1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/Hashing.h" 52 #include "llvm/ADT/MapVector.h" 53 #include "llvm/ADT/Optional.h" 54 #include "llvm/ADT/SCCIterator.h" 55 #include "llvm/ADT/SetVector.h" 56 #include "llvm/ADT/SmallPtrSet.h" 57 #include "llvm/ADT/SmallSet.h" 58 #include "llvm/ADT/SmallVector.h" 59 #include "llvm/ADT/Statistic.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/Analysis/CodeMetrics.h" 62 #include "llvm/Analysis/GlobalsModRef.h" 63 #include "llvm/Analysis/LoopInfo.h" 64 #include "llvm/Analysis/LoopIterator.h" 65 #include "llvm/Analysis/LoopPass.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/Analysis/VectorUtils.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/IR/Verifier.h" 88 #include "llvm/Pass.h" 89 #include "llvm/Support/BranchProbability.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/raw_ostream.h" 93 #include "llvm/Transforms/Scalar.h" 94 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 95 #include "llvm/Transforms/Utils/Local.h" 96 #include "llvm/Transforms/Utils/LoopSimplify.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/LoopVersioning.h" 99 #include "llvm/Transforms/Vectorize.h" 100 #include <algorithm> 101 #include <map> 102 #include <tuple> 103 104 using namespace llvm; 105 using namespace llvm::PatternMatch; 106 107 #define LV_NAME "loop-vectorize" 108 #define DEBUG_TYPE LV_NAME 109 110 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 111 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 112 113 static cl::opt<bool> 114 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 115 cl::desc("Enable if-conversion during vectorization.")); 116 117 /// We don't vectorize loops with a known constant trip count below this number. 118 static cl::opt<unsigned> TinyTripCountVectorThreshold( 119 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 120 cl::desc("Don't vectorize loops with a constant " 121 "trip count that is smaller than this " 122 "value.")); 123 124 static cl::opt<bool> MaximizeBandwidth( 125 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 126 cl::desc("Maximize bandwidth when selecting vectorization factor which " 127 "will be determined by the smallest type in loop.")); 128 129 static cl::opt<bool> EnableInterleavedMemAccesses( 130 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 131 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 132 133 /// Maximum factor for an interleaved memory access. 134 static cl::opt<unsigned> MaxInterleaveGroupFactor( 135 "max-interleave-group-factor", cl::Hidden, 136 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 137 cl::init(8)); 138 139 /// We don't interleave loops with a known constant trip count below this 140 /// number. 141 static const unsigned TinyTripCountInterleaveThreshold = 128; 142 143 static cl::opt<unsigned> ForceTargetNumScalarRegs( 144 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of scalar registers.")); 146 147 static cl::opt<unsigned> ForceTargetNumVectorRegs( 148 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of vector registers.")); 150 151 /// Maximum vectorization interleave count. 152 static const unsigned MaxInterleaveFactor = 16; 153 154 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 155 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's max interleave factor for " 157 "scalar loops.")); 158 159 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 160 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's max interleave factor for " 162 "vectorized loops.")); 163 164 static cl::opt<unsigned> ForceTargetInstructionCost( 165 "force-target-instruction-cost", cl::init(0), cl::Hidden, 166 cl::desc("A flag that overrides the target's expected cost for " 167 "an instruction to a single constant value. Mostly " 168 "useful for getting consistent testing.")); 169 170 static cl::opt<unsigned> SmallLoopCost( 171 "small-loop-cost", cl::init(20), cl::Hidden, 172 cl::desc( 173 "The cost of a loop that is considered 'small' by the interleaver.")); 174 175 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 176 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 177 cl::desc("Enable the use of the block frequency analysis to access PGO " 178 "heuristics minimizing code growth in cold regions and being more " 179 "aggressive in hot regions.")); 180 181 // Runtime interleave loops for load/store throughput. 182 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 183 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 184 cl::desc( 185 "Enable runtime interleaving until load/store ports are saturated")); 186 187 /// The number of stores in a loop that are allowed to need predication. 188 static cl::opt<unsigned> NumberOfStoresToPredicate( 189 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 190 cl::desc("Max number of stores to be predicated behind an if.")); 191 192 static cl::opt<bool> EnableIndVarRegisterHeur( 193 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 194 cl::desc("Count the induction variable only once when interleaving")); 195 196 static cl::opt<bool> EnableCondStoresVectorization( 197 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 198 cl::desc("Enable if predication of stores during vectorization.")); 199 200 static cl::opt<unsigned> MaxNestedScalarReductionIC( 201 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 202 cl::desc("The maximum interleave count to use when interleaving a scalar " 203 "reduction in a nested loop.")); 204 205 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 206 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 207 cl::desc("The maximum allowed number of runtime memory checks with a " 208 "vectorize(enable) pragma.")); 209 210 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 211 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 212 cl::desc("The maximum number of SCEV checks allowed.")); 213 214 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 215 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed with a " 217 "vectorize(enable) pragma")); 218 219 /// Create an analysis remark that explains why vectorization failed 220 /// 221 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 222 /// RemarkName is the identifier for the remark. If \p I is passed it is an 223 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 224 /// the location of the remark. \return the remark object that can be 225 /// streamed to. 226 static OptimizationRemarkAnalysis 227 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 228 Instruction *I = nullptr) { 229 Value *CodeRegion = TheLoop->getHeader(); 230 DebugLoc DL = TheLoop->getStartLoc(); 231 232 if (I) { 233 CodeRegion = I->getParent(); 234 // If there is no debug location attached to the instruction, revert back to 235 // using the loop's. 236 if (I->getDebugLoc()) 237 DL = I->getDebugLoc(); 238 } 239 240 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 241 R << "loop not vectorized: "; 242 return R; 243 } 244 245 namespace { 246 247 // Forward declarations. 248 class LoopVectorizeHints; 249 class LoopVectorizationLegality; 250 class LoopVectorizationCostModel; 251 class LoopVectorizationRequirements; 252 253 /// Returns true if the given loop body has a cycle, excluding the loop 254 /// itself. 255 static bool hasCyclesInLoopBody(const Loop &L) { 256 if (!L.empty()) 257 return true; 258 259 for (const auto &SCC : 260 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 261 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 262 if (SCC.size() > 1) { 263 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 264 DEBUG(L.dump()); 265 return true; 266 } 267 } 268 return false; 269 } 270 271 /// A helper function for converting Scalar types to vector types. 272 /// If the incoming type is void, we return void. If the VF is 1, we return 273 /// the scalar type. 274 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 275 if (Scalar->isVoidTy() || VF == 1) 276 return Scalar; 277 return VectorType::get(Scalar, VF); 278 } 279 280 // FIXME: The following helper functions have multiple implementations 281 // in the project. They can be effectively organized in a common Load/Store 282 // utilities unit. 283 284 /// A helper function that returns the pointer operand of a load or store 285 /// instruction. 286 static Value *getPointerOperand(Value *I) { 287 if (auto *LI = dyn_cast<LoadInst>(I)) 288 return LI->getPointerOperand(); 289 if (auto *SI = dyn_cast<StoreInst>(I)) 290 return SI->getPointerOperand(); 291 return nullptr; 292 } 293 294 /// A helper function that returns the type of loaded or stored value. 295 static Type *getMemInstValueType(Value *I) { 296 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 297 "Expected Load or Store instruction"); 298 if (auto *LI = dyn_cast<LoadInst>(I)) 299 return LI->getType(); 300 return cast<StoreInst>(I)->getValueOperand()->getType(); 301 } 302 303 /// A helper function that returns the alignment of load or store instruction. 304 static unsigned getMemInstAlignment(Value *I) { 305 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 306 "Expected Load or Store instruction"); 307 if (auto *LI = dyn_cast<LoadInst>(I)) 308 return LI->getAlignment(); 309 return cast<StoreInst>(I)->getAlignment(); 310 } 311 312 /// A helper function that returns the address space of the pointer operand of 313 /// load or store instruction. 314 static unsigned getMemInstAddressSpace(Value *I) { 315 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 316 "Expected Load or Store instruction"); 317 if (auto *LI = dyn_cast<LoadInst>(I)) 318 return LI->getPointerAddressSpace(); 319 return cast<StoreInst>(I)->getPointerAddressSpace(); 320 } 321 322 /// A helper function that returns true if the given type is irregular. The 323 /// type is irregular if its allocated size doesn't equal the store size of an 324 /// element of the corresponding vector type at the given vectorization factor. 325 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 326 327 // Determine if an array of VF elements of type Ty is "bitcast compatible" 328 // with a <VF x Ty> vector. 329 if (VF > 1) { 330 auto *VectorTy = VectorType::get(Ty, VF); 331 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 332 } 333 334 // If the vectorization factor is one, we just check if an array of type Ty 335 // requires padding between elements. 336 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 337 } 338 339 /// A helper function that returns the reciprocal of the block probability of 340 /// predicated blocks. If we return X, we are assuming the predicated block 341 /// will execute once for for every X iterations of the loop header. 342 /// 343 /// TODO: We should use actual block probability here, if available. Currently, 344 /// we always assume predicated blocks have a 50% chance of executing. 345 static unsigned getReciprocalPredBlockProb() { return 2; } 346 347 /// A helper function that adds a 'fast' flag to floating-point operations. 348 static Value *addFastMathFlag(Value *V) { 349 if (isa<FPMathOperator>(V)) { 350 FastMathFlags Flags; 351 Flags.setUnsafeAlgebra(); 352 cast<Instruction>(V)->setFastMathFlags(Flags); 353 } 354 return V; 355 } 356 357 /// A helper function that returns an integer or floating-point constant with 358 /// value C. 359 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 360 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 361 : ConstantFP::get(Ty, C); 362 } 363 364 /// InnerLoopVectorizer vectorizes loops which contain only one basic 365 /// block to a specified vectorization factor (VF). 366 /// This class performs the widening of scalars into vectors, or multiple 367 /// scalars. This class also implements the following features: 368 /// * It inserts an epilogue loop for handling loops that don't have iteration 369 /// counts that are known to be a multiple of the vectorization factor. 370 /// * It handles the code generation for reduction variables. 371 /// * Scalarization (implementation using scalars) of un-vectorizable 372 /// instructions. 373 /// InnerLoopVectorizer does not perform any vectorization-legality 374 /// checks, and relies on the caller to check for the different legality 375 /// aspects. The InnerLoopVectorizer relies on the 376 /// LoopVectorizationLegality class to provide information about the induction 377 /// and reduction variables that were found to a given vectorization factor. 378 class InnerLoopVectorizer { 379 public: 380 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 381 LoopInfo *LI, DominatorTree *DT, 382 const TargetLibraryInfo *TLI, 383 const TargetTransformInfo *TTI, AssumptionCache *AC, 384 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 385 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 386 LoopVectorizationCostModel *CM) 387 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 388 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 389 Builder(PSE.getSE()->getContext()), Induction(nullptr), 390 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 391 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 392 AddedSafetyChecks(false) {} 393 394 // Perform the actual loop widening (vectorization). 395 void vectorize() { 396 // Create a new empty loop. Unlink the old loop and connect the new one. 397 createEmptyLoop(); 398 // Widen each instruction in the old loop to a new one in the new loop. 399 vectorizeLoop(); 400 } 401 402 // Return true if any runtime check is added. 403 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 404 405 virtual ~InnerLoopVectorizer() {} 406 407 protected: 408 /// A small list of PHINodes. 409 typedef SmallVector<PHINode *, 4> PhiVector; 410 411 /// A type for vectorized values in the new loop. Each value from the 412 /// original loop, when vectorized, is represented by UF vector values in the 413 /// new unrolled loop, where UF is the unroll factor. 414 typedef SmallVector<Value *, 2> VectorParts; 415 416 /// A type for scalarized values in the new loop. Each value from the 417 /// original loop, when scalarized, is represented by UF x VF scalar values 418 /// in the new unrolled loop, where UF is the unroll factor and VF is the 419 /// vectorization factor. 420 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 421 422 // When we if-convert we need to create edge masks. We have to cache values 423 // so that we don't end up with exponential recursion/IR. 424 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 425 EdgeMaskCache; 426 427 /// Create an empty loop, based on the loop ranges of the old loop. 428 void createEmptyLoop(); 429 430 /// Set up the values of the IVs correctly when exiting the vector loop. 431 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 432 Value *CountRoundDown, Value *EndValue, 433 BasicBlock *MiddleBlock); 434 435 /// Create a new induction variable inside L. 436 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 437 Value *Step, Instruction *DL); 438 /// Copy and widen the instructions from the old loop. 439 virtual void vectorizeLoop(); 440 441 /// Handle all cross-iteration phis in the header. 442 void fixCrossIterationPHIs(); 443 444 /// Fix a first-order recurrence. This is the second phase of vectorizing 445 /// this phi node. 446 void fixFirstOrderRecurrence(PHINode *Phi); 447 448 /// Fix a reduction cross-iteration phi. This is the second phase of 449 /// vectorizing this phi node. 450 void fixReduction(PHINode *Phi); 451 452 /// \brief The Loop exit block may have single value PHI nodes where the 453 /// incoming value is 'Undef'. While vectorizing we only handled real values 454 /// that were defined inside the loop. Here we fix the 'undef case'. 455 /// See PR14725. 456 void fixLCSSAPHIs(); 457 458 /// Iteratively sink the scalarized operands of a predicated instruction into 459 /// the block that was created for it. 460 void sinkScalarOperands(Instruction *PredInst); 461 462 /// Predicate conditional instructions that require predication on their 463 /// respective conditions. 464 void predicateInstructions(); 465 466 /// Collect the instructions from the original loop that would be trivially 467 /// dead in the vectorized loop if generated. 468 void collectTriviallyDeadInstructions(); 469 470 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 471 /// represented as. 472 void truncateToMinimalBitwidths(); 473 474 /// A helper function that computes the predicate of the block BB, assuming 475 /// that the header block of the loop is set to True. It returns the *entry* 476 /// mask for the block BB. 477 VectorParts createBlockInMask(BasicBlock *BB); 478 /// A helper function that computes the predicate of the edge between SRC 479 /// and DST. 480 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 481 482 /// A helper function to vectorize a single BB within the innermost loop. 483 void vectorizeBlockInLoop(BasicBlock *BB); 484 485 /// Vectorize a single PHINode in a block. This method handles the induction 486 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 487 /// arbitrary length vectors. 488 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 489 490 /// Insert the new loop to the loop hierarchy and pass manager 491 /// and update the analysis passes. 492 void updateAnalysis(); 493 494 /// This instruction is un-vectorizable. Implement it as a sequence 495 /// of scalars. If \p IfPredicateInstr is true we need to 'hide' each 496 /// scalarized instruction behind an if block predicated on the control 497 /// dependence of the instruction. 498 virtual void scalarizeInstruction(Instruction *Instr, 499 bool IfPredicateInstr = false); 500 501 /// Vectorize Load and Store instructions, 502 virtual void vectorizeMemoryInstruction(Instruction *Instr); 503 504 /// Create a broadcast instruction. This method generates a broadcast 505 /// instruction (shuffle) for loop invariant values and for the induction 506 /// value. If this is the induction variable then we extend it to N, N+1, ... 507 /// this is needed because each iteration in the loop corresponds to a SIMD 508 /// element. 509 virtual Value *getBroadcastInstrs(Value *V); 510 511 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 512 /// to each vector element of Val. The sequence starts at StartIndex. 513 /// \p Opcode is relevant for FP induction variable. 514 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 515 Instruction::BinaryOps Opcode = 516 Instruction::BinaryOpsEnd); 517 518 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 519 /// variable on which to base the steps, \p Step is the size of the step, and 520 /// \p EntryVal is the value from the original loop that maps to the steps. 521 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 522 /// can be a truncate instruction). 523 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 524 const InductionDescriptor &ID); 525 526 /// Create a vector induction phi node based on an existing scalar one. \p 527 /// EntryVal is the value from the original loop that maps to the vector phi 528 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 529 /// truncate instruction, instead of widening the original IV, we widen a 530 /// version of the IV truncated to \p EntryVal's type. 531 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 532 Value *Step, Instruction *EntryVal); 533 534 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 535 /// is provided, the integer induction variable will first be truncated to 536 /// the corresponding type. 537 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 538 539 /// Returns true if an instruction \p I should be scalarized instead of 540 /// vectorized for the chosen vectorization factor. 541 bool shouldScalarizeInstruction(Instruction *I) const; 542 543 /// Returns true if we should generate a scalar version of \p IV. 544 bool needsScalarInduction(Instruction *IV) const; 545 546 /// Return a constant reference to the VectorParts corresponding to \p V from 547 /// the original loop. If the value has already been vectorized, the 548 /// corresponding vector entry in VectorLoopValueMap is returned. If, 549 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 550 /// new vector values on-demand by inserting the scalar values into vectors 551 /// with an insertelement sequence. If the value has been neither vectorized 552 /// nor scalarized, it must be loop invariant, so we simply broadcast the 553 /// value into vectors. 554 const VectorParts &getVectorValue(Value *V); 555 556 /// Return a value in the new loop corresponding to \p V from the original 557 /// loop at unroll index \p Part and vector index \p Lane. If the value has 558 /// been vectorized but not scalarized, the necessary extractelement 559 /// instruction will be generated. 560 Value *getScalarValue(Value *V, unsigned Part, unsigned Lane); 561 562 /// Try to vectorize the interleaved access group that \p Instr belongs to. 563 void vectorizeInterleaveGroup(Instruction *Instr); 564 565 /// Generate a shuffle sequence that will reverse the vector Vec. 566 virtual Value *reverseVector(Value *Vec); 567 568 /// Returns (and creates if needed) the original loop trip count. 569 Value *getOrCreateTripCount(Loop *NewLoop); 570 571 /// Returns (and creates if needed) the trip count of the widened loop. 572 Value *getOrCreateVectorTripCount(Loop *NewLoop); 573 574 /// Emit a bypass check to see if the trip count would overflow, or we 575 /// wouldn't have enough iterations to execute one vector loop. 576 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 577 /// Emit a bypass check to see if the vector trip count is nonzero. 578 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 579 /// Emit a bypass check to see if all of the SCEV assumptions we've 580 /// had to make are correct. 581 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 582 /// Emit bypass checks to check any memory assumptions we may have made. 583 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 584 585 /// Add additional metadata to \p To that was not present on \p Orig. 586 /// 587 /// Currently this is used to add the noalias annotations based on the 588 /// inserted memchecks. Use this for instructions that are *cloned* into the 589 /// vector loop. 590 void addNewMetadata(Instruction *To, const Instruction *Orig); 591 592 /// Add metadata from one instruction to another. 593 /// 594 /// This includes both the original MDs from \p From and additional ones (\see 595 /// addNewMetadata). Use this for *newly created* instructions in the vector 596 /// loop. 597 void addMetadata(Instruction *To, Instruction *From); 598 599 /// \brief Similar to the previous function but it adds the metadata to a 600 /// vector of instructions. 601 void addMetadata(ArrayRef<Value *> To, Instruction *From); 602 603 /// \brief Set the debug location in the builder using the debug location in 604 /// the instruction. 605 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 606 607 /// This is a helper class for maintaining vectorization state. It's used for 608 /// mapping values from the original loop to their corresponding values in 609 /// the new loop. Two mappings are maintained: one for vectorized values and 610 /// one for scalarized values. Vectorized values are represented with UF 611 /// vector values in the new loop, and scalarized values are represented with 612 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 613 /// vectorization factors, respectively. 614 /// 615 /// Entries can be added to either map with initVector and initScalar, which 616 /// initialize and return a constant reference to the new entry. If a 617 /// non-constant reference to a vector entry is required, getVector can be 618 /// used to retrieve a mutable entry. We currently directly modify the mapped 619 /// values during "fix-up" operations that occur once the first phase of 620 /// widening is complete. These operations include type truncation and the 621 /// second phase of recurrence widening. 622 /// 623 /// Otherwise, entries from either map should be accessed using the 624 /// getVectorValue or getScalarValue functions from InnerLoopVectorizer. 625 /// getVectorValue and getScalarValue coordinate to generate a vector or 626 /// scalar value on-demand if one is not yet available. When vectorizing a 627 /// loop, we visit the definition of an instruction before its uses. When 628 /// visiting the definition, we either vectorize or scalarize the 629 /// instruction, creating an entry for it in the corresponding map. (In some 630 /// cases, such as induction variables, we will create both vector and scalar 631 /// entries.) Then, as we encounter uses of the definition, we derive values 632 /// for each scalar or vector use unless such a value is already available. 633 /// For example, if we scalarize a definition and one of its uses is vector, 634 /// we build the required vector on-demand with an insertelement sequence 635 /// when visiting the use. Otherwise, if the use is scalar, we can use the 636 /// existing scalar definition. 637 struct ValueMap { 638 639 /// Construct an empty map with the given unroll and vectorization factors. 640 ValueMap(unsigned UnrollFactor, unsigned VecWidth) 641 : UF(UnrollFactor), VF(VecWidth) { 642 // The unroll and vectorization factors are only used in asserts builds 643 // to verify map entries are sized appropriately. 644 (void)UF; 645 (void)VF; 646 } 647 648 /// \return True if the map has a vector entry for \p Key. 649 bool hasVector(Value *Key) const { return VectorMapStorage.count(Key); } 650 651 /// \return True if the map has a scalar entry for \p Key. 652 bool hasScalar(Value *Key) const { return ScalarMapStorage.count(Key); } 653 654 /// \brief Map \p Key to the given VectorParts \p Entry, and return a 655 /// constant reference to the new vector map entry. The given key should 656 /// not already be in the map, and the given VectorParts should be 657 /// correctly sized for the current unroll factor. 658 const VectorParts &initVector(Value *Key, const VectorParts &Entry) { 659 assert(!hasVector(Key) && "Vector entry already initialized"); 660 assert(Entry.size() == UF && "VectorParts has wrong dimensions"); 661 VectorMapStorage[Key] = Entry; 662 return VectorMapStorage[Key]; 663 } 664 665 /// \brief Map \p Key to the given ScalarParts \p Entry, and return a 666 /// constant reference to the new scalar map entry. The given key should 667 /// not already be in the map, and the given ScalarParts should be 668 /// correctly sized for the current unroll and vectorization factors. 669 const ScalarParts &initScalar(Value *Key, const ScalarParts &Entry) { 670 assert(!hasScalar(Key) && "Scalar entry already initialized"); 671 assert(Entry.size() == UF && 672 all_of(make_range(Entry.begin(), Entry.end()), 673 [&](const SmallVectorImpl<Value *> &Values) -> bool { 674 return Values.size() == VF; 675 }) && 676 "ScalarParts has wrong dimensions"); 677 ScalarMapStorage[Key] = Entry; 678 return ScalarMapStorage[Key]; 679 } 680 681 /// \return A reference to the vector map entry corresponding to \p Key. 682 /// The key should already be in the map. This function should only be used 683 /// when it's necessary to update values that have already been vectorized. 684 /// This is the case for "fix-up" operations including type truncation and 685 /// the second phase of recurrence vectorization. If a non-const reference 686 /// isn't required, getVectorValue should be used instead. 687 VectorParts &getVector(Value *Key) { 688 assert(hasVector(Key) && "Vector entry not initialized"); 689 return VectorMapStorage.find(Key)->second; 690 } 691 692 /// Retrieve an entry from the vector or scalar maps. The preferred way to 693 /// access an existing mapped entry is with getVectorValue or 694 /// getScalarValue from InnerLoopVectorizer. Until those functions can be 695 /// moved inside ValueMap, we have to declare them as friends. 696 friend const VectorParts &InnerLoopVectorizer::getVectorValue(Value *V); 697 friend Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 698 unsigned Lane); 699 700 private: 701 /// The unroll factor. Each entry in the vector map contains UF vector 702 /// values. 703 unsigned UF; 704 705 /// The vectorization factor. Each entry in the scalar map contains UF x VF 706 /// scalar values. 707 unsigned VF; 708 709 /// The vector and scalar map storage. We use std::map and not DenseMap 710 /// because insertions to DenseMap invalidate its iterators. 711 std::map<Value *, VectorParts> VectorMapStorage; 712 std::map<Value *, ScalarParts> ScalarMapStorage; 713 }; 714 715 /// The original loop. 716 Loop *OrigLoop; 717 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 718 /// dynamic knowledge to simplify SCEV expressions and converts them to a 719 /// more usable form. 720 PredicatedScalarEvolution &PSE; 721 /// Loop Info. 722 LoopInfo *LI; 723 /// Dominator Tree. 724 DominatorTree *DT; 725 /// Alias Analysis. 726 AliasAnalysis *AA; 727 /// Target Library Info. 728 const TargetLibraryInfo *TLI; 729 /// Target Transform Info. 730 const TargetTransformInfo *TTI; 731 /// Assumption Cache. 732 AssumptionCache *AC; 733 /// Interface to emit optimization remarks. 734 OptimizationRemarkEmitter *ORE; 735 736 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 737 /// used. 738 /// 739 /// This is currently only used to add no-alias metadata based on the 740 /// memchecks. The actually versioning is performed manually. 741 std::unique_ptr<LoopVersioning> LVer; 742 743 /// The vectorization SIMD factor to use. Each vector will have this many 744 /// vector elements. 745 unsigned VF; 746 747 protected: 748 /// The vectorization unroll factor to use. Each scalar is vectorized to this 749 /// many different vector instructions. 750 unsigned UF; 751 752 /// The builder that we use 753 IRBuilder<> Builder; 754 755 // --- Vectorization state --- 756 757 /// The vector-loop preheader. 758 BasicBlock *LoopVectorPreHeader; 759 /// The scalar-loop preheader. 760 BasicBlock *LoopScalarPreHeader; 761 /// Middle Block between the vector and the scalar. 762 BasicBlock *LoopMiddleBlock; 763 /// The ExitBlock of the scalar loop. 764 BasicBlock *LoopExitBlock; 765 /// The vector loop body. 766 BasicBlock *LoopVectorBody; 767 /// The scalar loop body. 768 BasicBlock *LoopScalarBody; 769 /// A list of all bypass blocks. The first block is the entry of the loop. 770 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 771 772 /// The new Induction variable which was added to the new block. 773 PHINode *Induction; 774 /// The induction variable of the old basic block. 775 PHINode *OldInduction; 776 777 /// Maps values from the original loop to their corresponding values in the 778 /// vectorized loop. A key value can map to either vector values, scalar 779 /// values or both kinds of values, depending on whether the key was 780 /// vectorized and scalarized. 781 ValueMap VectorLoopValueMap; 782 783 /// Store instructions that should be predicated, as a pair 784 /// <StoreInst, Predicate> 785 SmallVector<std::pair<Instruction *, Value *>, 4> PredicatedInstructions; 786 EdgeMaskCache MaskCache; 787 /// Trip count of the original loop. 788 Value *TripCount; 789 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 790 Value *VectorTripCount; 791 792 /// The legality analysis. 793 LoopVectorizationLegality *Legal; 794 795 /// The profitablity analysis. 796 LoopVectorizationCostModel *Cost; 797 798 // Record whether runtime checks are added. 799 bool AddedSafetyChecks; 800 801 // Holds instructions from the original loop whose counterparts in the 802 // vectorized loop would be trivially dead if generated. For example, 803 // original induction update instructions can become dead because we 804 // separately emit induction "steps" when generating code for the new loop. 805 // Similarly, we create a new latch condition when setting up the structure 806 // of the new loop, so the old one can become dead. 807 SmallPtrSet<Instruction *, 4> DeadInstructions; 808 809 // Holds the end values for each induction variable. We save the end values 810 // so we can later fix-up the external users of the induction variables. 811 DenseMap<PHINode *, Value *> IVEndValues; 812 }; 813 814 class InnerLoopUnroller : public InnerLoopVectorizer { 815 public: 816 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 817 LoopInfo *LI, DominatorTree *DT, 818 const TargetLibraryInfo *TLI, 819 const TargetTransformInfo *TTI, AssumptionCache *AC, 820 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 821 LoopVectorizationLegality *LVL, 822 LoopVectorizationCostModel *CM) 823 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 824 UnrollFactor, LVL, CM) {} 825 826 private: 827 void vectorizeMemoryInstruction(Instruction *Instr) override; 828 Value *getBroadcastInstrs(Value *V) override; 829 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 830 Instruction::BinaryOps Opcode = 831 Instruction::BinaryOpsEnd) override; 832 Value *reverseVector(Value *Vec) override; 833 }; 834 835 /// \brief Look for a meaningful debug location on the instruction or it's 836 /// operands. 837 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 838 if (!I) 839 return I; 840 841 DebugLoc Empty; 842 if (I->getDebugLoc() != Empty) 843 return I; 844 845 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 846 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 847 if (OpInst->getDebugLoc() != Empty) 848 return OpInst; 849 } 850 851 return I; 852 } 853 854 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 855 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 856 const DILocation *DIL = Inst->getDebugLoc(); 857 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 858 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 859 else 860 B.SetCurrentDebugLocation(DIL); 861 } else 862 B.SetCurrentDebugLocation(DebugLoc()); 863 } 864 865 #ifndef NDEBUG 866 /// \return string containing a file name and a line # for the given loop. 867 static std::string getDebugLocString(const Loop *L) { 868 std::string Result; 869 if (L) { 870 raw_string_ostream OS(Result); 871 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 872 LoopDbgLoc.print(OS); 873 else 874 // Just print the module name. 875 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 876 OS.flush(); 877 } 878 return Result; 879 } 880 #endif 881 882 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 883 const Instruction *Orig) { 884 // If the loop was versioned with memchecks, add the corresponding no-alias 885 // metadata. 886 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 887 LVer->annotateInstWithNoAlias(To, Orig); 888 } 889 890 void InnerLoopVectorizer::addMetadata(Instruction *To, 891 Instruction *From) { 892 propagateMetadata(To, From); 893 addNewMetadata(To, From); 894 } 895 896 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 897 Instruction *From) { 898 for (Value *V : To) { 899 if (Instruction *I = dyn_cast<Instruction>(V)) 900 addMetadata(I, From); 901 } 902 } 903 904 /// \brief The group of interleaved loads/stores sharing the same stride and 905 /// close to each other. 906 /// 907 /// Each member in this group has an index starting from 0, and the largest 908 /// index should be less than interleaved factor, which is equal to the absolute 909 /// value of the access's stride. 910 /// 911 /// E.g. An interleaved load group of factor 4: 912 /// for (unsigned i = 0; i < 1024; i+=4) { 913 /// a = A[i]; // Member of index 0 914 /// b = A[i+1]; // Member of index 1 915 /// d = A[i+3]; // Member of index 3 916 /// ... 917 /// } 918 /// 919 /// An interleaved store group of factor 4: 920 /// for (unsigned i = 0; i < 1024; i+=4) { 921 /// ... 922 /// A[i] = a; // Member of index 0 923 /// A[i+1] = b; // Member of index 1 924 /// A[i+2] = c; // Member of index 2 925 /// A[i+3] = d; // Member of index 3 926 /// } 927 /// 928 /// Note: the interleaved load group could have gaps (missing members), but 929 /// the interleaved store group doesn't allow gaps. 930 class InterleaveGroup { 931 public: 932 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 933 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 934 assert(Align && "The alignment should be non-zero"); 935 936 Factor = std::abs(Stride); 937 assert(Factor > 1 && "Invalid interleave factor"); 938 939 Reverse = Stride < 0; 940 Members[0] = Instr; 941 } 942 943 bool isReverse() const { return Reverse; } 944 unsigned getFactor() const { return Factor; } 945 unsigned getAlignment() const { return Align; } 946 unsigned getNumMembers() const { return Members.size(); } 947 948 /// \brief Try to insert a new member \p Instr with index \p Index and 949 /// alignment \p NewAlign. The index is related to the leader and it could be 950 /// negative if it is the new leader. 951 /// 952 /// \returns false if the instruction doesn't belong to the group. 953 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 954 assert(NewAlign && "The new member's alignment should be non-zero"); 955 956 int Key = Index + SmallestKey; 957 958 // Skip if there is already a member with the same index. 959 if (Members.count(Key)) 960 return false; 961 962 if (Key > LargestKey) { 963 // The largest index is always less than the interleave factor. 964 if (Index >= static_cast<int>(Factor)) 965 return false; 966 967 LargestKey = Key; 968 } else if (Key < SmallestKey) { 969 // The largest index is always less than the interleave factor. 970 if (LargestKey - Key >= static_cast<int>(Factor)) 971 return false; 972 973 SmallestKey = Key; 974 } 975 976 // It's always safe to select the minimum alignment. 977 Align = std::min(Align, NewAlign); 978 Members[Key] = Instr; 979 return true; 980 } 981 982 /// \brief Get the member with the given index \p Index 983 /// 984 /// \returns nullptr if contains no such member. 985 Instruction *getMember(unsigned Index) const { 986 int Key = SmallestKey + Index; 987 if (!Members.count(Key)) 988 return nullptr; 989 990 return Members.find(Key)->second; 991 } 992 993 /// \brief Get the index for the given member. Unlike the key in the member 994 /// map, the index starts from 0. 995 unsigned getIndex(Instruction *Instr) const { 996 for (auto I : Members) 997 if (I.second == Instr) 998 return I.first - SmallestKey; 999 1000 llvm_unreachable("InterleaveGroup contains no such member"); 1001 } 1002 1003 Instruction *getInsertPos() const { return InsertPos; } 1004 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 1005 1006 private: 1007 unsigned Factor; // Interleave Factor. 1008 bool Reverse; 1009 unsigned Align; 1010 DenseMap<int, Instruction *> Members; 1011 int SmallestKey; 1012 int LargestKey; 1013 1014 // To avoid breaking dependences, vectorized instructions of an interleave 1015 // group should be inserted at either the first load or the last store in 1016 // program order. 1017 // 1018 // E.g. %even = load i32 // Insert Position 1019 // %add = add i32 %even // Use of %even 1020 // %odd = load i32 1021 // 1022 // store i32 %even 1023 // %odd = add i32 // Def of %odd 1024 // store i32 %odd // Insert Position 1025 Instruction *InsertPos; 1026 }; 1027 1028 /// \brief Drive the analysis of interleaved memory accesses in the loop. 1029 /// 1030 /// Use this class to analyze interleaved accesses only when we can vectorize 1031 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 1032 /// on interleaved accesses is unsafe. 