3482 "multiple exit loop without required epilogue?"); 3483 3484 LoopMiddleBlock = 3485 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3486 LI, nullptr, Twine(Prefix) + "middle.block"); 3487 LoopScalarPreHeader = 3488 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3489 nullptr, Twine(Prefix) + "scalar.ph"); 3490 3491 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3492 3493 // Set up the middle block terminator. Two cases: 3494 // 1) If we know that we must execute the scalar epilogue, emit an 3495 // unconditional branch. 3496 // 2) Otherwise, we must have a single unique exit block (due to how we 3497 // implement the multiple exit case). In this case, set up a conditonal 3498 // branch from the middle block to the loop scalar preheader, and the 3499 // exit block. completeLoopSkeleton will update the condition to use an 3500 // iteration check, if required to decide whether to execute the remainder. 3501 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3502 BranchInst::Create(LoopScalarPreHeader) : 3503 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3504 Builder.getTrue()); 3505 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3506 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3507 3508 // We intentionally don't let SplitBlock to update LoopInfo since 3509 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3510 // LoopVectorBody is explicitly added to the correct place few lines later. 3511 LoopVectorBody = 3512 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3513 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3514 3515 // Update dominator for loop exit. 3516 if (!Cost->requiresScalarEpilogue(VF)) 3517 // If there is an epilogue which must run, there's no edge from the 3518 // middle block to exit blocks and thus no need to update the immediate 3519 // dominator of the exit blocks. 3520 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3521 3522 // Create and register the new vector loop. 3523 Loop *Lp = LI->AllocateLoop(); 3524 Loop *ParentLoop = OrigLoop->getParentLoop(); 3525 3526 // Insert the new loop into the loop nest and register the new basic blocks 3527 // before calling any utilities such as SCEV that require valid LoopInfo. 3528 if (ParentLoop) { 3529 ParentLoop->addChildLoop(Lp); 3530 } else { 3531 LI->addTopLevelLoop(Lp); 3532 } 3533 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3534 return Lp; 3535 } 3536 3537 void InnerLoopVectorizer::createInductionResumeValues( 3538 Loop *L, Value *VectorTripCount, 3539 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3540 assert(VectorTripCount && L && "Expected valid arguments"); 3541 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3542 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3543 "Inconsistent information about additional bypass."); 3544 // We are going to resume the execution of the scalar loop. 3545 // Go over all of the induction variables that we found and fix the 3546 // PHIs that are left in the scalar version of the loop. 3547 // The starting values of PHI nodes depend on the counter of the last 3548 // iteration in the vectorized loop. 3549 // If we come from a bypass edge then we need to start from the original 3550 // start value. 3551 for (auto &InductionEntry : Legal->getInductionVars()) { 3552 PHINode *OrigPhi = InductionEntry.first; 3553 InductionDescriptor II = InductionEntry.second; 3554 3555 // Create phi nodes to merge from the backedge-taken check block. 3556 PHINode *BCResumeVal = 3557 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3558 LoopScalarPreHeader->getTerminator()); 3559 // Copy original phi DL over to the new one. 3560 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3561 Value *&EndValue = IVEndValues[OrigPhi]; 3562 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3563 if (OrigPhi == OldInduction) { 3564 // We know what the end value is. 3565 EndValue = VectorTripCount; 3566 } else { 3567 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3568 3569 // Fast-math-flags propagate from the original induction instruction. 3570 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3571 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3572 3573 Type *StepType = II.getStep()->getType(); 3574 Instruction::CastOps CastOp = 3575 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3576 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3577 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3578 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3579 EndValue->setName("ind.end"); 3580 3581 // Compute the end value for the additional bypass (if applicable). 3582 if (AdditionalBypass.first) { 3583 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3584 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3585 StepType, true); 3586 CRD = 3587 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3588 EndValueFromAdditionalBypass = 3589 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3590 EndValueFromAdditionalBypass->setName("ind.end"); 3591 } 3592 } 3593 // The new PHI merges the original incoming value, in case of a bypass, 3594 // or the value at the end of the vectorized loop. 3595 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3596 3597 // Fix the scalar body counter (PHI node). 3598 // The old induction's phi node in the scalar body needs the truncated 3599 // value. 3600 for (BasicBlock *BB : LoopBypassBlocks) 3601 BCResumeVal->addIncoming(II.getStartValue(), BB); 3602 3603 if (AdditionalBypass.first) 3604 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3605 EndValueFromAdditionalBypass); 3606 3607 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3608 } 3609 } 3610 3611 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3612 MDNode *OrigLoopID) { 3613 assert(L && "Expected valid loop."); 3614 3615 // The trip counts should be cached by now. 3616 Value *Count = getOrCreateTripCount(L); 3617 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3618 3619 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3620 3621 // Add a check in the middle block to see if we have completed 3622 // all of the iterations in the first vector loop. Three cases: 3623 // 1) If we require a scalar epilogue, there is no conditional branch as 3624 // we unconditionally branch to the scalar preheader. Do nothing. 3625 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3626 // Thus if tail is to be folded, we know we don't need to run the 3627 // remainder and we can use the previous value for the condition (true). 3628 // 3) Otherwise, construct a runtime check. 3629 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3630 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3631 Count, VectorTripCount, "cmp.n", 3632 LoopMiddleBlock->getTerminator()); 3633 3634 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3635 // of the corresponding compare because they may have ended up with 3636 // different line numbers and we want to avoid awkward line stepping while 3637 // debugging. Eg. if the compare has got a line number inside the loop. 3638 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3639 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3640 } 3641 3642 // Get ready to start creating new instructions into the vectorized body. 3643 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3644 "Inconsistent vector loop preheader"); 3645 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3646 3647 Optional<MDNode *> VectorizedLoopID = 3648 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3649 LLVMLoopVectorizeFollowupVectorized}); 3650 if (VectorizedLoopID.hasValue()) { 3651 L->setLoopID(VectorizedLoopID.getValue()); 3652 3653 // Do not setAlreadyVectorized if loop attributes have been defined 3654 // explicitly. 3655 return LoopVectorPreHeader; 3656 } 3657 3658 // Keep all loop hints from the original loop on the vector loop (we'll 3659 // replace the vectorizer-specific hints below). 3660 if (MDNode *LID = OrigLoop->getLoopID()) 3661 L->setLoopID(LID); 3662 3663 LoopVectorizeHints Hints(L, true, *ORE); 3664 Hints.setAlreadyVectorized(); 3665 3666 #ifdef EXPENSIVE_CHECKS 3667 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3668 LI->verify(*DT); 3669 #endif 3670 3671 return LoopVectorPreHeader; 3672 } 3673 3674 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3675 /* 3676 In this function we generate a new loop. The new loop will contain 3677 the vectorized instructions while the old loop will continue to run the 3678 scalar remainder. 3679 3680 [ ] <-- loop iteration number check. 3681 / | 3682 / v 3683 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3684 | / | 3685 | / v 3686 || [ ] <-- vector pre header. 3687 |/ | 3688 | v 3689 | [ ] \ 3690 | [ ]_| <-- vector loop. 3691 | | 3692 | v 3693 \ -[ ] <--- middle-block. 3694 \/ | 3695 /\ v 3696 | ->[ ] <--- new preheader. 3697 | | 3698 (opt) v <-- edge from middle to exit iff epilogue is not required. 3699 | [ ] \ 3700 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3701 \ | 3702 \ v 3703 >[ ] <-- exit block(s). 3704 ... 3705 */ 3706 3707 // Get the metadata of the original loop before it gets modified. 3708 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3709 3710 // Workaround! Compute the trip count of the original loop and cache it 3711 // before we start modifying the CFG. This code has a systemic problem 3712 // wherein it tries to run analysis over partially constructed IR; this is 3713 // wrong, and not simply for SCEV. The trip count of the original loop 3714 // simply happens to be prone to hitting this in practice. In theory, we 3715 // can hit the same issue for any SCEV, or ValueTracking query done during 3716 // mutation. See PR49900. 3717 getOrCreateTripCount(OrigLoop); 3718 3719 // Create an empty vector loop, and prepare basic blocks for the runtime 3720 // checks. 3721 Loop *Lp = createVectorLoopSkeleton(""); 3722 3723 // Now, compare the new count to zero. If it is zero skip the vector loop and 3724 // jump to the scalar loop. This check also covers the case where the 3725 // backedge-taken count is uint##_max: adding one to it will overflow leading 3726 // to an incorrect trip count of zero. In this (rare) case we will also jump 3727 // to the scalar loop. 3728 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3729 3730 // Generate the code to check any assumptions that we've made for SCEV 3731 // expressions. 3732 emitSCEVChecks(Lp, LoopScalarPreHeader); 3733 3734 // Generate the code that checks in runtime if arrays overlap. We put the 3735 // checks into a separate block to make the more common case of few elements 3736 // faster. 3737 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3738 3739 // Some loops have a single integer induction variable, while other loops 3740 // don't. One example is c++ iterators that often have multiple pointer 3741 // induction variables. In the code below we also support a case where we 3742 // don't have a single induction variable. 3743 // 3744 // We try to obtain an induction variable from the original loop as hard 3745 // as possible. However if we don't find one that: 3746 // - is an integer 3747 // - counts from zero, stepping by one 3748 // - is the size of the widest induction variable type 3749 // then we create a new one. 3750 OldInduction = Legal->getPrimaryInduction(); 3751 Type *IdxTy = Legal->getWidestInductionType(); 3752 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3753 // The loop step is equal to the vectorization factor (num of SIMD elements) 3754 // times the unroll factor (num of SIMD instructions). 3755 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3756 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3757 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3758 Induction = 3759 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3760 getDebugLocFromInstOrOperands(OldInduction)); 3761 3762 // Emit phis for the new starting index of the scalar loop. 3763 createInductionResumeValues(Lp, CountRoundDown); 3764 3765 return completeLoopSkeleton(Lp, OrigLoopID); 3766 } 3767 3768 // Fix up external users of the induction variable. At this point, we are 3769 // in LCSSA form, with all external PHIs that use the IV having one input value, 3770 // coming from the remainder loop. We need those PHIs to also have a correct 3771 // value for the IV when arriving directly from the middle block. 3772 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3773 const InductionDescriptor &II, 3774 Value *CountRoundDown, Value *EndValue, 3775 BasicBlock *MiddleBlock) { 3776 // There are two kinds of external IV usages - those that use the value 3777 // computed in the last iteration (the PHI) and those that use the penultimate 3778 // value (the value that feeds into the phi from the loop latch). 3779 // We allow both, but they, obviously, have different values. 3780 3781 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3782 3783 DenseMap<Value *, Value *> MissingVals; 3784 3785 // An external user of the last iteration's value should see the value that 3786 // the remainder loop uses to initialize its own IV. 3787 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3788 for (User *U : PostInc->users()) { 3789 Instruction *UI = cast<Instruction>(U); 3790 if (!OrigLoop->contains(UI)) { 3791 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3792 MissingVals[UI] = EndValue; 3793 } 3794 } 3795 3796 // An external user of the penultimate value need to see EndValue - Step. 3797 // The simplest way to get this is to recompute it from the constituent SCEVs, 3798 // that is Start + (Step * (CRD - 1)). 3799 for (User *U : OrigPhi->users()) { 3800 auto *UI = cast<Instruction>(U); 3801 if (!OrigLoop->contains(UI)) { 3802 const DataLayout &DL = 3803 OrigLoop->getHeader()->getModule()->getDataLayout(); 3804 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3805 3806 IRBuilder<> B(MiddleBlock->getTerminator()); 3807 3808 // Fast-math-flags propagate from the original induction instruction. 3809 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3810 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3811 3812 Value *CountMinusOne = B.CreateSub( 3813 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3814 Value *CMO = 3815 !II.getStep()->getType()->isIntegerTy() 3816 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3817 II.getStep()->getType()) 3818 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3819 CMO->setName("cast.cmo"); 3820 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3821 Escape->setName("ind.escape"); 3822 MissingVals[UI] = Escape; 3823 } 3824 } 3825 3826 for (auto &I : MissingVals) { 3827 PHINode *PHI = cast<PHINode>(I.first); 3828 // One corner case we have to handle is two IVs "chasing" each-other, 3829 // that is %IV2 = phi [...], [ %IV1, %latch ] 3830 // In this case, if IV1 has an external use, we need to avoid adding both 3831 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3832 // don't already have an incoming value for the middle block. 3833 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3834 PHI->addIncoming(I.second, MiddleBlock); 3835 } 3836 } 3837 3838 namespace { 3839 3840 struct CSEDenseMapInfo { 3841 static bool canHandle(const Instruction *I) { 3842 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3843 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3844 } 3845 3846 static inline Instruction *getEmptyKey() { 3847 return DenseMapInfo<Instruction *>::getEmptyKey(); 3848 } 3849 3850 static inline Instruction *getTombstoneKey() { 3851 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3852 } 3853 3854 static unsigned getHashValue(const Instruction *I) { 3855 assert(canHandle(I) && "Unknown instruction!"); 3856 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3857 I->value_op_end())); 3858 } 3859 3860 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3861 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3862 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3863 return LHS == RHS; 3864 return LHS->isIdenticalTo(RHS); 3865 } 3866 }; 3867 3868 } // end anonymous namespace 3869 3870 ///Perform cse of induction variable instructions. 3871 static void cse(BasicBlock *BB) { 3872 // Perform simple cse. 3873 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3874 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3875 if (!CSEDenseMapInfo::canHandle(&In)) 3876 continue; 3877 3878 // Check if we can replace this instruction with any of the 3879 // visited instructions. 3880 if (Instruction *V = CSEMap.lookup(&In)) { 3881 In.replaceAllUsesWith(V); 3882 In.eraseFromParent(); 3883 continue; 3884 } 3885 3886 CSEMap[&In] = &In; 3887 } 3888 } 3889 3890 InstructionCost 3891 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3892 bool &NeedToScalarize) const { 3893 Function *F = CI->getCalledFunction(); 3894 Type *ScalarRetTy = CI->getType(); 3895 SmallVector<Type *, 4> Tys, ScalarTys; 3896 for (auto &ArgOp : CI->args()) 3897 ScalarTys.push_back(ArgOp->getType()); 3898 3899 // Estimate cost of scalarized vector call. The source operands are assumed 3900 // to be vectors, so we need to extract individual elements from there, 3901 // execute VF scalar calls, and then gather the result into the vector return 3902 // value. 3903 InstructionCost ScalarCallCost = 3904 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3905 if (VF.isScalar()) 3906 return ScalarCallCost; 3907 3908 // Compute corresponding vector type for return value and arguments. 3909 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3910 for (Type *ScalarTy : ScalarTys) 3911 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3912 3913 // Compute costs of unpacking argument values for the scalar calls and 3914 // packing the return values to a vector. 3915 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3916 3917 InstructionCost Cost = 3918 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3919 3920 // If we can't emit a vector call for this function, then the currently found 3921 // cost is the cost we need to return. 3922 NeedToScalarize = true; 3923 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3924 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3925 3926 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3927 return Cost; 3928 3929 // If the corresponding vector cost is cheaper, return its cost. 3930 InstructionCost VectorCallCost = 3931 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3932 if (VectorCallCost < Cost) { 3933 NeedToScalarize = false; 3934 Cost = VectorCallCost; 3935 } 3936 return Cost; 3937 } 3938 3939 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3940 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3941 return Elt; 3942 return VectorType::get(Elt, VF); 3943 } 3944 3945 InstructionCost 3946 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3947 ElementCount VF) const { 3948 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3949 assert(ID && "Expected intrinsic call!"); 3950 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3951 FastMathFlags FMF; 3952 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3953 FMF = FPMO->getFastMathFlags(); 3954 3955 SmallVector<const Value *> Arguments(CI->args()); 3956 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3957 SmallVector<Type *> ParamTys; 3958 std::transform(FTy->param_begin(), FTy->param_end(), 3959 std::back_inserter(ParamTys), 3960 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3961 3962 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3963 dyn_cast<IntrinsicInst>(CI)); 3964 return TTI.getIntrinsicInstrCost(CostAttrs, 3965 TargetTransformInfo::TCK_RecipThroughput); 3966 } 3967 3968 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3969 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3970 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3971 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3972 } 3973 3974 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3975 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3976 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3977 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3978 } 3979 3980 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3981 // For every instruction `I` in MinBWs, truncate the operands, create a 3982 // truncated version of `I` and reextend its result. InstCombine runs 3983 // later and will remove any ext/trunc pairs. 3984 SmallPtrSet<Value *, 4> Erased; 3985 for (const auto &KV : Cost->getMinimalBitwidths()) { 3986 // If the value wasn't vectorized, we must maintain the original scalar 3987 // type. The absence of the value from State indicates that it 3988 // wasn't vectorized. 3989 // FIXME: Should not rely on getVPValue at this point. 3990 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3991 if (!State.hasAnyVectorValue(Def)) 3992 continue; 3993 for (unsigned Part = 0; Part < UF; ++Part) { 3994 Value *I = State.get(Def, Part); 3995 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3996 continue; 3997 Type *OriginalTy = I->getType(); 3998 Type *ScalarTruncatedTy = 3999 IntegerType::get(OriginalTy->getContext(), KV.second); 4000 auto *TruncatedTy = VectorType::get( 4001 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4002 if (TruncatedTy == OriginalTy) 4003 continue; 4004 4005 IRBuilder<> B(cast<Instruction>(I)); 4006 auto ShrinkOperand = [&](Value *V) -> Value * { 4007 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4008 if (ZI->getSrcTy() == TruncatedTy) 4009 return ZI->getOperand(0); 4010 return B.CreateZExtOrTrunc(V, TruncatedTy); 4011 }; 4012 4013 // The actual instruction modification depends on the instruction type, 4014 // unfortunately. 4015 Value *NewI = nullptr; 4016 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4017 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4018 ShrinkOperand(BO->getOperand(1))); 4019 4020 // Any wrapping introduced by shrinking this operation shouldn't be 4021 // considered undefined behavior. So, we can't unconditionally copy 4022 // arithmetic wrapping flags to NewI. 4023 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4024 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4025 NewI = 4026 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4027 ShrinkOperand(CI->getOperand(1))); 4028 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4029 NewI = B.CreateSelect(SI->getCondition(), 4030 ShrinkOperand(SI->getTrueValue()), 4031 ShrinkOperand(SI->getFalseValue())); 4032 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4033 switch (CI->getOpcode()) { 4034 default: 4035 llvm_unreachable("Unhandled cast!"); 4036 case Instruction::Trunc: 4037 NewI = ShrinkOperand(CI->getOperand(0)); 4038 break; 4039 case Instruction::SExt: 4040 NewI = B.CreateSExtOrTrunc( 4041 CI->getOperand(0), 4042 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4043 break; 4044 case Instruction::ZExt: 4045 NewI = B.CreateZExtOrTrunc( 4046 CI->getOperand(0), 4047 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4048 break; 4049 } 4050 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4051 auto Elements0 = 4052 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4053 auto *O0 = B.CreateZExtOrTrunc( 4054 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4055 auto Elements1 = 4056 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4057 auto *O1 = B.CreateZExtOrTrunc( 4058 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4059 4060 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4061 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4062 // Don't do anything with the operands, just extend the result. 4063 continue; 4064 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4065 auto Elements = 4066 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4067 auto *O0 = B.CreateZExtOrTrunc( 4068 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4069 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4070 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4071 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4072 auto Elements = 4073 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4074 auto *O0 = B.CreateZExtOrTrunc( 4075 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4076 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4077 } else { 4078 // If we don't know what to do, be conservative and don't do anything. 4079 continue; 4080 } 4081 4082 // Lastly, extend the result. 4083 NewI->takeName(cast<Instruction>(I)); 4084 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4085 I->replaceAllUsesWith(Res); 4086 cast<Instruction>(I)->eraseFromParent(); 4087 Erased.insert(I); 4088 State.reset(Def, Res, Part); 4089 } 4090 } 4091 4092 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4093 for (const auto &KV : Cost->getMinimalBitwidths()) { 4094 // If the value wasn't vectorized, we must maintain the original scalar 4095 // type. The absence of the value from State indicates that it 4096 // wasn't vectorized. 4097 // FIXME: Should not rely on getVPValue at this point. 4098 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4099 if (!State.hasAnyVectorValue(Def)) 4100 continue; 4101 for (unsigned Part = 0; Part < UF; ++Part) { 4102 Value *I = State.get(Def, Part); 4103 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4104 if (Inst && Inst->use_empty()) { 4105 Value *NewI = Inst->getOperand(0); 4106 Inst->eraseFromParent(); 4107 State.reset(Def, NewI, Part); 4108 } 4109 } 4110 } 4111 } 4112 4113 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4114 // Insert truncates and extends for any truncated instructions as hints to 4115 // InstCombine. 4116 if (VF.isVector()) 4117 truncateToMinimalBitwidths(State); 4118 4119 // Fix widened non-induction PHIs by setting up the PHI operands. 4120 if (OrigPHIsToFix.size()) { 4121 assert(EnableVPlanNativePath && 4122 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4123 fixNonInductionPHIs(State); 4124 } 4125 4126 // At this point every instruction in the original loop is widened to a 4127 // vector form. Now we need to fix the recurrences in the loop. These PHI 4128 // nodes are currently empty because we did not want to introduce cycles. 4129 // This is the second stage of vectorizing recurrences. 4130 fixCrossIterationPHIs(State); 4131 4132 // Forget the original basic block. 4133 PSE.getSE()->forgetLoop(OrigLoop); 4134 4135 // If we inserted an edge from the middle block to the unique exit block, 4136 // update uses outside the loop (phis) to account for the newly inserted 4137 // edge. 4138 if (!Cost->requiresScalarEpilogue(VF)) { 4139 // Fix-up external users of the induction variables. 4140 for (auto &Entry : Legal->getInductionVars()) 4141 fixupIVUsers(Entry.first, Entry.second, 4142 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4143 IVEndValues[Entry.first], LoopMiddleBlock); 4144 4145 fixLCSSAPHIs(State); 4146 } 4147 4148 for (Instruction *PI : PredicatedInstructions) 4149 sinkScalarOperands(&*PI); 4150 4151 // Remove redundant induction instructions. 4152 cse(LoopVectorBody); 4153 4154 // Set/update profile weights for the vector and remainder loops as original 4155 // loop iterations are now distributed among them. Note that original loop 4156 // represented by LoopScalarBody becomes remainder loop after vectorization. 4157 // 4158 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4159 // end up getting slightly roughened result but that should be OK since 4160 // profile is not inherently precise anyway. Note also possible bypass of 4161 // vector code caused by legality checks is ignored, assigning all the weight 4162 // to the vector loop, optimistically. 4163 // 4164 // For scalable vectorization we can't know at compile time how many iterations 4165 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4166 // vscale of '1'. 4167 setProfileInfoAfterUnrolling( 4168 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4169 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4170 } 4171 4172 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4173 // In order to support recurrences we need to be able to vectorize Phi nodes. 4174 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4175 // stage #2: We now need to fix the recurrences by adding incoming edges to 4176 // the currently empty PHI nodes. At this point every instruction in the 4177 // original loop is widened to a vector form so we can use them to construct 4178 // the incoming edges. 4179 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4180 for (VPRecipeBase &R : Header->phis()) { 4181 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4182 fixReduction(ReductionPhi, State); 4183 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4184 fixFirstOrderRecurrence(FOR, State); 4185 } 4186 } 4187 4188 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4189 VPTransformState &State) { 4190 // This is the second phase of vectorizing first-order recurrences. An 4191 // overview of the transformation is described below. Suppose we have the 4192 // following loop. 4193 // 4194 // for (int i = 0; i < n; ++i) 4195 // b[i] = a[i] - a[i - 1]; 4196 // 4197 // There is a first-order recurrence on "a". For this loop, the shorthand 4198 // scalar IR looks like: 4199 // 4200 // scalar.ph: 4201 // s_init = a[-1] 4202 // br scalar.body 4203 // 4204 // scalar.body: 4205 // i = phi [0, scalar.ph], [i+1, scalar.body] 4206 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4207 // s2 = a[i] 4208 // b[i] = s2 - s1 4209 // br cond, scalar.body, ... 4210 // 4211 // In this example, s1 is a recurrence because it's value depends on the 4212 // previous iteration. In the first phase of vectorization, we created a 4213 // vector phi v1 for s1. We now complete the vectorization and produce the 4214 // shorthand vector IR shown below (for VF = 4, UF = 1). 4215 // 4216 // vector.ph: 4217 // v_init = vector(..., ..., ..., a[-1]) 4218 // br vector.body 4219 // 4220 // vector.body 4221 // i = phi [0, vector.ph], [i+4, vector.body] 4222 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4223 // v2 = a[i, i+1, i+2, i+3]; 4224 // v3 = vector(v1(3), v2(0, 1, 2)) 4225 // b[i, i+1, i+2, i+3] = v2 - v3 4226 // br cond, vector.body, middle.block 4227 // 4228 // middle.block: 4229 // x = v2(3) 4230 // br scalar.ph 4231 // 4232 // scalar.ph: 4233 // s_init = phi [x, middle.block], [a[-1], otherwise] 4234 // br scalar.body 4235 // 4236 // After execution completes the vector loop, we extract the next value of 4237 // the recurrence (x) to use as the initial value in the scalar loop. 4238 4239 // Extract the last vector element in the middle block. This will be the 4240 // initial value for the recurrence when jumping to the scalar loop. 4241 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4242 Value *Incoming = State.get(PreviousDef, UF - 1); 4243 auto *ExtractForScalar = Incoming; 4244 auto *IdxTy = Builder.getInt32Ty(); 4245 if (VF.isVector()) { 4246 auto *One = ConstantInt::get(IdxTy, 1); 4247 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4248 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4249 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4250 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4251 "vector.recur.extract"); 4252 } 4253 // Extract the second last element in the middle block if the 4254 // Phi is used outside the loop. We need to extract the phi itself 4255 // and not the last element (the phi update in the current iteration). This 4256 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4257 // when the scalar loop is not run at all. 4258 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4259 if (VF.isVector()) { 4260 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4261 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4262 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4263 Incoming, Idx, "vector.recur.extract.for.phi"); 4264 } else if (UF > 1) 4265 // When loop is unrolled without vectorizing, initialize 4266 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4267 // of `Incoming`. This is analogous to the vectorized case above: extracting 4268 // the second last element when VF > 1. 4269 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4270 4271 // Fix the initial value of the original recurrence in the scalar loop. 4272 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4273 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4274 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4275 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4276 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4277 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4278 Start->addIncoming(Incoming, BB); 4279 } 4280 4281 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4282 Phi->setName("scalar.recur"); 4283 4284 // Finally, fix users of the recurrence outside the loop. The users will need 4285 // either the last value of the scalar recurrence or the last value of the 4286 // vector recurrence we extracted in the middle block. Since the loop is in 4287 // LCSSA form, we just need to find all the phi nodes for the original scalar 4288 // recurrence in the exit block, and then add an edge for the middle block. 4289 // Note that LCSSA does not imply single entry when the original scalar loop 4290 // had multiple exiting edges (as we always run the last iteration in the 4291 // scalar epilogue); in that case, there is no edge from middle to exit and 4292 // and thus no phis which needed updated. 4293 if (!Cost->requiresScalarEpilogue(VF)) 4294 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4295 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4296 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4297 } 4298 4299 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4300 VPTransformState &State) { 4301 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4302 // Get it's reduction variable descriptor. 4303 assert(Legal->isReductionVariable(OrigPhi) && 4304 "Unable to find the reduction variable"); 4305 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4306 4307 RecurKind RK = RdxDesc.getRecurrenceKind(); 4308 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4309 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4310 setDebugLocFromInst(ReductionStartValue); 4311 4312 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4313 // This is the vector-clone of the value that leaves the loop. 4314 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4315 4316 // Wrap flags are in general invalid after vectorization, clear them. 4317 clearReductionWrapFlags(RdxDesc, State); 4318 4319 // Before each round, move the insertion point right between 4320 // the PHIs and the values we are going to write. 4321 // This allows us to write both PHINodes and the extractelement 4322 // instructions. 4323 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4324 4325 setDebugLocFromInst(LoopExitInst); 4326 4327 Type *PhiTy = OrigPhi->getType(); 4328 // If tail is folded by masking, the vector value to leave the loop should be 4329 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4330 // instead of the former. For an inloop reduction the reduction will already 4331 // be predicated, and does not need to be handled here. 4332 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4333 for (unsigned Part = 0; Part < UF; ++Part) { 4334 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4335 Value *Sel = nullptr; 4336 for (User *U : VecLoopExitInst->users()) { 4337 if (isa<SelectInst>(U)) { 4338 assert(!Sel && "Reduction exit feeding two selects"); 4339 Sel = U; 4340 } else 4341 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4342 } 4343 assert(Sel && "Reduction exit feeds no select"); 4344 State.reset(LoopExitInstDef, Sel, Part); 4345 4346 // If the target can create a predicated operator for the reduction at no 4347 // extra cost in the loop (for example a predicated vadd), it can be 4348 // cheaper for the select to remain in the loop than be sunk out of it, 4349 // and so use the select value for the phi instead of the old 4350 // LoopExitValue. 