1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize.h" 50 #include "llvm/ADT/DenseMap.h" 51 #include "llvm/ADT/EquivalenceClasses.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/SetVector.h" 55 #include "llvm/ADT/SmallPtrSet.h" 56 #include "llvm/ADT/SmallSet.h" 57 #include "llvm/ADT/SmallVector.h" 58 #include "llvm/ADT/Statistic.h" 59 #include "llvm/ADT/StringExtras.h" 60 #include "llvm/Analysis/AliasAnalysis.h" 61 #include "llvm/Analysis/AliasSetTracker.h" 62 #include "llvm/Analysis/AssumptionCache.h" 63 #include "llvm/Analysis/BlockFrequencyInfo.h" 64 #include "llvm/Analysis/CodeMetrics.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfo.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/DiagnosticInfo.h" 79 #include "llvm/IR/Dominators.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/IRBuilder.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/IntrinsicInst.h" 84 #include "llvm/IR/LLVMContext.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/IR/ValueHandle.h" 90 #include "llvm/IR/Verifier.h" 91 #include "llvm/Pass.h" 92 #include "llvm/Support/BranchProbability.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/raw_ostream.h" 96 #include "llvm/Transforms/Scalar.h" 97 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 98 #include "llvm/Transforms/Utils/Local.h" 99 #include "llvm/Analysis/VectorUtils.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include <algorithm> 102 #include <map> 103 #include <tuple> 104 105 using namespace llvm; 106 using namespace llvm::PatternMatch; 107 108 #define LV_NAME "loop-vectorize" 109 #define DEBUG_TYPE LV_NAME 110 111 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 112 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 113 114 static cl::opt<bool> 115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 116 cl::desc("Enable if-conversion during vectorization.")); 117 118 /// We don't vectorize loops with a known constant trip count below this number. 119 static cl::opt<unsigned> 120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 121 cl::Hidden, 122 cl::desc("Don't vectorize loops with a constant " 123 "trip count that is smaller than this " 124 "value.")); 125 126 /// This enables versioning on the strides of symbolically striding memory 127 /// accesses in code like the following. 128 /// for (i = 0; i < N; ++i) 129 /// A[i * Stride1] += B[i * Stride2] ... 130 /// 131 /// Will be roughly translated to 132 /// if (Stride1 == 1 && Stride2 == 1) { 133 /// for (i = 0; i < N; i+=4) 134 /// A[i:i+3] += ... 135 /// } else 136 /// ... 137 static cl::opt<bool> EnableMemAccessVersioning( 138 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 139 cl::desc("Enable symblic stride memory access versioning")); 140 141 static cl::opt<bool> EnableInterleavedMemAccesses( 142 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 143 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 144 145 /// Maximum factor for an interleaved memory access. 146 static cl::opt<unsigned> MaxInterleaveGroupFactor( 147 "max-interleave-group-factor", cl::Hidden, 148 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 149 cl::init(8)); 150 151 /// We don't interleave loops with a known constant trip count below this 152 /// number. 153 static const unsigned TinyTripCountInterleaveThreshold = 128; 154 155 static cl::opt<unsigned> ForceTargetNumScalarRegs( 156 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's number of scalar registers.")); 158 159 static cl::opt<unsigned> ForceTargetNumVectorRegs( 160 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 161 cl::desc("A flag that overrides the target's number of vector registers.")); 162 163 /// Maximum vectorization interleave count. 164 static const unsigned MaxInterleaveFactor = 16; 165 166 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 167 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's max interleave factor for " 169 "scalar loops.")); 170 171 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 172 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 173 cl::desc("A flag that overrides the target's max interleave factor for " 174 "vectorized loops.")); 175 176 static cl::opt<unsigned> ForceTargetInstructionCost( 177 "force-target-instruction-cost", cl::init(0), cl::Hidden, 178 cl::desc("A flag that overrides the target's expected cost for " 179 "an instruction to a single constant value. Mostly " 180 "useful for getting consistent testing.")); 181 182 static cl::opt<unsigned> SmallLoopCost( 183 "small-loop-cost", cl::init(20), cl::Hidden, 184 cl::desc( 185 "The cost of a loop that is considered 'small' by the interleaver.")); 186 187 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 188 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 189 cl::desc("Enable the use of the block frequency analysis to access PGO " 190 "heuristics minimizing code growth in cold regions and being more " 191 "aggressive in hot regions.")); 192 193 // Runtime interleave loops for load/store throughput. 