1033 /// 1034 /// The analysis collects interleave groups and records the relationships 1035 /// between the member and the group in a map. 1036 class InterleavedAccessInfo { 1037 public: 1038 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1039 DominatorTree *DT, LoopInfo *LI) 1040 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 1041 RequiresScalarEpilogue(false) {} 1042 1043 ~InterleavedAccessInfo() { 1044 SmallSet<InterleaveGroup *, 4> DelSet; 1045 // Avoid releasing a pointer twice. 1046 for (auto &I : InterleaveGroupMap) 1047 DelSet.insert(I.second); 1048 for (auto *Ptr : DelSet) 1049 delete Ptr; 1050 } 1051 1052 /// \brief Analyze the interleaved accesses and collect them in interleave 1053 /// groups. Substitute symbolic strides using \p Strides. 1054 void analyzeInterleaving(const ValueToValueMap &Strides); 1055 1056 /// \brief Check if \p Instr belongs to any interleave group. 1057 bool isInterleaved(Instruction *Instr) const { 1058 return InterleaveGroupMap.count(Instr); 1059 } 1060 1061 /// \brief Return the maximum interleave factor of all interleaved groups. 1062 unsigned getMaxInterleaveFactor() const { 1063 unsigned MaxFactor = 1; 1064 for (auto &Entry : InterleaveGroupMap) 1065 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 1066 return MaxFactor; 1067 } 1068 1069 /// \brief Get the interleave group that \p Instr belongs to. 1070 /// 1071 /// \returns nullptr if doesn't have such group. 1072 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1073 if (InterleaveGroupMap.count(Instr)) 1074 return InterleaveGroupMap.find(Instr)->second; 1075 return nullptr; 1076 } 1077 1078 /// \brief Returns true if an interleaved group that may access memory 1079 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1080 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1081 1082 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1083 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1084 1085 private: 1086 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1087 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1088 /// The interleaved access analysis can also add new predicates (for example 1089 /// by versioning strides of pointers). 1090 PredicatedScalarEvolution &PSE; 1091 Loop *TheLoop; 1092 DominatorTree *DT; 1093 LoopInfo *LI; 1094 const LoopAccessInfo *LAI; 1095 1096 /// True if the loop may contain non-reversed interleaved groups with 1097 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1098 /// out-of-bounds by executing at least one scalar epilogue iteration. 1099 bool RequiresScalarEpilogue; 1100 1101 /// Holds the relationships between the members and the interleave group. 1102 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1103 1104 /// Holds dependences among the memory accesses in the loop. It maps a source 1105 /// access to a set of dependent sink accesses. 1106 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1107 1108 /// \brief The descriptor for a strided memory access. 1109 struct StrideDescriptor { 1110 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1111 unsigned Align) 1112 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1113 1114 StrideDescriptor() = default; 1115 1116 // The access's stride. It is negative for a reverse access. 1117 int64_t Stride = 0; 1118 const SCEV *Scev = nullptr; // The scalar expression of this access 1119 uint64_t Size = 0; // The size of the memory object. 1120 unsigned Align = 0; // The alignment of this access. 1121 }; 1122 1123 /// \brief A type for holding instructions and their stride descriptors. 1124 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1125 1126 /// \brief Create a new interleave group with the given instruction \p Instr, 1127 /// stride \p Stride and alignment \p Align. 1128 /// 1129 /// \returns the newly created interleave group. 1130 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1131 unsigned Align) { 1132 assert(!InterleaveGroupMap.count(Instr) && 1133 "Already in an interleaved access group"); 1134 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1135 return InterleaveGroupMap[Instr]; 1136 } 1137 1138 /// \brief Release the group and remove all the relationships. 1139 void releaseGroup(InterleaveGroup *Group) { 1140 for (unsigned i = 0; i < Group->getFactor(); i++) 1141 if (Instruction *Member = Group->getMember(i)) 1142 InterleaveGroupMap.erase(Member); 1143 1144 delete Group; 1145 } 1146 1147 /// \brief Collect all the accesses with a constant stride in program order. 1148 void collectConstStrideAccesses( 1149 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1150 const ValueToValueMap &Strides); 1151 1152 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1153 static bool isStrided(int Stride) { 1154 unsigned Factor = std::abs(Stride); 1155 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1156 } 1157 1158 /// \brief Returns true if \p BB is a predicated block. 1159 bool isPredicated(BasicBlock *BB) const { 1160 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1161 } 1162 1163 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1164 bool areDependencesValid() const { 1165 return LAI && LAI->getDepChecker().getDependences(); 1166 } 1167 1168 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1169 /// necessary, when constructing interleaved groups. 1170 /// 1171 /// \p A must precede \p B in program order. We return false if reordering is 1172 /// not necessary or is prevented because \p A and \p B may be dependent. 1173 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1174 StrideEntry *B) const { 1175 1176 // Code motion for interleaved accesses can potentially hoist strided loads 1177 // and sink strided stores. The code below checks the legality of the 1178 // following two conditions: 1179 // 1180 // 1. Potentially moving a strided load (B) before any store (A) that 1181 // precedes B, or 1182 // 1183 // 2. Potentially moving a strided store (A) after any load or store (B) 1184 // that A precedes. 1185 // 1186 // It's legal to reorder A and B if we know there isn't a dependence from A 1187 // to B. Note that this determination is conservative since some 1188 // dependences could potentially be reordered safely. 1189 1190 // A is potentially the source of a dependence. 1191 auto *Src = A->first; 1192 auto SrcDes = A->second; 1193 1194 // B is potentially the sink of a dependence. 1195 auto *Sink = B->first; 1196 auto SinkDes = B->second; 1197 1198 // Code motion for interleaved accesses can't violate WAR dependences. 1199 // Thus, reordering is legal if the source isn't a write. 1200 if (!Src->mayWriteToMemory()) 1201 return true; 1202 1203 // At least one of the accesses must be strided. 1204 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1205 return true; 1206 1207 // If dependence information is not available from LoopAccessInfo, 1208 // conservatively assume the instructions can't be reordered. 1209 if (!areDependencesValid()) 1210 return false; 1211 1212 // If we know there is a dependence from source to sink, assume the 1213 // instructions can't be reordered. Otherwise, reordering is legal. 1214 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1215 } 1216 1217 /// \brief Collect the dependences from LoopAccessInfo. 1218 /// 1219 /// We process the dependences once during the interleaved access analysis to 1220 /// enable constant-time dependence queries. 1221 void collectDependences() { 1222 if (!areDependencesValid()) 1223 return; 1224 auto *Deps = LAI->getDepChecker().getDependences(); 1225 for (auto Dep : *Deps) 1226 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1227 } 1228 }; 1229 1230 /// Utility class for getting and setting loop vectorizer hints in the form 1231 /// of loop metadata. 1232 /// This class keeps a number of loop annotations locally (as member variables) 1233 /// and can, upon request, write them back as metadata on the loop. It will 1234 /// initially scan the loop for existing metadata, and will update the local 1235 /// values based on information in the loop. 1236 /// We cannot write all values to metadata, as the mere presence of some info, 1237 /// for example 'force', means a decision has been made. So, we need to be 1238 /// careful NOT to add them if the user hasn't specifically asked so. 1239 class LoopVectorizeHints { 1240 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1241 1242 /// Hint - associates name and validation with the hint value. 1243 struct Hint { 1244 const char *Name; 1245 unsigned Value; // This may have to change for non-numeric values. 1246 HintKind Kind; 1247 1248 Hint(const char *Name, unsigned Value, HintKind Kind) 1249 : Name(Name), Value(Value), Kind(Kind) {} 1250 1251 bool validate(unsigned Val) { 1252 switch (Kind) { 1253 case HK_WIDTH: 1254 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1255 case HK_UNROLL: 1256 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1257 case HK_FORCE: 1258 return (Val <= 1); 1259 } 1260 return false; 1261 } 1262 }; 1263 1264 /// Vectorization width. 1265 Hint Width; 1266 /// Vectorization interleave factor. 1267 Hint Interleave; 1268 /// Vectorization forced 1269 Hint Force; 1270 1271 /// Return the loop metadata prefix. 1272 static StringRef Prefix() { return "llvm.loop."; } 1273 1274 /// True if there is any unsafe math in the loop. 1275 bool PotentiallyUnsafe; 1276 1277 public: 1278 enum ForceKind { 1279 FK_Undefined = -1, ///< Not selected. 1280 FK_Disabled = 0, ///< Forcing disabled. 1281 FK_Enabled = 1, ///< Forcing enabled. 1282 }; 1283 1284 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1285 OptimizationRemarkEmitter &ORE) 1286 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1287 HK_WIDTH), 1288 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1289 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1290 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1291 // Populate values with existing loop metadata. 1292 getHintsFromMetadata(); 1293 1294 // force-vector-interleave overrides DisableInterleaving. 1295 if (VectorizerParams::isInterleaveForced()) 1296 Interleave.Value = VectorizerParams::VectorizationInterleave; 1297 1298 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1299 << "LV: Interleaving disabled by the pass manager\n"); 1300 } 1301 1302 /// Mark the loop L as already vectorized by setting the width to 1. 1303 void setAlreadyVectorized() { 1304 Width.Value = Interleave.Value = 1; 1305 Hint Hints[] = {Width, Interleave}; 1306 writeHintsToMetadata(Hints); 1307 } 1308 1309 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1310 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1311 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1312 emitRemarkWithHints(); 1313 return false; 1314 } 1315 1316 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1317 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1318 emitRemarkWithHints(); 1319 return false; 1320 } 1321 1322 if (getWidth() == 1 && getInterleave() == 1) { 1323 // FIXME: Add a separate metadata to indicate when the loop has already 1324 // been vectorized instead of setting width and count to 1. 1325 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1326 // FIXME: Add interleave.disable metadata. This will allow 1327 // vectorize.disable to be used without disabling the pass and errors 1328 // to differentiate between disabled vectorization and a width of 1. 1329 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1330 "AllDisabled", L->getStartLoc(), 1331 L->getHeader()) 1332 << "loop not vectorized: vectorization and interleaving are " 1333 "explicitly disabled, or vectorize width and interleave " 1334 "count are both set to 1"); 1335 return false; 1336 } 1337 1338 return true; 1339 } 1340 1341 /// Dumps all the hint information. 1342 void emitRemarkWithHints() const { 1343 using namespace ore; 1344 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1345 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1346 TheLoop->getStartLoc(), 1347 TheLoop->getHeader()) 1348 << "loop not vectorized: vectorization is explicitly disabled"); 1349 else { 1350 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1351 TheLoop->getStartLoc(), TheLoop->getHeader()); 1352 R << "loop not vectorized"; 1353 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1354 R << " (Force=" << NV("Force", true); 1355 if (Width.Value != 0) 1356 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1357 if (Interleave.Value != 0) 1358 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1359 R << ")"; 1360 } 1361 ORE.emit(R); 1362 } 1363 } 1364 1365 unsigned getWidth() const { return Width.Value; } 1366 unsigned getInterleave() const { return Interleave.Value; } 1367 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1368 1369 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1370 /// pass name to force the frontend to print the diagnostic. 1371 const char *vectorizeAnalysisPassName() const { 1372 if (getWidth() == 1) 1373 return LV_NAME; 1374 if (getForce() == LoopVectorizeHints::FK_Disabled) 1375 return LV_NAME; 1376 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1377 return LV_NAME; 1378 return OptimizationRemarkAnalysis::AlwaysPrint; 1379 } 1380 1381 bool allowReordering() const { 1382 // When enabling loop hints are provided we allow the vectorizer to change 1383 // the order of operations that is given by the scalar loop. This is not 1384 // enabled by default because can be unsafe or inefficient. For example, 1385 // reordering floating-point operations will change the way round-off 1386 // error accumulates in the loop. 1387 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1388 } 1389 1390 bool isPotentiallyUnsafe() const { 1391 // Avoid FP vectorization if the target is unsure about proper support. 1392 // This may be related to the SIMD unit in the target not handling 1393 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1394 // Otherwise, a sequence of vectorized loops, even without reduction, 1395 // could lead to different end results on the destination vectors. 1396 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1397 } 1398 1399 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1400 1401 private: 1402 /// Find hints specified in the loop metadata and update local values. 1403 void getHintsFromMetadata() { 1404 MDNode *LoopID = TheLoop->getLoopID(); 1405 if (!LoopID) 1406 return; 1407 1408 // First operand should refer to the loop id itself. 1409 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1410 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1411 1412 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1413 const MDString *S = nullptr; 1414 SmallVector<Metadata *, 4> Args; 1415 1416 // The expected hint is either a MDString or a MDNode with the first 1417 // operand a MDString. 1418 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1419 if (!MD || MD->getNumOperands() == 0) 1420 continue; 1421 S = dyn_cast<MDString>(MD->getOperand(0)); 1422 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1423 Args.push_back(MD->getOperand(i)); 1424 } else { 1425 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1426 assert(Args.size() == 0 && "too many arguments for MDString"); 1427 } 1428 1429 if (!S) 1430 continue; 1431 1432 // Check if the hint starts with the loop metadata prefix. 1433 StringRef Name = S->getString(); 1434 if (Args.size() == 1) 1435 setHint(Name, Args[0]); 1436 } 1437 } 1438 1439 /// Checks string hint with one operand and set value if valid. 1440 void setHint(StringRef Name, Metadata *Arg) { 1441 if (!Name.startswith(Prefix())) 1442 return; 1443 Name = Name.substr(Prefix().size(), StringRef::npos); 1444 1445 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1446 if (!C) 1447 return; 1448 unsigned Val = C->getZExtValue(); 1449 1450 Hint *Hints[] = {&Width, &Interleave, &Force}; 1451 for (auto H : Hints) { 1452 if (Name == H->Name) { 1453 if (H->validate(Val)) 1454 H->Value = Val; 1455 else 1456 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1457 break; 1458 } 1459 } 1460 } 1461 1462 /// Create a new hint from name / value pair. 1463 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1464 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1465 Metadata *MDs[] = {MDString::get(Context, Name), 1466 ConstantAsMetadata::get( 1467 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1468 return MDNode::get(Context, MDs); 1469 } 1470 1471 /// Matches metadata with hint name. 1472 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1473 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1474 if (!Name) 1475 return false; 1476 1477 for (auto H : HintTypes) 1478 if (Name->getString().endswith(H.Name)) 1479 return true; 1480 return false; 1481 } 1482 1483 /// Sets current hints into loop metadata, keeping other values intact. 1484 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1485 if (HintTypes.size() == 0) 1486 return; 1487 1488 // Reserve the first element to LoopID (see below). 1489 SmallVector<Metadata *, 4> MDs(1); 1490 // If the loop already has metadata, then ignore the existing operands. 1491 MDNode *LoopID = TheLoop->getLoopID(); 1492 if (LoopID) { 1493 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1494 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1495 // If node in update list, ignore old value. 1496 if (!matchesHintMetadataName(Node, HintTypes)) 1497 MDs.push_back(Node); 1498 } 1499 } 1500 1501 // Now, add the missing hints. 1502 for (auto H : HintTypes) 1503 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1504 1505 // Replace current metadata node with new one. 1506 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1507 MDNode *NewLoopID = MDNode::get(Context, MDs); 1508 // Set operand 0 to refer to the loop id itself. 1509 NewLoopID->replaceOperandWith(0, NewLoopID); 1510 1511 TheLoop->setLoopID(NewLoopID); 1512 } 1513 1514 /// The loop these hints belong to. 1515 const Loop *TheLoop; 1516 1517 /// Interface to emit optimization remarks. 1518 OptimizationRemarkEmitter &ORE; 1519 }; 1520 1521 static void emitMissedWarning(Function *F, Loop *L, 1522 const LoopVectorizeHints &LH, 1523 OptimizationRemarkEmitter *ORE) { 1524 LH.emitRemarkWithHints(); 1525 1526 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1527 if (LH.getWidth() != 1) 1528 ORE->emit(DiagnosticInfoOptimizationFailure( 1529 DEBUG_TYPE, "FailedRequestedVectorization", 1530 L->getStartLoc(), L->getHeader()) 1531 << "loop not vectorized: " 1532 << "failed explicitly specified loop vectorization"); 1533 else if (LH.getInterleave() != 1) 1534 ORE->emit(DiagnosticInfoOptimizationFailure( 1535 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1536 L->getHeader()) 1537 << "loop not interleaved: " 1538 << "failed explicitly specified loop interleaving"); 1539 } 1540 } 1541 1542 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1543 /// to what vectorization factor. 1544 /// This class does not look at the profitability of vectorization, only the 1545 /// legality. This class has two main kinds of checks: 1546 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1547 /// will change the order of memory accesses in a way that will change the 1548 /// correctness of the program. 1549 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1550 /// checks for a number of different conditions, such as the availability of a 1551 /// single induction variable, that all types are supported and vectorize-able, 1552 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1553 /// This class is also used by InnerLoopVectorizer for identifying 1554 /// induction variable and the different reduction variables. 1555 class LoopVectorizationLegality { 1556 public: 1557 LoopVectorizationLegality( 1558 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1559 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1560 const TargetTransformInfo *TTI, 1561 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1562 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1563 LoopVectorizeHints *H) 1564 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1565 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1566 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1567 Requirements(R), Hints(H) {} 1568 1569 /// ReductionList contains the reduction descriptors for all 1570 /// of the reductions that were found in the loop. 1571 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1572 1573 /// InductionList saves induction variables and maps them to the 1574 /// induction descriptor. 1575 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1576 1577 /// RecurrenceSet contains the phi nodes that are recurrences other than 1578 /// inductions and reductions. 1579 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1580 1581 /// Returns true if it is legal to vectorize this loop. 1582 /// This does not mean that it is profitable to vectorize this 1583 /// loop, only that it is legal to do so. 1584 bool canVectorize(); 1585 1586 /// Returns the primary induction variable. 1587 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1588 1589 /// Returns the reduction variables found in the loop. 1590 ReductionList *getReductionVars() { return &Reductions; } 1591 1592 /// Returns the induction variables found in the loop. 1593 InductionList *getInductionVars() { return &Inductions; } 1594 1595 /// Return the first-order recurrences found in the loop. 1596 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1597 1598 /// Returns the widest induction type. 1599 Type *getWidestInductionType() { return WidestIndTy; } 1600 1601 /// Returns True if V is an induction variable in this loop. 1602 bool isInductionVariable(const Value *V); 1603 1604 /// Returns True if PN is a reduction variable in this loop. 1605 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1606 1607 /// Returns True if Phi is a first-order recurrence in this loop. 1608 bool isFirstOrderRecurrence(const PHINode *Phi); 1609 1610 /// Return true if the block BB needs to be predicated in order for the loop 1611 /// to be vectorized. 1612 bool blockNeedsPredication(BasicBlock *BB); 1613 1614 /// Check if this pointer is consecutive when vectorizing. This happens 1615 /// when the last index of the GEP is the induction variable, or that the 1616 /// pointer itself is an induction variable. 1617 /// This check allows us to vectorize A[idx] into a wide load/store. 1618 /// Returns: 1619 /// 0 - Stride is unknown or non-consecutive. 1620 /// 1 - Address is consecutive. 1621 /// -1 - Address is consecutive, and decreasing. 1622 int isConsecutivePtr(Value *Ptr); 1623 1624 /// Returns true if the value V is uniform within the loop. 1625 bool isUniform(Value *V); 1626 1627 /// Returns the information that we collected about runtime memory check. 1628 const RuntimePointerChecking *getRuntimePointerChecking() const { 1629 return LAI->getRuntimePointerChecking(); 1630 } 1631 1632 const LoopAccessInfo *getLAI() const { return LAI; } 1633 1634 /// \brief Check if \p Instr belongs to any interleaved access group. 1635 bool isAccessInterleaved(Instruction *Instr) { 1636 return InterleaveInfo.isInterleaved(Instr); 1637 } 1638 1639 /// \brief Return the maximum interleave factor of all interleaved groups. 1640 unsigned getMaxInterleaveFactor() const { 1641 return InterleaveInfo.getMaxInterleaveFactor(); 1642 } 1643 1644 /// \brief Get the interleaved access group that \p Instr belongs to. 1645 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1646 return InterleaveInfo.getInterleaveGroup(Instr); 1647 } 1648 1649 /// \brief Returns true if an interleaved group requires a scalar iteration 1650 /// to handle accesses with gaps. 1651 bool requiresScalarEpilogue() const { 1652 return InterleaveInfo.requiresScalarEpilogue(); 1653 } 1654 1655 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1656 1657 bool hasStride(Value *V) { return LAI->hasStride(V); } 1658 1659 /// Returns true if the target machine supports masked store operation 1660 /// for the given \p DataType and kind of access to \p Ptr. 1661 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1662 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1663 } 1664 /// Returns true if the target machine supports masked load operation 1665 /// for the given \p DataType and kind of access to \p Ptr. 1666 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1667 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1668 } 1669 /// Returns true if the target machine supports masked scatter operation 1670 /// for the given \p DataType. 1671 bool isLegalMaskedScatter(Type *DataType) { 1672 return TTI->isLegalMaskedScatter(DataType); 1673 } 1674 /// Returns true if the target machine supports masked gather operation 1675 /// for the given \p DataType. 1676 bool isLegalMaskedGather(Type *DataType) { 1677 return TTI->isLegalMaskedGather(DataType); 1678 } 1679 /// Returns true if the target machine can represent \p V as a masked gather 1680 /// or scatter operation. 1681 bool isLegalGatherOrScatter(Value *V) { 1682 auto *LI = dyn_cast<LoadInst>(V); 1683 auto *SI = dyn_cast<StoreInst>(V); 1684 if (!LI && !SI) 1685 return false; 1686 auto *Ptr = getPointerOperand(V); 1687 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1688 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1689 } 1690 1691 /// Returns true if vector representation of the instruction \p I 1692 /// requires mask. 1693 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1694 unsigned getNumStores() const { return LAI->getNumStores(); } 1695 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1696 unsigned getNumPredStores() const { return NumPredStores; } 1697 1698 /// Returns true if \p I is an instruction that will be scalarized with 1699 /// predication. Such instructions include conditional stores and 1700 /// instructions that may divide by zero. 1701 bool isScalarWithPredication(Instruction *I); 1702 1703 /// Returns true if \p I is a memory instruction with consecutive memory 1704 /// access that can be widened. 1705 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1706 1707 private: 1708 /// Check if a single basic block loop is vectorizable. 1709 /// At this point we know that this is a loop with a constant trip count 1710 /// and we only need to check individual instructions. 1711 bool canVectorizeInstrs(); 1712 1713 /// When we vectorize loops we may change the order in which 1714 /// we read and write from memory. This method checks if it is 1715 /// legal to vectorize the code, considering only memory constrains. 1716 /// Returns true if the loop is vectorizable 1717 bool canVectorizeMemory(); 1718 1719 /// Return true if we can vectorize this loop using the IF-conversion 1720 /// transformation. 1721 bool canVectorizeWithIfConvert(); 1722 1723 /// Return true if all of the instructions in the block can be speculatively 1724 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1725 /// and we know that we can read from them without segfault. 1726 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1727 1728 /// Updates the vectorization state by adding \p Phi to the inductions list. 1729 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1730 /// better choice for the main induction than the existing one. 1731 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1732 SmallPtrSetImpl<Value *> &AllowedExit); 1733 1734 /// Create an analysis remark that explains why vectorization failed 1735 /// 1736 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1737 /// an instruction that prevents vectorization. Otherwise the loop is used 1738 /// for the location of the remark. \return the remark object that can be 1739 /// streamed to. 1740 OptimizationRemarkAnalysis 1741 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1742 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1743 RemarkName, TheLoop, I); 1744 } 1745 1746 /// \brief If an access has a symbolic strides, this maps the pointer value to 1747 /// the stride symbol. 1748 const ValueToValueMap *getSymbolicStrides() { 1749 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1750 // it's collected. This happens from canVectorizeWithIfConvert, when the 1751 // pointer is checked to reference consecutive elements suitable for a 1752 // masked access. 1753 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1754 } 1755 1756 unsigned NumPredStores; 1757 1758 /// The loop that we evaluate. 1759 Loop *TheLoop; 1760 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1761 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1762 /// of existing SCEV assumptions. The analysis will also add a minimal set 1763 /// of new predicates if this is required to enable vectorization and 1764 /// unrolling. 1765 PredicatedScalarEvolution &PSE; 1766 /// Target Library Info. 1767 TargetLibraryInfo *TLI; 1768 /// Target Transform Info 1769 const TargetTransformInfo *TTI; 1770 /// Dominator Tree. 1771 DominatorTree *DT; 1772 // LoopAccess analysis. 1773 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1774 // And the loop-accesses info corresponding to this loop. This pointer is 1775 // null until canVectorizeMemory sets it up. 1776 const LoopAccessInfo *LAI; 1777 /// Interface to emit optimization remarks. 1778 OptimizationRemarkEmitter *ORE; 1779 1780 /// The interleave access information contains groups of interleaved accesses 1781 /// with the same stride and close to each other. 1782 InterleavedAccessInfo InterleaveInfo; 1783 1784 // --- vectorization state --- // 1785 1786 /// Holds the primary induction variable. This is the counter of the 1787 /// loop. 1788 PHINode *PrimaryInduction; 1789 /// Holds the reduction variables. 1790 ReductionList Reductions; 1791 /// Holds all of the induction variables that we found in the loop. 1792 /// Notice that inductions don't need to start at zero and that induction 1793 /// variables can be pointers. 1794 InductionList Inductions; 1795 /// Holds the phi nodes that are first-order recurrences. 1796 RecurrenceSet FirstOrderRecurrences; 1797 /// Holds the widest induction type encountered. 1798 Type *WidestIndTy; 1799 1800 /// Allowed outside users. This holds the induction and reduction 1801 /// vars which can be accessed from outside the loop. 1802 SmallPtrSet<Value *, 4> AllowedExit; 1803 1804 /// Can we assume the absence of NaNs. 1805 bool HasFunNoNaNAttr; 1806 1807 /// Vectorization requirements that will go through late-evaluation. 1808 LoopVectorizationRequirements *Requirements; 1809 1810 /// Used to emit an analysis of any legality issues. 1811 LoopVectorizeHints *Hints; 1812 1813 /// While vectorizing these instructions we have to generate a 1814 /// call to the appropriate masked intrinsic 1815 SmallPtrSet<const Instruction *, 8> MaskedOp; 1816 }; 1817 1818 /// LoopVectorizationCostModel - estimates the expected speedups due to 1819 /// vectorization. 1820 /// In many cases vectorization is not profitable. This can happen because of 1821 /// a number of reasons. In this class we mainly attempt to predict the 1822 /// expected speedup/slowdowns due to the supported instruction set. We use the 1823 /// TargetTransformInfo to query the different backends for the cost of 1824 /// different operations. 1825 class LoopVectorizationCostModel { 1826 public: 1827 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1828 LoopInfo *LI, LoopVectorizationLegality *Legal, 1829 const TargetTransformInfo &TTI, 1830 const TargetLibraryInfo *TLI, DemandedBits *DB, 1831 AssumptionCache *AC, 1832 OptimizationRemarkEmitter *ORE, const Function *F, 1833 const LoopVectorizeHints *Hints) 1834 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1835 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1836 1837 /// \return An upper bound for the vectorization factor, or None if 1838 /// vectorization should be avoided up front. 1839 Optional<unsigned> computeMaxVF(bool OptForSize); 1840 1841 /// Information about vectorization costs 1842 struct VectorizationFactor { 1843 unsigned Width; // Vector width with best cost 1844 unsigned Cost; // Cost of the loop with that width 1845 }; 1846 /// \return The most profitable vectorization factor and the cost of that VF. 1847 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1848 /// then this vectorization factor will be selected if vectorization is 1849 /// possible. 1850 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1851 1852 /// Setup cost-based decisions for user vectorization factor. 1853 void selectUserVectorizationFactor(unsigned UserVF) { 1854 collectUniformsAndScalars(UserVF); 1855 collectInstsToScalarize(UserVF); 1856 } 1857 1858 /// \return The size (in bits) of the smallest and widest types in the code 1859 /// that needs to be vectorized. We ignore values that remain scalar such as 1860 /// 64 bit loop indices. 1861 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1862 1863 /// \return The desired interleave count. 1864 /// If interleave count has been specified by metadata it will be returned. 1865 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1866 /// are the selected vectorization factor and the cost of the selected VF. 1867 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1868 unsigned LoopCost); 1869 1870 /// Memory access instruction may be vectorized in more than one way. 1871 /// Form of instruction after vectorization depends on cost. 1872 /// This function takes cost-based decisions for Load/Store instructions 1873 /// and collects them in a map. This decisions map is used for building 1874 /// the lists of loop-uniform and loop-scalar instructions. 1875 /// The calculated cost is saved with widening decision in order to 1876 /// avoid redundant calculations. 1877 void setCostBasedWideningDecision(unsigned VF); 1878 1879 /// \brief A struct that represents some properties of the register usage 1880 /// of a loop. 1881 struct RegisterUsage { 1882 /// Holds the number of loop invariant values that are used in the loop. 1883 unsigned LoopInvariantRegs; 1884 /// Holds the maximum number of concurrent live intervals in the loop. 1885 unsigned MaxLocalUsers; 1886 /// Holds the number of instructions in the loop. 1887 unsigned NumInstructions; 1888 }; 1889 1890 /// \return Returns information about the register usages of the loop for the 1891 /// given vectorization factors. 1892 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1893 1894 /// Collect values we want to ignore in the cost model. 1895 void collectValuesToIgnore(); 1896 1897 /// \returns The smallest bitwidth each instruction can be represented with. 1898 /// The vector equivalents of these instructions should be truncated to this 1899 /// type. 1900 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1901 return MinBWs; 1902 } 1903 1904 /// \returns True if it is more profitable to scalarize instruction \p I for 1905 /// vectorization factor \p VF. 1906 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1907 auto Scalars = InstsToScalarize.find(VF); 1908 assert(Scalars != InstsToScalarize.end() && 1909 "VF not yet analyzed for scalarization profitability"); 1910 return Scalars->second.count(I); 1911 } 1912 1913 /// Returns true if \p I is known to be uniform after vectorization. 1914 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1915 if (VF == 1) 1916 return true; 1917 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1918 auto UniformsPerVF = Uniforms.find(VF); 1919 return UniformsPerVF->second.count(I); 1920 } 1921 1922 /// Returns true if \p I is known to be scalar after vectorization. 1923 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1924 if (VF == 1) 1925 return true; 1926 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1927 auto ScalarsPerVF = Scalars.find(VF); 1928 return ScalarsPerVF->second.count(I); 1929 } 1930 1931 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1932 /// for vectorization factor \p VF. 1933 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1934 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1935 !isScalarAfterVectorization(I, VF); 1936 } 1937 1938 /// Decision that was taken during cost calculation for memory instruction. 1939 enum InstWidening { 1940 CM_Unknown, 1941 CM_Widen, 1942 CM_Interleave, 1943 CM_GatherScatter, 1944 CM_Scalarize 1945 }; 1946 1947 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1948 /// instruction \p I and vector width \p VF. 1949 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1950 unsigned Cost) { 1951 assert(VF >= 2 && "Expected VF >=2"); 1952 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1953 } 1954 1955 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1956 /// interleaving group \p Grp and vector width \p VF. 1957 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1958 InstWidening W, unsigned Cost) { 1959 assert(VF >= 2 && "Expected VF >=2"); 1960 /// Broadcast this decicion to all instructions inside the group. 1961 /// But the cost will be assigned to one instruction only. 1962 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1963 if (auto *I = Grp->getMember(i)) { 1964 if (Grp->getInsertPos() == I) 1965 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1966 else 1967 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1968 } 1969 } 1970 } 1971 1972 /// Return the cost model decision for the given instruction \p I and vector 1973 /// width \p VF. Return CM_Unknown if this instruction did not pass 1974 /// through the cost modeling. 1975 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1976 assert(VF >= 2 && "Expected VF >=2"); 1977 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1978 auto Itr = WideningDecisions.find(InstOnVF); 1979 if (Itr == WideningDecisions.end()) 1980 return CM_Unknown; 1981 return Itr->second.first; 1982 } 1983 1984 /// Return the vectorization cost for the given instruction \p I and vector 1985 /// width \p VF. 1986 unsigned getWideningCost(Instruction *I, unsigned VF) { 1987 assert(VF >= 2 && "Expected VF >=2"); 1988 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1989 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1990 return WideningDecisions[InstOnVF].second; 1991 } 1992 1993 /// Return True if instruction \p I is an optimizable truncate whose operand 1994 /// is an induction variable. Such a truncate will be removed by adding a new 1995 /// induction variable with the destination type. 1996 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1997 1998 // If the instruction is not a truncate, return false. 1999 auto *Trunc = dyn_cast<TruncInst>(I); 2000 if (!Trunc) 2001 return false; 2002 2003 // Get the source and destination types of the truncate. 2004 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2005 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2006 2007 // If the truncate is free for the given types, return false. Replacing a 2008 // free truncate with an induction variable would add an induction variable 2009 // update instruction to each iteration of the loop. We exclude from this 2010 // check the primary induction variable since it will need an update 2011 // instruction regardless. 