4351 if (PreferPredicatedReductionSelect || 4352 TTI->preferPredicatedReductionSelect( 4353 RdxDesc.getOpcode(), PhiTy, 4354 TargetTransformInfo::ReductionFlags())) { 4355 auto *VecRdxPhi = 4356 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4357 VecRdxPhi->setIncomingValueForBlock( 4358 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4359 } 4360 } 4361 } 4362 4363 // If the vector reduction can be performed in a smaller type, we truncate 4364 // then extend the loop exit value to enable InstCombine to evaluate the 4365 // entire expression in the smaller type. 4366 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4367 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4368 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4369 Builder.SetInsertPoint( 4370 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4371 VectorParts RdxParts(UF); 4372 for (unsigned Part = 0; Part < UF; ++Part) { 4373 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4374 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4375 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4376 : Builder.CreateZExt(Trunc, VecTy); 4377 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4378 UI != RdxParts[Part]->user_end();) 4379 if (*UI != Trunc) { 4380 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4381 RdxParts[Part] = Extnd; 4382 } else { 4383 ++UI; 4384 } 4385 } 4386 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4387 for (unsigned Part = 0; Part < UF; ++Part) { 4388 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4389 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4390 } 4391 } 4392 4393 // Reduce all of the unrolled parts into a single vector. 4394 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4395 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4396 4397 // The middle block terminator has already been assigned a DebugLoc here (the 4398 // OrigLoop's single latch terminator). We want the whole middle block to 4399 // appear to execute on this line because: (a) it is all compiler generated, 4400 // (b) these instructions are always executed after evaluating the latch 4401 // conditional branch, and (c) other passes may add new predecessors which 4402 // terminate on this line. This is the easiest way to ensure we don't 4403 // accidentally cause an extra step back into the loop while debugging. 4404 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4405 if (PhiR->isOrdered()) 4406 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4407 else { 4408 // Floating-point operations should have some FMF to enable the reduction. 4409 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4410 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4411 for (unsigned Part = 1; Part < UF; ++Part) { 4412 Value *RdxPart = State.get(LoopExitInstDef, Part); 4413 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4414 ReducedPartRdx = Builder.CreateBinOp( 4415 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4416 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4417 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4418 ReducedPartRdx, RdxPart); 4419 else 4420 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4421 } 4422 } 4423 4424 // Create the reduction after the loop. Note that inloop reductions create the 4425 // target reduction in the loop using a Reduction recipe. 4426 if (VF.isVector() && !PhiR->isInLoop()) { 4427 ReducedPartRdx = 4428 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4429 // If the reduction can be performed in a smaller type, we need to extend 4430 // the reduction to the wider type before we branch to the original loop. 4431 if (PhiTy != RdxDesc.getRecurrenceType()) 4432 ReducedPartRdx = RdxDesc.isSigned() 4433 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4434 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4435 } 4436 4437 // Create a phi node that merges control-flow from the backedge-taken check 4438 // block and the middle block. 4439 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4440 LoopScalarPreHeader->getTerminator()); 4441 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4442 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4443 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4444 4445 // Now, we need to fix the users of the reduction variable 4446 // inside and outside of the scalar remainder loop. 4447 4448 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4449 // in the exit blocks. See comment on analogous loop in 4450 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4451 if (!Cost->requiresScalarEpilogue(VF)) 4452 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4453 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4454 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4455 4456 // Fix the scalar loop reduction variable with the incoming reduction sum 4457 // from the vector body and from the backedge value. 4458 int IncomingEdgeBlockIdx = 4459 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4460 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4461 // Pick the other block. 4462 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4463 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4464 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4465 } 4466 4467 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4468 VPTransformState &State) { 4469 RecurKind RK = RdxDesc.getRecurrenceKind(); 4470 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4471 return; 4472 4473 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4474 assert(LoopExitInstr && "null loop exit instruction"); 4475 SmallVector<Instruction *, 8> Worklist; 4476 SmallPtrSet<Instruction *, 8> Visited; 4477 Worklist.push_back(LoopExitInstr); 4478 Visited.insert(LoopExitInstr); 4479 4480 while (!Worklist.empty()) { 4481 Instruction *Cur = Worklist.pop_back_val(); 4482 if (isa<OverflowingBinaryOperator>(Cur)) 4483 for (unsigned Part = 0; Part < UF; ++Part) { 4484 // FIXME: Should not rely on getVPValue at this point. 4485 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4486 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4487 } 4488 4489 for (User *U : Cur->users()) { 4490 Instruction *UI = cast<Instruction>(U); 4491 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4492 Visited.insert(UI).second) 4493 Worklist.push_back(UI); 4494 } 4495 } 4496 } 4497 4498 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4499 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4500 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4501 // Some phis were already hand updated by the reduction and recurrence 4502 // code above, leave them alone. 4503 continue; 4504 4505 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4506 // Non-instruction incoming values will have only one value. 4507 4508 VPLane Lane = VPLane::getFirstLane(); 4509 if (isa<Instruction>(IncomingValue) && 4510 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4511 VF)) 4512 Lane = VPLane::getLastLaneForVF(VF); 4513 4514 // Can be a loop invariant incoming value or the last scalar value to be 4515 // extracted from the vectorized loop. 4516 // FIXME: Should not rely on getVPValue at this point. 4517 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4518 Value *lastIncomingValue = 4519 OrigLoop->isLoopInvariant(IncomingValue) 4520 ? IncomingValue 4521 : State.get(State.Plan->getVPValue(IncomingValue, true), 4522 VPIteration(UF - 1, Lane)); 4523 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4524 } 4525 } 4526 4527 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4528 // The basic block and loop containing the predicated instruction. 4529 auto *PredBB = PredInst->getParent(); 4530 auto *VectorLoop = LI->getLoopFor(PredBB); 4531 4532 // Initialize a worklist with the operands of the predicated instruction. 4533 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4534 4535 // Holds instructions that we need to analyze again. An instruction may be 4536 // reanalyzed if we don't yet know if we can sink it or not. 4537 SmallVector<Instruction *, 8> InstsToReanalyze; 4538 4539 // Returns true if a given use occurs in the predicated block. Phi nodes use 4540 // their operands in their corresponding predecessor blocks. 4541 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4542 auto *I = cast<Instruction>(U.getUser()); 4543 BasicBlock *BB = I->getParent(); 4544 if (auto *Phi = dyn_cast<PHINode>(I)) 4545 BB = Phi->getIncomingBlock( 4546 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4547 return BB == PredBB; 4548 }; 4549 4550 // Iteratively sink the scalarized operands of the predicated instruction 4551 // into the block we created for it. When an instruction is sunk, it's 4552 // operands are then added to the worklist. The algorithm ends after one pass 4553 // through the worklist doesn't sink a single instruction. 4554 bool Changed; 4555 do { 4556 // Add the instructions that need to be reanalyzed to the worklist, and 4557 // reset the changed indicator. 4558 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4559 InstsToReanalyze.clear(); 4560 Changed = false; 4561 4562 while (!Worklist.empty()) { 4563 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4564 4565 // We can't sink an instruction if it is a phi node, is not in the loop, 4566 // or may have side effects. 4567 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4568 I->mayHaveSideEffects()) 4569 continue; 4570 4571 // If the instruction is already in PredBB, check if we can sink its 4572 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4573 // sinking the scalar instruction I, hence it appears in PredBB; but it 4574 // may have failed to sink I's operands (recursively), which we try 4575 // (again) here. 4576 if (I->getParent() == PredBB) { 4577 Worklist.insert(I->op_begin(), I->op_end()); 4578 continue; 4579 } 4580 4581 // It's legal to sink the instruction if all its uses occur in the 4582 // predicated block. Otherwise, there's nothing to do yet, and we may 4583 // need to reanalyze the instruction. 4584 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4585 InstsToReanalyze.push_back(I); 4586 continue; 4587 } 4588 4589 // Move the instruction to the beginning of the predicated block, and add 4590 // it's operands to the worklist. 4591 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4592 Worklist.insert(I->op_begin(), I->op_end()); 4593 4594 // The sinking may have enabled other instructions to be sunk, so we will 4595 // need to iterate. 4596 Changed = true; 4597 } 4598 } while (Changed); 4599 } 4600 4601 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4602 for (PHINode *OrigPhi : OrigPHIsToFix) { 4603 VPWidenPHIRecipe *VPPhi = 4604 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4605 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4606 // Make sure the builder has a valid insert point. 4607 Builder.SetInsertPoint(NewPhi); 4608 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4609 VPValue *Inc = VPPhi->getIncomingValue(i); 4610 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4611 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4612 } 4613 } 4614 } 4615 4616 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4617 return Cost->useOrderedReductions(RdxDesc); 4618 } 4619 4620 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4621 VPUser &Operands, unsigned UF, 4622 ElementCount VF, bool IsPtrLoopInvariant, 4623 SmallBitVector &IsIndexLoopInvariant, 4624 VPTransformState &State) { 4625 // Construct a vector GEP by widening the operands of the scalar GEP as 4626 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4627 // results in a vector of pointers when at least one operand of the GEP 4628 // is vector-typed. Thus, to keep the representation compact, we only use 4629 // vector-typed operands for loop-varying values. 4630 4631 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4632 // If we are vectorizing, but the GEP has only loop-invariant operands, 4633 // the GEP we build (by only using vector-typed operands for 4634 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4635 // produce a vector of pointers, we need to either arbitrarily pick an 4636 // operand to broadcast, or broadcast a clone of the original GEP. 4637 // Here, we broadcast a clone of the original. 4638 // 4639 // TODO: If at some point we decide to scalarize instructions having 4640 // loop-invariant operands, this special case will no longer be 4641 // required. We would add the scalarization decision to 4642 // collectLoopScalars() and teach getVectorValue() to broadcast 4643 // the lane-zero scalar value. 4644 auto *Clone = Builder.Insert(GEP->clone()); 4645 for (unsigned Part = 0; Part < UF; ++Part) { 4646 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4647 State.set(VPDef, EntryPart, Part); 4648 addMetadata(EntryPart, GEP); 4649 } 4650 } else { 4651 // If the GEP has at least one loop-varying operand, we are sure to 4652 // produce a vector of pointers. But if we are only unrolling, we want 4653 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4654 // produce with the code below will be scalar (if VF == 1) or vector 4655 // (otherwise). Note that for the unroll-only case, we still maintain 4656 // values in the vector mapping with initVector, as we do for other 4657 // instructions. 4658 for (unsigned Part = 0; Part < UF; ++Part) { 4659 // The pointer operand of the new GEP. If it's loop-invariant, we 4660 // won't broadcast it. 4661 auto *Ptr = IsPtrLoopInvariant 4662 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4663 : State.get(Operands.getOperand(0), Part); 4664 4665 // Collect all the indices for the new GEP. If any index is 4666 // loop-invariant, we won't broadcast it. 4667 SmallVector<Value *, 4> Indices; 4668 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4669 VPValue *Operand = Operands.getOperand(I); 4670 if (IsIndexLoopInvariant[I - 1]) 4671 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4672 else 4673 Indices.push_back(State.get(Operand, Part)); 4674 } 4675 4676 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4677 // but it should be a vector, otherwise. 4678 auto *NewGEP = 4679 GEP->isInBounds() 4680 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4681 Indices) 4682 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4683 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4684 "NewGEP is not a pointer vector"); 4685 State.set(VPDef, NewGEP, Part); 4686 addMetadata(NewGEP, GEP); 4687 } 4688 } 4689 } 4690 4691 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4692 VPWidenPHIRecipe *PhiR, 4693 VPTransformState &State) { 4694 PHINode *P = cast<PHINode>(PN); 4695 if (EnableVPlanNativePath) { 4696 // Currently we enter here in the VPlan-native path for non-induction 4697 // PHIs where all control flow is uniform. We simply widen these PHIs. 4698 // Create a vector phi with no operands - the vector phi operands will be 4699 // set at the end of vector code generation. 4700 Type *VecTy = (State.VF.isScalar()) 4701 ? PN->getType() 4702 : VectorType::get(PN->getType(), State.VF); 4703 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4704 State.set(PhiR, VecPhi, 0); 4705 OrigPHIsToFix.push_back(P); 4706 4707 return; 4708 } 4709 4710 assert(PN->getParent() == OrigLoop->getHeader() && 4711 "Non-header phis should have been handled elsewhere"); 4712 4713 // In order to support recurrences we need to be able to vectorize Phi nodes. 4714 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4715 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4716 // this value when we vectorize all of the instructions that use the PHI. 4717 4718 assert(!Legal->isReductionVariable(P) && 4719 "reductions should be handled elsewhere"); 4720 4721 setDebugLocFromInst(P); 4722 4723 // This PHINode must be an induction variable. 4724 // Make sure that we know about it. 4725 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4726 4727 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4728 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4729 4730 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4731 // which can be found from the original scalar operations. 4732 switch (II.getKind()) { 4733 case InductionDescriptor::IK_NoInduction: 4734 llvm_unreachable("Unknown induction"); 4735 case InductionDescriptor::IK_IntInduction: 4736 case InductionDescriptor::IK_FpInduction: 4737 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4738 case InductionDescriptor::IK_PtrInduction: { 4739 // Handle the pointer induction variable case. 4740 assert(P->getType()->isPointerTy() && "Unexpected type."); 4741 4742 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4743 // This is the normalized GEP that starts counting at zero. 4744 Value *PtrInd = 4745 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4746 // Determine the number of scalars we need to generate for each unroll 4747 // iteration. If the instruction is uniform, we only need to generate the 4748 // first lane. Otherwise, we generate all VF values. 4749 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4750 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4751 4752 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4753 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4754 if (NeedsVectorIndex) { 4755 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4756 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4757 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4758 } 4759 4760 for (unsigned Part = 0; Part < UF; ++Part) { 4761 Value *PartStart = createStepForVF( 4762 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4763 4764 if (NeedsVectorIndex) { 4765 // Here we cache the whole vector, which means we can support the 4766 // extraction of any lane. However, in some cases the extractelement 4767 // instruction that is generated for scalar uses of this vector (e.g. 4768 // a load instruction) is not folded away. Therefore we still 4769 // calculate values for the first n lanes to avoid redundant moves 4770 // (when extracting the 0th element) and to produce scalar code (i.e. 4771 // additional add/gep instructions instead of expensive extractelement 4772 // instructions) when extracting higher-order elements. 4773 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4774 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4775 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4776 Value *SclrGep = 4777 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4778 SclrGep->setName("next.gep"); 4779 State.set(PhiR, SclrGep, Part); 4780 } 4781 4782 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4783 Value *Idx = Builder.CreateAdd( 4784 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4785 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4786 Value *SclrGep = 4787 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4788 SclrGep->setName("next.gep"); 4789 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4790 } 4791 } 4792 return; 4793 } 4794 assert(isa<SCEVConstant>(II.getStep()) && 4795 "Induction step not a SCEV constant!"); 4796 Type *PhiType = II.getStep()->getType(); 4797 4798 // Build a pointer phi 4799 Value *ScalarStartValue = II.getStartValue(); 4800 Type *ScStValueType = ScalarStartValue->getType(); 4801 PHINode *NewPointerPhi = 4802 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4803 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4804 4805 // A pointer induction, performed by using a gep 4806 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4807 Instruction *InductionLoc = LoopLatch->getTerminator(); 4808 const SCEV *ScalarStep = II.getStep(); 4809 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4810 Value *ScalarStepValue = 4811 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4812 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4813 Value *NumUnrolledElems = 4814 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4815 Value *InductionGEP = GetElementPtrInst::Create( 4816 II.getElementType(), NewPointerPhi, 4817 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4818 InductionLoc); 4819 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4820 4821 // Create UF many actual address geps that use the pointer 4822 // phi as base and a vectorized version of the step value 4823 // (<step*0, ..., step*N>) as offset. 4824 for (unsigned Part = 0; Part < State.UF; ++Part) { 4825 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4826 Value *StartOffsetScalar = 4827 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4828 Value *StartOffset = 4829 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4830 // Create a vector of consecutive numbers from zero to VF. 4831 StartOffset = 4832 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4833 4834 Value *GEP = Builder.CreateGEP( 4835 II.getElementType(), NewPointerPhi, 4836 Builder.CreateMul( 4837 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4838 "vector.gep")); 4839 State.set(PhiR, GEP, Part); 4840 } 4841 } 4842 } 4843 } 4844 4845 /// A helper function for checking whether an integer division-related 4846 /// instruction may divide by zero (in which case it must be predicated if 4847 /// executed conditionally in the scalar code). 4848 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4849 /// Non-zero divisors that are non compile-time constants will not be 4850 /// converted into multiplication, so we will still end up scalarizing 4851 /// the division, but can do so w/o predication. 4852 static bool mayDivideByZero(Instruction &I) { 4853 assert((I.getOpcode() == Instruction::UDiv || 4854 I.getOpcode() == Instruction::SDiv || 4855 I.getOpcode() == Instruction::URem || 4856 I.getOpcode() == Instruction::SRem) && 4857 "Unexpected instruction"); 4858 Value *Divisor = I.getOperand(1); 4859 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4860 return !CInt || CInt->isZero(); 4861 } 4862 4863 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4864 VPUser &User, 4865 VPTransformState &State) { 4866 switch (I.getOpcode()) { 4867 case Instruction::Call: 4868 case Instruction::Br: 4869 case Instruction::PHI: 4870 case Instruction::GetElementPtr: 4871 case Instruction::Select: 4872 llvm_unreachable("This instruction is handled by a different recipe."); 4873 case Instruction::UDiv: 4874 case Instruction::SDiv: 4875 case Instruction::SRem: 4876 case Instruction::URem: 4877 case Instruction::Add: 4878 case Instruction::FAdd: 4879 case Instruction::Sub: 4880 case Instruction::FSub: 4881 case Instruction::FNeg: 4882 case Instruction::Mul: 4883 case Instruction::FMul: 4884 case Instruction::FDiv: 4885 case Instruction::FRem: 4886 case Instruction::Shl: 4887 case Instruction::LShr: 4888 case Instruction::AShr: 4889 case Instruction::And: 4890 case Instruction::Or: 4891 case Instruction::Xor: { 4892 // Just widen unops and binops. 4893 setDebugLocFromInst(&I); 4894 4895 for (unsigned Part = 0; Part < UF; ++Part) { 4896 SmallVector<Value *, 2> Ops; 4897 for (VPValue *VPOp : User.operands()) 4898 Ops.push_back(State.get(VPOp, Part)); 4899 4900 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4901 4902 if (auto *VecOp = dyn_cast<Instruction>(V)) 4903 VecOp->copyIRFlags(&I); 4904 4905 // Use this vector value for all users of the original instruction. 4906 State.set(Def, V, Part); 4907 addMetadata(V, &I); 4908 } 4909 4910 break; 4911 } 4912 case Instruction::ICmp: 4913 case Instruction::FCmp: { 4914 // Widen compares. Generate vector compares. 4915 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4916 auto *Cmp = cast<CmpInst>(&I); 4917 setDebugLocFromInst(Cmp); 4918 for (unsigned Part = 0; Part < UF; ++Part) { 4919 Value *A = State.get(User.getOperand(0), Part); 4920 Value *B = State.get(User.getOperand(1), Part); 4921 Value *C = nullptr; 4922 if (FCmp) { 4923 // Propagate fast math flags. 4924 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4925 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4926 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4927 } else { 4928 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4929 } 4930 State.set(Def, C, Part); 4931 addMetadata(C, &I); 4932 } 4933 4934 break; 4935 } 4936 4937 case Instruction::ZExt: 4938 case Instruction::SExt: 4939 case Instruction::FPToUI: 4940 case Instruction::FPToSI: 4941 case Instruction::FPExt: 4942 case Instruction::PtrToInt: 4943 case Instruction::IntToPtr: 4944 case Instruction::SIToFP: 4945 case Instruction::UIToFP: 4946 case Instruction::Trunc: 4947 case Instruction::FPTrunc: 4948 case Instruction::BitCast: { 4949 auto *CI = cast<CastInst>(&I); 4950 setDebugLocFromInst(CI); 4951 4952 /// Vectorize casts. 4953 Type *DestTy = 4954 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4955 4956 for (unsigned Part = 0; Part < UF; ++Part) { 4957 Value *A = State.get(User.getOperand(0), Part); 4958 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4959 State.set(Def, Cast, Part); 4960 addMetadata(Cast, &I); 4961 } 4962 break; 4963 } 4964 default: 4965 // This instruction is not vectorized by simple widening. 4966 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4967 llvm_unreachable("Unhandled instruction!"); 4968 } // end of switch. 4969 } 4970 4971 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4972 VPUser &ArgOperands, 4973 VPTransformState &State) { 4974 assert(!isa<DbgInfoIntrinsic>(I) && 4975 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4976 setDebugLocFromInst(&I); 4977 4978 Module *M = I.getParent()->getParent()->getParent(); 4979 auto *CI = cast<CallInst>(&I); 4980 4981 SmallVector<Type *, 4> Tys; 4982 for (Value *ArgOperand : CI->args()) 4983 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4984 4985 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4986 4987 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4988 // version of the instruction. 4989 // Is it beneficial to perform intrinsic call compared to lib call? 4990 bool NeedToScalarize = false; 4991 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4992 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4993 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4994 assert((UseVectorIntrinsic || !NeedToScalarize) && 4995 "Instruction should be scalarized elsewhere."); 4996 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4997 "Either the intrinsic cost or vector call cost must be valid"); 4998 4999 for (unsigned Part = 0; Part < UF; ++Part) { 5000 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5001 SmallVector<Value *, 4> Args; 5002 for (auto &I : enumerate(ArgOperands.operands())) { 5003 // Some intrinsics have a scalar argument - don't replace it with a 5004 // vector. 5005 Value *Arg; 5006 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5007 Arg = State.get(I.value(), Part); 5008 else { 5009 Arg = State.get(I.value(), VPIteration(0, 0)); 5010 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5011 TysForDecl.push_back(Arg->getType()); 5012 } 5013 Args.push_back(Arg); 5014 } 5015 5016 Function *VectorF; 5017 if (UseVectorIntrinsic) { 5018 // Use vector version of the intrinsic. 5019 if (VF.isVector()) 5020 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5021 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5022 assert(VectorF && "Can't retrieve vector intrinsic."); 5023 } else { 5024 // Use vector version of the function call. 5025 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5026 #ifndef NDEBUG 5027 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5028 "Can't create vector function."); 5029 #endif 5030 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5031 } 5032 SmallVector<OperandBundleDef, 1> OpBundles; 5033 CI->getOperandBundlesAsDefs(OpBundles); 5034 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5035 5036 if (isa<FPMathOperator>(V)) 5037 V->copyFastMathFlags(CI); 5038 5039 State.set(Def, V, Part); 5040 addMetadata(V, &I); 5041 } 5042 } 5043 5044 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5045 VPUser &Operands, 5046 bool InvariantCond, 5047 VPTransformState &State) { 5048 setDebugLocFromInst(&I); 5049 5050 // The condition can be loop invariant but still defined inside the 5051 // loop. This means that we can't just use the original 'cond' value. 5052 // We have to take the 'vectorized' value and pick the first lane. 5053 // Instcombine will make this a no-op. 5054 auto *InvarCond = InvariantCond 5055 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5056 : nullptr; 5057 5058 for (unsigned Part = 0; Part < UF; ++Part) { 5059 Value *Cond = 5060 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5061 Value *Op0 = State.get(Operands.getOperand(1), Part); 5062 Value *Op1 = State.get(Operands.getOperand(2), Part); 5063 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5064 State.set(VPDef, Sel, Part); 5065 addMetadata(Sel, &I); 5066 } 5067 } 5068 5069 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5070 // We should not collect Scalars more than once per VF. Right now, this 5071 // function is called from collectUniformsAndScalars(), which already does 5072 // this check. Collecting Scalars for VF=1 does not make any sense. 5073 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5074 "This function should not be visited twice for the same VF"); 5075 5076 SmallSetVector<Instruction *, 8> Worklist; 5077 5078 // These sets are used to seed the analysis with pointers used by memory 5079 // accesses that will remain scalar. 5080 SmallSetVector<Instruction *, 8> ScalarPtrs; 5081 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5082 auto *Latch = TheLoop->getLoopLatch(); 5083 5084 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5085 // The pointer operands of loads and stores will be scalar as long as the 5086 // memory access is not a gather or scatter operation. The value operand of a 5087 // store will remain scalar if the store is scalarized. 5088 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5089 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5090 assert(WideningDecision != CM_Unknown && 5091 "Widening decision should be ready at this moment"); 5092 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5093 if (Ptr == Store->getValueOperand()) 5094 return WideningDecision == CM_Scalarize; 5095 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5096 "Ptr is neither a value or pointer operand"); 5097 return WideningDecision != CM_GatherScatter; 5098 }; 5099 5100 // A helper that returns true if the given value is a bitcast or 5101 // getelementptr instruction contained in the loop. 5102 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5103 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5104 isa<GetElementPtrInst>(V)) && 5105 !TheLoop->isLoopInvariant(V); 5106 }; 5107 5108 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5109 if (!isa<PHINode>(Ptr) || 5110 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5111 return false; 5112 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5113 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5114 return false; 5115 return isScalarUse(MemAccess, Ptr); 5116 }; 5117 5118 // A helper that evaluates a memory access's use of a pointer. If the 5119 // pointer is actually the pointer induction of a loop, it is being 5120 // inserted into Worklist. If the use will be a scalar use, and the 5121 // pointer is only used by memory accesses, we place the pointer in 5122 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5123 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5124 if (isScalarPtrInduction(MemAccess, Ptr)) { 5125 Worklist.insert(cast<Instruction>(Ptr)); 5126 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5127 << "\n"); 5128 5129 Instruction *Update = cast<Instruction>( 5130 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5131 5132 // If there is more than one user of Update (Ptr), we shouldn't assume it 5133 // will be scalar after vectorisation as other users of the instruction 5134 // may require widening. Otherwise, add it to ScalarPtrs. 5135 if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) { 5136 ScalarPtrs.insert(Update); 5137 return; 5138 } 5139 } 5140 // We only care about bitcast and getelementptr instructions contained in 5141 // the loop. 5142 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5143 return; 5144 5145 // If the pointer has already been identified as scalar (e.g., if it was 5146 // also identified as uniform), there's nothing to do. 5147 auto *I = cast<Instruction>(Ptr); 5148 if (Worklist.count(I)) 5149 return; 5150 5151 // If the use of the pointer will be a scalar use, and all users of the 5152 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5153 // place the pointer in PossibleNonScalarPtrs. 5154 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5155 return isa<LoadInst>(U) || isa<StoreInst>(U); 5156 })) 5157 ScalarPtrs.insert(I); 5158 else 5159 PossibleNonScalarPtrs.insert(I); 5160 }; 5161 5162 // We seed the scalars analysis with three classes of instructions: (1) 5163 // instructions marked uniform-after-vectorization and (2) bitcast, 5164 // getelementptr and (pointer) phi instructions used by memory accesses 5165 // requiring a scalar use. 5166 // 5167 // (1) Add to the worklist all instructions that have been identified as 5168 // uniform-after-vectorization. 5169 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5170 5171 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5172 // memory accesses requiring a scalar use. The pointer operands of loads and 5173 // stores will be scalar as long as the memory accesses is not a gather or 5174 // scatter operation. The value operand of a store will remain scalar if the 5175 // store is scalarized. 5176 for (auto *BB : TheLoop->blocks()) 5177 for (auto &I : *BB) { 5178 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5179 evaluatePtrUse(Load, Load->getPointerOperand()); 5180 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5181 evaluatePtrUse(Store, Store->getPointerOperand()); 5182 evaluatePtrUse(Store, Store->getValueOperand()); 5183 } 5184 } 5185 for (auto *I : ScalarPtrs) 5186 if (!PossibleNonScalarPtrs.count(I)) { 5187 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5188 Worklist.insert(I); 5189 } 5190 5191 // Insert the forced scalars. 5192 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5193 // induction variable when the PHI user is scalarized. 5194 auto ForcedScalar = ForcedScalars.find(VF); 5195 if (ForcedScalar != ForcedScalars.end()) 5196 for (auto *I : ForcedScalar->second) 5197 Worklist.insert(I); 5198 5199 // Expand the worklist by looking through any bitcasts and getelementptr 5200 // instructions we've already identified as scalar. This is similar to the 5201 // expansion step in collectLoopUniforms(); however, here we're only 5202 // expanding to include additional bitcasts and getelementptr instructions. 5203 unsigned Idx = 0; 5204 while (Idx != Worklist.size()) { 5205 Instruction *Dst = Worklist[Idx++]; 5206 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5207 continue; 5208 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5209 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5210 auto *J = cast<Instruction>(U); 5211 return !TheLoop->contains(J) || Worklist.count(J) || 5212 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5213 isScalarUse(J, Src)); 5214 })) { 5215 Worklist.insert(Src); 5216 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5217 } 5218 } 5219 5220 // An induction variable will remain scalar if all users of the induction 5221 // variable and induction variable update remain scalar. 