194 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 195 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 196 cl::desc( 197 "Enable runtime interleaving until load/store ports are saturated")); 198 199 /// The number of stores in a loop that are allowed to need predication. 200 static cl::opt<unsigned> NumberOfStoresToPredicate( 201 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 202 cl::desc("Max number of stores to be predicated behind an if.")); 203 204 static cl::opt<bool> EnableIndVarRegisterHeur( 205 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 206 cl::desc("Count the induction variable only once when interleaving")); 207 208 static cl::opt<bool> EnableCondStoresVectorization( 209 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 210 cl::desc("Enable if predication of stores during vectorization.")); 211 212 static cl::opt<unsigned> MaxNestedScalarReductionIC( 213 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 214 cl::desc("The maximum interleave count to use when interleaving a scalar " 215 "reduction in a nested loop.")); 216 217 namespace { 218 219 // Forward declarations. 220 class LoopVectorizationLegality; 221 class LoopVectorizationCostModel; 222 class LoopVectorizeHints; 223 224 /// \brief This modifies LoopAccessReport to initialize message with 225 /// loop-vectorizer-specific part. 226 class VectorizationReport : public LoopAccessReport { 227 public: 228 VectorizationReport(Instruction *I = nullptr) 229 : LoopAccessReport("loop not vectorized: ", I) {} 230 231 /// \brief This allows promotion of the loop-access analysis report into the 232 /// loop-vectorizer report. It modifies the message to add the 233 /// loop-vectorizer-specific part of the message. 234 explicit VectorizationReport(const LoopAccessReport &R) 235 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 236 R.getInstr()) {} 237 }; 238 239 /// A helper function for converting Scalar types to vector types. 240 /// If the incoming type is void, we return void. If the VF is 1, we return 241 /// the scalar type. 242 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 243 if (Scalar->isVoidTy() || VF == 1) 244 return Scalar; 245 return VectorType::get(Scalar, VF); 246 } 247 248 /// InnerLoopVectorizer vectorizes loops which contain only one basic 249 /// block to a specified vectorization factor (VF). 250 /// This class performs the widening of scalars into vectors, or multiple 251 /// scalars. This class also implements the following features: 252 /// * It inserts an epilogue loop for handling loops that don't have iteration 253 /// counts that are known to be a multiple of the vectorization factor. 254 /// * It handles the code generation for reduction variables. 255 /// * Scalarization (implementation using scalars) of un-vectorizable 256 /// instructions. 257 /// InnerLoopVectorizer does not perform any vectorization-legality 258 /// checks, and relies on the caller to check for the different legality 259 /// aspects. The InnerLoopVectorizer relies on the 260 /// LoopVectorizationLegality class to provide information about the induction 261 /// and reduction variables that were found to a given vectorization factor. 262 class InnerLoopVectorizer { 263 public: 264 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 265 DominatorTree *DT, const TargetLibraryInfo *TLI, 266 const TargetTransformInfo *TTI, unsigned VecWidth, 267 unsigned UnrollFactor) 268 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 269 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 270 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 271 Legal(nullptr), AddedSafetyChecks(false) {} 272 273 // Perform the actual loop widening (vectorization). 274 void vectorize(LoopVectorizationLegality *L) { 275 Legal = L; 276 // Create a new empty loop. Unlink the old loop and connect the new one. 277 createEmptyLoop(); 278 // Widen each instruction in the old loop to a new one in the new loop. 279 // Use the Legality module to find the induction and reduction variables. 280 vectorizeLoop(); 281 // Register the new loop and update the analysis passes. 