2012 Value *Op = Trunc->getOperand(0); 2013 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2014 return false; 2015 2016 // If the truncated value is not an induction variable, return false. 2017 return Legal->isInductionVariable(Op); 2018 } 2019 2020 private: 2021 /// \return An upper bound for the vectorization factor, larger than zero. 2022 /// One is returned if vectorization should best be avoided due to cost. 2023 unsigned computeFeasibleMaxVF(bool OptForSize); 2024 2025 /// The vectorization cost is a combination of the cost itself and a boolean 2026 /// indicating whether any of the contributing operations will actually 2027 /// operate on 2028 /// vector values after type legalization in the backend. If this latter value 2029 /// is 2030 /// false, then all operations will be scalarized (i.e. no vectorization has 2031 /// actually taken place). 2032 typedef std::pair<unsigned, bool> VectorizationCostTy; 2033 2034 /// Returns the expected execution cost. The unit of the cost does 2035 /// not matter because we use the 'cost' units to compare different 2036 /// vector widths. The cost that is returned is *not* normalized by 2037 /// the factor width. 2038 VectorizationCostTy expectedCost(unsigned VF); 2039 2040 /// Returns the execution time cost of an instruction for a given vector 2041 /// width. Vector width of one means scalar. 2042 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2043 2044 /// The cost-computation logic from getInstructionCost which provides 2045 /// the vector type as an output parameter. 2046 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2047 2048 /// Calculate vectorization cost of memory instruction \p I. 2049 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2050 2051 /// The cost computation for scalarized memory instruction. 2052 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2053 2054 /// The cost computation for interleaving group of memory instructions. 2055 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2056 2057 /// The cost computation for Gather/Scatter instruction. 2058 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2059 2060 /// The cost computation for widening instruction \p I with consecutive 2061 /// memory access. 2062 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2063 2064 /// The cost calculation for Load instruction \p I with uniform pointer - 2065 /// scalar load + broadcast. 2066 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2067 2068 /// Returns whether the instruction is a load or store and will be a emitted 2069 /// as a vector operation. 2070 bool isConsecutiveLoadOrStore(Instruction *I); 2071 2072 /// Create an analysis remark that explains why vectorization failed 2073 /// 2074 /// \p RemarkName is the identifier for the remark. \return the remark object 2075 /// that can be streamed to. 2076 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2077 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2078 RemarkName, TheLoop); 2079 } 2080 2081 /// Map of scalar integer values to the smallest bitwidth they can be legally 2082 /// represented as. The vector equivalents of these values should be truncated 2083 /// to this type. 2084 MapVector<Instruction *, uint64_t> MinBWs; 2085 2086 /// A type representing the costs for instructions if they were to be 2087 /// scalarized rather than vectorized. The entries are Instruction-Cost 2088 /// pairs. 2089 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2090 2091 /// A set containing all BasicBlocks that are known to present after 2092 /// vectorization as a predicated block. 2093 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2094 2095 /// A map holding scalar costs for different vectorization factors. The 2096 /// presence of a cost for an instruction in the mapping indicates that the 2097 /// instruction will be scalarized when vectorizing with the associated 2098 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2099 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2100 2101 /// Holds the instructions known to be uniform after vectorization. 2102 /// The data is collected per VF. 2103 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2104 2105 /// Holds the instructions known to be scalar after vectorization. 2106 /// The data is collected per VF. 2107 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2108 2109 /// Returns the expected difference in cost from scalarizing the expression 2110 /// feeding a predicated instruction \p PredInst. The instructions to 2111 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2112 /// non-negative return value implies the expression will be scalarized. 2113 /// Currently, only single-use chains are considered for scalarization. 2114 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2115 unsigned VF); 2116 2117 /// Collects the instructions to scalarize for each predicated instruction in 2118 /// the loop. 2119 void collectInstsToScalarize(unsigned VF); 2120 2121 /// Collect the instructions that are uniform after vectorization. An 2122 /// instruction is uniform if we represent it with a single scalar value in 2123 /// the vectorized loop corresponding to each vector iteration. Examples of 2124 /// uniform instructions include pointer operands of consecutive or 2125 /// interleaved memory accesses. Note that although uniformity implies an 2126 /// instruction will be scalar, the reverse is not true. In general, a 2127 /// scalarized instruction will be represented by VF scalar values in the 2128 /// vectorized loop, each corresponding to an iteration of the original 2129 /// scalar loop. 2130 void collectLoopUniforms(unsigned VF); 2131 2132 /// Collect the instructions that are scalar after vectorization. An 2133 /// instruction is scalar if it is known to be uniform or will be scalarized 2134 /// during vectorization. Non-uniform scalarized instructions will be 2135 /// represented by VF values in the vectorized loop, each corresponding to an 2136 /// iteration of the original scalar loop. 2137 void collectLoopScalars(unsigned VF); 2138 2139 /// Collect Uniform and Scalar values for the given \p VF. 2140 /// The sets depend on CM decision for Load/Store instructions 2141 /// that may be vectorized as interleave, gather-scatter or scalarized. 2142 void collectUniformsAndScalars(unsigned VF) { 2143 // Do the analysis once. 2144 if (VF == 1 || Uniforms.count(VF)) 2145 return; 2146 setCostBasedWideningDecision(VF); 2147 collectLoopUniforms(VF); 2148 collectLoopScalars(VF); 2149 } 2150 2151 /// Keeps cost model vectorization decision and cost for instructions. 2152 /// Right now it is used for memory instructions only. 2153 typedef DenseMap<std::pair<Instruction *, unsigned>, 2154 std::pair<InstWidening, unsigned>> 2155 DecisionList; 2156 2157 DecisionList WideningDecisions; 2158 2159 public: 2160 /// The loop that we evaluate. 2161 Loop *TheLoop; 2162 /// Predicated scalar evolution analysis. 2163 PredicatedScalarEvolution &PSE; 2164 /// Loop Info analysis. 2165 LoopInfo *LI; 2166 /// Vectorization legality. 2167 LoopVectorizationLegality *Legal; 2168 /// Vector target information. 2169 const TargetTransformInfo &TTI; 2170 /// Target Library Info. 2171 const TargetLibraryInfo *TLI; 2172 /// Demanded bits analysis. 2173 DemandedBits *DB; 2174 /// Assumption cache. 2175 AssumptionCache *AC; 2176 /// Interface to emit optimization remarks. 2177 OptimizationRemarkEmitter *ORE; 2178 2179 const Function *TheFunction; 2180 /// Loop Vectorize Hint. 2181 const LoopVectorizeHints *Hints; 2182 /// Values to ignore in the cost model. 2183 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2184 /// Values to ignore in the cost model when VF > 1. 2185 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2186 }; 2187 2188 /// LoopVectorizationPlanner - drives the vectorization process after having 2189 /// passed Legality checks. 2190 class LoopVectorizationPlanner { 2191 public: 2192 LoopVectorizationPlanner(LoopVectorizationCostModel &CM) : CM(CM) {} 2193 2194 ~LoopVectorizationPlanner() {} 2195 2196 /// Plan how to best vectorize, return the best VF and its cost. 2197 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2198 unsigned UserVF); 2199 2200 private: 2201 /// The profitablity analysis. 2202 LoopVectorizationCostModel &CM; 2203 }; 2204 2205 /// \brief This holds vectorization requirements that must be verified late in 2206 /// the process. The requirements are set by legalize and costmodel. Once 2207 /// vectorization has been determined to be possible and profitable the 2208 /// requirements can be verified by looking for metadata or compiler options. 2209 /// For example, some loops require FP commutativity which is only allowed if 2210 /// vectorization is explicitly specified or if the fast-math compiler option 2211 /// has been provided. 2212 /// Late evaluation of these requirements allows helpful diagnostics to be 2213 /// composed that tells the user what need to be done to vectorize the loop. For 2214 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2215 /// evaluation should be used only when diagnostics can generated that can be 2216 /// followed by a non-expert user. 2217 class LoopVectorizationRequirements { 2218 public: 2219 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2220 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2221 2222 void addUnsafeAlgebraInst(Instruction *I) { 2223 // First unsafe algebra instruction. 2224 if (!UnsafeAlgebraInst) 2225 UnsafeAlgebraInst = I; 2226 } 2227 2228 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2229 2230 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2231 const char *PassName = Hints.vectorizeAnalysisPassName(); 2232 bool Failed = false; 2233 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2234 ORE.emit( 2235 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2236 UnsafeAlgebraInst->getDebugLoc(), 2237 UnsafeAlgebraInst->getParent()) 2238 << "loop not vectorized: cannot prove it is safe to reorder " 2239 "floating-point operations"); 2240 Failed = true; 2241 } 2242 2243 // Test if runtime memcheck thresholds are exceeded. 2244 bool PragmaThresholdReached = 2245 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2246 bool ThresholdReached = 2247 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2248 if ((ThresholdReached && !Hints.allowReordering()) || 2249 PragmaThresholdReached) { 2250 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2251 L->getStartLoc(), 2252 L->getHeader()) 2253 << "loop not vectorized: cannot prove it is safe to reorder " 2254 "memory operations"); 2255 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2256 Failed = true; 2257 } 2258 2259 return Failed; 2260 } 2261 2262 private: 2263 unsigned NumRuntimePointerChecks; 2264 Instruction *UnsafeAlgebraInst; 2265 2266 /// Interface to emit optimization remarks. 2267 OptimizationRemarkEmitter &ORE; 2268 }; 2269 2270 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2271 if (L.empty()) { 2272 if (!hasCyclesInLoopBody(L)) 2273 V.push_back(&L); 2274 return; 2275 } 2276 for (Loop *InnerL : L) 2277 addAcyclicInnerLoop(*InnerL, V); 2278 } 2279 2280 /// The LoopVectorize Pass. 2281 struct LoopVectorize : public FunctionPass { 2282 /// Pass identification, replacement for typeid 2283 static char ID; 2284 2285 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2286 : FunctionPass(ID) { 2287 Impl.DisableUnrolling = NoUnrolling; 2288 Impl.AlwaysVectorize = AlwaysVectorize; 2289 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2290 } 2291 2292 LoopVectorizePass Impl; 2293 2294 bool runOnFunction(Function &F) override { 2295 if (skipFunction(F)) 2296 return false; 2297 2298 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2299 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2300 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2301 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2302 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2303 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2304 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2305 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2306 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2307 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2308 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2309 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2310 2311 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2312 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2313 2314 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2315 GetLAA, *ORE); 2316 } 2317 2318 void getAnalysisUsage(AnalysisUsage &AU) const override { 2319 AU.addRequired<AssumptionCacheTracker>(); 2320 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2321 AU.addRequired<DominatorTreeWrapperPass>(); 2322 AU.addRequired<LoopInfoWrapperPass>(); 2323 AU.addRequired<ScalarEvolutionWrapperPass>(); 2324 AU.addRequired<TargetTransformInfoWrapperPass>(); 2325 AU.addRequired<AAResultsWrapperPass>(); 2326 AU.addRequired<LoopAccessLegacyAnalysis>(); 2327 AU.addRequired<DemandedBitsWrapperPass>(); 2328 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2329 AU.addPreserved<LoopInfoWrapperPass>(); 2330 AU.addPreserved<DominatorTreeWrapperPass>(); 2331 AU.addPreserved<BasicAAWrapperPass>(); 2332 AU.addPreserved<GlobalsAAWrapperPass>(); 2333 } 2334 }; 2335 2336 } // end anonymous namespace 2337 2338 //===----------------------------------------------------------------------===// 2339 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2340 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2341 //===----------------------------------------------------------------------===// 2342 2343 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2344 // We need to place the broadcast of invariant variables outside the loop. 2345 Instruction *Instr = dyn_cast<Instruction>(V); 2346 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2347 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2348 2349 // Place the code for broadcasting invariant variables in the new preheader. 2350 IRBuilder<>::InsertPointGuard Guard(Builder); 2351 if (Invariant) 2352 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2353 2354 // Broadcast the scalar into all locations in the vector. 2355 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2356 2357 return Shuf; 2358 } 2359 2360 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2361 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2362 Value *Start = II.getStartValue(); 2363 2364 // Construct the initial value of the vector IV in the vector loop preheader 2365 auto CurrIP = Builder.saveIP(); 2366 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2367 if (isa<TruncInst>(EntryVal)) { 2368 assert(Start->getType()->isIntegerTy() && 2369 "Truncation requires an integer type"); 2370 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2371 Step = Builder.CreateTrunc(Step, TruncType); 2372 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2373 } 2374 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2375 Value *SteppedStart = 2376 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2377 2378 // We create vector phi nodes for both integer and floating-point induction 2379 // variables. Here, we determine the kind of arithmetic we will perform. 2380 Instruction::BinaryOps AddOp; 2381 Instruction::BinaryOps MulOp; 2382 if (Step->getType()->isIntegerTy()) { 2383 AddOp = Instruction::Add; 2384 MulOp = Instruction::Mul; 2385 } else { 2386 AddOp = II.getInductionOpcode(); 2387 MulOp = Instruction::FMul; 2388 } 2389 2390 // Multiply the vectorization factor by the step using integer or 2391 // floating-point arithmetic as appropriate. 2392 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2393 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2394 2395 // Create a vector splat to use in the induction update. 2396 // 2397 // FIXME: If the step is non-constant, we create the vector splat with 2398 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2399 // handle a constant vector splat. 2400 Value *SplatVF = isa<Constant>(Mul) 2401 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2402 : Builder.CreateVectorSplat(VF, Mul); 2403 Builder.restoreIP(CurrIP); 2404 2405 // We may need to add the step a number of times, depending on the unroll 2406 // factor. The last of those goes into the PHI. 2407 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2408 &*LoopVectorBody->getFirstInsertionPt()); 2409 Instruction *LastInduction = VecInd; 2410 VectorParts Entry(UF); 2411 for (unsigned Part = 0; Part < UF; ++Part) { 2412 Entry[Part] = LastInduction; 2413 LastInduction = cast<Instruction>(addFastMathFlag( 2414 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2415 } 2416 VectorLoopValueMap.initVector(EntryVal, Entry); 2417 if (isa<TruncInst>(EntryVal)) 2418 addMetadata(Entry, EntryVal); 2419 2420 // Move the last step to the end of the latch block. This ensures consistent 2421 // placement of all induction updates. 2422 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2423 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2424 auto *ICmp = cast<Instruction>(Br->getCondition()); 2425 LastInduction->moveBefore(ICmp); 2426 LastInduction->setName("vec.ind.next"); 2427 2428 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2429 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2430 } 2431 2432 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2433 return Cost->isScalarAfterVectorization(I, VF) || 2434 Cost->isProfitableToScalarize(I, VF); 2435 } 2436 2437 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2438 if (shouldScalarizeInstruction(IV)) 2439 return true; 2440 auto isScalarInst = [&](User *U) -> bool { 2441 auto *I = cast<Instruction>(U); 2442 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2443 }; 2444 return any_of(IV->users(), isScalarInst); 2445 } 2446 2447 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2448 2449 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2450 "Primary induction variable must have an integer type"); 2451 2452 auto II = Legal->getInductionVars()->find(IV); 2453 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2454 2455 auto ID = II->second; 2456 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2457 2458 // The scalar value to broadcast. This will be derived from the canonical 2459 // induction variable. 2460 Value *ScalarIV = nullptr; 2461 2462 // The value from the original loop to which we are mapping the new induction 2463 // variable. 2464 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2465 2466 // True if we have vectorized the induction variable. 2467 auto VectorizedIV = false; 2468 2469 // Determine if we want a scalar version of the induction variable. This is 2470 // true if the induction variable itself is not widened, or if it has at 2471 // least one user in the loop that is not widened. 2472 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2473 2474 // Generate code for the induction step. Note that induction steps are 2475 // required to be loop-invariant 2476 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2477 "Induction step should be loop invariant"); 2478 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2479 Value *Step = nullptr; 2480 if (PSE.getSE()->isSCEVable(IV->getType())) { 2481 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2482 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2483 LoopVectorPreHeader->getTerminator()); 2484 } else { 2485 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2486 } 2487 2488 // Try to create a new independent vector induction variable. If we can't 2489 // create the phi node, we will splat the scalar induction variable in each 2490 // loop iteration. 2491 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2492 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2493 VectorizedIV = true; 2494 } 2495 2496 // If we haven't yet vectorized the induction variable, or if we will create 2497 // a scalar one, we need to define the scalar induction variable and step 2498 // values. If we were given a truncation type, truncate the canonical 2499 // induction variable and step. Otherwise, derive these values from the 2500 // induction descriptor. 2501 if (!VectorizedIV || NeedsScalarIV) { 2502 ScalarIV = Induction; 2503 if (IV != OldInduction) { 2504 ScalarIV = IV->getType()->isIntegerTy() 2505 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2506 : Builder.CreateCast(Instruction::SIToFP, Induction, 2507 IV->getType()); 2508 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2509 ScalarIV->setName("offset.idx"); 2510 } 2511 if (Trunc) { 2512 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2513 assert(Step->getType()->isIntegerTy() && 2514 "Truncation requires an integer step"); 2515 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2516 Step = Builder.CreateTrunc(Step, TruncType); 2517 } 2518 } 2519 2520 // If we haven't yet vectorized the induction variable, splat the scalar 2521 // induction variable, and build the necessary step vectors. 2522 if (!VectorizedIV) { 2523 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2524 VectorParts Entry(UF); 2525 for (unsigned Part = 0; Part < UF; ++Part) 2526 Entry[Part] = 2527 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2528 VectorLoopValueMap.initVector(EntryVal, Entry); 2529 if (Trunc) 2530 addMetadata(Entry, Trunc); 2531 } 2532 2533 // If an induction variable is only used for counting loop iterations or 2534 // calculating addresses, it doesn't need to be widened. Create scalar steps 2535 // that can be used by instructions we will later scalarize. Note that the 2536 // addition of the scalar steps will not increase the number of instructions 2537 // in the loop in the common case prior to InstCombine. We will be trading 2538 // one vector extract for each scalar step. 2539 if (NeedsScalarIV) 2540 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2541 } 2542 2543 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2544 Instruction::BinaryOps BinOp) { 2545 // Create and check the types. 2546 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2547 int VLen = Val->getType()->getVectorNumElements(); 2548 2549 Type *STy = Val->getType()->getScalarType(); 2550 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2551 "Induction Step must be an integer or FP"); 2552 assert(Step->getType() == STy && "Step has wrong type"); 2553 2554 SmallVector<Constant *, 8> Indices; 2555 2556 if (STy->isIntegerTy()) { 2557 // Create a vector of consecutive numbers from zero to VF. 2558 for (int i = 0; i < VLen; ++i) 2559 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2560 2561 // Add the consecutive indices to the vector value. 2562 Constant *Cv = ConstantVector::get(Indices); 2563 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2564 Step = Builder.CreateVectorSplat(VLen, Step); 2565 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2566 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2567 // which can be found from the original scalar operations. 2568 Step = Builder.CreateMul(Cv, Step); 2569 return Builder.CreateAdd(Val, Step, "induction"); 2570 } 2571 2572 // Floating point induction. 2573 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2574 "Binary Opcode should be specified for FP induction"); 2575 // Create a vector of consecutive numbers from zero to VF. 2576 for (int i = 0; i < VLen; ++i) 2577 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2578 2579 // Add the consecutive indices to the vector value. 2580 Constant *Cv = ConstantVector::get(Indices); 2581 2582 Step = Builder.CreateVectorSplat(VLen, Step); 2583 2584 // Floating point operations had to be 'fast' to enable the induction. 2585 FastMathFlags Flags; 2586 Flags.setUnsafeAlgebra(); 2587 2588 Value *MulOp = Builder.CreateFMul(Cv, Step); 2589 if (isa<Instruction>(MulOp)) 2590 // Have to check, MulOp may be a constant 2591 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2592 2593 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2594 if (isa<Instruction>(BOp)) 2595 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2596 return BOp; 2597 } 2598 2599 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2600 Value *EntryVal, 2601 const InductionDescriptor &ID) { 2602 2603 // We shouldn't have to build scalar steps if we aren't vectorizing. 2604 assert(VF > 1 && "VF should be greater than one"); 2605 2606 // Get the value type and ensure it and the step have the same integer type. 2607 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2608 assert(ScalarIVTy == Step->getType() && 2609 "Val and Step should have the same type"); 2610 2611 // We build scalar steps for both integer and floating-point induction 2612 // variables. Here, we determine the kind of arithmetic we will perform. 2613 Instruction::BinaryOps AddOp; 2614 Instruction::BinaryOps MulOp; 2615 if (ScalarIVTy->isIntegerTy()) { 2616 AddOp = Instruction::Add; 2617 MulOp = Instruction::Mul; 2618 } else { 2619 AddOp = ID.getInductionOpcode(); 2620 MulOp = Instruction::FMul; 2621 } 2622 2623 // Determine the number of scalars we need to generate for each unroll 2624 // iteration. If EntryVal is uniform, we only need to generate the first 2625 // lane. Otherwise, we generate all VF values. 2626 unsigned Lanes = 2627 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 : VF; 2628 2629 // Compute the scalar steps and save the results in VectorLoopValueMap. 2630 ScalarParts Entry(UF); 2631 for (unsigned Part = 0; Part < UF; ++Part) { 2632 Entry[Part].resize(VF); 2633 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2634 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2635 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2636 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2637 Entry[Part][Lane] = Add; 2638 } 2639 } 2640 VectorLoopValueMap.initScalar(EntryVal, Entry); 2641 } 2642 2643 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2644 2645 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2646 ValueToValueMap(); 2647 2648 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2649 if (Stride == 1 || Stride == -1) 2650 return Stride; 2651 return 0; 2652 } 2653 2654 bool LoopVectorizationLegality::isUniform(Value *V) { 2655 return LAI->isUniform(V); 2656 } 2657 2658 const InnerLoopVectorizer::VectorParts & 2659 InnerLoopVectorizer::getVectorValue(Value *V) { 2660 assert(V != Induction && "The new induction variable should not be used."); 2661 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2662 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2663 2664 // If we have a stride that is replaced by one, do it here. 2665 if (Legal->hasStride(V)) 2666 V = ConstantInt::get(V->getType(), 1); 2667 2668 // If we have this scalar in the map, return it. 2669 if (VectorLoopValueMap.hasVector(V)) 2670 return VectorLoopValueMap.VectorMapStorage[V]; 2671 2672 // If the value has not been vectorized, check if it has been scalarized 2673 // instead. If it has been scalarized, and we actually need the value in 2674 // vector form, we will construct the vector values on demand. 2675 if (VectorLoopValueMap.hasScalar(V)) { 2676 2677 // Initialize a new vector map entry. 2678 VectorParts Entry(UF); 2679 2680 // If we've scalarized a value, that value should be an instruction. 2681 auto *I = cast<Instruction>(V); 2682 2683 // If we aren't vectorizing, we can just copy the scalar map values over to 2684 // the vector map. 2685 if (VF == 1) { 2686 for (unsigned Part = 0; Part < UF; ++Part) 2687 Entry[Part] = getScalarValue(V, Part, 0); 2688 return VectorLoopValueMap.initVector(V, Entry); 2689 } 2690 2691 // Get the last scalar instruction we generated for V. If the value is 2692 // known to be uniform after vectorization, this corresponds to lane zero 2693 // of the last unroll iteration. Otherwise, the last instruction is the one 2694 // we created for the last vector lane of the last unroll iteration. 2695 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2696 auto *LastInst = cast<Instruction>(getScalarValue(V, UF - 1, LastLane)); 2697 2698 // Set the insert point after the last scalarized instruction. This ensures 2699 // the insertelement sequence will directly follow the scalar definitions. 2700 auto OldIP = Builder.saveIP(); 2701 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2702 Builder.SetInsertPoint(&*NewIP); 2703 2704 // However, if we are vectorizing, we need to construct the vector values. 2705 // If the value is known to be uniform after vectorization, we can just 2706 // broadcast the scalar value corresponding to lane zero for each unroll 2707 // iteration. Otherwise, we construct the vector values using insertelement 2708 // instructions. Since the resulting vectors are stored in 2709 // VectorLoopValueMap, we will only generate the insertelements once. 2710 for (unsigned Part = 0; Part < UF; ++Part) { 2711 Value *VectorValue = nullptr; 2712 if (Cost->isUniformAfterVectorization(I, VF)) { 2713 VectorValue = getBroadcastInstrs(getScalarValue(V, Part, 0)); 2714 } else { 2715 VectorValue = UndefValue::get(VectorType::get(V->getType(), VF)); 2716 for (unsigned Lane = 0; Lane < VF; ++Lane) 2717 VectorValue = Builder.CreateInsertElement( 2718 VectorValue, getScalarValue(V, Part, Lane), 2719 Builder.getInt32(Lane)); 2720 } 2721 Entry[Part] = VectorValue; 2722 } 2723 Builder.restoreIP(OldIP); 2724 return VectorLoopValueMap.initVector(V, Entry); 2725 } 2726 2727 // If this scalar is unknown, assume that it is a constant or that it is 2728 // loop invariant. Broadcast V and save the value for future uses. 2729 Value *B = getBroadcastInstrs(V); 2730 return VectorLoopValueMap.initVector(V, VectorParts(UF, B)); 2731 } 2732 2733 Value *InnerLoopVectorizer::getScalarValue(Value *V, unsigned Part, 2734 unsigned Lane) { 2735 2736 // If the value is not an instruction contained in the loop, it should 2737 // already be scalar. 2738 if (OrigLoop->isLoopInvariant(V)) 2739 return V; 2740 2741 assert(Lane > 0 ? 2742 !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2743 : true && "Uniform values only have lane zero"); 2744 2745 // If the value from the original loop has not been vectorized, it is 2746 // represented by UF x VF scalar values in the new loop. Return the requested 2747 // scalar value. 2748 if (VectorLoopValueMap.hasScalar(V)) 2749 return VectorLoopValueMap.ScalarMapStorage[V][Part][Lane]; 2750 2751 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2752 // for the given unroll part. If this entry is not a vector type (i.e., the 2753 // vectorization factor is one), there is no need to generate an 2754 // extractelement instruction. 2755 auto *U = getVectorValue(V)[Part]; 2756 if (!U->getType()->isVectorTy()) { 2757 assert(VF == 1 && "Value not scalarized has non-vector type"); 2758 return U; 2759 } 2760 2761 // Otherwise, the value from the original loop has been vectorized and is 2762 // represented by UF vector values. Extract and return the requested scalar 2763 // value from the appropriate vector lane. 2764 return Builder.CreateExtractElement(U, Builder.getInt32(Lane)); 2765 } 2766 2767 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2768 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2769 SmallVector<Constant *, 8> ShuffleMask; 2770 for (unsigned i = 0; i < VF; ++i) 2771 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2772 2773 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2774 ConstantVector::get(ShuffleMask), 2775 "reverse"); 2776 } 2777 2778 // Try to vectorize the interleave group that \p Instr belongs to. 2779 // 2780 // E.g. Translate following interleaved load group (factor = 3): 2781 // for (i = 0; i < N; i+=3) { 2782 // R = Pic[i]; // Member of index 0 2783 // G = Pic[i+1]; // Member of index 1 2784 // B = Pic[i+2]; // Member of index 2 2785 // ... // do something to R, G, B 2786 // } 2787 // To: 2788 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2789 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2790 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2791 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2792 // 2793 // Or translate following interleaved store group (factor = 3): 2794 // for (i = 0; i < N; i+=3) { 2795 // ... do something to R, G, B 2796 // Pic[i] = R; // Member of index 0 2797 // Pic[i+1] = G; // Member of index 1 2798 // Pic[i+2] = B; // Member of index 2 2799 // } 2800 // To: 2801 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2802 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2803 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2804 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2805 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2806 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2807 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2808 assert(Group && "Fail to get an interleaved access group."); 2809 2810 // Skip if current instruction is not the insert position. 2811 if (Instr != Group->getInsertPos()) 2812 return; 2813 2814 Value *Ptr = getPointerOperand(Instr); 2815 2816 // Prepare for the vector type of the interleaved load/store. 2817 Type *ScalarTy = getMemInstValueType(Instr); 2818 unsigned InterleaveFactor = Group->getFactor(); 2819 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2820 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2821 2822 // Prepare for the new pointers. 2823 setDebugLocFromInst(Builder, Ptr); 2824 SmallVector<Value *, 2> NewPtrs; 2825 unsigned Index = Group->getIndex(Instr); 2826 2827 // If the group is reverse, adjust the index to refer to the last vector lane 2828 // instead of the first. We adjust the index from the first vector lane, 2829 // rather than directly getting the pointer for lane VF - 1, because the 2830 // pointer operand of the interleaved access is supposed to be uniform. For 2831 // uniform instructions, we're only required to generate a value for the 2832 // first vector lane in each unroll iteration. 2833 if (Group->isReverse()) 2834 Index += (VF - 1) * Group->getFactor(); 2835 2836 for (unsigned Part = 0; Part < UF; Part++) { 2837 Value *NewPtr = getScalarValue(Ptr, Part, 0); 2838 2839 // Notice current instruction could be any index. Need to adjust the address 2840 // to the member of index 0. 2841 // 2842 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2843 // b = A[i]; // Member of index 0 2844 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2845 // 2846 // E.g. A[i+1] = a; // Member of index 1 2847 // A[i] = b; // Member of index 0 2848 // A[i+2] = c; // Member of index 2 (Current instruction) 2849 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2850 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2851 2852 // Cast to the vector pointer type. 2853 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2854 } 2855 2856 setDebugLocFromInst(Builder, Instr); 2857 Value *UndefVec = UndefValue::get(VecTy); 2858 2859 // Vectorize the interleaved load group. 2860 if (isa<LoadInst>(Instr)) { 2861 2862 // For each unroll part, create a wide load for the group. 2863 SmallVector<Value *, 2> NewLoads; 2864 for (unsigned Part = 0; Part < UF; Part++) { 2865 auto *NewLoad = Builder.CreateAlignedLoad( 2866 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2867 addMetadata(NewLoad, Instr); 2868 NewLoads.push_back(NewLoad); 2869 } 2870 2871 // For each member in the group, shuffle out the appropriate data from the 2872 // wide loads. 2873 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2874 Instruction *Member = Group->getMember(I); 2875 2876 // Skip the gaps in the group. 2877 if (!Member) 2878 continue; 2879 2880 VectorParts Entry(UF); 2881 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2882 for (unsigned Part = 0; Part < UF; Part++) { 2883 Value *StridedVec = Builder.CreateShuffleVector( 2884 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2885 2886 // If this member has different type, cast the result type. 2887 if (Member->getType() != ScalarTy) { 2888 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2889 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2890 } 2891 2892 Entry[Part] = 2893 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2894 } 2895 VectorLoopValueMap.initVector(Member, Entry); 2896 } 2897 return; 2898 } 2899 2900 // The sub vector type for current instruction. 2901 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2902 2903 // Vectorize the interleaved store group. 2904 for (unsigned Part = 0; Part < UF; Part++) { 2905 // Collect the stored vector from each member. 2906 SmallVector<Value *, 4> StoredVecs; 2907 for (unsigned i = 0; i < InterleaveFactor; i++) { 2908 // Interleaved store group doesn't allow a gap, so each index has a member 2909 Instruction *Member = Group->getMember(i); 2910 assert(Member && "Fail to get a member from an interleaved store group"); 2911 2912 Value *StoredVec = 2913 getVectorValue(cast<StoreInst>(Member)->getValueOperand())[Part]; 2914 if (Group->isReverse()) 2915 StoredVec = reverseVector(StoredVec); 2916 2917 // If this member has different type, cast it to an unified type. 2918 if (StoredVec->getType() != SubVT) 2919 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2920 2921 StoredVecs.push_back(StoredVec); 2922 } 2923 2924 // Concatenate all vectors into a wide vector. 2925 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2926 2927 // Interleave the elements in the wide vector. 2928 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2929 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2930 "interleaved.vec"); 2931 2932 Instruction *NewStoreInstr = 2933 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2934 addMetadata(NewStoreInstr, Instr); 2935 } 2936 } 2937 2938 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2939 // Attempt to issue a wide load. 2940 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2941 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2942 2943 assert((LI || SI) && "Invalid Load/Store instruction"); 2944 2945 LoopVectorizationCostModel::InstWidening Decision = 2946 Cost->getWideningDecision(Instr, VF); 2947 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2948 "CM decision should be taken at this point"); 2949 if (Decision == LoopVectorizationCostModel::CM_Interleave) 2950 return vectorizeInterleaveGroup(Instr); 2951 2952 Type *ScalarDataTy = getMemInstValueType(Instr); 2953 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2954 Value *Ptr = getPointerOperand(Instr); 2955 unsigned Alignment = getMemInstAlignment(Instr); 2956 // An alignment of 0 means target abi alignment. We need to use the scalar's 2957 // target abi alignment in such a case. 2958 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2959 if (!Alignment) 2960 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2961 unsigned AddressSpace = getMemInstAddressSpace(Instr); 2962 2963 // Scalarize the memory instruction if necessary. 