1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/EquivalenceClasses.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/AliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/DiagnosticInfo.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/IRBuilder.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/IntrinsicInst.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/IR/ValueHandle.h" 90 #include "llvm/IR/Verifier.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/BranchProbability.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/Scalar.h" 97 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include "llvm/Analysis/VectorUtils.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include <algorithm> 102 #include <map> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define LV_NAME "loop-vectorize" 109 #define DEBUG_TYPE LV_NAME 110 111 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 112 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 static cl::opt<bool> EnableInterleavedMemAccesses( 142 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 143 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 144 145 /// Maximum factor for an interleaved memory access. 146 static cl::opt<unsigned> MaxInterleaveGroupFactor( 147 "max-interleave-group-factor", cl::Hidden, 148 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 149 cl::init(8)); 150 151 /// We don't unroll loops with a known constant trip count below this number. 152 static const unsigned TinyTripCountUnrollThreshold = 128; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// \brief This modifies LoopAccessReport to initialize message with 222 /// loop-vectorizer-specific part. 223 class VectorizationReport : public LoopAccessReport { 224 public: 225 VectorizationReport(Instruction *I = nullptr) 226 : LoopAccessReport("loop not vectorized: ", I) {} 227 228 /// \brief This allows promotion of the loop-access analysis report into the 229 /// loop-vectorizer report. It modifies the message to add the 230 /// loop-vectorizer-specific part of the message. 231 explicit VectorizationReport(const LoopAccessReport &R) 232 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 233 R.getInstr()) {} 234 }; 235 236 /// A helper function for converting Scalar types to vector types. 237 /// If the incoming type is void, we return void. If the VF is 1, we return 238 /// the scalar type. 239 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 240 if (Scalar->isVoidTy() || VF == 1) 241 return Scalar; 242 return VectorType::get(Scalar, VF); 243 } 244 245 /// InnerLoopVectorizer vectorizes loops which contain only one basic 246 /// block to a specified vectorization factor (VF). 247 /// This class performs the widening of scalars into vectors, or multiple 248 /// scalars. This class also implements the following features: 249 /// * It inserts an epilogue loop for handling loops that don't have iteration 250 /// counts that are known to be a multiple of the vectorization factor. 251 /// * It handles the code generation for reduction variables. 252 /// * Scalarization (implementation using scalars) of un-vectorizable 253 /// instructions. 254 /// InnerLoopVectorizer does not perform any vectorization-legality 255 /// checks, and relies on the caller to check for the different legality 256 /// aspects. The InnerLoopVectorizer relies on the 257 /// LoopVectorizationLegality class to provide information about the induction 258 /// and reduction variables that were found to a given vectorization factor. 259 class InnerLoopVectorizer { 260 public: 261 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 262 DominatorTree *DT, const TargetLibraryInfo *TLI, 263 const TargetTransformInfo *TTI, unsigned VecWidth, 264 unsigned UnrollFactor) 265 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 266 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 267 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 268 Legal(nullptr), AddedSafetyChecks(false) {} 269 270 // Perform the actual loop widening (vectorization). 271 void vectorize(LoopVectorizationLegality *L) { 272 Legal = L; 273 // Create a new empty loop. Unlink the old loop and connect the new one. 274 createEmptyLoop(); 275 // Widen each instruction in the old loop to a new one in the new loop. 276 // Use the Legality module to find the induction and reduction variables. 277 vectorizeLoop(); 278 // Register the new loop and update the analysis passes. 279 updateAnalysis(); 280 } 281 282 // Return true if any runtime check is added. 283 bool IsSafetyChecksAdded() { 284 return AddedSafetyChecks; 285 } 286 287 virtual ~InnerLoopVectorizer() {} 288 289 protected: 290 /// A small list of PHINodes. 291 typedef SmallVector<PHINode*, 4> PhiVector; 292 /// When we unroll loops we have multiple vector values for each scalar. 293 /// This data structure holds the unrolled and vectorized values that 294 /// originated from one scalar instruction. 295 typedef SmallVector<Value*, 2> VectorParts; 296 297 // When we if-convert we need to create edge masks. We have to cache values 298 // so that we don't end up with exponential recursion/IR. 299 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 300 VectorParts> EdgeMaskCache; 301 302 /// \brief Add checks for strides that were assumed to be 1. 303 /// 304 /// Returns the last check instruction and the first check instruction in the 305 /// pair as (first, last). 306 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 307 308 /// Create an empty loop, based on the loop ranges of the old loop. 309 void createEmptyLoop(); 310 /// Copy and widen the instructions from the old loop. 311 virtual void vectorizeLoop(); 312 313 /// \brief The Loop exit block may have single value PHI nodes where the 314 /// incoming value is 'Undef'. While vectorizing we only handled real values 315 /// that were defined inside the loop. Here we fix the 'undef case'. 316 /// See PR14725. 317 void fixLCSSAPHIs(); 318 319 /// A helper function that computes the predicate of the block BB, assuming 320 /// that the header block of the loop is set to True. It returns the *entry* 321 /// mask for the block BB. 322 VectorParts createBlockInMask(BasicBlock *BB); 323 /// A helper function that computes the predicate of the edge between SRC 324 /// and DST. 325 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 326 327 /// A helper function to vectorize a single BB within the innermost loop. 328 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 329 330 /// Vectorize a single PHINode in a block. This method handles the induction 331 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 332 /// arbitrary length vectors. 333 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 334 unsigned UF, unsigned VF, PhiVector *PV); 335 336 /// Insert the new loop to the loop hierarchy and pass manager 337 /// and update the analysis passes. 338 void updateAnalysis(); 339 340 /// This instruction is un-vectorizable. Implement it as a sequence 341 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 342 /// scalarized instruction behind an if block predicated on the control 343 /// dependence of the instruction. 344 virtual void scalarizeInstruction(Instruction *Instr, 345 bool IfPredicateStore=false); 346 347 /// Vectorize Load and Store instructions, 348 virtual void vectorizeMemoryInstruction(Instruction *Instr); 349 350 /// Create a broadcast instruction. This method generates a broadcast 351 /// instruction (shuffle) for loop invariant values and for the induction 352 /// value. If this is the induction variable then we extend it to N, N+1, ... 353 /// this is needed because each iteration in the loop corresponds to a SIMD 354 /// element. 355 virtual Value *getBroadcastInstrs(Value *V); 356 357 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 358 /// to each vector element of Val. The sequence starts at StartIndex. 359 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 360 361 /// When we go over instructions in the basic block we rely on previous 362 /// values within the current basic block or on loop invariant values. 363 /// When we widen (vectorize) values we place them in the map. If the values 364 /// are not within the map, they have to be loop invariant, so we simply 365 /// broadcast them into a vector. 366 VectorParts &getVectorValue(Value *V); 367 368 /// Try to vectorize the interleaved access group that \p Instr belongs to. 369 void vectorizeInterleaveGroup(Instruction *Instr); 370 371 /// Generate a shuffle sequence that will reverse the vector Vec. 372 virtual Value *reverseVector(Value *Vec); 373 374 /// This is a helper class that holds the vectorizer state. It maps scalar 375 /// instructions to vector instructions. When the code is 'unrolled' then 376 /// then a single scalar value is mapped to multiple vector parts. The parts 377 /// are stored in the VectorPart type. 378 struct ValueMap { 379 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 380 /// are mapped. 381 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 382 383 /// \return True if 'Key' is saved in the Value Map. 384 bool has(Value *Key) const { return MapStorage.count(Key); } 385 386 /// Initializes a new entry in the map. Sets all of the vector parts to the 387 /// save value in 'Val'. 388 /// \return A reference to a vector with splat values. 389 VectorParts &splat(Value *Key, Value *Val) { 390 VectorParts &Entry = MapStorage[Key]; 391 Entry.assign(UF, Val); 392 return Entry; 393 } 394 395 ///\return A reference to the value that is stored at 'Key'. 396 VectorParts &get(Value *Key) { 397 VectorParts &Entry = MapStorage[Key]; 398 if (Entry.empty()) 399 Entry.resize(UF); 400 assert(Entry.size() == UF); 401 return Entry; 402 } 403 404 private: 405 /// The unroll factor. Each entry in the map stores this number of vector 406 /// elements. 407 unsigned UF; 408 409 /// Map storage. We use std::map and not DenseMap because insertions to a 410 /// dense map invalidates its iterators. 411 std::map<Value *, VectorParts> MapStorage; 412 }; 413 414 /// The original loop. 415 Loop *OrigLoop; 416 /// Scev analysis to use. 417 ScalarEvolution *SE; 418 /// Loop Info. 419 LoopInfo *LI; 420 /// Dominator Tree. 421 DominatorTree *DT; 422 /// Alias Analysis. 423 AliasAnalysis *AA; 424 /// Target Library Info. 425 const TargetLibraryInfo *TLI; 426 /// Target Transform Info. 427 const TargetTransformInfo *TTI; 428 429 /// The vectorization SIMD factor to use. Each vector will have this many 430 /// vector elements. 431 unsigned VF; 432 433 protected: 434 /// The vectorization unroll factor to use. Each scalar is vectorized to this 435 /// many different vector instructions. 436 unsigned UF; 437 438 /// The builder that we use 439 IRBuilder<> Builder; 440 441 // --- Vectorization state --- 442 443 /// The vector-loop preheader. 444 BasicBlock *LoopVectorPreHeader; 445 /// The scalar-loop preheader. 446 BasicBlock *LoopScalarPreHeader; 447 /// Middle Block between the vector and the scalar. 448 BasicBlock *LoopMiddleBlock; 449 ///The ExitBlock of the scalar loop. 450 BasicBlock *LoopExitBlock; 451 ///The vector loop body. 452 SmallVector<BasicBlock *, 4> LoopVectorBody; 453 ///The scalar loop body. 454 BasicBlock *LoopScalarBody; 455 /// A list of all bypass blocks. The first block is the entry of the loop. 456 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 457 458 /// The new Induction variable which was added to the new block. 459 PHINode *Induction; 460 /// The induction variable of the old basic block. 461 PHINode *OldInduction; 462 /// Holds the extended (to the widest induction type) start index. 463 Value *ExtendedIdx; 464 /// Maps scalars to widened vectors. 465 ValueMap WidenMap; 466 EdgeMaskCache MaskCache; 467 468 LoopVectorizationLegality *Legal; 469 470 // Record whether runtime check is added. 471 bool AddedSafetyChecks; 472 }; 473 474 class InnerLoopUnroller : public InnerLoopVectorizer { 475 public: 476 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 477 DominatorTree *DT, const TargetLibraryInfo *TLI, 478 const TargetTransformInfo *TTI, unsigned UnrollFactor) 479 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 480 481 private: 482 void scalarizeInstruction(Instruction *Instr, 483 bool IfPredicateStore = false) override; 484 void vectorizeMemoryInstruction(Instruction *Instr) override; 485 Value *getBroadcastInstrs(Value *V) override; 486 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 487 Value *reverseVector(Value *Vec) override; 488 }; 489 490 /// \brief Look for a meaningful debug location on the instruction or it's 491 /// operands. 492 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 493 if (!I) 494 return I; 495 496 DebugLoc Empty; 497 if (I->getDebugLoc() != Empty) 498 return I; 499 500 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 501 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 502 if (OpInst->getDebugLoc() != Empty) 503 return OpInst; 504 } 505 506 return I; 507 } 508 509 /// \brief Set the debug location in the builder using the debug location in the 510 /// instruction. 511 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 512 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 513 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 514 else 515 B.SetCurrentDebugLocation(DebugLoc()); 516 } 517 518 #ifndef NDEBUG 519 /// \return string containing a file name and a line # for the given loop. 520 static std::string getDebugLocString(const Loop *L) { 521 std::string Result; 522 if (L) { 523 raw_string_ostream OS(Result); 524 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 525 LoopDbgLoc.print(OS); 526 else 527 // Just print the module name. 528 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 529 OS.flush(); 530 } 531 return Result; 532 } 533 #endif 534 535 /// \brief Propagate known metadata from one instruction to another. 536 static void propagateMetadata(Instruction *To, const Instruction *From) { 537 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 538 From->getAllMetadataOtherThanDebugLoc(Metadata); 539 540 for (auto M : Metadata) { 541 unsigned Kind = M.first; 542 543 // These are safe to transfer (this is safe for TBAA, even when we 544 // if-convert, because should that metadata have had a control dependency 545 // on the condition, and thus actually aliased with some other 546 // non-speculated memory access when the condition was false, this would be 547 // caught by the runtime overlap checks). 548 if (Kind != LLVMContext::MD_tbaa && 549 Kind != LLVMContext::MD_alias_scope && 550 Kind != LLVMContext::MD_noalias && 551 Kind != LLVMContext::MD_fpmath) 552 continue; 553 554 To->setMetadata(Kind, M.second); 555 } 556 } 557 558 /// \brief Propagate known metadata from one instruction to a vector of others. 559 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 560 for (Value *V : To) 561 if (Instruction *I = dyn_cast<Instruction>(V)) 562 propagateMetadata(I, From); 563 } 564 565 /// \brief The group of interleaved loads/stores sharing the same stride and 566 /// close to each other. 567 /// 568 /// Each member in this group has an index starting from 0, and the largest 569 /// index should be less than interleaved factor, which is equal to the absolute 570 /// value of the access's stride. 571 /// 572 /// E.g. An interleaved load group of factor 4: 573 /// for (unsigned i = 0; i < 1024; i+=4) { 574 /// a = A[i]; // Member of index 0 575 /// b = A[i+1]; // Member of index 1 576 /// d = A[i+3]; // Member of index 3 577 /// ... 578 /// } 579 /// 580 /// An interleaved store group of factor 4: 581 /// for (unsigned i = 0; i < 1024; i+=4) { 582 /// ... 583 /// A[i] = a; // Member of index 0 584 /// A[i+1] = b; // Member of index 1 585 /// A[i+2] = c; // Member of index 2 586 /// A[i+3] = d; // Member of index 3 587 /// } 588 /// 589 /// Note: the interleaved load group could have gaps (missing members), but 590 /// the interleaved store group doesn't allow gaps. 591 class InterleaveGroup { 592 public: 593 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 594 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 595 assert(Align && "The alignment should be non-zero"); 596 597 Factor = std::abs(Stride); 598 assert(Factor > 1 && "Invalid interleave factor"); 599 600 Reverse = Stride < 0; 601 Members[0] = Instr; 602 } 603 604 bool isReverse() const { return Reverse; } 605 unsigned getFactor() const { return Factor; } 606 unsigned getAlignment() const { return Align; } 607 unsigned getNumMembers() const { return Members.size(); } 608 609 /// \brief Try to insert a new member \p Instr with index \p Index and 610 /// alignment \p NewAlign. The index is related to the leader and it could be 611 /// negative if it is the new leader. 612 /// 613 /// \returns false if the instruction doesn't belong to the group. 614 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 615 assert(NewAlign && "The new member's alignment should be non-zero"); 616 617 int Key = Index + SmallestKey; 618 619 // Skip if there is already a member with the same index. 620 if (Members.count(Key)) 621 return false; 622 623 if (Key > LargestKey) { 624 // The largest index is always less than the interleave factor. 625 if (Index >= static_cast<int>(Factor)) 626 return false; 627 628 LargestKey = Key; 629 } else if (Key < SmallestKey) { 630 // The largest index is always less than the interleave factor. 631 if (LargestKey - Key >= static_cast<int>(Factor)) 632 return false; 633 634 SmallestKey = Key; 635 } 636 637 // It's always safe to select the minimum alignment. 638 Align = std::min(Align, NewAlign); 639 Members[Key] = Instr; 640 return true; 641 } 642 643 /// \brief Get the member with the given index \p Index 644 /// 645 /// \returns nullptr if contains no such member. 646 Instruction *getMember(unsigned Index) const { 647 int Key = SmallestKey + Index; 648 if (!Members.count(Key)) 649 return nullptr; 650 651 return Members.find(Key)->second; 652 } 653 654 /// \brief Get the index for the given member. Unlike the key in the member 655 /// map, the index starts from 0. 656 unsigned getIndex(Instruction *Instr) const { 657 for (auto I : Members) 658 if (I.second == Instr) 659 return I.first - SmallestKey; 660 661 llvm_unreachable("InterleaveGroup contains no such member"); 662 } 663 664 Instruction *getInsertPos() const { return InsertPos; } 665 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 666 667 private: 668 unsigned Factor; // Interleave Factor. 669 bool Reverse; 670 unsigned Align; 671 DenseMap<int, Instruction *> Members; 672 int SmallestKey; 673 int LargestKey; 674 675 // To avoid breaking dependences, vectorized instructions of an interleave 676 // group should be inserted at either the first load or the last store in 677 // program order. 678 // 679 // E.g. %even = load i32 // Insert Position 680 // %add = add i32 %even // Use of %even 681 // %odd = load i32 682 // 683 // store i32 %even 684 // %odd = add i32 // Def of %odd 685 // store i32 %odd // Insert Position 686 Instruction *InsertPos; 687 }; 688 689 /// \brief Drive the analysis of interleaved memory accesses in the loop. 690 /// 691 /// Use this class to analyze interleaved accesses only when we can vectorize 692 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 693 /// on interleaved accesses is unsafe. 694 /// 695 /// The analysis collects interleave groups and records the relationships 696 /// between the member and the group in a map. 697 class InterleavedAccessInfo { 698 public: 699 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT) 700 : SE(SE), TheLoop(L), DT(DT) {} 701 702 ~InterleavedAccessInfo() { 703 SmallSet<InterleaveGroup *, 4> DelSet; 704 // Avoid releasing a pointer twice. 705 for (auto &I : InterleaveGroupMap) 706 DelSet.insert(I.second); 707 for (auto *Ptr : DelSet) 708 delete Ptr; 709 } 710 711 /// \brief Analyze the interleaved accesses and collect them in interleave 712 /// groups. Substitute symbolic strides using \p Strides. 713 void analyzeInterleaving(const ValueToValueMap &Strides); 714 715 /// \brief Check if \p Instr belongs to any interleave group. 716 bool isInterleaved(Instruction *Instr) const { 717 return InterleaveGroupMap.count(Instr); 718 } 719 720 /// \brief Get the interleave group that \p Instr belongs to. 721 /// 722 /// \returns nullptr if doesn't have such group. 723 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 724 if (InterleaveGroupMap.count(Instr)) 725 return InterleaveGroupMap.find(Instr)->second; 726 return nullptr; 727 } 728 729 private: 730 ScalarEvolution *SE; 731 Loop *TheLoop; 732 DominatorTree *DT; 733 734 /// Holds the relationships between the members and the interleave group. 735 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 736 737 /// \brief The descriptor for a strided memory access. 738 struct StrideDescriptor { 739 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 740 unsigned Align) 741 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 742 743 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 744 745 int Stride; // The access's stride. It is negative for a reverse access. 746 const SCEV *Scev; // The scalar expression of this access 747 unsigned Size; // The size of the memory object. 748 unsigned Align; // The alignment of this access. 749 }; 750 751 /// \brief Create a new interleave group with the given instruction \p Instr, 752 /// stride \p Stride and alignment \p Align. 753 /// 754 /// \returns the newly created interleave group. 755 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 756 unsigned Align) { 757 assert(!InterleaveGroupMap.count(Instr) && 758 "Already in an interleaved access group"); 759 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 760 return InterleaveGroupMap[Instr]; 761 } 762 763 /// \brief Release the group and remove all the relationships. 764 void releaseGroup(InterleaveGroup *Group) { 765 for (unsigned i = 0; i < Group->getFactor(); i++) 766 if (Instruction *Member = Group->getMember(i)) 767 InterleaveGroupMap.erase(Member); 768 769 delete Group; 770 } 771 772 /// \brief Collect all the accesses with a constant stride in program order. 773 void collectConstStridedAccesses( 774 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 775 const ValueToValueMap &Strides); 776 }; 777 778 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 779 /// to what vectorization factor. 780 /// This class does not look at the profitability of vectorization, only the 781 /// legality. This class has two main kinds of checks: 782 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 783 /// will change the order of memory accesses in a way that will change the 784 /// correctness of the program. 785 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 786 /// checks for a number of different conditions, such as the availability of a 787 /// single induction variable, that all types are supported and vectorize-able, 788 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 789 /// This class is also used by InnerLoopVectorizer for identifying 790 /// induction variable and the different reduction variables. 791 class LoopVectorizationLegality { 792 public: 793 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 794 TargetLibraryInfo *TLI, AliasAnalysis *AA, 795 Function *F, const TargetTransformInfo *TTI, 796 LoopAccessAnalysis *LAA) 797 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 798 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT), 799 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 800 801 /// This enum represents the kinds of inductions that we support. 802 enum InductionKind { 803 IK_NoInduction, ///< Not an induction variable. 804 IK_IntInduction, ///< Integer induction variable. Step = C. 805 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 806 }; 807 808 /// A struct for saving information about induction variables. 809 struct InductionInfo { 810 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 811 : StartValue(Start), IK(K), StepValue(Step) { 812 assert(IK != IK_NoInduction && "Not an induction"); 813 assert(StartValue && "StartValue is null"); 814 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 815 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 816 "StartValue is not a pointer for pointer induction"); 817 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 818 "StartValue is not an integer for integer induction"); 819 assert(StepValue->getType()->isIntegerTy() && 820 "StepValue is not an integer"); 821 } 822 InductionInfo() 823 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 824 825 /// Get the consecutive direction. Returns: 826 /// 0 - unknown or non-consecutive. 827 /// 1 - consecutive and increasing. 828 /// -1 - consecutive and decreasing. 829 int getConsecutiveDirection() const { 830 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 831 return StepValue->getSExtValue(); 832 return 0; 833 } 834 835 /// Compute the transformed value of Index at offset StartValue using step 836 /// StepValue. 