5222 for (auto &Induction : Legal->getInductionVars()) { 5223 auto *Ind = Induction.first; 5224 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5225 5226 // If tail-folding is applied, the primary induction variable will be used 5227 // to feed a vector compare. 5228 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5229 continue; 5230 5231 // Determine if all users of the induction variable are scalar after 5232 // vectorization. 5233 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5234 auto *I = cast<Instruction>(U); 5235 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5236 }); 5237 if (!ScalarInd) 5238 continue; 5239 5240 // Determine if all users of the induction variable update instruction are 5241 // scalar after vectorization. 5242 auto ScalarIndUpdate = 5243 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5244 auto *I = cast<Instruction>(U); 5245 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5246 }); 5247 if (!ScalarIndUpdate) 5248 continue; 5249 5250 // The induction variable and its update instruction will remain scalar. 5251 Worklist.insert(Ind); 5252 Worklist.insert(IndUpdate); 5253 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5254 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5255 << "\n"); 5256 } 5257 5258 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5259 } 5260 5261 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5262 if (!blockNeedsPredication(I->getParent())) 5263 return false; 5264 switch(I->getOpcode()) { 5265 default: 5266 break; 5267 case Instruction::Load: 5268 case Instruction::Store: { 5269 if (!Legal->isMaskRequired(I)) 5270 return false; 5271 auto *Ptr = getLoadStorePointerOperand(I); 5272 auto *Ty = getLoadStoreType(I); 5273 const Align Alignment = getLoadStoreAlignment(I); 5274 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5275 TTI.isLegalMaskedGather(Ty, Alignment)) 5276 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5277 TTI.isLegalMaskedScatter(Ty, Alignment)); 5278 } 5279 case Instruction::UDiv: 5280 case Instruction::SDiv: 5281 case Instruction::SRem: 5282 case Instruction::URem: 5283 return mayDivideByZero(*I); 5284 } 5285 return false; 5286 } 5287 5288 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5289 Instruction *I, ElementCount VF) { 5290 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5291 assert(getWideningDecision(I, VF) == CM_Unknown && 5292 "Decision should not be set yet."); 5293 auto *Group = getInterleavedAccessGroup(I); 5294 assert(Group && "Must have a group."); 5295 5296 // If the instruction's allocated size doesn't equal it's type size, it 5297 // requires padding and will be scalarized. 5298 auto &DL = I->getModule()->getDataLayout(); 5299 auto *ScalarTy = getLoadStoreType(I); 5300 if (hasIrregularType(ScalarTy, DL)) 5301 return false; 5302 5303 // Check if masking is required. 5304 // A Group may need masking for one of two reasons: it resides in a block that 5305 // needs predication, or it was decided to use masking to deal with gaps 5306 // (either a gap at the end of a load-access that may result in a speculative 5307 // load, or any gaps in a store-access). 5308 bool PredicatedAccessRequiresMasking = 5309 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5310 bool LoadAccessWithGapsRequiresEpilogMasking = 5311 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5312 !isScalarEpilogueAllowed(); 5313 bool StoreAccessWithGapsRequiresMasking = 5314 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5315 if (!PredicatedAccessRequiresMasking && 5316 !LoadAccessWithGapsRequiresEpilogMasking && 5317 !StoreAccessWithGapsRequiresMasking) 5318 return true; 5319 5320 // If masked interleaving is required, we expect that the user/target had 5321 // enabled it, because otherwise it either wouldn't have been created or 5322 // it should have been invalidated by the CostModel. 5323 assert(useMaskedInterleavedAccesses(TTI) && 5324 "Masked interleave-groups for predicated accesses are not enabled."); 5325 5326 if (Group->isReverse()) 5327 return false; 5328 5329 auto *Ty = getLoadStoreType(I); 5330 const Align Alignment = getLoadStoreAlignment(I); 5331 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5332 : TTI.isLegalMaskedStore(Ty, Alignment); 5333 } 5334 5335 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5336 Instruction *I, ElementCount VF) { 5337 // Get and ensure we have a valid memory instruction. 5338 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5339 5340 auto *Ptr = getLoadStorePointerOperand(I); 5341 auto *ScalarTy = getLoadStoreType(I); 5342 5343 // In order to be widened, the pointer should be consecutive, first of all. 5344 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5345 return false; 5346 5347 // If the instruction is a store located in a predicated block, it will be 5348 // scalarized. 5349 if (isScalarWithPredication(I)) 5350 return false; 5351 5352 // If the instruction's allocated size doesn't equal it's type size, it 5353 // requires padding and will be scalarized. 5354 auto &DL = I->getModule()->getDataLayout(); 5355 if (hasIrregularType(ScalarTy, DL)) 5356 return false; 5357 5358 return true; 5359 } 5360 5361 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5362 // We should not collect Uniforms more than once per VF. Right now, 5363 // this function is called from collectUniformsAndScalars(), which 5364 // already does this check. Collecting Uniforms for VF=1 does not make any 5365 // sense. 5366 5367 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5368 "This function should not be visited twice for the same VF"); 5369 5370 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5371 // not analyze again. Uniforms.count(VF) will return 1. 5372 Uniforms[VF].clear(); 5373 5374 // We now know that the loop is vectorizable! 5375 // Collect instructions inside the loop that will remain uniform after 5376 // vectorization. 5377 5378 // Global values, params and instructions outside of current loop are out of 5379 // scope. 5380 auto isOutOfScope = [&](Value *V) -> bool { 5381 Instruction *I = dyn_cast<Instruction>(V); 5382 return (!I || !TheLoop->contains(I)); 5383 }; 5384 5385 SetVector<Instruction *> Worklist; 5386 BasicBlock *Latch = TheLoop->getLoopLatch(); 5387 5388 // Instructions that are scalar with predication must not be considered 5389 // uniform after vectorization, because that would create an erroneous 5390 // replicating region where only a single instance out of VF should be formed. 5391 // TODO: optimize such seldom cases if found important, see PR40816. 5392 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5393 if (isOutOfScope(I)) { 5394 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5395 << *I << "\n"); 5396 return; 5397 } 5398 if (isScalarWithPredication(I)) { 5399 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5400 << *I << "\n"); 5401 return; 5402 } 5403 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5404 Worklist.insert(I); 5405 }; 5406 5407 // Start with the conditional branch. If the branch condition is an 5408 // instruction contained in the loop that is only used by the branch, it is 5409 // uniform. 5410 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5411 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5412 addToWorklistIfAllowed(Cmp); 5413 5414 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5415 InstWidening WideningDecision = getWideningDecision(I, VF); 5416 assert(WideningDecision != CM_Unknown && 5417 "Widening decision should be ready at this moment"); 5418 5419 // A uniform memory op is itself uniform. We exclude uniform stores 5420 // here as they demand the last lane, not the first one. 5421 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5422 assert(WideningDecision == CM_Scalarize); 5423 return true; 5424 } 5425 5426 return (WideningDecision == CM_Widen || 5427 WideningDecision == CM_Widen_Reverse || 5428 WideningDecision == CM_Interleave); 5429 }; 5430 5431 5432 // Returns true if Ptr is the pointer operand of a memory access instruction 5433 // I, and I is known to not require scalarization. 5434 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5435 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5436 }; 5437 5438 // Holds a list of values which are known to have at least one uniform use. 5439 // Note that there may be other uses which aren't uniform. A "uniform use" 5440 // here is something which only demands lane 0 of the unrolled iterations; 5441 // it does not imply that all lanes produce the same value (e.g. this is not 5442 // the usual meaning of uniform) 5443 SetVector<Value *> HasUniformUse; 5444 5445 // Scan the loop for instructions which are either a) known to have only 5446 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5447 for (auto *BB : TheLoop->blocks()) 5448 for (auto &I : *BB) { 5449 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5450 switch (II->getIntrinsicID()) { 5451 case Intrinsic::sideeffect: 5452 case Intrinsic::experimental_noalias_scope_decl: 5453 case Intrinsic::assume: 5454 case Intrinsic::lifetime_start: 5455 case Intrinsic::lifetime_end: 5456 if (TheLoop->hasLoopInvariantOperands(&I)) 5457 addToWorklistIfAllowed(&I); 5458 break; 5459 default: 5460 break; 5461 } 5462 } 5463 5464 // ExtractValue instructions must be uniform, because the operands are 5465 // known to be loop-invariant. 5466 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5467 assert(isOutOfScope(EVI->getAggregateOperand()) && 5468 "Expected aggregate value to be loop invariant"); 5469 addToWorklistIfAllowed(EVI); 5470 continue; 5471 } 5472 5473 // If there's no pointer operand, there's nothing to do. 5474 auto *Ptr = getLoadStorePointerOperand(&I); 5475 if (!Ptr) 5476 continue; 5477 5478 // A uniform memory op is itself uniform. We exclude uniform stores 5479 // here as they demand the last lane, not the first one. 5480 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5481 addToWorklistIfAllowed(&I); 5482 5483 if (isUniformDecision(&I, VF)) { 5484 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5485 HasUniformUse.insert(Ptr); 5486 } 5487 } 5488 5489 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5490 // demanding) users. Since loops are assumed to be in LCSSA form, this 5491 // disallows uses outside the loop as well. 5492 for (auto *V : HasUniformUse) { 5493 if (isOutOfScope(V)) 5494 continue; 5495 auto *I = cast<Instruction>(V); 5496 auto UsersAreMemAccesses = 5497 llvm::all_of(I->users(), [&](User *U) -> bool { 5498 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5499 }); 5500 if (UsersAreMemAccesses) 5501 addToWorklistIfAllowed(I); 5502 } 5503 5504 // Expand Worklist in topological order: whenever a new instruction 5505 // is added , its users should be already inside Worklist. It ensures 5506 // a uniform instruction will only be used by uniform instructions. 5507 unsigned idx = 0; 5508 while (idx != Worklist.size()) { 5509 Instruction *I = Worklist[idx++]; 5510 5511 for (auto OV : I->operand_values()) { 5512 // isOutOfScope operands cannot be uniform instructions. 5513 if (isOutOfScope(OV)) 5514 continue; 5515 // First order recurrence Phi's should typically be considered 5516 // non-uniform. 5517 auto *OP = dyn_cast<PHINode>(OV); 5518 if (OP && Legal->isFirstOrderRecurrence(OP)) 5519 continue; 5520 // If all the users of the operand are uniform, then add the 5521 // operand into the uniform worklist. 5522 auto *OI = cast<Instruction>(OV); 5523 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5524 auto *J = cast<Instruction>(U); 5525 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5526 })) 5527 addToWorklistIfAllowed(OI); 5528 } 5529 } 5530 5531 // For an instruction to be added into Worklist above, all its users inside 5532 // the loop should also be in Worklist. However, this condition cannot be 5533 // true for phi nodes that form a cyclic dependence. We must process phi 5534 // nodes separately. An induction variable will remain uniform if all users 5535 // of the induction variable and induction variable update remain uniform. 5536 // The code below handles both pointer and non-pointer induction variables. 5537 for (auto &Induction : Legal->getInductionVars()) { 5538 auto *Ind = Induction.first; 5539 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5540 5541 // Determine if all users of the induction variable are uniform after 5542 // vectorization. 5543 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5544 auto *I = cast<Instruction>(U); 5545 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5546 isVectorizedMemAccessUse(I, Ind); 5547 }); 5548 if (!UniformInd) 5549 continue; 5550 5551 // Determine if all users of the induction variable update instruction are 5552 // uniform after vectorization. 5553 auto UniformIndUpdate = 5554 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5555 auto *I = cast<Instruction>(U); 5556 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5557 isVectorizedMemAccessUse(I, IndUpdate); 5558 }); 5559 if (!UniformIndUpdate) 5560 continue; 5561 5562 // The induction variable and its update instruction will remain uniform. 5563 addToWorklistIfAllowed(Ind); 5564 addToWorklistIfAllowed(IndUpdate); 5565 } 5566 5567 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5568 } 5569 5570 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5571 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5572 5573 if (Legal->getRuntimePointerChecking()->Need) { 5574 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5575 "runtime pointer checks needed. Enable vectorization of this " 5576 "loop with '#pragma clang loop vectorize(enable)' when " 5577 "compiling with -Os/-Oz", 5578 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5579 return true; 5580 } 5581 5582 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5583 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5584 "runtime SCEV checks needed. Enable vectorization of this " 5585 "loop with '#pragma clang loop vectorize(enable)' when " 5586 "compiling with -Os/-Oz", 5587 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5588 return true; 5589 } 5590 5591 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5592 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5593 reportVectorizationFailure("Runtime stride check for small trip count", 5594 "runtime stride == 1 checks needed. Enable vectorization of " 5595 "this loop without such check by compiling with -Os/-Oz", 5596 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5597 return true; 5598 } 5599 5600 return false; 5601 } 5602 5603 ElementCount 5604 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5605 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5606 return ElementCount::getScalable(0); 5607 5608 if (Hints->isScalableVectorizationDisabled()) { 5609 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5610 "ScalableVectorizationDisabled", ORE, TheLoop); 5611 return ElementCount::getScalable(0); 5612 } 5613 5614 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5615 5616 auto MaxScalableVF = ElementCount::getScalable( 5617 std::numeric_limits<ElementCount::ScalarTy>::max()); 5618 5619 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5620 // FIXME: While for scalable vectors this is currently sufficient, this should 5621 // be replaced by a more detailed mechanism that filters out specific VFs, 5622 // instead of invalidating vectorization for a whole set of VFs based on the 5623 // MaxVF. 5624 5625 // Disable scalable vectorization if the loop contains unsupported reductions. 5626 if (!canVectorizeReductions(MaxScalableVF)) { 5627 reportVectorizationInfo( 5628 "Scalable vectorization not supported for the reduction " 5629 "operations found in this loop.", 5630 "ScalableVFUnfeasible", ORE, TheLoop); 5631 return ElementCount::getScalable(0); 5632 } 5633 5634 // Disable scalable vectorization if the loop contains any instructions 5635 // with element types not supported for scalable vectors. 5636 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5637 return !Ty->isVoidTy() && 5638 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5639 })) { 5640 reportVectorizationInfo("Scalable vectorization is not supported " 5641 "for all element types found in this loop.", 5642 "ScalableVFUnfeasible", ORE, TheLoop); 5643 return ElementCount::getScalable(0); 5644 } 5645 5646 if (Legal->isSafeForAnyVectorWidth()) 5647 return MaxScalableVF; 5648 5649 // Limit MaxScalableVF by the maximum safe dependence distance. 5650 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5651 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5652 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5653 .getVScaleRangeArgs() 5654 .second; 5655 if (VScaleMax > 0) 5656 MaxVScale = VScaleMax; 5657 } 5658 MaxScalableVF = ElementCount::getScalable( 5659 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5660 if (!MaxScalableVF) 5661 reportVectorizationInfo( 5662 "Max legal vector width too small, scalable vectorization " 5663 "unfeasible.", 5664 "ScalableVFUnfeasible", ORE, TheLoop); 5665 5666 return MaxScalableVF; 5667 } 5668 5669 FixedScalableVFPair 5670 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5671 ElementCount UserVF) { 5672 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5673 unsigned SmallestType, WidestType; 5674 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5675 5676 // Get the maximum safe dependence distance in bits computed by LAA. 5677 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5678 // the memory accesses that is most restrictive (involved in the smallest 5679 // dependence distance). 5680 unsigned MaxSafeElements = 5681 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5682 5683 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5684 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5685 5686 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5687 << ".\n"); 5688 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5689 << ".\n"); 5690 5691 // First analyze the UserVF, fall back if the UserVF should be ignored. 5692 if (UserVF) { 5693 auto MaxSafeUserVF = 5694 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5695 5696 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5697 // If `VF=vscale x N` is safe, then so is `VF=N` 5698 if (UserVF.isScalable()) 5699 return FixedScalableVFPair( 5700 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5701 else 5702 return UserVF; 5703 } 5704 5705 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5706 5707 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5708 // is better to ignore the hint and let the compiler choose a suitable VF. 5709 if (!UserVF.isScalable()) { 5710 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5711 << " is unsafe, clamping to max safe VF=" 5712 << MaxSafeFixedVF << ".\n"); 5713 ORE->emit([&]() { 5714 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5715 TheLoop->getStartLoc(), 5716 TheLoop->getHeader()) 5717 << "User-specified vectorization factor " 5718 << ore::NV("UserVectorizationFactor", UserVF) 5719 << " is unsafe, clamping to maximum safe vectorization factor " 5720 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5721 }); 5722 return MaxSafeFixedVF; 5723 } 5724 5725 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5726 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5727 << " is ignored because scalable vectors are not " 5728 "available.\n"); 5729 ORE->emit([&]() { 5730 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5731 TheLoop->getStartLoc(), 5732 TheLoop->getHeader()) 5733 << "User-specified vectorization factor " 5734 << ore::NV("UserVectorizationFactor", UserVF) 5735 << " is ignored because the target does not support scalable " 5736 "vectors. The compiler will pick a more suitable value."; 5737 }); 5738 } else { 5739 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5740 << " is unsafe. Ignoring scalable UserVF.\n"); 5741 ORE->emit([&]() { 5742 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5743 TheLoop->getStartLoc(), 5744 TheLoop->getHeader()) 5745 << "User-specified vectorization factor " 5746 << ore::NV("UserVectorizationFactor", UserVF) 5747 << " is unsafe. Ignoring the hint to let the compiler pick a " 5748 "more suitable value."; 5749 }); 5750 } 5751 } 5752 5753 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5754 << " / " << WidestType << " bits.\n"); 5755 5756 FixedScalableVFPair Result(ElementCount::getFixed(1), 5757 ElementCount::getScalable(0)); 5758 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5759 WidestType, MaxSafeFixedVF)) 5760 Result.FixedVF = MaxVF; 5761 5762 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5763 WidestType, MaxSafeScalableVF)) 5764 if (MaxVF.isScalable()) { 5765 Result.ScalableVF = MaxVF; 5766 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5767 << "\n"); 5768 } 5769 5770 return Result; 5771 } 5772 5773 FixedScalableVFPair 5774 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5775 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5776 // TODO: It may by useful to do since it's still likely to be dynamically 5777 // uniform if the target can skip. 5778 reportVectorizationFailure( 5779 "Not inserting runtime ptr check for divergent target", 5780 "runtime pointer checks needed. Not enabled for divergent target", 5781 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5782 return FixedScalableVFPair::getNone(); 5783 } 5784 5785 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5786 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5787 if (TC == 1) { 5788 reportVectorizationFailure("Single iteration (non) loop", 5789 "loop trip count is one, irrelevant for vectorization", 5790 "SingleIterationLoop", ORE, TheLoop); 5791 return FixedScalableVFPair::getNone(); 5792 } 5793 5794 switch (ScalarEpilogueStatus) { 5795 case CM_ScalarEpilogueAllowed: 5796 return computeFeasibleMaxVF(TC, UserVF); 5797 case CM_ScalarEpilogueNotAllowedUsePredicate: 5798 LLVM_FALLTHROUGH; 5799 case CM_ScalarEpilogueNotNeededUsePredicate: 5800 LLVM_DEBUG( 5801 dbgs() << "LV: vector predicate hint/switch found.\n" 5802 << "LV: Not allowing scalar epilogue, creating predicated " 5803 << "vector loop.\n"); 5804 break; 5805 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5806 // fallthrough as a special case of OptForSize 5807 case CM_ScalarEpilogueNotAllowedOptSize: 5808 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5809 LLVM_DEBUG( 5810 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5811 else 5812 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5813 << "count.\n"); 5814 5815 // Bail if runtime checks are required, which are not good when optimising 5816 // for size. 5817 if (runtimeChecksRequired()) 5818 return FixedScalableVFPair::getNone(); 5819 5820 break; 5821 } 5822 5823 // The only loops we can vectorize without a scalar epilogue, are loops with 5824 // a bottom-test and a single exiting block. We'd have to handle the fact 5825 // that not every instruction executes on the last iteration. This will 5826 // require a lane mask which varies through the vector loop body. (TODO) 5827 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5828 // If there was a tail-folding hint/switch, but we can't fold the tail by 5829 // masking, fallback to a vectorization with a scalar epilogue. 5830 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5831 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5832 "scalar epilogue instead.\n"); 5833 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5834 return computeFeasibleMaxVF(TC, UserVF); 5835 } 5836 return FixedScalableVFPair::getNone(); 5837 } 5838 5839 // Now try the tail folding 5840 5841 // Invalidate interleave groups that require an epilogue if we can't mask 5842 // the interleave-group. 5843 if (!useMaskedInterleavedAccesses(TTI)) { 5844 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5845 "No decisions should have been taken at this point"); 5846 // Note: There is no need to invalidate any cost modeling decisions here, as 5847 // non where taken so far. 5848 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5849 } 5850 5851 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5852 // Avoid tail folding if the trip count is known to be a multiple of any VF 5853 // we chose. 5854 // FIXME: The condition below pessimises the case for fixed-width vectors, 5855 // when scalable VFs are also candidates for vectorization. 5856 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5857 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5858 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5859 "MaxFixedVF must be a power of 2"); 5860 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5861 : MaxFixedVF.getFixedValue(); 5862 ScalarEvolution *SE = PSE.getSE(); 5863 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5864 const SCEV *ExitCount = SE->getAddExpr( 5865 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5866 const SCEV *Rem = SE->getURemExpr( 5867 SE->applyLoopGuards(ExitCount, TheLoop), 5868 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5869 if (Rem->isZero()) { 5870 // Accept MaxFixedVF if we do not have a tail. 5871 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5872 return MaxFactors; 5873 } 5874 } 5875 5876 // For scalable vectors, don't use tail folding as this is currently not yet 5877 // supported. The code is likely to have ended up here if the tripcount is 5878 // low, in which case it makes sense not to use scalable vectors. 5879 if (MaxFactors.ScalableVF.isVector()) 5880 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5881 5882 // If we don't know the precise trip count, or if the trip count that we 5883 // found modulo the vectorization factor is not zero, try to fold the tail 5884 // by masking. 5885 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5886 if (Legal->prepareToFoldTailByMasking()) { 5887 FoldTailByMasking = true; 5888 return MaxFactors; 5889 } 5890 5891 // If there was a tail-folding hint/switch, but we can't fold the tail by 5892 // masking, fallback to a vectorization with a scalar epilogue. 5893 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5894 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5895 "scalar epilogue instead.\n"); 5896 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5897 return MaxFactors; 5898 } 5899 5900 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5901 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5902 return FixedScalableVFPair::getNone(); 5903 } 5904 5905 if (TC == 0) { 5906 reportVectorizationFailure( 5907 "Unable to calculate the loop count due to complex control flow", 5908 "unable to calculate the loop count due to complex control flow", 5909 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5910 return FixedScalableVFPair::getNone(); 5911 } 5912 5913 reportVectorizationFailure( 5914 "Cannot optimize for size and vectorize at the same time.", 5915 "cannot optimize for size and vectorize at the same time. " 5916 "Enable vectorization of this loop with '#pragma clang loop " 5917 "vectorize(enable)' when compiling with -Os/-Oz", 5918 "NoTailLoopWithOptForSize", ORE, TheLoop); 5919 return FixedScalableVFPair::getNone(); 5920 } 5921 5922 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5923 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5924 const ElementCount &MaxSafeVF) { 5925 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5926 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5927 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5928 : TargetTransformInfo::RGK_FixedWidthVector); 5929 5930 // Convenience function to return the minimum of two ElementCounts. 5931 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5932 assert((LHS.isScalable() == RHS.isScalable()) && 5933 "Scalable flags must match"); 5934 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5935 }; 5936 5937 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5938 // Note that both WidestRegister and WidestType may not be a powers of 2. 5939 auto MaxVectorElementCount = ElementCount::get( 5940 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5941 ComputeScalableMaxVF); 5942 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5943 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5944 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5945 5946 if (!MaxVectorElementCount) { 5947 LLVM_DEBUG(dbgs() << "LV: The target has no " 5948 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5949 << " vector registers.\n"); 5950 return ElementCount::getFixed(1); 5951 } 5952 5953 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5954 if (ConstTripCount && 5955 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5956 isPowerOf2_32(ConstTripCount)) { 5957 // We need to clamp the VF to be the ConstTripCount. There is no point in 5958 // choosing a higher viable VF as done in the loop below. If 5959 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5960 // the TC is less than or equal to the known number of lanes. 5961 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5962 << ConstTripCount << "\n"); 5963 return TripCountEC; 5964 } 5965 5966 ElementCount MaxVF = MaxVectorElementCount; 5967 if (TTI.shouldMaximizeVectorBandwidth() || 5968 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5969 auto MaxVectorElementCountMaxBW = ElementCount::get( 5970 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5971 ComputeScalableMaxVF); 5972 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5973 5974 // Collect all viable vectorization factors larger than the default MaxVF 5975 // (i.e. MaxVectorElementCount). 5976 SmallVector<ElementCount, 8> VFs; 5977 for (ElementCount VS = MaxVectorElementCount * 2; 5978 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5979 VFs.push_back(VS); 5980 5981 // For each VF calculate its register usage. 5982 auto RUs = calculateRegisterUsage(VFs); 5983 5984 // Select the largest VF which doesn't require more registers than existing 5985 // ones. 5986 for (int i = RUs.size() - 1; i >= 0; --i) { 5987 bool Selected = true; 5988 for (auto &pair : RUs[i].MaxLocalUsers) { 5989 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5990 if (pair.second > TargetNumRegisters) 5991 Selected = false; 5992 } 5993 if (Selected) { 5994 MaxVF = VFs[i]; 5995 break; 5996 } 5997 } 5998 if (ElementCount MinVF = 5999 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6000 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6001 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6002 << ") with target's minimum: " << MinVF << '\n'); 6003 MaxVF = MinVF; 6004 } 6005 } 6006 } 6007 return MaxVF; 6008 } 6009 6010 bool LoopVectorizationCostModel::isMoreProfitable( 6011 const VectorizationFactor &A, const VectorizationFactor &B) const { 6012 InstructionCost CostA = A.Cost; 6013 InstructionCost CostB = B.Cost; 6014 6015 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6016 6017 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6018 MaxTripCount) { 6019 // If we are folding the tail and the trip count is a known (possibly small) 6020 // constant, the trip count will be rounded up to an integer number of 6021 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6022 // which we compare directly. When not folding the tail, the total cost will 6023 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6024 // approximated with the per-lane cost below instead of using the tripcount 6025 // as here. 6026 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6027 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6028 return RTCostA < RTCostB; 6029 } 6030 6031 // When set to preferred, for now assume vscale may be larger than 1, so 6032 // that scalable vectorization is slightly favorable over fixed-width 6033 // vectorization. 6034 if (Hints->isScalableVectorizationPreferred()) 6035 if (A.Width.isScalable() && !B.Width.isScalable()) 6036 return (CostA * B.Width.getKnownMinValue()) <= 6037 (CostB * A.Width.getKnownMinValue()); 6038 6039 // To avoid the need for FP division: 6040 // (CostA / A.Width) < (CostB / B.Width) 6041 // <=> (CostA * B.Width) < (CostB * A.Width) 6042 return (CostA * B.Width.getKnownMinValue()) < 6043 (CostB * A.Width.getKnownMinValue()); 6044 } 6045 6046 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6047 const ElementCountSet &VFCandidates) { 6048 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6049 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6050 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6051 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6052 "Expected Scalar VF to be a candidate"); 6053 6054 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6055 VectorizationFactor ChosenFactor = ScalarCost; 6056 6057 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6058 if (ForceVectorization && VFCandidates.size() > 1) { 6059 // Ignore scalar width, because the user explicitly wants vectorization. 6060 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6061 // evaluation. 6062 ChosenFactor.Cost = InstructionCost::getMax(); 6063 } 6064 6065 SmallVector<InstructionVFPair> InvalidCosts; 6066 for (const auto &i : VFCandidates) { 6067 // The cost for scalar VF=1 is already calculated, so ignore it. 6068 if (i.isScalar()) 6069 continue; 6070 6071 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6072 VectorizationFactor Candidate(i, C.first); 6073 LLVM_DEBUG( 6074 dbgs() << "LV: Vector loop of width " << i << " costs: " 6075 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6076 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6077 << ".\n"); 6078 6079 if (!C.second && !ForceVectorization) { 6080 LLVM_DEBUG( 6081 dbgs() << "LV: Not considering vector loop of width " << i 6082 << " because it will not generate any vector instructions.\n"); 6083 continue; 6084 } 6085 6086 // If profitable add it to ProfitableVF list. 6087 if (isMoreProfitable(Candidate, ScalarCost)) 6088 ProfitableVFs.push_back(Candidate); 6089 6090 if (isMoreProfitable(Candidate, ChosenFactor)) 6091 ChosenFactor = Candidate; 6092 } 6093 6094 // Emit a report of VFs with invalid costs in the loop. 6095 if (!InvalidCosts.empty()) { 6096 // Group the remarks per instruction, keeping the instruction order from 6097 // InvalidCosts. 6098 std::map<Instruction *, unsigned> Numbering; 6099 unsigned I = 0; 6100 for (auto &Pair : InvalidCosts) 6101 if (!Numbering.count(Pair.first)) 6102 Numbering[Pair.first] = I++; 6103 6104 // Sort the list, first on instruction(number) then on VF. 6105 llvm::sort(InvalidCosts, 6106 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6107 if (Numbering[A.first] != Numbering[B.first]) 6108 return Numbering[A.first] < Numbering[B.first]; 6109 ElementCountComparator ECC; 6110 return ECC(A.second, B.second); 6111 }); 6112 6113 // For a list of ordered instruction-vf pairs: 6114 // [(load, vf1), (load, vf2), (store, vf1)] 6115 // Group the instructions together to emit separate remarks for: 6116 // load (vf1, vf2) 6117 // store (vf1) 6118 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6119 auto Subset = ArrayRef<InstructionVFPair>(); 6120 do { 6121 if (Subset.empty()) 6122 Subset = Tail.take_front(1); 6123 6124 Instruction *I = Subset.front().first; 6125 6126 // If the next instruction is different, or if there are no other pairs, 6127 // emit a remark for the collated subset. e.g. 6128 // [(load, vf1), (load, vf2))] 6129 // to emit: 6130 // remark: invalid costs for 'load' at VF=(vf, vf2) 6131 if (Subset == Tail || Tail[Subset.size()].first != I) { 6132 std::string OutString; 6133 raw_string_ostream OS(OutString); 6134 assert(!Subset.empty() && "Unexpected empty range"); 6135 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6136 for (auto &Pair : Subset) 6137 OS << (Pair.second == Subset.front().second ? "" : ", ") 6138 << Pair.second; 6139 OS << "):"; 6140 if (auto *CI = dyn_cast<CallInst>(I)) 6141 OS << " call to " << CI->getCalledFunction()->getName(); 6142 else 6143 OS << " " << I->getOpcodeName(); 6144 OS.flush(); 6145 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6146 Tail = Tail.drop_front(Subset.size()); 6147 Subset = {}; 6148 } else 6149 // Grow the subset by one element 6150 Subset = Tail.take_front(Subset.size() + 1); 6151 } while (!Tail.empty()); 6152 } 6153 6154 if (!EnableCondStoresVectorization && NumPredStores) { 6155 reportVectorizationFailure("There are conditional stores.", 6156 "store that is conditionally executed prevents vectorization", 6157 "ConditionalStore", ORE, TheLoop); 6158 ChosenFactor = ScalarCost; 6159 } 6160 6161 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6162 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6163 << "LV: Vectorization seems to be not beneficial, " 6164 << "but was forced by a user.