282 updateAnalysis(); 283 } 284 285 // Return true if any runtime check is added. 286 bool IsSafetyChecksAdded() { 287 return AddedSafetyChecks; 288 } 289 290 virtual ~InnerLoopVectorizer() {} 291 292 protected: 293 /// A small list of PHINodes. 294 typedef SmallVector<PHINode*, 4> PhiVector; 295 /// When we unroll loops we have multiple vector values for each scalar. 296 /// This data structure holds the unrolled and vectorized values that 297 /// originated from one scalar instruction. 298 typedef SmallVector<Value*, 2> VectorParts; 299 300 // When we if-convert we need to create edge masks. We have to cache values 301 // so that we don't end up with exponential recursion/IR. 302 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 303 VectorParts> EdgeMaskCache; 304 305 /// \brief Add checks for strides that were assumed to be 1. 306 /// 307 /// Returns the last check instruction and the first check instruction in the 308 /// pair as (first, last). 309 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 310 311 /// Create an empty loop, based on the loop ranges of the old loop. 312 void createEmptyLoop(); 313 /// Copy and widen the instructions from the old loop. 314 virtual void vectorizeLoop(); 315 316 /// \brief The Loop exit block may have single value PHI nodes where the 317 /// incoming value is 'Undef'. While vectorizing we only handled real values 318 /// that were defined inside the loop. Here we fix the 'undef case'. 319 /// See PR14725. 320 void fixLCSSAPHIs(); 321 322 /// A helper function that computes the predicate of the block BB, assuming 323 /// that the header block of the loop is set to True. It returns the *entry* 324 /// mask for the block BB. 325 VectorParts createBlockInMask(BasicBlock *BB); 326 /// A helper function that computes the predicate of the edge between SRC 327 /// and DST. 328 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 329 330 /// A helper function to vectorize a single BB within the innermost loop. 331 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 332 333 /// Vectorize a single PHINode in a block. This method handles the induction 334 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 335 /// arbitrary length vectors. 336 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 337 unsigned UF, unsigned VF, PhiVector *PV); 338 339 /// Insert the new loop to the loop hierarchy and pass manager 340 /// and update the analysis passes. 341 void updateAnalysis(); 342 343 /// This instruction is un-vectorizable. Implement it as a sequence 344 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 345 /// scalarized instruction behind an if block predicated on the control 346 /// dependence of the instruction. 347 virtual void scalarizeInstruction(Instruction *Instr, 348 bool IfPredicateStore=false); 349 350 /// Vectorize Load and Store instructions, 351 virtual void vectorizeMemoryInstruction(Instruction *Instr); 352 353 /// Create a broadcast instruction. This method generates a broadcast 354 /// instruction (shuffle) for loop invariant values and for the induction 355 /// value. If this is the induction variable then we extend it to N, N+1, ... 356 /// this is needed because each iteration in the loop corresponds to a SIMD 357 /// element. 358 virtual Value *getBroadcastInstrs(Value *V); 359 360 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 361 /// to each vector element of Val. The sequence starts at StartIndex. 362 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 363 364 /// When we go over instructions in the basic block we rely on previous 365 /// values within the current basic block or on loop invariant values. 366 /// When we widen (vectorize) values we place them in the map. If the values 367 /// are not within the map, they have to be loop invariant, so we simply 368 /// broadcast them into a vector. 369 VectorParts &getVectorValue(Value *V); 370 371 /// Try to vectorize the interleaved access group that \p Instr belongs to. 372 void vectorizeInterleaveGroup(Instruction *Instr); 373 374 /// Generate a shuffle sequence that will reverse the vector Vec. 375 virtual Value *reverseVector(Value *Vec); 376 377 /// This is a helper class that holds the vectorizer state. It maps scalar 378 /// instructions to vector instructions. When the code is 'unrolled' then 379 /// then a single scalar value is mapped to multiple vector parts. The parts 380 /// are stored in the VectorPart type. 381 struct ValueMap { 382 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 383 /// are mapped. 