837 /// For integer induction, returns StartValue + Index * StepValue. 838 /// For pointer induction, returns StartValue[Index * StepValue]. 839 /// FIXME: The newly created binary instructions should contain nsw/nuw 840 /// flags, which can be found from the original scalar operations. 841 Value *transform(IRBuilder<> &B, Value *Index) const { 842 switch (IK) { 843 case IK_IntInduction: 844 assert(Index->getType() == StartValue->getType() && 845 "Index type does not match StartValue type"); 846 if (StepValue->isMinusOne()) 847 return B.CreateSub(StartValue, Index); 848 if (!StepValue->isOne()) 849 Index = B.CreateMul(Index, StepValue); 850 return B.CreateAdd(StartValue, Index); 851 852 case IK_PtrInduction: 853 assert(Index->getType() == StepValue->getType() && 854 "Index type does not match StepValue type"); 855 if (StepValue->isMinusOne()) 856 Index = B.CreateNeg(Index); 857 else if (!StepValue->isOne()) 858 Index = B.CreateMul(Index, StepValue); 859 return B.CreateGEP(nullptr, StartValue, Index); 860 861 case IK_NoInduction: 862 return nullptr; 863 } 864 llvm_unreachable("invalid enum"); 865 } 866 867 /// Start value. 868 TrackingVH<Value> StartValue; 869 /// Induction kind. 870 InductionKind IK; 871 /// Step value. 872 ConstantInt *StepValue; 873 }; 874 875 /// ReductionList contains the reduction descriptors for all 876 /// of the reductions that were found in the loop. 877 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 878 879 /// InductionList saves induction variables and maps them to the 880 /// induction descriptor. 881 typedef MapVector<PHINode*, InductionInfo> InductionList; 882 883 /// Returns true if it is legal to vectorize this loop. 884 /// This does not mean that it is profitable to vectorize this 885 /// loop, only that it is legal to do so. 886 bool canVectorize(); 887 888 /// Returns the Induction variable. 889 PHINode *getInduction() { return Induction; } 890 891 /// Returns the reduction variables found in the loop. 892 ReductionList *getReductionVars() { return &Reductions; } 893 894 /// Returns the induction variables found in the loop. 895 InductionList *getInductionVars() { return &Inductions; } 896 897 /// Returns the widest induction type. 898 Type *getWidestInductionType() { return WidestIndTy; } 899 900 /// Returns True if V is an induction variable in this loop. 901 bool isInductionVariable(const Value *V); 902 903 /// Return true if the block BB needs to be predicated in order for the loop 904 /// to be vectorized. 905 bool blockNeedsPredication(BasicBlock *BB); 906 907 /// Check if this pointer is consecutive when vectorizing. This happens 908 /// when the last index of the GEP is the induction variable, or that the 909 /// pointer itself is an induction variable. 910 /// This check allows us to vectorize A[idx] into a wide load/store. 911 /// Returns: 912 /// 0 - Stride is unknown or non-consecutive. 913 /// 1 - Address is consecutive. 914 /// -1 - Address is consecutive, and decreasing. 915 int isConsecutivePtr(Value *Ptr); 916 917 /// Returns true if the value V is uniform within the loop. 918 bool isUniform(Value *V); 919 920 /// Returns true if this instruction will remain scalar after vectorization. 921 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 922 923 /// Returns the information that we collected about runtime memory check. 924 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 925 return LAI->getRuntimePointerCheck(); 926 } 927 928 const LoopAccessInfo *getLAI() const { 929 return LAI; 930 } 931 932 /// \brief Check if \p Instr belongs to any interleaved access group. 933 bool isAccessInterleaved(Instruction *Instr) { 934 return InterleaveInfo.isInterleaved(Instr); 935 } 936 937 /// \brief Get the interleaved access group that \p Instr belongs to. 938 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 939 return InterleaveInfo.getInterleaveGroup(Instr); 940 } 941 942 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 943 944 bool hasStride(Value *V) { return StrideSet.count(V); } 945 bool mustCheckStrides() { return !StrideSet.empty(); } 946 SmallPtrSet<Value *, 8>::iterator strides_begin() { 947 return StrideSet.begin(); 948 } 949 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 950 951 /// Returns true if the target machine supports masked store operation 952 /// for the given \p DataType and kind of access to \p Ptr. 953 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 954 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 955 } 956 /// Returns true if the target machine supports masked load operation 957 /// for the given \p DataType and kind of access to \p Ptr. 958 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 959 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 960 } 961 /// Returns true if vector representation of the instruction \p I 962 /// requires mask. 963 bool isMaskRequired(const Instruction* I) { 964 return (MaskedOp.count(I) != 0); 965 } 966 unsigned getNumStores() const { 967 return LAI->getNumStores(); 968 } 969 unsigned getNumLoads() const { 970 return LAI->getNumLoads(); 971 } 972 unsigned getNumPredStores() const { 973 return NumPredStores; 974 } 975 private: 976 /// Check if a single basic block loop is vectorizable. 977 /// At this point we know that this is a loop with a constant trip count 978 /// and we only need to check individual instructions. 979 bool canVectorizeInstrs(); 980 981 /// When we vectorize loops we may change the order in which 982 /// we read and write from memory. This method checks if it is 983 /// legal to vectorize the code, considering only memory constrains. 984 /// Returns true if the loop is vectorizable 985 bool canVectorizeMemory(); 986 987 /// Return true if we can vectorize this loop using the IF-conversion 988 /// transformation. 989 bool canVectorizeWithIfConvert(); 990 991 /// Collect the variables that need to stay uniform after vectorization. 992 void collectLoopUniforms(); 993 994 /// Return true if all of the instructions in the block can be speculatively 995 /// executed. \p SafePtrs is a list of addresses that are known to be legal 996 /// and we know that we can read from them without segfault. 997 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 998 999 /// Returns the induction kind of Phi and record the step. This function may 1000 /// return NoInduction if the PHI is not an induction variable. 1001 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 1002 1003 /// \brief Collect memory access with loop invariant strides. 1004 /// 1005 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1006 /// invariant. 1007 void collectStridedAccess(Value *LoadOrStoreInst); 1008 1009 /// Report an analysis message to assist the user in diagnosing loops that are 1010 /// not vectorized. These are handled as LoopAccessReport rather than 1011 /// VectorizationReport because the << operator of VectorizationReport returns 1012 /// LoopAccessReport. 1013 void emitAnalysis(const LoopAccessReport &Message) { 1014 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1015 } 1016 1017 unsigned NumPredStores; 1018 1019 /// The loop that we evaluate. 1020 Loop *TheLoop; 1021 /// Scev analysis. 1022 ScalarEvolution *SE; 1023 /// Target Library Info. 1024 TargetLibraryInfo *TLI; 1025 /// Parent function 1026 Function *TheFunction; 1027 /// Target Transform Info 1028 const TargetTransformInfo *TTI; 1029 /// Dominator Tree. 1030 DominatorTree *DT; 1031 // LoopAccess analysis. 1032 LoopAccessAnalysis *LAA; 1033 // And the loop-accesses info corresponding to this loop. This pointer is 1034 // null until canVectorizeMemory sets it up. 1035 const LoopAccessInfo *LAI; 1036 1037 /// The interleave access information contains groups of interleaved accesses 1038 /// with the same stride and close to each other. 1039 InterleavedAccessInfo InterleaveInfo; 1040 1041 // --- vectorization state --- // 1042 1043 /// Holds the integer induction variable. This is the counter of the 1044 /// loop. 1045 PHINode *Induction; 1046 /// Holds the reduction variables. 1047 ReductionList Reductions; 1048 /// Holds all of the induction variables that we found in the loop. 1049 /// Notice that inductions don't need to start at zero and that induction 1050 /// variables can be pointers. 1051 InductionList Inductions; 1052 /// Holds the widest induction type encountered. 1053 Type *WidestIndTy; 1054 1055 /// Allowed outside users. This holds the reduction 1056 /// vars which can be accessed from outside the loop. 1057 SmallPtrSet<Value*, 4> AllowedExit; 1058 /// This set holds the variables which are known to be uniform after 1059 /// vectorization. 1060 SmallPtrSet<Instruction*, 4> Uniforms; 1061 1062 /// Can we assume the absence of NaNs. 1063 bool HasFunNoNaNAttr; 1064 1065 ValueToValueMap Strides; 1066 SmallPtrSet<Value *, 8> StrideSet; 1067 1068 /// While vectorizing these instructions we have to generate a 1069 /// call to the appropriate masked intrinsic 1070 SmallPtrSet<const Instruction*, 8> MaskedOp; 1071 }; 1072 1073 /// LoopVectorizationCostModel - estimates the expected speedups due to 1074 /// vectorization. 1075 /// In many cases vectorization is not profitable. This can happen because of 1076 /// a number of reasons. In this class we mainly attempt to predict the 1077 /// expected speedup/slowdowns due to the supported instruction set. We use the 1078 /// TargetTransformInfo to query the different backends for the cost of 1079 /// different operations. 1080 class LoopVectorizationCostModel { 1081 public: 1082 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1083 LoopVectorizationLegality *Legal, 1084 const TargetTransformInfo &TTI, 1085 const TargetLibraryInfo *TLI, AssumptionCache *AC, 1086 const Function *F, const LoopVectorizeHints *Hints) 1087 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 1088 TheFunction(F), Hints(Hints) { 1089 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 1090 } 1091 1092 /// Information about vectorization costs 1093 struct VectorizationFactor { 1094 unsigned Width; // Vector width with best cost 1095 unsigned Cost; // Cost of the loop with that width 1096 }; 1097 /// \return The most profitable vectorization factor and the cost of that VF. 1098 /// This method checks every power of two up to VF. If UserVF is not ZERO 1099 /// then this vectorization factor will be selected if vectorization is 1100 /// possible. 1101 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1102 1103 /// \return The size (in bits) of the widest type in the code that 1104 /// needs to be vectorized. We ignore values that remain scalar such as 1105 /// 64 bit loop indices. 1106 unsigned getWidestType(); 1107 1108 /// \return The most profitable unroll factor. 1109 /// If UserUF is non-zero then this method finds the best unroll-factor 1110 /// based on register pressure and other parameters. 1111 /// VF and LoopCost are the selected vectorization factor and the cost of the 1112 /// selected VF. 1113 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 1114 1115 /// \brief A struct that represents some properties of the register usage 1116 /// of a loop. 1117 struct RegisterUsage { 1118 /// Holds the number of loop invariant values that are used in the loop. 1119 unsigned LoopInvariantRegs; 1120 /// Holds the maximum number of concurrent live intervals in the loop. 1121 unsigned MaxLocalUsers; 1122 /// Holds the number of instructions in the loop. 1123 unsigned NumInstructions; 1124 }; 1125 1126 /// \return information about the register usage of the loop. 1127 RegisterUsage calculateRegisterUsage(); 1128 1129 private: 1130 /// Returns the expected execution cost. The unit of the cost does 1131 /// not matter because we use the 'cost' units to compare different 1132 /// vector widths. The cost that is returned is *not* normalized by 1133 /// the factor width. 1134 unsigned expectedCost(unsigned VF); 1135 1136 /// Returns the execution time cost of an instruction for a given vector 1137 /// width. Vector width of one means scalar. 1138 unsigned getInstructionCost(Instruction *I, unsigned VF); 1139 1140 /// Returns whether the instruction is a load or store and will be a emitted 1141 /// as a vector operation. 1142 bool isConsecutiveLoadOrStore(Instruction *I); 1143 1144 /// Report an analysis message to assist the user in diagnosing loops that are 1145 /// not vectorized. These are handled as LoopAccessReport rather than 1146 /// VectorizationReport because the << operator of VectorizationReport returns 1147 /// LoopAccessReport. 1148 void emitAnalysis(const LoopAccessReport &Message) { 1149 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1150 } 1151 1152 /// Values used only by @llvm.assume calls. 1153 SmallPtrSet<const Value *, 32> EphValues; 1154 1155 /// The loop that we evaluate. 1156 Loop *TheLoop; 1157 /// Scev analysis. 1158 ScalarEvolution *SE; 1159 /// Loop Info analysis. 1160 LoopInfo *LI; 1161 /// Vectorization legality. 1162 LoopVectorizationLegality *Legal; 1163 /// Vector target information. 1164 const TargetTransformInfo &TTI; 1165 /// Target Library Info. 1166 const TargetLibraryInfo *TLI; 1167 const Function *TheFunction; 1168 // Loop Vectorize Hint. 1169 const LoopVectorizeHints *Hints; 1170 }; 1171 1172 /// Utility class for getting and setting loop vectorizer hints in the form 1173 /// of loop metadata. 1174 /// This class keeps a number of loop annotations locally (as member variables) 1175 /// and can, upon request, write them back as metadata on the loop. It will 1176 /// initially scan the loop for existing metadata, and will update the local 1177 /// values based on information in the loop. 1178 /// We cannot write all values to metadata, as the mere presence of some info, 1179 /// for example 'force', means a decision has been made. So, we need to be 1180 /// careful NOT to add them if the user hasn't specifically asked so. 1181 class LoopVectorizeHints { 1182 enum HintKind { 1183 HK_WIDTH, 1184 HK_UNROLL, 1185 HK_FORCE 1186 }; 1187 1188 /// Hint - associates name and validation with the hint value. 1189 struct Hint { 1190 const char * Name; 1191 unsigned Value; // This may have to change for non-numeric values. 1192 HintKind Kind; 1193 1194 Hint(const char * Name, unsigned Value, HintKind Kind) 1195 : Name(Name), Value(Value), Kind(Kind) { } 1196 1197 bool validate(unsigned Val) { 1198 switch (Kind) { 1199 case HK_WIDTH: 1200 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1201 case HK_UNROLL: 1202 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1203 case HK_FORCE: 1204 return (Val <= 1); 1205 } 1206 return false; 1207 } 1208 }; 1209 1210 /// Vectorization width. 1211 Hint Width; 1212 /// Vectorization interleave factor. 1213 Hint Interleave; 1214 /// Vectorization forced 1215 Hint Force; 1216 1217 /// Return the loop metadata prefix. 1218 static StringRef Prefix() { return "llvm.loop."; } 1219 1220 public: 1221 enum ForceKind { 1222 FK_Undefined = -1, ///< Not selected. 1223 FK_Disabled = 0, ///< Forcing disabled. 1224 FK_Enabled = 1, ///< Forcing enabled. 1225 }; 1226 1227 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1228 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1229 HK_WIDTH), 1230 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1231 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1232 TheLoop(L) { 1233 // Populate values with existing loop metadata. 1234 getHintsFromMetadata(); 1235 1236 // force-vector-interleave overrides DisableInterleaving. 1237 if (VectorizerParams::isInterleaveForced()) 1238 Interleave.Value = VectorizerParams::VectorizationInterleave; 1239 1240 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1241 << "LV: Interleaving disabled by the pass manager\n"); 1242 } 1243 1244 /// Mark the loop L as already vectorized by setting the width to 1. 1245 void setAlreadyVectorized() { 1246 Width.Value = Interleave.Value = 1; 1247 Hint Hints[] = {Width, Interleave}; 1248 writeHintsToMetadata(Hints); 1249 } 1250 1251 /// Dumps all the hint information. 1252 std::string emitRemark() const { 1253 VectorizationReport R; 1254 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1255 R << "vectorization is explicitly disabled"; 1256 else { 1257 R << "use -Rpass-analysis=loop-vectorize for more info"; 1258 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1259 R << " (Force=true"; 1260 if (Width.Value != 0) 1261 R << ", Vector Width=" << Width.Value; 1262 if (Interleave.Value != 0) 1263 R << ", Interleave Count=" << Interleave.Value; 1264 R << ")"; 1265 } 1266 } 1267 1268 return R.str(); 1269 } 1270 1271 unsigned getWidth() const { return Width.Value; } 1272 unsigned getInterleave() const { return Interleave.Value; } 1273 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1274 1275 private: 1276 /// Find hints specified in the loop metadata and update local values. 1277 void getHintsFromMetadata() { 1278 MDNode *LoopID = TheLoop->getLoopID(); 1279 if (!LoopID) 1280 return; 1281 1282 // First operand should refer to the loop id itself. 1283 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1284 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1285 1286 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1287 const MDString *S = nullptr; 1288 SmallVector<Metadata *, 4> Args; 1289 1290 // The expected hint is either a MDString or a MDNode with the first 1291 // operand a MDString. 1292 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1293 if (!MD || MD->getNumOperands() == 0) 1294 continue; 1295 S = dyn_cast<MDString>(MD->getOperand(0)); 1296 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1297 Args.push_back(MD->getOperand(i)); 1298 } else { 1299 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1300 assert(Args.size() == 0 && "too many arguments for MDString"); 1301 } 1302 1303 if (!S) 1304 continue; 1305 1306 // Check if the hint starts with the loop metadata prefix. 1307 StringRef Name = S->getString(); 1308 if (Args.size() == 1) 1309 setHint(Name, Args[0]); 1310 } 1311 } 1312 1313 /// Checks string hint with one operand and set value if valid. 1314 void setHint(StringRef Name, Metadata *Arg) { 1315 if (!Name.startswith(Prefix())) 1316 return; 1317 Name = Name.substr(Prefix().size(), StringRef::npos); 1318 1319 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1320 if (!C) return; 1321 unsigned Val = C->getZExtValue(); 1322 1323 Hint *Hints[] = {&Width, &Interleave, &Force}; 1324 for (auto H : Hints) { 1325 if (Name == H->Name) { 1326 if (H->validate(Val)) 1327 H->Value = Val; 1328 else 1329 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1330 break; 1331 } 1332 } 1333 } 1334 1335 /// Create a new hint from name / value pair. 1336 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1337 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1338 Metadata *MDs[] = {MDString::get(Context, Name), 1339 ConstantAsMetadata::get( 1340 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1341 return MDNode::get(Context, MDs); 1342 } 1343 1344 /// Matches metadata with hint name. 1345 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1346 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1347 if (!Name) 1348 return false; 1349 1350 for (auto H : HintTypes) 1351 if (Name->getString().endswith(H.Name)) 1352 return true; 1353 return false; 1354 } 1355 1356 /// Sets current hints into loop metadata, keeping other values intact. 1357 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1358 if (HintTypes.size() == 0) 1359 return; 1360 1361 // Reserve the first element to LoopID (see below). 1362 SmallVector<Metadata *, 4> MDs(1); 1363 // If the loop already has metadata, then ignore the existing operands. 1364 MDNode *LoopID = TheLoop->getLoopID(); 1365 if (LoopID) { 1366 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1367 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1368 // If node in update list, ignore old value. 1369 if (!matchesHintMetadataName(Node, HintTypes)) 1370 MDs.push_back(Node); 1371 } 1372 } 1373 1374 // Now, add the missing hints. 1375 for (auto H : HintTypes) 1376 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1377 1378 // Replace current metadata node with new one. 1379 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1380 MDNode *NewLoopID = MDNode::get(Context, MDs); 1381 // Set operand 0 to refer to the loop id itself. 1382 NewLoopID->replaceOperandWith(0, NewLoopID); 1383 1384 TheLoop->setLoopID(NewLoopID); 1385 } 1386 1387 /// The loop these hints belong to. 1388 const Loop *TheLoop; 1389 }; 1390 1391 static void emitMissedWarning(Function *F, Loop *L, 1392 const LoopVectorizeHints &LH) { 1393 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1394 L->getStartLoc(), LH.emitRemark()); 1395 1396 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1397 if (LH.getWidth() != 1) 1398 emitLoopVectorizeWarning( 1399 F->getContext(), *F, L->getStartLoc(), 1400 "failed explicitly specified loop vectorization"); 1401 else if (LH.getInterleave() != 1) 1402 emitLoopInterleaveWarning( 1403 F->getContext(), *F, L->getStartLoc(), 1404 "failed explicitly specified loop interleaving"); 1405 } 1406 } 1407 1408 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1409 if (L.empty()) 1410 return V.push_back(&L); 1411 1412 for (Loop *InnerL : L) 1413 addInnerLoop(*InnerL, V); 1414 } 1415 1416 /// The LoopVectorize Pass. 1417 struct LoopVectorize : public FunctionPass { 1418 /// Pass identification, replacement for typeid 1419 static char ID; 1420 1421 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1422 : FunctionPass(ID), 1423 DisableUnrolling(NoUnrolling), 1424 AlwaysVectorize(AlwaysVectorize) { 1425 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1426 } 1427 1428 ScalarEvolution *SE; 1429 LoopInfo *LI; 1430 TargetTransformInfo *TTI; 1431 DominatorTree *DT; 1432 BlockFrequencyInfo *BFI; 1433 TargetLibraryInfo *TLI; 1434 AliasAnalysis *AA; 1435 AssumptionCache *AC; 1436 LoopAccessAnalysis *LAA; 1437 bool DisableUnrolling; 1438 bool AlwaysVectorize; 1439 1440 BlockFrequency ColdEntryFreq; 1441 1442 bool runOnFunction(Function &F) override { 1443 SE = &getAnalysis<ScalarEvolution>(); 1444 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1445 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1446 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1447 BFI = &getAnalysis<BlockFrequencyInfo>(); 1448 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1449 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1450 AA = &getAnalysis<AliasAnalysis>(); 1451 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1452 LAA = &getAnalysis<LoopAccessAnalysis>(); 1453 1454 // Compute some weights outside of the loop over the loops. Compute this 1455 // using a BranchProbability to re-use its scaling math. 1456 const BranchProbability ColdProb(1, 5); // 20% 1457 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1458 1459 // Don't attempt if 1460 // 1. the target claims to have no vector registers, and 1461 // 2. interleaving won't help ILP. 1462 // 1463 // The second condition is necessary because, even if the target has no 1464 // vector registers, loop vectorization may still enable scalar 1465 // interleaving. 1466 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1467 return false; 1468 1469 // Build up a worklist of inner-loops to vectorize. This is necessary as 1470 // the act of vectorizing or partially unrolling a loop creates new loops 1471 // and can invalidate iterators across the loops. 1472 SmallVector<Loop *, 8> Worklist; 1473 1474 for (Loop *L : *LI) 1475 addInnerLoop(*L, Worklist); 1476 1477 LoopsAnalyzed += Worklist.size(); 1478 1479 // Now walk the identified inner loops. 1480 bool Changed = false; 1481 while (!Worklist.empty()) 1482 Changed |= processLoop(Worklist.pop_back_val()); 1483 1484 // Process each loop nest in the function. 1485 return Changed; 1486 } 1487 1488 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1489 SmallVector<Metadata *, 4> MDs; 1490 // Reserve first location for self reference to the LoopID metadata node. 1491 MDs.push_back(nullptr); 1492 bool IsUnrollMetadata = false; 1493 MDNode *LoopID = L->getLoopID(); 1494 if (LoopID) { 1495 // First find existing loop unrolling disable metadata. 1496 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1497 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1498 if (MD) { 1499 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1500 IsUnrollMetadata = 1501 S && S->getString().startswith("llvm.loop.unroll.disable"); 1502 } 1503 MDs.push_back(LoopID->getOperand(i)); 1504 } 1505 } 1506 1507 if (!IsUnrollMetadata) { 1508 // Add runtime unroll disable metadata. 1509 LLVMContext &Context = L->getHeader()->getContext(); 1510 SmallVector<Metadata *, 1> DisableOperands; 1511 DisableOperands.push_back( 1512 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1513 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1514 MDs.push_back(DisableNode); 1515 MDNode *NewLoopID = MDNode::get(Context, MDs); 1516 // Set operand 0 to refer to the loop id itself. 