\n"); 6165 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6166 return ChosenFactor; 6167 } 6168 6169 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6170 const Loop &L, ElementCount VF) const { 6171 // Cross iteration phis such as reductions need special handling and are 6172 // currently unsupported. 6173 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6174 return Legal->isFirstOrderRecurrence(&Phi) || 6175 Legal->isReductionVariable(&Phi); 6176 })) 6177 return false; 6178 6179 // Phis with uses outside of the loop require special handling and are 6180 // currently unsupported. 6181 for (auto &Entry : Legal->getInductionVars()) { 6182 // Look for uses of the value of the induction at the last iteration. 6183 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6184 for (User *U : PostInc->users()) 6185 if (!L.contains(cast<Instruction>(U))) 6186 return false; 6187 // Look for uses of penultimate value of the induction. 6188 for (User *U : Entry.first->users()) 6189 if (!L.contains(cast<Instruction>(U))) 6190 return false; 6191 } 6192 6193 // Induction variables that are widened require special handling that is 6194 // currently not supported. 6195 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6196 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6197 this->isProfitableToScalarize(Entry.first, VF)); 6198 })) 6199 return false; 6200 6201 // Epilogue vectorization code has not been auditted to ensure it handles 6202 // non-latch exits properly. It may be fine, but it needs auditted and 6203 // tested. 6204 if (L.getExitingBlock() != L.getLoopLatch()) 6205 return false; 6206 6207 return true; 6208 } 6209 6210 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6211 const ElementCount VF) const { 6212 // FIXME: We need a much better cost-model to take different parameters such 6213 // as register pressure, code size increase and cost of extra branches into 6214 // account. For now we apply a very crude heuristic and only consider loops 6215 // with vectorization factors larger than a certain value. 6216 // We also consider epilogue vectorization unprofitable for targets that don't 6217 // consider interleaving beneficial (eg. MVE). 6218 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6219 return false; 6220 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6221 return true; 6222 return false; 6223 } 6224 6225 VectorizationFactor 6226 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6227 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6228 VectorizationFactor Result = VectorizationFactor::Disabled(); 6229 if (!EnableEpilogueVectorization) { 6230 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6231 return Result; 6232 } 6233 6234 if (!isScalarEpilogueAllowed()) { 6235 LLVM_DEBUG( 6236 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6237 "allowed.\n";); 6238 return Result; 6239 } 6240 6241 // FIXME: This can be fixed for scalable vectors later, because at this stage 6242 // the LoopVectorizer will only consider vectorizing a loop with scalable 6243 // vectors when the loop has a hint to enable vectorization for a given VF. 6244 if (MainLoopVF.isScalable()) { 6245 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6246 "yet supported.\n"); 6247 return Result; 6248 } 6249 6250 // Not really a cost consideration, but check for unsupported cases here to 6251 // simplify the logic. 6252 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6253 LLVM_DEBUG( 6254 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6255 "not a supported candidate.\n";); 6256 return Result; 6257 } 6258 6259 if (EpilogueVectorizationForceVF > 1) { 6260 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6261 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 6262 if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC})) 6263 return {ForcedEC, 0}; 6264 else { 6265 LLVM_DEBUG( 6266 dbgs() 6267 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6268 return Result; 6269 } 6270 } 6271 6272 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6273 TheLoop->getHeader()->getParent()->hasMinSize()) { 6274 LLVM_DEBUG( 6275 dbgs() 6276 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6277 return Result; 6278 } 6279 6280 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6281 return Result; 6282 6283 for (auto &NextVF : ProfitableVFs) 6284 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6285 (Result.Width.getFixedValue() == 1 || 6286 isMoreProfitable(NextVF, Result)) && 6287 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6288 Result = NextVF; 6289 6290 if (Result != VectorizationFactor::Disabled()) 6291 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6292 << Result.Width.getFixedValue() << "\n";); 6293 return Result; 6294 } 6295 6296 std::pair<unsigned, unsigned> 6297 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6298 unsigned MinWidth = -1U; 6299 unsigned MaxWidth = 8; 6300 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6301 for (Type *T : ElementTypesInLoop) { 6302 MinWidth = std::min<unsigned>( 6303 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6304 MaxWidth = std::max<unsigned>( 6305 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6306 } 6307 return {MinWidth, MaxWidth}; 6308 } 6309 6310 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6311 ElementTypesInLoop.clear(); 6312 // For each block. 6313 for (BasicBlock *BB : TheLoop->blocks()) { 6314 // For each instruction in the loop. 6315 for (Instruction &I : BB->instructionsWithoutDebug()) { 6316 Type *T = I.getType(); 6317 6318 // Skip ignored values. 6319 if (ValuesToIgnore.count(&I)) 6320 continue; 6321 6322 // Only examine Loads, Stores and PHINodes. 6323 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6324 continue; 6325 6326 // Examine PHI nodes that are reduction variables. Update the type to 6327 // account for the recurrence type. 6328 if (auto *PN = dyn_cast<PHINode>(&I)) { 6329 if (!Legal->isReductionVariable(PN)) 6330 continue; 6331 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6332 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6333 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6334 RdxDesc.getRecurrenceType(), 6335 TargetTransformInfo::ReductionFlags())) 6336 continue; 6337 T = RdxDesc.getRecurrenceType(); 6338 } 6339 6340 // Examine the stored values. 6341 if (auto *ST = dyn_cast<StoreInst>(&I)) 6342 T = ST->getValueOperand()->getType(); 6343 6344 // Ignore loaded pointer types and stored pointer types that are not 6345 // vectorizable. 6346 // 6347 // FIXME: The check here attempts to predict whether a load or store will 6348 // be vectorized. We only know this for certain after a VF has 6349 // been selected. Here, we assume that if an access can be 6350 // vectorized, it will be. We should also look at extending this 6351 // optimization to non-pointer types. 6352 // 6353 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6354 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6355 continue; 6356 6357 ElementTypesInLoop.insert(T); 6358 } 6359 } 6360 } 6361 6362 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6363 unsigned LoopCost) { 6364 // -- The interleave heuristics -- 6365 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6366 // There are many micro-architectural considerations that we can't predict 6367 // at this level. For example, frontend pressure (on decode or fetch) due to 6368 // code size, or the number and capabilities of the execution ports. 6369 // 6370 // We use the following heuristics to select the interleave count: 6371 // 1. If the code has reductions, then we interleave to break the cross 6372 // iteration dependency. 6373 // 2. If the loop is really small, then we interleave to reduce the loop 6374 // overhead. 6375 // 3. We don't interleave if we think that we will spill registers to memory 6376 // due to the increased register pressure. 6377 6378 if (!isScalarEpilogueAllowed()) 6379 return 1; 6380 6381 // We used the distance for the interleave count. 6382 if (Legal->getMaxSafeDepDistBytes() != -1U) 6383 return 1; 6384 6385 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6386 const bool HasReductions = !Legal->getReductionVars().empty(); 6387 // Do not interleave loops with a relatively small known or estimated trip 6388 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6389 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6390 // because with the above conditions interleaving can expose ILP and break 6391 // cross iteration dependences for reductions. 6392 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6393 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6394 return 1; 6395 6396 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6397 // We divide by these constants so assume that we have at least one 6398 // instruction that uses at least one register. 6399 for (auto& pair : R.MaxLocalUsers) { 6400 pair.second = std::max(pair.second, 1U); 6401 } 6402 6403 // We calculate the interleave count using the following formula. 6404 // Subtract the number of loop invariants from the number of available 6405 // registers. These registers are used by all of the interleaved instances. 6406 // Next, divide the remaining registers by the number of registers that is 6407 // required by the loop, in order to estimate how many parallel instances 6408 // fit without causing spills. All of this is rounded down if necessary to be 6409 // a power of two. We want power of two interleave count to simplify any 6410 // addressing operations or alignment considerations. 6411 // We also want power of two interleave counts to ensure that the induction 6412 // variable of the vector loop wraps to zero, when tail is folded by masking; 6413 // this currently happens when OptForSize, in which case IC is set to 1 above. 6414 unsigned IC = UINT_MAX; 6415 6416 for (auto& pair : R.MaxLocalUsers) { 6417 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6418 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6419 << " registers of " 6420 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6421 if (VF.isScalar()) { 6422 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6423 TargetNumRegisters = ForceTargetNumScalarRegs; 6424 } else { 6425 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6426 TargetNumRegisters = ForceTargetNumVectorRegs; 6427 } 6428 unsigned MaxLocalUsers = pair.second; 6429 unsigned LoopInvariantRegs = 0; 6430 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6431 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6432 6433 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6434 // Don't count the induction variable as interleaved. 6435 if (EnableIndVarRegisterHeur) { 6436 TmpIC = 6437 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6438 std::max(1U, (MaxLocalUsers - 1))); 6439 } 6440 6441 IC = std::min(IC, TmpIC); 6442 } 6443 6444 // Clamp the interleave ranges to reasonable counts. 6445 unsigned MaxInterleaveCount = 6446 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6447 6448 // Check if the user has overridden the max. 6449 if (VF.isScalar()) { 6450 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6451 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6452 } else { 6453 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6454 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6455 } 6456 6457 // If trip count is known or estimated compile time constant, limit the 6458 // interleave count to be less than the trip count divided by VF, provided it 6459 // is at least 1. 6460 // 6461 // For scalable vectors we can't know if interleaving is beneficial. It may 6462 // not be beneficial for small loops if none of the lanes in the second vector 6463 // iterations is enabled. However, for larger loops, there is likely to be a 6464 // similar benefit as for fixed-width vectors. For now, we choose to leave 6465 // the InterleaveCount as if vscale is '1', although if some information about 6466 // the vector is known (e.g. min vector size), we can make a better decision. 6467 if (BestKnownTC) { 6468 MaxInterleaveCount = 6469 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6470 // Make sure MaxInterleaveCount is greater than 0. 6471 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6472 } 6473 6474 assert(MaxInterleaveCount > 0 && 6475 "Maximum interleave count must be greater than 0"); 6476 6477 // Clamp the calculated IC to be between the 1 and the max interleave count 6478 // that the target and trip count allows. 6479 if (IC > MaxInterleaveCount) 6480 IC = MaxInterleaveCount; 6481 else 6482 // Make sure IC is greater than 0. 6483 IC = std::max(1u, IC); 6484 6485 assert(IC > 0 && "Interleave count must be greater than 0."); 6486 6487 // If we did not calculate the cost for VF (because the user selected the VF) 6488 // then we calculate the cost of VF here. 6489 if (LoopCost == 0) { 6490 InstructionCost C = expectedCost(VF).first; 6491 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6492 LoopCost = *C.getValue(); 6493 } 6494 6495 assert(LoopCost && "Non-zero loop cost expected"); 6496 6497 // Interleave if we vectorized this loop and there is a reduction that could 6498 // benefit from interleaving. 6499 if (VF.isVector() && HasReductions) { 6500 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6501 return IC; 6502 } 6503 6504 // Note that if we've already vectorized the loop we will have done the 6505 // runtime check and so interleaving won't require further checks. 6506 bool InterleavingRequiresRuntimePointerCheck = 6507 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6508 6509 // We want to interleave small loops in order to reduce the loop overhead and 6510 // potentially expose ILP opportunities. 6511 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6512 << "LV: IC is " << IC << '\n' 6513 << "LV: VF is " << VF << '\n'); 6514 const bool AggressivelyInterleaveReductions = 6515 TTI.enableAggressiveInterleaving(HasReductions); 6516 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6517 // We assume that the cost overhead is 1 and we use the cost model 6518 // to estimate the cost of the loop and interleave until the cost of the 6519 // loop overhead is about 5% of the cost of the loop. 6520 unsigned SmallIC = 6521 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6522 6523 // Interleave until store/load ports (estimated by max interleave count) are 6524 // saturated. 6525 unsigned NumStores = Legal->getNumStores(); 6526 unsigned NumLoads = Legal->getNumLoads(); 6527 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6528 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6529 6530 // There is little point in interleaving for reductions containing selects 6531 // and compares when VF=1 since it may just create more overhead than it's 6532 // worth for loops with small trip counts. This is because we still have to 6533 // do the final reduction after the loop. 6534 bool HasSelectCmpReductions = 6535 HasReductions && 6536 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6537 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6538 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6539 RdxDesc.getRecurrenceKind()); 6540 }); 6541 if (HasSelectCmpReductions) { 6542 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6543 return 1; 6544 } 6545 6546 // If we have a scalar reduction (vector reductions are already dealt with 6547 // by this point), we can increase the critical path length if the loop 6548 // we're interleaving is inside another loop. For tree-wise reductions 6549 // set the limit to 2, and for ordered reductions it's best to disable 6550 // interleaving entirely. 6551 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6552 bool HasOrderedReductions = 6553 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6554 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6555 return RdxDesc.isOrdered(); 6556 }); 6557 if (HasOrderedReductions) { 6558 LLVM_DEBUG( 6559 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6560 return 1; 6561 } 6562 6563 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6564 SmallIC = std::min(SmallIC, F); 6565 StoresIC = std::min(StoresIC, F); 6566 LoadsIC = std::min(LoadsIC, F); 6567 } 6568 6569 if (EnableLoadStoreRuntimeInterleave && 6570 std::max(StoresIC, LoadsIC) > SmallIC) { 6571 LLVM_DEBUG( 6572 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6573 return std::max(StoresIC, LoadsIC); 6574 } 6575 6576 // If there are scalar reductions and TTI has enabled aggressive 6577 // interleaving for reductions, we will interleave to expose ILP. 6578 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6579 AggressivelyInterleaveReductions) { 6580 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6581 // Interleave no less than SmallIC but not as aggressive as the normal IC 6582 // to satisfy the rare situation when resources are too limited. 6583 return std::max(IC / 2, SmallIC); 6584 } else { 6585 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6586 return SmallIC; 6587 } 6588 } 6589 6590 // Interleave if this is a large loop (small loops are already dealt with by 6591 // this point) that could benefit from interleaving. 6592 if (AggressivelyInterleaveReductions) { 6593 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6594 return IC; 6595 } 6596 6597 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6598 return 1; 6599 } 6600 6601 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6602 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6603 // This function calculates the register usage by measuring the highest number 6604 // of values that are alive at a single location. Obviously, this is a very 6605 // rough estimation. We scan the loop in a topological order in order and 6606 // assign a number to each instruction. We use RPO to ensure that defs are 6607 // met before their users. We assume that each instruction that has in-loop 6608 // users starts an interval. We record every time that an in-loop value is 6609 // used, so we have a list of the first and last occurrences of each 6610 // instruction. Next, we transpose this data structure into a multi map that 6611 // holds the list of intervals that *end* at a specific location. This multi 6612 // map allows us to perform a linear search. We scan the instructions linearly 6613 // and record each time that a new interval starts, by placing it in a set. 6614 // If we find this value in the multi-map then we remove it from the set. 6615 // The max register usage is the maximum size of the set. 6616 // We also search for instructions that are defined outside the loop, but are 6617 // used inside the loop. We need this number separately from the max-interval 6618 // usage number because when we unroll, loop-invariant values do not take 6619 // more register. 6620 LoopBlocksDFS DFS(TheLoop); 6621 DFS.perform(LI); 6622 6623 RegisterUsage RU; 6624 6625 // Each 'key' in the map opens a new interval. The values 6626 // of the map are the index of the 'last seen' usage of the 6627 // instruction that is the key. 6628 using IntervalMap = DenseMap<Instruction *, unsigned>; 6629 6630 // Maps instruction to its index. 6631 SmallVector<Instruction *, 64> IdxToInstr; 6632 // Marks the end of each interval. 6633 IntervalMap EndPoint; 6634 // Saves the list of instruction indices that are used in the loop. 6635 SmallPtrSet<Instruction *, 8> Ends; 6636 // Saves the list of values that are used in the loop but are 6637 // defined outside the loop, such as arguments and constants. 6638 SmallPtrSet<Value *, 8> LoopInvariants; 6639 6640 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6641 for (Instruction &I : BB->instructionsWithoutDebug()) { 6642 IdxToInstr.push_back(&I); 6643 6644 // Save the end location of each USE. 6645 for (Value *U : I.operands()) { 6646 auto *Instr = dyn_cast<Instruction>(U); 6647 6648 // Ignore non-instruction values such as arguments, constants, etc. 6649 if (!Instr) 6650 continue; 6651 6652 // If this instruction is outside the loop then record it and continue. 6653 if (!TheLoop->contains(Instr)) { 6654 LoopInvariants.insert(Instr); 6655 continue; 6656 } 6657 6658 // Overwrite previous end points. 6659 EndPoint[Instr] = IdxToInstr.size(); 6660 Ends.insert(Instr); 6661 } 6662 } 6663 } 6664 6665 // Saves the list of intervals that end with the index in 'key'. 6666 using InstrList = SmallVector<Instruction *, 2>; 6667 DenseMap<unsigned, InstrList> TransposeEnds; 6668 6669 // Transpose the EndPoints to a list of values that end at each index. 6670 for (auto &Interval : EndPoint) 6671 TransposeEnds[Interval.second].push_back(Interval.first); 6672 6673 SmallPtrSet<Instruction *, 8> OpenIntervals; 6674 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6675 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6676 6677 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6678 6679 // A lambda that gets the register usage for the given type and VF. 6680 const auto &TTICapture = TTI; 6681 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6682 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6683 return 0; 6684 InstructionCost::CostType RegUsage = 6685 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6686 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6687 "Nonsensical values for register usage."); 6688 return RegUsage; 6689 }; 6690 6691 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6692 Instruction *I = IdxToInstr[i]; 6693 6694 // Remove all of the instructions that end at this location. 6695 InstrList &List = TransposeEnds[i]; 6696 for (Instruction *ToRemove : List) 6697 OpenIntervals.erase(ToRemove); 6698 6699 // Ignore instructions that are never used within the loop. 6700 if (!Ends.count(I)) 6701 continue; 6702 6703 // Skip ignored values. 6704 if (ValuesToIgnore.count(I)) 6705 continue; 6706 6707 // For each VF find the maximum usage of registers. 6708 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6709 // Count the number of live intervals. 6710 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6711 6712 if (VFs[j].isScalar()) { 6713 for (auto Inst : OpenIntervals) { 6714 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6715 if (RegUsage.find(ClassID) == RegUsage.end()) 6716 RegUsage[ClassID] = 1; 6717 else 6718 RegUsage[ClassID] += 1; 6719 } 6720 } else { 6721 collectUniformsAndScalars(VFs[j]); 6722 for (auto Inst : OpenIntervals) { 6723 // Skip ignored values for VF > 1. 6724 if (VecValuesToIgnore.count(Inst)) 6725 continue; 6726 if (isScalarAfterVectorization(Inst, VFs[j])) { 6727 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6728 if (RegUsage.find(ClassID) == RegUsage.end()) 6729 RegUsage[ClassID] = 1; 6730 else 6731 RegUsage[ClassID] += 1; 6732 } else { 6733 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6734 if (RegUsage.find(ClassID) == RegUsage.end()) 6735 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6736 else 6737 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6738 } 6739 } 6740 } 6741 6742 for (auto& pair : RegUsage) { 6743 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6744 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6745 else 6746 MaxUsages[j][pair.first] = pair.second; 6747 } 6748 } 6749 6750 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6751 << OpenIntervals.size() << '\n'); 6752 6753 // Add the current instruction to the list of open intervals. 6754 OpenIntervals.insert(I); 6755 } 6756 6757 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6758 SmallMapVector<unsigned, unsigned, 4> Invariant; 6759 6760 for (auto Inst : LoopInvariants) { 6761 unsigned Usage = 6762 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6763 unsigned ClassID = 6764 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6765 if (Invariant.find(ClassID) == Invariant.end()) 6766 Invariant[ClassID] = Usage; 6767 else 6768 Invariant[ClassID] += Usage; 6769 } 6770 6771 LLVM_DEBUG({ 6772 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6773 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6774 << " item\n"; 6775 for (const auto &pair : MaxUsages[i]) { 6776 dbgs() << "LV(REG): RegisterClass: " 6777 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6778 << " registers\n"; 6779 } 6780 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6781 << " item\n"; 6782 for (const auto &pair : Invariant) { 6783 dbgs() << "LV(REG): RegisterClass: " 6784 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6785 << " registers\n"; 6786 } 6787 }); 6788 6789 RU.LoopInvariantRegs = Invariant; 6790 RU.MaxLocalUsers = MaxUsages[i]; 6791 RUs[i] = RU; 6792 } 6793 6794 return RUs; 6795 } 6796 6797 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6798 // TODO: Cost model for emulated masked load/store is completely 6799 // broken. This hack guides the cost model to use an artificially 6800 // high enough value to practically disable vectorization with such 6801 // operations, except where previously deployed legality hack allowed 6802 // using very low cost values. This is to avoid regressions coming simply 6803 // from moving "masked load/store" check from legality to cost model. 6804 // Masked Load/Gather emulation was previously never allowed. 6805 // Limited number of Masked Store/Scatter emulation was allowed. 6806 assert(isPredicatedInst(I) && 6807 "Expecting a scalar emulated instruction"); 6808 return isa<LoadInst>(I) || 6809 (isa<StoreInst>(I) && 6810 NumPredStores > NumberOfStoresToPredicate); 6811 } 6812 6813 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6814 // If we aren't vectorizing the loop, or if we've already collected the 6815 // instructions to scalarize, there's nothing to do. Collection may already 6816 // have occurred if we have a user-selected VF and are now computing the 6817 // expected cost for interleaving. 6818 if (VF.isScalar() || VF.isZero() || 6819 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6820 return; 6821 6822 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6823 // not profitable to scalarize any instructions, the presence of VF in the 6824 // map will indicate that we've analyzed it already. 6825 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6826 6827 // Find all the instructions that are scalar with predication in the loop and 6828 // determine if it would be better to not if-convert the blocks they are in. 6829 // If so, we also record the instructions to scalarize. 6830 for (BasicBlock *BB : TheLoop->blocks()) { 6831 if (!blockNeedsPredication(BB)) 6832 continue; 6833 for (Instruction &I : *BB) 6834 if (isScalarWithPredication(&I)) { 6835 ScalarCostsTy ScalarCosts; 6836 // Do not apply discount if scalable, because that would lead to 6837 // invalid scalarization costs. 6838 // Do not apply discount logic if hacked cost is needed 6839 // for emulated masked memrefs. 6840 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6841 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6842 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6843 // Remember that BB will remain after vectorization. 6844 PredicatedBBsAfterVectorization.insert(BB); 6845 } 6846 } 6847 } 6848 6849 int LoopVectorizationCostModel::computePredInstDiscount( 6850 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6851 assert(!isUniformAfterVectorization(PredInst, VF) && 6852 "Instruction marked uniform-after-vectorization will be predicated"); 6853 6854 // Initialize the discount to zero, meaning that the scalar version and the 6855 // vector version cost the same. 6856 InstructionCost Discount = 0; 6857 6858 // Holds instructions to analyze. The instructions we visit are mapped in 6859 // ScalarCosts. Those instructions are the ones that would be scalarized if 6860 // we find that the scalar version costs less. 6861 SmallVector<Instruction *, 8> Worklist; 6862 6863 // Returns true if the given instruction can be scalarized. 6864 auto canBeScalarized = [&](Instruction *I) -> bool { 6865 // We only attempt to scalarize instructions forming a single-use chain 6866 // from the original predicated block that would otherwise be vectorized. 6867 // Although not strictly necessary, we give up on instructions we know will 6868 // already be scalar to avoid traversing chains that are unlikely to be 6869 // beneficial. 6870 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6871 isScalarAfterVectorization(I, VF)) 6872 return false; 6873 6874 // If the instruction is scalar with predication, it will be analyzed 6875 // separately. We ignore it within the context of PredInst. 6876 if (isScalarWithPredication(I)) 6877 return false; 6878 6879 // If any of the instruction's operands are uniform after vectorization, 6880 // the instruction cannot be scalarized. This prevents, for example, a 6881 // masked load from being scalarized. 6882 // 6883 // We assume we will only emit a value for lane zero of an instruction 6884 // marked uniform after vectorization, rather than VF identical values. 6885 // Thus, if we scalarize an instruction that uses a uniform, we would 6886 // create uses of values corresponding to the lanes we aren't emitting code 6887 // for. This behavior can be changed by allowing getScalarValue to clone 6888 // the lane zero values for uniforms rather than asserting. 6889 for (Use &U : I->operands()) 6890 if (auto *J = dyn_cast<Instruction>(U.get())) 6891 if (isUniformAfterVectorization(J, VF)) 6892 return false; 6893 6894 // Otherwise, we can scalarize the instruction. 6895 return true; 6896 }; 6897 6898 // Compute the expected cost discount from scalarizing the entire expression 6899 // feeding the predicated instruction. We currently only consider expressions 6900 // that are single-use instruction chains. 6901 Worklist.push_back(PredInst); 6902 while (!Worklist.empty()) { 6903 Instruction *I = Worklist.pop_back_val(); 6904 6905 // If we've already analyzed the instruction, there's nothing to do. 6906 if (ScalarCosts.find(I) != ScalarCosts.end()) 6907 continue; 6908 6909 // Compute the cost of the vector instruction. Note that this cost already 6910 // includes the scalarization overhead of the predicated instruction. 6911 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6912 6913 // Compute the cost of the scalarized instruction. This cost is the cost of 6914 // the instruction as if it wasn't if-converted and instead remained in the 6915 // predicated block. We will scale this cost by block probability after 6916 // computing the scalarization overhead. 6917 InstructionCost ScalarCost = 6918 VF.getFixedValue() * 6919 getInstructionCost(I, ElementCount::getFixed(1)).first; 6920 6921 // Compute the scalarization overhead of needed insertelement instructions 6922 // and phi nodes. 6923 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6924 ScalarCost += TTI.getScalarizationOverhead( 6925 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6926 APInt::getAllOnes(VF.getFixedValue()), true, false); 6927 ScalarCost += 6928 VF.getFixedValue() * 6929 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6930 } 6931 6932 // Compute the scalarization overhead of needed extractelement 6933 // instructions. For each of the instruction's operands, if the operand can 6934 // be scalarized, add it to the worklist; otherwise, account for the 6935 // overhead. 6936 for (Use &U : I->operands()) 6937 if (auto *J = dyn_cast<Instruction>(U.get())) { 6938 assert(VectorType::isValidElementType(J->getType()) && 6939 "Instruction has non-scalar type"); 6940 if (canBeScalarized(J)) 6941 Worklist.push_back(J); 6942 else if (needsExtract(J, VF)) { 6943 ScalarCost += TTI.getScalarizationOverhead( 6944 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6945 APInt::getAllOnes(VF.getFixedValue()), false, true); 6946 } 6947 } 6948 6949 // Scale the total scalar cost by block probability. 6950 ScalarCost /= getReciprocalPredBlockProb(); 6951 6952 // Compute the discount. A non-negative discount means the vector version 6953 // of the instruction costs more, and scalarizing would be beneficial. 6954 Discount += VectorCost - ScalarCost; 6955 ScalarCosts[I] = ScalarCost; 6956 } 6957 6958 return *Discount.getValue(); 6959 } 6960 6961 LoopVectorizationCostModel::VectorizationCostTy 6962 LoopVectorizationCostModel::expectedCost( 6963 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6964 VectorizationCostTy Cost; 6965 6966 // For each block. 6967 for (BasicBlock *BB : TheLoop->blocks()) { 6968 VectorizationCostTy BlockCost; 6969 6970 // For each instruction in the old loop. 6971 for (Instruction &I : BB->instructionsWithoutDebug()) { 6972 // Skip ignored values. 6973 if (ValuesToIgnore.count(&I) || 6974 (VF.isVector() && VecValuesToIgnore.count(&I))) 6975 continue; 6976 6977 VectorizationCostTy C = getInstructionCost(&I, VF); 6978 6979 // Check if we should override the cost. 6980 if (C.first.isValid() && 6981 ForceTargetInstructionCost.getNumOccurrences() > 0) 6982 C.first = InstructionCost(ForceTargetInstructionCost); 6983 6984 // Keep a list of instructions with invalid costs. 6985 if (Invalid && !C.first.isValid()) 6986 Invalid->emplace_back(&I, VF); 6987 6988 BlockCost.first += C.first; 6989 BlockCost.second |= C.second; 6990 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6991 << " for VF " << VF << " For instruction: " << I 6992 << '\n'); 6993 } 6994 6995 // If we are vectorizing a predicated block, it will have been 6996 // if-converted. This means that the block's instructions (aside from 6997 // stores and instructions that may divide by zero) will now be 6998 // unconditionally executed. For the scalar case, we may not always execute 6999 // the predicated block, if it is an if-else block. Thus, scale the block's 7000 // cost by the probability of executing it. blockNeedsPredication from 7001 // Legal is used so as to not include all blocks in tail folded loops. 7002 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 7003 BlockCost.first /= getReciprocalPredBlockProb(); 7004 7005 Cost.first += BlockCost.first; 7006 Cost.second |= BlockCost.second; 7007 } 7008 7009 return Cost; 7010 } 7011 7012 /// Gets Address Access SCEV after verifying that the access pattern 7013 /// is loop invariant except the induction variable dependence. 7014 /// 7015 /// This SCEV can be sent to the Target in order to estimate the address 7016 /// calculation cost. 7017 static const SCEV *getAddressAccessSCEV( 7018 Value *Ptr, 7019 LoopVectorizationLegality *Legal, 7020 PredicatedScalarEvolution &PSE, 7021 const Loop *TheLoop) { 7022 7023 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7024 if (!Gep) 7025 return nullptr; 7026 7027 // We are looking for a gep with all loop invariant indices except for one 7028 // which should be an induction variable. 