384 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 385 386 /// \return True if 'Key' is saved in the Value Map. 387 bool has(Value *Key) const { return MapStorage.count(Key); } 388 389 /// Initializes a new entry in the map. Sets all of the vector parts to the 390 /// save value in 'Val'. 391 /// \return A reference to a vector with splat values. 392 VectorParts &splat(Value *Key, Value *Val) { 393 VectorParts &Entry = MapStorage[Key]; 394 Entry.assign(UF, Val); 395 return Entry; 396 } 397 398 ///\return A reference to the value that is stored at 'Key'. 399 VectorParts &get(Value *Key) { 400 VectorParts &Entry = MapStorage[Key]; 401 if (Entry.empty()) 402 Entry.resize(UF); 403 assert(Entry.size() == UF); 404 return Entry; 405 } 406 407 private: 408 /// The unroll factor. Each entry in the map stores this number of vector 409 /// elements. 410 unsigned UF; 411 412 /// Map storage. We use std::map and not DenseMap because insertions to a 413 /// dense map invalidates its iterators. 414 std::map<Value *, VectorParts> MapStorage; 415 }; 416 417 /// The original loop. 418 Loop *OrigLoop; 419 /// Scev analysis to use. 420 ScalarEvolution *SE; 421 /// Loop Info. 422 LoopInfo *LI; 423 /// Dominator Tree. 424 DominatorTree *DT; 425 /// Alias Analysis. 426 AliasAnalysis *AA; 427 /// Target Library Info. 428 const TargetLibraryInfo *TLI; 429 /// Target Transform Info. 430 const TargetTransformInfo *TTI; 431 432 /// The vectorization SIMD factor to use. Each vector will have this many 433 /// vector elements. 434 unsigned VF; 435 436 protected: 437 /// The vectorization unroll factor to use. Each scalar is vectorized to this 438 /// many different vector instructions. 439 unsigned UF; 440 441 /// The builder that we use 442 IRBuilder<> Builder; 443 444 // --- Vectorization state --- 445 446 /// The vector-loop preheader. 447 BasicBlock *LoopVectorPreHeader; 448 /// The scalar-loop preheader. 449 BasicBlock *LoopScalarPreHeader; 450 /// Middle Block between the vector and the scalar. 451 BasicBlock *LoopMiddleBlock; 452 ///The ExitBlock of the scalar loop. 453 BasicBlock *LoopExitBlock; 454 ///The vector loop body. 455 SmallVector<BasicBlock *, 4> LoopVectorBody; 456 ///The scalar loop body. 457 BasicBlock *LoopScalarBody; 458 /// A list of all bypass blocks. The first block is the entry of the loop. 459 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 460 461 /// The new Induction variable which was added to the new block. 462 PHINode *Induction; 463 /// The induction variable of the old basic block. 464 PHINode *OldInduction; 465 /// Holds the extended (to the widest induction type) start index. 466 Value *ExtendedIdx; 467 /// Maps scalars to widened vectors. 468 ValueMap WidenMap; 469 EdgeMaskCache MaskCache; 470 471 LoopVectorizationLegality *Legal; 472 473 // Record whether runtime check is added. 474 bool AddedSafetyChecks; 475 }; 476 477 class InnerLoopUnroller : public InnerLoopVectorizer { 478 public: 479 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 480 DominatorTree *DT, const TargetLibraryInfo *TLI, 481 const TargetTransformInfo *TTI, unsigned UnrollFactor) 482 : InnerLoopVectorizer(OrigLoop, SE, LI, DT, TLI, TTI, 1, UnrollFactor) {} 483 484 private: 485 void scalarizeInstruction(Instruction *Instr, 486 bool IfPredicateStore = false) override; 487 void vectorizeMemoryInstruction(Instruction *Instr) override; 488 Value *getBroadcastInstrs(Value *V) override; 489 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 490 Value *reverseVector(Value *Vec) override; 491 }; 492 493 /// \brief Look for a meaningful debug location on the instruction or it's 494 /// operands. 495 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 496 if (!I) 497 return I; 498 499 DebugLoc Empty; 500 if (I->getDebugLoc() != Empty) 501 return I; 502 503 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 504 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 505 if (OpInst->getDebugLoc() != Empty) 506 return OpInst; 507 } 508 509 return I; 510 } 511 512 /// \brief Set the debug location in the builder using the debug location in the 513 /// instruction. 514 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 515 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 516 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 517 else 518 B.SetCurrentDebugLocation(DebugLoc()); 519 } 520 521 #ifndef NDEBUG 522 /// \return string containing a file name and a line # for the given loop. 523 static std::string getDebugLocString(const Loop *L) { 524 std::string Result; 525 if (L) { 526 raw_string_ostream OS(Result); 527 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 528 LoopDbgLoc.print(OS); 529 else 530 // Just print the module name. 531 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 532 OS.flush(); 533 } 534 return Result; 535 } 536 #endif 537 538 /// \brief Propagate known metadata from one instruction to another. 