1517 NewLoopID->replaceOperandWith(0, NewLoopID); 1518 L->setLoopID(NewLoopID); 1519 } 1520 } 1521 1522 bool processLoop(Loop *L) { 1523 assert(L->empty() && "Only process inner loops."); 1524 1525 #ifndef NDEBUG 1526 const std::string DebugLocStr = getDebugLocString(L); 1527 #endif /* NDEBUG */ 1528 1529 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1530 << L->getHeader()->getParent()->getName() << "\" from " 1531 << DebugLocStr << "\n"); 1532 1533 LoopVectorizeHints Hints(L, DisableUnrolling); 1534 1535 DEBUG(dbgs() << "LV: Loop hints:" 1536 << " force=" 1537 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1538 ? "disabled" 1539 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1540 ? "enabled" 1541 : "?")) << " width=" << Hints.getWidth() 1542 << " unroll=" << Hints.getInterleave() << "\n"); 1543 1544 // Function containing loop 1545 Function *F = L->getHeader()->getParent(); 1546 1547 // Looking at the diagnostic output is the only way to determine if a loop 1548 // was vectorized (other than looking at the IR or machine code), so it 1549 // is important to generate an optimization remark for each loop. Most of 1550 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1551 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1552 // less verbose reporting vectorized loops and unvectorized loops that may 1553 // benefit from vectorization, respectively. 1554 1555 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1556 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1557 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1558 L->getStartLoc(), Hints.emitRemark()); 1559 return false; 1560 } 1561 1562 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1563 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1564 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1565 L->getStartLoc(), Hints.emitRemark()); 1566 return false; 1567 } 1568 1569 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1570 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1571 emitOptimizationRemarkAnalysis( 1572 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1573 "loop not vectorized: vector width and interleave count are " 1574 "explicitly set to 1"); 1575 return false; 1576 } 1577 1578 // Check the loop for a trip count threshold: 1579 // do not vectorize loops with a tiny trip count. 1580 const unsigned TC = SE->getSmallConstantTripCount(L); 1581 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1582 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1583 << "This loop is not worth vectorizing."); 1584 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1585 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1586 else { 1587 DEBUG(dbgs() << "\n"); 1588 emitOptimizationRemarkAnalysis( 1589 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1590 "vectorization is not beneficial and is not explicitly forced"); 1591 return false; 1592 } 1593 } 1594 1595 // Check if it is legal to vectorize the loop. 1596 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1597 if (!LVL.canVectorize()) { 1598 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1599 emitMissedWarning(F, L, Hints); 1600 return false; 1601 } 1602 1603 // Use the cost model. 1604 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1605 1606 // Check the function attributes to find out if this function should be 1607 // optimized for size. 1608 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1609 F->hasFnAttribute(Attribute::OptimizeForSize); 1610 1611 // Compute the weighted frequency of this loop being executed and see if it 1612 // is less than 20% of the function entry baseline frequency. Note that we 1613 // always have a canonical loop here because we think we *can* vectoriez. 1614 // FIXME: This is hidden behind a flag due to pervasive problems with 1615 // exactly what block frequency models. 1616 if (LoopVectorizeWithBlockFrequency) { 1617 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1618 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1619 LoopEntryFreq < ColdEntryFreq) 1620 OptForSize = true; 1621 } 1622 1623 // Check the function attributes to see if implicit floats are allowed.a 1624 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1625 // an integer loop and the vector instructions selected are purely integer 1626 // vector instructions? 1627 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1628 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1629 "attribute is used.\n"); 1630 emitOptimizationRemarkAnalysis( 1631 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1632 "loop not vectorized due to NoImplicitFloat attribute"); 1633 emitMissedWarning(F, L, Hints); 1634 return false; 1635 } 1636 1637 // Select the optimal vectorization factor. 1638 const LoopVectorizationCostModel::VectorizationFactor VF = 1639 CM.selectVectorizationFactor(OptForSize); 1640 1641 // Select the unroll factor. 1642 const unsigned UF = 1643 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1644 1645 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1646 << DebugLocStr << '\n'); 1647 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1648 1649 if (VF.Width == 1) { 1650 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1651 1652 if (UF == 1) { 1653 emitOptimizationRemarkAnalysis( 1654 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1655 "not beneficial to vectorize and user disabled interleaving"); 1656 return false; 1657 } 1658 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1659 1660 // Report the unrolling decision. 1661 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1662 Twine("unrolled with interleaving factor " + 1663 Twine(UF) + 1664 " (vectorization not beneficial)")); 1665 1666 // We decided not to vectorize, but we may want to unroll. 1667 1668 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, UF); 1669 Unroller.vectorize(&LVL); 1670 } else { 1671 // If we decided that it is *legal* to vectorize the loop then do it. 1672 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, UF); 1673 LB.vectorize(&LVL); 1674 ++LoopsVectorized; 1675 1676 // Add metadata to disable runtime unrolling scalar loop when there's no 1677 // runtime check about strides and memory. Because at this situation, 1678 // scalar loop is rarely used not worthy to be unrolled. 1679 if (!LB.IsSafetyChecksAdded()) 1680 AddRuntimeUnrollDisableMetaData(L); 1681 1682 // Report the vectorization decision. 1683 emitOptimizationRemark( 1684 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1685 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1686 ", unrolling interleave factor: " + Twine(UF) + ")"); 1687 } 1688 1689 // Mark the loop as already vectorized to avoid vectorizing again. 1690 Hints.setAlreadyVectorized(); 1691 1692 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1693 return true; 1694 } 1695 1696 void getAnalysisUsage(AnalysisUsage &AU) const override { 1697 AU.addRequired<AssumptionCacheTracker>(); 1698 AU.addRequiredID(LoopSimplifyID); 1699 AU.addRequiredID(LCSSAID); 1700 AU.addRequired<BlockFrequencyInfo>(); 1701 AU.addRequired<DominatorTreeWrapperPass>(); 1702 AU.addRequired<LoopInfoWrapperPass>(); 1703 AU.addRequired<ScalarEvolution>(); 1704 AU.addRequired<TargetTransformInfoWrapperPass>(); 1705 AU.addRequired<AliasAnalysis>(); 1706 AU.addRequired<LoopAccessAnalysis>(); 1707 AU.addPreserved<LoopInfoWrapperPass>(); 1708 AU.addPreserved<DominatorTreeWrapperPass>(); 1709 AU.addPreserved<AliasAnalysis>(); 1710 } 1711 1712 }; 1713 1714 } // end anonymous namespace 1715 1716 //===----------------------------------------------------------------------===// 1717 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1718 // LoopVectorizationCostModel. 1719 //===----------------------------------------------------------------------===// 1720 1721 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1722 // We need to place the broadcast of invariant variables outside the loop. 1723 Instruction *Instr = dyn_cast<Instruction>(V); 1724 bool NewInstr = 1725 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1726 Instr->getParent()) != LoopVectorBody.end()); 1727 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1728 1729 // Place the code for broadcasting invariant variables in the new preheader. 1730 IRBuilder<>::InsertPointGuard Guard(Builder); 1731 if (Invariant) 1732 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1733 1734 // Broadcast the scalar into all locations in the vector. 1735 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1736 1737 return Shuf; 1738 } 1739 1740 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1741 Value *Step) { 1742 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1743 assert(Val->getType()->getScalarType()->isIntegerTy() && 1744 "Elem must be an integer"); 1745 assert(Step->getType() == Val->getType()->getScalarType() && 1746 "Step has wrong type"); 1747 // Create the types. 1748 Type *ITy = Val->getType()->getScalarType(); 1749 VectorType *Ty = cast<VectorType>(Val->getType()); 1750 int VLen = Ty->getNumElements(); 1751 SmallVector<Constant*, 8> Indices; 1752 1753 // Create a vector of consecutive numbers from zero to VF. 1754 for (int i = 0; i < VLen; ++i) 1755 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1756 1757 // Add the consecutive indices to the vector value. 1758 Constant *Cv = ConstantVector::get(Indices); 1759 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1760 Step = Builder.CreateVectorSplat(VLen, Step); 1761 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1762 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1763 // which can be found from the original scalar operations. 1764 Step = Builder.CreateMul(Cv, Step); 1765 return Builder.CreateAdd(Val, Step, "induction"); 1766 } 1767 1768 /// \brief Find the operand of the GEP that should be checked for consecutive 1769 /// stores. This ignores trailing indices that have no effect on the final 1770 /// pointer. 1771 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 1772 const DataLayout &DL = Gep->getModule()->getDataLayout(); 1773 unsigned LastOperand = Gep->getNumOperands() - 1; 1774 unsigned GEPAllocSize = DL.getTypeAllocSize( 1775 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1776 1777 // Walk backwards and try to peel off zeros. 1778 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1779 // Find the type we're currently indexing into. 1780 gep_type_iterator GEPTI = gep_type_begin(Gep); 1781 std::advance(GEPTI, LastOperand - 1); 1782 1783 // If it's a type with the same allocation size as the result of the GEP we 1784 // can peel off the zero index. 1785 if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) 1786 break; 1787 --LastOperand; 1788 } 1789 1790 return LastOperand; 1791 } 1792 1793 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1794 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1795 // Make sure that the pointer does not point to structs. 1796 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1797 return 0; 1798 1799 // If this value is a pointer induction variable we know it is consecutive. 1800 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1801 if (Phi && Inductions.count(Phi)) { 1802 InductionInfo II = Inductions[Phi]; 1803 return II.getConsecutiveDirection(); 1804 } 1805 1806 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1807 if (!Gep) 1808 return 0; 1809 1810 unsigned NumOperands = Gep->getNumOperands(); 1811 Value *GpPtr = Gep->getPointerOperand(); 1812 // If this GEP value is a consecutive pointer induction variable and all of 1813 // the indices are constant then we know it is consecutive. We can 1814 Phi = dyn_cast<PHINode>(GpPtr); 1815 if (Phi && Inductions.count(Phi)) { 1816 1817 // Make sure that the pointer does not point to structs. 1818 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1819 if (GepPtrType->getElementType()->isAggregateType()) 1820 return 0; 1821 1822 // Make sure that all of the index operands are loop invariant. 1823 for (unsigned i = 1; i < NumOperands; ++i) 1824 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1825 return 0; 1826 1827 InductionInfo II = Inductions[Phi]; 1828 return II.getConsecutiveDirection(); 1829 } 1830 1831 unsigned InductionOperand = getGEPInductionOperand(Gep); 1832 1833 // Check that all of the gep indices are uniform except for our induction 1834 // operand. 1835 for (unsigned i = 0; i != NumOperands; ++i) 1836 if (i != InductionOperand && 1837 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1838 return 0; 1839 1840 // We can emit wide load/stores only if the last non-zero index is the 1841 // induction variable. 1842 const SCEV *Last = nullptr; 1843 if (!Strides.count(Gep)) 1844 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1845 else { 1846 // Because of the multiplication by a stride we can have a s/zext cast. 1847 // We are going to replace this stride by 1 so the cast is safe to ignore. 1848 // 1849 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1850 // %0 = trunc i64 %indvars.iv to i32 1851 // %mul = mul i32 %0, %Stride1 1852 // %idxprom = zext i32 %mul to i64 << Safe cast. 1853 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1854 // 1855 Last = replaceSymbolicStrideSCEV(SE, Strides, 1856 Gep->getOperand(InductionOperand), Gep); 1857 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1858 Last = 1859 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1860 ? C->getOperand() 1861 : Last; 1862 } 1863 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1864 const SCEV *Step = AR->getStepRecurrence(*SE); 1865 1866 // The memory is consecutive because the last index is consecutive 1867 // and all other indices are loop invariant. 1868 if (Step->isOne()) 1869 return 1; 1870 if (Step->isAllOnesValue()) 1871 return -1; 1872 } 1873 1874 return 0; 1875 } 1876 1877 bool LoopVectorizationLegality::isUniform(Value *V) { 1878 return LAI->isUniform(V); 1879 } 1880 1881 InnerLoopVectorizer::VectorParts& 1882 InnerLoopVectorizer::getVectorValue(Value *V) { 1883 assert(V != Induction && "The new induction variable should not be used."); 1884 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1885 1886 // If we have a stride that is replaced by one, do it here. 1887 if (Legal->hasStride(V)) 1888 V = ConstantInt::get(V->getType(), 1); 1889 1890 // If we have this scalar in the map, return it. 1891 if (WidenMap.has(V)) 1892 return WidenMap.get(V); 1893 1894 // If this scalar is unknown, assume that it is a constant or that it is 1895 // loop invariant. Broadcast V and save the value for future uses. 1896 Value *B = getBroadcastInstrs(V); 1897 return WidenMap.splat(V, B); 1898 } 1899 1900 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1901 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1902 SmallVector<Constant*, 8> ShuffleMask; 1903 for (unsigned i = 0; i < VF; ++i) 1904 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1905 1906 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1907 ConstantVector::get(ShuffleMask), 1908 "reverse"); 1909 } 1910 1911 // Get a mask to interleave \p NumVec vectors into a wide vector. 1912 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 1913 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 1914 // <0, 4, 1, 5, 2, 6, 3, 7> 1915 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 1916 unsigned NumVec) { 1917 SmallVector<Constant *, 16> Mask; 1918 for (unsigned i = 0; i < VF; i++) 1919 for (unsigned j = 0; j < NumVec; j++) 1920 Mask.push_back(Builder.getInt32(j * VF + i)); 1921 1922 return ConstantVector::get(Mask); 1923 } 1924 1925 // Get the strided mask starting from index \p Start. 1926 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 1927 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 1928 unsigned Stride, unsigned VF) { 1929 SmallVector<Constant *, 16> Mask; 1930 for (unsigned i = 0; i < VF; i++) 1931 Mask.push_back(Builder.getInt32(Start + i * Stride)); 1932 1933 return ConstantVector::get(Mask); 1934 } 1935 1936 // Get a mask of two parts: The first part consists of sequential integers 1937 // starting from 0, The second part consists of UNDEFs. 1938 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 1939 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 1940 unsigned NumUndef) { 1941 SmallVector<Constant *, 16> Mask; 1942 for (unsigned i = 0; i < NumInt; i++) 1943 Mask.push_back(Builder.getInt32(i)); 1944 1945 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 1946 for (unsigned i = 0; i < NumUndef; i++) 1947 Mask.push_back(Undef); 1948 1949 return ConstantVector::get(Mask); 1950 } 1951 1952 // Concatenate two vectors with the same element type. The 2nd vector should 1953 // not have more elements than the 1st vector. If the 2nd vector has less 1954 // elements, extend it with UNDEFs. 1955 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 1956 Value *V2) { 1957 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1958 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1959 assert(VecTy1 && VecTy2 && 1960 VecTy1->getScalarType() == VecTy2->getScalarType() && 1961 "Expect two vectors with the same element type"); 1962 1963 unsigned NumElts1 = VecTy1->getNumElements(); 1964 unsigned NumElts2 = VecTy2->getNumElements(); 1965 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1966 1967 if (NumElts1 > NumElts2) { 1968 // Extend with UNDEFs. 1969 Constant *ExtMask = 1970 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 1971 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 1972 } 1973 1974 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 1975 return Builder.CreateShuffleVector(V1, V2, Mask); 1976 } 1977 1978 // Concatenate vectors in the given list. All vectors have the same type. 1979 static Value *ConcatenateVectors(IRBuilder<> &Builder, 1980 ArrayRef<Value *> InputList) { 1981 unsigned NumVec = InputList.size(); 1982 assert(NumVec > 1 && "Should be at least two vectors"); 1983 1984 SmallVector<Value *, 8> ResList; 1985 ResList.append(InputList.begin(), InputList.end()); 1986 do { 1987 SmallVector<Value *, 8> TmpList; 1988 for (unsigned i = 0; i < NumVec - 1; i += 2) { 1989 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1990 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 1991 "Only the last vector may have a different type"); 1992 1993 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 1994 } 1995 1996 // Push the last vector if the total number of vectors is odd. 1997 if (NumVec % 2 != 0) 1998 TmpList.push_back(ResList[NumVec - 1]); 1999 2000 ResList = TmpList; 2001 NumVec = ResList.size(); 2002 } while (NumVec > 1); 2003 2004 return ResList[0]; 2005 } 2006 2007 // Try to vectorize the interleave group that \p Instr belongs to. 2008 // 2009 // E.g. Translate following interleaved load group (factor = 3): 2010 // for (i = 0; i < N; i+=3) { 2011 // R = Pic[i]; // Member of index 0 2012 // G = Pic[i+1]; // Member of index 1 2013 // B = Pic[i+2]; // Member of index 2 2014 // ... // do something to R, G, B 2015 // } 2016 // To: 2017 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2018 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2019 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2020 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2021 // 2022 // Or translate following interleaved store group (factor = 3): 2023 // for (i = 0; i < N; i+=3) { 2024 // ... do something to R, G, B 2025 // Pic[i] = R; // Member of index 0 2026 // Pic[i+1] = G; // Member of index 1 2027 // Pic[i+2] = B; // Member of index 2 2028 // } 2029 // To: 2030 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2031 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2032 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2033 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2034 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2035 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2036 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2037 assert(Group && "Fail to get an interleaved access group."); 2038 2039 // Skip if current instruction is not the insert position. 2040 if (Instr != Group->getInsertPos()) 2041 return; 2042 2043 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2044 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2045 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2046 2047 // Prepare for the vector type of the interleaved load/store. 2048 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2049 unsigned InterleaveFactor = Group->getFactor(); 2050 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2051 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2052 2053 // Prepare for the new pointers. 2054 setDebugLocFromInst(Builder, Ptr); 2055 VectorParts &PtrParts = getVectorValue(Ptr); 2056 SmallVector<Value *, 2> NewPtrs; 2057 unsigned Index = Group->getIndex(Instr); 2058 for (unsigned Part = 0; Part < UF; Part++) { 2059 // Extract the pointer for current instruction from the pointer vector. A 2060 // reverse access uses the pointer in the last lane. 2061 Value *NewPtr = Builder.CreateExtractElement( 2062 PtrParts[Part], 2063 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2064 2065 // Notice current instruction could be any index. Need to adjust the address 2066 // to the member of index 0. 2067 // 2068 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2069 // b = A[i]; // Member of index 0 2070 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2071 // 2072 // E.g. A[i+1] = a; // Member of index 1 2073 // A[i] = b; // Member of index 0 2074 // A[i+2] = c; // Member of index 2 (Current instruction) 2075 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2076 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2077 2078 // Cast to the vector pointer type. 2079 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2080 } 2081 2082 setDebugLocFromInst(Builder, Instr); 2083 Value *UndefVec = UndefValue::get(VecTy); 2084 2085 // Vectorize the interleaved load group. 2086 if (LI) { 2087 for (unsigned Part = 0; Part < UF; Part++) { 2088 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2089 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2090 2091 for (unsigned i = 0; i < InterleaveFactor; i++) { 2092 Instruction *Member = Group->getMember(i); 2093 2094 // Skip the gaps in the group. 2095 if (!Member) 2096 continue; 2097 2098 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2099 Value *StridedVec = Builder.CreateShuffleVector( 2100 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2101 2102 // If this member has different type, cast the result type. 2103 if (Member->getType() != ScalarTy) { 2104 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2105 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2106 } 2107 2108 VectorParts &Entry = WidenMap.get(Member); 2109 Entry[Part] = 2110 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2111 } 2112 2113 propagateMetadata(NewLoadInstr, Instr); 2114 } 2115 return; 2116 } 2117 2118 // The sub vector type for current instruction. 2119 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2120 2121 // Vectorize the interleaved store group. 2122 for (unsigned Part = 0; Part < UF; Part++) { 2123 // Collect the stored vector from each member. 2124 SmallVector<Value *, 4> StoredVecs; 2125 for (unsigned i = 0; i < InterleaveFactor; i++) { 2126 // Interleaved store group doesn't allow a gap, so each index has a member 2127 Instruction *Member = Group->getMember(i); 2128 assert(Member && "Fail to get a member from an interleaved store group"); 2129 2130 Value *StoredVec = 2131 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2132 if (Group->isReverse()) 2133 StoredVec = reverseVector(StoredVec); 2134 2135 // If this member has different type, cast it to an unified type. 2136 if (StoredVec->getType() != SubVT) 2137 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2138 2139 StoredVecs.push_back(StoredVec); 2140 } 2141 2142 // Concatenate all vectors into a wide vector. 2143 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2144 2145 // Interleave the elements in the wide vector. 2146 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2147 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2148 "interleaved.vec"); 2149 2150 Instruction *NewStoreInstr = 2151 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2152 propagateMetadata(NewStoreInstr, Instr); 2153 } 2154 } 2155 2156 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2157 // Attempt to issue a wide load. 2158 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2159 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2160 2161 assert((LI || SI) && "Invalid Load/Store instruction"); 2162 2163 // Try to vectorize the interleave group if this access is interleaved. 