2964 if (Decision == LoopVectorizationCostModel::CM_Scalarize) 2965 return scalarizeInstruction(Instr, Legal->isScalarWithPredication(Instr)); 2966 2967 // Determine if the pointer operand of the access is either consecutive or 2968 // reverse consecutive. 2969 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2970 bool Reverse = ConsecutiveStride < 0; 2971 bool CreateGatherScatter = 2972 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2973 2974 VectorParts VectorGep; 2975 2976 // Handle consecutive loads/stores. 2977 if (ConsecutiveStride) { 2978 Ptr = getScalarValue(Ptr, 0, 0); 2979 } else { 2980 // At this point we should vector version of GEP for Gather or Scatter 2981 assert(CreateGatherScatter && "The instruction should be scalarized"); 2982 VectorGep = getVectorValue(Ptr); 2983 } 2984 2985 VectorParts Mask = createBlockInMask(Instr->getParent()); 2986 // Handle Stores: 2987 if (SI) { 2988 assert(!Legal->isUniform(SI->getPointerOperand()) && 2989 "We do not allow storing to uniform addresses"); 2990 setDebugLocFromInst(Builder, SI); 2991 // We don't want to update the value in the map as it might be used in 2992 // another expression. So don't use a reference type for "StoredVal". 2993 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2994 2995 for (unsigned Part = 0; Part < UF; ++Part) { 2996 Instruction *NewSI = nullptr; 2997 if (CreateGatherScatter) { 2998 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2999 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 3000 Alignment, MaskPart); 3001 } else { 3002 // Calculate the pointer for the specific unroll-part. 3003 Value *PartPtr = 3004 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3005 3006 if (Reverse) { 3007 // If we store to reverse consecutive memory locations, then we need 3008 // to reverse the order of elements in the stored value. 3009 StoredVal[Part] = reverseVector(StoredVal[Part]); 3010 // If the address is consecutive but reversed, then the 3011 // wide store needs to start at the last vector element. 3012 PartPtr = 3013 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3014 PartPtr = 3015 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3016 Mask[Part] = reverseVector(Mask[Part]); 3017 } 3018 3019 Value *VecPtr = 3020 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3021 3022 if (Legal->isMaskRequired(SI)) 3023 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 3024 Mask[Part]); 3025 else 3026 NewSI = 3027 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 3028 } 3029 addMetadata(NewSI, SI); 3030 } 3031 return; 3032 } 3033 3034 // Handle loads. 3035 assert(LI && "Must have a load instruction"); 3036 setDebugLocFromInst(Builder, LI); 3037 VectorParts Entry(UF); 3038 for (unsigned Part = 0; Part < UF; ++Part) { 3039 Instruction *NewLI; 3040 if (CreateGatherScatter) { 3041 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3042 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 3043 0, "wide.masked.gather"); 3044 Entry[Part] = NewLI; 3045 } else { 3046 // Calculate the pointer for the specific unroll-part. 3047 Value *PartPtr = 3048 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3049 3050 if (Reverse) { 3051 // If the address is consecutive but reversed, then the 3052 // wide load needs to start at the last vector element. 3053 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3054 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3055 Mask[Part] = reverseVector(Mask[Part]); 3056 } 3057 3058 Value *VecPtr = 3059 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3060 if (Legal->isMaskRequired(LI)) 3061 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3062 UndefValue::get(DataTy), 3063 "wide.masked.load"); 3064 else 3065 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3066 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 3067 } 3068 addMetadata(NewLI, LI); 3069 } 3070 VectorLoopValueMap.initVector(Instr, Entry); 3071 } 3072 3073 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3074 bool IfPredicateInstr) { 3075 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3076 DEBUG(dbgs() << "LV: Scalarizing" 3077 << (IfPredicateInstr ? " and predicating:" : ":") << *Instr 3078 << '\n'); 3079 // Holds vector parameters or scalars, in case of uniform vals. 3080 SmallVector<VectorParts, 4> Params; 3081 3082 setDebugLocFromInst(Builder, Instr); 3083 3084 // Does this instruction return a value ? 3085 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3086 3087 // Initialize a new scalar map entry. 3088 ScalarParts Entry(UF); 3089 3090 VectorParts Cond; 3091 if (IfPredicateInstr) 3092 Cond = createBlockInMask(Instr->getParent()); 3093 3094 // Determine the number of scalars we need to generate for each unroll 3095 // iteration. If the instruction is uniform, we only need to generate the 3096 // first lane. Otherwise, we generate all VF values. 3097 unsigned Lanes = Cost->isUniformAfterVectorization(Instr, VF) ? 1 : VF; 3098 3099 // For each vector unroll 'part': 3100 for (unsigned Part = 0; Part < UF; ++Part) { 3101 Entry[Part].resize(VF); 3102 // For each scalar that we create: 3103 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 3104 3105 // Start if-block. 3106 Value *Cmp = nullptr; 3107 if (IfPredicateInstr) { 3108 Cmp = Cond[Part]; 3109 if (Cmp->getType()->isVectorTy()) 3110 Cmp = Builder.CreateExtractElement(Cmp, Builder.getInt32(Lane)); 3111 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 3112 ConstantInt::get(Cmp->getType(), 1)); 3113 } 3114 3115 Instruction *Cloned = Instr->clone(); 3116 if (!IsVoidRetTy) 3117 Cloned->setName(Instr->getName() + ".cloned"); 3118 3119 // Replace the operands of the cloned instructions with their scalar 3120 // equivalents in the new loop. 3121 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3122 auto *NewOp = getScalarValue(Instr->getOperand(op), Part, Lane); 3123 Cloned->setOperand(op, NewOp); 3124 } 3125 addNewMetadata(Cloned, Instr); 3126 3127 // Place the cloned scalar in the new loop. 3128 Builder.Insert(Cloned); 3129 3130 // Add the cloned scalar to the scalar map entry. 3131 Entry[Part][Lane] = Cloned; 3132 3133 // If we just cloned a new assumption, add it the assumption cache. 3134 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3135 if (II->getIntrinsicID() == Intrinsic::assume) 3136 AC->registerAssumption(II); 3137 3138 // End if-block. 3139 if (IfPredicateInstr) 3140 PredicatedInstructions.push_back(std::make_pair(Cloned, Cmp)); 3141 } 3142 } 3143 VectorLoopValueMap.initScalar(Instr, Entry); 3144 } 3145 3146 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3147 Value *End, Value *Step, 3148 Instruction *DL) { 3149 BasicBlock *Header = L->getHeader(); 3150 BasicBlock *Latch = L->getLoopLatch(); 3151 // As we're just creating this loop, it's possible no latch exists 3152 // yet. If so, use the header as this will be a single block loop. 3153 if (!Latch) 3154 Latch = Header; 3155 3156 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3157 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3158 setDebugLocFromInst(Builder, OldInst); 3159 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3160 3161 Builder.SetInsertPoint(Latch->getTerminator()); 3162 setDebugLocFromInst(Builder, OldInst); 3163 3164 // Create i+1 and fill the PHINode. 3165 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3166 Induction->addIncoming(Start, L->getLoopPreheader()); 3167 Induction->addIncoming(Next, Latch); 3168 // Create the compare. 3169 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3170 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3171 3172 // Now we have two terminators. Remove the old one from the block. 3173 Latch->getTerminator()->eraseFromParent(); 3174 3175 return Induction; 3176 } 3177 3178 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3179 if (TripCount) 3180 return TripCount; 3181 3182 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3183 // Find the loop boundaries. 3184 ScalarEvolution *SE = PSE.getSE(); 3185 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3186 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3187 "Invalid loop count"); 3188 3189 Type *IdxTy = Legal->getWidestInductionType(); 3190 3191 // The exit count might have the type of i64 while the phi is i32. This can 3192 // happen if we have an induction variable that is sign extended before the 3193 // compare. The only way that we get a backedge taken count is that the 3194 // induction variable was signed and as such will not overflow. In such a case 3195 // truncation is legal. 3196 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3197 IdxTy->getPrimitiveSizeInBits()) 3198 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3199 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3200 3201 // Get the total trip count from the count by adding 1. 3202 const SCEV *ExitCount = SE->getAddExpr( 3203 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3204 3205 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3206 3207 // Expand the trip count and place the new instructions in the preheader. 3208 // Notice that the pre-header does not change, only the loop body. 3209 SCEVExpander Exp(*SE, DL, "induction"); 3210 3211 // Count holds the overall loop count (N). 3212 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3213 L->getLoopPreheader()->getTerminator()); 3214 3215 if (TripCount->getType()->isPointerTy()) 3216 TripCount = 3217 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3218 L->getLoopPreheader()->getTerminator()); 3219 3220 return TripCount; 3221 } 3222 3223 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3224 if (VectorTripCount) 3225 return VectorTripCount; 3226 3227 Value *TC = getOrCreateTripCount(L); 3228 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3229 3230 // Now we need to generate the expression for the part of the loop that the 3231 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3232 // iterations are not required for correctness, or N - Step, otherwise. Step 3233 // is equal to the vectorization factor (number of SIMD elements) times the 3234 // unroll factor (number of SIMD instructions). 3235 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3236 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3237 3238 // If there is a non-reversed interleaved group that may speculatively access 3239 // memory out-of-bounds, we need to ensure that there will be at least one 3240 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3241 // the trip count, we set the remainder to be equal to the step. If the step 3242 // does not evenly divide the trip count, no adjustment is necessary since 3243 // there will already be scalar iterations. Note that the minimum iterations 3244 // check ensures that N >= Step. 3245 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3246 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3247 R = Builder.CreateSelect(IsZero, Step, R); 3248 } 3249 3250 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3251 3252 return VectorTripCount; 3253 } 3254 3255 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3256 BasicBlock *Bypass) { 3257 Value *Count = getOrCreateTripCount(L); 3258 BasicBlock *BB = L->getLoopPreheader(); 3259 IRBuilder<> Builder(BB->getTerminator()); 3260 3261 // Generate code to check that the loop's trip count that we computed by 3262 // adding one to the backedge-taken count will not overflow. 3263 Value *CheckMinIters = Builder.CreateICmpULT( 3264 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3265 3266 BasicBlock *NewBB = 3267 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3268 // Update dominator tree immediately if the generated block is a 3269 // LoopBypassBlock because SCEV expansions to generate loop bypass 3270 // checks may query it before the current function is finished. 3271 DT->addNewBlock(NewBB, BB); 3272 if (L->getParentLoop()) 3273 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3274 ReplaceInstWithInst(BB->getTerminator(), 3275 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3276 LoopBypassBlocks.push_back(BB); 3277 } 3278 3279 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3280 BasicBlock *Bypass) { 3281 Value *TC = getOrCreateVectorTripCount(L); 3282 BasicBlock *BB = L->getLoopPreheader(); 3283 IRBuilder<> Builder(BB->getTerminator()); 3284 3285 // Now, compare the new count to zero. If it is zero skip the vector loop and 3286 // jump to the scalar loop. 3287 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3288 "cmp.zero"); 3289 3290 // Generate code to check that the loop's trip count that we computed by 3291 // adding one to the backedge-taken count will not overflow. 3292 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3293 // Update dominator tree immediately if the generated block is a 3294 // LoopBypassBlock because SCEV expansions to generate loop bypass 3295 // checks may query it before the current function is finished. 3296 DT->addNewBlock(NewBB, BB); 3297 if (L->getParentLoop()) 3298 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3299 ReplaceInstWithInst(BB->getTerminator(), 3300 BranchInst::Create(Bypass, NewBB, Cmp)); 3301 LoopBypassBlocks.push_back(BB); 3302 } 3303 3304 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3305 BasicBlock *BB = L->getLoopPreheader(); 3306 3307 // Generate the code to check that the SCEV assumptions that we made. 3308 // We want the new basic block to start at the first instruction in a 3309 // sequence of instructions that form a check. 3310 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3311 "scev.check"); 3312 Value *SCEVCheck = 3313 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3314 3315 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3316 if (C->isZero()) 3317 return; 3318 3319 // Create a new block containing the stride check. 3320 BB->setName("vector.scevcheck"); 3321 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3322 // Update dominator tree immediately if the generated block is a 3323 // LoopBypassBlock because SCEV expansions to generate loop bypass 3324 // checks may query it before the current function is finished. 3325 DT->addNewBlock(NewBB, BB); 3326 if (L->getParentLoop()) 3327 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3328 ReplaceInstWithInst(BB->getTerminator(), 3329 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3330 LoopBypassBlocks.push_back(BB); 3331 AddedSafetyChecks = true; 3332 } 3333 3334 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3335 BasicBlock *BB = L->getLoopPreheader(); 3336 3337 // Generate the code that checks in runtime if arrays overlap. We put the 3338 // checks into a separate block to make the more common case of few elements 3339 // faster. 3340 Instruction *FirstCheckInst; 3341 Instruction *MemRuntimeCheck; 3342 std::tie(FirstCheckInst, MemRuntimeCheck) = 3343 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3344 if (!MemRuntimeCheck) 3345 return; 3346 3347 // Create a new block containing the memory check. 3348 BB->setName("vector.memcheck"); 3349 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3350 // Update dominator tree immediately if the generated block is a 3351 // LoopBypassBlock because SCEV expansions to generate loop bypass 3352 // checks may query it before the current function is finished. 3353 DT->addNewBlock(NewBB, BB); 3354 if (L->getParentLoop()) 3355 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3356 ReplaceInstWithInst(BB->getTerminator(), 3357 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3358 LoopBypassBlocks.push_back(BB); 3359 AddedSafetyChecks = true; 3360 3361 // We currently don't use LoopVersioning for the actual loop cloning but we 3362 // still use it to add the noalias metadata. 3363 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3364 PSE.getSE()); 3365 LVer->prepareNoAliasMetadata(); 3366 } 3367 3368 void InnerLoopVectorizer::createEmptyLoop() { 3369 /* 3370 In this function we generate a new loop. The new loop will contain 3371 the vectorized instructions while the old loop will continue to run the 3372 scalar remainder. 3373 3374 [ ] <-- loop iteration number check. 3375 / | 3376 / v 3377 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3378 | / | 3379 | / v 3380 || [ ] <-- vector pre header. 3381 |/ | 3382 | v 3383 | [ ] \ 3384 | [ ]_| <-- vector loop. 3385 | | 3386 | v 3387 | -[ ] <--- middle-block. 3388 | / | 3389 | / v 3390 -|- >[ ] <--- new preheader. 3391 | | 3392 | v 3393 | [ ] \ 3394 | [ ]_| <-- old scalar loop to handle remainder. 3395 \ | 3396 \ v 3397 >[ ] <-- exit block. 3398 ... 3399 */ 3400 3401 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3402 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3403 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3404 assert(VectorPH && "Invalid loop structure"); 3405 assert(ExitBlock && "Must have an exit block"); 3406 3407 // Some loops have a single integer induction variable, while other loops 3408 // don't. One example is c++ iterators that often have multiple pointer 3409 // induction variables. In the code below we also support a case where we 3410 // don't have a single induction variable. 3411 // 3412 // We try to obtain an induction variable from the original loop as hard 3413 // as possible. However if we don't find one that: 3414 // - is an integer 3415 // - counts from zero, stepping by one 3416 // - is the size of the widest induction variable type 3417 // then we create a new one. 3418 OldInduction = Legal->getPrimaryInduction(); 3419 Type *IdxTy = Legal->getWidestInductionType(); 3420 3421 // Split the single block loop into the two loop structure described above. 3422 BasicBlock *VecBody = 3423 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3424 BasicBlock *MiddleBlock = 3425 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3426 BasicBlock *ScalarPH = 3427 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3428 3429 // Create and register the new vector loop. 3430 Loop *Lp = new Loop(); 3431 Loop *ParentLoop = OrigLoop->getParentLoop(); 3432 3433 // Insert the new loop into the loop nest and register the new basic blocks 3434 // before calling any utilities such as SCEV that require valid LoopInfo. 3435 if (ParentLoop) { 3436 ParentLoop->addChildLoop(Lp); 3437 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3438 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3439 } else { 3440 LI->addTopLevelLoop(Lp); 3441 } 3442 Lp->addBasicBlockToLoop(VecBody, *LI); 3443 3444 // Find the loop boundaries. 3445 Value *Count = getOrCreateTripCount(Lp); 3446 3447 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3448 3449 // We need to test whether the backedge-taken count is uint##_max. Adding one 3450 // to it will cause overflow and an incorrect loop trip count in the vector 3451 // body. In case of overflow we want to directly jump to the scalar remainder 3452 // loop. 3453 emitMinimumIterationCountCheck(Lp, ScalarPH); 3454 // Now, compare the new count to zero. If it is zero skip the vector loop and 3455 // jump to the scalar loop. 3456 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3457 // Generate the code to check any assumptions that we've made for SCEV 3458 // expressions. 3459 emitSCEVChecks(Lp, ScalarPH); 3460 3461 // Generate the code that checks in runtime if arrays overlap. We put the 3462 // checks into a separate block to make the more common case of few elements 3463 // faster. 3464 emitMemRuntimeChecks(Lp, ScalarPH); 3465 3466 // Generate the induction variable. 3467 // The loop step is equal to the vectorization factor (num of SIMD elements) 3468 // times the unroll factor (num of SIMD instructions). 3469 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3470 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3471 Induction = 3472 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3473 getDebugLocFromInstOrOperands(OldInduction)); 3474 3475 // We are going to resume the execution of the scalar loop. 3476 // Go over all of the induction variables that we found and fix the 3477 // PHIs that are left in the scalar version of the loop. 3478 // The starting values of PHI nodes depend on the counter of the last 3479 // iteration in the vectorized loop. 3480 // If we come from a bypass edge then we need to start from the original 3481 // start value. 3482 3483 // This variable saves the new starting index for the scalar loop. It is used 3484 // to test if there are any tail iterations left once the vector loop has 3485 // completed. 3486 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3487 for (auto &InductionEntry : *List) { 3488 PHINode *OrigPhi = InductionEntry.first; 3489 InductionDescriptor II = InductionEntry.second; 3490 3491 // Create phi nodes to merge from the backedge-taken check block. 3492 PHINode *BCResumeVal = PHINode::Create( 3493 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3494 Value *&EndValue = IVEndValues[OrigPhi]; 3495 if (OrigPhi == OldInduction) { 3496 // We know what the end value is. 3497 EndValue = CountRoundDown; 3498 } else { 3499 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3500 Type *StepType = II.getStep()->getType(); 3501 Instruction::CastOps CastOp = 3502 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3503 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3504 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3505 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3506 EndValue->setName("ind.end"); 3507 } 3508 3509 // The new PHI merges the original incoming value, in case of a bypass, 3510 // or the value at the end of the vectorized loop. 3511 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3512 3513 // Fix the scalar body counter (PHI node). 3514 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3515 3516 // The old induction's phi node in the scalar body needs the truncated 3517 // value. 3518 for (BasicBlock *BB : LoopBypassBlocks) 3519 BCResumeVal->addIncoming(II.getStartValue(), BB); 3520 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3521 } 3522 3523 // Add a check in the middle block to see if we have completed 3524 // all of the iterations in the first vector loop. 3525 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3526 Value *CmpN = 3527 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3528 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3529 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3530 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3531 3532 // Get ready to start creating new instructions into the vectorized body. 3533 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3534 3535 // Save the state. 3536 LoopVectorPreHeader = Lp->getLoopPreheader(); 3537 LoopScalarPreHeader = ScalarPH; 3538 LoopMiddleBlock = MiddleBlock; 3539 LoopExitBlock = ExitBlock; 3540 LoopVectorBody = VecBody; 3541 LoopScalarBody = OldBasicBlock; 3542 3543 // Keep all loop hints from the original loop on the vector loop (we'll 3544 // replace the vectorizer-specific hints below). 3545 if (MDNode *LID = OrigLoop->getLoopID()) 3546 Lp->setLoopID(LID); 3547 3548 LoopVectorizeHints Hints(Lp, true, *ORE); 3549 Hints.setAlreadyVectorized(); 3550 } 3551 3552 // Fix up external users of the induction variable. At this point, we are 3553 // in LCSSA form, with all external PHIs that use the IV having one input value, 3554 // coming from the remainder loop. We need those PHIs to also have a correct 3555 // value for the IV when arriving directly from the middle block. 3556 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3557 const InductionDescriptor &II, 3558 Value *CountRoundDown, Value *EndValue, 3559 BasicBlock *MiddleBlock) { 3560 // There are two kinds of external IV usages - those that use the value 3561 // computed in the last iteration (the PHI) and those that use the penultimate 3562 // value (the value that feeds into the phi from the loop latch). 3563 // We allow both, but they, obviously, have different values. 3564 3565 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3566 3567 DenseMap<Value *, Value *> MissingVals; 3568 3569 // An external user of the last iteration's value should see the value that 3570 // the remainder loop uses to initialize its own IV. 3571 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3572 for (User *U : PostInc->users()) { 3573 Instruction *UI = cast<Instruction>(U); 3574 if (!OrigLoop->contains(UI)) { 3575 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3576 MissingVals[UI] = EndValue; 3577 } 3578 } 3579 3580 // An external user of the penultimate value need to see EndValue - Step. 3581 // The simplest way to get this is to recompute it from the constituent SCEVs, 3582 // that is Start + (Step * (CRD - 1)). 3583 for (User *U : OrigPhi->users()) { 3584 auto *UI = cast<Instruction>(U); 3585 if (!OrigLoop->contains(UI)) { 3586 const DataLayout &DL = 3587 OrigLoop->getHeader()->getModule()->getDataLayout(); 3588 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3589 3590 IRBuilder<> B(MiddleBlock->getTerminator()); 3591 Value *CountMinusOne = B.CreateSub( 3592 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3593 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3594 "cast.cmo"); 3595 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3596 Escape->setName("ind.escape"); 3597 MissingVals[UI] = Escape; 3598 } 3599 } 3600 3601 for (auto &I : MissingVals) { 3602 PHINode *PHI = cast<PHINode>(I.first); 3603 // One corner case we have to handle is two IVs "chasing" each-other, 3604 // that is %IV2 = phi [...], [ %IV1, %latch ] 3605 // In this case, if IV1 has an external use, we need to avoid adding both 3606 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3607 // don't already have an incoming value for the middle block. 3608 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3609 PHI->addIncoming(I.second, MiddleBlock); 3610 } 3611 } 3612 3613 namespace { 3614 struct CSEDenseMapInfo { 3615 static bool canHandle(const Instruction *I) { 3616 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3617 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3618 } 3619 static inline Instruction *getEmptyKey() { 3620 return DenseMapInfo<Instruction *>::getEmptyKey(); 3621 } 3622 static inline Instruction *getTombstoneKey() { 3623 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3624 } 3625 static unsigned getHashValue(const Instruction *I) { 3626 assert(canHandle(I) && "Unknown instruction!"); 3627 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3628 I->value_op_end())); 3629 } 3630 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3631 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3632 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3633 return LHS == RHS; 3634 return LHS->isIdenticalTo(RHS); 3635 } 3636 }; 3637 } 3638 3639 ///\brief Perform cse of induction variable instructions. 3640 static void cse(BasicBlock *BB) { 3641 // Perform simple cse. 3642 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3643 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3644 Instruction *In = &*I++; 3645 3646 if (!CSEDenseMapInfo::canHandle(In)) 3647 continue; 3648 3649 // Check if we can replace this instruction with any of the 3650 // visited instructions. 3651 if (Instruction *V = CSEMap.lookup(In)) { 3652 In->replaceAllUsesWith(V); 3653 In->eraseFromParent(); 3654 continue; 3655 } 3656 3657 CSEMap[In] = In; 3658 } 3659 } 3660 3661 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3662 /// convenience wrapper for the type-based getScalarizationOverhead API. 3663 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3664 const TargetTransformInfo &TTI) { 3665 if (VF == 1) 3666 return 0; 3667 3668 unsigned Cost = 0; 3669 Type *RetTy = ToVectorTy(I->getType(), VF); 3670 if (!RetTy->isVoidTy() && 3671 (!isa<LoadInst>(I) || 3672 !TTI.supportsEfficientVectorElementLoadStore())) 3673 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3674 3675 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3676 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3677 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3678 } 3679 else if (!isa<StoreInst>(I) || 3680 !TTI.supportsEfficientVectorElementLoadStore()) { 3681 SmallVector<const Value *, 4> Operands(I->operand_values()); 3682 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3683 } 3684 3685 return Cost; 3686 } 3687 3688 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3689 // Return the cost of the instruction, including scalarization overhead if it's 3690 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3691 // i.e. either vector version isn't available, or is too expensive. 3692 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3693 const TargetTransformInfo &TTI, 3694 const TargetLibraryInfo *TLI, 3695 bool &NeedToScalarize) { 3696 Function *F = CI->getCalledFunction(); 3697 StringRef FnName = CI->getCalledFunction()->getName(); 3698 Type *ScalarRetTy = CI->getType(); 3699 SmallVector<Type *, 4> Tys, ScalarTys; 3700 for (auto &ArgOp : CI->arg_operands()) 3701 ScalarTys.push_back(ArgOp->getType()); 3702 3703 // Estimate cost of scalarized vector call. The source operands are assumed 3704 // to be vectors, so we need to extract individual elements from there, 3705 // execute VF scalar calls, and then gather the result into the vector return 3706 // value. 3707 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3708 if (VF == 1) 3709 return ScalarCallCost; 3710 3711 // Compute corresponding vector type for return value and arguments. 3712 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3713 for (Type *ScalarTy : ScalarTys) 3714 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3715 3716 // Compute costs of unpacking argument values for the scalar calls and 3717 // packing the return values to a vector. 3718 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3719 3720 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3721 3722 // If we can't emit a vector call for this function, then the currently found 3723 // cost is the cost we need to return. 3724 NeedToScalarize = true; 3725 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3726 return Cost; 3727 3728 // If the corresponding vector cost is cheaper, return its cost. 3729 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3730 if (VectorCallCost < Cost) { 3731 NeedToScalarize = false; 3732 return VectorCallCost; 3733 } 3734 return Cost; 3735 } 3736 3737 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3738 // factor VF. Return the cost of the instruction, including scalarization 3739 // overhead if it's needed. 3740 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3741 const TargetTransformInfo &TTI, 3742 const TargetLibraryInfo *TLI) { 3743 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3744 assert(ID && "Expected intrinsic call!"); 3745 3746 FastMathFlags FMF; 3747 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3748 FMF = FPMO->getFastMathFlags(); 3749 3750 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3751 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3752 } 3753 3754 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3755 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3756 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3757 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3758 } 3759 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3760 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3761 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3762 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3763 } 3764 3765 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3766 // For every instruction `I` in MinBWs, truncate the operands, create a 3767 // truncated version of `I` and reextend its result. InstCombine runs 3768 // later and will remove any ext/trunc pairs. 3769 // 3770 SmallPtrSet<Value *, 4> Erased; 3771 for (const auto &KV : Cost->getMinimalBitwidths()) { 3772 // If the value wasn't vectorized, we must maintain the original scalar 3773 // type. The absence of the value from VectorLoopValueMap indicates that it 3774 // wasn't vectorized. 3775 if (!VectorLoopValueMap.hasVector(KV.first)) 3776 continue; 3777 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3778 for (Value *&I : Parts) { 3779 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3780 continue; 3781 Type *OriginalTy = I->getType(); 3782 Type *ScalarTruncatedTy = 3783 IntegerType::get(OriginalTy->getContext(), KV.second); 3784 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3785 OriginalTy->getVectorNumElements()); 3786 if (TruncatedTy == OriginalTy) 3787 continue; 3788 3789 IRBuilder<> B(cast<Instruction>(I)); 3790 auto ShrinkOperand = [&](Value *V) -> Value * { 3791 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3792 if (ZI->getSrcTy() == TruncatedTy) 3793 return ZI->getOperand(0); 3794 return B.CreateZExtOrTrunc(V, TruncatedTy); 3795 }; 3796 3797 // The actual instruction modification depends on the instruction type, 3798 // unfortunately. 3799 Value *NewI = nullptr; 3800 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3801 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3802 ShrinkOperand(BO->getOperand(1))); 3803 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3804 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3805 NewI = 3806 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3807 ShrinkOperand(CI->getOperand(1))); 3808 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3809 NewI = B.CreateSelect(SI->getCondition(), 3810 ShrinkOperand(SI->getTrueValue()), 3811 ShrinkOperand(SI->getFalseValue())); 3812 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3813 switch (CI->getOpcode()) { 3814 default: 3815 llvm_unreachable("Unhandled cast!"); 3816 case Instruction::Trunc: 3817 NewI = ShrinkOperand(CI->getOperand(0)); 3818 break; 3819 case Instruction::SExt: 3820 NewI = B.CreateSExtOrTrunc( 3821 CI->getOperand(0), 3822 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3823 break; 3824 case Instruction::ZExt: 3825 NewI = B.CreateZExtOrTrunc( 3826 CI->getOperand(0), 3827 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3828 break; 3829 } 3830 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3831 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3832 auto *O0 = B.CreateZExtOrTrunc( 3833 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3834 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3835 auto *O1 = B.CreateZExtOrTrunc( 3836 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3837 3838 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3839 } else if (isa<LoadInst>(I)) { 3840 // Don't do anything with the operands, just extend the result. 3841 continue; 3842 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3843 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3844 auto *O0 = B.CreateZExtOrTrunc( 3845 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3846 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3847 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3848 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3849 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3850 auto *O0 = B.CreateZExtOrTrunc( 3851 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3852 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3853 } else { 3854 llvm_unreachable("Unhandled instruction type!"); 3855 } 3856 3857 // Lastly, extend the result. 3858 NewI->takeName(cast<Instruction>(I)); 3859 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3860 I->replaceAllUsesWith(Res); 3861 cast<Instruction>(I)->eraseFromParent(); 3862 Erased.insert(I); 3863 I = Res; 3864 } 3865 } 3866 3867 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3868 for (const auto &KV : Cost->getMinimalBitwidths()) { 3869 // If the value wasn't vectorized, we must maintain the original scalar 3870 // type. The absence of the value from VectorLoopValueMap indicates that it 3871 // wasn't vectorized. 3872 if (!VectorLoopValueMap.hasVector(KV.first)) 3873 continue; 3874 VectorParts &Parts = VectorLoopValueMap.getVector(KV.first); 3875 for (Value *&I : Parts) { 3876 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3877 if (Inst && Inst->use_empty()) { 3878 Value *NewI = Inst->getOperand(0); 3879 Inst->eraseFromParent(); 3880 I = NewI; 3881 } 3882 } 3883 } 3884 } 3885 3886 void InnerLoopVectorizer::vectorizeLoop() { 3887 //===------------------------------------------------===// 3888 // 3889 // Notice: any optimization or new instruction that go 3890 // into the code below should be also be implemented in 3891 // the cost-model. 3892 // 3893 //===------------------------------------------------===// 3894 3895 // Collect instructions from the original loop that will become trivially 3896 // dead in the vectorized loop. We don't need to vectorize these 3897 // instructions. 3898 collectTriviallyDeadInstructions(); 3899 3900 // Scan the loop in a topological order to ensure that defs are vectorized 3901 // before users. 3902 LoopBlocksDFS DFS(OrigLoop); 3903 DFS.perform(LI); 3904 3905 // Vectorize all of the blocks in the original loop. 3906 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 3907 vectorizeBlockInLoop(BB); 3908 3909 // Insert truncates and extends for any truncated instructions as hints to 3910 // InstCombine. 3911 if (VF > 1) 3912 truncateToMinimalBitwidths(); 3913 3914 // At this point every instruction in the original loop is widened to a 3915 // vector form. Now we need to fix the recurrences in the loop. These PHI 3916 // nodes are currently empty because we did not want to introduce cycles. 3917 // This is the second stage of vectorizing recurrences. 3918 fixCrossIterationPHIs(); 3919 3920 // Update the dominator tree. 3921 // 3922 // FIXME: After creating the structure of the new loop, the dominator tree is 3923 // no longer up-to-date, and it remains that way until we update it 3924 // here. An out-of-date dominator tree is problematic for SCEV, 3925 // because SCEVExpander uses it to guide code generation. The 3926 // vectorizer use SCEVExpanders in several places. Instead, we should 3927 // keep the dominator tree up-to-date as we go. 3928 updateAnalysis(); 3929 3930 // Fix-up external users of the induction variables. 3931 for (auto &Entry : *Legal->getInductionVars()) 3932 fixupIVUsers(Entry.first, Entry.second, 3933 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3934 IVEndValues[Entry.first], LoopMiddleBlock); 3935 3936 fixLCSSAPHIs(); 3937 predicateInstructions(); 3938 3939 // Remove redundant induction instructions. 3940 cse(LoopVectorBody); 3941 } 3942 3943 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3944 // In order to support recurrences we need to be able to vectorize Phi nodes. 3945 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3946 // stage #2: We now need to fix the recurrences by adding incoming edges to 3947 // the currently empty PHI nodes. At this point every instruction in the 3948 // original loop is widened to a vector form so we can use them to construct 3949 // the incoming edges. 