539 static void propagateMetadata(Instruction *To, const Instruction *From) { 540 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 541 From->getAllMetadataOtherThanDebugLoc(Metadata); 542 543 for (auto M : Metadata) { 544 unsigned Kind = M.first; 545 546 // These are safe to transfer (this is safe for TBAA, even when we 547 // if-convert, because should that metadata have had a control dependency 548 // on the condition, and thus actually aliased with some other 549 // non-speculated memory access when the condition was false, this would be 550 // caught by the runtime overlap checks). 551 if (Kind != LLVMContext::MD_tbaa && 552 Kind != LLVMContext::MD_alias_scope && 553 Kind != LLVMContext::MD_noalias && 554 Kind != LLVMContext::MD_fpmath) 555 continue; 556 557 To->setMetadata(Kind, M.second); 558 } 559 } 560 561 /// \brief Propagate known metadata from one instruction to a vector of others. 562 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 563 for (Value *V : To) 564 if (Instruction *I = dyn_cast<Instruction>(V)) 565 propagateMetadata(I, From); 566 } 567 568 /// \brief The group of interleaved loads/stores sharing the same stride and 569 /// close to each other. 570 /// 571 /// Each member in this group has an index starting from 0, and the largest 572 /// index should be less than interleaved factor, which is equal to the absolute 573 /// value of the access's stride. 574 /// 575 /// E.g. An interleaved load group of factor 4: 576 /// for (unsigned i = 0; i < 1024; i+=4) { 577 /// a = A[i]; // Member of index 0 578 /// b = A[i+1]; // Member of index 1 579 /// d = A[i+3]; // Member of index 3 580 /// ... 581 /// } 582 /// 583 /// An interleaved store group of factor 4: 584 /// for (unsigned i = 0; i < 1024; i+=4) { 585 /// ... 586 /// A[i] = a; // Member of index 0 587 /// A[i+1] = b; // Member of index 1 588 /// A[i+2] = c; // Member of index 2 589 /// A[i+3] = d; // Member of index 3 590 /// } 591 /// 592 /// Note: the interleaved load group could have gaps (missing members), but 593 /// the interleaved store group doesn't allow gaps. 594 class InterleaveGroup { 595 public: 596 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 597 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 598 assert(Align && "The alignment should be non-zero"); 599 600 Factor = std::abs(Stride); 601 assert(Factor > 1 && "Invalid interleave factor"); 602 603 Reverse = Stride < 0; 604 Members[0] = Instr; 605 } 606 607 bool isReverse() const { return Reverse; } 608 unsigned getFactor() const { return Factor; } 609 unsigned getAlignment() const { return Align; } 610 unsigned getNumMembers() const { return Members.size(); } 611 612 /// \brief Try to insert a new member \p Instr with index \p Index and 613 /// alignment \p NewAlign. The index is related to the leader and it could be 614 /// negative if it is the new leader. 615 /// 616 /// \returns false if the instruction doesn't belong to the group. 617 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 618 assert(NewAlign && "The new member's alignment should be non-zero"); 619 620 int Key = Index + SmallestKey; 621 622 // Skip if there is already a member with the same index. 623 if (Members.count(Key)) 624 return false; 625 626 if (Key > LargestKey) { 627 // The largest index is always less than the interleave factor. 628 if (Index >= static_cast<int>(Factor)) 629 return false; 630 631 LargestKey = Key; 632 } else if (Key < SmallestKey) { 633 // The largest index is always less than the interleave factor. 634 if (LargestKey - Key >= static_cast<int>(Factor)) 635 return false; 636 637 SmallestKey = Key; 638 } 639 640 // It's always safe to select the minimum alignment. 641 Align = std::min(Align, NewAlign); 642 Members[Key] = Instr; 643 return true; 644 } 645 646 /// \brief Get the member with the given index \p Index 647 /// 648 /// \returns nullptr if contains no such member. 649 Instruction *getMember(unsigned Index) const { 650 int Key = SmallestKey + Index; 651 if (!Members.count(Key)) 652 return nullptr; 653 654 return Members.find(Key)->second; 655 } 656 657 /// \brief Get the index for the given member. Unlike the key in the member 658 /// map, the index starts from 0. 