2164 if (Legal->isAccessInterleaved(Instr)) 2165 return vectorizeInterleaveGroup(Instr); 2166 2167 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2168 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2169 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2170 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2171 // An alignment of 0 means target abi alignment. We need to use the scalar's 2172 // target abi alignment in such a case. 2173 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2174 if (!Alignment) 2175 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2176 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2177 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2178 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2179 2180 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2181 !Legal->isMaskRequired(SI)) 2182 return scalarizeInstruction(Instr, true); 2183 2184 if (ScalarAllocatedSize != VectorElementSize) 2185 return scalarizeInstruction(Instr); 2186 2187 // If the pointer is loop invariant or if it is non-consecutive, 2188 // scalarize the load. 2189 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2190 bool Reverse = ConsecutiveStride < 0; 2191 bool UniformLoad = LI && Legal->isUniform(Ptr); 2192 if (!ConsecutiveStride || UniformLoad) 2193 return scalarizeInstruction(Instr); 2194 2195 Constant *Zero = Builder.getInt32(0); 2196 VectorParts &Entry = WidenMap.get(Instr); 2197 2198 // Handle consecutive loads/stores. 2199 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2200 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2201 setDebugLocFromInst(Builder, Gep); 2202 Value *PtrOperand = Gep->getPointerOperand(); 2203 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2204 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2205 2206 // Create the new GEP with the new induction variable. 2207 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2208 Gep2->setOperand(0, FirstBasePtr); 2209 Gep2->setName("gep.indvar.base"); 2210 Ptr = Builder.Insert(Gep2); 2211 } else if (Gep) { 2212 setDebugLocFromInst(Builder, Gep); 2213 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2214 OrigLoop) && "Base ptr must be invariant"); 2215 2216 // The last index does not have to be the induction. It can be 2217 // consecutive and be a function of the index. For example A[I+1]; 2218 unsigned NumOperands = Gep->getNumOperands(); 2219 unsigned InductionOperand = getGEPInductionOperand(Gep); 2220 // Create the new GEP with the new induction variable. 2221 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2222 2223 for (unsigned i = 0; i < NumOperands; ++i) { 2224 Value *GepOperand = Gep->getOperand(i); 2225 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2226 2227 // Update last index or loop invariant instruction anchored in loop. 2228 if (i == InductionOperand || 2229 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2230 assert((i == InductionOperand || 2231 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2232 "Must be last index or loop invariant"); 2233 2234 VectorParts &GEPParts = getVectorValue(GepOperand); 2235 Value *Index = GEPParts[0]; 2236 Index = Builder.CreateExtractElement(Index, Zero); 2237 Gep2->setOperand(i, Index); 2238 Gep2->setName("gep.indvar.idx"); 2239 } 2240 } 2241 Ptr = Builder.Insert(Gep2); 2242 } else { 2243 // Use the induction element ptr. 2244 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2245 setDebugLocFromInst(Builder, Ptr); 2246 VectorParts &PtrVal = getVectorValue(Ptr); 2247 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2248 } 2249 2250 VectorParts Mask = createBlockInMask(Instr->getParent()); 2251 // Handle Stores: 2252 if (SI) { 2253 assert(!Legal->isUniform(SI->getPointerOperand()) && 2254 "We do not allow storing to uniform addresses"); 2255 setDebugLocFromInst(Builder, SI); 2256 // We don't want to update the value in the map as it might be used in 2257 // another expression. So don't use a reference type for "StoredVal". 2258 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2259 2260 for (unsigned Part = 0; Part < UF; ++Part) { 2261 // Calculate the pointer for the specific unroll-part. 2262 Value *PartPtr = 2263 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2264 2265 if (Reverse) { 2266 // If we store to reverse consecutive memory locations then we need 2267 // to reverse the order of elements in the stored value. 2268 StoredVal[Part] = reverseVector(StoredVal[Part]); 2269 // If the address is consecutive but reversed, then the 2270 // wide store needs to start at the last vector element. 2271 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2272 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2273 Mask[Part] = reverseVector(Mask[Part]); 2274 } 2275 2276 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2277 DataTy->getPointerTo(AddressSpace)); 2278 2279 Instruction *NewSI; 2280 if (Legal->isMaskRequired(SI)) 2281 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2282 Mask[Part]); 2283 else 2284 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2285 propagateMetadata(NewSI, SI); 2286 } 2287 return; 2288 } 2289 2290 // Handle loads. 2291 assert(LI && "Must have a load instruction"); 2292 setDebugLocFromInst(Builder, LI); 2293 for (unsigned Part = 0; Part < UF; ++Part) { 2294 // Calculate the pointer for the specific unroll-part. 2295 Value *PartPtr = 2296 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2297 2298 if (Reverse) { 2299 // If the address is consecutive but reversed, then the 2300 // wide load needs to start at the last vector element. 2301 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2302 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2303 Mask[Part] = reverseVector(Mask[Part]); 2304 } 2305 2306 Instruction* NewLI; 2307 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2308 DataTy->getPointerTo(AddressSpace)); 2309 if (Legal->isMaskRequired(LI)) 2310 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2311 UndefValue::get(DataTy), 2312 "wide.masked.load"); 2313 else 2314 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2315 propagateMetadata(NewLI, LI); 2316 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2317 } 2318 } 2319 2320 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2321 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2322 // Holds vector parameters or scalars, in case of uniform vals. 2323 SmallVector<VectorParts, 4> Params; 2324 2325 setDebugLocFromInst(Builder, Instr); 2326 2327 // Find all of the vectorized parameters. 2328 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2329 Value *SrcOp = Instr->getOperand(op); 2330 2331 // If we are accessing the old induction variable, use the new one. 2332 if (SrcOp == OldInduction) { 2333 Params.push_back(getVectorValue(SrcOp)); 2334 continue; 2335 } 2336 2337 // Try using previously calculated values. 2338 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2339 2340 // If the src is an instruction that appeared earlier in the basic block 2341 // then it should already be vectorized. 2342 if (SrcInst && OrigLoop->contains(SrcInst)) { 2343 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2344 // The parameter is a vector value from earlier. 2345 Params.push_back(WidenMap.get(SrcInst)); 2346 } else { 2347 // The parameter is a scalar from outside the loop. Maybe even a constant. 2348 VectorParts Scalars; 2349 Scalars.append(UF, SrcOp); 2350 Params.push_back(Scalars); 2351 } 2352 } 2353 2354 assert(Params.size() == Instr->getNumOperands() && 2355 "Invalid number of operands"); 2356 2357 // Does this instruction return a value ? 2358 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2359 2360 Value *UndefVec = IsVoidRetTy ? nullptr : 2361 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2362 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2363 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2364 2365 Instruction *InsertPt = Builder.GetInsertPoint(); 2366 BasicBlock *IfBlock = Builder.GetInsertBlock(); 2367 BasicBlock *CondBlock = nullptr; 2368 2369 VectorParts Cond; 2370 Loop *VectorLp = nullptr; 2371 if (IfPredicateStore) { 2372 assert(Instr->getParent()->getSinglePredecessor() && 2373 "Only support single predecessor blocks"); 2374 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2375 Instr->getParent()); 2376 VectorLp = LI->getLoopFor(IfBlock); 2377 assert(VectorLp && "Must have a loop for this block"); 2378 } 2379 2380 // For each vector unroll 'part': 2381 for (unsigned Part = 0; Part < UF; ++Part) { 2382 // For each scalar that we create: 2383 for (unsigned Width = 0; Width < VF; ++Width) { 2384 2385 // Start if-block. 2386 Value *Cmp = nullptr; 2387 if (IfPredicateStore) { 2388 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2389 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2390 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2391 LoopVectorBody.push_back(CondBlock); 2392 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 2393 // Update Builder with newly created basic block. 2394 Builder.SetInsertPoint(InsertPt); 2395 } 2396 2397 Instruction *Cloned = Instr->clone(); 2398 if (!IsVoidRetTy) 2399 Cloned->setName(Instr->getName() + ".cloned"); 2400 // Replace the operands of the cloned instructions with extracted scalars. 2401 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2402 Value *Op = Params[op][Part]; 2403 // Param is a vector. Need to extract the right lane. 2404 if (Op->getType()->isVectorTy()) 2405 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2406 Cloned->setOperand(op, Op); 2407 } 2408 2409 // Place the cloned scalar in the new loop. 2410 Builder.Insert(Cloned); 2411 2412 // If the original scalar returns a value we need to place it in a vector 2413 // so that future users will be able to use it. 2414 if (!IsVoidRetTy) 2415 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2416 Builder.getInt32(Width)); 2417 // End if-block. 2418 if (IfPredicateStore) { 2419 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2420 LoopVectorBody.push_back(NewIfBlock); 2421 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2422 Builder.SetInsertPoint(InsertPt); 2423 ReplaceInstWithInst(IfBlock->getTerminator(), 2424 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 2425 IfBlock = NewIfBlock; 2426 } 2427 } 2428 } 2429 } 2430 2431 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2432 Instruction *Loc) { 2433 if (FirstInst) 2434 return FirstInst; 2435 if (Instruction *I = dyn_cast<Instruction>(V)) 2436 return I->getParent() == Loc->getParent() ? I : nullptr; 2437 return nullptr; 2438 } 2439 2440 std::pair<Instruction *, Instruction *> 2441 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2442 Instruction *tnullptr = nullptr; 2443 if (!Legal->mustCheckStrides()) 2444 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2445 2446 IRBuilder<> ChkBuilder(Loc); 2447 2448 // Emit checks. 2449 Value *Check = nullptr; 2450 Instruction *FirstInst = nullptr; 2451 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2452 SE = Legal->strides_end(); 2453 SI != SE; ++SI) { 2454 Value *Ptr = stripIntegerCast(*SI); 2455 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2456 "stride.chk"); 2457 // Store the first instruction we create. 2458 FirstInst = getFirstInst(FirstInst, C, Loc); 2459 if (Check) 2460 Check = ChkBuilder.CreateOr(Check, C); 2461 else 2462 Check = C; 2463 } 2464 2465 // We have to do this trickery because the IRBuilder might fold the check to a 2466 // constant expression in which case there is no Instruction anchored in a 2467 // the block. 2468 LLVMContext &Ctx = Loc->getContext(); 2469 Instruction *TheCheck = 2470 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2471 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2472 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2473 2474 return std::make_pair(FirstInst, TheCheck); 2475 } 2476 2477 void InnerLoopVectorizer::createEmptyLoop() { 2478 /* 2479 In this function we generate a new loop. The new loop will contain 2480 the vectorized instructions while the old loop will continue to run the 2481 scalar remainder. 2482 2483 [ ] <-- Back-edge taken count overflow check. 2484 / | 2485 / v 2486 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2487 | / | 2488 | / v 2489 || [ ] <-- vector pre header. 2490 || | 2491 || v 2492 || [ ] \ 2493 || [ ]_| <-- vector loop. 2494 || | 2495 | \ v 2496 | >[ ] <--- middle-block. 2497 | / | 2498 | / v 2499 -|- >[ ] <--- new preheader. 2500 | | 2501 | v 2502 | [ ] \ 2503 | [ ]_| <-- old scalar loop to handle remainder. 2504 \ | 2505 \ v 2506 >[ ] <-- exit block. 2507 ... 2508 */ 2509 2510 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2511 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2512 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2513 assert(VectorPH && "Invalid loop structure"); 2514 assert(ExitBlock && "Must have an exit block"); 2515 2516 // Some loops have a single integer induction variable, while other loops 2517 // don't. One example is c++ iterators that often have multiple pointer 2518 // induction variables. In the code below we also support a case where we 2519 // don't have a single induction variable. 2520 OldInduction = Legal->getInduction(); 2521 Type *IdxTy = Legal->getWidestInductionType(); 2522 2523 // Find the loop boundaries. 2524 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2525 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2526 2527 // The exit count might have the type of i64 while the phi is i32. This can 2528 // happen if we have an induction variable that is sign extended before the 2529 // compare. The only way that we get a backedge taken count is that the 2530 // induction variable was signed and as such will not overflow. In such a case 2531 // truncation is legal. 2532 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2533 IdxTy->getPrimitiveSizeInBits()) 2534 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2535 2536 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2537 // Get the total trip count from the count by adding 1. 2538 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2539 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2540 2541 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2542 2543 // Expand the trip count and place the new instructions in the preheader. 2544 // Notice that the pre-header does not change, only the loop body. 2545 SCEVExpander Exp(*SE, DL, "induction"); 2546 2547 // We need to test whether the backedge-taken count is uint##_max. Adding one 2548 // to it will cause overflow and an incorrect loop trip count in the vector 2549 // body. In case of overflow we want to directly jump to the scalar remainder 2550 // loop. 2551 Value *BackedgeCount = 2552 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2553 VectorPH->getTerminator()); 2554 if (BackedgeCount->getType()->isPointerTy()) 2555 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2556 "backedge.ptrcnt.to.int", 2557 VectorPH->getTerminator()); 2558 Instruction *CheckBCOverflow = 2559 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2560 Constant::getAllOnesValue(BackedgeCount->getType()), 2561 "backedge.overflow", VectorPH->getTerminator()); 2562 2563 // The loop index does not have to start at Zero. Find the original start 2564 // value from the induction PHI node. If we don't have an induction variable 2565 // then we know that it starts at zero. 2566 Builder.SetInsertPoint(VectorPH->getTerminator()); 2567 Value *StartIdx = ExtendedIdx = 2568 OldInduction 2569 ? Builder.CreateZExt(OldInduction->getIncomingValueForBlock(VectorPH), 2570 IdxTy) 2571 : ConstantInt::get(IdxTy, 0); 2572 2573 // Count holds the overall loop count (N). 2574 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2575 VectorPH->getTerminator()); 2576 2577 LoopBypassBlocks.push_back(VectorPH); 2578 2579 // Split the single block loop into the two loop structure described above. 2580 BasicBlock *VecBody = 2581 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2582 BasicBlock *MiddleBlock = 2583 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2584 BasicBlock *ScalarPH = 2585 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2586 2587 // Create and register the new vector loop. 2588 Loop* Lp = new Loop(); 2589 Loop *ParentLoop = OrigLoop->getParentLoop(); 2590 2591 // Insert the new loop into the loop nest and register the new basic blocks 2592 // before calling any utilities such as SCEV that require valid LoopInfo. 2593 if (ParentLoop) { 2594 ParentLoop->addChildLoop(Lp); 2595 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2596 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2597 } else { 2598 LI->addTopLevelLoop(Lp); 2599 } 2600 Lp->addBasicBlockToLoop(VecBody, *LI); 2601 2602 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2603 // inside the loop. 2604 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2605 2606 // Generate the induction variable. 2607 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2608 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2609 // The loop step is equal to the vectorization factor (num of SIMD elements) 2610 // times the unroll factor (num of SIMD instructions). 2611 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2612 2613 // Generate code to check that the loop's trip count that we computed by 2614 // adding one to the backedge-taken count will not overflow. 2615 BasicBlock *NewVectorPH = 2616 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "overflow.checked"); 2617 if (ParentLoop) 2618 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2619 ReplaceInstWithInst( 2620 VectorPH->getTerminator(), 2621 BranchInst::Create(ScalarPH, NewVectorPH, CheckBCOverflow)); 2622 VectorPH = NewVectorPH; 2623 2624 // This is the IR builder that we use to add all of the logic for bypassing 2625 // the new vector loop. 2626 IRBuilder<> BypassBuilder(VectorPH->getTerminator()); 2627 setDebugLocFromInst(BypassBuilder, 2628 getDebugLocFromInstOrOperands(OldInduction)); 2629 2630 // We may need to extend the index in case there is a type mismatch. 2631 // We know that the count starts at zero and does not overflow. 2632 if (Count->getType() != IdxTy) { 2633 // The exit count can be of pointer type. Convert it to the correct 2634 // integer type. 2635 if (ExitCount->getType()->isPointerTy()) 2636 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2637 else 2638 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2639 } 2640 2641 // Add the start index to the loop count to get the new end index. 2642 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2643 2644 // Now we need to generate the expression for N - (N % VF), which is 2645 // the part that the vectorized body will execute. 2646 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2647 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2648 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2649 "end.idx.rnd.down"); 2650 2651 // Now, compare the new count to zero. If it is zero skip the vector loop and 2652 // jump to the scalar loop. 2653 Value *Cmp = 2654 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2655 NewVectorPH = 2656 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2657 if (ParentLoop) 2658 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2659 LoopBypassBlocks.push_back(VectorPH); 2660 ReplaceInstWithInst(VectorPH->getTerminator(), 2661 BranchInst::Create(MiddleBlock, NewVectorPH, Cmp)); 2662 VectorPH = NewVectorPH; 2663 2664 // Generate the code to check that the strides we assumed to be one are really 2665 // one. We want the new basic block to start at the first instruction in a 2666 // sequence of instructions that form a check. 2667 Instruction *StrideCheck; 2668 Instruction *FirstCheckInst; 2669 std::tie(FirstCheckInst, StrideCheck) = 2670 addStrideCheck(VectorPH->getTerminator()); 2671 if (StrideCheck) { 2672 AddedSafetyChecks = true; 2673 // Create a new block containing the stride check. 2674 VectorPH->setName("vector.stridecheck"); 2675 NewVectorPH = 2676 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2677 if (ParentLoop) 2678 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2679 LoopBypassBlocks.push_back(VectorPH); 2680 2681 // Replace the branch into the memory check block with a conditional branch 2682 // for the "few elements case". 2683 ReplaceInstWithInst( 2684 VectorPH->getTerminator(), 2685 BranchInst::Create(MiddleBlock, NewVectorPH, StrideCheck)); 2686 2687 VectorPH = NewVectorPH; 2688 } 2689 2690 // Generate the code that checks in runtime if arrays overlap. We put the 2691 // checks into a separate block to make the more common case of few elements 2692 // faster. 2693 Instruction *MemRuntimeCheck; 2694 std::tie(FirstCheckInst, MemRuntimeCheck) = 2695 Legal->getLAI()->addRuntimeCheck(VectorPH->getTerminator()); 2696 if (MemRuntimeCheck) { 2697 AddedSafetyChecks = true; 2698 // Create a new block containing the memory check. 2699 VectorPH->setName("vector.memcheck"); 2700 NewVectorPH = 2701 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2702 if (ParentLoop) 2703 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2704 LoopBypassBlocks.push_back(VectorPH); 2705 2706 // Replace the branch into the memory check block with a conditional branch 2707 // for the "few elements case". 2708 ReplaceInstWithInst( 2709 VectorPH->getTerminator(), 2710 BranchInst::Create(MiddleBlock, NewVectorPH, MemRuntimeCheck)); 2711 2712 VectorPH = NewVectorPH; 2713 } 2714 2715 // We are going to resume the execution of the scalar loop. 2716 // Go over all of the induction variables that we found and fix the 2717 // PHIs that are left in the scalar version of the loop. 2718 // The starting values of PHI nodes depend on the counter of the last 2719 // iteration in the vectorized loop. 2720 // If we come from a bypass edge then we need to start from the original 2721 // start value. 2722 2723 // This variable saves the new starting index for the scalar loop. 2724 PHINode *ResumeIndex = nullptr; 2725 LoopVectorizationLegality::InductionList::iterator I, E; 2726 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2727 // Set builder to point to last bypass block. 2728 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2729 for (I = List->begin(), E = List->end(); I != E; ++I) { 2730 PHINode *OrigPhi = I->first; 2731 LoopVectorizationLegality::InductionInfo II = I->second; 2732 2733 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2734 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2735 MiddleBlock->getTerminator()); 2736 // We might have extended the type of the induction variable but we need a 2737 // truncated version for the scalar loop. 2738 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2739 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2740 MiddleBlock->getTerminator()) : nullptr; 2741 2742 // Create phi nodes to merge from the backedge-taken check block. 2743 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2744 ScalarPH->getTerminator()); 2745 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2746 2747 PHINode *BCTruncResumeVal = nullptr; 2748 if (OrigPhi == OldInduction) { 2749 BCTruncResumeVal = 2750 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2751 ScalarPH->getTerminator()); 2752 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2753 } 2754 2755 Value *EndValue = nullptr; 2756 switch (II.IK) { 2757 case LoopVectorizationLegality::IK_NoInduction: 2758 llvm_unreachable("Unknown induction"); 2759 case LoopVectorizationLegality::IK_IntInduction: { 2760 // Handle the integer induction counter. 2761 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2762 2763 // We have the canonical induction variable. 2764 if (OrigPhi == OldInduction) { 2765 // Create a truncated version of the resume value for the scalar loop, 2766 // we might have promoted the type to a larger width. 2767 EndValue = 2768 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2769 // The new PHI merges the original incoming value, in case of a bypass, 2770 // or the value at the end of the vectorized loop. 2771 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2772 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2773 TruncResumeVal->addIncoming(EndValue, VecBody); 2774 2775 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2776 2777 // We know what the end value is. 2778 EndValue = IdxEndRoundDown; 2779 // We also know which PHI node holds it. 2780 ResumeIndex = ResumeVal; 2781 break; 2782 } 2783 2784 // Not the canonical induction variable - add the vector loop count to the 2785 // start value. 2786 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2787 II.StartValue->getType(), 2788 "cast.crd"); 2789 EndValue = II.transform(BypassBuilder, CRD); 2790 EndValue->setName("ind.end"); 2791 break; 2792 } 2793 case LoopVectorizationLegality::IK_PtrInduction: { 2794 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2795 II.StepValue->getType(), 2796 "cast.crd"); 2797 EndValue = II.transform(BypassBuilder, CRD); 2798 EndValue->setName("ptr.ind.end"); 2799 break; 2800 } 2801 }// end of case 2802 2803 // The new PHI merges the original incoming value, in case of a bypass, 2804 // or the value at the end of the vectorized loop. 2805 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2806 if (OrigPhi == OldInduction) 2807 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2808 else 2809 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2810 } 2811 ResumeVal->addIncoming(EndValue, VecBody); 2812 2813 // Fix the scalar body counter (PHI node). 