7029 auto SE = PSE.getSE(); 7030 unsigned NumOperands = Gep->getNumOperands(); 7031 for (unsigned i = 1; i < NumOperands; ++i) { 7032 Value *Opd = Gep->getOperand(i); 7033 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7034 !Legal->isInductionVariable(Opd)) 7035 return nullptr; 7036 } 7037 7038 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7039 return PSE.getSCEV(Ptr); 7040 } 7041 7042 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7043 return Legal->hasStride(I->getOperand(0)) || 7044 Legal->hasStride(I->getOperand(1)); 7045 } 7046 7047 InstructionCost 7048 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7049 ElementCount VF) { 7050 assert(VF.isVector() && 7051 "Scalarization cost of instruction implies vectorization."); 7052 if (VF.isScalable()) 7053 return InstructionCost::getInvalid(); 7054 7055 Type *ValTy = getLoadStoreType(I); 7056 auto SE = PSE.getSE(); 7057 7058 unsigned AS = getLoadStoreAddressSpace(I); 7059 Value *Ptr = getLoadStorePointerOperand(I); 7060 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7061 7062 // Figure out whether the access is strided and get the stride value 7063 // if it's known in compile time 7064 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7065 7066 // Get the cost of the scalar memory instruction and address computation. 7067 InstructionCost Cost = 7068 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7069 7070 // Don't pass *I here, since it is scalar but will actually be part of a 7071 // vectorized loop where the user of it is a vectorized instruction. 7072 const Align Alignment = getLoadStoreAlignment(I); 7073 Cost += VF.getKnownMinValue() * 7074 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7075 AS, TTI::TCK_RecipThroughput); 7076 7077 // Get the overhead of the extractelement and insertelement instructions 7078 // we might create due to scalarization. 7079 Cost += getScalarizationOverhead(I, VF); 7080 7081 // If we have a predicated load/store, it will need extra i1 extracts and 7082 // conditional branches, but may not be executed for each vector lane. Scale 7083 // the cost by the probability of executing the predicated block. 7084 if (isPredicatedInst(I)) { 7085 Cost /= getReciprocalPredBlockProb(); 7086 7087 // Add the cost of an i1 extract and a branch 7088 auto *Vec_i1Ty = 7089 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7090 Cost += TTI.getScalarizationOverhead( 7091 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7092 /*Insert=*/false, /*Extract=*/true); 7093 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7094 7095 if (useEmulatedMaskMemRefHack(I)) 7096 // Artificially setting to a high enough value to practically disable 7097 // vectorization with such operations. 7098 Cost = 3000000; 7099 } 7100 7101 return Cost; 7102 } 7103 7104 InstructionCost 7105 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7106 ElementCount VF) { 7107 Type *ValTy = getLoadStoreType(I); 7108 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7109 Value *Ptr = getLoadStorePointerOperand(I); 7110 unsigned AS = getLoadStoreAddressSpace(I); 7111 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7112 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7113 7114 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7115 "Stride should be 1 or -1 for consecutive memory access"); 7116 const Align Alignment = getLoadStoreAlignment(I); 7117 InstructionCost Cost = 0; 7118 if (Legal->isMaskRequired(I)) 7119 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7120 CostKind); 7121 else 7122 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7123 CostKind, I); 7124 7125 bool Reverse = ConsecutiveStride < 0; 7126 if (Reverse) 7127 Cost += 7128 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7129 return Cost; 7130 } 7131 7132 InstructionCost 7133 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7134 ElementCount VF) { 7135 assert(Legal->isUniformMemOp(*I)); 7136 7137 Type *ValTy = getLoadStoreType(I); 7138 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7139 const Align Alignment = getLoadStoreAlignment(I); 7140 unsigned AS = getLoadStoreAddressSpace(I); 7141 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7142 if (isa<LoadInst>(I)) { 7143 return TTI.getAddressComputationCost(ValTy) + 7144 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7145 CostKind) + 7146 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7147 } 7148 StoreInst *SI = cast<StoreInst>(I); 7149 7150 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7151 return TTI.getAddressComputationCost(ValTy) + 7152 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7153 CostKind) + 7154 (isLoopInvariantStoreValue 7155 ? 0 7156 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7157 VF.getKnownMinValue() - 1)); 7158 } 7159 7160 InstructionCost 7161 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7162 ElementCount VF) { 7163 Type *ValTy = getLoadStoreType(I); 7164 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7165 const Align Alignment = getLoadStoreAlignment(I); 7166 const Value *Ptr = getLoadStorePointerOperand(I); 7167 7168 return TTI.getAddressComputationCost(VectorTy) + 7169 TTI.getGatherScatterOpCost( 7170 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7171 TargetTransformInfo::TCK_RecipThroughput, I); 7172 } 7173 7174 InstructionCost 7175 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7176 ElementCount VF) { 7177 // TODO: Once we have support for interleaving with scalable vectors 7178 // we can calculate the cost properly here. 7179 if (VF.isScalable()) 7180 return InstructionCost::getInvalid(); 7181 7182 Type *ValTy = getLoadStoreType(I); 7183 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7184 unsigned AS = getLoadStoreAddressSpace(I); 7185 7186 auto Group = getInterleavedAccessGroup(I); 7187 assert(Group && "Fail to get an interleaved access group."); 7188 7189 unsigned InterleaveFactor = Group->getFactor(); 7190 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7191 7192 // Holds the indices of existing members in the interleaved group. 7193 SmallVector<unsigned, 4> Indices; 7194 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7195 if (Group->getMember(IF)) 7196 Indices.push_back(IF); 7197 7198 // Calculate the cost of the whole interleaved group. 7199 bool UseMaskForGaps = 7200 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7201 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7202 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7203 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7204 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7205 7206 if (Group->isReverse()) { 7207 // TODO: Add support for reversed masked interleaved access. 7208 assert(!Legal->isMaskRequired(I) && 7209 "Reverse masked interleaved access not supported."); 7210 Cost += 7211 Group->getNumMembers() * 7212 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7213 } 7214 return Cost; 7215 } 7216 7217 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7218 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7219 using namespace llvm::PatternMatch; 7220 // Early exit for no inloop reductions 7221 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7222 return None; 7223 auto *VectorTy = cast<VectorType>(Ty); 7224 7225 // We are looking for a pattern of, and finding the minimal acceptable cost: 7226 // reduce(mul(ext(A), ext(B))) or 7227 // reduce(mul(A, B)) or 7228 // reduce(ext(A)) or 7229 // reduce(A). 7230 // The basic idea is that we walk down the tree to do that, finding the root 7231 // reduction instruction in InLoopReductionImmediateChains. From there we find 7232 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7233 // of the components. If the reduction cost is lower then we return it for the 7234 // reduction instruction and 0 for the other instructions in the pattern. If 7235 // it is not we return an invalid cost specifying the orignal cost method 7236 // should be used. 7237 Instruction *RetI = I; 7238 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7239 if (!RetI->hasOneUser()) 7240 return None; 7241 RetI = RetI->user_back(); 7242 } 7243 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7244 RetI->user_back()->getOpcode() == Instruction::Add) { 7245 if (!RetI->hasOneUser()) 7246 return None; 7247 RetI = RetI->user_back(); 7248 } 7249 7250 // Test if the found instruction is a reduction, and if not return an invalid 7251 // cost specifying the parent to use the original cost modelling. 7252 if (!InLoopReductionImmediateChains.count(RetI)) 7253 return None; 7254 7255 // Find the reduction this chain is a part of and calculate the basic cost of 7256 // the reduction on its own. 7257 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7258 Instruction *ReductionPhi = LastChain; 7259 while (!isa<PHINode>(ReductionPhi)) 7260 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7261 7262 const RecurrenceDescriptor &RdxDesc = 7263 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7264 7265 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7266 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7267 7268 // If we're using ordered reductions then we can just return the base cost 7269 // here, since getArithmeticReductionCost calculates the full ordered 7270 // reduction cost when FP reassociation is not allowed. 7271 if (useOrderedReductions(RdxDesc)) 7272 return BaseCost; 7273 7274 // Get the operand that was not the reduction chain and match it to one of the 7275 // patterns, returning the better cost if it is found. 7276 Instruction *RedOp = RetI->getOperand(1) == LastChain 7277 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7278 : dyn_cast<Instruction>(RetI->getOperand(1)); 7279 7280 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7281 7282 Instruction *Op0, *Op1; 7283 if (RedOp && 7284 match(RedOp, 7285 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7286 match(Op0, m_ZExtOrSExt(m_Value())) && 7287 Op0->getOpcode() == Op1->getOpcode() && 7288 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7289 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7290 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7291 7292 // Matched reduce(ext(mul(ext(A), ext(B))) 7293 // Note that the extend opcodes need to all match, or if A==B they will have 7294 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7295 // which is equally fine. 7296 bool IsUnsigned = isa<ZExtInst>(Op0); 7297 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7298 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7299 7300 InstructionCost ExtCost = 7301 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7302 TTI::CastContextHint::None, CostKind, Op0); 7303 InstructionCost MulCost = 7304 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7305 InstructionCost Ext2Cost = 7306 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7307 TTI::CastContextHint::None, CostKind, RedOp); 7308 7309 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7310 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7311 CostKind); 7312 7313 if (RedCost.isValid() && 7314 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7315 return I == RetI ? RedCost : 0; 7316 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7317 !TheLoop->isLoopInvariant(RedOp)) { 7318 // Matched reduce(ext(A)) 7319 bool IsUnsigned = isa<ZExtInst>(RedOp); 7320 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7321 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7322 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7323 CostKind); 7324 7325 InstructionCost ExtCost = 7326 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7327 TTI::CastContextHint::None, CostKind, RedOp); 7328 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7329 return I == RetI ? RedCost : 0; 7330 } else if (RedOp && 7331 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7332 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7333 Op0->getOpcode() == Op1->getOpcode() && 7334 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7335 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7336 bool IsUnsigned = isa<ZExtInst>(Op0); 7337 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7338 // Matched reduce(mul(ext, ext)) 7339 InstructionCost ExtCost = 7340 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7341 TTI::CastContextHint::None, CostKind, Op0); 7342 InstructionCost MulCost = 7343 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7344 7345 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7346 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7347 CostKind); 7348 7349 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7350 return I == RetI ? RedCost : 0; 7351 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7352 // Matched reduce(mul()) 7353 InstructionCost MulCost = 7354 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7355 7356 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7357 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7358 CostKind); 7359 7360 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7361 return I == RetI ? RedCost : 0; 7362 } 7363 } 7364 7365 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7366 } 7367 7368 InstructionCost 7369 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7370 ElementCount VF) { 7371 // Calculate scalar cost only. Vectorization cost should be ready at this 7372 // moment. 7373 if (VF.isScalar()) { 7374 Type *ValTy = getLoadStoreType(I); 7375 const Align Alignment = getLoadStoreAlignment(I); 7376 unsigned AS = getLoadStoreAddressSpace(I); 7377 7378 return TTI.getAddressComputationCost(ValTy) + 7379 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7380 TTI::TCK_RecipThroughput, I); 7381 } 7382 return getWideningCost(I, VF); 7383 } 7384 7385 LoopVectorizationCostModel::VectorizationCostTy 7386 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7387 ElementCount VF) { 7388 // If we know that this instruction will remain uniform, check the cost of 7389 // the scalar version. 7390 if (isUniformAfterVectorization(I, VF)) 7391 VF = ElementCount::getFixed(1); 7392 7393 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7394 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7395 7396 // Forced scalars do not have any scalarization overhead. 7397 auto ForcedScalar = ForcedScalars.find(VF); 7398 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7399 auto InstSet = ForcedScalar->second; 7400 if (InstSet.count(I)) 7401 return VectorizationCostTy( 7402 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7403 VF.getKnownMinValue()), 7404 false); 7405 } 7406 7407 Type *VectorTy; 7408 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7409 7410 bool TypeNotScalarized = 7411 VF.isVector() && VectorTy->isVectorTy() && 7412 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7413 return VectorizationCostTy(C, TypeNotScalarized); 7414 } 7415 7416 InstructionCost 7417 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7418 ElementCount VF) const { 7419 7420 // There is no mechanism yet to create a scalable scalarization loop, 7421 // so this is currently Invalid. 7422 if (VF.isScalable()) 7423 return InstructionCost::getInvalid(); 7424 7425 if (VF.isScalar()) 7426 return 0; 7427 7428 InstructionCost Cost = 0; 7429 Type *RetTy = ToVectorTy(I->getType(), VF); 7430 if (!RetTy->isVoidTy() && 7431 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7432 Cost += TTI.getScalarizationOverhead( 7433 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7434 false); 7435 7436 // Some targets keep addresses scalar. 7437 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7438 return Cost; 7439 7440 // Some targets support efficient element stores. 7441 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7442 return Cost; 7443 7444 // Collect operands to consider. 7445 CallInst *CI = dyn_cast<CallInst>(I); 7446 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7447 7448 // Skip operands that do not require extraction/scalarization and do not incur 7449 // any overhead. 7450 SmallVector<Type *> Tys; 7451 for (auto *V : filterExtractingOperands(Ops, VF)) 7452 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7453 return Cost + TTI.getOperandsScalarizationOverhead( 7454 filterExtractingOperands(Ops, VF), Tys); 7455 } 7456 7457 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7458 if (VF.isScalar()) 7459 return; 7460 NumPredStores = 0; 7461 for (BasicBlock *BB : TheLoop->blocks()) { 7462 // For each instruction in the old loop. 7463 for (Instruction &I : *BB) { 7464 Value *Ptr = getLoadStorePointerOperand(&I); 7465 if (!Ptr) 7466 continue; 7467 7468 // TODO: We should generate better code and update the cost model for 7469 // predicated uniform stores. Today they are treated as any other 7470 // predicated store (see added test cases in 7471 // invariant-store-vectorization.ll). 7472 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7473 NumPredStores++; 7474 7475 if (Legal->isUniformMemOp(I)) { 7476 // TODO: Avoid replicating loads and stores instead of 7477 // relying on instcombine to remove them. 7478 // Load: Scalar load + broadcast 7479 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7480 InstructionCost Cost; 7481 if (isa<StoreInst>(&I) && VF.isScalable() && 7482 isLegalGatherOrScatter(&I)) { 7483 Cost = getGatherScatterCost(&I, VF); 7484 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7485 } else { 7486 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7487 "Cannot yet scalarize uniform stores"); 7488 Cost = getUniformMemOpCost(&I, VF); 7489 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7490 } 7491 continue; 7492 } 7493 7494 // We assume that widening is the best solution when possible. 7495 if (memoryInstructionCanBeWidened(&I, VF)) { 7496 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7497 int ConsecutiveStride = Legal->isConsecutivePtr( 7498 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7499 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7500 "Expected consecutive stride."); 7501 InstWidening Decision = 7502 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7503 setWideningDecision(&I, VF, Decision, Cost); 7504 continue; 7505 } 7506 7507 // Choose between Interleaving, Gather/Scatter or Scalarization. 7508 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7509 unsigned NumAccesses = 1; 7510 if (isAccessInterleaved(&I)) { 7511 auto Group = getInterleavedAccessGroup(&I); 7512 assert(Group && "Fail to get an interleaved access group."); 7513 7514 // Make one decision for the whole group. 7515 if (getWideningDecision(&I, VF) != CM_Unknown) 7516 continue; 7517 7518 NumAccesses = Group->getNumMembers(); 7519 if (interleavedAccessCanBeWidened(&I, VF)) 7520 InterleaveCost = getInterleaveGroupCost(&I, VF); 7521 } 7522 7523 InstructionCost GatherScatterCost = 7524 isLegalGatherOrScatter(&I) 7525 ? getGatherScatterCost(&I, VF) * NumAccesses 7526 : InstructionCost::getInvalid(); 7527 7528 InstructionCost ScalarizationCost = 7529 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7530 7531 // Choose better solution for the current VF, 7532 // write down this decision and use it during vectorization. 7533 InstructionCost Cost; 7534 InstWidening Decision; 7535 if (InterleaveCost <= GatherScatterCost && 7536 InterleaveCost < ScalarizationCost) { 7537 Decision = CM_Interleave; 7538 Cost = InterleaveCost; 7539 } else if (GatherScatterCost < ScalarizationCost) { 7540 Decision = CM_GatherScatter; 7541 Cost = GatherScatterCost; 7542 } else { 7543 Decision = CM_Scalarize; 7544 Cost = ScalarizationCost; 7545 } 7546 // If the instructions belongs to an interleave group, the whole group 7547 // receives the same decision. The whole group receives the cost, but 7548 // the cost will actually be assigned to one instruction. 7549 if (auto Group = getInterleavedAccessGroup(&I)) 7550 setWideningDecision(Group, VF, Decision, Cost); 7551 else 7552 setWideningDecision(&I, VF, Decision, Cost); 7553 } 7554 } 7555 7556 // Make sure that any load of address and any other address computation 7557 // remains scalar unless there is gather/scatter support. This avoids 7558 // inevitable extracts into address registers, and also has the benefit of 7559 // activating LSR more, since that pass can't optimize vectorized 7560 // addresses. 7561 if (TTI.prefersVectorizedAddressing()) 7562 return; 7563 7564 // Start with all scalar pointer uses. 7565 SmallPtrSet<Instruction *, 8> AddrDefs; 7566 for (BasicBlock *BB : TheLoop->blocks()) 7567 for (Instruction &I : *BB) { 7568 Instruction *PtrDef = 7569 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7570 if (PtrDef && TheLoop->contains(PtrDef) && 7571 getWideningDecision(&I, VF) != CM_GatherScatter) 7572 AddrDefs.insert(PtrDef); 7573 } 7574 7575 // Add all instructions used to generate the addresses. 7576 SmallVector<Instruction *, 4> Worklist; 7577 append_range(Worklist, AddrDefs); 7578 while (!Worklist.empty()) { 7579 Instruction *I = Worklist.pop_back_val(); 7580 for (auto &Op : I->operands()) 7581 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7582 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7583 AddrDefs.insert(InstOp).second) 7584 Worklist.push_back(InstOp); 7585 } 7586 7587 for (auto *I : AddrDefs) { 7588 if (isa<LoadInst>(I)) { 7589 // Setting the desired widening decision should ideally be handled in 7590 // by cost functions, but since this involves the task of finding out 7591 // if the loaded register is involved in an address computation, it is 7592 // instead changed here when we know this is the case. 7593 InstWidening Decision = getWideningDecision(I, VF); 7594 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7595 // Scalarize a widened load of address. 7596 setWideningDecision( 7597 I, VF, CM_Scalarize, 7598 (VF.getKnownMinValue() * 7599 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7600 else if (auto Group = getInterleavedAccessGroup(I)) { 7601 // Scalarize an interleave group of address loads. 7602 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7603 if (Instruction *Member = Group->getMember(I)) 7604 setWideningDecision( 7605 Member, VF, CM_Scalarize, 7606 (VF.getKnownMinValue() * 7607 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7608 } 7609 } 7610 } else 7611 // Make sure I gets scalarized and a cost estimate without 7612 // scalarization overhead. 7613 ForcedScalars[VF].insert(I); 7614 } 7615 } 7616 7617 InstructionCost 7618 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7619 Type *&VectorTy) { 7620 Type *RetTy = I->getType(); 7621 if (canTruncateToMinimalBitwidth(I, VF)) 7622 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7623 auto SE = PSE.getSE(); 7624 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7625 7626 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7627 ElementCount VF) -> bool { 7628 if (VF.isScalar()) 7629 return true; 7630 7631 auto Scalarized = InstsToScalarize.find(VF); 7632 assert(Scalarized != InstsToScalarize.end() && 7633 "VF not yet analyzed for scalarization profitability"); 7634 return !Scalarized->second.count(I) && 7635 llvm::all_of(I->users(), [&](User *U) { 7636 auto *UI = cast<Instruction>(U); 7637 return !Scalarized->second.count(UI); 7638 }); 7639 }; 7640 (void) hasSingleCopyAfterVectorization; 7641 7642 if (isScalarAfterVectorization(I, VF)) { 7643 // With the exception of GEPs and PHIs, after scalarization there should 7644 // only be one copy of the instruction generated in the loop. This is 7645 // because the VF is either 1, or any instructions that need scalarizing 7646 // have already been dealt with by the the time we get here. As a result, 7647 // it means we don't have to multiply the instruction cost by VF. 7648 assert(I->getOpcode() == Instruction::GetElementPtr || 7649 I->getOpcode() == Instruction::PHI || 7650 (I->getOpcode() == Instruction::BitCast && 7651 I->getType()->isPointerTy()) || 7652 hasSingleCopyAfterVectorization(I, VF)); 7653 VectorTy = RetTy; 7654 } else 7655 VectorTy = ToVectorTy(RetTy, VF); 7656 7657 // TODO: We need to estimate the cost of intrinsic calls. 7658 switch (I->getOpcode()) { 7659 case Instruction::GetElementPtr: 7660 // We mark this instruction as zero-cost because the cost of GEPs in 7661 // vectorized code depends on whether the corresponding memory instruction 7662 // is scalarized or not. Therefore, we handle GEPs with the memory 7663 // instruction cost. 7664 return 0; 7665 case Instruction::Br: { 7666 // In cases of scalarized and predicated instructions, there will be VF 7667 // predicated blocks in the vectorized loop. Each branch around these 7668 // blocks requires also an extract of its vector compare i1 element. 7669 bool ScalarPredicatedBB = false; 7670 BranchInst *BI = cast<BranchInst>(I); 7671 if (VF.isVector() && BI->isConditional() && 7672 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7673 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7674 ScalarPredicatedBB = true; 7675 7676 if (ScalarPredicatedBB) { 7677 // Not possible to scalarize scalable vector with predicated instructions. 7678 if (VF.isScalable()) 7679 return InstructionCost::getInvalid(); 7680 // Return cost for branches around scalarized and predicated blocks. 7681 auto *Vec_i1Ty = 7682 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7683 return ( 7684 TTI.getScalarizationOverhead( 7685 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7686 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7687 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7688 // The back-edge branch will remain, as will all scalar branches. 7689 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7690 else 7691 // This branch will be eliminated by if-conversion. 7692 return 0; 7693 // Note: We currently assume zero cost for an unconditional branch inside 7694 // a predicated block since it will become a fall-through, although we 7695 // may decide in the future to call TTI for all branches. 7696 } 7697 case Instruction::PHI: { 7698 auto *Phi = cast<PHINode>(I); 7699 7700 // First-order recurrences are replaced by vector shuffles inside the loop. 7701 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7702 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7703 return TTI.getShuffleCost( 7704 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7705 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7706 7707 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7708 // converted into select instructions. We require N - 1 selects per phi 7709 // node, where N is the number of incoming values. 7710 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7711 return (Phi->getNumIncomingValues() - 1) * 7712 TTI.getCmpSelInstrCost( 7713 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7714 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7715 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7716 7717 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7718 } 7719 case Instruction::UDiv: 7720 case Instruction::SDiv: 7721 case Instruction::URem: 7722 case Instruction::SRem: 7723 // If we have a predicated instruction, it may not be executed for each 7724 // vector lane. Get the scalarization cost and scale this amount by the 7725 // probability of executing the predicated block. If the instruction is not 7726 // predicated, we fall through to the next case. 7727 if (VF.isVector() && isScalarWithPredication(I)) { 7728 InstructionCost Cost = 0; 7729 7730 // These instructions have a non-void type, so account for the phi nodes 7731 // that we will create. This cost is likely to be zero. The phi node 7732 // cost, if any, should be scaled by the block probability because it 7733 // models a copy at the end of each predicated block. 7734 Cost += VF.getKnownMinValue() * 7735 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7736 7737 // The cost of the non-predicated instruction. 7738 Cost += VF.getKnownMinValue() * 7739 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7740 7741 // The cost of insertelement and extractelement instructions needed for 7742 // scalarization. 7743 Cost += getScalarizationOverhead(I, VF); 7744 7745 // Scale the cost by the probability of executing the predicated blocks. 7746 // This assumes the predicated block for each vector lane is equally 7747 // likely. 7748 return Cost / getReciprocalPredBlockProb(); 7749 } 7750 LLVM_FALLTHROUGH; 7751 case Instruction::Add: 7752 case Instruction::FAdd: 7753 case Instruction::Sub: 7754 case Instruction::FSub: 7755 case Instruction::Mul: 7756 case Instruction::FMul: 7757 case Instruction::FDiv: 7758 case Instruction::FRem: 7759 case Instruction::Shl: 7760 case Instruction::LShr: 7761 case Instruction::AShr: 7762 case Instruction::And: 7763 case Instruction::Or: 7764 case Instruction::Xor: { 7765 // Since we will replace the stride by 1 the multiplication should go away. 7766 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7767 return 0; 7768 7769 // Detect reduction patterns 7770 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7771 return *RedCost; 7772 7773 // Certain instructions can be cheaper to vectorize if they have a constant 7774 // second vector operand. One example of this are shifts on x86. 7775 Value *Op2 = I->getOperand(1); 7776 TargetTransformInfo::OperandValueProperties Op2VP; 7777 TargetTransformInfo::OperandValueKind Op2VK = 7778 TTI.getOperandInfo(Op2, Op2VP); 7779 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7780 Op2VK = TargetTransformInfo::OK_UniformValue; 7781 7782 SmallVector<const Value *, 4> Operands(I->operand_values()); 7783 return TTI.getArithmeticInstrCost( 7784 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7785 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7786 } 7787 case Instruction::FNeg: { 7788 return TTI.getArithmeticInstrCost( 7789 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7790 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7791 TargetTransformInfo::OP_None, I->getOperand(0), I); 7792 } 7793 case Instruction::Select: { 7794 SelectInst *SI = cast<SelectInst>(I); 7795 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7796 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7797 7798 const Value *Op0, *Op1; 7799 using namespace llvm::PatternMatch; 7800 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7801 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7802 // select x, y, false --> x & y 7803 // select x, true, y --> x | y 7804 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7805 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7806 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7807 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7808 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7809 Op1->getType()->getScalarSizeInBits() == 1); 7810 7811 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7812 return TTI.getArithmeticInstrCost( 7813 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7814 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7815 } 7816 7817 Type *CondTy = SI->getCondition()->getType(); 7818 if (!ScalarCond) 7819 CondTy = VectorType::get(CondTy, VF); 7820 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7821 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7822 } 7823 case Instruction::ICmp: 7824 case Instruction::FCmp: { 7825 Type *ValTy = I->getOperand(0)->getType(); 7826 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7827 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7828 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7829 VectorTy = ToVectorTy(ValTy, VF); 7830 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7831 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7832 } 7833 case Instruction::Store: 7834 case Instruction::Load: { 7835 ElementCount Width = VF; 7836 if (Width.isVector()) { 7837 InstWidening Decision = getWideningDecision(I, Width); 7838 assert(Decision != CM_Unknown && 7839 "CM decision should be taken at this point"); 7840 if (Decision == CM_Scalarize) 7841 Width = ElementCount::getFixed(1); 7842 } 7843 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7844 return getMemoryInstructionCost(I, VF); 7845 } 7846 case Instruction::BitCast: 7847 if (I->getType()->isPointerTy()) 7848 return 0; 7849 LLVM_FALLTHROUGH; 7850 case Instruction::ZExt: 7851 case Instruction::SExt: 7852 case Instruction::FPToUI: 7853 case Instruction::FPToSI: 7854 case Instruction::FPExt: 7855 case Instruction::PtrToInt: 7856 case Instruction::IntToPtr: 7857 case Instruction::SIToFP: 7858 case Instruction::UIToFP: 7859 case Instruction::Trunc: 7860 case Instruction::FPTrunc: { 7861 // Computes the CastContextHint from a Load/Store instruction. 7862 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7863 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7864 "Expected a load or a store!"); 7865 7866 if (VF.isScalar() || !TheLoop->contains(I)) 7867 return TTI::CastContextHint::Normal; 7868 7869 switch (getWideningDecision(I, VF)) { 7870 case LoopVectorizationCostModel::CM_GatherScatter: 7871 return TTI::CastContextHint::GatherScatter; 7872 case LoopVectorizationCostModel::CM_Interleave: 7873 return TTI::CastContextHint::Interleave; 7874 case LoopVectorizationCostModel::CM_Scalarize: 7875 case LoopVectorizationCostModel::CM_Widen: 7876 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7877 : TTI::CastContextHint::Normal; 7878 case LoopVectorizationCostModel::CM_Widen_Reverse: 7879 return TTI::CastContextHint::Reversed; 7880 case LoopVectorizationCostModel::CM_Unknown: 7881 llvm_unreachable("Instr did not go through cost modelling?"); 7882 } 7883 7884 llvm_unreachable("Unhandled case!"); 7885 }; 7886 7887 unsigned Opcode = I->getOpcode(); 7888 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7889 // For Trunc, the context is the only user, which must be a StoreInst. 7890 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7891 if (I->hasOneUse()) 7892 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7893 CCH = ComputeCCH(Store); 7894 } 7895 // For Z/Sext, the context is the operand, which must be a LoadInst. 7896 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7897 Opcode == Instruction::FPExt) { 7898 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7899 CCH = ComputeCCH(Load); 7900 } 7901 7902 // We optimize the truncation of induction variables having constant 7903 // integer steps. The cost of these truncations is the same as the scalar 7904 // operation. 7905 if (isOptimizableIVTruncate(I, VF)) { 7906 auto *Trunc = cast<TruncInst>(I); 7907 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7908 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7909 } 7910 7911 // Detect reduction patterns 7912 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7913 return *RedCost; 7914 7915 Type *SrcScalarTy = I->getOperand(0)->getType(); 7916 Type *SrcVecTy = 7917 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7918 if (canTruncateToMinimalBitwidth(I, VF)) { 7919 // This cast is going to be shrunk. This may remove the cast or it might 7920 // turn it into slightly different cast. For example, if MinBW == 16, 7921 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7922 // 7923 // Calculate the modified src and dest types. 