3950 for (Instruction &I : *OrigLoop->getHeader()) { 3951 PHINode *Phi = dyn_cast<PHINode>(&I); 3952 if (!Phi) 3953 break; 3954 // Handle first-order recurrences and reductions that need to be fixed. 3955 if (Legal->isFirstOrderRecurrence(Phi)) 3956 fixFirstOrderRecurrence(Phi); 3957 else if (Legal->isReductionVariable(Phi)) 3958 fixReduction(Phi); 3959 } 3960 } 3961 3962 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3963 3964 // This is the second phase of vectorizing first-order recurrences. An 3965 // overview of the transformation is described below. Suppose we have the 3966 // following loop. 3967 // 3968 // for (int i = 0; i < n; ++i) 3969 // b[i] = a[i] - a[i - 1]; 3970 // 3971 // There is a first-order recurrence on "a". For this loop, the shorthand 3972 // scalar IR looks like: 3973 // 3974 // scalar.ph: 3975 // s_init = a[-1] 3976 // br scalar.body 3977 // 3978 // scalar.body: 3979 // i = phi [0, scalar.ph], [i+1, scalar.body] 3980 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3981 // s2 = a[i] 3982 // b[i] = s2 - s1 3983 // br cond, scalar.body, ... 3984 // 3985 // In this example, s1 is a recurrence because it's value depends on the 3986 // previous iteration. In the first phase of vectorization, we created a 3987 // temporary value for s1. We now complete the vectorization and produce the 3988 // shorthand vector IR shown below (for VF = 4, UF = 1). 3989 // 3990 // vector.ph: 3991 // v_init = vector(..., ..., ..., a[-1]) 3992 // br vector.body 3993 // 3994 // vector.body 3995 // i = phi [0, vector.ph], [i+4, vector.body] 3996 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3997 // v2 = a[i, i+1, i+2, i+3]; 3998 // v3 = vector(v1(3), v2(0, 1, 2)) 3999 // b[i, i+1, i+2, i+3] = v2 - v3 4000 // br cond, vector.body, middle.block 4001 // 4002 // middle.block: 4003 // x = v2(3) 4004 // br scalar.ph 4005 // 4006 // scalar.ph: 4007 // s_init = phi [x, middle.block], [a[-1], otherwise] 4008 // br scalar.body 4009 // 4010 // After execution completes the vector loop, we extract the next value of 4011 // the recurrence (x) to use as the initial value in the scalar loop. 4012 4013 // Get the original loop preheader and single loop latch. 4014 auto *Preheader = OrigLoop->getLoopPreheader(); 4015 auto *Latch = OrigLoop->getLoopLatch(); 4016 4017 // Get the initial and previous values of the scalar recurrence. 4018 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4019 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4020 4021 // Create a vector from the initial value. 4022 auto *VectorInit = ScalarInit; 4023 if (VF > 1) { 4024 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4025 VectorInit = Builder.CreateInsertElement( 4026 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4027 Builder.getInt32(VF - 1), "vector.recur.init"); 4028 } 4029 4030 // We constructed a temporary phi node in the first phase of vectorization. 4031 // This phi node will eventually be deleted. 4032 VectorParts &PhiParts = VectorLoopValueMap.getVector(Phi); 4033 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4034 4035 // Create a phi node for the new recurrence. The current value will either be 4036 // the initial value inserted into a vector or loop-varying vector value. 4037 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4038 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4039 4040 // Get the vectorized previous value. 4041 auto &PreviousParts = getVectorValue(Previous); 4042 4043 // Set the insertion point after the previous value if it is an instruction. 4044 // Note that the previous value may have been constant-folded so it is not 4045 // guaranteed to be an instruction in the vector loop. 4046 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousParts[UF - 1])) 4047 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4048 else 4049 Builder.SetInsertPoint( 4050 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4051 4052 // We will construct a vector for the recurrence by combining the values for 4053 // the current and previous iterations. This is the required shuffle mask. 4054 SmallVector<Constant *, 8> ShuffleMask(VF); 4055 ShuffleMask[0] = Builder.getInt32(VF - 1); 4056 for (unsigned I = 1; I < VF; ++I) 4057 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4058 4059 // The vector from which to take the initial value for the current iteration 4060 // (actual or unrolled). Initially, this is the vector phi node. 4061 Value *Incoming = VecPhi; 4062 4063 // Shuffle the current and previous vector and update the vector parts. 4064 for (unsigned Part = 0; Part < UF; ++Part) { 4065 auto *Shuffle = 4066 VF > 1 4067 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4068 ConstantVector::get(ShuffleMask)) 4069 : Incoming; 4070 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4071 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4072 PhiParts[Part] = Shuffle; 4073 Incoming = PreviousParts[Part]; 4074 } 4075 4076 // Fix the latch value of the new recurrence in the vector loop. 4077 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4078 4079 // Extract the last vector element in the middle block. This will be the 4080 // initial value for the recurrence when jumping to the scalar loop. 4081 // FIXME: Note that the last vector element need not always be the correct one: 4082 // consider a loop where we have phi uses outside the loop - we need the 4083 // second last iteration value and not the last one). For now, we avoid 4084 // considering such cases as firstOrderRecurrences (see 4085 // isFirstOrderRecurrence). 4086 auto *Extract = Incoming; 4087 if (VF > 1) { 4088 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4089 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4090 "vector.recur.extract"); 4091 } 4092 4093 // Fix the initial value of the original recurrence in the scalar loop. 4094 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4095 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4096 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4097 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4098 Start->addIncoming(Incoming, BB); 4099 } 4100 4101 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4102 Phi->setName("scalar.recur"); 4103 4104 // Finally, fix users of the recurrence outside the loop. The users will need 4105 // either the last value of the scalar recurrence or the last value of the 4106 // vector recurrence we extracted in the middle block. Since the loop is in 4107 // LCSSA form, we just need to find the phi node for the original scalar 4108 // recurrence in the exit block, and then add an edge for the middle block. 4109 for (auto &I : *LoopExitBlock) { 4110 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4111 if (!LCSSAPhi) 4112 break; 4113 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4114 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4115 break; 4116 } 4117 } 4118 } 4119 4120 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4121 Constant *Zero = Builder.getInt32(0); 4122 4123 // Get it's reduction variable descriptor. 4124 assert(Legal->isReductionVariable(Phi) && 4125 "Unable to find the reduction variable"); 4126 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4127 4128 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4129 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4130 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4131 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4132 RdxDesc.getMinMaxRecurrenceKind(); 4133 setDebugLocFromInst(Builder, ReductionStartValue); 4134 4135 // We need to generate a reduction vector from the incoming scalar. 4136 // To do so, we need to generate the 'identity' vector and override 4137 // one of the elements with the incoming scalar reduction. We need 4138 // to do it in the vector-loop preheader. 4139 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 4140 4141 // This is the vector-clone of the value that leaves the loop. 4142 const VectorParts &VectorExit = getVectorValue(LoopExitInst); 4143 Type *VecTy = VectorExit[0]->getType(); 4144 4145 // Find the reduction identity variable. Zero for addition, or, xor, 4146 // one for multiplication, -1 for And. 4147 Value *Identity; 4148 Value *VectorStart; 4149 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4150 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4151 // MinMax reduction have the start value as their identify. 4152 if (VF == 1) { 4153 VectorStart = Identity = ReductionStartValue; 4154 } else { 4155 VectorStart = Identity = 4156 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4157 } 4158 } else { 4159 // Handle other reduction kinds: 4160 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4161 RK, VecTy->getScalarType()); 4162 if (VF == 1) { 4163 Identity = Iden; 4164 // This vector is the Identity vector where the first element is the 4165 // incoming scalar reduction. 4166 VectorStart = ReductionStartValue; 4167 } else { 4168 Identity = ConstantVector::getSplat(VF, Iden); 4169 4170 // This vector is the Identity vector where the first element is the 4171 // incoming scalar reduction. 4172 VectorStart = 4173 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4174 } 4175 } 4176 4177 // Fix the vector-loop phi. 4178 4179 // Reductions do not have to start at zero. They can start with 4180 // any loop invariant values. 4181 const VectorParts &VecRdxPhi = getVectorValue(Phi); 4182 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4183 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4184 const VectorParts &Val = getVectorValue(LoopVal); 4185 for (unsigned part = 0; part < UF; ++part) { 4186 // Make sure to add the reduction stat value only to the 4187 // first unroll part. 4188 Value *StartVal = (part == 0) ? VectorStart : Identity; 4189 cast<PHINode>(VecRdxPhi[part]) 4190 ->addIncoming(StartVal, LoopVectorPreHeader); 4191 cast<PHINode>(VecRdxPhi[part]) 4192 ->addIncoming(Val[part], LoopVectorBody); 4193 } 4194 4195 // Before each round, move the insertion point right between 4196 // the PHIs and the values we are going to write. 4197 // This allows us to write both PHINodes and the extractelement 4198 // instructions. 4199 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4200 4201 VectorParts &RdxParts = VectorLoopValueMap.getVector(LoopExitInst); 4202 setDebugLocFromInst(Builder, LoopExitInst); 4203 4204 // If the vector reduction can be performed in a smaller type, we truncate 4205 // then extend the loop exit value to enable InstCombine to evaluate the 4206 // entire expression in the smaller type. 4207 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4208 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4209 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4210 for (unsigned part = 0; part < UF; ++part) { 4211 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4212 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4213 : Builder.CreateZExt(Trunc, VecTy); 4214 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 4215 UI != RdxParts[part]->user_end();) 4216 if (*UI != Trunc) { 4217 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 4218 RdxParts[part] = Extnd; 4219 } else { 4220 ++UI; 4221 } 4222 } 4223 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4224 for (unsigned part = 0; part < UF; ++part) 4225 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 4226 } 4227 4228 // Reduce all of the unrolled parts into a single vector. 4229 Value *ReducedPartRdx = RdxParts[0]; 4230 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4231 setDebugLocFromInst(Builder, ReducedPartRdx); 4232 for (unsigned part = 1; part < UF; ++part) { 4233 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4234 // Floating point operations had to be 'fast' to enable the reduction. 4235 ReducedPartRdx = addFastMathFlag( 4236 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 4237 ReducedPartRdx, "bin.rdx")); 4238 else 4239 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4240 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 4241 } 4242 4243 if (VF > 1) { 4244 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 4245 // and vector ops, reducing the set of values being computed by half each 4246 // round. 4247 assert(isPowerOf2_32(VF) && 4248 "Reduction emission only supported for pow2 vectors!"); 4249 Value *TmpVec = ReducedPartRdx; 4250 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 4251 for (unsigned i = VF; i != 1; i >>= 1) { 4252 // Move the upper half of the vector to the lower half. 4253 for (unsigned j = 0; j != i / 2; ++j) 4254 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 4255 4256 // Fill the rest of the mask with undef. 4257 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 4258 UndefValue::get(Builder.getInt32Ty())); 4259 4260 Value *Shuf = Builder.CreateShuffleVector( 4261 TmpVec, UndefValue::get(TmpVec->getType()), 4262 ConstantVector::get(ShuffleMask), "rdx.shuf"); 4263 4264 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4265 // Floating point operations had to be 'fast' to enable the reduction. 4266 TmpVec = addFastMathFlag(Builder.CreateBinOp( 4267 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 4268 else 4269 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 4270 TmpVec, Shuf); 4271 } 4272 4273 // The result is in the first element of the vector. 4274 ReducedPartRdx = 4275 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 4276 4277 // If the reduction can be performed in a smaller type, we need to extend 4278 // the reduction to the wider type before we branch to the original loop. 4279 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4280 ReducedPartRdx = 4281 RdxDesc.isSigned() 4282 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4283 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4284 } 4285 4286 // Create a phi node that merges control-flow from the backedge-taken check 4287 // block and the middle block. 4288 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4289 LoopScalarPreHeader->getTerminator()); 4290 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4291 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4292 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4293 4294 // Now, we need to fix the users of the reduction variable 4295 // inside and outside of the scalar remainder loop. 4296 // We know that the loop is in LCSSA form. We need to update the 4297 // PHI nodes in the exit blocks. 4298 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4299 LEE = LoopExitBlock->end(); 4300 LEI != LEE; ++LEI) { 4301 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4302 if (!LCSSAPhi) 4303 break; 4304 4305 // All PHINodes need to have a single entry edge, or two if 4306 // we already fixed them. 4307 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4308 4309 // We found a reduction value exit-PHI. Update it with the 4310 // incoming bypass edge. 4311 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4312 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4313 } // end of the LCSSA phi scan. 4314 4315 // Fix the scalar loop reduction variable with the incoming reduction sum 4316 // from the vector body and from the backedge value. 4317 int IncomingEdgeBlockIdx = 4318 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4319 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4320 // Pick the other block. 4321 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4322 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4323 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4324 } 4325 4326 void InnerLoopVectorizer::fixLCSSAPHIs() { 4327 for (Instruction &LEI : *LoopExitBlock) { 4328 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4329 if (!LCSSAPhi) 4330 break; 4331 if (LCSSAPhi->getNumIncomingValues() == 1) 4332 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4333 LoopMiddleBlock); 4334 } 4335 } 4336 4337 void InnerLoopVectorizer::collectTriviallyDeadInstructions() { 4338 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4339 4340 // We create new control-flow for the vectorized loop, so the original 4341 // condition will be dead after vectorization if it's only used by the 4342 // branch. 4343 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4344 if (Cmp && Cmp->hasOneUse()) 4345 DeadInstructions.insert(Cmp); 4346 4347 // We create new "steps" for induction variable updates to which the original 4348 // induction variables map. An original update instruction will be dead if 4349 // all its users except the induction variable are dead. 4350 for (auto &Induction : *Legal->getInductionVars()) { 4351 PHINode *Ind = Induction.first; 4352 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4353 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 4354 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 4355 })) 4356 DeadInstructions.insert(IndUpdate); 4357 } 4358 } 4359 4360 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4361 4362 // The basic block and loop containing the predicated instruction. 4363 auto *PredBB = PredInst->getParent(); 4364 auto *VectorLoop = LI->getLoopFor(PredBB); 4365 4366 // Initialize a worklist with the operands of the predicated instruction. 4367 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4368 4369 // Holds instructions that we need to analyze again. An instruction may be 4370 // reanalyzed if we don't yet know if we can sink it or not. 4371 SmallVector<Instruction *, 8> InstsToReanalyze; 4372 4373 // Returns true if a given use occurs in the predicated block. Phi nodes use 4374 // their operands in their corresponding predecessor blocks. 4375 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4376 auto *I = cast<Instruction>(U.getUser()); 4377 BasicBlock *BB = I->getParent(); 4378 if (auto *Phi = dyn_cast<PHINode>(I)) 4379 BB = Phi->getIncomingBlock( 4380 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4381 return BB == PredBB; 4382 }; 4383 4384 // Iteratively sink the scalarized operands of the predicated instruction 4385 // into the block we created for it. When an instruction is sunk, it's 4386 // operands are then added to the worklist. The algorithm ends after one pass 4387 // through the worklist doesn't sink a single instruction. 4388 bool Changed; 4389 do { 4390 4391 // Add the instructions that need to be reanalyzed to the worklist, and 4392 // reset the changed indicator. 4393 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4394 InstsToReanalyze.clear(); 4395 Changed = false; 4396 4397 while (!Worklist.empty()) { 4398 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4399 4400 // We can't sink an instruction if it is a phi node, is already in the 4401 // predicated block, is not in the loop, or may have side effects. 4402 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4403 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4404 continue; 4405 4406 // It's legal to sink the instruction if all its uses occur in the 4407 // predicated block. Otherwise, there's nothing to do yet, and we may 4408 // need to reanalyze the instruction. 4409 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4410 InstsToReanalyze.push_back(I); 4411 continue; 4412 } 4413 4414 // Move the instruction to the beginning of the predicated block, and add 4415 // it's operands to the worklist. 4416 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4417 Worklist.insert(I->op_begin(), I->op_end()); 4418 4419 // The sinking may have enabled other instructions to be sunk, so we will 4420 // need to iterate. 4421 Changed = true; 4422 } 4423 } while (Changed); 4424 } 4425 4426 void InnerLoopVectorizer::predicateInstructions() { 4427 4428 // For each instruction I marked for predication on value C, split I into its 4429 // own basic block to form an if-then construct over C. Since I may be fed by 4430 // an extractelement instruction or other scalar operand, we try to 4431 // iteratively sink its scalar operands into the predicated block. If I feeds 4432 // an insertelement instruction, we try to move this instruction into the 4433 // predicated block as well. For non-void types, a phi node will be created 4434 // for the resulting value (either vector or scalar). 4435 // 4436 // So for some predicated instruction, e.g. the conditional sdiv in: 4437 // 4438 // for.body: 4439 // ... 4440 // %add = add nsw i32 %mul, %0 4441 // %cmp5 = icmp sgt i32 %2, 7 4442 // br i1 %cmp5, label %if.then, label %if.end 4443 // 4444 // if.then: 4445 // %div = sdiv i32 %0, %1 4446 // br label %if.end 4447 // 4448 // if.end: 4449 // %x.0 = phi i32 [ %div, %if.then ], [ %add, %for.body ] 4450 // 4451 // the sdiv at this point is scalarized and if-converted using a select. 4452 // The inactive elements in the vector are not used, but the predicated 4453 // instruction is still executed for all vector elements, essentially: 4454 // 4455 // vector.body: 4456 // ... 4457 // %17 = add nsw <2 x i32> %16, %wide.load 4458 // %29 = extractelement <2 x i32> %wide.load, i32 0 4459 // %30 = extractelement <2 x i32> %wide.load51, i32 0 4460 // %31 = sdiv i32 %29, %30 4461 // %32 = insertelement <2 x i32> undef, i32 %31, i32 0 4462 // %35 = extractelement <2 x i32> %wide.load, i32 1 4463 // %36 = extractelement <2 x i32> %wide.load51, i32 1 4464 // %37 = sdiv i32 %35, %36 4465 // %38 = insertelement <2 x i32> %32, i32 %37, i32 1 4466 // %predphi = select <2 x i1> %26, <2 x i32> %38, <2 x i32> %17 4467 // 4468 // Predication will now re-introduce the original control flow to avoid false 4469 // side-effects by the sdiv instructions on the inactive elements, yielding 4470 // (after cleanup): 4471 // 4472 // vector.body: 4473 // ... 4474 // %5 = add nsw <2 x i32> %4, %wide.load 4475 // %8 = icmp sgt <2 x i32> %wide.load52, <i32 7, i32 7> 4476 // %9 = extractelement <2 x i1> %8, i32 0 4477 // br i1 %9, label %pred.sdiv.if, label %pred.sdiv.continue 4478 // 4479 // pred.sdiv.if: 4480 // %10 = extractelement <2 x i32> %wide.load, i32 0 4481 // %11 = extractelement <2 x i32> %wide.load51, i32 0 4482 // %12 = sdiv i32 %10, %11 4483 // %13 = insertelement <2 x i32> undef, i32 %12, i32 0 4484 // br label %pred.sdiv.continue 4485 // 4486 // pred.sdiv.continue: 4487 // %14 = phi <2 x i32> [ undef, %vector.body ], [ %13, %pred.sdiv.if ] 4488 // %15 = extractelement <2 x i1> %8, i32 1 4489 // br i1 %15, label %pred.sdiv.if54, label %pred.sdiv.continue55 4490 // 4491 // pred.sdiv.if54: 4492 // %16 = extractelement <2 x i32> %wide.load, i32 1 4493 // %17 = extractelement <2 x i32> %wide.load51, i32 1 4494 // %18 = sdiv i32 %16, %17 4495 // %19 = insertelement <2 x i32> %14, i32 %18, i32 1 4496 // br label %pred.sdiv.continue55 4497 // 4498 // pred.sdiv.continue55: 4499 // %20 = phi <2 x i32> [ %14, %pred.sdiv.continue ], [ %19, %pred.sdiv.if54 ] 4500 // %predphi = select <2 x i1> %8, <2 x i32> %20, <2 x i32> %5 4501 4502 for (auto KV : PredicatedInstructions) { 4503 BasicBlock::iterator I(KV.first); 4504 BasicBlock *Head = I->getParent(); 4505 auto *BB = SplitBlock(Head, &*std::next(I), DT, LI); 4506 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 4507 /*BranchWeights=*/nullptr, DT, LI); 4508 I->moveBefore(T); 4509 sinkScalarOperands(&*I); 4510 4511 I->getParent()->setName(Twine("pred.") + I->getOpcodeName() + ".if"); 4512 BB->setName(Twine("pred.") + I->getOpcodeName() + ".continue"); 4513 4514 // If the instruction is non-void create a Phi node at reconvergence point. 4515 if (!I->getType()->isVoidTy()) { 4516 Value *IncomingTrue = nullptr; 4517 Value *IncomingFalse = nullptr; 4518 4519 if (I->hasOneUse() && isa<InsertElementInst>(*I->user_begin())) { 4520 // If the predicated instruction is feeding an insert-element, move it 4521 // into the Then block; Phi node will be created for the vector. 4522 InsertElementInst *IEI = cast<InsertElementInst>(*I->user_begin()); 4523 IEI->moveBefore(T); 4524 IncomingTrue = IEI; // the new vector with the inserted element. 4525 IncomingFalse = IEI->getOperand(0); // the unmodified vector 4526 } else { 4527 // Phi node will be created for the scalar predicated instruction. 4528 IncomingTrue = &*I; 4529 IncomingFalse = UndefValue::get(I->getType()); 4530 } 4531 4532 BasicBlock *PostDom = I->getParent()->getSingleSuccessor(); 4533 assert(PostDom && "Then block has multiple successors"); 4534 PHINode *Phi = 4535 PHINode::Create(IncomingTrue->getType(), 2, "", &PostDom->front()); 4536 IncomingTrue->replaceAllUsesWith(Phi); 4537 Phi->addIncoming(IncomingFalse, Head); 4538 Phi->addIncoming(IncomingTrue, I->getParent()); 4539 } 4540 } 4541 4542 DEBUG(DT->verifyDomTree()); 4543 } 4544 4545 InnerLoopVectorizer::VectorParts 4546 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4547 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4548 4549 // Look for cached value. 4550 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4551 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4552 if (ECEntryIt != MaskCache.end()) 4553 return ECEntryIt->second; 4554 4555 VectorParts SrcMask = createBlockInMask(Src); 4556 4557 // The terminator has to be a branch inst! 4558 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4559 assert(BI && "Unexpected terminator found"); 4560 4561 if (BI->isConditional()) { 4562 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4563 4564 if (BI->getSuccessor(0) != Dst) 4565 for (unsigned part = 0; part < UF; ++part) 4566 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4567 4568 for (unsigned part = 0; part < UF; ++part) 4569 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4570 4571 MaskCache[Edge] = EdgeMask; 4572 return EdgeMask; 4573 } 4574 4575 MaskCache[Edge] = SrcMask; 4576 return SrcMask; 4577 } 4578 4579 InnerLoopVectorizer::VectorParts 4580 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4581 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4582 4583 // Loop incoming mask is all-one. 4584 if (OrigLoop->getHeader() == BB) { 4585 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4586 return getVectorValue(C); 4587 } 4588 4589 // This is the block mask. We OR all incoming edges, and with zero. 4590 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4591 VectorParts BlockMask = getVectorValue(Zero); 4592 4593 // For each pred: 4594 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4595 VectorParts EM = createEdgeMask(*it, BB); 4596 for (unsigned part = 0; part < UF; ++part) 4597 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4598 } 4599 4600 return BlockMask; 4601 } 4602 4603 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4604 unsigned VF) { 4605 PHINode *P = cast<PHINode>(PN); 4606 // In order to support recurrences we need to be able to vectorize Phi nodes. 4607 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4608 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4609 // this value when we vectorize all of the instructions that use the PHI. 4610 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4611 VectorParts Entry(UF); 4612 for (unsigned part = 0; part < UF; ++part) { 4613 // This is phase one of vectorizing PHIs. 4614 Type *VecTy = 4615 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4616 Entry[part] = PHINode::Create( 4617 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4618 } 4619 VectorLoopValueMap.initVector(P, Entry); 4620 return; 4621 } 4622 4623 setDebugLocFromInst(Builder, P); 4624 // Check for PHI nodes that are lowered to vector selects. 4625 if (P->getParent() != OrigLoop->getHeader()) { 4626 // We know that all PHIs in non-header blocks are converted into 4627 // selects, so we don't have to worry about the insertion order and we 4628 // can just use the builder. 4629 // At this point we generate the predication tree. There may be 4630 // duplications since this is a simple recursive scan, but future 4631 // optimizations will clean it up. 4632 4633 unsigned NumIncoming = P->getNumIncomingValues(); 4634 4635 // Generate a sequence of selects of the form: 4636 // SELECT(Mask3, In3, 4637 // SELECT(Mask2, In2, 4638 // ( ...))) 4639 VectorParts Entry(UF); 4640 for (unsigned In = 0; In < NumIncoming; In++) { 4641 VectorParts Cond = 4642 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4643 const VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4644 4645 for (unsigned part = 0; part < UF; ++part) { 4646 // We might have single edge PHIs (blocks) - use an identity 4647 // 'select' for the first PHI operand. 4648 if (In == 0) 4649 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4650 else 4651 // Select between the current value and the previous incoming edge 4652 // based on the incoming mask. 4653 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4654 "predphi"); 4655 } 4656 } 4657 VectorLoopValueMap.initVector(P, Entry); 4658 return; 4659 } 4660 4661 // This PHINode must be an induction variable. 4662 // Make sure that we know about it. 4663 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4664 4665 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4666 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4667 4668 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4669 // which can be found from the original scalar operations. 4670 switch (II.getKind()) { 4671 case InductionDescriptor::IK_NoInduction: 4672 llvm_unreachable("Unknown induction"); 4673 case InductionDescriptor::IK_IntInduction: 4674 case InductionDescriptor::IK_FpInduction: 4675 return widenIntOrFpInduction(P); 4676 case InductionDescriptor::IK_PtrInduction: { 4677 // Handle the pointer induction variable case. 4678 assert(P->getType()->isPointerTy() && "Unexpected type."); 4679 // This is the normalized GEP that starts counting at zero. 4680 Value *PtrInd = Induction; 4681 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4682 // Determine the number of scalars we need to generate for each unroll 4683 // iteration. If the instruction is uniform, we only need to generate the 4684 // first lane. Otherwise, we generate all VF values. 4685 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4686 // These are the scalar results. Notice that we don't generate vector GEPs 4687 // because scalar GEPs result in better code. 4688 ScalarParts Entry(UF); 4689 for (unsigned Part = 0; Part < UF; ++Part) { 4690 Entry[Part].resize(VF); 4691 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4692 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4693 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4694 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4695 SclrGep->setName("next.gep"); 4696 Entry[Part][Lane] = SclrGep; 4697 } 4698 } 4699 VectorLoopValueMap.initScalar(P, Entry); 4700 return; 4701 } 4702 } 4703 } 4704 4705 /// A helper function for checking whether an integer division-related 4706 /// instruction may divide by zero (in which case it must be predicated if 4707 /// executed conditionally in the scalar code). 4708 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4709 /// Non-zero divisors that are non compile-time constants will not be 4710 /// converted into multiplication, so we will still end up scalarizing 4711 /// the division, but can do so w/o predication. 4712 static bool mayDivideByZero(Instruction &I) { 4713 assert((I.getOpcode() == Instruction::UDiv || 4714 I.getOpcode() == Instruction::SDiv || 4715 I.getOpcode() == Instruction::URem || 4716 I.getOpcode() == Instruction::SRem) && 4717 "Unexpected instruction"); 4718 Value *Divisor = I.getOperand(1); 4719 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4720 return !CInt || CInt->isZero(); 4721 } 4722 4723 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB) { 4724 // For each instruction in the old loop. 4725 for (Instruction &I : *BB) { 4726 4727 // If the instruction will become trivially dead when vectorized, we don't 4728 // need to generate it. 4729 if (DeadInstructions.count(&I)) 4730 continue; 4731 4732 // Scalarize instructions that should remain scalar after vectorization. 4733 if (VF > 1 && 4734 !(isa<BranchInst>(&I) || isa<PHINode>(&I) || 4735 isa<DbgInfoIntrinsic>(&I)) && 4736 shouldScalarizeInstruction(&I)) { 4737 scalarizeInstruction(&I, Legal->isScalarWithPredication(&I)); 4738 continue; 4739 } 4740 4741 switch (I.getOpcode()) { 4742 case Instruction::Br: 4743 // Nothing to do for PHIs and BR, since we already took care of the 4744 // loop control flow instructions. 4745 continue; 4746 case Instruction::PHI: { 4747 // Vectorize PHINodes. 4748 widenPHIInstruction(&I, UF, VF); 4749 continue; 4750 } // End of PHI. 4751 case Instruction::GetElementPtr: { 4752 // Construct a vector GEP by widening the operands of the scalar GEP as 4753 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4754 // results in a vector of pointers when at least one operand of the GEP 4755 // is vector-typed. Thus, to keep the representation compact, we only use 4756 // vector-typed operands for loop-varying values. 4757 auto *GEP = cast<GetElementPtrInst>(&I); 4758 VectorParts Entry(UF); 4759 4760 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4761 // If we are vectorizing, but the GEP has only loop-invariant operands, 4762 // the GEP we build (by only using vector-typed operands for 4763 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4764 // produce a vector of pointers, we need to either arbitrarily pick an 4765 // operand to broadcast, or broadcast a clone of the original GEP. 4766 // Here, we broadcast a clone of the original. 4767 // 4768 // TODO: If at some point we decide to scalarize instructions having 4769 // loop-invariant operands, this special case will no longer be 4770 // required. We would add the scalarization decision to 4771 // collectLoopScalars() and teach getVectorValue() to broadcast 4772 // the lane-zero scalar value. 4773 auto *Clone = Builder.Insert(GEP->clone()); 4774 for (unsigned Part = 0; Part < UF; ++Part) 4775 Entry[Part] = Builder.CreateVectorSplat(VF, Clone); 4776 } else { 4777 // If the GEP has at least one loop-varying operand, we are sure to 4778 // produce a vector of pointers. But if we are only unrolling, we want 4779 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4780 // produce with the code below will be scalar (if VF == 1) or vector 4781 // (otherwise). Note that for the unroll-only case, we still maintain 4782 // values in the vector mapping with initVector, as we do for other 4783 // instructions. 4784 for (unsigned Part = 0; Part < UF; ++Part) { 4785 4786 // The pointer operand of the new GEP. If it's loop-invariant, we 4787 // won't broadcast it. 4788 auto *Ptr = OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4789 ? GEP->getPointerOperand() 4790 : getVectorValue(GEP->getPointerOperand())[Part]; 4791 4792 // Collect all the indices for the new GEP. If any index is 4793 // loop-invariant, we won't broadcast it. 4794 SmallVector<Value *, 4> Indices; 4795 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4796 if (OrigLoop->isLoopInvariant(U.get())) 4797 Indices.push_back(U.get()); 4798 else 4799 Indices.push_back(getVectorValue(U.get())[Part]); 4800 } 4801 4802 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4803 // but it should be a vector, otherwise. 4804 auto *NewGEP = GEP->isInBounds() 4805 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4806 : Builder.CreateGEP(Ptr, Indices); 4807 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4808 "NewGEP is not a pointer vector"); 4809 Entry[Part] = NewGEP; 4810 } 4811 } 4812 4813 VectorLoopValueMap.initVector(&I, Entry); 4814 addMetadata(Entry, GEP); 4815 break; 4816 } 4817 case Instruction::UDiv: 4818 case Instruction::SDiv: 4819 case Instruction::SRem: 4820 case Instruction::URem: 4821 // Scalarize with predication if this instruction may divide by zero and 4822 // block execution is conditional, otherwise fallthrough. 4823 if (Legal->isScalarWithPredication(&I)) { 4824 scalarizeInstruction(&I, true); 4825 continue; 4826 } 4827 case Instruction::Add: 4828 case Instruction::FAdd: 4829 case Instruction::Sub: 4830 case Instruction::FSub: 4831 case Instruction::Mul: 4832 case Instruction::FMul: 4833 case Instruction::FDiv: 4834 case Instruction::FRem: 4835 case Instruction::Shl: 4836 case Instruction::LShr: 4837 case Instruction::AShr: 4838 case Instruction::And: 4839 case Instruction::Or: 4840 case Instruction::Xor: { 4841 // Just widen binops. 4842 auto *BinOp = cast<BinaryOperator>(&I); 4843 setDebugLocFromInst(Builder, BinOp); 4844 const VectorParts &A = getVectorValue(BinOp->getOperand(0)); 4845 const VectorParts &B = getVectorValue(BinOp->getOperand(1)); 4846 4847 // Use this vector value for all users of the original instruction. 4848 VectorParts Entry(UF); 4849 for (unsigned Part = 0; Part < UF; ++Part) { 4850 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4851 4852 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4853 VecOp->copyIRFlags(BinOp); 4854 4855 Entry[Part] = V; 4856 } 4857 4858 VectorLoopValueMap.initVector(&I, Entry); 4859 addMetadata(Entry, BinOp); 4860 break; 4861 } 4862 case Instruction::Select: { 4863 // Widen selects. 4864 // If the selector is loop invariant we can create a select 4865 // instruction with a scalar condition. Otherwise, use vector-select. 4866 auto *SE = PSE.getSE(); 4867 bool InvariantCond = 4868 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4869 setDebugLocFromInst(Builder, &I); 4870 4871 // The condition can be loop invariant but still defined inside the 4872 // loop. This means that we can't just use the original 'cond' value. 4873 // We have to take the 'vectorized' value and pick the first lane. 4874 // Instcombine will make this a no-op. 4875 const VectorParts &Cond = getVectorValue(I.getOperand(0)); 4876 const VectorParts &Op0 = getVectorValue(I.getOperand(1)); 4877 const VectorParts &Op1 = getVectorValue(I.getOperand(2)); 4878 4879 auto *ScalarCond = getScalarValue(I.getOperand(0), 0, 0); 4880 4881 VectorParts Entry(UF); 4882 for (unsigned Part = 0; Part < UF; ++Part) { 4883 Entry[Part] = Builder.CreateSelect( 4884 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4885 } 4886 4887 VectorLoopValueMap.initVector(&I, Entry); 4888 addMetadata(Entry, &I); 4889 break; 4890 } 4891 4892 case Instruction::ICmp: 4893 case Instruction::FCmp: { 4894 // Widen compares. Generate vector compares. 4895 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4896 auto *Cmp = dyn_cast<CmpInst>(&I); 4897 setDebugLocFromInst(Builder, Cmp); 4898 const VectorParts &A = getVectorValue(Cmp->getOperand(0)); 4899 const VectorParts &B = getVectorValue(Cmp->getOperand(1)); 4900 VectorParts Entry(UF); 4901 for (unsigned Part = 0; Part < UF; ++Part) { 4902 Value *C = nullptr; 4903 if (FCmp) { 4904 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4905 cast<FCmpInst>(C)->copyFastMathFlags(Cmp); 4906 } else { 4907 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4908 } 4909 Entry[Part] = C; 4910 } 4911 4912 VectorLoopValueMap.initVector(&I, Entry); 4913 addMetadata(Entry, &I); 4914 break; 4915 } 4916 4917 case Instruction::Store: 4918 case Instruction::Load: 4919 vectorizeMemoryInstruction(&I); 4920 break; 4921 case Instruction::ZExt: 4922 case Instruction::SExt: 4923 case Instruction::FPToUI: 4924 case Instruction::FPToSI: 4925 case Instruction::FPExt: 4926 case Instruction::PtrToInt: 4927 case Instruction::IntToPtr: 4928 case Instruction::SIToFP: 4929 case Instruction::UIToFP: 4930 case Instruction::Trunc: 4931 case Instruction::FPTrunc: 4932 case Instruction::BitCast: { 4933 auto *CI = dyn_cast<CastInst>(&I); 4934 setDebugLocFromInst(Builder, CI); 4935 4936 // Optimize the special case where the source is a constant integer 4937 // induction variable. Notice that we can only optimize the 'trunc' case 4938 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 4939 // (c) other casts depend on pointer size. 4940 if (Cost->isOptimizableIVTruncate(CI, VF)) { 4941 widenIntOrFpInduction(cast<PHINode>(CI->getOperand(0)), 4942 cast<TruncInst>(CI)); 4943 break; 4944 } 4945 4946 /// Vectorize casts. 