2814 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2815 2816 // The old induction's phi node in the scalar body needs the truncated 2817 // value. 2818 if (OrigPhi == OldInduction) { 2819 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2820 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2821 } else { 2822 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2823 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2824 } 2825 } 2826 2827 // If we are generating a new induction variable then we also need to 2828 // generate the code that calculates the exit value. This value is not 2829 // simply the end of the counter because we may skip the vectorized body 2830 // in case of a runtime check. 2831 if (!OldInduction){ 2832 assert(!ResumeIndex && "Unexpected resume value found"); 2833 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2834 MiddleBlock->getTerminator()); 2835 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2836 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2837 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2838 } 2839 2840 // Make sure that we found the index where scalar loop needs to continue. 2841 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2842 "Invalid resume Index"); 2843 2844 // Add a check in the middle block to see if we have completed 2845 // all of the iterations in the first vector loop. 2846 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2847 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2848 ResumeIndex, "cmp.n", 2849 MiddleBlock->getTerminator()); 2850 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2851 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2852 2853 // Create i+1 and fill the PHINode. 2854 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2855 Induction->addIncoming(StartIdx, VectorPH); 2856 Induction->addIncoming(NextIdx, VecBody); 2857 // Create the compare. 2858 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2859 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2860 2861 // Now we have two terminators. Remove the old one from the block. 2862 VecBody->getTerminator()->eraseFromParent(); 2863 2864 // Get ready to start creating new instructions into the vectorized body. 2865 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2866 2867 // Save the state. 2868 LoopVectorPreHeader = VectorPH; 2869 LoopScalarPreHeader = ScalarPH; 2870 LoopMiddleBlock = MiddleBlock; 2871 LoopExitBlock = ExitBlock; 2872 LoopVectorBody.push_back(VecBody); 2873 LoopScalarBody = OldBasicBlock; 2874 2875 LoopVectorizeHints Hints(Lp, true); 2876 Hints.setAlreadyVectorized(); 2877 } 2878 2879 namespace { 2880 struct CSEDenseMapInfo { 2881 static bool canHandle(Instruction *I) { 2882 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2883 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2884 } 2885 static inline Instruction *getEmptyKey() { 2886 return DenseMapInfo<Instruction *>::getEmptyKey(); 2887 } 2888 static inline Instruction *getTombstoneKey() { 2889 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2890 } 2891 static unsigned getHashValue(Instruction *I) { 2892 assert(canHandle(I) && "Unknown instruction!"); 2893 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2894 I->value_op_end())); 2895 } 2896 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2897 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2898 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2899 return LHS == RHS; 2900 return LHS->isIdenticalTo(RHS); 2901 } 2902 }; 2903 } 2904 2905 /// \brief Check whether this block is a predicated block. 2906 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2907 /// = ...; " blocks. We start with one vectorized basic block. For every 2908 /// conditional block we split this vectorized block. Therefore, every second 2909 /// block will be a predicated one. 2910 static bool isPredicatedBlock(unsigned BlockNum) { 2911 return BlockNum % 2; 2912 } 2913 2914 ///\brief Perform cse of induction variable instructions. 2915 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2916 // Perform simple cse. 2917 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2918 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2919 BasicBlock *BB = BBs[i]; 2920 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2921 Instruction *In = I++; 2922 2923 if (!CSEDenseMapInfo::canHandle(In)) 2924 continue; 2925 2926 // Check if we can replace this instruction with any of the 2927 // visited instructions. 2928 if (Instruction *V = CSEMap.lookup(In)) { 2929 In->replaceAllUsesWith(V); 2930 In->eraseFromParent(); 2931 continue; 2932 } 2933 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2934 // ...;" blocks for predicated stores. Every second block is a predicated 2935 // block. 2936 if (isPredicatedBlock(i)) 2937 continue; 2938 2939 CSEMap[In] = In; 2940 } 2941 } 2942 } 2943 2944 /// \brief Adds a 'fast' flag to floating point operations. 2945 static Value *addFastMathFlag(Value *V) { 2946 if (isa<FPMathOperator>(V)){ 2947 FastMathFlags Flags; 2948 Flags.setUnsafeAlgebra(); 2949 cast<Instruction>(V)->setFastMathFlags(Flags); 2950 } 2951 return V; 2952 } 2953 2954 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2955 /// the result needs to be inserted and/or extracted from vectors. 2956 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2957 const TargetTransformInfo &TTI) { 2958 if (Ty->isVoidTy()) 2959 return 0; 2960 2961 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2962 unsigned Cost = 0; 2963 2964 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2965 if (Insert) 2966 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2967 if (Extract) 2968 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2969 } 2970 2971 return Cost; 2972 } 2973 2974 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2975 // Return the cost of the instruction, including scalarization overhead if it's 2976 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2977 // i.e. either vector version isn't available, or is too expensive. 2978 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2979 const TargetTransformInfo &TTI, 2980 const TargetLibraryInfo *TLI, 2981 bool &NeedToScalarize) { 2982 Function *F = CI->getCalledFunction(); 2983 StringRef FnName = CI->getCalledFunction()->getName(); 2984 Type *ScalarRetTy = CI->getType(); 2985 SmallVector<Type *, 4> Tys, ScalarTys; 2986 for (auto &ArgOp : CI->arg_operands()) 2987 ScalarTys.push_back(ArgOp->getType()); 2988 2989 // Estimate cost of scalarized vector call. The source operands are assumed 2990 // to be vectors, so we need to extract individual elements from there, 2991 // execute VF scalar calls, and then gather the result into the vector return 2992 // value. 2993 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2994 if (VF == 1) 2995 return ScalarCallCost; 2996 2997 // Compute corresponding vector type for return value and arguments. 2998 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2999 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3000 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3001 3002 // Compute costs of unpacking argument values for the scalar calls and 3003 // packing the return values to a vector. 3004 unsigned ScalarizationCost = 3005 getScalarizationOverhead(RetTy, true, false, TTI); 3006 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3007 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3008 3009 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3010 3011 // If we can't emit a vector call for this function, then the currently found 3012 // cost is the cost we need to return. 3013 NeedToScalarize = true; 3014 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3015 return Cost; 3016 3017 // If the corresponding vector cost is cheaper, return its cost. 3018 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3019 if (VectorCallCost < Cost) { 3020 NeedToScalarize = false; 3021 return VectorCallCost; 3022 } 3023 return Cost; 3024 } 3025 3026 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3027 // factor VF. Return the cost of the instruction, including scalarization 3028 // overhead if it's needed. 3029 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3030 const TargetTransformInfo &TTI, 3031 const TargetLibraryInfo *TLI) { 3032 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3033 assert(ID && "Expected intrinsic call!"); 3034 3035 Type *RetTy = ToVectorTy(CI->getType(), VF); 3036 SmallVector<Type *, 4> Tys; 3037 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3038 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3039 3040 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3041 } 3042 3043 void InnerLoopVectorizer::vectorizeLoop() { 3044 //===------------------------------------------------===// 3045 // 3046 // Notice: any optimization or new instruction that go 3047 // into the code below should be also be implemented in 3048 // the cost-model. 3049 // 3050 //===------------------------------------------------===// 3051 Constant *Zero = Builder.getInt32(0); 3052 3053 // In order to support reduction variables we need to be able to vectorize 3054 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3055 // stages. First, we create a new vector PHI node with no incoming edges. 3056 // We use this value when we vectorize all of the instructions that use the 3057 // PHI. Next, after all of the instructions in the block are complete we 3058 // add the new incoming edges to the PHI. At this point all of the 3059 // instructions in the basic block are vectorized, so we can use them to 3060 // construct the PHI. 3061 PhiVector RdxPHIsToFix; 3062 3063 // Scan the loop in a topological order to ensure that defs are vectorized 3064 // before users. 3065 LoopBlocksDFS DFS(OrigLoop); 3066 DFS.perform(LI); 3067 3068 // Vectorize all of the blocks in the original loop. 3069 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3070 be = DFS.endRPO(); bb != be; ++bb) 3071 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3072 3073 // At this point every instruction in the original loop is widened to 3074 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3075 // that we vectorized. The PHI nodes are currently empty because we did 3076 // not want to introduce cycles. Notice that the remaining PHI nodes 3077 // that we need to fix are reduction variables. 3078 3079 // Create the 'reduced' values for each of the induction vars. 3080 // The reduced values are the vector values that we scalarize and combine 3081 // after the loop is finished. 3082 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3083 it != e; ++it) { 3084 PHINode *RdxPhi = *it; 3085 assert(RdxPhi && "Unable to recover vectorized PHI"); 3086 3087 // Find the reduction variable descriptor. 3088 assert(Legal->getReductionVars()->count(RdxPhi) && 3089 "Unable to find the reduction variable"); 3090 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3091 3092 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3093 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3094 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3095 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3096 RdxDesc.getMinMaxRecurrenceKind(); 3097 setDebugLocFromInst(Builder, ReductionStartValue); 3098 3099 // We need to generate a reduction vector from the incoming scalar. 3100 // To do so, we need to generate the 'identity' vector and override 3101 // one of the elements with the incoming scalar reduction. We need 3102 // to do it in the vector-loop preheader. 3103 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3104 3105 // This is the vector-clone of the value that leaves the loop. 3106 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3107 Type *VecTy = VectorExit[0]->getType(); 3108 3109 // Find the reduction identity variable. Zero for addition, or, xor, 3110 // one for multiplication, -1 for And. 3111 Value *Identity; 3112 Value *VectorStart; 3113 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3114 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3115 // MinMax reduction have the start value as their identify. 3116 if (VF == 1) { 3117 VectorStart = Identity = ReductionStartValue; 3118 } else { 3119 VectorStart = Identity = 3120 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3121 } 3122 } else { 3123 // Handle other reduction kinds: 3124 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3125 RK, VecTy->getScalarType()); 3126 if (VF == 1) { 3127 Identity = Iden; 3128 // This vector is the Identity vector where the first element is the 3129 // incoming scalar reduction. 3130 VectorStart = ReductionStartValue; 3131 } else { 3132 Identity = ConstantVector::getSplat(VF, Iden); 3133 3134 // This vector is the Identity vector where the first element is the 3135 // incoming scalar reduction. 3136 VectorStart = 3137 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3138 } 3139 } 3140 3141 // Fix the vector-loop phi. 3142 3143 // Reductions do not have to start at zero. They can start with 3144 // any loop invariant values. 3145 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3146 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3147 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3148 VectorParts &Val = getVectorValue(LoopVal); 3149 for (unsigned part = 0; part < UF; ++part) { 3150 // Make sure to add the reduction stat value only to the 3151 // first unroll part. 3152 Value *StartVal = (part == 0) ? VectorStart : Identity; 3153 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3154 LoopVectorPreHeader); 3155 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3156 LoopVectorBody.back()); 3157 } 3158 3159 // Before each round, move the insertion point right between 3160 // the PHIs and the values we are going to write. 3161 // This allows us to write both PHINodes and the extractelement 3162 // instructions. 3163 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 3164 3165 VectorParts RdxParts; 3166 setDebugLocFromInst(Builder, LoopExitInst); 3167 for (unsigned part = 0; part < UF; ++part) { 3168 // This PHINode contains the vectorized reduction variable, or 3169 // the initial value vector, if we bypass the vector loop. 3170 VectorParts &RdxExitVal = getVectorValue(LoopExitInst); 3171 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 3172 Value *StartVal = (part == 0) ? VectorStart : Identity; 3173 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3174 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 3175 NewPhi->addIncoming(RdxExitVal[part], 3176 LoopVectorBody.back()); 3177 RdxParts.push_back(NewPhi); 3178 } 3179 3180 // Reduce all of the unrolled parts into a single vector. 3181 Value *ReducedPartRdx = RdxParts[0]; 3182 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3183 setDebugLocFromInst(Builder, ReducedPartRdx); 3184 for (unsigned part = 1; part < UF; ++part) { 3185 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3186 // Floating point operations had to be 'fast' to enable the reduction. 3187 ReducedPartRdx = addFastMathFlag( 3188 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3189 ReducedPartRdx, "bin.rdx")); 3190 else 3191 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3192 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3193 } 3194 3195 if (VF > 1) { 3196 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3197 // and vector ops, reducing the set of values being computed by half each 3198 // round. 3199 assert(isPowerOf2_32(VF) && 3200 "Reduction emission only supported for pow2 vectors!"); 3201 Value *TmpVec = ReducedPartRdx; 3202 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3203 for (unsigned i = VF; i != 1; i >>= 1) { 3204 // Move the upper half of the vector to the lower half. 3205 for (unsigned j = 0; j != i/2; ++j) 3206 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3207 3208 // Fill the rest of the mask with undef. 3209 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3210 UndefValue::get(Builder.getInt32Ty())); 3211 3212 Value *Shuf = 3213 Builder.CreateShuffleVector(TmpVec, 3214 UndefValue::get(TmpVec->getType()), 3215 ConstantVector::get(ShuffleMask), 3216 "rdx.shuf"); 3217 3218 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3219 // Floating point operations had to be 'fast' to enable the reduction. 3220 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3221 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3222 else 3223 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3224 TmpVec, Shuf); 3225 } 3226 3227 // The result is in the first element of the vector. 3228 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3229 Builder.getInt32(0)); 3230 } 3231 3232 // Create a phi node that merges control-flow from the backedge-taken check 3233 // block and the middle block. 3234 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3235 LoopScalarPreHeader->getTerminator()); 3236 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]); 3237 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3238 3239 // Now, we need to fix the users of the reduction variable 3240 // inside and outside of the scalar remainder loop. 3241 // We know that the loop is in LCSSA form. We need to update the 3242 // PHI nodes in the exit blocks. 3243 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3244 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3245 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3246 if (!LCSSAPhi) break; 3247 3248 // All PHINodes need to have a single entry edge, or two if 3249 // we already fixed them. 3250 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3251 3252 // We found our reduction value exit-PHI. Update it with the 3253 // incoming bypass edge. 3254 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3255 // Add an edge coming from the bypass. 3256 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3257 break; 3258 } 3259 }// end of the LCSSA phi scan. 3260 3261 // Fix the scalar loop reduction variable with the incoming reduction sum 3262 // from the vector body and from the backedge value. 3263 int IncomingEdgeBlockIdx = 3264 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3265 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3266 // Pick the other block. 3267 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3268 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3269 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3270 }// end of for each redux variable. 3271 3272 fixLCSSAPHIs(); 3273 3274 // Remove redundant induction instructions. 3275 cse(LoopVectorBody); 3276 } 3277 3278 void InnerLoopVectorizer::fixLCSSAPHIs() { 3279 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3280 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3281 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3282 if (!LCSSAPhi) break; 3283 if (LCSSAPhi->getNumIncomingValues() == 1) 3284 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3285 LoopMiddleBlock); 3286 } 3287 } 3288 3289 InnerLoopVectorizer::VectorParts 3290 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3291 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3292 "Invalid edge"); 3293 3294 // Look for cached value. 3295 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3296 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3297 if (ECEntryIt != MaskCache.end()) 3298 return ECEntryIt->second; 3299 3300 VectorParts SrcMask = createBlockInMask(Src); 3301 3302 // The terminator has to be a branch inst! 3303 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3304 assert(BI && "Unexpected terminator found"); 3305 3306 if (BI->isConditional()) { 3307 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3308 3309 if (BI->getSuccessor(0) != Dst) 3310 for (unsigned part = 0; part < UF; ++part) 3311 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3312 3313 for (unsigned part = 0; part < UF; ++part) 3314 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3315 3316 MaskCache[Edge] = EdgeMask; 3317 return EdgeMask; 3318 } 3319 3320 MaskCache[Edge] = SrcMask; 3321 return SrcMask; 3322 } 3323 3324 InnerLoopVectorizer::VectorParts 3325 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3326 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3327 3328 // Loop incoming mask is all-one. 3329 if (OrigLoop->getHeader() == BB) { 3330 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3331 return getVectorValue(C); 3332 } 3333 3334 // This is the block mask. We OR all incoming edges, and with zero. 3335 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3336 VectorParts BlockMask = getVectorValue(Zero); 3337 3338 // For each pred: 3339 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3340 VectorParts EM = createEdgeMask(*it, BB); 3341 for (unsigned part = 0; part < UF; ++part) 3342 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3343 } 3344 3345 return BlockMask; 3346 } 3347 3348 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3349 InnerLoopVectorizer::VectorParts &Entry, 3350 unsigned UF, unsigned VF, PhiVector *PV) { 3351 PHINode* P = cast<PHINode>(PN); 3352 // Handle reduction variables: 3353 if (Legal->getReductionVars()->count(P)) { 3354 for (unsigned part = 0; part < UF; ++part) { 3355 // This is phase one of vectorizing PHIs. 3356 Type *VecTy = (VF == 1) ? PN->getType() : 3357 VectorType::get(PN->getType(), VF); 3358 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3359 LoopVectorBody.back()-> getFirstInsertionPt()); 3360 } 3361 PV->push_back(P); 3362 return; 3363 } 3364 3365 setDebugLocFromInst(Builder, P); 3366 // Check for PHI nodes that are lowered to vector selects. 3367 if (P->getParent() != OrigLoop->getHeader()) { 3368 // We know that all PHIs in non-header blocks are converted into 3369 // selects, so we don't have to worry about the insertion order and we 3370 // can just use the builder. 3371 // At this point we generate the predication tree. There may be 3372 // duplications since this is a simple recursive scan, but future 3373 // optimizations will clean it up. 3374 3375 unsigned NumIncoming = P->getNumIncomingValues(); 3376 3377 // Generate a sequence of selects of the form: 3378 // SELECT(Mask3, In3, 3379 // SELECT(Mask2, In2, 3380 // ( ...))) 3381 for (unsigned In = 0; In < NumIncoming; In++) { 3382 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3383 P->getParent()); 3384 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3385 3386 for (unsigned part = 0; part < UF; ++part) { 3387 // We might have single edge PHIs (blocks) - use an identity 3388 // 'select' for the first PHI operand. 3389 if (In == 0) 3390 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3391 In0[part]); 3392 else 3393 // Select between the current value and the previous incoming edge 3394 // based on the incoming mask. 3395 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3396 Entry[part], "predphi"); 3397 } 3398 } 3399 return; 3400 } 3401 3402 // This PHINode must be an induction variable. 3403 // Make sure that we know about it. 3404 assert(Legal->getInductionVars()->count(P) && 3405 "Not an induction variable"); 3406 3407 LoopVectorizationLegality::InductionInfo II = 3408 Legal->getInductionVars()->lookup(P); 3409 3410 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3411 // which can be found from the original scalar operations. 