659 unsigned getIndex(Instruction *Instr) const { 660 for (auto I : Members) 661 if (I.second == Instr) 662 return I.first - SmallestKey; 663 664 llvm_unreachable("InterleaveGroup contains no such member"); 665 } 666 667 Instruction *getInsertPos() const { return InsertPos; } 668 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 669 670 private: 671 unsigned Factor; // Interleave Factor. 672 bool Reverse; 673 unsigned Align; 674 DenseMap<int, Instruction *> Members; 675 int SmallestKey; 676 int LargestKey; 677 678 // To avoid breaking dependences, vectorized instructions of an interleave 679 // group should be inserted at either the first load or the last store in 680 // program order. 681 // 682 // E.g. %even = load i32 // Insert Position 683 // %add = add i32 %even // Use of %even 684 // %odd = load i32 685 // 686 // store i32 %even 687 // %odd = add i32 // Def of %odd 688 // store i32 %odd // Insert Position 689 Instruction *InsertPos; 690 }; 691 692 /// \brief Drive the analysis of interleaved memory accesses in the loop. 693 /// 694 /// Use this class to analyze interleaved accesses only when we can vectorize 695 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 696 /// on interleaved accesses is unsafe. 697 /// 698 /// The analysis collects interleave groups and records the relationships 699 /// between the member and the group in a map. 700 class InterleavedAccessInfo { 701 public: 702 InterleavedAccessInfo(ScalarEvolution *SE, Loop *L, DominatorTree *DT) 703 : SE(SE), TheLoop(L), DT(DT) {} 704 705 ~InterleavedAccessInfo() { 706 SmallSet<InterleaveGroup *, 4> DelSet; 707 // Avoid releasing a pointer twice. 708 for (auto &I : InterleaveGroupMap) 709 DelSet.insert(I.second); 710 for (auto *Ptr : DelSet) 711 delete Ptr; 712 } 713 714 /// \brief Analyze the interleaved accesses and collect them in interleave 715 /// groups. Substitute symbolic strides using \p Strides. 716 void analyzeInterleaving(const ValueToValueMap &Strides); 717 718 /// \brief Check if \p Instr belongs to any interleave group. 719 bool isInterleaved(Instruction *Instr) const { 720 return InterleaveGroupMap.count(Instr); 721 } 722 723 /// \brief Get the interleave group that \p Instr belongs to. 724 /// 725 /// \returns nullptr if doesn't have such group. 726 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 727 if (InterleaveGroupMap.count(Instr)) 728 return InterleaveGroupMap.find(Instr)->second; 729 return nullptr; 730 } 731 732 private: 733 ScalarEvolution *SE; 734 Loop *TheLoop; 735 DominatorTree *DT; 736 737 /// Holds the relationships between the members and the interleave group. 738 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 739 740 /// \brief The descriptor for a strided memory access. 741 struct StrideDescriptor { 742 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 743 unsigned Align) 744 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 745 746 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 747 748 int Stride; // The access's stride. It is negative for a reverse access. 749 const SCEV *Scev; // The scalar expression of this access 750 unsigned Size; // The size of the memory object. 751 unsigned Align; // The alignment of this access. 752 }; 753 754 /// \brief Create a new interleave group with the given instruction \p Instr, 755 /// stride \p Stride and alignment \p Align. 756 /// 757 /// \returns the newly created interleave group. 758 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 759 unsigned Align) { 760 assert(!InterleaveGroupMap.count(Instr) && 761 "Already in an interleaved access group"); 762 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 763 return InterleaveGroupMap[Instr]; 764 } 765 766 /// \brief Release the group and remove all the relationships. 767 void releaseGroup(InterleaveGroup *Group) { 768 for (unsigned i = 0; i < Group->getFactor(); i++) 769 if (Instruction *Member = Group->getMember(i)) 770 InterleaveGroupMap.erase(Member); 771 772 delete Group; 773 } 774 775 /// \brief Collect all the accesses with a constant stride in program order. 776 void collectConstStridedAccesses( 777 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 778 const ValueToValueMap &Strides); 779 }; 780 781 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 782 /// to what vectorization factor. 783 /// This class does not look at the profitability of vectorization, only the 784 /// legality. This class has two main kinds of checks: 785 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 786 /// will change the order of memory accesses in a way that will change the 787 /// correctness of the program. 