4947 Type *DestTy = 4948 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4949 4950 const VectorParts &A = getVectorValue(CI->getOperand(0)); 4951 VectorParts Entry(UF); 4952 for (unsigned Part = 0; Part < UF; ++Part) 4953 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4954 VectorLoopValueMap.initVector(&I, Entry); 4955 addMetadata(Entry, &I); 4956 break; 4957 } 4958 4959 case Instruction::Call: { 4960 // Ignore dbg intrinsics. 4961 if (isa<DbgInfoIntrinsic>(I)) 4962 break; 4963 setDebugLocFromInst(Builder, &I); 4964 4965 Module *M = BB->getParent()->getParent(); 4966 auto *CI = cast<CallInst>(&I); 4967 4968 StringRef FnName = CI->getCalledFunction()->getName(); 4969 Function *F = CI->getCalledFunction(); 4970 Type *RetTy = ToVectorTy(CI->getType(), VF); 4971 SmallVector<Type *, 4> Tys; 4972 for (Value *ArgOperand : CI->arg_operands()) 4973 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4974 4975 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4976 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4977 ID == Intrinsic::lifetime_start)) { 4978 scalarizeInstruction(&I); 4979 break; 4980 } 4981 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4982 // version of the instruction. 4983 // Is it beneficial to perform intrinsic call compared to lib call? 4984 bool NeedToScalarize; 4985 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4986 bool UseVectorIntrinsic = 4987 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4988 if (!UseVectorIntrinsic && NeedToScalarize) { 4989 scalarizeInstruction(&I); 4990 break; 4991 } 4992 4993 VectorParts Entry(UF); 4994 for (unsigned Part = 0; Part < UF; ++Part) { 4995 SmallVector<Value *, 4> Args; 4996 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4997 Value *Arg = CI->getArgOperand(i); 4998 // Some intrinsics have a scalar argument - don't replace it with a 4999 // vector. 5000 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 5001 const VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 5002 Arg = VectorArg[Part]; 5003 } 5004 Args.push_back(Arg); 5005 } 5006 5007 Function *VectorF; 5008 if (UseVectorIntrinsic) { 5009 // Use vector version of the intrinsic. 5010 Type *TysForDecl[] = {CI->getType()}; 5011 if (VF > 1) 5012 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5013 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5014 } else { 5015 // Use vector version of the library call. 5016 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 5017 assert(!VFnName.empty() && "Vector function name is empty."); 5018 VectorF = M->getFunction(VFnName); 5019 if (!VectorF) { 5020 // Generate a declaration 5021 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 5022 VectorF = 5023 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 5024 VectorF->copyAttributesFrom(F); 5025 } 5026 } 5027 assert(VectorF && "Can't create vector function."); 5028 5029 SmallVector<OperandBundleDef, 1> OpBundles; 5030 CI->getOperandBundlesAsDefs(OpBundles); 5031 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5032 5033 if (isa<FPMathOperator>(V)) 5034 V->copyFastMathFlags(CI); 5035 5036 Entry[Part] = V; 5037 } 5038 5039 VectorLoopValueMap.initVector(&I, Entry); 5040 addMetadata(Entry, &I); 5041 break; 5042 } 5043 5044 default: 5045 // All other instructions are unsupported. Scalarize them. 5046 scalarizeInstruction(&I); 5047 break; 5048 } // end of switch. 5049 } // end of for_each instr. 5050 } 5051 5052 void InnerLoopVectorizer::updateAnalysis() { 5053 // Forget the original basic block. 5054 PSE.getSE()->forgetLoop(OrigLoop); 5055 5056 // Update the dominator tree information. 5057 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 5058 "Entry does not dominate exit."); 5059 5060 // We don't predicate stores by this point, so the vector body should be a 5061 // single loop. 5062 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 5063 5064 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 5065 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 5066 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 5067 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 5068 5069 DEBUG(DT->verifyDomTree()); 5070 } 5071 5072 /// \brief Check whether it is safe to if-convert this phi node. 5073 /// 5074 /// Phi nodes with constant expressions that can trap are not safe to if 5075 /// convert. 5076 static bool canIfConvertPHINodes(BasicBlock *BB) { 5077 for (Instruction &I : *BB) { 5078 auto *Phi = dyn_cast<PHINode>(&I); 5079 if (!Phi) 5080 return true; 5081 for (Value *V : Phi->incoming_values()) 5082 if (auto *C = dyn_cast<Constant>(V)) 5083 if (C->canTrap()) 5084 return false; 5085 } 5086 return true; 5087 } 5088 5089 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 5090 if (!EnableIfConversion) { 5091 ORE->emit(createMissedAnalysis("IfConversionDisabled") 5092 << "if-conversion is disabled"); 5093 return false; 5094 } 5095 5096 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 5097 5098 // A list of pointers that we can safely read and write to. 5099 SmallPtrSet<Value *, 8> SafePointes; 5100 5101 // Collect safe addresses. 5102 for (BasicBlock *BB : TheLoop->blocks()) { 5103 if (blockNeedsPredication(BB)) 5104 continue; 5105 5106 for (Instruction &I : *BB) 5107 if (auto *Ptr = getPointerOperand(&I)) 5108 SafePointes.insert(Ptr); 5109 } 5110 5111 // Collect the blocks that need predication. 5112 BasicBlock *Header = TheLoop->getHeader(); 5113 for (BasicBlock *BB : TheLoop->blocks()) { 5114 // We don't support switch statements inside loops. 5115 if (!isa<BranchInst>(BB->getTerminator())) { 5116 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 5117 << "loop contains a switch statement"); 5118 return false; 5119 } 5120 5121 // We must be able to predicate all blocks that need to be predicated. 5122 if (blockNeedsPredication(BB)) { 5123 if (!blockCanBePredicated(BB, SafePointes)) { 5124 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5125 << "control flow cannot be substituted for a select"); 5126 return false; 5127 } 5128 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 5129 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 5130 << "control flow cannot be substituted for a select"); 5131 return false; 5132 } 5133 } 5134 5135 // We can if-convert this loop. 5136 return true; 5137 } 5138 5139 bool LoopVectorizationLegality::canVectorize() { 5140 // We must have a loop in canonical form. Loops with indirectbr in them cannot 5141 // be canonicalized. 5142 if (!TheLoop->getLoopPreheader()) { 5143 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5144 << "loop control flow is not understood by vectorizer"); 5145 return false; 5146 } 5147 5148 // FIXME: The code is currently dead, since the loop gets sent to 5149 // LoopVectorizationLegality is already an innermost loop. 5150 // 5151 // We can only vectorize innermost loops. 5152 if (!TheLoop->empty()) { 5153 ORE->emit(createMissedAnalysis("NotInnermostLoop") 5154 << "loop is not the innermost loop"); 5155 return false; 5156 } 5157 5158 // We must have a single backedge. 5159 if (TheLoop->getNumBackEdges() != 1) { 5160 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5161 << "loop control flow is not understood by vectorizer"); 5162 return false; 5163 } 5164 5165 // We must have a single exiting block. 5166 if (!TheLoop->getExitingBlock()) { 5167 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5168 << "loop control flow is not understood by vectorizer"); 5169 return false; 5170 } 5171 5172 // We only handle bottom-tested loops, i.e. loop in which the condition is 5173 // checked at the end of each iteration. With that we can assume that all 5174 // instructions in the loop are executed the same number of times. 5175 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5176 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5177 << "loop control flow is not understood by vectorizer"); 5178 return false; 5179 } 5180 5181 // We need to have a loop header. 5182 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5183 << '\n'); 5184 5185 // Check if we can if-convert non-single-bb loops. 5186 unsigned NumBlocks = TheLoop->getNumBlocks(); 5187 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5188 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5189 return false; 5190 } 5191 5192 // ScalarEvolution needs to be able to find the exit count. 5193 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 5194 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 5195 ORE->emit(createMissedAnalysis("CantComputeNumberOfIterations") 5196 << "could not determine number of loop iterations"); 5197 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 5198 return false; 5199 } 5200 5201 // Check if we can vectorize the instructions and CFG in this loop. 5202 if (!canVectorizeInstrs()) { 5203 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5204 return false; 5205 } 5206 5207 // Go over each instruction and look at memory deps. 5208 if (!canVectorizeMemory()) { 5209 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5210 return false; 5211 } 5212 5213 DEBUG(dbgs() << "LV: We can vectorize this loop" 5214 << (LAI->getRuntimePointerChecking()->Need 5215 ? " (with a runtime bound check)" 5216 : "") 5217 << "!\n"); 5218 5219 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5220 5221 // If an override option has been passed in for interleaved accesses, use it. 5222 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5223 UseInterleaved = EnableInterleavedMemAccesses; 5224 5225 // Analyze interleaved memory accesses. 5226 if (UseInterleaved) 5227 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5228 5229 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5230 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5231 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5232 5233 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5234 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5235 << "Too many SCEV assumptions need to be made and checked " 5236 << "at runtime"); 5237 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5238 return false; 5239 } 5240 5241 // Okay! We can vectorize. At this point we don't have any other mem analysis 5242 // which may limit our maximum vectorization factor, so just return true with 5243 // no restrictions. 5244 return true; 5245 } 5246 5247 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5248 if (Ty->isPointerTy()) 5249 return DL.getIntPtrType(Ty); 5250 5251 // It is possible that char's or short's overflow when we ask for the loop's 5252 // trip count, work around this by changing the type size. 5253 if (Ty->getScalarSizeInBits() < 32) 5254 return Type::getInt32Ty(Ty->getContext()); 5255 5256 return Ty; 5257 } 5258 5259 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5260 Ty0 = convertPointerToIntegerType(DL, Ty0); 5261 Ty1 = convertPointerToIntegerType(DL, Ty1); 5262 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5263 return Ty0; 5264 return Ty1; 5265 } 5266 5267 /// \brief Check that the instruction has outside loop users and is not an 5268 /// identified reduction variable. 5269 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5270 SmallPtrSetImpl<Value *> &AllowedExit) { 5271 // Reduction and Induction instructions are allowed to have exit users. All 5272 // other instructions must not have external users. 5273 if (!AllowedExit.count(Inst)) 5274 // Check that all of the users of the loop are inside the BB. 5275 for (User *U : Inst->users()) { 5276 Instruction *UI = cast<Instruction>(U); 5277 // This user may be a reduction exit value. 5278 if (!TheLoop->contains(UI)) { 5279 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5280 return true; 5281 } 5282 } 5283 return false; 5284 } 5285 5286 void LoopVectorizationLegality::addInductionPhi( 5287 PHINode *Phi, const InductionDescriptor &ID, 5288 SmallPtrSetImpl<Value *> &AllowedExit) { 5289 Inductions[Phi] = ID; 5290 Type *PhiTy = Phi->getType(); 5291 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5292 5293 // Get the widest type. 5294 if (!PhiTy->isFloatingPointTy()) { 5295 if (!WidestIndTy) 5296 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5297 else 5298 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5299 } 5300 5301 // Int inductions are special because we only allow one IV. 5302 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5303 ID.getConstIntStepValue() && 5304 ID.getConstIntStepValue()->isOne() && 5305 isa<Constant>(ID.getStartValue()) && 5306 cast<Constant>(ID.getStartValue())->isNullValue()) { 5307 5308 // Use the phi node with the widest type as induction. Use the last 5309 // one if there are multiple (no good reason for doing this other 5310 // than it is expedient). We've checked that it begins at zero and 5311 // steps by one, so this is a canonical induction variable. 5312 if (!PrimaryInduction || PhiTy == WidestIndTy) 5313 PrimaryInduction = Phi; 5314 } 5315 5316 // Both the PHI node itself, and the "post-increment" value feeding 5317 // back into the PHI node may have external users. 5318 AllowedExit.insert(Phi); 5319 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5320 5321 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5322 return; 5323 } 5324 5325 bool LoopVectorizationLegality::canVectorizeInstrs() { 5326 BasicBlock *Header = TheLoop->getHeader(); 5327 5328 // Look for the attribute signaling the absence of NaNs. 5329 Function &F = *Header->getParent(); 5330 HasFunNoNaNAttr = 5331 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5332 5333 // For each block in the loop. 5334 for (BasicBlock *BB : TheLoop->blocks()) { 5335 // Scan the instructions in the block and look for hazards. 5336 for (Instruction &I : *BB) { 5337 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5338 Type *PhiTy = Phi->getType(); 5339 // Check that this PHI type is allowed. 5340 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5341 !PhiTy->isPointerTy()) { 5342 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5343 << "loop control flow is not understood by vectorizer"); 5344 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5345 return false; 5346 } 5347 5348 // If this PHINode is not in the header block, then we know that we 5349 // can convert it to select during if-conversion. No need to check if 5350 // the PHIs in this block are induction or reduction variables. 5351 if (BB != Header) { 5352 // Check that this instruction has no outside users or is an 5353 // identified reduction value with an outside user. 5354 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5355 continue; 5356 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5357 << "value could not be identified as " 5358 "an induction or reduction variable"); 5359 return false; 5360 } 5361 5362 // We only allow if-converted PHIs with exactly two incoming values. 5363 if (Phi->getNumIncomingValues() != 2) { 5364 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5365 << "control flow not understood by vectorizer"); 5366 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5367 return false; 5368 } 5369 5370 RecurrenceDescriptor RedDes; 5371 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5372 if (RedDes.hasUnsafeAlgebra()) 5373 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5374 AllowedExit.insert(RedDes.getLoopExitInstr()); 5375 Reductions[Phi] = RedDes; 5376 continue; 5377 } 5378 5379 InductionDescriptor ID; 5380 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5381 addInductionPhi(Phi, ID, AllowedExit); 5382 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5383 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5384 continue; 5385 } 5386 5387 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 5388 FirstOrderRecurrences.insert(Phi); 5389 continue; 5390 } 5391 5392 // As a last resort, coerce the PHI to a AddRec expression 5393 // and re-try classifying it a an induction PHI. 5394 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5395 addInductionPhi(Phi, ID, AllowedExit); 5396 continue; 5397 } 5398 5399 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5400 << "value that could not be identified as " 5401 "reduction is used outside the loop"); 5402 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5403 return false; 5404 } // end of PHI handling 5405 5406 // We handle calls that: 5407 // * Are debug info intrinsics. 5408 // * Have a mapping to an IR intrinsic. 5409 // * Have a vector version available. 5410 auto *CI = dyn_cast<CallInst>(&I); 5411 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5412 !isa<DbgInfoIntrinsic>(CI) && 5413 !(CI->getCalledFunction() && TLI && 5414 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5415 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5416 << "call instruction cannot be vectorized"); 5417 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5418 return false; 5419 } 5420 5421 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5422 // second argument is the same (i.e. loop invariant) 5423 if (CI && hasVectorInstrinsicScalarOpd( 5424 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5425 auto *SE = PSE.getSE(); 5426 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5427 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5428 << "intrinsic instruction cannot be vectorized"); 5429 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5430 return false; 5431 } 5432 } 5433 5434 // Check that the instruction return type is vectorizable. 5435 // Also, we can't vectorize extractelement instructions. 5436 if ((!VectorType::isValidElementType(I.getType()) && 5437 !I.getType()->isVoidTy()) || 5438 isa<ExtractElementInst>(I)) { 5439 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5440 << "instruction return type cannot be vectorized"); 5441 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5442 return false; 5443 } 5444 5445 // Check that the stored type is vectorizable. 5446 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5447 Type *T = ST->getValueOperand()->getType(); 5448 if (!VectorType::isValidElementType(T)) { 5449 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5450 << "store instruction cannot be vectorized"); 5451 return false; 5452 } 5453 5454 // FP instructions can allow unsafe algebra, thus vectorizable by 5455 // non-IEEE-754 compliant SIMD units. 5456 // This applies to floating-point math operations and calls, not memory 5457 // operations, shuffles, or casts, as they don't change precision or 5458 // semantics. 5459 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5460 !I.hasUnsafeAlgebra()) { 5461 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5462 Hints->setPotentiallyUnsafe(); 5463 } 5464 5465 // Reduction instructions are allowed to have exit users. 5466 // All other instructions must not have external users. 5467 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5468 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5469 << "value cannot be used outside the loop"); 5470 return false; 5471 } 5472 5473 } // next instr. 5474 } 5475 5476 if (!PrimaryInduction) { 5477 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5478 if (Inductions.empty()) { 5479 ORE->emit(createMissedAnalysis("NoInductionVariable") 5480 << "loop induction variable could not be identified"); 5481 return false; 5482 } 5483 } 5484 5485 // Now we know the widest induction type, check if our found induction 5486 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5487 // will create another. 5488 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5489 PrimaryInduction = nullptr; 5490 5491 return true; 5492 } 5493 5494 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5495 5496 // We should not collect Scalars more than once per VF. Right now, this 5497 // function is called from collectUniformsAndScalars(), which already does 5498 // this check. Collecting Scalars for VF=1 does not make any sense. 5499 assert(VF >= 2 && !Scalars.count(VF) && 5500 "This function should not be visited twice for the same VF"); 5501 5502 SmallSetVector<Instruction *, 8> Worklist; 5503 5504 // These sets are used to seed the analysis with pointers used by memory 5505 // accesses that will remain scalar. 5506 SmallSetVector<Instruction *, 8> ScalarPtrs; 5507 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5508 5509 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5510 // The pointer operands of loads and stores will be scalar as long as the 5511 // memory access is not a gather or scatter operation. The value operand of a 5512 // store will remain scalar if the store is scalarized. 5513 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5514 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5515 assert(WideningDecision != CM_Unknown && 5516 "Widening decision should be ready at this moment"); 5517 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5518 if (Ptr == Store->getValueOperand()) 5519 return WideningDecision == CM_Scalarize; 5520 assert(Ptr == getPointerOperand(MemAccess) && 5521 "Ptr is neither a value or pointer operand"); 5522 return WideningDecision != CM_GatherScatter; 5523 }; 5524 5525 // A helper that returns true if the given value is a bitcast or 5526 // getelementptr instruction contained in the loop. 5527 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5528 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5529 isa<GetElementPtrInst>(V)) && 5530 !TheLoop->isLoopInvariant(V); 5531 }; 5532 5533 // A helper that evaluates a memory access's use of a pointer. If the use 5534 // will be a scalar use, and the pointer is only used by memory accesses, we 5535 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5536 // PossibleNonScalarPtrs. 5537 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5538 5539 // We only care about bitcast and getelementptr instructions contained in 5540 // the loop. 5541 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5542 return; 5543 5544 // If the pointer has already been identified as scalar (e.g., if it was 5545 // also identified as uniform), there's nothing to do. 5546 auto *I = cast<Instruction>(Ptr); 5547 if (Worklist.count(I)) 5548 return; 5549 5550 // If the use of the pointer will be a scalar use, and all users of the 5551 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5552 // place the pointer in PossibleNonScalarPtrs. 5553 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5554 return isa<LoadInst>(U) || isa<StoreInst>(U); 5555 })) 5556 ScalarPtrs.insert(I); 5557 else 5558 PossibleNonScalarPtrs.insert(I); 5559 }; 5560 5561 // We seed the scalars analysis with three classes of instructions: (1) 5562 // instructions marked uniform-after-vectorization, (2) bitcast and 5563 // getelementptr instructions used by memory accesses requiring a scalar use, 5564 // and (3) pointer induction variables and their update instructions (we 5565 // currently only scalarize these). 5566 // 5567 // (1) Add to the worklist all instructions that have been identified as 5568 // uniform-after-vectorization. 5569 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5570 5571 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5572 // memory accesses requiring a scalar use. The pointer operands of loads and 5573 // stores will be scalar as long as the memory accesses is not a gather or 5574 // scatter operation. The value operand of a store will remain scalar if the 5575 // store is scalarized. 5576 for (auto *BB : TheLoop->blocks()) 5577 for (auto &I : *BB) { 5578 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5579 evaluatePtrUse(Load, Load->getPointerOperand()); 5580 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5581 evaluatePtrUse(Store, Store->getPointerOperand()); 5582 evaluatePtrUse(Store, Store->getValueOperand()); 5583 } 5584 } 5585 for (auto *I : ScalarPtrs) 5586 if (!PossibleNonScalarPtrs.count(I)) { 5587 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5588 Worklist.insert(I); 5589 } 5590 5591 // (3) Add to the worklist all pointer induction variables and their update 5592 // instructions. 5593 // 5594 // TODO: Once we are able to vectorize pointer induction variables we should 5595 // no longer insert them into the worklist here. 5596 auto *Latch = TheLoop->getLoopLatch(); 5597 for (auto &Induction : *Legal->getInductionVars()) { 5598 auto *Ind = Induction.first; 5599 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5600 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5601 continue; 5602 Worklist.insert(Ind); 5603 Worklist.insert(IndUpdate); 5604 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5605 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5606 } 5607 5608 // Expand the worklist by looking through any bitcasts and getelementptr 5609 // instructions we've already identified as scalar. This is similar to the 5610 // expansion step in collectLoopUniforms(); however, here we're only 5611 // expanding to include additional bitcasts and getelementptr instructions. 5612 unsigned Idx = 0; 5613 while (Idx != Worklist.size()) { 5614 Instruction *Dst = Worklist[Idx++]; 5615 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5616 continue; 5617 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5618 if (all_of(Src->users(), [&](User *U) -> bool { 5619 auto *J = cast<Instruction>(U); 5620 return !TheLoop->contains(J) || Worklist.count(J) || 5621 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5622 isScalarUse(J, Src)); 5623 })) { 5624 Worklist.insert(Src); 5625 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5626 } 5627 } 5628 5629 // An induction variable will remain scalar if all users of the induction 5630 // variable and induction variable update remain scalar. 5631 for (auto &Induction : *Legal->getInductionVars()) { 5632 auto *Ind = Induction.first; 5633 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5634 5635 // We already considered pointer induction variables, so there's no reason 5636 // to look at their users again. 5637 // 5638 // TODO: Once we are able to vectorize pointer induction variables we 5639 // should no longer skip over them here. 5640 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5641 continue; 5642 5643 // Determine if all users of the induction variable are scalar after 5644 // vectorization. 5645 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5646 auto *I = cast<Instruction>(U); 5647 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5648 }); 5649 if (!ScalarInd) 5650 continue; 5651 5652 // Determine if all users of the induction variable update instruction are 5653 // scalar after vectorization. 5654 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5655 auto *I = cast<Instruction>(U); 5656 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5657 }); 5658 if (!ScalarIndUpdate) 5659 continue; 5660 5661 // The induction variable and its update instruction will remain scalar. 5662 Worklist.insert(Ind); 5663 Worklist.insert(IndUpdate); 5664 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5665 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5666 } 5667 5668 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5669 } 5670 5671 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5672 if (!blockNeedsPredication(I->getParent())) 5673 return false; 5674 switch(I->getOpcode()) { 5675 default: 5676 break; 5677 case Instruction::Store: 5678 return !isMaskRequired(I); 5679 case Instruction::UDiv: 5680 case Instruction::SDiv: 5681 case Instruction::SRem: 5682 case Instruction::URem: 5683 return mayDivideByZero(*I); 5684 } 5685 return false; 5686 } 5687 5688 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5689 unsigned VF) { 5690 // Get and ensure we have a valid memory instruction. 5691 LoadInst *LI = dyn_cast<LoadInst>(I); 5692 StoreInst *SI = dyn_cast<StoreInst>(I); 5693 assert((LI || SI) && "Invalid memory instruction"); 5694 5695 auto *Ptr = getPointerOperand(I); 5696 5697 // In order to be widened, the pointer should be consecutive, first of all. 5698 if (!isConsecutivePtr(Ptr)) 5699 return false; 5700 5701 // If the instruction is a store located in a predicated block, it will be 5702 // scalarized. 5703 if (isScalarWithPredication(I)) 5704 return false; 5705 5706 // If the instruction's allocated size doesn't equal it's type size, it 5707 // requires padding and will be scalarized. 5708 auto &DL = I->getModule()->getDataLayout(); 5709 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5710 if (hasIrregularType(ScalarTy, DL, VF)) 5711 return false; 5712 5713 return true; 5714 } 5715 5716 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5717 5718 // We should not collect Uniforms more than once per VF. Right now, 5719 // this function is called from collectUniformsAndScalars(), which 5720 // already does this check. Collecting Uniforms for VF=1 does not make any 5721 // sense. 5722 5723 assert(VF >= 2 && !Uniforms.count(VF) && 5724 "This function should not be visited twice for the same VF"); 5725 5726 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5727 // not analyze again. Uniforms.count(VF) will return 1. 5728 Uniforms[VF].clear(); 5729 5730 // We now know that the loop is vectorizable! 5731 // Collect instructions inside the loop that will remain uniform after 5732 // vectorization. 5733 5734 // Global values, params and instructions outside of current loop are out of 5735 // scope. 5736 auto isOutOfScope = [&](Value *V) -> bool { 5737 Instruction *I = dyn_cast<Instruction>(V); 5738 return (!I || !TheLoop->contains(I)); 5739 }; 5740 5741 SetVector<Instruction *> Worklist; 5742 BasicBlock *Latch = TheLoop->getLoopLatch(); 5743 5744 // Start with the conditional branch. If the branch condition is an 5745 // instruction contained in the loop that is only used by the branch, it is 5746 // uniform. 5747 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5748 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5749 Worklist.insert(Cmp); 5750 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5751 } 5752 5753 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5754 // are pointers that are treated like consecutive pointers during 5755 // vectorization. The pointer operands of interleaved accesses are an 5756 // example. 5757 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5758 5759 // Holds pointer operands of instructions that are possibly non-uniform. 5760 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5761 5762 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5763 InstWidening WideningDecision = getWideningDecision(I, VF); 5764 assert(WideningDecision != CM_Unknown && 5765 "Widening decision should be ready at this moment"); 5766 5767 return (WideningDecision == CM_Widen || 5768 WideningDecision == CM_Interleave); 5769 }; 5770 // Iterate over the instructions in the loop, and collect all 5771 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5772 // that a consecutive-like pointer operand will be scalarized, we collect it 5773 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5774 // getelementptr instruction can be used by both vectorized and scalarized 5775 // memory instructions. For example, if a loop loads and stores from the same 5776 // location, but the store is conditional, the store will be scalarized, and 5777 // the getelementptr won't remain uniform. 5778 for (auto *BB : TheLoop->blocks()) 5779 for (auto &I : *BB) { 5780 5781 // If there's no pointer operand, there's nothing to do. 5782 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5783 if (!Ptr) 5784 continue; 5785 5786 // True if all users of Ptr are memory accesses that have Ptr as their 5787 // pointer operand. 5788 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5789 return getPointerOperand(U) == Ptr; 5790 }); 5791 5792 // Ensure the memory instruction will not be scalarized or used by 5793 // gather/scatter, making its pointer operand non-uniform. If the pointer 5794 // operand is used by any instruction other than a memory access, we 5795 // conservatively assume the pointer operand may be non-uniform. 5796 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5797 PossibleNonUniformPtrs.insert(Ptr); 5798 5799 // If the memory instruction will be vectorized and its pointer operand 5800 // is consecutive-like, or interleaving - the pointer operand should 5801 // remain uniform. 5802 else 5803 ConsecutiveLikePtrs.insert(Ptr); 5804 } 5805 5806 // Add to the Worklist all consecutive and consecutive-like pointers that 5807 // aren't also identified as possibly non-uniform. 5808 for (auto *V : ConsecutiveLikePtrs) 5809 if (!PossibleNonUniformPtrs.count(V)) { 5810 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5811 Worklist.insert(V); 5812 } 5813 5814 // Expand Worklist in topological order: whenever a new instruction 5815 // is added , its users should be either already inside Worklist, or 5816 // out of scope. It ensures a uniform instruction will only be used 5817 // by uniform instructions or out of scope instructions. 5818 unsigned idx = 0; 5819 while (idx != Worklist.size()) { 5820 Instruction *I = Worklist[idx++]; 5821 5822 for (auto OV : I->operand_values()) { 5823 if (isOutOfScope(OV)) 5824 continue; 5825 auto *OI = cast<Instruction>(OV); 5826 if (all_of(OI->users(), [&](User *U) -> bool { 5827 auto *J = cast<Instruction>(U); 5828 return !TheLoop->contains(J) || Worklist.count(J) || 5829 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5830 })) { 5831 Worklist.insert(OI); 5832 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5833 } 5834 } 5835 } 5836 5837 // Returns true if Ptr is the pointer operand of a memory access instruction 5838 // I, and I is known to not require scalarization. 5839 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5840 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5841 }; 5842 5843 // For an instruction to be added into Worklist above, all its users inside 5844 // the loop should also be in Worklist. However, this condition cannot be 5845 // true for phi nodes that form a cyclic dependence. We must process phi 5846 // nodes separately. An induction variable will remain uniform if all users 5847 // of the induction variable and induction variable update remain uniform. 5848 // The code below handles both pointer and non-pointer induction variables. 5849 for (auto &Induction : *Legal->getInductionVars()) { 5850 auto *Ind = Induction.first; 5851 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5852 5853 // Determine if all users of the induction variable are uniform after 5854 // vectorization. 5855 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5856 auto *I = cast<Instruction>(U); 5857 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5858 isVectorizedMemAccessUse(I, Ind); 5859 }); 5860 if (!UniformInd) 5861 continue; 5862 5863 // Determine if all users of the induction variable update instruction are 5864 // uniform after vectorization. 5865 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5866 auto *I = cast<Instruction>(U); 5867 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5868 isVectorizedMemAccessUse(I, IndUpdate); 5869 }); 5870 if (!UniformIndUpdate) 5871 continue; 5872 5873 // The induction variable and its update instruction will remain uniform. 5874 Worklist.insert(Ind); 5875 Worklist.insert(IndUpdate); 5876 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5877 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5878 } 5879 5880 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5881 } 5882 5883 bool LoopVectorizationLegality::canVectorizeMemory() { 5884 LAI = &(*GetLAA)(*TheLoop); 5885 InterleaveInfo.setLAI(LAI); 5886 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5887 if (LAR) { 5888 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5889 "loop not vectorized: ", *LAR); 5890 ORE->emit(VR); 5891 } 5892 if (!LAI->canVectorizeMemory()) 5893 return false; 5894 5895 if (LAI->hasStoreToLoopInvariantAddress()) { 5896 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5897 << "write to a loop invariant address could not be vectorized"); 5898 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5899 return false; 5900 } 5901 5902 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5903 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5904 5905 return true; 5906 } 5907 5908 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5909 Value *In0 = const_cast<Value *>(V); 5910 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5911 if (!PN) 5912 return false; 5913 5914 return Inductions.count(PN); 5915 } 5916 5917 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5918 return FirstOrderRecurrences.count(Phi); 5919 } 5920 5921 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5922 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5923 } 5924 5925 bool LoopVectorizationLegality::blockCanBePredicated( 5926 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5927 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5928 5929 for (Instruction &I : *BB) { 5930 // Check that we don't have a constant expression that can trap as operand. 5931 for (Value *Operand : I.operands()) { 5932 if (auto *C = dyn_cast<Constant>(Operand)) 5933 if (C->canTrap()) 5934 return false; 5935 } 5936 // We might be able to hoist the load. 5937 if (I.mayReadFromMemory()) { 5938 auto *LI = dyn_cast<LoadInst>(&I); 5939 if (!LI) 5940 return false; 5941 if (!SafePtrs.count(LI->getPointerOperand())) { 5942 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5943 isLegalMaskedGather(LI->getType())) { 5944 MaskedOp.insert(LI); 5945 continue; 5946 } 5947 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5948 if (IsAnnotatedParallel) 5949 continue; 5950 return false; 5951 } 5952 } 5953 5954 if (I.mayWriteToMemory()) { 5955 auto *SI = dyn_cast<StoreInst>(&I); 5956 // We only support predication of stores in basic blocks with one 5957 // predecessor. 5958 if (!SI) 5959 return false; 5960 5961 // Build a masked store if it is legal for the target. 5962 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5963 SI->getPointerOperand()) || 5964 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5965 MaskedOp.insert(SI); 5966 continue; 5967 } 5968 5969 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5970 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5971 5972 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5973 !isSinglePredecessor) 5974 return false; 5975 } 5976 if (I.mayThrow()) 5977 return false; 5978 } 5979 5980 return true; 5981 } 5982 5983 void InterleavedAccessInfo::collectConstStrideAccesses( 5984 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5985 const ValueToValueMap &Strides) { 5986 5987 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5988 5989 // Since it's desired that the load/store instructions be maintained in 5990 // "program order" for the interleaved access analysis, we have to visit the 5991 // blocks in the loop in reverse postorder (i.e., in a topological order). 