3412 switch (II.IK) { 3413 case LoopVectorizationLegality::IK_NoInduction: 3414 llvm_unreachable("Unknown induction"); 3415 case LoopVectorizationLegality::IK_IntInduction: { 3416 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3417 Type *PhiTy = P->getType(); 3418 Value *Broadcasted; 3419 if (P == OldInduction) { 3420 // Handle the canonical induction variable. We might have had to 3421 // extend the type. 3422 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3423 } else { 3424 // Handle other induction variables that are now based on the 3425 // canonical one. 3426 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3427 "normalized.idx"); 3428 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3429 Broadcasted = II.transform(Builder, NormalizedIdx); 3430 Broadcasted->setName("offset.idx"); 3431 } 3432 Broadcasted = getBroadcastInstrs(Broadcasted); 3433 // After broadcasting the induction variable we need to make the vector 3434 // consecutive by adding 0, 1, 2, etc. 3435 for (unsigned part = 0; part < UF; ++part) 3436 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3437 return; 3438 } 3439 case LoopVectorizationLegality::IK_PtrInduction: 3440 // Handle the pointer induction variable case. 3441 assert(P->getType()->isPointerTy() && "Unexpected type."); 3442 // This is the normalized GEP that starts counting at zero. 3443 Value *NormalizedIdx = 3444 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3445 NormalizedIdx = 3446 Builder.CreateSExtOrTrunc(NormalizedIdx, II.StepValue->getType()); 3447 // This is the vector of results. Notice that we don't generate 3448 // vector geps because scalar geps result in better code. 3449 for (unsigned part = 0; part < UF; ++part) { 3450 if (VF == 1) { 3451 int EltIndex = part; 3452 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3453 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3454 Value *SclrGep = II.transform(Builder, GlobalIdx); 3455 SclrGep->setName("next.gep"); 3456 Entry[part] = SclrGep; 3457 continue; 3458 } 3459 3460 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3461 for (unsigned int i = 0; i < VF; ++i) { 3462 int EltIndex = i + part * VF; 3463 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3464 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3465 Value *SclrGep = II.transform(Builder, GlobalIdx); 3466 SclrGep->setName("next.gep"); 3467 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3468 Builder.getInt32(i), 3469 "insert.gep"); 3470 } 3471 Entry[part] = VecVal; 3472 } 3473 return; 3474 } 3475 } 3476 3477 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3478 // For each instruction in the old loop. 3479 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3480 VectorParts &Entry = WidenMap.get(it); 3481 switch (it->getOpcode()) { 3482 case Instruction::Br: 3483 // Nothing to do for PHIs and BR, since we already took care of the 3484 // loop control flow instructions. 3485 continue; 3486 case Instruction::PHI: { 3487 // Vectorize PHINodes. 3488 widenPHIInstruction(it, Entry, UF, VF, PV); 3489 continue; 3490 }// End of PHI. 3491 3492 case Instruction::Add: 3493 case Instruction::FAdd: 3494 case Instruction::Sub: 3495 case Instruction::FSub: 3496 case Instruction::Mul: 3497 case Instruction::FMul: 3498 case Instruction::UDiv: 3499 case Instruction::SDiv: 3500 case Instruction::FDiv: 3501 case Instruction::URem: 3502 case Instruction::SRem: 3503 case Instruction::FRem: 3504 case Instruction::Shl: 3505 case Instruction::LShr: 3506 case Instruction::AShr: 3507 case Instruction::And: 3508 case Instruction::Or: 3509 case Instruction::Xor: { 3510 // Just widen binops. 3511 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3512 setDebugLocFromInst(Builder, BinOp); 3513 VectorParts &A = getVectorValue(it->getOperand(0)); 3514 VectorParts &B = getVectorValue(it->getOperand(1)); 3515 3516 // Use this vector value for all users of the original instruction. 3517 for (unsigned Part = 0; Part < UF; ++Part) { 3518 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3519 3520 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3521 VecOp->copyIRFlags(BinOp); 3522 3523 Entry[Part] = V; 3524 } 3525 3526 propagateMetadata(Entry, it); 3527 break; 3528 } 3529 case Instruction::Select: { 3530 // Widen selects. 3531 // If the selector is loop invariant we can create a select 3532 // instruction with a scalar condition. Otherwise, use vector-select. 3533 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3534 OrigLoop); 3535 setDebugLocFromInst(Builder, it); 3536 3537 // The condition can be loop invariant but still defined inside the 3538 // loop. This means that we can't just use the original 'cond' value. 3539 // We have to take the 'vectorized' value and pick the first lane. 3540 // Instcombine will make this a no-op. 3541 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3542 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3543 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3544 3545 Value *ScalarCond = (VF == 1) ? Cond[0] : 3546 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3547 3548 for (unsigned Part = 0; Part < UF; ++Part) { 3549 Entry[Part] = Builder.CreateSelect( 3550 InvariantCond ? ScalarCond : Cond[Part], 3551 Op0[Part], 3552 Op1[Part]); 3553 } 3554 3555 propagateMetadata(Entry, it); 3556 break; 3557 } 3558 3559 case Instruction::ICmp: 3560 case Instruction::FCmp: { 3561 // Widen compares. Generate vector compares. 3562 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3563 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3564 setDebugLocFromInst(Builder, it); 3565 VectorParts &A = getVectorValue(it->getOperand(0)); 3566 VectorParts &B = getVectorValue(it->getOperand(1)); 3567 for (unsigned Part = 0; Part < UF; ++Part) { 3568 Value *C = nullptr; 3569 if (FCmp) 3570 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3571 else 3572 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3573 Entry[Part] = C; 3574 } 3575 3576 propagateMetadata(Entry, it); 3577 break; 3578 } 3579 3580 case Instruction::Store: 3581 case Instruction::Load: 3582 vectorizeMemoryInstruction(it); 3583 break; 3584 case Instruction::ZExt: 3585 case Instruction::SExt: 3586 case Instruction::FPToUI: 3587 case Instruction::FPToSI: 3588 case Instruction::FPExt: 3589 case Instruction::PtrToInt: 3590 case Instruction::IntToPtr: 3591 case Instruction::SIToFP: 3592 case Instruction::UIToFP: 3593 case Instruction::Trunc: 3594 case Instruction::FPTrunc: 3595 case Instruction::BitCast: { 3596 CastInst *CI = dyn_cast<CastInst>(it); 3597 setDebugLocFromInst(Builder, it); 3598 /// Optimize the special case where the source is the induction 3599 /// variable. Notice that we can only optimize the 'trunc' case 3600 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3601 /// c. other casts depend on pointer size. 3602 if (CI->getOperand(0) == OldInduction && 3603 it->getOpcode() == Instruction::Trunc) { 3604 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3605 CI->getType()); 3606 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3607 LoopVectorizationLegality::InductionInfo II = 3608 Legal->getInductionVars()->lookup(OldInduction); 3609 Constant *Step = 3610 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3611 for (unsigned Part = 0; Part < UF; ++Part) 3612 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3613 propagateMetadata(Entry, it); 3614 break; 3615 } 3616 /// Vectorize casts. 3617 Type *DestTy = (VF == 1) ? CI->getType() : 3618 VectorType::get(CI->getType(), VF); 3619 3620 VectorParts &A = getVectorValue(it->getOperand(0)); 3621 for (unsigned Part = 0; Part < UF; ++Part) 3622 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3623 propagateMetadata(Entry, it); 3624 break; 3625 } 3626 3627 case Instruction::Call: { 3628 // Ignore dbg intrinsics. 3629 if (isa<DbgInfoIntrinsic>(it)) 3630 break; 3631 setDebugLocFromInst(Builder, it); 3632 3633 Module *M = BB->getParent()->getParent(); 3634 CallInst *CI = cast<CallInst>(it); 3635 3636 StringRef FnName = CI->getCalledFunction()->getName(); 3637 Function *F = CI->getCalledFunction(); 3638 Type *RetTy = ToVectorTy(CI->getType(), VF); 3639 SmallVector<Type *, 4> Tys; 3640 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3641 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3642 3643 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3644 if (ID && 3645 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3646 ID == Intrinsic::lifetime_start)) { 3647 scalarizeInstruction(it); 3648 break; 3649 } 3650 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3651 // version of the instruction. 3652 // Is it beneficial to perform intrinsic call compared to lib call? 3653 bool NeedToScalarize; 3654 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3655 bool UseVectorIntrinsic = 3656 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3657 if (!UseVectorIntrinsic && NeedToScalarize) { 3658 scalarizeInstruction(it); 3659 break; 3660 } 3661 3662 for (unsigned Part = 0; Part < UF; ++Part) { 3663 SmallVector<Value *, 4> Args; 3664 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3665 Value *Arg = CI->getArgOperand(i); 3666 // Some intrinsics have a scalar argument - don't replace it with a 3667 // vector. 3668 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3669 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3670 Arg = VectorArg[Part]; 3671 } 3672 Args.push_back(Arg); 3673 } 3674 3675 Function *VectorF; 3676 if (UseVectorIntrinsic) { 3677 // Use vector version of the intrinsic. 3678 Type *TysForDecl[] = {CI->getType()}; 3679 if (VF > 1) 3680 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3681 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3682 } else { 3683 // Use vector version of the library call. 3684 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3685 assert(!VFnName.empty() && "Vector function name is empty."); 3686 VectorF = M->getFunction(VFnName); 3687 if (!VectorF) { 3688 // Generate a declaration 3689 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3690 VectorF = 3691 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3692 VectorF->copyAttributesFrom(F); 3693 } 3694 } 3695 assert(VectorF && "Can't create vector function."); 3696 Entry[Part] = Builder.CreateCall(VectorF, Args); 3697 } 3698 3699 propagateMetadata(Entry, it); 3700 break; 3701 } 3702 3703 default: 3704 // All other instructions are unsupported. Scalarize them. 3705 scalarizeInstruction(it); 3706 break; 3707 }// end of switch. 3708 }// end of for_each instr. 3709 } 3710 3711 void InnerLoopVectorizer::updateAnalysis() { 3712 // Forget the original basic block. 3713 SE->forgetLoop(OrigLoop); 3714 3715 // Update the dominator tree information. 3716 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3717 "Entry does not dominate exit."); 3718 3719 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3720 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3721 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3722 3723 // Due to if predication of stores we might create a sequence of "if(pred) 3724 // a[i] = ...; " blocks. 3725 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3726 if (i == 0) 3727 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3728 else if (isPredicatedBlock(i)) { 3729 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3730 } else { 3731 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3732 } 3733 } 3734 3735 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3736 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3737 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3738 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3739 3740 DEBUG(DT->verifyDomTree()); 3741 } 3742 3743 /// \brief Check whether it is safe to if-convert this phi node. 3744 /// 3745 /// Phi nodes with constant expressions that can trap are not safe to if 3746 /// convert. 3747 static bool canIfConvertPHINodes(BasicBlock *BB) { 3748 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3749 PHINode *Phi = dyn_cast<PHINode>(I); 3750 if (!Phi) 3751 return true; 3752 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3753 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3754 if (C->canTrap()) 3755 return false; 3756 } 3757 return true; 3758 } 3759 3760 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3761 if (!EnableIfConversion) { 3762 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3763 return false; 3764 } 3765 3766 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3767 3768 // A list of pointers that we can safely read and write to. 3769 SmallPtrSet<Value *, 8> SafePointes; 3770 3771 // Collect safe addresses. 3772 for (Loop::block_iterator BI = TheLoop->block_begin(), 3773 BE = TheLoop->block_end(); BI != BE; ++BI) { 3774 BasicBlock *BB = *BI; 3775 3776 if (blockNeedsPredication(BB)) 3777 continue; 3778 3779 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3780 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3781 SafePointes.insert(LI->getPointerOperand()); 3782 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3783 SafePointes.insert(SI->getPointerOperand()); 3784 } 3785 } 3786 3787 // Collect the blocks that need predication. 3788 BasicBlock *Header = TheLoop->getHeader(); 3789 for (Loop::block_iterator BI = TheLoop->block_begin(), 3790 BE = TheLoop->block_end(); BI != BE; ++BI) { 3791 BasicBlock *BB = *BI; 3792 3793 // We don't support switch statements inside loops. 3794 if (!isa<BranchInst>(BB->getTerminator())) { 3795 emitAnalysis(VectorizationReport(BB->getTerminator()) 3796 << "loop contains a switch statement"); 3797 return false; 3798 } 3799 3800 // We must be able to predicate all blocks that need to be predicated. 3801 if (blockNeedsPredication(BB)) { 3802 if (!blockCanBePredicated(BB, SafePointes)) { 3803 emitAnalysis(VectorizationReport(BB->getTerminator()) 3804 << "control flow cannot be substituted for a select"); 3805 return false; 3806 } 3807 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3808 emitAnalysis(VectorizationReport(BB->getTerminator()) 3809 << "control flow cannot be substituted for a select"); 3810 return false; 3811 } 3812 } 3813 3814 // We can if-convert this loop. 3815 return true; 3816 } 3817 3818 bool LoopVectorizationLegality::canVectorize() { 3819 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3820 // be canonicalized. 3821 if (!TheLoop->getLoopPreheader()) { 3822 emitAnalysis( 3823 VectorizationReport() << 3824 "loop control flow is not understood by vectorizer"); 3825 return false; 3826 } 3827 3828 // We can only vectorize innermost loops. 3829 if (!TheLoop->getSubLoopsVector().empty()) { 3830 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3831 return false; 3832 } 3833 3834 // We must have a single backedge. 3835 if (TheLoop->getNumBackEdges() != 1) { 3836 emitAnalysis( 3837 VectorizationReport() << 3838 "loop control flow is not understood by vectorizer"); 3839 return false; 3840 } 3841 3842 // We must have a single exiting block. 3843 if (!TheLoop->getExitingBlock()) { 3844 emitAnalysis( 3845 VectorizationReport() << 3846 "loop control flow is not understood by vectorizer"); 3847 return false; 3848 } 3849 3850 // We only handle bottom-tested loops, i.e. loop in which the condition is 3851 // checked at the end of each iteration. With that we can assume that all 3852 // instructions in the loop are executed the same number of times. 3853 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3854 emitAnalysis( 3855 VectorizationReport() << 3856 "loop control flow is not understood by vectorizer"); 3857 return false; 3858 } 3859 3860 // We need to have a loop header. 3861 DEBUG(dbgs() << "LV: Found a loop: " << 3862 TheLoop->getHeader()->getName() << '\n'); 3863 3864 // Check if we can if-convert non-single-bb loops. 3865 unsigned NumBlocks = TheLoop->getNumBlocks(); 3866 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3867 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3868 return false; 3869 } 3870 3871 // ScalarEvolution needs to be able to find the exit count. 3872 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3873 if (ExitCount == SE->getCouldNotCompute()) { 3874 emitAnalysis(VectorizationReport() << 3875 "could not determine number of loop iterations"); 3876 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3877 return false; 3878 } 3879 3880 // Check if we can vectorize the instructions and CFG in this loop. 3881 if (!canVectorizeInstrs()) { 3882 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3883 return false; 3884 } 3885 3886 // Go over each instruction and look at memory deps. 3887 if (!canVectorizeMemory()) { 3888 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3889 return false; 3890 } 3891 3892 // Collect all of the variables that remain uniform after vectorization. 3893 collectLoopUniforms(); 3894 3895 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3896 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3897 "") 3898 <<"!\n"); 3899 3900 // Analyze interleaved memory accesses. 3901 if (EnableInterleavedMemAccesses) 3902 InterleaveInfo.analyzeInterleaving(Strides); 3903 3904 // Okay! We can vectorize. At this point we don't have any other mem analysis 3905 // which may limit our maximum vectorization factor, so just return true with 3906 // no restrictions. 3907 return true; 3908 } 3909 3910 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3911 if (Ty->isPointerTy()) 3912 return DL.getIntPtrType(Ty); 3913 3914 // It is possible that char's or short's overflow when we ask for the loop's 3915 // trip count, work around this by changing the type size. 3916 if (Ty->getScalarSizeInBits() < 32) 3917 return Type::getInt32Ty(Ty->getContext()); 3918 3919 return Ty; 3920 } 3921 3922 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3923 Ty0 = convertPointerToIntegerType(DL, Ty0); 3924 Ty1 = convertPointerToIntegerType(DL, Ty1); 3925 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3926 return Ty0; 3927 return Ty1; 3928 } 3929 3930 /// \brief Check that the instruction has outside loop users and is not an 3931 /// identified reduction variable. 3932 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3933 SmallPtrSetImpl<Value *> &Reductions) { 3934 // Reduction instructions are allowed to have exit users. All other 3935 // instructions must not have external users. 3936 if (!Reductions.count(Inst)) 3937 //Check that all of the users of the loop are inside the BB. 3938 for (User *U : Inst->users()) { 3939 Instruction *UI = cast<Instruction>(U); 3940 // This user may be a reduction exit value. 3941 if (!TheLoop->contains(UI)) { 3942 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3943 return true; 3944 } 3945 } 3946 return false; 3947 } 3948 3949 bool LoopVectorizationLegality::canVectorizeInstrs() { 3950 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3951 BasicBlock *Header = TheLoop->getHeader(); 3952 3953 // Look for the attribute signaling the absence of NaNs. 3954 Function &F = *Header->getParent(); 3955 const DataLayout &DL = F.getParent()->getDataLayout(); 3956 if (F.hasFnAttribute("no-nans-fp-math")) 3957 HasFunNoNaNAttr = 3958 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3959 3960 // For each block in the loop. 3961 for (Loop::block_iterator bb = TheLoop->block_begin(), 3962 be = TheLoop->block_end(); bb != be; ++bb) { 3963 3964 // Scan the instructions in the block and look for hazards. 3965 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3966 ++it) { 3967 3968 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3969 Type *PhiTy = Phi->getType(); 3970 // Check that this PHI type is allowed. 3971 if (!PhiTy->isIntegerTy() && 3972 !PhiTy->isFloatingPointTy() && 3973 !PhiTy->isPointerTy()) { 3974 emitAnalysis(VectorizationReport(it) 3975 << "loop control flow is not understood by vectorizer"); 3976 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3977 return false; 3978 } 3979 3980 // If this PHINode is not in the header block, then we know that we 3981 // can convert it to select during if-conversion. No need to check if 3982 // the PHIs in this block are induction or reduction variables. 3983 if (*bb != Header) { 3984 // Check that this instruction has no outside users or is an 3985 // identified reduction value with an outside user. 3986 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3987 continue; 3988 emitAnalysis(VectorizationReport(it) << 3989 "value could not be identified as " 3990 "an induction or reduction variable"); 3991 return false; 3992 } 3993 3994 // We only allow if-converted PHIs with exactly two incoming values. 3995 if (Phi->getNumIncomingValues() != 2) { 3996 emitAnalysis(VectorizationReport(it) 3997 << "control flow not understood by vectorizer"); 3998 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3999 return false; 4000 } 4001 4002 // This is the value coming from the preheader. 4003 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 4004 ConstantInt *StepValue = nullptr; 4005 // Check if this is an induction variable. 4006 InductionKind IK = isInductionVariable(Phi, StepValue); 4007 4008 if (IK_NoInduction != IK) { 4009 // Get the widest type. 4010 if (!WidestIndTy) 4011 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4012 else 4013 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4014 4015 // Int inductions are special because we only allow one IV. 4016 if (IK == IK_IntInduction && StepValue->isOne()) { 4017 // Use the phi node with the widest type as induction. Use the last 4018 // one if there are multiple (no good reason for doing this other 4019 // than it is expedient). 4020 if (!Induction || PhiTy == WidestIndTy) 4021 Induction = Phi; 4022 } 4023 4024 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4025 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 4026 4027 // Until we explicitly handle the case of an induction variable with 4028 // an outside loop user we have to give up vectorizing this loop. 4029 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4030 emitAnalysis(VectorizationReport(it) << 4031 "use of induction value outside of the " 4032 "loop is not handled by vectorizer"); 4033 return false; 4034 } 4035 4036 continue; 4037 } 4038 4039 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4040 Reductions[Phi])) { 4041 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4042 continue; 4043 } 4044 4045 emitAnalysis(VectorizationReport(it) << 4046 "value that could not be identified as " 4047 "reduction is used outside the loop"); 4048 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4049 return false; 4050 }// end of PHI handling 4051 4052 // We handle calls that: 4053 // * Are debug info intrinsics. 4054 // * Have a mapping to an IR intrinsic. 4055 // * Have a vector version available. 4056 CallInst *CI = dyn_cast<CallInst>(it); 4057 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4058 !(CI->getCalledFunction() && TLI && 4059 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4060 emitAnalysis(VectorizationReport(it) << 4061 "call instruction cannot be vectorized"); 4062 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4063 return false; 4064 } 4065 4066 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4067 // second argument is the same (i.e. loop invariant) 4068 if (CI && 4069 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4070 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4071 emitAnalysis(VectorizationReport(it) 4072 << "intrinsic instruction cannot be vectorized"); 4073 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4074 return false; 4075 } 4076 } 4077 4078 // Check that the instruction return type is vectorizable. 4079 // Also, we can't vectorize extractelement instructions. 4080 if ((!VectorType::isValidElementType(it->getType()) && 4081 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4082 emitAnalysis(VectorizationReport(it) 4083 << "instruction return type cannot be vectorized"); 4084 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4085 return false; 4086 } 4087 4088 // Check that the stored type is vectorizable. 4089 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4090 Type *T = ST->getValueOperand()->getType(); 4091 if (!VectorType::isValidElementType(T)) { 4092 emitAnalysis(VectorizationReport(ST) << 4093 "store instruction cannot be vectorized"); 4094 return false; 4095 } 4096 if (EnableMemAccessVersioning) 4097 collectStridedAccess(ST); 4098 } 4099 4100 if (EnableMemAccessVersioning) 4101 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4102 collectStridedAccess(LI); 4103 4104 // Reduction instructions are allowed to have exit users. 4105 // All other instructions must not have external users. 4106 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4107 emitAnalysis(VectorizationReport(it) << 4108 "value cannot be used outside the loop"); 4109 return false; 4110 } 4111 4112 } // next instr. 4113 4114 } 4115 4116 if (!Induction) { 4117 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4118 if (Inductions.empty()) { 4119 emitAnalysis(VectorizationReport() 4120 << "loop induction variable could not be identified"); 4121 return false; 4122 } 4123 } 4124 4125 return true; 4126 } 4127 4128 ///\brief Remove GEPs whose indices but the last one are loop invariant and 4129 /// return the induction operand of the gep pointer. 4130 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4131 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4132 if (!GEP) 4133 return Ptr; 4134 4135 unsigned InductionOperand = getGEPInductionOperand(GEP); 4136 4137 // Check that all of the gep indices are uniform except for our induction 4138 // operand. 4139 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 4140 if (i != InductionOperand && 4141 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 4142 return Ptr; 4143 return GEP->getOperand(InductionOperand); 4144 } 4145 4146 ///\brief Look for a cast use of the passed value. 4147 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 4148 Value *UniqueCast = nullptr; 4149 for (User *U : Ptr->users()) { 4150 CastInst *CI = dyn_cast<CastInst>(U); 4151 if (CI && CI->getType() == Ty) { 4152 if (!UniqueCast) 4153 UniqueCast = CI; 4154 else 4155 return nullptr; 4156 } 4157 } 4158 return UniqueCast; 4159 } 4160 4161 ///\brief Get the stride of a pointer access in a loop. 4162 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 4163 /// pointer to the Value, or null otherwise. 