788 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 789 /// checks for a number of different conditions, such as the availability of a 790 /// single induction variable, that all types are supported and vectorize-able, 791 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 792 /// This class is also used by InnerLoopVectorizer for identifying 793 /// induction variable and the different reduction variables. 794 class LoopVectorizationLegality { 795 public: 796 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT, 797 TargetLibraryInfo *TLI, AliasAnalysis *AA, 798 Function *F, const TargetTransformInfo *TTI, 799 LoopAccessAnalysis *LAA) 800 : NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F), 801 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT), 802 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 803 804 /// This enum represents the kinds of inductions that we support. 805 enum InductionKind { 806 IK_NoInduction, ///< Not an induction variable. 807 IK_IntInduction, ///< Integer induction variable. Step = C. 808 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 809 }; 810 811 /// A struct for saving information about induction variables. 812 struct InductionInfo { 813 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 814 : StartValue(Start), IK(K), StepValue(Step) { 815 assert(IK != IK_NoInduction && "Not an induction"); 816 assert(StartValue && "StartValue is null"); 817 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 818 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 819 "StartValue is not a pointer for pointer induction"); 820 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 821 "StartValue is not an integer for integer induction"); 822 assert(StepValue->getType()->isIntegerTy() && 823 "StepValue is not an integer"); 824 } 825 InductionInfo() 826 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 827 828 /// Get the consecutive direction. Returns: 829 /// 0 - unknown or non-consecutive. 830 /// 1 - consecutive and increasing. 831 /// -1 - consecutive and decreasing. 832 int getConsecutiveDirection() const { 833 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 834 return StepValue->getSExtValue(); 835 return 0; 836 } 837 838 /// Compute the transformed value of Index at offset StartValue using step 839 /// StepValue. 840 /// For integer induction, returns StartValue + Index * StepValue. 841 /// For pointer induction, returns StartValue[Index * StepValue]. 842 /// FIXME: The newly created binary instructions should contain nsw/nuw 843 /// flags, which can be found from the original scalar operations. 844 Value *transform(IRBuilder<> &B, Value *Index) const { 845 switch (IK) { 846 case IK_IntInduction: 847 assert(Index->getType() == StartValue->getType() && 848 "Index type does not match StartValue type"); 849 if (StepValue->isMinusOne()) 850 return B.CreateSub(StartValue, Index); 851 if (!StepValue->isOne()) 852 Index = B.CreateMul(Index, StepValue); 853 return B.CreateAdd(StartValue, Index); 854 855 case IK_PtrInduction: 856 assert(Index->getType() == StepValue->getType() && 857 "Index type does not match StepValue type"); 858 if (StepValue->isMinusOne()) 859 Index = B.CreateNeg(Index); 860 else if (!StepValue->isOne()) 861 Index = B.CreateMul(Index, StepValue); 862 return B.CreateGEP(nullptr, StartValue, Index); 863 864 case IK_NoInduction: 865 return nullptr; 866 } 867 llvm_unreachable("invalid enum"); 868 } 869 870 /// Start value. 871 TrackingVH<Value> StartValue; 872 /// Induction kind. 873 InductionKind IK; 874 /// Step value. 875 ConstantInt *StepValue; 876 }; 877 878 /// ReductionList contains the reduction descriptors for all 879 /// of the reductions that were found in the loop. 880 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 881 882 /// InductionList saves induction variables and maps them to the 883 /// induction descriptor. 884 typedef MapVector<PHINode*, InductionInfo> InductionList; 885 886 /// Returns true if it is legal to vectorize this loop. 887 /// This does not mean that it is profitable to vectorize this 888 /// loop, only that it is legal to do so. 889 bool canVectorize(); 890 891 /// Returns the Induction variable. 892 PHINode *getInduction() { return Induction; } 893 894 /// Returns the reduction variables found in the loop. 895 ReductionList *getReductionVars() { return &Reductions; } 896 897 /// Returns the induction variables found in the loop. 898 InductionList *getInductionVars() { return &Inductions; } 899 900 /// Returns the widest induction type. 901 Type *getWidestInductionType() { return WidestIndTy; } 902 903 /// Returns True if V is an induction variable in this loop. 904 bool isInductionVariable(const Value *V); 905 906 /// Return true if the block BB needs to be predicated in order for the loop 907 /// to be vectorized. 