7924 Type *MinVecTy = VectorTy; 7925 if (Opcode == Instruction::Trunc) { 7926 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7927 VectorTy = 7928 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7929 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7930 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7931 VectorTy = 7932 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7933 } 7934 } 7935 7936 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7937 } 7938 case Instruction::Call: { 7939 bool NeedToScalarize; 7940 CallInst *CI = cast<CallInst>(I); 7941 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7942 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7943 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7944 return std::min(CallCost, IntrinsicCost); 7945 } 7946 return CallCost; 7947 } 7948 case Instruction::ExtractValue: 7949 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7950 case Instruction::Alloca: 7951 // We cannot easily widen alloca to a scalable alloca, as 7952 // the result would need to be a vector of pointers. 7953 if (VF.isScalable()) 7954 return InstructionCost::getInvalid(); 7955 LLVM_FALLTHROUGH; 7956 default: 7957 // This opcode is unknown. Assume that it is the same as 'mul'. 7958 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7959 } // end of switch. 7960 } 7961 7962 char LoopVectorize::ID = 0; 7963 7964 static const char lv_name[] = "Loop Vectorization"; 7965 7966 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7967 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7968 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7969 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7970 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7971 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7972 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7973 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7974 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7975 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7976 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7977 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7978 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7979 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7980 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7981 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7982 7983 namespace llvm { 7984 7985 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7986 7987 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7988 bool VectorizeOnlyWhenForced) { 7989 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7990 } 7991 7992 } // end namespace llvm 7993 7994 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7995 // Check if the pointer operand of a load or store instruction is 7996 // consecutive. 7997 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7998 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7999 return false; 8000 } 8001 8002 void LoopVectorizationCostModel::collectValuesToIgnore() { 8003 // Ignore ephemeral values. 8004 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 8005 8006 // Ignore type-promoting instructions we identified during reduction 8007 // detection. 8008 for (auto &Reduction : Legal->getReductionVars()) { 8009 RecurrenceDescriptor &RedDes = Reduction.second; 8010 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 8011 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8012 } 8013 // Ignore type-casting instructions we identified during induction 8014 // detection. 8015 for (auto &Induction : Legal->getInductionVars()) { 8016 InductionDescriptor &IndDes = Induction.second; 8017 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8018 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8019 } 8020 } 8021 8022 void LoopVectorizationCostModel::collectInLoopReductions() { 8023 for (auto &Reduction : Legal->getReductionVars()) { 8024 PHINode *Phi = Reduction.first; 8025 RecurrenceDescriptor &RdxDesc = Reduction.second; 8026 8027 // We don't collect reductions that are type promoted (yet). 8028 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8029 continue; 8030 8031 // If the target would prefer this reduction to happen "in-loop", then we 8032 // want to record it as such. 8033 unsigned Opcode = RdxDesc.getOpcode(); 8034 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8035 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8036 TargetTransformInfo::ReductionFlags())) 8037 continue; 8038 8039 // Check that we can correctly put the reductions into the loop, by 8040 // finding the chain of operations that leads from the phi to the loop 8041 // exit value. 8042 SmallVector<Instruction *, 4> ReductionOperations = 8043 RdxDesc.getReductionOpChain(Phi, TheLoop); 8044 bool InLoop = !ReductionOperations.empty(); 8045 if (InLoop) { 8046 InLoopReductionChains[Phi] = ReductionOperations; 8047 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8048 Instruction *LastChain = Phi; 8049 for (auto *I : ReductionOperations) { 8050 InLoopReductionImmediateChains[I] = LastChain; 8051 LastChain = I; 8052 } 8053 } 8054 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8055 << " reduction for phi: " << *Phi << "\n"); 8056 } 8057 } 8058 8059 // TODO: we could return a pair of values that specify the max VF and 8060 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8061 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8062 // doesn't have a cost model that can choose which plan to execute if 8063 // more than one is generated. 8064 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8065 LoopVectorizationCostModel &CM) { 8066 unsigned WidestType; 8067 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8068 return WidestVectorRegBits / WidestType; 8069 } 8070 8071 VectorizationFactor 8072 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8073 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8074 ElementCount VF = UserVF; 8075 // Outer loop handling: They may require CFG and instruction level 8076 // transformations before even evaluating whether vectorization is profitable. 8077 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8078 // the vectorization pipeline. 8079 if (!OrigLoop->isInnermost()) { 8080 // If the user doesn't provide a vectorization factor, determine a 8081 // reasonable one. 8082 if (UserVF.isZero()) { 8083 VF = ElementCount::getFixed(determineVPlanVF( 8084 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8085 .getFixedSize(), 8086 CM)); 8087 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8088 8089 // Make sure we have a VF > 1 for stress testing. 8090 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8091 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8092 << "overriding computed VF.\n"); 8093 VF = ElementCount::getFixed(4); 8094 } 8095 } 8096 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8097 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8098 "VF needs to be a power of two"); 8099 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8100 << "VF " << VF << " to build VPlans.\n"); 8101 buildVPlans(VF, VF); 8102 8103 // For VPlan build stress testing, we bail out after VPlan construction. 8104 if (VPlanBuildStressTest) 8105 return VectorizationFactor::Disabled(); 8106 8107 return {VF, 0 /*Cost*/}; 8108 } 8109 8110 LLVM_DEBUG( 8111 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8112 "VPlan-native path.\n"); 8113 return VectorizationFactor::Disabled(); 8114 } 8115 8116 Optional<VectorizationFactor> 8117 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8118 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8119 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8120 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8121 return None; 8122 8123 // Invalidate interleave groups if all blocks of loop will be predicated. 8124 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8125 !useMaskedInterleavedAccesses(*TTI)) { 8126 LLVM_DEBUG( 8127 dbgs() 8128 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8129 "which requires masked-interleaved support.\n"); 8130 if (CM.InterleaveInfo.invalidateGroups()) 8131 // Invalidating interleave groups also requires invalidating all decisions 8132 // based on them, which includes widening decisions and uniform and scalar 8133 // values. 8134 CM.invalidateCostModelingDecisions(); 8135 } 8136 8137 ElementCount MaxUserVF = 8138 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8139 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8140 if (!UserVF.isZero() && UserVFIsLegal) { 8141 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8142 "VF needs to be a power of two"); 8143 // Collect the instructions (and their associated costs) that will be more 8144 // profitable to scalarize. 8145 if (CM.selectUserVectorizationFactor(UserVF)) { 8146 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8147 CM.collectInLoopReductions(); 8148 buildVPlansWithVPRecipes(UserVF, UserVF); 8149 LLVM_DEBUG(printPlans(dbgs())); 8150 return {{UserVF, 0}}; 8151 } else 8152 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8153 "InvalidCost", ORE, OrigLoop); 8154 } 8155 8156 // Populate the set of Vectorization Factor Candidates. 8157 ElementCountSet VFCandidates; 8158 for (auto VF = ElementCount::getFixed(1); 8159 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8160 VFCandidates.insert(VF); 8161 for (auto VF = ElementCount::getScalable(1); 8162 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8163 VFCandidates.insert(VF); 8164 8165 for (const auto &VF : VFCandidates) { 8166 // Collect Uniform and Scalar instructions after vectorization with VF. 8167 CM.collectUniformsAndScalars(VF); 8168 8169 // Collect the instructions (and their associated costs) that will be more 8170 // profitable to scalarize. 8171 if (VF.isVector()) 8172 CM.collectInstsToScalarize(VF); 8173 } 8174 8175 CM.collectInLoopReductions(); 8176 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8177 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8178 8179 LLVM_DEBUG(printPlans(dbgs())); 8180 if (!MaxFactors.hasVector()) 8181 return VectorizationFactor::Disabled(); 8182 8183 // Select the optimal vectorization factor. 8184 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8185 8186 // Check if it is profitable to vectorize with runtime checks. 8187 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8188 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8189 bool PragmaThresholdReached = 8190 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8191 bool ThresholdReached = 8192 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8193 if ((ThresholdReached && !Hints.allowReordering()) || 8194 PragmaThresholdReached) { 8195 ORE->emit([&]() { 8196 return OptimizationRemarkAnalysisAliasing( 8197 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8198 OrigLoop->getHeader()) 8199 << "loop not vectorized: cannot prove it is safe to reorder " 8200 "memory operations"; 8201 }); 8202 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8203 Hints.emitRemarkWithHints(); 8204 return VectorizationFactor::Disabled(); 8205 } 8206 } 8207 return SelectedVF; 8208 } 8209 8210 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8211 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8212 << '\n'); 8213 BestVF = VF; 8214 BestUF = UF; 8215 8216 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8217 return !Plan->hasVF(VF); 8218 }); 8219 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8220 } 8221 8222 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8223 DominatorTree *DT) { 8224 // Perform the actual loop transformation. 8225 8226 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8227 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8228 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8229 8230 VPTransformState State{ 8231 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8232 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8233 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8234 State.CanonicalIV = ILV.Induction; 8235 8236 ILV.printDebugTracesAtStart(); 8237 8238 //===------------------------------------------------===// 8239 // 8240 // Notice: any optimization or new instruction that go 8241 // into the code below should also be implemented in 8242 // the cost-model. 8243 // 8244 //===------------------------------------------------===// 8245 8246 // 2. Copy and widen instructions from the old loop into the new loop. 8247 VPlans.front()->execute(&State); 8248 8249 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8250 // predication, updating analyses. 8251 ILV.fixVectorizedLoop(State); 8252 8253 ILV.printDebugTracesAtEnd(); 8254 } 8255 8256 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8257 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8258 for (const auto &Plan : VPlans) 8259 if (PrintVPlansInDotFormat) 8260 Plan->printDOT(O); 8261 else 8262 Plan->print(O); 8263 } 8264 #endif 8265 8266 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8267 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8268 8269 // We create new control-flow for the vectorized loop, so the original exit 8270 // conditions will be dead after vectorization if it's only used by the 8271 // terminator 8272 SmallVector<BasicBlock*> ExitingBlocks; 8273 OrigLoop->getExitingBlocks(ExitingBlocks); 8274 for (auto *BB : ExitingBlocks) { 8275 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8276 if (!Cmp || !Cmp->hasOneUse()) 8277 continue; 8278 8279 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8280 if (!DeadInstructions.insert(Cmp).second) 8281 continue; 8282 8283 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8284 // TODO: can recurse through operands in general 8285 for (Value *Op : Cmp->operands()) { 8286 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8287 DeadInstructions.insert(cast<Instruction>(Op)); 8288 } 8289 } 8290 8291 // We create new "steps" for induction variable updates to which the original 8292 // induction variables map. An original update instruction will be dead if 8293 // all its users except the induction variable are dead. 8294 auto *Latch = OrigLoop->getLoopLatch(); 8295 for (auto &Induction : Legal->getInductionVars()) { 8296 PHINode *Ind = Induction.first; 8297 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8298 8299 // If the tail is to be folded by masking, the primary induction variable, 8300 // if exists, isn't dead: it will be used for masking. Don't kill it. 8301 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8302 continue; 8303 8304 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8305 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8306 })) 8307 DeadInstructions.insert(IndUpdate); 8308 8309 // We record as "Dead" also the type-casting instructions we had identified 8310 // during induction analysis. We don't need any handling for them in the 8311 // vectorized loop because we have proven that, under a proper runtime 8312 // test guarding the vectorized loop, the value of the phi, and the casted 8313 // value of the phi, are the same. The last instruction in this casting chain 8314 // will get its scalar/vector/widened def from the scalar/vector/widened def 8315 // of the respective phi node. Any other casts in the induction def-use chain 8316 // have no other uses outside the phi update chain, and will be ignored. 8317 InductionDescriptor &IndDes = Induction.second; 8318 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8319 DeadInstructions.insert(Casts.begin(), Casts.end()); 8320 } 8321 } 8322 8323 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8324 8325 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8326 8327 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8328 Instruction::BinaryOps BinOp) { 8329 // When unrolling and the VF is 1, we only need to add a simple scalar. 8330 Type *Ty = Val->getType(); 8331 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8332 8333 if (Ty->isFloatingPointTy()) { 8334 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8335 8336 // Floating-point operations inherit FMF via the builder's flags. 8337 Value *MulOp = Builder.CreateFMul(C, Step); 8338 return Builder.CreateBinOp(BinOp, Val, MulOp); 8339 } 8340 Constant *C = ConstantInt::get(Ty, StartIdx); 8341 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8342 } 8343 8344 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8345 SmallVector<Metadata *, 4> MDs; 8346 // Reserve first location for self reference to the LoopID metadata node. 8347 MDs.push_back(nullptr); 8348 bool IsUnrollMetadata = false; 8349 MDNode *LoopID = L->getLoopID(); 8350 if (LoopID) { 8351 // First find existing loop unrolling disable metadata. 8352 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8353 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8354 if (MD) { 8355 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8356 IsUnrollMetadata = 8357 S && S->getString().startswith("llvm.loop.unroll.disable"); 8358 } 8359 MDs.push_back(LoopID->getOperand(i)); 8360 } 8361 } 8362 8363 if (!IsUnrollMetadata) { 8364 // Add runtime unroll disable metadata. 8365 LLVMContext &Context = L->getHeader()->getContext(); 8366 SmallVector<Metadata *, 1> DisableOperands; 8367 DisableOperands.push_back( 8368 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8369 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8370 MDs.push_back(DisableNode); 8371 MDNode *NewLoopID = MDNode::get(Context, MDs); 8372 // Set operand 0 to refer to the loop id itself. 8373 NewLoopID->replaceOperandWith(0, NewLoopID); 8374 L->setLoopID(NewLoopID); 8375 } 8376 } 8377 8378 //===--------------------------------------------------------------------===// 8379 // EpilogueVectorizerMainLoop 8380 //===--------------------------------------------------------------------===// 8381 8382 /// This function is partially responsible for generating the control flow 8383 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8384 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8385 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8386 Loop *Lp = createVectorLoopSkeleton(""); 8387 8388 // Generate the code to check the minimum iteration count of the vector 8389 // epilogue (see below). 8390 EPI.EpilogueIterationCountCheck = 8391 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8392 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8393 8394 // Generate the code to check any assumptions that we've made for SCEV 8395 // expressions. 8396 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8397 8398 // Generate the code that checks at runtime if arrays overlap. We put the 8399 // checks into a separate block to make the more common case of few elements 8400 // faster. 8401 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8402 8403 // Generate the iteration count check for the main loop, *after* the check 8404 // for the epilogue loop, so that the path-length is shorter for the case 8405 // that goes directly through the vector epilogue. The longer-path length for 8406 // the main loop is compensated for, by the gain from vectorizing the larger 8407 // trip count. Note: the branch will get updated later on when we vectorize 8408 // the epilogue. 8409 EPI.MainLoopIterationCountCheck = 8410 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8411 8412 // Generate the induction variable. 8413 OldInduction = Legal->getPrimaryInduction(); 8414 Type *IdxTy = Legal->getWidestInductionType(); 8415 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8416 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8417 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8418 EPI.VectorTripCount = CountRoundDown; 8419 Induction = 8420 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8421 getDebugLocFromInstOrOperands(OldInduction)); 8422 8423 // Skip induction resume value creation here because they will be created in 8424 // the second pass. If we created them here, they wouldn't be used anyway, 8425 // because the vplan in the second pass still contains the inductions from the 8426 // original loop. 8427 8428 return completeLoopSkeleton(Lp, OrigLoopID); 8429 } 8430 8431 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8432 LLVM_DEBUG({ 8433 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8434 << "Main Loop VF:" << EPI.MainLoopVF 8435 << ", Main Loop UF:" << EPI.MainLoopUF 8436 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8437 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8438 }); 8439 } 8440 8441 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8442 DEBUG_WITH_TYPE(VerboseDebug, { 8443 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8444 }); 8445 } 8446 8447 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8448 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8449 assert(L && "Expected valid Loop."); 8450 assert(Bypass && "Expected valid bypass basic block."); 8451 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8452 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8453 Value *Count = getOrCreateTripCount(L); 8454 // Reuse existing vector loop preheader for TC checks. 8455 // Note that new preheader block is generated for vector loop. 8456 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8457 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8458 8459 // Generate code to check if the loop's trip count is less than VF * UF of the 8460 // main vector loop. 8461 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8462 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8463 8464 Value *CheckMinIters = Builder.CreateICmp( 8465 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8466 "min.iters.check"); 8467 8468 if (!ForEpilogue) 8469 TCCheckBlock->setName("vector.main.loop.iter.check"); 8470 8471 // Create new preheader for vector loop. 8472 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8473 DT, LI, nullptr, "vector.ph"); 8474 8475 if (ForEpilogue) { 8476 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8477 DT->getNode(Bypass)->getIDom()) && 8478 "TC check is expected to dominate Bypass"); 8479 8480 // Update dominator for Bypass & LoopExit. 8481 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8482 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8483 // For loops with multiple exits, there's no edge from the middle block 8484 // to exit blocks (as the epilogue must run) and thus no need to update 8485 // the immediate dominator of the exit blocks. 8486 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8487 8488 LoopBypassBlocks.push_back(TCCheckBlock); 8489 8490 // Save the trip count so we don't have to regenerate it in the 8491 // vec.epilog.iter.check. This is safe to do because the trip count 8492 // generated here dominates the vector epilog iter check. 8493 EPI.TripCount = Count; 8494 } 8495 8496 ReplaceInstWithInst( 8497 TCCheckBlock->getTerminator(), 8498 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8499 8500 return TCCheckBlock; 8501 } 8502 8503 //===--------------------------------------------------------------------===// 8504 // EpilogueVectorizerEpilogueLoop 8505 //===--------------------------------------------------------------------===// 8506 8507 /// This function is partially responsible for generating the control flow 8508 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8509 BasicBlock * 8510 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8511 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8512 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8513 8514 // Now, compare the remaining count and if there aren't enough iterations to 8515 // execute the vectorized epilogue skip to the scalar part. 8516 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8517 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8518 LoopVectorPreHeader = 8519 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8520 LI, nullptr, "vec.epilog.ph"); 8521 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8522 VecEpilogueIterationCountCheck); 8523 8524 // Adjust the control flow taking the state info from the main loop 8525 // vectorization into account. 8526 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8527 "expected this to be saved from the previous pass."); 8528 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8529 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8530 8531 DT->changeImmediateDominator(LoopVectorPreHeader, 8532 EPI.MainLoopIterationCountCheck); 8533 8534 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8535 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8536 8537 if (EPI.SCEVSafetyCheck) 8538 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8539 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8540 if (EPI.MemSafetyCheck) 8541 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8542 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8543 8544 DT->changeImmediateDominator( 8545 VecEpilogueIterationCountCheck, 8546 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8547 8548 DT->changeImmediateDominator(LoopScalarPreHeader, 8549 EPI.EpilogueIterationCountCheck); 8550 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8551 // If there is an epilogue which must run, there's no edge from the 8552 // middle block to exit blocks and thus no need to update the immediate 8553 // dominator of the exit blocks. 8554 DT->changeImmediateDominator(LoopExitBlock, 8555 EPI.EpilogueIterationCountCheck); 8556 8557 // Keep track of bypass blocks, as they feed start values to the induction 8558 // phis in the scalar loop preheader. 8559 if (EPI.SCEVSafetyCheck) 8560 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8561 if (EPI.MemSafetyCheck) 8562 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8563 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8564 8565 // Generate a resume induction for the vector epilogue and put it in the 8566 // vector epilogue preheader 8567 Type *IdxTy = Legal->getWidestInductionType(); 8568 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8569 LoopVectorPreHeader->getFirstNonPHI()); 8570 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8571 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8572 EPI.MainLoopIterationCountCheck); 8573 8574 // Generate the induction variable. 8575 OldInduction = Legal->getPrimaryInduction(); 8576 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8577 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8578 Value *StartIdx = EPResumeVal; 8579 Induction = 8580 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8581 getDebugLocFromInstOrOperands(OldInduction)); 8582 8583 // Generate induction resume values. These variables save the new starting 8584 // indexes for the scalar loop. They are used to test if there are any tail 8585 // iterations left once the vector loop has completed. 8586 // Note that when the vectorized epilogue is skipped due to iteration count 8587 // check, then the resume value for the induction variable comes from 8588 // the trip count of the main vector loop, hence passing the AdditionalBypass 8589 // argument. 8590 createInductionResumeValues(Lp, CountRoundDown, 8591 {VecEpilogueIterationCountCheck, 8592 EPI.VectorTripCount} /* AdditionalBypass */); 8593 8594 AddRuntimeUnrollDisableMetaData(Lp); 8595 return completeLoopSkeleton(Lp, OrigLoopID); 8596 } 8597 8598 BasicBlock * 8599 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8600 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8601 8602 assert(EPI.TripCount && 8603 "Expected trip count to have been safed in the first pass."); 8604 assert( 8605 (!isa<Instruction>(EPI.TripCount) || 8606 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8607 "saved trip count does not dominate insertion point."); 8608 Value *TC = EPI.TripCount; 8609 IRBuilder<> Builder(Insert->getTerminator()); 8610 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8611 8612 // Generate code to check if the loop's trip count is less than VF * UF of the 8613 // vector epilogue loop. 8614 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8615 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8616 8617 Value *CheckMinIters = Builder.CreateICmp( 8618 P, Count, 8619 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8620 "min.epilog.iters.check"); 8621 8622 ReplaceInstWithInst( 8623 Insert->getTerminator(), 8624 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8625 8626 LoopBypassBlocks.push_back(Insert); 8627 return Insert; 8628 } 8629 8630 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8631 LLVM_DEBUG({ 8632 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8633 << "Epilogue Loop VF:" << EPI.EpilogueVF 8634 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8635 }); 8636 } 8637 8638 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8639 DEBUG_WITH_TYPE(VerboseDebug, { 8640 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8641 }); 8642 } 8643 8644 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8645 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8646 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8647 bool PredicateAtRangeStart = Predicate(Range.Start); 8648 8649 for (ElementCount TmpVF = Range.Start * 2; 8650 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8651 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8652 Range.End = TmpVF; 8653 break; 8654 } 8655 8656 return PredicateAtRangeStart; 8657 } 8658 8659 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8660 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8661 /// of VF's starting at a given VF and extending it as much as possible. Each 8662 /// vectorization decision can potentially shorten this sub-range during 8663 /// buildVPlan(). 8664 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8665 ElementCount MaxVF) { 8666 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8667 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8668 VFRange SubRange = {VF, MaxVFPlusOne}; 8669 VPlans.push_back(buildVPlan(SubRange)); 8670 VF = SubRange.End; 8671 } 8672 } 8673 8674 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8675 VPlanPtr &Plan) { 8676 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8677 8678 // Look for cached value. 8679 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8680 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8681 if (ECEntryIt != EdgeMaskCache.end()) 8682 return ECEntryIt->second; 8683 8684 VPValue *SrcMask = createBlockInMask(Src, Plan); 8685 8686 // The terminator has to be a branch inst! 8687 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8688 assert(BI && "Unexpected terminator found"); 8689 8690 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8691 return EdgeMaskCache[Edge] = SrcMask; 8692 8693 // If source is an exiting block, we know the exit edge is dynamically dead 8694 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8695 // adding uses of an otherwise potentially dead instruction. 8696 if (OrigLoop->isLoopExiting(Src)) 8697 return EdgeMaskCache[Edge] = SrcMask; 8698 8699 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8700 assert(EdgeMask && "No Edge Mask found for condition"); 8701 8702 if (BI->getSuccessor(0) != Dst) 8703 EdgeMask = Builder.createNot(EdgeMask); 8704 8705 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8706 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8707 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8708 // The select version does not introduce new UB if SrcMask is false and 8709 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8710 VPValue *False = Plan->getOrAddVPValue( 8711 ConstantInt::getFalse(BI->getCondition()->getType())); 8712 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8713 } 8714 8715 return EdgeMaskCache[Edge] = EdgeMask; 8716 } 8717 8718 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8719 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8720 8721 // Look for cached value. 8722 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8723 if (BCEntryIt != BlockMaskCache.end()) 8724 return BCEntryIt->second; 8725 8726 // All-one mask is modelled as no-mask following the convention for masked 8727 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8728 VPValue *BlockMask = nullptr; 8729 8730 if (OrigLoop->getHeader() == BB) { 8731 if (!CM.blockNeedsPredication(BB)) 8732 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8733 8734 // Create the block in mask as the first non-phi instruction in the block. 8735 VPBuilder::InsertPointGuard Guard(Builder); 8736 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8737 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8738 8739 // Introduce the early-exit compare IV <= BTC to form header block mask. 8740 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8741 // Start by constructing the desired canonical IV. 8742 VPValue *IV = nullptr; 8743 if (Legal->getPrimaryInduction()) 8744 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8745 else { 8746 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8747 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8748 IV = IVRecipe->getVPSingleValue(); 8749 } 8750 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8751 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8752 8753 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8754 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8755 // as a second argument, we only pass the IV here and extract the 8756 // tripcount from the transform state where codegen of the VP instructions 8757 // happen. 8758 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8759 } else { 8760 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8761 } 8762 return BlockMaskCache[BB] = BlockMask; 8763 } 8764 8765 // This is the block mask. We OR all incoming edges. 8766 for (auto *Predecessor : predecessors(BB)) { 8767 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8768 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8769 return BlockMaskCache[BB] = EdgeMask; 8770 8771 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8772 BlockMask = EdgeMask; 8773 continue; 8774 } 8775 8776 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8777 } 8778 8779 return BlockMaskCache[BB] = BlockMask; 8780 } 8781 8782 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8783 ArrayRef<VPValue *> Operands, 8784 VFRange &Range, 8785 VPlanPtr &Plan) { 8786 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8787 "Must be called with either a load or store"); 8788 8789 auto willWiden = [&](ElementCount VF) -> bool { 8790 if (VF.isScalar()) 8791 return false; 8792 LoopVectorizationCostModel::InstWidening Decision = 8793 CM.getWideningDecision(I, VF); 8794 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8795 "CM decision should be taken at this point."); 8796 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8797 return true; 8798 if (CM.isScalarAfterVectorization(I, VF) || 8799 CM.isProfitableToScalarize(I, VF)) 8800 return false; 8801 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8802 }; 8803 8804 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8805 return nullptr; 8806 8807 VPValue *Mask = nullptr; 8808 if (Legal->isMaskRequired(I)) 8809 Mask = createBlockInMask(I->getParent(), Plan); 8810 8811 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8812 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8813 8814 StoreInst *Store = cast<StoreInst>(I); 8815 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8816 Mask); 8817 } 8818 8819 VPWidenIntOrFpInductionRecipe * 8820 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8821 ArrayRef<VPValue *> Operands) const { 8822 // Check if this is an integer or fp induction. If so, build the recipe that 8823 // produces its scalar and vector values. 8824 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8825 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8826 II.getKind() == InductionDescriptor::IK_FpInduction) { 8827 assert(II.getStartValue() == 8828 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8829 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8830 return new VPWidenIntOrFpInductionRecipe( 8831 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8832 } 8833 8834 return nullptr; 8835 } 8836 8837 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8838 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8839 VPlan &Plan) const { 8840 // Optimize the special case where the source is a constant integer 8841 // induction variable. Notice that we can only optimize the 'trunc' case 8842 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8843 // (c) other casts depend on pointer size. 8844 8845 // Determine whether \p K is a truncation based on an induction variable that 8846 // can be optimized. 