4164 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 4165 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4166 if (!PtrTy || PtrTy->isAggregateType()) 4167 return nullptr; 4168 4169 // Try to remove a gep instruction to make the pointer (actually index at this 4170 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 4171 // pointer, otherwise, we are analyzing the index. 4172 Value *OrigPtr = Ptr; 4173 4174 // The size of the pointer access. 4175 int64_t PtrAccessSize = 1; 4176 4177 Ptr = stripGetElementPtr(Ptr, SE, Lp); 4178 const SCEV *V = SE->getSCEV(Ptr); 4179 4180 if (Ptr != OrigPtr) 4181 // Strip off casts. 4182 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 4183 V = C->getOperand(); 4184 4185 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 4186 if (!S) 4187 return nullptr; 4188 4189 V = S->getStepRecurrence(*SE); 4190 if (!V) 4191 return nullptr; 4192 4193 // Strip off the size of access multiplication if we are still analyzing the 4194 // pointer. 4195 if (OrigPtr == Ptr) { 4196 const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); 4197 DL.getTypeAllocSize(PtrTy->getElementType()); 4198 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 4199 if (M->getOperand(0)->getSCEVType() != scConstant) 4200 return nullptr; 4201 4202 const APInt &APStepVal = 4203 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 4204 4205 // Huge step value - give up. 4206 if (APStepVal.getBitWidth() > 64) 4207 return nullptr; 4208 4209 int64_t StepVal = APStepVal.getSExtValue(); 4210 if (PtrAccessSize != StepVal) 4211 return nullptr; 4212 V = M->getOperand(1); 4213 } 4214 } 4215 4216 // Strip off casts. 4217 Type *StripedOffRecurrenceCast = nullptr; 4218 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 4219 StripedOffRecurrenceCast = C->getType(); 4220 V = C->getOperand(); 4221 } 4222 4223 // Look for the loop invariant symbolic value. 4224 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 4225 if (!U) 4226 return nullptr; 4227 4228 Value *Stride = U->getValue(); 4229 if (!Lp->isLoopInvariant(Stride)) 4230 return nullptr; 4231 4232 // If we have stripped off the recurrence cast we have to make sure that we 4233 // return the value that is used in this loop so that we can replace it later. 4234 if (StripedOffRecurrenceCast) 4235 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 4236 4237 return Stride; 4238 } 4239 4240 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4241 Value *Ptr = nullptr; 4242 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4243 Ptr = LI->getPointerOperand(); 4244 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4245 Ptr = SI->getPointerOperand(); 4246 else 4247 return; 4248 4249 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4250 if (!Stride) 4251 return; 4252 4253 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4254 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4255 Strides[Ptr] = Stride; 4256 StrideSet.insert(Stride); 4257 } 4258 4259 void LoopVectorizationLegality::collectLoopUniforms() { 4260 // We now know that the loop is vectorizable! 4261 // Collect variables that will remain uniform after vectorization. 4262 std::vector<Value*> Worklist; 4263 BasicBlock *Latch = TheLoop->getLoopLatch(); 4264 4265 // Start with the conditional branch and walk up the block. 4266 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4267 4268 // Also add all consecutive pointer values; these values will be uniform 4269 // after vectorization (and subsequent cleanup) and, until revectorization is 4270 // supported, all dependencies must also be uniform. 4271 for (Loop::block_iterator B = TheLoop->block_begin(), 4272 BE = TheLoop->block_end(); B != BE; ++B) 4273 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4274 I != IE; ++I) 4275 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4276 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4277 4278 while (!Worklist.empty()) { 4279 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4280 Worklist.pop_back(); 4281 4282 // Look at instructions inside this loop. 4283 // Stop when reaching PHI nodes. 4284 // TODO: we need to follow values all over the loop, not only in this block. 4285 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4286 continue; 4287 4288 // This is a known uniform. 4289 Uniforms.insert(I); 4290 4291 // Insert all operands. 4292 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4293 } 4294 } 4295 4296 bool LoopVectorizationLegality::canVectorizeMemory() { 4297 LAI = &LAA->getInfo(TheLoop, Strides); 4298 auto &OptionalReport = LAI->getReport(); 4299 if (OptionalReport) 4300 emitAnalysis(VectorizationReport(*OptionalReport)); 4301 if (!LAI->canVectorizeMemory()) 4302 return false; 4303 4304 if (LAI->hasStoreToLoopInvariantAddress()) { 4305 emitAnalysis( 4306 VectorizationReport() 4307 << "write to a loop invariant address could not be vectorized"); 4308 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4309 return false; 4310 } 4311 4312 if (LAI->getNumRuntimePointerChecks() > 4313 VectorizerParams::RuntimeMemoryCheckThreshold) { 4314 emitAnalysis(VectorizationReport() 4315 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 4316 << VectorizerParams::RuntimeMemoryCheckThreshold 4317 << " dependent memory operations checked at runtime"); 4318 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 4319 return false; 4320 } 4321 return true; 4322 } 4323 4324 LoopVectorizationLegality::InductionKind 4325 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4326 ConstantInt *&StepValue) { 4327 if (!isInductionPHI(Phi, SE, StepValue)) 4328 return IK_NoInduction; 4329 4330 Type *PhiTy = Phi->getType(); 4331 // Found an Integer induction variable. 4332 if (PhiTy->isIntegerTy()) 4333 return IK_IntInduction; 4334 // Found an Pointer induction variable. 4335 return IK_PtrInduction; 4336 } 4337 4338 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4339 Value *In0 = const_cast<Value*>(V); 4340 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4341 if (!PN) 4342 return false; 4343 4344 return Inductions.count(PN); 4345 } 4346 4347 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4348 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4349 } 4350 4351 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4352 SmallPtrSetImpl<Value *> &SafePtrs) { 4353 4354 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4355 // Check that we don't have a constant expression that can trap as operand. 4356 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4357 OI != OE; ++OI) { 4358 if (Constant *C = dyn_cast<Constant>(*OI)) 4359 if (C->canTrap()) 4360 return false; 4361 } 4362 // We might be able to hoist the load. 4363 if (it->mayReadFromMemory()) { 4364 LoadInst *LI = dyn_cast<LoadInst>(it); 4365 if (!LI) 4366 return false; 4367 if (!SafePtrs.count(LI->getPointerOperand())) { 4368 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4369 MaskedOp.insert(LI); 4370 continue; 4371 } 4372 return false; 4373 } 4374 } 4375 4376 // We don't predicate stores at the moment. 4377 if (it->mayWriteToMemory()) { 4378 StoreInst *SI = dyn_cast<StoreInst>(it); 4379 // We only support predication of stores in basic blocks with one 4380 // predecessor. 4381 if (!SI) 4382 return false; 4383 4384 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4385 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4386 4387 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4388 !isSinglePredecessor) { 4389 // Build a masked store if it is legal for the target, otherwise scalarize 4390 // the block. 4391 bool isLegalMaskedOp = 4392 isLegalMaskedStore(SI->getValueOperand()->getType(), 4393 SI->getPointerOperand()); 4394 if (isLegalMaskedOp) { 4395 --NumPredStores; 4396 MaskedOp.insert(SI); 4397 continue; 4398 } 4399 return false; 4400 } 4401 } 4402 if (it->mayThrow()) 4403 return false; 4404 4405 // The instructions below can trap. 4406 switch (it->getOpcode()) { 4407 default: continue; 4408 case Instruction::UDiv: 4409 case Instruction::SDiv: 4410 case Instruction::URem: 4411 case Instruction::SRem: 4412 return false; 4413 } 4414 } 4415 4416 return true; 4417 } 4418 4419 void InterleavedAccessInfo::collectConstStridedAccesses( 4420 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4421 const ValueToValueMap &Strides) { 4422 // Holds load/store instructions in program order. 4423 SmallVector<Instruction *, 16> AccessList; 4424 4425 for (auto *BB : TheLoop->getBlocks()) { 4426 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4427 4428 for (auto &I : *BB) { 4429 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4430 continue; 4431 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4432 if (IsPred) 4433 return; 4434 4435 AccessList.push_back(&I); 4436 } 4437 } 4438 4439 if (AccessList.empty()) 4440 return; 4441 4442 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4443 for (auto I : AccessList) { 4444 LoadInst *LI = dyn_cast<LoadInst>(I); 4445 StoreInst *SI = dyn_cast<StoreInst>(I); 4446 4447 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4448 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides); 4449 4450 // The factor of the corresponding interleave group. 4451 unsigned Factor = std::abs(Stride); 4452 4453 // Ignore the access if the factor is too small or too large. 4454 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4455 continue; 4456 4457 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4458 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4459 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4460 4461 // An alignment of 0 means target ABI alignment. 4462 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4463 if (!Align) 4464 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4465 4466 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4467 } 4468 } 4469 4470 // Analyze interleaved accesses and collect them into interleave groups. 4471 // 4472 // Notice that the vectorization on interleaved groups will change instruction 4473 // orders and may break dependences. But the memory dependence check guarantees 4474 // that there is no overlap between two pointers of different strides, element 4475 // sizes or underlying bases. 4476 // 4477 // For pointers sharing the same stride, element size and underlying base, no 4478 // need to worry about Read-After-Write dependences and Write-After-Read 4479 // dependences. 4480 // 4481 // E.g. The RAW dependence: A[i] = a; 4482 // b = A[i]; 4483 // This won't exist as it is a store-load forwarding conflict, which has 4484 // already been checked and forbidden in the dependence check. 4485 // 4486 // E.g. The WAR dependence: a = A[i]; // (1) 4487 // A[i] = b; // (2) 4488 // The store group of (2) is always inserted at or below (2), and the load group 4489 // of (1) is always inserted at or above (1). The dependence is safe. 4490 void InterleavedAccessInfo::analyzeInterleaving( 4491 const ValueToValueMap &Strides) { 4492 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4493 4494 // Holds all the stride accesses. 4495 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4496 collectConstStridedAccesses(StrideAccesses, Strides); 4497 4498 if (StrideAccesses.empty()) 4499 return; 4500 4501 // Holds all interleaved store groups temporarily. 4502 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4503 4504 // Search the load-load/write-write pair B-A in bottom-up order and try to 4505 // insert B into the interleave group of A according to 3 rules: 4506 // 1. A and B have the same stride. 4507 // 2. A and B have the same memory object size. 4508 // 3. B belongs to the group according to the distance. 4509 // 4510 // The bottom-up order can avoid breaking the Write-After-Write dependences 4511 // between two pointers of the same base. 4512 // E.g. A[i] = a; (1) 4513 // A[i] = b; (2) 4514 // A[i+1] = c (3) 4515 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4516 // above (1), which guarantees that (1) is always above (2). 4517 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4518 ++I) { 4519 Instruction *A = I->first; 4520 StrideDescriptor DesA = I->second; 4521 4522 InterleaveGroup *Group = getInterleaveGroup(A); 4523 if (!Group) { 4524 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4525 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4526 } 4527 4528 if (A->mayWriteToMemory()) 4529 StoreGroups.insert(Group); 4530 4531 for (auto II = std::next(I); II != E; ++II) { 4532 Instruction *B = II->first; 4533 StrideDescriptor DesB = II->second; 4534 4535 // Ignore if B is already in a group or B is a different memory operation. 4536 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4537 continue; 4538 4539 // Check the rule 1 and 2. 4540 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4541 continue; 4542 4543 // Calculate the distance and prepare for the rule 3. 4544 const SCEVConstant *DistToA = 4545 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4546 if (!DistToA) 4547 continue; 4548 4549 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4550 4551 // Skip if the distance is not multiple of size as they are not in the 4552 // same group. 4553 if (DistanceToA % static_cast<int>(DesA.Size)) 4554 continue; 4555 4556 // The index of B is the index of A plus the related index to A. 4557 int IndexB = 4558 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4559 4560 // Try to insert B into the group. 4561 if (Group->insertMember(B, IndexB, DesB.Align)) { 4562 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4563 << " into the interleave group with" << *A << '\n'); 4564 InterleaveGroupMap[B] = Group; 4565 4566 // Set the first load in program order as the insert position. 4567 if (B->mayReadFromMemory()) 4568 Group->setInsertPos(B); 4569 } 4570 } // Iteration on instruction B 4571 } // Iteration on instruction A 4572 4573 // Remove interleaved store groups with gaps. 4574 for (InterleaveGroup *Group : StoreGroups) 4575 if (Group->getNumMembers() != Group->getFactor()) 4576 releaseGroup(Group); 4577 } 4578 4579 LoopVectorizationCostModel::VectorizationFactor 4580 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4581 // Width 1 means no vectorize 4582 VectorizationFactor Factor = { 1U, 0U }; 4583 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4584 emitAnalysis(VectorizationReport() << 4585 "runtime pointer checks needed. Enable vectorization of this " 4586 "loop with '#pragma clang loop vectorize(enable)' when " 4587 "compiling with -Os"); 4588 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4589 return Factor; 4590 } 4591 4592 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4593 emitAnalysis(VectorizationReport() << 4594 "store that is conditionally executed prevents vectorization"); 4595 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4596 return Factor; 4597 } 4598 4599 // Find the trip count. 4600 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4601 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4602 4603 unsigned WidestType = getWidestType(); 4604 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4605 unsigned MaxSafeDepDist = -1U; 4606 if (Legal->getMaxSafeDepDistBytes() != -1U) 4607 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4608 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4609 WidestRegister : MaxSafeDepDist); 4610 unsigned MaxVectorSize = WidestRegister / WidestType; 4611 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4612 DEBUG(dbgs() << "LV: The Widest register is: " 4613 << WidestRegister << " bits.\n"); 4614 4615 if (MaxVectorSize == 0) { 4616 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4617 MaxVectorSize = 1; 4618 } 4619 4620 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4621 " into one vector!"); 4622 4623 unsigned VF = MaxVectorSize; 4624 4625 // If we optimize the program for size, avoid creating the tail loop. 4626 if (OptForSize) { 4627 // If we are unable to calculate the trip count then don't try to vectorize. 4628 if (TC < 2) { 4629 emitAnalysis 4630 (VectorizationReport() << 4631 "unable to calculate the loop count due to complex control flow"); 4632 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4633 return Factor; 4634 } 4635 4636 // Find the maximum SIMD width that can fit within the trip count. 4637 VF = TC % MaxVectorSize; 4638 4639 if (VF == 0) 4640 VF = MaxVectorSize; 4641 else { 4642 // If the trip count that we found modulo the vectorization factor is not 4643 // zero then we require a tail. 4644 emitAnalysis(VectorizationReport() << 4645 "cannot optimize for size and vectorize at the " 4646 "same time. Enable vectorization of this loop " 4647 "with '#pragma clang loop vectorize(enable)' " 4648 "when compiling with -Os"); 4649 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4650 return Factor; 4651 } 4652 } 4653 4654 int UserVF = Hints->getWidth(); 4655 if (UserVF != 0) { 4656 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4657 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4658 4659 Factor.Width = UserVF; 4660 return Factor; 4661 } 4662 4663 float Cost = expectedCost(1); 4664 #ifndef NDEBUG 4665 const float ScalarCost = Cost; 4666 #endif /* NDEBUG */ 4667 unsigned Width = 1; 4668 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4669 4670 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4671 // Ignore scalar width, because the user explicitly wants vectorization. 4672 if (ForceVectorization && VF > 1) { 4673 Width = 2; 4674 Cost = expectedCost(Width) / (float)Width; 4675 } 4676 4677 for (unsigned i=2; i <= VF; i*=2) { 4678 // Notice that the vector loop needs to be executed less times, so 4679 // we need to divide the cost of the vector loops by the width of 4680 // the vector elements. 4681 float VectorCost = expectedCost(i) / (float)i; 4682 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4683 (int)VectorCost << ".\n"); 4684 if (VectorCost < Cost) { 4685 Cost = VectorCost; 4686 Width = i; 4687 } 4688 } 4689 4690 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4691 << "LV: Vectorization seems to be not beneficial, " 4692 << "but was forced by a user.\n"); 4693 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4694 Factor.Width = Width; 4695 Factor.Cost = Width * Cost; 4696 return Factor; 4697 } 4698 4699 unsigned LoopVectorizationCostModel::getWidestType() { 4700 unsigned MaxWidth = 8; 4701 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4702 4703 // For each block. 4704 for (Loop::block_iterator bb = TheLoop->block_begin(), 4705 be = TheLoop->block_end(); bb != be; ++bb) { 4706 BasicBlock *BB = *bb; 4707 4708 // For each instruction in the loop. 4709 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4710 Type *T = it->getType(); 4711 4712 // Ignore ephemeral values. 4713 if (EphValues.count(it)) 4714 continue; 4715 4716 // Only examine Loads, Stores and PHINodes. 4717 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4718 continue; 4719 4720 // Examine PHI nodes that are reduction variables. 4721 if (PHINode *PN = dyn_cast<PHINode>(it)) 4722 if (!Legal->getReductionVars()->count(PN)) 4723 continue; 4724 4725 // Examine the stored values. 4726 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4727 T = ST->getValueOperand()->getType(); 4728 4729 // Ignore loaded pointer types and stored pointer types that are not 4730 // consecutive. However, we do want to take consecutive stores/loads of 4731 // pointer vectors into account. 4732 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4733 continue; 4734 4735 MaxWidth = std::max(MaxWidth, 4736 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4737 } 4738 } 4739 4740 return MaxWidth; 4741 } 4742 4743 unsigned 4744 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4745 unsigned VF, 4746 unsigned LoopCost) { 4747 4748 // -- The unroll heuristics -- 4749 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4750 // There are many micro-architectural considerations that we can't predict 4751 // at this level. For example, frontend pressure (on decode or fetch) due to 4752 // code size, or the number and capabilities of the execution ports. 4753 // 4754 // We use the following heuristics to select the unroll factor: 4755 // 1. If the code has reductions, then we unroll in order to break the cross 4756 // iteration dependency. 4757 // 2. If the loop is really small, then we unroll in order to reduce the loop 4758 // overhead. 4759 // 3. We don't unroll if we think that we will spill registers to memory due 4760 // to the increased register pressure. 4761 4762 // Use the user preference, unless 'auto' is selected. 4763 int UserUF = Hints->getInterleave(); 4764 if (UserUF != 0) 4765 return UserUF; 4766 4767 // When we optimize for size, we don't unroll. 4768 if (OptForSize) 4769 return 1; 4770 4771 // We used the distance for the unroll factor. 4772 if (Legal->getMaxSafeDepDistBytes() != -1U) 4773 return 1; 4774 4775 // Do not unroll loops with a relatively small trip count. 4776 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4777 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4778 return 1; 4779 4780 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4781 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4782 " registers\n"); 4783 4784 if (VF == 1) { 4785 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4786 TargetNumRegisters = ForceTargetNumScalarRegs; 4787 } else { 4788 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4789 TargetNumRegisters = ForceTargetNumVectorRegs; 4790 } 4791 4792 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4793 // We divide by these constants so assume that we have at least one 4794 // instruction that uses at least one register. 4795 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4796 R.NumInstructions = std::max(R.NumInstructions, 1U); 4797 4798 // We calculate the unroll factor using the following formula. 4799 // Subtract the number of loop invariants from the number of available 4800 // registers. These registers are used by all of the unrolled instances. 4801 // Next, divide the remaining registers by the number of registers that is 4802 // required by the loop, in order to estimate how many parallel instances 4803 // fit without causing spills. All of this is rounded down if necessary to be 4804 // a power of two. We want power of two unroll factors to simplify any 4805 // addressing operations or alignment considerations. 4806 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4807 R.MaxLocalUsers); 4808 4809 // Don't count the induction variable as unrolled. 4810 if (EnableIndVarRegisterHeur) 4811 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4812 std::max(1U, (R.MaxLocalUsers - 1))); 4813 4814 // Clamp the unroll factor ranges to reasonable factors. 4815 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(VF); 4816 4817 // Check if the user has overridden the unroll max. 4818 if (VF == 1) { 4819 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4820 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4821 } else { 4822 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4823 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4824 } 4825 4826 // If we did not calculate the cost for VF (because the user selected the VF) 4827 // then we calculate the cost of VF here. 4828 if (LoopCost == 0) 4829 LoopCost = expectedCost(VF); 4830 4831 // Clamp the calculated UF to be between the 1 and the max unroll factor 4832 // that the target allows. 4833 if (UF > MaxInterleaveSize) 4834 UF = MaxInterleaveSize; 4835 else if (UF < 1) 4836 UF = 1; 4837 4838 // Unroll if we vectorized this loop and there is a reduction that could 4839 // benefit from unrolling. 4840 if (VF > 1 && Legal->getReductionVars()->size()) { 4841 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4842 return UF; 4843 } 4844 4845 // Note that if we've already vectorized the loop we will have done the 4846 // runtime check and so unrolling won't require further checks. 4847 bool UnrollingRequiresRuntimePointerCheck = 4848 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4849 4850 // We want to unroll small loops in order to reduce the loop overhead and 4851 // potentially expose ILP opportunities. 4852 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4853 if (!UnrollingRequiresRuntimePointerCheck && 4854 LoopCost < SmallLoopCost) { 4855 // We assume that the cost overhead is 1 and we use the cost model 4856 // to estimate the cost of the loop and unroll until the cost of the 4857 // loop overhead is about 5% of the cost of the loop. 4858 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4859 4860 // Unroll until store/load ports (estimated by max unroll factor) are 4861 // saturated. 