5992 // Such an ordering will ensure that any load/store that may be executed 5993 // before a second load/store will precede the second load/store in 5994 // AccessStrideInfo. 5995 LoopBlocksDFS DFS(TheLoop); 5996 DFS.perform(LI); 5997 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5998 for (auto &I : *BB) { 5999 auto *LI = dyn_cast<LoadInst>(&I); 6000 auto *SI = dyn_cast<StoreInst>(&I); 6001 if (!LI && !SI) 6002 continue; 6003 6004 Value *Ptr = getPointerOperand(&I); 6005 // We don't check wrapping here because we don't know yet if Ptr will be 6006 // part of a full group or a group with gaps. Checking wrapping for all 6007 // pointers (even those that end up in groups with no gaps) will be overly 6008 // conservative. For full groups, wrapping should be ok since if we would 6009 // wrap around the address space we would do a memory access at nullptr 6010 // even without the transformation. The wrapping checks are therefore 6011 // deferred until after we've formed the interleaved groups. 6012 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 6013 /*Assume=*/true, /*ShouldCheckWrap=*/false); 6014 6015 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 6016 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 6017 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 6018 6019 // An alignment of 0 means target ABI alignment. 6020 unsigned Align = getMemInstAlignment(&I); 6021 if (!Align) 6022 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 6023 6024 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 6025 } 6026 } 6027 6028 // Analyze interleaved accesses and collect them into interleaved load and 6029 // store groups. 6030 // 6031 // When generating code for an interleaved load group, we effectively hoist all 6032 // loads in the group to the location of the first load in program order. When 6033 // generating code for an interleaved store group, we sink all stores to the 6034 // location of the last store. This code motion can change the order of load 6035 // and store instructions and may break dependences. 6036 // 6037 // The code generation strategy mentioned above ensures that we won't violate 6038 // any write-after-read (WAR) dependences. 6039 // 6040 // E.g., for the WAR dependence: a = A[i]; // (1) 6041 // A[i] = b; // (2) 6042 // 6043 // The store group of (2) is always inserted at or below (2), and the load 6044 // group of (1) is always inserted at or above (1). Thus, the instructions will 6045 // never be reordered. All other dependences are checked to ensure the 6046 // correctness of the instruction reordering. 6047 // 6048 // The algorithm visits all memory accesses in the loop in bottom-up program 6049 // order. Program order is established by traversing the blocks in the loop in 6050 // reverse postorder when collecting the accesses. 6051 // 6052 // We visit the memory accesses in bottom-up order because it can simplify the 6053 // construction of store groups in the presence of write-after-write (WAW) 6054 // dependences. 6055 // 6056 // E.g., for the WAW dependence: A[i] = a; // (1) 6057 // A[i] = b; // (2) 6058 // A[i + 1] = c; // (3) 6059 // 6060 // We will first create a store group with (3) and (2). (1) can't be added to 6061 // this group because it and (2) are dependent. However, (1) can be grouped 6062 // with other accesses that may precede it in program order. Note that a 6063 // bottom-up order does not imply that WAW dependences should not be checked. 6064 void InterleavedAccessInfo::analyzeInterleaving( 6065 const ValueToValueMap &Strides) { 6066 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 6067 6068 // Holds all accesses with a constant stride. 6069 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 6070 collectConstStrideAccesses(AccessStrideInfo, Strides); 6071 6072 if (AccessStrideInfo.empty()) 6073 return; 6074 6075 // Collect the dependences in the loop. 6076 collectDependences(); 6077 6078 // Holds all interleaved store groups temporarily. 6079 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 6080 // Holds all interleaved load groups temporarily. 6081 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 6082 6083 // Search in bottom-up program order for pairs of accesses (A and B) that can 6084 // form interleaved load or store groups. In the algorithm below, access A 6085 // precedes access B in program order. We initialize a group for B in the 6086 // outer loop of the algorithm, and then in the inner loop, we attempt to 6087 // insert each A into B's group if: 6088 // 6089 // 1. A and B have the same stride, 6090 // 2. A and B have the same memory object size, and 6091 // 3. A belongs in B's group according to its distance from B. 6092 // 6093 // Special care is taken to ensure group formation will not break any 6094 // dependences. 6095 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 6096 BI != E; ++BI) { 6097 Instruction *B = BI->first; 6098 StrideDescriptor DesB = BI->second; 6099 6100 // Initialize a group for B if it has an allowable stride. Even if we don't 6101 // create a group for B, we continue with the bottom-up algorithm to ensure 6102 // we don't break any of B's dependences. 6103 InterleaveGroup *Group = nullptr; 6104 if (isStrided(DesB.Stride)) { 6105 Group = getInterleaveGroup(B); 6106 if (!Group) { 6107 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 6108 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 6109 } 6110 if (B->mayWriteToMemory()) 6111 StoreGroups.insert(Group); 6112 else 6113 LoadGroups.insert(Group); 6114 } 6115 6116 for (auto AI = std::next(BI); AI != E; ++AI) { 6117 Instruction *A = AI->first; 6118 StrideDescriptor DesA = AI->second; 6119 6120 // Our code motion strategy implies that we can't have dependences 6121 // between accesses in an interleaved group and other accesses located 6122 // between the first and last member of the group. Note that this also 6123 // means that a group can't have more than one member at a given offset. 6124 // The accesses in a group can have dependences with other accesses, but 6125 // we must ensure we don't extend the boundaries of the group such that 6126 // we encompass those dependent accesses. 6127 // 6128 // For example, assume we have the sequence of accesses shown below in a 6129 // stride-2 loop: 6130 // 6131 // (1, 2) is a group | A[i] = a; // (1) 6132 // | A[i-1] = b; // (2) | 6133 // A[i-3] = c; // (3) 6134 // A[i] = d; // (4) | (2, 4) is not a group 6135 // 6136 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 6137 // but not with (4). If we did, the dependent access (3) would be within 6138 // the boundaries of the (2, 4) group. 6139 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 6140 6141 // If a dependence exists and A is already in a group, we know that A 6142 // must be a store since A precedes B and WAR dependences are allowed. 6143 // Thus, A would be sunk below B. We release A's group to prevent this 6144 // illegal code motion. A will then be free to form another group with 6145 // instructions that precede it. 6146 if (isInterleaved(A)) { 6147 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6148 StoreGroups.remove(StoreGroup); 6149 releaseGroup(StoreGroup); 6150 } 6151 6152 // If a dependence exists and A is not already in a group (or it was 6153 // and we just released it), B might be hoisted above A (if B is a 6154 // load) or another store might be sunk below A (if B is a store). In 6155 // either case, we can't add additional instructions to B's group. B 6156 // will only form a group with instructions that it precedes. 6157 break; 6158 } 6159 6160 // At this point, we've checked for illegal code motion. If either A or B 6161 // isn't strided, there's nothing left to do. 6162 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6163 continue; 6164 6165 // Ignore A if it's already in a group or isn't the same kind of memory 6166 // operation as B. 6167 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6168 continue; 6169 6170 // Check rules 1 and 2. Ignore A if its stride or size is different from 6171 // that of B. 6172 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6173 continue; 6174 6175 // Ignore A if the memory object of A and B don't belong to the same 6176 // address space 6177 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6178 continue; 6179 6180 // Calculate the distance from A to B. 6181 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6182 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6183 if (!DistToB) 6184 continue; 6185 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6186 6187 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6188 // size. 6189 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6190 continue; 6191 6192 // Ignore A if either A or B is in a predicated block. Although we 6193 // currently prevent group formation for predicated accesses, we may be 6194 // able to relax this limitation in the future once we handle more 6195 // complicated blocks. 6196 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6197 continue; 6198 6199 // The index of A is the index of B plus A's distance to B in multiples 6200 // of the size. 6201 int IndexA = 6202 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6203 6204 // Try to insert A into B's group. 6205 if (Group->insertMember(A, IndexA, DesA.Align)) { 6206 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6207 << " into the interleave group with" << *B << '\n'); 6208 InterleaveGroupMap[A] = Group; 6209 6210 // Set the first load in program order as the insert position. 6211 if (A->mayReadFromMemory()) 6212 Group->setInsertPos(A); 6213 } 6214 } // Iteration over A accesses. 6215 } // Iteration over B accesses. 6216 6217 // Remove interleaved store groups with gaps. 6218 for (InterleaveGroup *Group : StoreGroups) 6219 if (Group->getNumMembers() != Group->getFactor()) 6220 releaseGroup(Group); 6221 6222 // Remove interleaved groups with gaps (currently only loads) whose memory 6223 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6224 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6225 // not check wrapping (see documentation there). 6226 // FORNOW we use Assume=false; 6227 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6228 // of runtime SCEV assumptions checks (thereby potentially failing to 6229 // vectorize altogether). 6230 // Additional optional optimizations: 6231 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6232 // wrap then we can deduce that all pointers in the group don't wrap. 6233 // This means that we can forcefully peel the loop in order to only have to 6234 // check the first pointer for no-wrap. When we'll change to use Assume=true 6235 // we'll only need at most one runtime check per interleaved group. 6236 // 6237 for (InterleaveGroup *Group : LoadGroups) { 6238 6239 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6240 // load would wrap around the address space we would do a memory access at 6241 // nullptr even without the transformation. 6242 if (Group->getNumMembers() == Group->getFactor()) 6243 continue; 6244 6245 // Case 2: If first and last members of the group don't wrap this implies 6246 // that all the pointers in the group don't wrap. 6247 // So we check only group member 0 (which is always guaranteed to exist), 6248 // and group member Factor - 1; If the latter doesn't exist we rely on 6249 // peeling (if it is a non-reveresed accsess -- see Case 3). 6250 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6251 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6252 /*ShouldCheckWrap=*/true)) { 6253 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6254 "first group member potentially pointer-wrapping.\n"); 6255 releaseGroup(Group); 6256 continue; 6257 } 6258 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6259 if (LastMember) { 6260 Value *LastMemberPtr = getPointerOperand(LastMember); 6261 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6262 /*ShouldCheckWrap=*/true)) { 6263 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6264 "last group member potentially pointer-wrapping.\n"); 6265 releaseGroup(Group); 6266 } 6267 } else { 6268 // Case 3: A non-reversed interleaved load group with gaps: We need 6269 // to execute at least one scalar epilogue iteration. This will ensure 6270 // we don't speculatively access memory out-of-bounds. We only need 6271 // to look for a member at index factor - 1, since every group must have 6272 // a member at index zero. 6273 if (Group->isReverse()) { 6274 releaseGroup(Group); 6275 continue; 6276 } 6277 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6278 RequiresScalarEpilogue = true; 6279 } 6280 } 6281 } 6282 6283 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6284 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6285 ORE->emit(createMissedAnalysis("ConditionalStore") 6286 << "store that is conditionally executed prevents vectorization"); 6287 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6288 return None; 6289 } 6290 6291 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6292 return computeFeasibleMaxVF(OptForSize); 6293 6294 if (Legal->getRuntimePointerChecking()->Need) { 6295 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6296 << "runtime pointer checks needed. Enable vectorization of this " 6297 "loop with '#pragma clang loop vectorize(enable)' when " 6298 "compiling with -Os/-Oz"); 6299 DEBUG(dbgs() 6300 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6301 return None; 6302 } 6303 6304 // If we optimize the program for size, avoid creating the tail loop. 6305 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6306 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6307 6308 // If we don't know the precise trip count, don't try to vectorize. 6309 if (TC < 2) { 6310 ORE->emit( 6311 createMissedAnalysis("UnknownLoopCountComplexCFG") 6312 << "unable to calculate the loop count due to complex control flow"); 6313 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6314 return None; 6315 } 6316 6317 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6318 6319 if (TC % MaxVF != 0) { 6320 // If the trip count that we found modulo the vectorization factor is not 6321 // zero then we require a tail. 6322 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6323 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6324 // smaller MaxVF that does not require a scalar epilog. 6325 6326 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6327 << "cannot optimize for size and vectorize at the " 6328 "same time. Enable vectorization of this loop " 6329 "with '#pragma clang loop vectorize(enable)' " 6330 "when compiling with -Os/-Oz"); 6331 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6332 return None; 6333 } 6334 6335 return MaxVF; 6336 } 6337 6338 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6339 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6340 unsigned SmallestType, WidestType; 6341 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6342 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6343 unsigned MaxSafeDepDist = -1U; 6344 6345 // Get the maximum safe dependence distance in bits computed by LAA. If the 6346 // loop contains any interleaved accesses, we divide the dependence distance 6347 // by the maximum interleave factor of all interleaved groups. Note that 6348 // although the division ensures correctness, this is a fairly conservative 6349 // computation because the maximum distance computed by LAA may not involve 6350 // any of the interleaved accesses. 6351 if (Legal->getMaxSafeDepDistBytes() != -1U) 6352 MaxSafeDepDist = 6353 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6354 6355 WidestRegister = 6356 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6357 unsigned MaxVectorSize = WidestRegister / WidestType; 6358 6359 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6360 << WidestType << " bits.\n"); 6361 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6362 << " bits.\n"); 6363 6364 if (MaxVectorSize == 0) { 6365 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6366 MaxVectorSize = 1; 6367 } 6368 6369 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6370 " into one vector!"); 6371 6372 unsigned MaxVF = MaxVectorSize; 6373 if (MaximizeBandwidth && !OptForSize) { 6374 // Collect all viable vectorization factors. 6375 SmallVector<unsigned, 8> VFs; 6376 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6377 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6378 VFs.push_back(VS); 6379 6380 // For each VF calculate its register usage. 6381 auto RUs = calculateRegisterUsage(VFs); 6382 6383 // Select the largest VF which doesn't require more registers than existing 6384 // ones. 6385 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6386 for (int i = RUs.size() - 1; i >= 0; --i) { 6387 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6388 MaxVF = VFs[i]; 6389 break; 6390 } 6391 } 6392 } 6393 return MaxVF; 6394 } 6395 6396 LoopVectorizationCostModel::VectorizationFactor 6397 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6398 float Cost = expectedCost(1).first; 6399 #ifndef NDEBUG 6400 const float ScalarCost = Cost; 6401 #endif /* NDEBUG */ 6402 unsigned Width = 1; 6403 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6404 6405 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6406 // Ignore scalar width, because the user explicitly wants vectorization. 6407 if (ForceVectorization && MaxVF > 1) { 6408 Width = 2; 6409 Cost = expectedCost(Width).first / (float)Width; 6410 } 6411 6412 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6413 // Notice that the vector loop needs to be executed less times, so 6414 // we need to divide the cost of the vector loops by the width of 6415 // the vector elements. 6416 VectorizationCostTy C = expectedCost(i); 6417 float VectorCost = C.first / (float)i; 6418 DEBUG(dbgs() << "LV: Vector loop of width " << i 6419 << " costs: " << (int)VectorCost << ".\n"); 6420 if (!C.second && !ForceVectorization) { 6421 DEBUG( 6422 dbgs() << "LV: Not considering vector loop of width " << i 6423 << " because it will not generate any vector instructions.\n"); 6424 continue; 6425 } 6426 if (VectorCost < Cost) { 6427 Cost = VectorCost; 6428 Width = i; 6429 } 6430 } 6431 6432 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6433 << "LV: Vectorization seems to be not beneficial, " 6434 << "but was forced by a user.\n"); 6435 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6436 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6437 return Factor; 6438 } 6439 6440 std::pair<unsigned, unsigned> 6441 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6442 unsigned MinWidth = -1U; 6443 unsigned MaxWidth = 8; 6444 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6445 6446 // For each block. 6447 for (BasicBlock *BB : TheLoop->blocks()) { 6448 // For each instruction in the loop. 6449 for (Instruction &I : *BB) { 6450 Type *T = I.getType(); 6451 6452 // Skip ignored values. 6453 if (ValuesToIgnore.count(&I)) 6454 continue; 6455 6456 // Only examine Loads, Stores and PHINodes. 6457 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6458 continue; 6459 6460 // Examine PHI nodes that are reduction variables. Update the type to 6461 // account for the recurrence type. 6462 if (auto *PN = dyn_cast<PHINode>(&I)) { 6463 if (!Legal->isReductionVariable(PN)) 6464 continue; 6465 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6466 T = RdxDesc.getRecurrenceType(); 6467 } 6468 6469 // Examine the stored values. 6470 if (auto *ST = dyn_cast<StoreInst>(&I)) 6471 T = ST->getValueOperand()->getType(); 6472 6473 // Ignore loaded pointer types and stored pointer types that are not 6474 // vectorizable. 6475 // 6476 // FIXME: The check here attempts to predict whether a load or store will 6477 // be vectorized. We only know this for certain after a VF has 6478 // been selected. Here, we assume that if an access can be 6479 // vectorized, it will be. We should also look at extending this 6480 // optimization to non-pointer types. 6481 // 6482 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6483 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6484 continue; 6485 6486 MinWidth = std::min(MinWidth, 6487 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6488 MaxWidth = std::max(MaxWidth, 6489 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6490 } 6491 } 6492 6493 return {MinWidth, MaxWidth}; 6494 } 6495 6496 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6497 unsigned VF, 6498 unsigned LoopCost) { 6499 6500 // -- The interleave heuristics -- 6501 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6502 // There are many micro-architectural considerations that we can't predict 6503 // at this level. For example, frontend pressure (on decode or fetch) due to 6504 // code size, or the number and capabilities of the execution ports. 6505 // 6506 // We use the following heuristics to select the interleave count: 6507 // 1. If the code has reductions, then we interleave to break the cross 6508 // iteration dependency. 6509 // 2. If the loop is really small, then we interleave to reduce the loop 6510 // overhead. 6511 // 3. We don't interleave if we think that we will spill registers to memory 6512 // due to the increased register pressure. 6513 6514 // When we optimize for size, we don't interleave. 6515 if (OptForSize) 6516 return 1; 6517 6518 // We used the distance for the interleave count. 6519 if (Legal->getMaxSafeDepDistBytes() != -1U) 6520 return 1; 6521 6522 // Do not interleave loops with a relatively small trip count. 6523 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6524 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6525 return 1; 6526 6527 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6528 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6529 << " registers\n"); 6530 6531 if (VF == 1) { 6532 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6533 TargetNumRegisters = ForceTargetNumScalarRegs; 6534 } else { 6535 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6536 TargetNumRegisters = ForceTargetNumVectorRegs; 6537 } 6538 6539 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6540 // We divide by these constants so assume that we have at least one 6541 // instruction that uses at least one register. 6542 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6543 R.NumInstructions = std::max(R.NumInstructions, 1U); 6544 6545 // We calculate the interleave count using the following formula. 6546 // Subtract the number of loop invariants from the number of available 6547 // registers. These registers are used by all of the interleaved instances. 6548 // Next, divide the remaining registers by the number of registers that is 6549 // required by the loop, in order to estimate how many parallel instances 6550 // fit without causing spills. All of this is rounded down if necessary to be 6551 // a power of two. We want power of two interleave count to simplify any 6552 // addressing operations or alignment considerations. 6553 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6554 R.MaxLocalUsers); 6555 6556 // Don't count the induction variable as interleaved. 6557 if (EnableIndVarRegisterHeur) 6558 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6559 std::max(1U, (R.MaxLocalUsers - 1))); 6560 6561 // Clamp the interleave ranges to reasonable counts. 6562 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6563 6564 // Check if the user has overridden the max. 6565 if (VF == 1) { 6566 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6567 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6568 } else { 6569 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6570 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6571 } 6572 6573 // If we did not calculate the cost for VF (because the user selected the VF) 6574 // then we calculate the cost of VF here. 6575 if (LoopCost == 0) 6576 LoopCost = expectedCost(VF).first; 6577 6578 // Clamp the calculated IC to be between the 1 and the max interleave count 6579 // that the target allows. 6580 if (IC > MaxInterleaveCount) 6581 IC = MaxInterleaveCount; 6582 else if (IC < 1) 6583 IC = 1; 6584 6585 // Interleave if we vectorized this loop and there is a reduction that could 6586 // benefit from interleaving. 6587 if (VF > 1 && Legal->getReductionVars()->size()) { 6588 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6589 return IC; 6590 } 6591 6592 // Note that if we've already vectorized the loop we will have done the 6593 // runtime check and so interleaving won't require further checks. 6594 bool InterleavingRequiresRuntimePointerCheck = 6595 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6596 6597 // We want to interleave small loops in order to reduce the loop overhead and 6598 // potentially expose ILP opportunities. 6599 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6600 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6601 // We assume that the cost overhead is 1 and we use the cost model 6602 // to estimate the cost of the loop and interleave until the cost of the 6603 // loop overhead is about 5% of the cost of the loop. 6604 unsigned SmallIC = 6605 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6606 6607 // Interleave until store/load ports (estimated by max interleave count) are 6608 // saturated. 6609 unsigned NumStores = Legal->getNumStores(); 6610 unsigned NumLoads = Legal->getNumLoads(); 6611 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6612 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6613 6614 // If we have a scalar reduction (vector reductions are already dealt with 6615 // by this point), we can increase the critical path length if the loop 6616 // we're interleaving is inside another loop. Limit, by default to 2, so the 6617 // critical path only gets increased by one reduction operation. 6618 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6619 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6620 SmallIC = std::min(SmallIC, F); 6621 StoresIC = std::min(StoresIC, F); 6622 LoadsIC = std::min(LoadsIC, F); 6623 } 6624 6625 if (EnableLoadStoreRuntimeInterleave && 6626 std::max(StoresIC, LoadsIC) > SmallIC) { 6627 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6628 return std::max(StoresIC, LoadsIC); 6629 } 6630 6631 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6632 return SmallIC; 6633 } 6634 6635 // Interleave if this is a large loop (small loops are already dealt with by 6636 // this point) that could benefit from interleaving. 6637 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6638 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6639 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6640 return IC; 6641 } 6642 6643 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6644 return 1; 6645 } 6646 6647 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6648 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6649 // This function calculates the register usage by measuring the highest number 6650 // of values that are alive at a single location. Obviously, this is a very 6651 // rough estimation. We scan the loop in a topological order in order and 6652 // assign a number to each instruction. We use RPO to ensure that defs are 6653 // met before their users. We assume that each instruction that has in-loop 6654 // users starts an interval. We record every time that an in-loop value is 6655 // used, so we have a list of the first and last occurrences of each 6656 // instruction. Next, we transpose this data structure into a multi map that 6657 // holds the list of intervals that *end* at a specific location. This multi 6658 // map allows us to perform a linear search. We scan the instructions linearly 6659 // and record each time that a new interval starts, by placing it in a set. 6660 // If we find this value in the multi-map then we remove it from the set. 6661 // The max register usage is the maximum size of the set. 6662 // We also search for instructions that are defined outside the loop, but are 6663 // used inside the loop. We need this number separately from the max-interval 6664 // usage number because when we unroll, loop-invariant values do not take 6665 // more register. 6666 LoopBlocksDFS DFS(TheLoop); 6667 DFS.perform(LI); 6668 6669 RegisterUsage RU; 6670 RU.NumInstructions = 0; 6671 6672 // Each 'key' in the map opens a new interval. The values 6673 // of the map are the index of the 'last seen' usage of the 6674 // instruction that is the key. 6675 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6676 // Maps instruction to its index. 6677 DenseMap<unsigned, Instruction *> IdxToInstr; 6678 // Marks the end of each interval. 6679 IntervalMap EndPoint; 6680 // Saves the list of instruction indices that are used in the loop. 6681 SmallSet<Instruction *, 8> Ends; 6682 // Saves the list of values that are used in the loop but are 6683 // defined outside the loop, such as arguments and constants. 6684 SmallPtrSet<Value *, 8> LoopInvariants; 6685 6686 unsigned Index = 0; 6687 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6688 RU.NumInstructions += BB->size(); 6689 for (Instruction &I : *BB) { 6690 IdxToInstr[Index++] = &I; 6691 6692 // Save the end location of each USE. 6693 for (Value *U : I.operands()) { 6694 auto *Instr = dyn_cast<Instruction>(U); 6695 6696 // Ignore non-instruction values such as arguments, constants, etc. 6697 if (!Instr) 6698 continue; 6699 6700 // If this instruction is outside the loop then record it and continue. 6701 if (!TheLoop->contains(Instr)) { 6702 LoopInvariants.insert(Instr); 6703 continue; 6704 } 6705 6706 // Overwrite previous end points. 6707 EndPoint[Instr] = Index; 6708 Ends.insert(Instr); 6709 } 6710 } 6711 } 6712 6713 // Saves the list of intervals that end with the index in 'key'. 6714 typedef SmallVector<Instruction *, 2> InstrList; 6715 DenseMap<unsigned, InstrList> TransposeEnds; 6716 6717 // Transpose the EndPoints to a list of values that end at each index. 6718 for (auto &Interval : EndPoint) 6719 TransposeEnds[Interval.second].push_back(Interval.first); 6720 6721 SmallSet<Instruction *, 8> OpenIntervals; 6722 6723 // Get the size of the widest register. 6724 unsigned MaxSafeDepDist = -1U; 6725 if (Legal->getMaxSafeDepDistBytes() != -1U) 6726 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6727 unsigned WidestRegister = 6728 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6729 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6730 6731 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6732 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6733 6734 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6735 6736 // A lambda that gets the register usage for the given type and VF. 6737 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6738 if (Ty->isTokenTy()) 6739 return 0U; 6740 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6741 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6742 }; 6743 6744 for (unsigned int i = 0; i < Index; ++i) { 6745 Instruction *I = IdxToInstr[i]; 6746 6747 // Remove all of the instructions that end at this location. 6748 InstrList &List = TransposeEnds[i]; 6749 for (Instruction *ToRemove : List) 6750 OpenIntervals.erase(ToRemove); 6751 6752 // Ignore instructions that are never used within the loop. 6753 if (!Ends.count(I)) 6754 continue; 6755 6756 // Skip ignored values. 6757 if (ValuesToIgnore.count(I)) 6758 continue; 6759 6760 // For each VF find the maximum usage of registers. 6761 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6762 if (VFs[j] == 1) { 6763 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6764 continue; 6765 } 6766 collectUniformsAndScalars(VFs[j]); 6767 // Count the number of live intervals. 6768 unsigned RegUsage = 0; 6769 for (auto Inst : OpenIntervals) { 6770 // Skip ignored values for VF > 1. 6771 if (VecValuesToIgnore.count(Inst) || 6772 isScalarAfterVectorization(Inst, VFs[j])) 6773 continue; 6774 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6775 } 6776 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6777 } 6778 6779 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6780 << OpenIntervals.size() << '\n'); 6781 6782 // Add the current instruction to the list of open intervals. 6783 OpenIntervals.insert(I); 6784 } 6785 6786 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6787 unsigned Invariant = 0; 6788 if (VFs[i] == 1) 6789 Invariant = LoopInvariants.size(); 6790 else { 6791 for (auto Inst : LoopInvariants) 6792 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6793 } 6794 6795 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6796 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6797 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6798 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6799 6800 RU.LoopInvariantRegs = Invariant; 6801 RU.MaxLocalUsers = MaxUsages[i]; 6802 RUs[i] = RU; 6803 } 6804 6805 return RUs; 6806 } 6807 6808 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6809 6810 // If we aren't vectorizing the loop, or if we've already collected the 6811 // instructions to scalarize, there's nothing to do. Collection may already 6812 // have occurred if we have a user-selected VF and are now computing the 6813 // expected cost for interleaving. 6814 if (VF < 2 || InstsToScalarize.count(VF)) 6815 return; 6816 6817 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6818 // not profitable to scalarize any instructions, the presence of VF in the 6819 // map will indicate that we've analyzed it already. 6820 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6821 6822 // Find all the instructions that are scalar with predication in the loop and 6823 // determine if it would be better to not if-convert the blocks they are in. 6824 // If so, we also record the instructions to scalarize. 6825 for (BasicBlock *BB : TheLoop->blocks()) { 6826 if (!Legal->blockNeedsPredication(BB)) 6827 continue; 6828 for (Instruction &I : *BB) 6829 if (Legal->isScalarWithPredication(&I)) { 6830 ScalarCostsTy ScalarCosts; 6831 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6832 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6833 6834 // Remember that BB will remain after vectorization. 6835 PredicatedBBsAfterVectorization.insert(BB); 6836 } 6837 } 6838 } 6839 6840 int LoopVectorizationCostModel::computePredInstDiscount( 6841 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6842 unsigned VF) { 6843 6844 assert(!isUniformAfterVectorization(PredInst, VF) && 6845 "Instruction marked uniform-after-vectorization will be predicated"); 6846 6847 // Initialize the discount to zero, meaning that the scalar version and the 6848 // vector version cost the same. 6849 int Discount = 0; 6850 6851 // Holds instructions to analyze. The instructions we visit are mapped in 6852 // ScalarCosts. Those instructions are the ones that would be scalarized if 6853 // we find that the scalar version costs less. 6854 SmallVector<Instruction *, 8> Worklist; 6855 6856 // Returns true if the given instruction can be scalarized. 6857 auto canBeScalarized = [&](Instruction *I) -> bool { 6858 6859 // We only attempt to scalarize instructions forming a single-use chain 6860 // from the original predicated block that would otherwise be vectorized. 6861 // Although not strictly necessary, we give up on instructions we know will 6862 // already be scalar to avoid traversing chains that are unlikely to be 6863 // beneficial. 6864 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6865 isScalarAfterVectorization(I, VF)) 6866 return false; 6867 6868 // If the instruction is scalar with predication, it will be analyzed 6869 // separately. We ignore it within the context of PredInst. 6870 if (Legal->isScalarWithPredication(I)) 6871 return false; 6872 6873 // If any of the instruction's operands are uniform after vectorization, 6874 // the instruction cannot be scalarized. This prevents, for example, a 6875 // masked load from being scalarized. 6876 // 6877 // We assume we will only emit a value for lane zero of an instruction 6878 // marked uniform after vectorization, rather than VF identical values. 6879 // Thus, if we scalarize an instruction that uses a uniform, we would 6880 // create uses of values corresponding to the lanes we aren't emitting code 6881 // for. This behavior can be changed by allowing getScalarValue to clone 6882 // the lane zero values for uniforms rather than asserting. 6883 for (Use &U : I->operands()) 6884 if (auto *J = dyn_cast<Instruction>(U.get())) 6885 if (isUniformAfterVectorization(J, VF)) 6886 return false; 6887 6888 // Otherwise, we can scalarize the instruction. 6889 return true; 6890 }; 6891 6892 // Returns true if an operand that cannot be scalarized must be extracted 6893 // from a vector. We will account for this scalarization overhead below. Note 6894 // that the non-void predicated instructions are placed in their own blocks, 6895 // and their return values are inserted into vectors. Thus, an extract would 6896 // still be required. 6897 auto needsExtract = [&](Instruction *I) -> bool { 6898 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6899 }; 6900 6901 // Compute the expected cost discount from scalarizing the entire expression 6902 // feeding the predicated instruction. We currently only consider expressions 6903 // that are single-use instruction chains. 6904 Worklist.push_back(PredInst); 6905 while (!Worklist.empty()) { 6906 Instruction *I = Worklist.pop_back_val(); 6907 6908 // If we've already analyzed the instruction, there's nothing to do. 6909 if (ScalarCosts.count(I)) 6910 continue; 6911 6912 // Compute the cost of the vector instruction. Note that this cost already 6913 // includes the scalarization overhead of the predicated instruction. 6914 unsigned VectorCost = getInstructionCost(I, VF).first; 6915 6916 // Compute the cost of the scalarized instruction. This cost is the cost of 6917 // the instruction as if it wasn't if-converted and instead remained in the 6918 // predicated block. We will scale this cost by block probability after 6919 // computing the scalarization overhead. 6920 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6921 6922 // Compute the scalarization overhead of needed insertelement instructions 6923 // and phi nodes. 6924 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6925 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6926 true, false); 6927 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6928 } 6929 6930 // Compute the scalarization overhead of needed extractelement 6931 // instructions. For each of the instruction's operands, if the operand can 6932 // be scalarized, add it to the worklist; otherwise, account for the 6933 // overhead. 