8847 auto isOptimizableIVTruncate = 8848 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8849 return [=](ElementCount VF) -> bool { 8850 return CM.isOptimizableIVTruncate(K, VF); 8851 }; 8852 }; 8853 8854 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8855 isOptimizableIVTruncate(I), Range)) { 8856 8857 InductionDescriptor II = 8858 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8859 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8860 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8861 Start, nullptr, I); 8862 } 8863 return nullptr; 8864 } 8865 8866 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8867 ArrayRef<VPValue *> Operands, 8868 VPlanPtr &Plan) { 8869 // If all incoming values are equal, the incoming VPValue can be used directly 8870 // instead of creating a new VPBlendRecipe. 8871 VPValue *FirstIncoming = Operands[0]; 8872 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8873 return FirstIncoming == Inc; 8874 })) { 8875 return Operands[0]; 8876 } 8877 8878 // We know that all PHIs in non-header blocks are converted into selects, so 8879 // we don't have to worry about the insertion order and we can just use the 8880 // builder. At this point we generate the predication tree. There may be 8881 // duplications since this is a simple recursive scan, but future 8882 // optimizations will clean it up. 8883 SmallVector<VPValue *, 2> OperandsWithMask; 8884 unsigned NumIncoming = Phi->getNumIncomingValues(); 8885 8886 for (unsigned In = 0; In < NumIncoming; In++) { 8887 VPValue *EdgeMask = 8888 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8889 assert((EdgeMask || NumIncoming == 1) && 8890 "Multiple predecessors with one having a full mask"); 8891 OperandsWithMask.push_back(Operands[In]); 8892 if (EdgeMask) 8893 OperandsWithMask.push_back(EdgeMask); 8894 } 8895 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8896 } 8897 8898 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8899 ArrayRef<VPValue *> Operands, 8900 VFRange &Range) const { 8901 8902 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8903 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8904 Range); 8905 8906 if (IsPredicated) 8907 return nullptr; 8908 8909 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8910 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8911 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8912 ID == Intrinsic::pseudoprobe || 8913 ID == Intrinsic::experimental_noalias_scope_decl)) 8914 return nullptr; 8915 8916 auto willWiden = [&](ElementCount VF) -> bool { 8917 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8918 // The following case may be scalarized depending on the VF. 8919 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8920 // version of the instruction. 8921 // Is it beneficial to perform intrinsic call compared to lib call? 8922 bool NeedToScalarize = false; 8923 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8924 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8925 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8926 return UseVectorIntrinsic || !NeedToScalarize; 8927 }; 8928 8929 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8930 return nullptr; 8931 8932 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8933 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8934 } 8935 8936 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8937 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8938 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8939 // Instruction should be widened, unless it is scalar after vectorization, 8940 // scalarization is profitable or it is predicated. 8941 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8942 return CM.isScalarAfterVectorization(I, VF) || 8943 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8944 }; 8945 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8946 Range); 8947 } 8948 8949 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8950 ArrayRef<VPValue *> Operands) const { 8951 auto IsVectorizableOpcode = [](unsigned Opcode) { 8952 switch (Opcode) { 8953 case Instruction::Add: 8954 case Instruction::And: 8955 case Instruction::AShr: 8956 case Instruction::BitCast: 8957 case Instruction::FAdd: 8958 case Instruction::FCmp: 8959 case Instruction::FDiv: 8960 case Instruction::FMul: 8961 case Instruction::FNeg: 8962 case Instruction::FPExt: 8963 case Instruction::FPToSI: 8964 case Instruction::FPToUI: 8965 case Instruction::FPTrunc: 8966 case Instruction::FRem: 8967 case Instruction::FSub: 8968 case Instruction::ICmp: 8969 case Instruction::IntToPtr: 8970 case Instruction::LShr: 8971 case Instruction::Mul: 8972 case Instruction::Or: 8973 case Instruction::PtrToInt: 8974 case Instruction::SDiv: 8975 case Instruction::Select: 8976 case Instruction::SExt: 8977 case Instruction::Shl: 8978 case Instruction::SIToFP: 8979 case Instruction::SRem: 8980 case Instruction::Sub: 8981 case Instruction::Trunc: 8982 case Instruction::UDiv: 8983 case Instruction::UIToFP: 8984 case Instruction::URem: 8985 case Instruction::Xor: 8986 case Instruction::ZExt: 8987 return true; 8988 } 8989 return false; 8990 }; 8991 8992 if (!IsVectorizableOpcode(I->getOpcode())) 8993 return nullptr; 8994 8995 // Success: widen this instruction. 8996 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8997 } 8998 8999 void VPRecipeBuilder::fixHeaderPhis() { 9000 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 9001 for (VPWidenPHIRecipe *R : PhisToFix) { 9002 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 9003 VPRecipeBase *IncR = 9004 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 9005 R->addOperand(IncR->getVPSingleValue()); 9006 } 9007 } 9008 9009 VPBasicBlock *VPRecipeBuilder::handleReplication( 9010 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 9011 VPlanPtr &Plan) { 9012 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 9013 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 9014 Range); 9015 9016 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 9017 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9018 9019 // Even if the instruction is not marked as uniform, there are certain 9020 // intrinsic calls that can be effectively treated as such, so we check for 9021 // them here. Conservatively, we only do this for scalable vectors, since 9022 // for fixed-width VFs we can always fall back on full scalarization. 9023 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9024 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9025 case Intrinsic::assume: 9026 case Intrinsic::lifetime_start: 9027 case Intrinsic::lifetime_end: 9028 // For scalable vectors if one of the operands is variant then we still 9029 // want to mark as uniform, which will generate one instruction for just 9030 // the first lane of the vector. We can't scalarize the call in the same 9031 // way as for fixed-width vectors because we don't know how many lanes 9032 // there are. 9033 // 9034 // The reasons for doing it this way for scalable vectors are: 9035 // 1. For the assume intrinsic generating the instruction for the first 9036 // lane is still be better than not generating any at all. For 9037 // example, the input may be a splat across all lanes. 9038 // 2. For the lifetime start/end intrinsics the pointer operand only 9039 // does anything useful when the input comes from a stack object, 9040 // which suggests it should always be uniform. For non-stack objects 9041 // the effect is to poison the object, which still allows us to 9042 // remove the call. 9043 IsUniform = true; 9044 break; 9045 default: 9046 break; 9047 } 9048 } 9049 9050 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9051 IsUniform, IsPredicated); 9052 setRecipe(I, Recipe); 9053 Plan->addVPValue(I, Recipe); 9054 9055 // Find if I uses a predicated instruction. If so, it will use its scalar 9056 // value. Avoid hoisting the insert-element which packs the scalar value into 9057 // a vector value, as that happens iff all users use the vector value. 9058 for (VPValue *Op : Recipe->operands()) { 9059 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9060 if (!PredR) 9061 continue; 9062 auto *RepR = 9063 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9064 assert(RepR->isPredicated() && 9065 "expected Replicate recipe to be predicated"); 9066 RepR->setAlsoPack(false); 9067 } 9068 9069 // Finalize the recipe for Instr, first if it is not predicated. 9070 if (!IsPredicated) { 9071 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9072 VPBB->appendRecipe(Recipe); 9073 return VPBB; 9074 } 9075 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9076 assert(VPBB->getSuccessors().empty() && 9077 "VPBB has successors when handling predicated replication."); 9078 // Record predicated instructions for above packing optimizations. 9079 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9080 VPBlockUtils::insertBlockAfter(Region, VPBB); 9081 auto *RegSucc = new VPBasicBlock(); 9082 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9083 return RegSucc; 9084 } 9085 9086 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9087 VPRecipeBase *PredRecipe, 9088 VPlanPtr &Plan) { 9089 // Instructions marked for predication are replicated and placed under an 9090 // if-then construct to prevent side-effects. 9091 9092 // Generate recipes to compute the block mask for this region. 9093 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9094 9095 // Build the triangular if-then region. 9096 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9097 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9098 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9099 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9100 auto *PHIRecipe = Instr->getType()->isVoidTy() 9101 ? nullptr 9102 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9103 if (PHIRecipe) { 9104 Plan->removeVPValueFor(Instr); 9105 Plan->addVPValue(Instr, PHIRecipe); 9106 } 9107 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9108 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9109 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9110 9111 // Note: first set Entry as region entry and then connect successors starting 9112 // from it in order, to propagate the "parent" of each VPBasicBlock. 9113 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9114 VPBlockUtils::connectBlocks(Pred, Exit); 9115 9116 return Region; 9117 } 9118 9119 VPRecipeOrVPValueTy 9120 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9121 ArrayRef<VPValue *> Operands, 9122 VFRange &Range, VPlanPtr &Plan) { 9123 // First, check for specific widening recipes that deal with calls, memory 9124 // operations, inductions and Phi nodes. 9125 if (auto *CI = dyn_cast<CallInst>(Instr)) 9126 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9127 9128 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9129 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9130 9131 VPRecipeBase *Recipe; 9132 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9133 if (Phi->getParent() != OrigLoop->getHeader()) 9134 return tryToBlend(Phi, Operands, Plan); 9135 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9136 return toVPRecipeResult(Recipe); 9137 9138 VPWidenPHIRecipe *PhiRecipe = nullptr; 9139 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9140 VPValue *StartV = Operands[0]; 9141 if (Legal->isReductionVariable(Phi)) { 9142 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9143 assert(RdxDesc.getRecurrenceStartValue() == 9144 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9145 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9146 CM.isInLoopReduction(Phi), 9147 CM.useOrderedReductions(RdxDesc)); 9148 } else { 9149 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9150 } 9151 9152 // Record the incoming value from the backedge, so we can add the incoming 9153 // value from the backedge after all recipes have been created. 9154 recordRecipeOf(cast<Instruction>( 9155 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9156 PhisToFix.push_back(PhiRecipe); 9157 } else { 9158 // TODO: record start and backedge value for remaining pointer induction 9159 // phis. 9160 assert(Phi->getType()->isPointerTy() && 9161 "only pointer phis should be handled here"); 9162 PhiRecipe = new VPWidenPHIRecipe(Phi); 9163 } 9164 9165 return toVPRecipeResult(PhiRecipe); 9166 } 9167 9168 if (isa<TruncInst>(Instr) && 9169 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9170 Range, *Plan))) 9171 return toVPRecipeResult(Recipe); 9172 9173 if (!shouldWiden(Instr, Range)) 9174 return nullptr; 9175 9176 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9177 return toVPRecipeResult(new VPWidenGEPRecipe( 9178 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9179 9180 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9181 bool InvariantCond = 9182 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9183 return toVPRecipeResult(new VPWidenSelectRecipe( 9184 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9185 } 9186 9187 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9188 } 9189 9190 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9191 ElementCount MaxVF) { 9192 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9193 9194 // Collect instructions from the original loop that will become trivially dead 9195 // in the vectorized loop. We don't need to vectorize these instructions. For 9196 // example, original induction update instructions can become dead because we 9197 // separately emit induction "steps" when generating code for the new loop. 9198 // Similarly, we create a new latch condition when setting up the structure 9199 // of the new loop, so the old one can become dead. 9200 SmallPtrSet<Instruction *, 4> DeadInstructions; 9201 collectTriviallyDeadInstructions(DeadInstructions); 9202 9203 // Add assume instructions we need to drop to DeadInstructions, to prevent 9204 // them from being added to the VPlan. 9205 // TODO: We only need to drop assumes in blocks that get flattend. If the 9206 // control flow is preserved, we should keep them. 9207 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9208 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9209 9210 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9211 // Dead instructions do not need sinking. Remove them from SinkAfter. 9212 for (Instruction *I : DeadInstructions) 9213 SinkAfter.erase(I); 9214 9215 // Cannot sink instructions after dead instructions (there won't be any 9216 // recipes for them). Instead, find the first non-dead previous instruction. 9217 for (auto &P : Legal->getSinkAfter()) { 9218 Instruction *SinkTarget = P.second; 9219 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9220 (void)FirstInst; 9221 while (DeadInstructions.contains(SinkTarget)) { 9222 assert( 9223 SinkTarget != FirstInst && 9224 "Must find a live instruction (at least the one feeding the " 9225 "first-order recurrence PHI) before reaching beginning of the block"); 9226 SinkTarget = SinkTarget->getPrevNode(); 9227 assert(SinkTarget != P.first && 9228 "sink source equals target, no sinking required"); 9229 } 9230 P.second = SinkTarget; 9231 } 9232 9233 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9234 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9235 VFRange SubRange = {VF, MaxVFPlusOne}; 9236 VPlans.push_back( 9237 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9238 VF = SubRange.End; 9239 } 9240 } 9241 9242 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9243 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9244 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9245 9246 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9247 9248 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9249 9250 // --------------------------------------------------------------------------- 9251 // Pre-construction: record ingredients whose recipes we'll need to further 9252 // process after constructing the initial VPlan. 9253 // --------------------------------------------------------------------------- 9254 9255 // Mark instructions we'll need to sink later and their targets as 9256 // ingredients whose recipe we'll need to record. 9257 for (auto &Entry : SinkAfter) { 9258 RecipeBuilder.recordRecipeOf(Entry.first); 9259 RecipeBuilder.recordRecipeOf(Entry.second); 9260 } 9261 for (auto &Reduction : CM.getInLoopReductionChains()) { 9262 PHINode *Phi = Reduction.first; 9263 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9264 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9265 9266 RecipeBuilder.recordRecipeOf(Phi); 9267 for (auto &R : ReductionOperations) { 9268 RecipeBuilder.recordRecipeOf(R); 9269 // For min/max reducitons, where we have a pair of icmp/select, we also 9270 // need to record the ICmp recipe, so it can be removed later. 9271 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9272 "Only min/max recurrences allowed for inloop reductions"); 9273 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9274 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9275 } 9276 } 9277 9278 // For each interleave group which is relevant for this (possibly trimmed) 9279 // Range, add it to the set of groups to be later applied to the VPlan and add 9280 // placeholders for its members' Recipes which we'll be replacing with a 9281 // single VPInterleaveRecipe. 9282 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9283 auto applyIG = [IG, this](ElementCount VF) -> bool { 9284 return (VF.isVector() && // Query is illegal for VF == 1 9285 CM.getWideningDecision(IG->getInsertPos(), VF) == 9286 LoopVectorizationCostModel::CM_Interleave); 9287 }; 9288 if (!getDecisionAndClampRange(applyIG, Range)) 9289 continue; 9290 InterleaveGroups.insert(IG); 9291 for (unsigned i = 0; i < IG->getFactor(); i++) 9292 if (Instruction *Member = IG->getMember(i)) 9293 RecipeBuilder.recordRecipeOf(Member); 9294 }; 9295 9296 // --------------------------------------------------------------------------- 9297 // Build initial VPlan: Scan the body of the loop in a topological order to 9298 // visit each basic block after having visited its predecessor basic blocks. 9299 // --------------------------------------------------------------------------- 9300 9301 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9302 auto Plan = std::make_unique<VPlan>(); 9303 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9304 Plan->setEntry(VPBB); 9305 9306 // Scan the body of the loop in a topological order to visit each basic block 9307 // after having visited its predecessor basic blocks. 9308 LoopBlocksDFS DFS(OrigLoop); 9309 DFS.perform(LI); 9310 9311 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9312 // Relevant instructions from basic block BB will be grouped into VPRecipe 9313 // ingredients and fill a new VPBasicBlock. 9314 unsigned VPBBsForBB = 0; 9315 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9316 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9317 VPBB = FirstVPBBForBB; 9318 Builder.setInsertPoint(VPBB); 9319 9320 // Introduce each ingredient into VPlan. 9321 // TODO: Model and preserve debug instrinsics in VPlan. 9322 for (Instruction &I : BB->instructionsWithoutDebug()) { 9323 Instruction *Instr = &I; 9324 9325 // First filter out irrelevant instructions, to ensure no recipes are 9326 // built for them. 9327 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9328 continue; 9329 9330 SmallVector<VPValue *, 4> Operands; 9331 auto *Phi = dyn_cast<PHINode>(Instr); 9332 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9333 Operands.push_back(Plan->getOrAddVPValue( 9334 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9335 } else { 9336 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9337 Operands = {OpRange.begin(), OpRange.end()}; 9338 } 9339 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9340 Instr, Operands, Range, Plan)) { 9341 // If Instr can be simplified to an existing VPValue, use it. 9342 if (RecipeOrValue.is<VPValue *>()) { 9343 auto *VPV = RecipeOrValue.get<VPValue *>(); 9344 Plan->addVPValue(Instr, VPV); 9345 // If the re-used value is a recipe, register the recipe for the 9346 // instruction, in case the recipe for Instr needs to be recorded. 9347 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9348 RecipeBuilder.setRecipe(Instr, R); 9349 continue; 9350 } 9351 // Otherwise, add the new recipe. 9352 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9353 for (auto *Def : Recipe->definedValues()) { 9354 auto *UV = Def->getUnderlyingValue(); 9355 Plan->addVPValue(UV, Def); 9356 } 9357 9358 RecipeBuilder.setRecipe(Instr, Recipe); 9359 VPBB->appendRecipe(Recipe); 9360 continue; 9361 } 9362 9363 // Otherwise, if all widening options failed, Instruction is to be 9364 // replicated. This may create a successor for VPBB. 9365 VPBasicBlock *NextVPBB = 9366 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9367 if (NextVPBB != VPBB) { 9368 VPBB = NextVPBB; 9369 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9370 : ""); 9371 } 9372 } 9373 } 9374 9375 RecipeBuilder.fixHeaderPhis(); 9376 9377 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9378 // may also be empty, such as the last one VPBB, reflecting original 9379 // basic-blocks with no recipes. 9380 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9381 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9382 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9383 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9384 delete PreEntry; 9385 9386 // --------------------------------------------------------------------------- 9387 // Transform initial VPlan: Apply previously taken decisions, in order, to 9388 // bring the VPlan to its final state. 9389 // --------------------------------------------------------------------------- 9390 9391 // Apply Sink-After legal constraints. 9392 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9393 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9394 if (Region && Region->isReplicator()) { 9395 assert(Region->getNumSuccessors() == 1 && 9396 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9397 assert(R->getParent()->size() == 1 && 9398 "A recipe in an original replicator region must be the only " 9399 "recipe in its block"); 9400 return Region; 9401 } 9402 return nullptr; 9403 }; 9404 for (auto &Entry : SinkAfter) { 9405 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9406 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9407 9408 auto *TargetRegion = GetReplicateRegion(Target); 9409 auto *SinkRegion = GetReplicateRegion(Sink); 9410 if (!SinkRegion) { 9411 // If the sink source is not a replicate region, sink the recipe directly. 9412 if (TargetRegion) { 9413 // The target is in a replication region, make sure to move Sink to 9414 // the block after it, not into the replication region itself. 9415 VPBasicBlock *NextBlock = 9416 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9417 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9418 } else 9419 Sink->moveAfter(Target); 9420 continue; 9421 } 9422 9423 // The sink source is in a replicate region. Unhook the region from the CFG. 9424 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9425 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9426 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9427 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9428 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9429 9430 if (TargetRegion) { 9431 // The target recipe is also in a replicate region, move the sink region 9432 // after the target region. 9433 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9434 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9435 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9436 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9437 } else { 9438 // The sink source is in a replicate region, we need to move the whole 9439 // replicate region, which should only contain a single recipe in the 9440 // main block. 9441 auto *SplitBlock = 9442 Target->getParent()->splitAt(std::next(Target->getIterator())); 9443 9444 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9445 9446 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9447 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9448 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9449 if (VPBB == SplitPred) 9450 VPBB = SplitBlock; 9451 } 9452 } 9453 9454 // Adjust the recipes for any inloop reductions. 9455 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9456 9457 // Introduce a recipe to combine the incoming and previous values of a 9458 // first-order recurrence. 9459 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9460 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9461 if (!RecurPhi) 9462 continue; 9463 9464 auto *RecurSplice = cast<VPInstruction>( 9465 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9466 {RecurPhi, RecurPhi->getBackedgeValue()})); 9467 9468 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9469 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9470 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9471 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9472 } else 9473 RecurSplice->moveAfter(PrevRecipe); 9474 RecurPhi->replaceAllUsesWith(RecurSplice); 9475 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9476 // all users. 9477 RecurSplice->setOperand(0, RecurPhi); 9478 } 9479 9480 // Interleave memory: for each Interleave Group we marked earlier as relevant 9481 // for this VPlan, replace the Recipes widening its memory instructions with a 9482 // single VPInterleaveRecipe at its insertion point. 9483 for (auto IG : InterleaveGroups) { 9484 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9485 RecipeBuilder.getRecipe(IG->getInsertPos())); 9486 SmallVector<VPValue *, 4> StoredValues; 9487 for (unsigned i = 0; i < IG->getFactor(); ++i) 9488 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9489 auto *StoreR = 9490 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9491 StoredValues.push_back(StoreR->getStoredValue()); 9492 } 9493 9494 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9495 Recipe->getMask()); 9496 VPIG->insertBefore(Recipe); 9497 unsigned J = 0; 9498 for (unsigned i = 0; i < IG->getFactor(); ++i) 9499 if (Instruction *Member = IG->getMember(i)) { 9500 if (!Member->getType()->isVoidTy()) { 9501 VPValue *OriginalV = Plan->getVPValue(Member); 9502 Plan->removeVPValueFor(Member); 9503 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9504 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9505 J++; 9506 } 9507 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9508 } 9509 } 9510 9511 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9512 // in ways that accessing values using original IR values is incorrect. 9513 Plan->disableValue2VPValue(); 9514 9515 VPlanTransforms::sinkScalarOperands(*Plan); 9516 VPlanTransforms::mergeReplicateRegions(*Plan); 9517 9518 std::string PlanName; 9519 raw_string_ostream RSO(PlanName); 9520 ElementCount VF = Range.Start; 9521 Plan->addVF(VF); 9522 RSO << "Initial VPlan for VF={" << VF; 9523 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9524 Plan->addVF(VF); 9525 RSO << "," << VF; 9526 } 9527 RSO << "},UF>=1"; 9528 RSO.flush(); 9529 Plan->setName(PlanName); 9530 9531 return Plan; 9532 } 9533 9534 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9535 // Outer loop handling: They may require CFG and instruction level 9536 // transformations before even evaluating whether vectorization is profitable. 9537 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9538 // the vectorization pipeline. 9539 assert(!OrigLoop->isInnermost()); 9540 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9541 9542 // Create new empty VPlan 9543 auto Plan = std::make_unique<VPlan>(); 9544 9545 // Build hierarchical CFG 9546 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9547 HCFGBuilder.buildHierarchicalCFG(); 9548 9549 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9550 VF *= 2) 9551 Plan->addVF(VF); 9552 9553 if (EnableVPlanPredication) { 9554 VPlanPredicator VPP(*Plan); 9555 VPP.predicate(); 9556 9557 // Avoid running transformation to recipes until masked code generation in 9558 // VPlan-native path is in place. 9559 return Plan; 9560 } 9561 9562 SmallPtrSet<Instruction *, 1> DeadInstructions; 9563 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9564 Legal->getInductionVars(), 9565 DeadInstructions, *PSE.getSE()); 9566 return Plan; 9567 } 9568 9569 // Adjust the recipes for reductions. For in-loop reductions the chain of 9570 // instructions leading from the loop exit instr to the phi need to be converted 9571 // to reductions, with one operand being vector and the other being the scalar 9572 // reduction chain. For other reductions, a select is introduced between the phi 9573 // and live-out recipes when folding the tail. 9574 void LoopVectorizationPlanner::adjustRecipesForReductions( 9575 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9576 ElementCount MinVF) { 9577 for (auto &Reduction : CM.getInLoopReductionChains()) { 9578 PHINode *Phi = Reduction.first; 9579 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9580 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9581 9582 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9583 continue; 9584 9585 // ReductionOperations are orders top-down from the phi's use to the 9586 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9587 // which of the two operands will remain scalar and which will be reduced. 9588 // For minmax the chain will be the select instructions. 9589 Instruction *Chain = Phi; 9590 for (Instruction *R : ReductionOperations) { 9591 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9592 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9593 9594 VPValue *ChainOp = Plan->getVPValue(Chain); 9595 unsigned FirstOpId; 9596 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9597 "Only min/max recurrences allowed for inloop reductions"); 9598 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9599 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9600 "Expected to replace a VPWidenSelectSC"); 9601 FirstOpId = 1; 9602 } else { 9603 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9604 "Expected to replace a VPWidenSC"); 9605 FirstOpId = 0; 9606 } 9607 unsigned VecOpId = 9608 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9609 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9610 9611 auto *CondOp = CM.foldTailByMasking() 9612 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9613 : nullptr; 9614 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9615 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9616 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9617 Plan->removeVPValueFor(R); 9618 Plan->addVPValue(R, RedRecipe); 9619 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9620 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9621 WidenRecipe->eraseFromParent(); 9622 9623 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9624 VPRecipeBase *CompareRecipe = 9625 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9626 assert(isa<VPWidenRecipe>(CompareRecipe) && 9627 "Expected to replace a VPWidenSC"); 9628 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9629 "Expected no remaining users"); 9630 CompareRecipe->eraseFromParent(); 9631 } 9632 Chain = R; 9633 } 9634 } 9635 9636 // If tail is folded by masking, introduce selects between the phi 9637 // and the live-out instruction of each reduction, at the end of the latch. 9638 if (CM.foldTailByMasking()) { 9639 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9640 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9641 if (!PhiR || PhiR->isInLoop()) 9642 continue; 9643 Builder.setInsertPoint(LatchVPBB); 9644 VPValue *Cond = 9645 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9646 VPValue *Red = PhiR->getBackedgeValue(); 9647 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9648 } 9649 } 9650 } 9651 9652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9653 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9654 VPSlotTracker &SlotTracker) const { 9655 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9656 IG->getInsertPos()->printAsOperand(O, false); 9657 O << ", "; 9658 getAddr()->printAsOperand(O, SlotTracker); 9659 VPValue *Mask = getMask(); 9660 if (Mask) { 9661 O << ", "; 9662 Mask->printAsOperand(O, SlotTracker); 9663 } 9664 9665 unsigned OpIdx = 0; 9666 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9667 if (!IG->getMember(i)) 9668 continue; 9669 if (getNumStoreOperands() > 0) { 9670 O << "\n" << Indent << " store "; 9671 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9672 O << " to index " << i; 9673 } else { 9674 O << "\n" << Indent << " "; 9675 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9676 O << " = load from index " << i; 9677 } 9678 ++OpIdx; 9679 } 9680 } 9681 #endif 9682 9683 void VPWidenCallRecipe::execute(VPTransformState &State) { 9684 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9685 *this, State); 9686 } 9687 9688 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9689 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9690 this, *this, InvariantCond, State); 9691 } 9692 9693 void VPWidenRecipe::execute(VPTransformState &State) { 9694 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9695 } 9696 9697 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9698 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9699 *this, State.UF, State.VF, IsPtrLoopInvariant, 9700 IsIndexLoopInvariant, State); 9701 } 9702 9703 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9704 assert(!State.Instance && "Int or FP induction being replicated."); 9705 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9706 getTruncInst(), getVPValue(0), 9707 getCastValue(), State); 9708 } 9709 9710 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9711 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9712 State); 9713 } 9714 9715 void VPBlendRecipe::execute(VPTransformState &State) { 9716 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9717 // We know that all PHIs in non-header blocks are converted into 9718 // selects, so we don't have to worry about the insertion order and we 9719 // can just use the builder. 9720 // At this point we generate the predication tree. There may be 9721 // duplications since this is a simple recursive scan, but future 9722 // optimizations will clean it up. 9723 9724 unsigned NumIncoming = getNumIncomingValues(); 9725 9726 // Generate a sequence of selects of the form: 9727 // SELECT(Mask3, In3, 9728 // SELECT(Mask2, In2, 9729 // SELECT(Mask1, In1, 9730 // In0))) 9731 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9732 // are essentially undef are taken from In0. 9733 InnerLoopVectorizer::VectorParts Entry(State.UF); 9734 for (unsigned In = 0; In < NumIncoming; ++In) { 9735 for (unsigned Part = 0; Part < State.UF; ++Part) { 9736 // We might have single edge PHIs (blocks) - use an identity 9737 // 'select' for the first PHI operand. 9738 Value *In0 = State.get(getIncomingValue(In), Part); 9739 if (In == 0) 9740 Entry[Part] = In0; // Initialize with the first incoming value. 