4862 unsigned NumStores = Legal->getNumStores(); 4863 unsigned NumLoads = Legal->getNumLoads(); 4864 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4865 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4866 4867 // If we have a scalar reduction (vector reductions are already dealt with 4868 // by this point), we can increase the critical path length if the loop 4869 // we're unrolling is inside another loop. Limit, by default to 2, so the 4870 // critical path only gets increased by one reduction operation. 4871 if (Legal->getReductionVars()->size() && 4872 TheLoop->getLoopDepth() > 1) { 4873 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4874 SmallUF = std::min(SmallUF, F); 4875 StoresUF = std::min(StoresUF, F); 4876 LoadsUF = std::min(LoadsUF, F); 4877 } 4878 4879 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4880 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4881 return std::max(StoresUF, LoadsUF); 4882 } 4883 4884 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4885 return SmallUF; 4886 } 4887 4888 // Unroll if this is a large loop (small loops are already dealt with by this 4889 // point) that could benefit from interleaved unrolling. 4890 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4891 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4892 DEBUG(dbgs() << "LV: Unrolling to expose ILP.\n"); 4893 return UF; 4894 } 4895 4896 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4897 return 1; 4898 } 4899 4900 LoopVectorizationCostModel::RegisterUsage 4901 LoopVectorizationCostModel::calculateRegisterUsage() { 4902 // This function calculates the register usage by measuring the highest number 4903 // of values that are alive at a single location. Obviously, this is a very 4904 // rough estimation. We scan the loop in a topological order in order and 4905 // assign a number to each instruction. We use RPO to ensure that defs are 4906 // met before their users. We assume that each instruction that has in-loop 4907 // users starts an interval. We record every time that an in-loop value is 4908 // used, so we have a list of the first and last occurrences of each 4909 // instruction. Next, we transpose this data structure into a multi map that 4910 // holds the list of intervals that *end* at a specific location. This multi 4911 // map allows us to perform a linear search. We scan the instructions linearly 4912 // and record each time that a new interval starts, by placing it in a set. 4913 // If we find this value in the multi-map then we remove it from the set. 4914 // The max register usage is the maximum size of the set. 4915 // We also search for instructions that are defined outside the loop, but are 4916 // used inside the loop. We need this number separately from the max-interval 4917 // usage number because when we unroll, loop-invariant values do not take 4918 // more register. 4919 LoopBlocksDFS DFS(TheLoop); 4920 DFS.perform(LI); 4921 4922 RegisterUsage R; 4923 R.NumInstructions = 0; 4924 4925 // Each 'key' in the map opens a new interval. The values 4926 // of the map are the index of the 'last seen' usage of the 4927 // instruction that is the key. 4928 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4929 // Maps instruction to its index. 4930 DenseMap<unsigned, Instruction*> IdxToInstr; 4931 // Marks the end of each interval. 4932 IntervalMap EndPoint; 4933 // Saves the list of instruction indices that are used in the loop. 4934 SmallSet<Instruction*, 8> Ends; 4935 // Saves the list of values that are used in the loop but are 4936 // defined outside the loop, such as arguments and constants. 4937 SmallPtrSet<Value*, 8> LoopInvariants; 4938 4939 unsigned Index = 0; 4940 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4941 be = DFS.endRPO(); bb != be; ++bb) { 4942 R.NumInstructions += (*bb)->size(); 4943 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4944 ++it) { 4945 Instruction *I = it; 4946 IdxToInstr[Index++] = I; 4947 4948 // Save the end location of each USE. 4949 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4950 Value *U = I->getOperand(i); 4951 Instruction *Instr = dyn_cast<Instruction>(U); 4952 4953 // Ignore non-instruction values such as arguments, constants, etc. 4954 if (!Instr) continue; 4955 4956 // If this instruction is outside the loop then record it and continue. 4957 if (!TheLoop->contains(Instr)) { 4958 LoopInvariants.insert(Instr); 4959 continue; 4960 } 4961 4962 // Overwrite previous end points. 4963 EndPoint[Instr] = Index; 4964 Ends.insert(Instr); 4965 } 4966 } 4967 } 4968 4969 // Saves the list of intervals that end with the index in 'key'. 4970 typedef SmallVector<Instruction*, 2> InstrList; 4971 DenseMap<unsigned, InstrList> TransposeEnds; 4972 4973 // Transpose the EndPoints to a list of values that end at each index. 4974 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4975 it != e; ++it) 4976 TransposeEnds[it->second].push_back(it->first); 4977 4978 SmallSet<Instruction*, 8> OpenIntervals; 4979 unsigned MaxUsage = 0; 4980 4981 4982 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4983 for (unsigned int i = 0; i < Index; ++i) { 4984 Instruction *I = IdxToInstr[i]; 4985 // Ignore instructions that are never used within the loop. 4986 if (!Ends.count(I)) continue; 4987 4988 // Ignore ephemeral values. 4989 if (EphValues.count(I)) 4990 continue; 4991 4992 // Remove all of the instructions that end at this location. 4993 InstrList &List = TransposeEnds[i]; 4994 for (unsigned int j=0, e = List.size(); j < e; ++j) 4995 OpenIntervals.erase(List[j]); 4996 4997 // Count the number of live interals. 4998 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4999 5000 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5001 OpenIntervals.size() << '\n'); 5002 5003 // Add the current instruction to the list of open intervals. 5004 OpenIntervals.insert(I); 5005 } 5006 5007 unsigned Invariant = LoopInvariants.size(); 5008 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5009 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5010 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5011 5012 R.LoopInvariantRegs = Invariant; 5013 R.MaxLocalUsers = MaxUsage; 5014 return R; 5015 } 5016 5017 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5018 unsigned Cost = 0; 5019 5020 // For each block. 5021 for (Loop::block_iterator bb = TheLoop->block_begin(), 5022 be = TheLoop->block_end(); bb != be; ++bb) { 5023 unsigned BlockCost = 0; 5024 BasicBlock *BB = *bb; 5025 5026 // For each instruction in the old loop. 5027 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5028 // Skip dbg intrinsics. 5029 if (isa<DbgInfoIntrinsic>(it)) 5030 continue; 5031 5032 // Ignore ephemeral values. 5033 if (EphValues.count(it)) 5034 continue; 5035 5036 unsigned C = getInstructionCost(it, VF); 5037 5038 // Check if we should override the cost. 5039 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5040 C = ForceTargetInstructionCost; 5041 5042 BlockCost += C; 5043 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5044 VF << " For instruction: " << *it << '\n'); 5045 } 5046 5047 // We assume that if-converted blocks have a 50% chance of being executed. 5048 // When the code is scalar then some of the blocks are avoided due to CF. 5049 // When the code is vectorized we execute all code paths. 5050 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5051 BlockCost /= 2; 5052 5053 Cost += BlockCost; 5054 } 5055 5056 return Cost; 5057 } 5058 5059 /// \brief Check whether the address computation for a non-consecutive memory 5060 /// access looks like an unlikely candidate for being merged into the indexing 5061 /// mode. 5062 /// 5063 /// We look for a GEP which has one index that is an induction variable and all 5064 /// other indices are loop invariant. If the stride of this access is also 5065 /// within a small bound we decide that this address computation can likely be 5066 /// merged into the addressing mode. 5067 /// In all other cases, we identify the address computation as complex. 5068 static bool isLikelyComplexAddressComputation(Value *Ptr, 5069 LoopVectorizationLegality *Legal, 5070 ScalarEvolution *SE, 5071 const Loop *TheLoop) { 5072 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5073 if (!Gep) 5074 return true; 5075 5076 // We are looking for a gep with all loop invariant indices except for one 5077 // which should be an induction variable. 5078 unsigned NumOperands = Gep->getNumOperands(); 5079 for (unsigned i = 1; i < NumOperands; ++i) { 5080 Value *Opd = Gep->getOperand(i); 5081 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5082 !Legal->isInductionVariable(Opd)) 5083 return true; 5084 } 5085 5086 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5087 // can likely be merged into the address computation. 5088 unsigned MaxMergeDistance = 64; 5089 5090 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5091 if (!AddRec) 5092 return true; 5093 5094 // Check the step is constant. 5095 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5096 // Calculate the pointer stride and check if it is consecutive. 5097 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5098 if (!C) 5099 return true; 5100 5101 const APInt &APStepVal = C->getValue()->getValue(); 5102 5103 // Huge step value - give up. 5104 if (APStepVal.getBitWidth() > 64) 5105 return true; 5106 5107 int64_t StepVal = APStepVal.getSExtValue(); 5108 5109 return StepVal > MaxMergeDistance; 5110 } 5111 5112 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5113 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5114 return true; 5115 return false; 5116 } 5117 5118 unsigned 5119 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5120 // If we know that this instruction will remain uniform, check the cost of 5121 // the scalar version. 5122 if (Legal->isUniformAfterVectorization(I)) 5123 VF = 1; 5124 5125 Type *RetTy = I->getType(); 5126 Type *VectorTy = ToVectorTy(RetTy, VF); 5127 5128 // TODO: We need to estimate the cost of intrinsic calls. 5129 switch (I->getOpcode()) { 5130 case Instruction::GetElementPtr: 5131 // We mark this instruction as zero-cost because the cost of GEPs in 5132 // vectorized code depends on whether the corresponding memory instruction 5133 // is scalarized or not. Therefore, we handle GEPs with the memory 5134 // instruction cost. 5135 return 0; 5136 case Instruction::Br: { 5137 return TTI.getCFInstrCost(I->getOpcode()); 5138 } 5139 case Instruction::PHI: 5140 //TODO: IF-converted IFs become selects. 5141 return 0; 5142 case Instruction::Add: 5143 case Instruction::FAdd: 5144 case Instruction::Sub: 5145 case Instruction::FSub: 5146 case Instruction::Mul: 5147 case Instruction::FMul: 5148 case Instruction::UDiv: 5149 case Instruction::SDiv: 5150 case Instruction::FDiv: 5151 case Instruction::URem: 5152 case Instruction::SRem: 5153 case Instruction::FRem: 5154 case Instruction::Shl: 5155 case Instruction::LShr: 5156 case Instruction::AShr: 5157 case Instruction::And: 5158 case Instruction::Or: 5159 case Instruction::Xor: { 5160 // Since we will replace the stride by 1 the multiplication should go away. 5161 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5162 return 0; 5163 // Certain instructions can be cheaper to vectorize if they have a constant 5164 // second vector operand. One example of this are shifts on x86. 5165 TargetTransformInfo::OperandValueKind Op1VK = 5166 TargetTransformInfo::OK_AnyValue; 5167 TargetTransformInfo::OperandValueKind Op2VK = 5168 TargetTransformInfo::OK_AnyValue; 5169 TargetTransformInfo::OperandValueProperties Op1VP = 5170 TargetTransformInfo::OP_None; 5171 TargetTransformInfo::OperandValueProperties Op2VP = 5172 TargetTransformInfo::OP_None; 5173 Value *Op2 = I->getOperand(1); 5174 5175 // Check for a splat of a constant or for a non uniform vector of constants. 5176 if (isa<ConstantInt>(Op2)) { 5177 ConstantInt *CInt = cast<ConstantInt>(Op2); 5178 if (CInt && CInt->getValue().isPowerOf2()) 5179 Op2VP = TargetTransformInfo::OP_PowerOf2; 5180 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5181 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5182 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5183 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5184 if (SplatValue) { 5185 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5186 if (CInt && CInt->getValue().isPowerOf2()) 5187 Op2VP = TargetTransformInfo::OP_PowerOf2; 5188 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5189 } 5190 } 5191 5192 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5193 Op1VP, Op2VP); 5194 } 5195 case Instruction::Select: { 5196 SelectInst *SI = cast<SelectInst>(I); 5197 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5198 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5199 Type *CondTy = SI->getCondition()->getType(); 5200 if (!ScalarCond) 5201 CondTy = VectorType::get(CondTy, VF); 5202 5203 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5204 } 5205 case Instruction::ICmp: 5206 case Instruction::FCmp: { 5207 Type *ValTy = I->getOperand(0)->getType(); 5208 VectorTy = ToVectorTy(ValTy, VF); 5209 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5210 } 5211 case Instruction::Store: 5212 case Instruction::Load: { 5213 StoreInst *SI = dyn_cast<StoreInst>(I); 5214 LoadInst *LI = dyn_cast<LoadInst>(I); 5215 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5216 LI->getType()); 5217 VectorTy = ToVectorTy(ValTy, VF); 5218 5219 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5220 unsigned AS = SI ? SI->getPointerAddressSpace() : 5221 LI->getPointerAddressSpace(); 5222 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5223 // We add the cost of address computation here instead of with the gep 5224 // instruction because only here we know whether the operation is 5225 // scalarized. 5226 if (VF == 1) 5227 return TTI.getAddressComputationCost(VectorTy) + 5228 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5229 5230 // For an interleaved access, calculate the total cost of the whole 5231 // interleave group. 5232 if (Legal->isAccessInterleaved(I)) { 5233 auto Group = Legal->getInterleavedAccessGroup(I); 5234 assert(Group && "Fail to get an interleaved access group."); 5235 5236 // Only calculate the cost once at the insert position. 5237 if (Group->getInsertPos() != I) 5238 return 0; 5239 5240 unsigned InterleaveFactor = Group->getFactor(); 5241 Type *WideVecTy = 5242 VectorType::get(VectorTy->getVectorElementType(), 5243 VectorTy->getVectorNumElements() * InterleaveFactor); 5244 5245 // Holds the indices of existing members in an interleaved load group. 5246 // An interleaved store group doesn't need this as it dones't allow gaps. 5247 SmallVector<unsigned, 4> Indices; 5248 if (LI) { 5249 for (unsigned i = 0; i < InterleaveFactor; i++) 5250 if (Group->getMember(i)) 5251 Indices.push_back(i); 5252 } 5253 5254 // Calculate the cost of the whole interleaved group. 5255 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5256 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5257 Group->getAlignment(), AS); 5258 5259 if (Group->isReverse()) 5260 Cost += 5261 Group->getNumMembers() * 5262 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5263 5264 // FIXME: The interleaved load group with a huge gap could be even more 5265 // expensive than scalar operations. Then we could ignore such group and 5266 // use scalar operations instead. 5267 return Cost; 5268 } 5269 5270 // Scalarized loads/stores. 5271 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5272 bool Reverse = ConsecutiveStride < 0; 5273 const DataLayout &DL = I->getModule()->getDataLayout(); 5274 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5275 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5276 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5277 bool IsComplexComputation = 5278 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5279 unsigned Cost = 0; 5280 // The cost of extracting from the value vector and pointer vector. 5281 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5282 for (unsigned i = 0; i < VF; ++i) { 5283 // The cost of extracting the pointer operand. 5284 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5285 // In case of STORE, the cost of ExtractElement from the vector. 5286 // In case of LOAD, the cost of InsertElement into the returned 5287 // vector. 5288 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5289 Instruction::InsertElement, 5290 VectorTy, i); 5291 } 5292 5293 // The cost of the scalar loads/stores. 5294 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5295 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5296 Alignment, AS); 5297 return Cost; 5298 } 5299 5300 // Wide load/stores. 5301 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5302 if (Legal->isMaskRequired(I)) 5303 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5304 AS); 5305 else 5306 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5307 5308 if (Reverse) 5309 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5310 VectorTy, 0); 5311 return Cost; 5312 } 5313 case Instruction::ZExt: 5314 case Instruction::SExt: 5315 case Instruction::FPToUI: 5316 case Instruction::FPToSI: 5317 case Instruction::FPExt: 5318 case Instruction::PtrToInt: 5319 case Instruction::IntToPtr: 5320 case Instruction::SIToFP: 5321 case Instruction::UIToFP: 5322 case Instruction::Trunc: 5323 case Instruction::FPTrunc: 5324 case Instruction::BitCast: { 5325 // We optimize the truncation of induction variable. 5326 // The cost of these is the same as the scalar operation. 5327 if (I->getOpcode() == Instruction::Trunc && 5328 Legal->isInductionVariable(I->getOperand(0))) 5329 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5330 I->getOperand(0)->getType()); 5331 5332 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5333 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5334 } 5335 case Instruction::Call: { 5336 bool NeedToScalarize; 5337 CallInst *CI = cast<CallInst>(I); 5338 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5339 if (getIntrinsicIDForCall(CI, TLI)) 5340 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5341 return CallCost; 5342 } 5343 default: { 5344 // We are scalarizing the instruction. Return the cost of the scalar 5345 // instruction, plus the cost of insert and extract into vector 5346 // elements, times the vector width. 5347 unsigned Cost = 0; 5348 5349 if (!RetTy->isVoidTy() && VF != 1) { 5350 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5351 VectorTy); 5352 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5353 VectorTy); 5354 5355 // The cost of inserting the results plus extracting each one of the 5356 // operands. 5357 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5358 } 5359 5360 // The cost of executing VF copies of the scalar instruction. This opcode 5361 // is unknown. Assume that it is the same as 'mul'. 5362 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5363 return Cost; 5364 } 5365 }// end of switch. 5366 } 5367 5368 char LoopVectorize::ID = 0; 5369 static const char lv_name[] = "Loop Vectorization"; 5370 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5371 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5372 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5373 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5374 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5375 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5376 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5377 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5378 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5379 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5380 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5381 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5382 5383 namespace llvm { 5384 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5385 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5386 } 5387 } 5388 5389 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5390 // Check for a store. 5391 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5392 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5393 5394 // Check for a load. 5395 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5396 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5397 5398 return false; 5399 } 5400 5401 5402 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5403 bool IfPredicateStore) { 5404 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5405 // Holds vector parameters or scalars, in case of uniform vals. 5406 SmallVector<VectorParts, 4> Params; 5407 5408 setDebugLocFromInst(Builder, Instr); 5409 5410 // Find all of the vectorized parameters. 5411 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5412 Value *SrcOp = Instr->getOperand(op); 5413 5414 // If we are accessing the old induction variable, use the new one. 5415 if (SrcOp == OldInduction) { 5416 Params.push_back(getVectorValue(SrcOp)); 5417 continue; 5418 } 5419 5420 // Try using previously calculated values. 5421 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5422 5423 // If the src is an instruction that appeared earlier in the basic block 5424 // then it should already be vectorized. 5425 if (SrcInst && OrigLoop->contains(SrcInst)) { 5426 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5427 // The parameter is a vector value from earlier. 5428 Params.push_back(WidenMap.get(SrcInst)); 5429 } else { 5430 // The parameter is a scalar from outside the loop. Maybe even a constant. 5431 VectorParts Scalars; 5432 Scalars.append(UF, SrcOp); 5433 Params.push_back(Scalars); 5434 } 5435 } 5436 5437 assert(Params.size() == Instr->getNumOperands() && 5438 "Invalid number of operands"); 5439 5440 // Does this instruction return a value ? 5441 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5442 5443 Value *UndefVec = IsVoidRetTy ? nullptr : 5444 UndefValue::get(Instr->getType()); 5445 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5446 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5447 5448 Instruction *InsertPt = Builder.GetInsertPoint(); 5449 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5450 BasicBlock *CondBlock = nullptr; 5451 5452 VectorParts Cond; 5453 Loop *VectorLp = nullptr; 5454 if (IfPredicateStore) { 5455 assert(Instr->getParent()->getSinglePredecessor() && 5456 "Only support single predecessor blocks"); 5457 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5458 Instr->getParent()); 5459 VectorLp = LI->getLoopFor(IfBlock); 5460 assert(VectorLp && "Must have a loop for this block"); 5461 } 5462 5463 // For each vector unroll 'part': 5464 for (unsigned Part = 0; Part < UF; ++Part) { 5465 // For each scalar that we create: 5466 5467 // Start an "if (pred) a[i] = ..." block. 5468 Value *Cmp = nullptr; 5469 if (IfPredicateStore) { 5470 if (Cond[Part]->getType()->isVectorTy()) 5471 Cond[Part] = 5472 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5473 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5474 ConstantInt::get(Cond[Part]->getType(), 1)); 5475 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5476 LoopVectorBody.push_back(CondBlock); 5477 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5478 // Update Builder with newly created basic block. 5479 Builder.SetInsertPoint(InsertPt); 5480 } 5481 5482 Instruction *Cloned = Instr->clone(); 5483 if (!IsVoidRetTy) 5484 Cloned->setName(Instr->getName() + ".cloned"); 5485 // Replace the operands of the cloned instructions with extracted scalars. 5486 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5487 Value *Op = Params[op][Part]; 5488 Cloned->setOperand(op, Op); 5489 } 5490 5491 // Place the cloned scalar in the new loop. 5492 Builder.Insert(Cloned); 5493 5494 // If the original scalar returns a value we need to place it in a vector 5495 // so that future users will be able to use it. 5496 if (!IsVoidRetTy) 5497 VecResults[Part] = Cloned; 5498 5499 // End if-block. 5500 if (IfPredicateStore) { 5501 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5502 LoopVectorBody.push_back(NewIfBlock); 5503 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5504 Builder.SetInsertPoint(InsertPt); 5505 ReplaceInstWithInst(IfBlock->getTerminator(), 5506 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 5507 IfBlock = NewIfBlock; 5508 } 5509 } 5510 } 5511 5512 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5513 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5514 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5515 5516 return scalarizeInstruction(Instr, IfPredicateStore); 5517 } 5518 5519 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5520 return Vec; 5521 } 5522 5523 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5524 return V; 5525 } 5526 5527 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5528 // When unrolling and the VF is 1, we only need to add a simple scalar. 5529 Type *ITy = Val->getType(); 5530 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5531 Constant *C = ConstantInt::get(ITy, StartIdx); 5532 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5533 } 5534