6934 for (Use &U : I->operands()) 6935 if (auto *J = dyn_cast<Instruction>(U.get())) { 6936 assert(VectorType::isValidElementType(J->getType()) && 6937 "Instruction has non-scalar type"); 6938 if (canBeScalarized(J)) 6939 Worklist.push_back(J); 6940 else if (needsExtract(J)) 6941 ScalarCost += TTI.getScalarizationOverhead( 6942 ToVectorTy(J->getType(),VF), false, true); 6943 } 6944 6945 // Scale the total scalar cost by block probability. 6946 ScalarCost /= getReciprocalPredBlockProb(); 6947 6948 // Compute the discount. A non-negative discount means the vector version 6949 // of the instruction costs more, and scalarizing would be beneficial. 6950 Discount += VectorCost - ScalarCost; 6951 ScalarCosts[I] = ScalarCost; 6952 } 6953 6954 return Discount; 6955 } 6956 6957 LoopVectorizationCostModel::VectorizationCostTy 6958 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6959 VectorizationCostTy Cost; 6960 6961 // Collect Uniform and Scalar instructions after vectorization with VF. 6962 collectUniformsAndScalars(VF); 6963 6964 // Collect the instructions (and their associated costs) that will be more 6965 // profitable to scalarize. 6966 collectInstsToScalarize(VF); 6967 6968 // For each block. 6969 for (BasicBlock *BB : TheLoop->blocks()) { 6970 VectorizationCostTy BlockCost; 6971 6972 // For each instruction in the old loop. 6973 for (Instruction &I : *BB) { 6974 // Skip dbg intrinsics. 6975 if (isa<DbgInfoIntrinsic>(I)) 6976 continue; 6977 6978 // Skip ignored values. 6979 if (ValuesToIgnore.count(&I)) 6980 continue; 6981 6982 VectorizationCostTy C = getInstructionCost(&I, VF); 6983 6984 // Check if we should override the cost. 6985 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6986 C.first = ForceTargetInstructionCost; 6987 6988 BlockCost.first += C.first; 6989 BlockCost.second |= C.second; 6990 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6991 << VF << " For instruction: " << I << '\n'); 6992 } 6993 6994 // If we are vectorizing a predicated block, it will have been 6995 // if-converted. This means that the block's instructions (aside from 6996 // stores and instructions that may divide by zero) will now be 6997 // unconditionally executed. For the scalar case, we may not always execute 6998 // the predicated block. Thus, scale the block's cost by the probability of 6999 // executing it. 7000 if (VF == 1 && Legal->blockNeedsPredication(BB)) 7001 BlockCost.first /= getReciprocalPredBlockProb(); 7002 7003 Cost.first += BlockCost.first; 7004 Cost.second |= BlockCost.second; 7005 } 7006 7007 return Cost; 7008 } 7009 7010 /// \brief Gets Address Access SCEV after verifying that the access pattern 7011 /// is loop invariant except the induction variable dependence. 7012 /// 7013 /// This SCEV can be sent to the Target in order to estimate the address 7014 /// calculation cost. 7015 static const SCEV *getAddressAccessSCEV( 7016 Value *Ptr, 7017 LoopVectorizationLegality *Legal, 7018 ScalarEvolution *SE, 7019 const Loop *TheLoop) { 7020 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7021 if (!Gep) 7022 return nullptr; 7023 7024 // We are looking for a gep with all loop invariant indices except for one 7025 // which should be an induction variable. 7026 unsigned NumOperands = Gep->getNumOperands(); 7027 for (unsigned i = 1; i < NumOperands; ++i) { 7028 Value *Opd = Gep->getOperand(i); 7029 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7030 !Legal->isInductionVariable(Opd)) 7031 return nullptr; 7032 } 7033 7034 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7035 return SE->getSCEV(Ptr); 7036 } 7037 7038 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7039 return Legal->hasStride(I->getOperand(0)) || 7040 Legal->hasStride(I->getOperand(1)); 7041 } 7042 7043 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7044 unsigned VF) { 7045 Type *ValTy = getMemInstValueType(I); 7046 auto SE = PSE.getSE(); 7047 7048 unsigned Alignment = getMemInstAlignment(I); 7049 unsigned AS = getMemInstAddressSpace(I); 7050 Value *Ptr = getPointerOperand(I); 7051 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7052 7053 // Figure out whether the access is strided and get the stride value 7054 // if it's known in compile time 7055 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 7056 7057 // Get the cost of the scalar memory instruction and address computation. 7058 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7059 7060 Cost += VF * 7061 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7062 AS, I); 7063 7064 // Get the overhead of the extractelement and insertelement instructions 7065 // we might create due to scalarization. 7066 Cost += getScalarizationOverhead(I, VF, TTI); 7067 7068 // If we have a predicated store, it may not be executed for each vector 7069 // lane. Scale the cost by the probability of executing the predicated 7070 // block. 7071 if (Legal->isScalarWithPredication(I)) 7072 Cost /= getReciprocalPredBlockProb(); 7073 7074 return Cost; 7075 } 7076 7077 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7078 unsigned VF) { 7079 Type *ValTy = getMemInstValueType(I); 7080 Type *VectorTy = ToVectorTy(ValTy, VF); 7081 unsigned Alignment = getMemInstAlignment(I); 7082 Value *Ptr = getPointerOperand(I); 7083 unsigned AS = getMemInstAddressSpace(I); 7084 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7085 7086 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7087 "Stride should be 1 or -1 for consecutive memory access"); 7088 unsigned Cost = 0; 7089 if (Legal->isMaskRequired(I)) 7090 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 7091 else 7092 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 7093 7094 bool Reverse = ConsecutiveStride < 0; 7095 if (Reverse) 7096 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7097 return Cost; 7098 } 7099 7100 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7101 unsigned VF) { 7102 LoadInst *LI = cast<LoadInst>(I); 7103 Type *ValTy = LI->getType(); 7104 Type *VectorTy = ToVectorTy(ValTy, VF); 7105 unsigned Alignment = LI->getAlignment(); 7106 unsigned AS = LI->getPointerAddressSpace(); 7107 7108 return TTI.getAddressComputationCost(ValTy) + 7109 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 7110 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7111 } 7112 7113 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7114 unsigned VF) { 7115 Type *ValTy = getMemInstValueType(I); 7116 Type *VectorTy = ToVectorTy(ValTy, VF); 7117 unsigned Alignment = getMemInstAlignment(I); 7118 Value *Ptr = getPointerOperand(I); 7119 7120 return TTI.getAddressComputationCost(VectorTy) + 7121 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 7122 Legal->isMaskRequired(I), Alignment); 7123 } 7124 7125 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7126 unsigned VF) { 7127 Type *ValTy = getMemInstValueType(I); 7128 Type *VectorTy = ToVectorTy(ValTy, VF); 7129 unsigned AS = getMemInstAddressSpace(I); 7130 7131 auto Group = Legal->getInterleavedAccessGroup(I); 7132 assert(Group && "Fail to get an interleaved access group."); 7133 7134 unsigned InterleaveFactor = Group->getFactor(); 7135 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7136 7137 // Holds the indices of existing members in an interleaved load group. 7138 // An interleaved store group doesn't need this as it doesn't allow gaps. 7139 SmallVector<unsigned, 4> Indices; 7140 if (isa<LoadInst>(I)) { 7141 for (unsigned i = 0; i < InterleaveFactor; i++) 7142 if (Group->getMember(i)) 7143 Indices.push_back(i); 7144 } 7145 7146 // Calculate the cost of the whole interleaved group. 7147 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7148 Group->getFactor(), Indices, 7149 Group->getAlignment(), AS); 7150 7151 if (Group->isReverse()) 7152 Cost += Group->getNumMembers() * 7153 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7154 return Cost; 7155 } 7156 7157 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7158 unsigned VF) { 7159 7160 // Calculate scalar cost only. Vectorization cost should be ready at this 7161 // moment. 7162 if (VF == 1) { 7163 Type *ValTy = getMemInstValueType(I); 7164 unsigned Alignment = getMemInstAlignment(I); 7165 unsigned AS = getMemInstAlignment(I); 7166 7167 return TTI.getAddressComputationCost(ValTy) + 7168 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7169 } 7170 return getWideningCost(I, VF); 7171 } 7172 7173 LoopVectorizationCostModel::VectorizationCostTy 7174 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7175 // If we know that this instruction will remain uniform, check the cost of 7176 // the scalar version. 7177 if (isUniformAfterVectorization(I, VF)) 7178 VF = 1; 7179 7180 if (VF > 1 && isProfitableToScalarize(I, VF)) 7181 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7182 7183 Type *VectorTy; 7184 unsigned C = getInstructionCost(I, VF, VectorTy); 7185 7186 bool TypeNotScalarized = 7187 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 7188 return VectorizationCostTy(C, TypeNotScalarized); 7189 } 7190 7191 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7192 if (VF == 1) 7193 return; 7194 for (BasicBlock *BB : TheLoop->blocks()) { 7195 // For each instruction in the old loop. 7196 for (Instruction &I : *BB) { 7197 Value *Ptr = getPointerOperand(&I); 7198 if (!Ptr) 7199 continue; 7200 7201 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7202 // Scalar load + broadcast 7203 unsigned Cost = getUniformMemOpCost(&I, VF); 7204 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7205 continue; 7206 } 7207 7208 // We assume that widening is the best solution when possible. 7209 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7210 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7211 setWideningDecision(&I, VF, CM_Widen, Cost); 7212 continue; 7213 } 7214 7215 // Choose between Interleaving, Gather/Scatter or Scalarization. 7216 unsigned InterleaveCost = UINT_MAX; 7217 unsigned NumAccesses = 1; 7218 if (Legal->isAccessInterleaved(&I)) { 7219 auto Group = Legal->getInterleavedAccessGroup(&I); 7220 assert(Group && "Fail to get an interleaved access group."); 7221 7222 // Make one decision for the whole group. 7223 if (getWideningDecision(&I, VF) != CM_Unknown) 7224 continue; 7225 7226 NumAccesses = Group->getNumMembers(); 7227 InterleaveCost = getInterleaveGroupCost(&I, VF); 7228 } 7229 7230 unsigned GatherScatterCost = 7231 Legal->isLegalGatherOrScatter(&I) 7232 ? getGatherScatterCost(&I, VF) * NumAccesses 7233 : UINT_MAX; 7234 7235 unsigned ScalarizationCost = 7236 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7237 7238 // Choose better solution for the current VF, 7239 // write down this decision and use it during vectorization. 7240 unsigned Cost; 7241 InstWidening Decision; 7242 if (InterleaveCost <= GatherScatterCost && 7243 InterleaveCost < ScalarizationCost) { 7244 Decision = CM_Interleave; 7245 Cost = InterleaveCost; 7246 } else if (GatherScatterCost < ScalarizationCost) { 7247 Decision = CM_GatherScatter; 7248 Cost = GatherScatterCost; 7249 } else { 7250 Decision = CM_Scalarize; 7251 Cost = ScalarizationCost; 7252 } 7253 // If the instructions belongs to an interleave group, the whole group 7254 // receives the same decision. The whole group receives the cost, but 7255 // the cost will actually be assigned to one instruction. 7256 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7257 setWideningDecision(Group, VF, Decision, Cost); 7258 else 7259 setWideningDecision(&I, VF, Decision, Cost); 7260 } 7261 } 7262 } 7263 7264 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7265 unsigned VF, 7266 Type *&VectorTy) { 7267 Type *RetTy = I->getType(); 7268 if (canTruncateToMinimalBitwidth(I, VF)) 7269 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7270 VectorTy = ToVectorTy(RetTy, VF); 7271 auto SE = PSE.getSE(); 7272 7273 // TODO: We need to estimate the cost of intrinsic calls. 7274 switch (I->getOpcode()) { 7275 case Instruction::GetElementPtr: 7276 // We mark this instruction as zero-cost because the cost of GEPs in 7277 // vectorized code depends on whether the corresponding memory instruction 7278 // is scalarized or not. Therefore, we handle GEPs with the memory 7279 // instruction cost. 7280 return 0; 7281 case Instruction::Br: { 7282 // In cases of scalarized and predicated instructions, there will be VF 7283 // predicated blocks in the vectorized loop. Each branch around these 7284 // blocks requires also an extract of its vector compare i1 element. 7285 bool ScalarPredicatedBB = false; 7286 BranchInst *BI = cast<BranchInst>(I); 7287 if (VF > 1 && BI->isConditional() && 7288 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7289 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7290 ScalarPredicatedBB = true; 7291 7292 if (ScalarPredicatedBB) { 7293 // Return cost for branches around scalarized and predicated blocks. 7294 Type *Vec_i1Ty = 7295 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7296 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7297 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7298 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7299 // The back-edge branch will remain, as will all scalar branches. 7300 return TTI.getCFInstrCost(Instruction::Br); 7301 else 7302 // This branch will be eliminated by if-conversion. 7303 return 0; 7304 // Note: We currently assume zero cost for an unconditional branch inside 7305 // a predicated block since it will become a fall-through, although we 7306 // may decide in the future to call TTI for all branches. 7307 } 7308 case Instruction::PHI: { 7309 auto *Phi = cast<PHINode>(I); 7310 7311 // First-order recurrences are replaced by vector shuffles inside the loop. 7312 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7313 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7314 VectorTy, VF - 1, VectorTy); 7315 7316 // TODO: IF-converted IFs become selects. 7317 return 0; 7318 } 7319 case Instruction::UDiv: 7320 case Instruction::SDiv: 7321 case Instruction::URem: 7322 case Instruction::SRem: 7323 // If we have a predicated instruction, it may not be executed for each 7324 // vector lane. Get the scalarization cost and scale this amount by the 7325 // probability of executing the predicated block. If the instruction is not 7326 // predicated, we fall through to the next case. 7327 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7328 unsigned Cost = 0; 7329 7330 // These instructions have a non-void type, so account for the phi nodes 7331 // that we will create. This cost is likely to be zero. The phi node 7332 // cost, if any, should be scaled by the block probability because it 7333 // models a copy at the end of each predicated block. 7334 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7335 7336 // The cost of the non-predicated instruction. 7337 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7338 7339 // The cost of insertelement and extractelement instructions needed for 7340 // scalarization. 7341 Cost += getScalarizationOverhead(I, VF, TTI); 7342 7343 // Scale the cost by the probability of executing the predicated blocks. 7344 // This assumes the predicated block for each vector lane is equally 7345 // likely. 7346 return Cost / getReciprocalPredBlockProb(); 7347 } 7348 case Instruction::Add: 7349 case Instruction::FAdd: 7350 case Instruction::Sub: 7351 case Instruction::FSub: 7352 case Instruction::Mul: 7353 case Instruction::FMul: 7354 case Instruction::FDiv: 7355 case Instruction::FRem: 7356 case Instruction::Shl: 7357 case Instruction::LShr: 7358 case Instruction::AShr: 7359 case Instruction::And: 7360 case Instruction::Or: 7361 case Instruction::Xor: { 7362 // Since we will replace the stride by 1 the multiplication should go away. 7363 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7364 return 0; 7365 // Certain instructions can be cheaper to vectorize if they have a constant 7366 // second vector operand. One example of this are shifts on x86. 7367 TargetTransformInfo::OperandValueKind Op1VK = 7368 TargetTransformInfo::OK_AnyValue; 7369 TargetTransformInfo::OperandValueKind Op2VK = 7370 TargetTransformInfo::OK_AnyValue; 7371 TargetTransformInfo::OperandValueProperties Op1VP = 7372 TargetTransformInfo::OP_None; 7373 TargetTransformInfo::OperandValueProperties Op2VP = 7374 TargetTransformInfo::OP_None; 7375 Value *Op2 = I->getOperand(1); 7376 7377 // Check for a splat or for a non uniform vector of constants. 7378 if (isa<ConstantInt>(Op2)) { 7379 ConstantInt *CInt = cast<ConstantInt>(Op2); 7380 if (CInt && CInt->getValue().isPowerOf2()) 7381 Op2VP = TargetTransformInfo::OP_PowerOf2; 7382 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7383 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7384 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7385 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7386 if (SplatValue) { 7387 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7388 if (CInt && CInt->getValue().isPowerOf2()) 7389 Op2VP = TargetTransformInfo::OP_PowerOf2; 7390 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7391 } 7392 } else if (Legal->isUniform(Op2)) { 7393 Op2VK = TargetTransformInfo::OK_UniformValue; 7394 } 7395 SmallVector<const Value *, 4> Operands(I->operand_values()); 7396 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7397 Op2VK, Op1VP, Op2VP, Operands); 7398 } 7399 case Instruction::Select: { 7400 SelectInst *SI = cast<SelectInst>(I); 7401 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7402 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7403 Type *CondTy = SI->getCondition()->getType(); 7404 if (!ScalarCond) 7405 CondTy = VectorType::get(CondTy, VF); 7406 7407 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7408 } 7409 case Instruction::ICmp: 7410 case Instruction::FCmp: { 7411 Type *ValTy = I->getOperand(0)->getType(); 7412 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7413 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7414 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7415 VectorTy = ToVectorTy(ValTy, VF); 7416 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7417 } 7418 case Instruction::Store: 7419 case Instruction::Load: { 7420 VectorTy = ToVectorTy(getMemInstValueType(I), VF); 7421 return getMemoryInstructionCost(I, VF); 7422 } 7423 case Instruction::ZExt: 7424 case Instruction::SExt: 7425 case Instruction::FPToUI: 7426 case Instruction::FPToSI: 7427 case Instruction::FPExt: 7428 case Instruction::PtrToInt: 7429 case Instruction::IntToPtr: 7430 case Instruction::SIToFP: 7431 case Instruction::UIToFP: 7432 case Instruction::Trunc: 7433 case Instruction::FPTrunc: 7434 case Instruction::BitCast: { 7435 // We optimize the truncation of induction variables having constant 7436 // integer steps. The cost of these truncations is the same as the scalar 7437 // operation. 7438 if (isOptimizableIVTruncate(I, VF)) { 7439 auto *Trunc = cast<TruncInst>(I); 7440 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7441 Trunc->getSrcTy(), Trunc); 7442 } 7443 7444 Type *SrcScalarTy = I->getOperand(0)->getType(); 7445 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 7446 if (canTruncateToMinimalBitwidth(I, VF)) { 7447 // This cast is going to be shrunk. This may remove the cast or it might 7448 // turn it into slightly different cast. For example, if MinBW == 16, 7449 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7450 // 7451 // Calculate the modified src and dest types. 7452 Type *MinVecTy = VectorTy; 7453 if (I->getOpcode() == Instruction::Trunc) { 7454 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7455 VectorTy = 7456 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7457 } else if (I->getOpcode() == Instruction::ZExt || 7458 I->getOpcode() == Instruction::SExt) { 7459 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7460 VectorTy = 7461 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7462 } 7463 } 7464 7465 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7466 } 7467 case Instruction::Call: { 7468 bool NeedToScalarize; 7469 CallInst *CI = cast<CallInst>(I); 7470 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7471 if (getVectorIntrinsicIDForCall(CI, TLI)) 7472 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7473 return CallCost; 7474 } 7475 default: 7476 // The cost of executing VF copies of the scalar instruction. This opcode 7477 // is unknown. Assume that it is the same as 'mul'. 7478 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7479 getScalarizationOverhead(I, VF, TTI); 7480 } // end of switch. 7481 } 7482 7483 char LoopVectorize::ID = 0; 7484 static const char lv_name[] = "Loop Vectorization"; 7485 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7486 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7487 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7488 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7489 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7490 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7491 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7492 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7493 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7494 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7495 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7496 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7497 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7498 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7499 7500 namespace llvm { 7501 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7502 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7503 } 7504 } 7505 7506 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7507 7508 // Check if the pointer operand of a load or store instruction is 7509 // consecutive. 7510 if (auto *Ptr = getPointerOperand(Inst)) 7511 return Legal->isConsecutivePtr(Ptr); 7512 return false; 7513 } 7514 7515 void LoopVectorizationCostModel::collectValuesToIgnore() { 7516 // Ignore ephemeral values. 7517 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7518 7519 // Ignore type-promoting instructions we identified during reduction 7520 // detection. 7521 for (auto &Reduction : *Legal->getReductionVars()) { 7522 RecurrenceDescriptor &RedDes = Reduction.second; 7523 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7524 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7525 } 7526 } 7527 7528 LoopVectorizationCostModel::VectorizationFactor 7529 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7530 7531 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7532 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7533 0U}; 7534 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7535 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7536 return NoVectorization; 7537 7538 if (UserVF) { 7539 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7540 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7541 // Collect the instructions (and their associated costs) that will be more 7542 // profitable to scalarize. 7543 CM.selectUserVectorizationFactor(UserVF); 7544 return {UserVF, 0}; 7545 } 7546 7547 unsigned MaxVF = MaybeMaxVF.getValue(); 7548 assert(MaxVF != 0 && "MaxVF is zero."); 7549 if (MaxVF == 1) 7550 return NoVectorization; 7551 7552 // Select the optimal vectorization factor. 7553 return CM.selectVectorizationFactor(MaxVF); 7554 } 7555 7556 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 7557 auto *SI = dyn_cast<StoreInst>(Instr); 7558 bool IfPredicateInstr = (SI && Legal->blockNeedsPredication(SI->getParent())); 7559 7560 return scalarizeInstruction(Instr, IfPredicateInstr); 7561 } 7562 7563 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7564 7565 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7566 7567 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7568 Instruction::BinaryOps BinOp) { 7569 // When unrolling and the VF is 1, we only need to add a simple scalar. 7570 Type *Ty = Val->getType(); 7571 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7572 7573 if (Ty->isFloatingPointTy()) { 7574 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7575 7576 // Floating point operations had to be 'fast' to enable the unrolling. 7577 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7578 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7579 } 7580 Constant *C = ConstantInt::get(Ty, StartIdx); 7581 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7582 } 7583 7584 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7585 SmallVector<Metadata *, 4> MDs; 7586 // Reserve first location for self reference to the LoopID metadata node. 7587 MDs.push_back(nullptr); 7588 bool IsUnrollMetadata = false; 7589 MDNode *LoopID = L->getLoopID(); 7590 if (LoopID) { 7591 // First find existing loop unrolling disable metadata. 7592 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7593 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7594 if (MD) { 7595 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7596 IsUnrollMetadata = 7597 S && S->getString().startswith("llvm.loop.unroll.disable"); 7598 } 7599 MDs.push_back(LoopID->getOperand(i)); 7600 } 7601 } 7602 7603 if (!IsUnrollMetadata) { 7604 // Add runtime unroll disable metadata. 7605 LLVMContext &Context = L->getHeader()->getContext(); 7606 SmallVector<Metadata *, 1> DisableOperands; 7607 DisableOperands.push_back( 7608 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7609 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7610 MDs.push_back(DisableNode); 7611 MDNode *NewLoopID = MDNode::get(Context, MDs); 7612 // Set operand 0 to refer to the loop id itself. 7613 NewLoopID->replaceOperandWith(0, NewLoopID); 7614 L->setLoopID(NewLoopID); 7615 } 7616 } 7617 7618 bool LoopVectorizePass::processLoop(Loop *L) { 7619 assert(L->empty() && "Only process inner loops."); 7620 7621 #ifndef NDEBUG 7622 const std::string DebugLocStr = getDebugLocString(L); 7623 #endif /* NDEBUG */ 7624 7625 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7626 << L->getHeader()->getParent()->getName() << "\" from " 7627 << DebugLocStr << "\n"); 7628 7629 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 7630 7631 DEBUG(dbgs() << "LV: Loop hints:" 7632 << " force=" 7633 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7634 ? "disabled" 7635 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7636 ? "enabled" 7637 : "?")) 7638 << " width=" << Hints.getWidth() 7639 << " unroll=" << Hints.getInterleave() << "\n"); 7640 7641 // Function containing loop 7642 Function *F = L->getHeader()->getParent(); 7643 7644 // Looking at the diagnostic output is the only way to determine if a loop 7645 // was vectorized (other than looking at the IR or machine code), so it 7646 // is important to generate an optimization remark for each loop. Most of 7647 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7648 // generated as OptimizationRemark and OptimizationRemarkMissed are 7649 // less verbose reporting vectorized loops and unvectorized loops that may 7650 // benefit from vectorization, respectively. 7651 7652 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 7653 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7654 return false; 7655 } 7656 7657 // Check the loop for a trip count threshold: 7658 // do not vectorize loops with a tiny trip count. 7659 const unsigned MaxTC = SE->getSmallConstantMaxTripCount(L); 7660 if (MaxTC > 0u && MaxTC < TinyTripCountVectorThreshold) { 7661 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7662 << "This loop is not worth vectorizing."); 7663 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7664 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7665 else { 7666 DEBUG(dbgs() << "\n"); 7667 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7668 "NotBeneficial", L) 7669 << "vectorization is not beneficial " 7670 "and is not explicitly forced"); 7671 return false; 7672 } 7673 } 7674 7675 PredicatedScalarEvolution PSE(*SE, *L); 7676 7677 // Check if it is legal to vectorize the loop. 7678 LoopVectorizationRequirements Requirements(*ORE); 7679 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 7680 &Requirements, &Hints); 7681 if (!LVL.canVectorize()) { 7682 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7683 emitMissedWarning(F, L, Hints, ORE); 7684 return false; 7685 } 7686 7687 // Check the function attributes to find out if this function should be 7688 // optimized for size. 7689 bool OptForSize = 7690 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 7691 7692 // Compute the weighted frequency of this loop being executed and see if it 7693 // is less than 20% of the function entry baseline frequency. Note that we 7694 // always have a canonical loop here because we think we *can* vectorize. 7695 // FIXME: This is hidden behind a flag due to pervasive problems with 7696 // exactly what block frequency models. 7697 if (LoopVectorizeWithBlockFrequency) { 7698 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 7699 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 7700 LoopEntryFreq < ColdEntryFreq) 7701 OptForSize = true; 7702 } 7703 7704 // Check the function attributes to see if implicit floats are allowed. 7705 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7706 // an integer loop and the vector instructions selected are purely integer 7707 // vector instructions? 7708 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7709 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 7710 "attribute is used.\n"); 7711 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 7712 "NoImplicitFloat", L) 7713 << "loop not vectorized due to NoImplicitFloat attribute"); 7714 emitMissedWarning(F, L, Hints, ORE); 7715 return false; 7716 } 7717 7718 // Check if the target supports potentially unsafe FP vectorization. 7719 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7720 // for the target we're vectorizing for, to make sure none of the 7721 // additional fp-math flags can help. 7722 if (Hints.isPotentiallyUnsafe() && 7723 TTI->isFPVectorizationPotentiallyUnsafe()) { 7724 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 7725 ORE->emit( 7726 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 7727 << "loop not vectorized due to unsafe FP support."); 7728 emitMissedWarning(F, L, Hints, ORE); 7729 return false; 7730 } 7731 7732 // Use the cost model. 7733 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 7734 &Hints); 7735 CM.collectValuesToIgnore(); 7736 7737 // Use the planner for vectorization. 7738 LoopVectorizationPlanner LVP(CM); 7739 7740 // Get user vectorization factor. 7741 unsigned UserVF = Hints.getWidth(); 7742 7743 // Plan how to best vectorize, return the best VF and its cost. 7744 LoopVectorizationCostModel::VectorizationFactor VF = 7745 LVP.plan(OptForSize, UserVF); 7746 7747 // Select the interleave count. 7748 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 7749 7750 // Get user interleave count. 7751 unsigned UserIC = Hints.getInterleave(); 7752 7753 // Identify the diagnostic messages that should be produced. 7754 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7755 bool VectorizeLoop = true, InterleaveLoop = true; 7756 if (Requirements.doesNotMeet(F, L, Hints)) { 7757 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7758 "requirements.\n"); 7759 emitMissedWarning(F, L, Hints, ORE); 7760 return false; 7761 } 7762 7763 if (VF.Width == 1) { 7764 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7765 VecDiagMsg = std::make_pair( 7766 "VectorizationNotBeneficial", 7767 "the cost-model indicates that vectorization is not beneficial"); 7768 VectorizeLoop = false; 7769 } 7770 7771 if (IC == 1 && UserIC <= 1) { 7772 // Tell the user interleaving is not beneficial. 7773 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7774 IntDiagMsg = std::make_pair( 7775 "InterleavingNotBeneficial", 7776 "the cost-model indicates that interleaving is not beneficial"); 7777 InterleaveLoop = false; 7778 if (UserIC == 1) { 7779 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7780 IntDiagMsg.second += 7781 " and is explicitly disabled or interleave count is set to 1"; 7782 } 7783 } else if (IC > 1 && UserIC == 1) { 7784 // Tell the user interleaving is beneficial, but it explicitly disabled. 7785 DEBUG(dbgs() 7786 << "LV: Interleaving is beneficial but is explicitly disabled."); 7787 IntDiagMsg = std::make_pair( 7788 "InterleavingBeneficialButDisabled", 7789 "the cost-model indicates that interleaving is beneficial " 7790 "but is explicitly disabled or interleave count is set to 1"); 7791 InterleaveLoop = false; 7792 } 7793 7794 // Override IC if user provided an interleave count. 7795 IC = UserIC > 0 ? UserIC : IC; 7796 7797 // Emit diagnostic messages, if any. 7798 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7799 if (!VectorizeLoop && !InterleaveLoop) { 7800 // Do not vectorize or interleaving the loop. 7801 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7802 L->getStartLoc(), L->getHeader()) 7803 << VecDiagMsg.second); 7804 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7805 L->getStartLoc(), L->getHeader()) 7806 << IntDiagMsg.second); 7807 return false; 7808 } else if (!VectorizeLoop && InterleaveLoop) { 7809 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7810 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7811 L->getStartLoc(), L->getHeader()) 7812 << VecDiagMsg.second); 7813 } else if (VectorizeLoop && !InterleaveLoop) { 7814 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7815 << DebugLocStr << '\n'); 7816 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7817 L->getStartLoc(), L->getHeader()) 7818 << IntDiagMsg.second); 7819 } else if (VectorizeLoop && InterleaveLoop) { 7820 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 7821 << DebugLocStr << '\n'); 7822 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7823 } 7824 7825 using namespace ore; 7826 if (!VectorizeLoop) { 7827 assert(IC > 1 && "interleave count should not be 1 or 0"); 7828 // If we decided that it is not legal to vectorize the loop, then 7829 // interleave it. 7830 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7831 &CM); 7832 Unroller.vectorize(); 7833 7834 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7835 L->getHeader()) 7836 << "interleaved loop (interleaved count: " 7837 << NV("InterleaveCount", IC) << ")"); 7838 } else { 7839 // If we decided that it is *legal* to vectorize the loop, then do it. 7840 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7841 &LVL, &CM); 7842 LB.vectorize(); 7843 ++LoopsVectorized; 7844 7845 // Add metadata to disable runtime unrolling a scalar loop when there are 7846 // no runtime checks about strides and memory. A scalar loop that is 7847 // rarely used is not worth unrolling. 7848 if (!LB.areSafetyChecksAdded()) 7849 AddRuntimeUnrollDisableMetaData(L); 7850 7851 // Report the vectorization decision. 7852 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 7853 L->getHeader()) 7854 << "vectorized loop (vectorization width: " 7855 << NV("VectorizationFactor", VF.Width) 7856 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 7857 } 7858 7859 // Mark the loop as already vectorized to avoid vectorizing again. 7860 Hints.setAlreadyVectorized(); 7861 7862 DEBUG(verifyFunction(*L->getHeader()->getParent())); 7863 return true; 7864 } 7865 7866 bool LoopVectorizePass::runImpl( 7867 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 7868 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 7869 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 7870 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 7871 OptimizationRemarkEmitter &ORE_) { 7872 7873 SE = &SE_; 7874 LI = &LI_; 7875 TTI = &TTI_; 7876 DT = &DT_; 7877 BFI = &BFI_; 7878 TLI = TLI_; 7879 AA = &AA_; 7880 AC = &AC_; 7881 GetLAA = &GetLAA_; 7882 DB = &DB_; 7883 ORE = &ORE_; 7884 7885 // Compute some weights outside of the loop over the loops. Compute this 7886 // using a BranchProbability to re-use its scaling math. 7887 const BranchProbability ColdProb(1, 5); // 20% 7888 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 7889 7890 // Don't attempt if 7891 // 1. the target claims to have no vector registers, and 7892 // 2. interleaving won't help ILP. 7893 // 7894 // The second condition is necessary because, even if the target has no 7895 // vector registers, loop vectorization may still enable scalar 7896 // interleaving. 7897 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 7898 return false; 7899 7900 bool Changed = false; 7901 7902 // The vectorizer requires loops to be in simplified form. 7903 // Since simplification may add new inner loops, it has to run before the 7904 // legality and profitability checks. This means running the loop vectorizer 7905 // will simplify all loops, regardless of whether anything end up being 7906 // vectorized. 7907 for (auto &L : *LI) 7908 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 7909 7910 // Build up a worklist of inner-loops to vectorize. This is necessary as 7911 // the act of vectorizing or partially unrolling a loop creates new loops 7912 // and can invalidate iterators across the loops. 7913 SmallVector<Loop *, 8> Worklist; 7914 7915 for (Loop *L : *LI) 7916 addAcyclicInnerLoop(*L, Worklist); 7917 7918 LoopsAnalyzed += Worklist.size(); 7919 7920 // Now walk the identified inner loops. 7921 while (!Worklist.empty()) { 7922 Loop *L = Worklist.pop_back_val(); 7923 7924 // For the inner loops we actually process, form LCSSA to simplify the 7925 // transform. 7926 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 7927 7928 Changed |= processLoop(L); 7929 } 7930 7931 // Process each loop nest in the function. 7932 return Changed; 7933 7934 } 7935 7936 7937 PreservedAnalyses LoopVectorizePass::run(Function &F, 7938 FunctionAnalysisManager &AM) { 7939 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 7940 auto &LI = AM.getResult<LoopAnalysis>(F); 7941 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 7942 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 7943 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 7944 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 7945 auto &AA = AM.getResult<AAManager>(F); 7946 auto &AC = AM.getResult<AssumptionAnalysis>(F); 7947 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 7948 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 7949 7950 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 7951 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 7952 [&](Loop &L) -> const LoopAccessInfo & { 7953 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 7954 return LAM.getResult<LoopAccessAnalysis>(L, AR); 7955 }; 7956 bool Changed = 7957 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 7958 if (!Changed) 7959 return PreservedAnalyses::all(); 7960 PreservedAnalyses PA; 7961 PA.preserve<LoopAnalysis>(); 7962 PA.preserve<DominatorTreeAnalysis>(); 7963 PA.preserve<BasicAA>(); 7964 PA.preserve<GlobalsAA>(); 7965 return PA; 7966 } 7967