9741 else { 9742 // Select between the current value and the previous incoming edge 9743 // based on the incoming mask. 9744 Value *Cond = State.get(getMask(In), Part); 9745 Entry[Part] = 9746 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9747 } 9748 } 9749 } 9750 for (unsigned Part = 0; Part < State.UF; ++Part) 9751 State.set(this, Entry[Part], Part); 9752 } 9753 9754 void VPInterleaveRecipe::execute(VPTransformState &State) { 9755 assert(!State.Instance && "Interleave group being replicated."); 9756 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9757 getStoredValues(), getMask()); 9758 } 9759 9760 void VPReductionRecipe::execute(VPTransformState &State) { 9761 assert(!State.Instance && "Reduction being replicated."); 9762 Value *PrevInChain = State.get(getChainOp(), 0); 9763 for (unsigned Part = 0; Part < State.UF; ++Part) { 9764 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9765 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9766 Value *NewVecOp = State.get(getVecOp(), Part); 9767 if (VPValue *Cond = getCondOp()) { 9768 Value *NewCond = State.get(Cond, Part); 9769 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9770 Value *Iden = RdxDesc->getRecurrenceIdentity( 9771 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9772 Value *IdenVec = 9773 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9774 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9775 NewVecOp = Select; 9776 } 9777 Value *NewRed; 9778 Value *NextInChain; 9779 if (IsOrdered) { 9780 if (State.VF.isVector()) 9781 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9782 PrevInChain); 9783 else 9784 NewRed = State.Builder.CreateBinOp( 9785 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9786 PrevInChain, NewVecOp); 9787 PrevInChain = NewRed; 9788 } else { 9789 PrevInChain = State.get(getChainOp(), Part); 9790 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9791 } 9792 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9793 NextInChain = 9794 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9795 NewRed, PrevInChain); 9796 } else if (IsOrdered) 9797 NextInChain = NewRed; 9798 else { 9799 NextInChain = State.Builder.CreateBinOp( 9800 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9801 PrevInChain); 9802 } 9803 State.set(this, NextInChain, Part); 9804 } 9805 } 9806 9807 void VPReplicateRecipe::execute(VPTransformState &State) { 9808 if (State.Instance) { // Generate a single instance. 9809 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9810 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9811 *State.Instance, IsPredicated, State); 9812 // Insert scalar instance packing it into a vector. 9813 if (AlsoPack && State.VF.isVector()) { 9814 // If we're constructing lane 0, initialize to start from poison. 9815 if (State.Instance->Lane.isFirstLane()) { 9816 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9817 Value *Poison = PoisonValue::get( 9818 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9819 State.set(this, Poison, State.Instance->Part); 9820 } 9821 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9822 } 9823 return; 9824 } 9825 9826 // Generate scalar instances for all VF lanes of all UF parts, unless the 9827 // instruction is uniform inwhich case generate only the first lane for each 9828 // of the UF parts. 9829 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9830 assert((!State.VF.isScalable() || IsUniform) && 9831 "Can't scalarize a scalable vector"); 9832 for (unsigned Part = 0; Part < State.UF; ++Part) 9833 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9834 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9835 VPIteration(Part, Lane), IsPredicated, 9836 State); 9837 } 9838 9839 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9840 assert(State.Instance && "Branch on Mask works only on single instance."); 9841 9842 unsigned Part = State.Instance->Part; 9843 unsigned Lane = State.Instance->Lane.getKnownLane(); 9844 9845 Value *ConditionBit = nullptr; 9846 VPValue *BlockInMask = getMask(); 9847 if (BlockInMask) { 9848 ConditionBit = State.get(BlockInMask, Part); 9849 if (ConditionBit->getType()->isVectorTy()) 9850 ConditionBit = State.Builder.CreateExtractElement( 9851 ConditionBit, State.Builder.getInt32(Lane)); 9852 } else // Block in mask is all-one. 9853 ConditionBit = State.Builder.getTrue(); 9854 9855 // Replace the temporary unreachable terminator with a new conditional branch, 9856 // whose two destinations will be set later when they are created. 9857 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9858 assert(isa<UnreachableInst>(CurrentTerminator) && 9859 "Expected to replace unreachable terminator with conditional branch."); 9860 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9861 CondBr->setSuccessor(0, nullptr); 9862 ReplaceInstWithInst(CurrentTerminator, CondBr); 9863 } 9864 9865 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9866 assert(State.Instance && "Predicated instruction PHI works per instance."); 9867 Instruction *ScalarPredInst = 9868 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9869 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9870 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9871 assert(PredicatingBB && "Predicated block has no single predecessor."); 9872 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9873 "operand must be VPReplicateRecipe"); 9874 9875 // By current pack/unpack logic we need to generate only a single phi node: if 9876 // a vector value for the predicated instruction exists at this point it means 9877 // the instruction has vector users only, and a phi for the vector value is 9878 // needed. In this case the recipe of the predicated instruction is marked to 9879 // also do that packing, thereby "hoisting" the insert-element sequence. 9880 // Otherwise, a phi node for the scalar value is needed. 9881 unsigned Part = State.Instance->Part; 9882 if (State.hasVectorValue(getOperand(0), Part)) { 9883 Value *VectorValue = State.get(getOperand(0), Part); 9884 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9885 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9886 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9887 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9888 if (State.hasVectorValue(this, Part)) 9889 State.reset(this, VPhi, Part); 9890 else 9891 State.set(this, VPhi, Part); 9892 // NOTE: Currently we need to update the value of the operand, so the next 9893 // predicated iteration inserts its generated value in the correct vector. 9894 State.reset(getOperand(0), VPhi, Part); 9895 } else { 9896 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9897 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9898 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9899 PredicatingBB); 9900 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9901 if (State.hasScalarValue(this, *State.Instance)) 9902 State.reset(this, Phi, *State.Instance); 9903 else 9904 State.set(this, Phi, *State.Instance); 9905 // NOTE: Currently we need to update the value of the operand, so the next 9906 // predicated iteration inserts its generated value in the correct vector. 9907 State.reset(getOperand(0), Phi, *State.Instance); 9908 } 9909 } 9910 9911 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9912 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9913 State.ILV->vectorizeMemoryInstruction( 9914 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9915 StoredValue, getMask()); 9916 } 9917 9918 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9919 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9920 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9921 // for predication. 9922 static ScalarEpilogueLowering getScalarEpilogueLowering( 9923 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9924 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9925 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9926 LoopVectorizationLegality &LVL) { 9927 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9928 // don't look at hints or options, and don't request a scalar epilogue. 9929 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9930 // LoopAccessInfo (due to code dependency and not being able to reliably get 9931 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9932 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9933 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9934 // back to the old way and vectorize with versioning when forced. See D81345.) 9935 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9936 PGSOQueryType::IRPass) && 9937 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9938 return CM_ScalarEpilogueNotAllowedOptSize; 9939 9940 // 2) If set, obey the directives 9941 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9942 switch (PreferPredicateOverEpilogue) { 9943 case PreferPredicateTy::ScalarEpilogue: 9944 return CM_ScalarEpilogueAllowed; 9945 case PreferPredicateTy::PredicateElseScalarEpilogue: 9946 return CM_ScalarEpilogueNotNeededUsePredicate; 9947 case PreferPredicateTy::PredicateOrDontVectorize: 9948 return CM_ScalarEpilogueNotAllowedUsePredicate; 9949 }; 9950 } 9951 9952 // 3) If set, obey the hints 9953 switch (Hints.getPredicate()) { 9954 case LoopVectorizeHints::FK_Enabled: 9955 return CM_ScalarEpilogueNotNeededUsePredicate; 9956 case LoopVectorizeHints::FK_Disabled: 9957 return CM_ScalarEpilogueAllowed; 9958 }; 9959 9960 // 4) if the TTI hook indicates this is profitable, request predication. 9961 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9962 LVL.getLAI())) 9963 return CM_ScalarEpilogueNotNeededUsePredicate; 9964 9965 return CM_ScalarEpilogueAllowed; 9966 } 9967 9968 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9969 // If Values have been set for this Def return the one relevant for \p Part. 9970 if (hasVectorValue(Def, Part)) 9971 return Data.PerPartOutput[Def][Part]; 9972 9973 if (!hasScalarValue(Def, {Part, 0})) { 9974 Value *IRV = Def->getLiveInIRValue(); 9975 Value *B = ILV->getBroadcastInstrs(IRV); 9976 set(Def, B, Part); 9977 return B; 9978 } 9979 9980 Value *ScalarValue = get(Def, {Part, 0}); 9981 // If we aren't vectorizing, we can just copy the scalar map values over 9982 // to the vector map. 9983 if (VF.isScalar()) { 9984 set(Def, ScalarValue, Part); 9985 return ScalarValue; 9986 } 9987 9988 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9989 bool IsUniform = RepR && RepR->isUniform(); 9990 9991 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9992 // Check if there is a scalar value for the selected lane. 9993 if (!hasScalarValue(Def, {Part, LastLane})) { 9994 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9995 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9996 "unexpected recipe found to be invariant"); 9997 IsUniform = true; 9998 LastLane = 0; 9999 } 10000 10001 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10002 // Set the insert point after the last scalarized instruction or after the 10003 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10004 // will directly follow the scalar definitions. 10005 auto OldIP = Builder.saveIP(); 10006 auto NewIP = 10007 isa<PHINode>(LastInst) 10008 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10009 : std::next(BasicBlock::iterator(LastInst)); 10010 Builder.SetInsertPoint(&*NewIP); 10011 10012 // However, if we are vectorizing, we need to construct the vector values. 10013 // If the value is known to be uniform after vectorization, we can just 10014 // broadcast the scalar value corresponding to lane zero for each unroll 10015 // iteration. Otherwise, we construct the vector values using 10016 // insertelement instructions. Since the resulting vectors are stored in 10017 // State, we will only generate the insertelements once. 10018 Value *VectorValue = nullptr; 10019 if (IsUniform) { 10020 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10021 set(Def, VectorValue, Part); 10022 } else { 10023 // Initialize packing with insertelements to start from undef. 10024 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10025 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10026 set(Def, Undef, Part); 10027 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10028 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10029 VectorValue = get(Def, Part); 10030 } 10031 Builder.restoreIP(OldIP); 10032 return VectorValue; 10033 } 10034 10035 // Process the loop in the VPlan-native vectorization path. This path builds 10036 // VPlan upfront in the vectorization pipeline, which allows to apply 10037 // VPlan-to-VPlan transformations from the very beginning without modifying the 10038 // input LLVM IR. 10039 static bool processLoopInVPlanNativePath( 10040 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10041 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10042 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10043 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10044 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10045 LoopVectorizationRequirements &Requirements) { 10046 10047 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10048 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10049 return false; 10050 } 10051 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10052 Function *F = L->getHeader()->getParent(); 10053 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10054 10055 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10056 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10057 10058 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10059 &Hints, IAI); 10060 // Use the planner for outer loop vectorization. 10061 // TODO: CM is not used at this point inside the planner. Turn CM into an 10062 // optional argument if we don't need it in the future. 10063 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10064 Requirements, ORE); 10065 10066 // Get user vectorization factor. 10067 ElementCount UserVF = Hints.getWidth(); 10068 10069 CM.collectElementTypesForWidening(); 10070 10071 // Plan how to best vectorize, return the best VF and its cost. 10072 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10073 10074 // If we are stress testing VPlan builds, do not attempt to generate vector 10075 // code. Masked vector code generation support will follow soon. 10076 // Also, do not attempt to vectorize if no vector code will be produced. 10077 if (VPlanBuildStressTest || EnableVPlanPredication || 10078 VectorizationFactor::Disabled() == VF) 10079 return false; 10080 10081 LVP.setBestPlan(VF.Width, 1); 10082 10083 { 10084 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10085 F->getParent()->getDataLayout()); 10086 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10087 &CM, BFI, PSI, Checks); 10088 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10089 << L->getHeader()->getParent()->getName() << "\"\n"); 10090 LVP.executePlan(LB, DT); 10091 } 10092 10093 // Mark the loop as already vectorized to avoid vectorizing again. 10094 Hints.setAlreadyVectorized(); 10095 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10096 return true; 10097 } 10098 10099 // Emit a remark if there are stores to floats that required a floating point 10100 // extension. If the vectorized loop was generated with floating point there 10101 // will be a performance penalty from the conversion overhead and the change in 10102 // the vector width. 10103 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10104 SmallVector<Instruction *, 4> Worklist; 10105 for (BasicBlock *BB : L->getBlocks()) { 10106 for (Instruction &Inst : *BB) { 10107 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10108 if (S->getValueOperand()->getType()->isFloatTy()) 10109 Worklist.push_back(S); 10110 } 10111 } 10112 } 10113 10114 // Traverse the floating point stores upwards searching, for floating point 10115 // conversions. 10116 SmallPtrSet<const Instruction *, 4> Visited; 10117 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10118 while (!Worklist.empty()) { 10119 auto *I = Worklist.pop_back_val(); 10120 if (!L->contains(I)) 10121 continue; 10122 if (!Visited.insert(I).second) 10123 continue; 10124 10125 // Emit a remark if the floating point store required a floating 10126 // point conversion. 10127 // TODO: More work could be done to identify the root cause such as a 10128 // constant or a function return type and point the user to it. 10129 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10130 ORE->emit([&]() { 10131 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10132 I->getDebugLoc(), L->getHeader()) 10133 << "floating point conversion changes vector width. " 10134 << "Mixed floating point precision requires an up/down " 10135 << "cast that will negatively impact performance."; 10136 }); 10137 10138 for (Use &Op : I->operands()) 10139 if (auto *OpI = dyn_cast<Instruction>(Op)) 10140 Worklist.push_back(OpI); 10141 } 10142 } 10143 10144 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10145 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10146 !EnableLoopInterleaving), 10147 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10148 !EnableLoopVectorization) {} 10149 10150 bool LoopVectorizePass::processLoop(Loop *L) { 10151 assert((EnableVPlanNativePath || L->isInnermost()) && 10152 "VPlan-native path is not enabled. Only process inner loops."); 10153 10154 #ifndef NDEBUG 10155 const std::string DebugLocStr = getDebugLocString(L); 10156 #endif /* NDEBUG */ 10157 10158 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10159 << L->getHeader()->getParent()->getName() << "\" from " 10160 << DebugLocStr << "\n"); 10161 10162 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10163 10164 LLVM_DEBUG( 10165 dbgs() << "LV: Loop hints:" 10166 << " force=" 10167 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10168 ? "disabled" 10169 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10170 ? "enabled" 10171 : "?")) 10172 << " width=" << Hints.getWidth() 10173 << " interleave=" << Hints.getInterleave() << "\n"); 10174 10175 // Function containing loop 10176 Function *F = L->getHeader()->getParent(); 10177 10178 // Looking at the diagnostic output is the only way to determine if a loop 10179 // was vectorized (other than looking at the IR or machine code), so it 10180 // is important to generate an optimization remark for each loop. Most of 10181 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10182 // generated as OptimizationRemark and OptimizationRemarkMissed are 10183 // less verbose reporting vectorized loops and unvectorized loops that may 10184 // benefit from vectorization, respectively. 10185 10186 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10187 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10188 return false; 10189 } 10190 10191 PredicatedScalarEvolution PSE(*SE, *L); 10192 10193 // Check if it is legal to vectorize the loop. 10194 LoopVectorizationRequirements Requirements; 10195 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10196 &Requirements, &Hints, DB, AC, BFI, PSI); 10197 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10198 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10199 Hints.emitRemarkWithHints(); 10200 return false; 10201 } 10202 10203 // Check the function attributes and profiles to find out if this function 10204 // should be optimized for size. 10205 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10206 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10207 10208 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10209 // here. They may require CFG and instruction level transformations before 10210 // even evaluating whether vectorization is profitable. Since we cannot modify 10211 // the incoming IR, we need to build VPlan upfront in the vectorization 10212 // pipeline. 10213 if (!L->isInnermost()) 10214 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10215 ORE, BFI, PSI, Hints, Requirements); 10216 10217 assert(L->isInnermost() && "Inner loop expected."); 10218 10219 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10220 // count by optimizing for size, to minimize overheads. 10221 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10222 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10223 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10224 << "This loop is worth vectorizing only if no scalar " 10225 << "iteration overheads are incurred."); 10226 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10227 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10228 else { 10229 LLVM_DEBUG(dbgs() << "\n"); 10230 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10231 } 10232 } 10233 10234 // Check the function attributes to see if implicit floats are allowed. 10235 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10236 // an integer loop and the vector instructions selected are purely integer 10237 // vector instructions? 10238 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10239 reportVectorizationFailure( 10240 "Can't vectorize when the NoImplicitFloat attribute is used", 10241 "loop not vectorized due to NoImplicitFloat attribute", 10242 "NoImplicitFloat", ORE, L); 10243 Hints.emitRemarkWithHints(); 10244 return false; 10245 } 10246 10247 // Check if the target supports potentially unsafe FP vectorization. 10248 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10249 // for the target we're vectorizing for, to make sure none of the 10250 // additional fp-math flags can help. 10251 if (Hints.isPotentiallyUnsafe() && 10252 TTI->isFPVectorizationPotentiallyUnsafe()) { 10253 reportVectorizationFailure( 10254 "Potentially unsafe FP op prevents vectorization", 10255 "loop not vectorized due to unsafe FP support.", 10256 "UnsafeFP", ORE, L); 10257 Hints.emitRemarkWithHints(); 10258 return false; 10259 } 10260 10261 bool AllowOrderedReductions; 10262 // If the flag is set, use that instead and override the TTI behaviour. 10263 if (ForceOrderedReductions.getNumOccurrences() > 0) 10264 AllowOrderedReductions = ForceOrderedReductions; 10265 else 10266 AllowOrderedReductions = TTI->enableOrderedReductions(); 10267 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10268 ORE->emit([&]() { 10269 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10270 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10271 ExactFPMathInst->getDebugLoc(), 10272 ExactFPMathInst->getParent()) 10273 << "loop not vectorized: cannot prove it is safe to reorder " 10274 "floating-point operations"; 10275 }); 10276 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10277 "reorder floating-point operations\n"); 10278 Hints.emitRemarkWithHints(); 10279 return false; 10280 } 10281 10282 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10283 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10284 10285 // If an override option has been passed in for interleaved accesses, use it. 10286 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10287 UseInterleaved = EnableInterleavedMemAccesses; 10288 10289 // Analyze interleaved memory accesses. 10290 if (UseInterleaved) { 10291 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10292 } 10293 10294 // Use the cost model. 10295 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10296 F, &Hints, IAI); 10297 CM.collectValuesToIgnore(); 10298 CM.collectElementTypesForWidening(); 10299 10300 // Use the planner for vectorization. 10301 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10302 Requirements, ORE); 10303 10304 // Get user vectorization factor and interleave count. 10305 ElementCount UserVF = Hints.getWidth(); 10306 unsigned UserIC = Hints.getInterleave(); 10307 10308 // Plan how to best vectorize, return the best VF and its cost. 10309 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10310 10311 VectorizationFactor VF = VectorizationFactor::Disabled(); 10312 unsigned IC = 1; 10313 10314 if (MaybeVF) { 10315 VF = *MaybeVF; 10316 // Select the interleave count. 10317 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10318 } 10319 10320 // Identify the diagnostic messages that should be produced. 10321 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10322 bool VectorizeLoop = true, InterleaveLoop = true; 10323 if (VF.Width.isScalar()) { 10324 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10325 VecDiagMsg = std::make_pair( 10326 "VectorizationNotBeneficial", 10327 "the cost-model indicates that vectorization is not beneficial"); 10328 VectorizeLoop = false; 10329 } 10330 10331 if (!MaybeVF && UserIC > 1) { 10332 // Tell the user interleaving was avoided up-front, despite being explicitly 10333 // requested. 10334 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10335 "interleaving should be avoided up front\n"); 10336 IntDiagMsg = std::make_pair( 10337 "InterleavingAvoided", 10338 "Ignoring UserIC, because interleaving was avoided up front"); 10339 InterleaveLoop = false; 10340 } else if (IC == 1 && UserIC <= 1) { 10341 // Tell the user interleaving is not beneficial. 10342 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10343 IntDiagMsg = std::make_pair( 10344 "InterleavingNotBeneficial", 10345 "the cost-model indicates that interleaving is not beneficial"); 10346 InterleaveLoop = false; 10347 if (UserIC == 1) { 10348 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10349 IntDiagMsg.second += 10350 " and is explicitly disabled or interleave count is set to 1"; 10351 } 10352 } else if (IC > 1 && UserIC == 1) { 10353 // Tell the user interleaving is beneficial, but it explicitly disabled. 10354 LLVM_DEBUG( 10355 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10356 IntDiagMsg = std::make_pair( 10357 "InterleavingBeneficialButDisabled", 10358 "the cost-model indicates that interleaving is beneficial " 10359 "but is explicitly disabled or interleave count is set to 1"); 10360 InterleaveLoop = false; 10361 } 10362 10363 // Override IC if user provided an interleave count. 10364 IC = UserIC > 0 ? UserIC : IC; 10365 10366 // Emit diagnostic messages, if any. 10367 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10368 if (!VectorizeLoop && !InterleaveLoop) { 10369 // Do not vectorize or interleaving the loop. 10370 ORE->emit([&]() { 10371 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10372 L->getStartLoc(), L->getHeader()) 10373 << VecDiagMsg.second; 10374 }); 10375 ORE->emit([&]() { 10376 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10377 L->getStartLoc(), L->getHeader()) 10378 << IntDiagMsg.second; 10379 }); 10380 return false; 10381 } else if (!VectorizeLoop && InterleaveLoop) { 10382 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10383 ORE->emit([&]() { 10384 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10385 L->getStartLoc(), L->getHeader()) 10386 << VecDiagMsg.second; 10387 }); 10388 } else if (VectorizeLoop && !InterleaveLoop) { 10389 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10390 << ") in " << DebugLocStr << '\n'); 10391 ORE->emit([&]() { 10392 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10393 L->getStartLoc(), L->getHeader()) 10394 << IntDiagMsg.second; 10395 }); 10396 } else if (VectorizeLoop && InterleaveLoop) { 10397 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10398 << ") in " << DebugLocStr << '\n'); 10399 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10400 } 10401 10402 bool DisableRuntimeUnroll = false; 10403 MDNode *OrigLoopID = L->getLoopID(); 10404 { 10405 // Optimistically generate runtime checks. Drop them if they turn out to not 10406 // be profitable. Limit the scope of Checks, so the cleanup happens 10407 // immediately after vector codegeneration is done. 10408 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10409 F->getParent()->getDataLayout()); 10410 if (!VF.Width.isScalar() || IC > 1) 10411 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10412 LVP.setBestPlan(VF.Width, IC); 10413 10414 using namespace ore; 10415 if (!VectorizeLoop) { 10416 assert(IC > 1 && "interleave count should not be 1 or 0"); 10417 // If we decided that it is not legal to vectorize the loop, then 10418 // interleave it. 10419 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10420 &CM, BFI, PSI, Checks); 10421 LVP.executePlan(Unroller, DT); 10422 10423 ORE->emit([&]() { 10424 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10425 L->getHeader()) 10426 << "interleaved loop (interleaved count: " 10427 << NV("InterleaveCount", IC) << ")"; 10428 }); 10429 } else { 10430 // If we decided that it is *legal* to vectorize the loop, then do it. 10431 10432 // Consider vectorizing the epilogue too if it's profitable. 10433 VectorizationFactor EpilogueVF = 10434 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10435 if (EpilogueVF.Width.isVector()) { 10436 10437 // The first pass vectorizes the main loop and creates a scalar epilogue 10438 // to be vectorized by executing the plan (potentially with a different 10439 // factor) again shortly afterwards. 10440 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10441 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10442 EPI, &LVL, &CM, BFI, PSI, Checks); 10443 10444 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10445 LVP.executePlan(MainILV, DT); 10446 ++LoopsVectorized; 10447 10448 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10449 formLCSSARecursively(*L, *DT, LI, SE); 10450 10451 // Second pass vectorizes the epilogue and adjusts the control flow 10452 // edges from the first pass. 10453 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10454 EPI.MainLoopVF = EPI.EpilogueVF; 10455 EPI.MainLoopUF = EPI.EpilogueUF; 10456 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10457 ORE, EPI, &LVL, &CM, BFI, PSI, 10458 Checks); 10459 LVP.executePlan(EpilogILV, DT); 10460 ++LoopsEpilogueVectorized; 10461 10462 if (!MainILV.areSafetyChecksAdded()) 10463 DisableRuntimeUnroll = true; 10464 } else { 10465 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10466 &LVL, &CM, BFI, PSI, Checks); 10467 LVP.executePlan(LB, DT); 10468 ++LoopsVectorized; 10469 10470 // Add metadata to disable runtime unrolling a scalar loop when there 10471 // are no runtime checks about strides and memory. A scalar loop that is 10472 // rarely used is not worth unrolling. 10473 if (!LB.areSafetyChecksAdded()) 10474 DisableRuntimeUnroll = true; 10475 } 10476 // Report the vectorization decision. 10477 ORE->emit([&]() { 10478 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10479 L->getHeader()) 10480 << "vectorized loop (vectorization width: " 10481 << NV("VectorizationFactor", VF.Width) 10482 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10483 }); 10484 } 10485 10486 if (ORE->allowExtraAnalysis(LV_NAME)) 10487 checkMixedPrecision(L, ORE); 10488 } 10489 10490 Optional<MDNode *> RemainderLoopID = 10491 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10492 LLVMLoopVectorizeFollowupEpilogue}); 10493 if (RemainderLoopID.hasValue()) { 10494 L->setLoopID(RemainderLoopID.getValue()); 10495 } else { 10496 if (DisableRuntimeUnroll) 10497 AddRuntimeUnrollDisableMetaData(L); 10498 10499 // Mark the loop as already vectorized to avoid vectorizing again. 10500 Hints.setAlreadyVectorized(); 10501 } 10502 10503 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10504 return true; 10505 } 10506 10507 LoopVectorizeResult LoopVectorizePass::runImpl( 10508 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10509 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10510 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10511 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10512 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10513 SE = &SE_; 10514 LI = &LI_; 10515 TTI = &TTI_; 10516 DT = &DT_; 10517 BFI = &BFI_; 10518 TLI = TLI_; 10519 AA = &AA_; 10520 AC = &AC_; 10521 GetLAA = &GetLAA_; 10522 DB = &DB_; 10523 ORE = &ORE_; 10524 PSI = PSI_; 10525 10526 // Don't attempt if 10527 // 1. the target claims to have no vector registers, and 10528 // 2. interleaving won't help ILP. 10529 // 10530 // The second condition is necessary because, even if the target has no 10531 // vector registers, loop vectorization may still enable scalar 10532 // interleaving. 10533 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10534 TTI->getMaxInterleaveFactor(1) < 2) 10535 return LoopVectorizeResult(false, false); 10536 10537 bool Changed = false, CFGChanged = false; 10538 10539 // The vectorizer requires loops to be in simplified form. 10540 // Since simplification may add new inner loops, it has to run before the 10541 // legality and profitability checks. This means running the loop vectorizer 10542 // will simplify all loops, regardless of whether anything end up being 10543 // vectorized. 10544 for (auto &L : *LI) 10545 Changed |= CFGChanged |= 10546 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10547 10548 // Build up a worklist of inner-loops to vectorize. This is necessary as 10549 // the act of vectorizing or partially unrolling a loop creates new loops 10550 // and can invalidate iterators across the loops. 10551 SmallVector<Loop *, 8> Worklist; 10552 10553 for (Loop *L : *LI) 10554 collectSupportedLoops(*L, LI, ORE, Worklist); 10555 10556 LoopsAnalyzed += Worklist.size(); 10557 10558 // Now walk the identified inner loops. 10559 while (!Worklist.empty()) { 10560 Loop *L = Worklist.pop_back_val(); 10561 10562 // For the inner loops we actually process, form LCSSA to simplify the 10563 // transform. 10564 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10565 10566 Changed |= CFGChanged |= processLoop(L); 10567 } 10568 10569 // Process each loop nest in the function. 10570 return LoopVectorizeResult(Changed, CFGChanged); 10571 } 10572 10573 PreservedAnalyses LoopVectorizePass::run(Function &F, 10574 FunctionAnalysisManager &AM) { 10575 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10576 auto &LI = AM.getResult<LoopAnalysis>(F); 10577 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10578 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10579 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10580 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10581 auto &AA = AM.getResult<AAManager>(F); 10582 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10583 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10584 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10585 10586 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10587 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10588 [&](Loop &L) -> const LoopAccessInfo & { 10589 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10590 TLI, TTI, nullptr, nullptr, nullptr}; 10591 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10592 }; 10593 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10594 ProfileSummaryInfo *PSI = 10595 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10596 LoopVectorizeResult Result = 10597 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10598 if (!Result.MadeAnyChange) 10599 return PreservedAnalyses::all(); 10600 PreservedAnalyses PA; 10601 10602 // We currently do not preserve loopinfo/dominator analyses with outer loop 10603 // vectorization. Until this is addressed, mark these analyses as preserved 10604 // only for non-VPlan-native path. 10605 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10606 if (!EnableVPlanNativePath) { 10607 PA.preserve<LoopAnalysis>(); 10608 PA.preserve<DominatorTreeAnalysis>(); 10609 } 10610 if (!Result.MadeCFGChange) 10611 PA.preserveSet<CFGAnalyses>(); 10612 return PA; 10613 } 10614 10615 void LoopVectorizePass::printPipeline( 10616 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10617 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10618 OS, MapClassName2PassName); 10619 10620 OS << "<"; 10621 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10622 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10623 OS << ">"; 10624 } 10625