908 bool blockNeedsPredication(BasicBlock *BB); 909 910 /// Check if this pointer is consecutive when vectorizing. This happens 911 /// when the last index of the GEP is the induction variable, or that the 912 /// pointer itself is an induction variable. 913 /// This check allows us to vectorize A[idx] into a wide load/store. 914 /// Returns: 915 /// 0 - Stride is unknown or non-consecutive. 916 /// 1 - Address is consecutive. 917 /// -1 - Address is consecutive, and decreasing. 918 int isConsecutivePtr(Value *Ptr); 919 920 /// Returns true if the value V is uniform within the loop. 921 bool isUniform(Value *V); 922 923 /// Returns true if this instruction will remain scalar after vectorization. 924 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 925 926 /// Returns the information that we collected about runtime memory check. 927 const RuntimePointerChecking *getRuntimePointerChecking() const { 928 return LAI->getRuntimePointerChecking(); 929 } 930 931 const LoopAccessInfo *getLAI() const { 932 return LAI; 933 } 934 935 /// \brief Check if \p Instr belongs to any interleaved access group. 936 bool isAccessInterleaved(Instruction *Instr) { 937 return InterleaveInfo.isInterleaved(Instr); 938 } 939 940 /// \brief Get the interleaved access group that \p Instr belongs to. 941 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 942 return InterleaveInfo.getInterleaveGroup(Instr); 943 } 944 945 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 946 947 bool hasStride(Value *V) { return StrideSet.count(V); } 948 bool mustCheckStrides() { return !StrideSet.empty(); } 949 SmallPtrSet<Value *, 8>::iterator strides_begin() { 950 return StrideSet.begin(); 951 } 952 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 953 954 /// Returns true if the target machine supports masked store operation 955 /// for the given \p DataType and kind of access to \p Ptr. 956 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 957 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 958 } 959 /// Returns true if the target machine supports masked load operation 960 /// for the given \p DataType and kind of access to \p Ptr. 961 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 962 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 963 } 964 /// Returns true if vector representation of the instruction \p I 965 /// requires mask. 966 bool isMaskRequired(const Instruction* I) { 967 return (MaskedOp.count(I) != 0); 968 } 969 unsigned getNumStores() const { 970 return LAI->getNumStores(); 971 } 972 unsigned getNumLoads() const { 973 return LAI->getNumLoads(); 974 } 975 unsigned getNumPredStores() const { 976 return NumPredStores; 977 } 978 private: 979 /// Check if a single basic block loop is vectorizable. 980 /// At this point we know that this is a loop with a constant trip count 981 /// and we only need to check individual instructions. 982 bool canVectorizeInstrs(); 983 984 /// When we vectorize loops we may change the order in which 985 /// we read and write from memory. This method checks if it is 986 /// legal to vectorize the code, considering only memory constrains. 987 /// Returns true if the loop is vectorizable 988 bool canVectorizeMemory(); 989 990 /// Return true if we can vectorize this loop using the IF-conversion 991 /// transformation. 992 bool canVectorizeWithIfConvert(); 993 994 /// Collect the variables that need to stay uniform after vectorization. 995 void collectLoopUniforms(); 996 997 /// Return true if all of the instructions in the block can be speculatively 998 /// executed. \p SafePtrs is a list of addresses that are known to be legal 999 /// and we know that we can read from them without segfault. 1000 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1001 1002 /// Returns the induction kind of Phi and record the step. This function may 1003 /// return NoInduction if the PHI is not an induction variable. 1004 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 1005 1006 /// \brief Collect memory access with loop invariant strides. 1007 /// 1008 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1009 /// invariant. 1010 void collectStridedAccess(Value *LoadOrStoreInst); 1011 1012 /// Report an analysis message to assist the user in diagnosing loops that are 1013 /// not vectorized. These are handled as LoopAccessReport rather than 1014 /// VectorizationReport because the << operator of VectorizationReport returns 1015 /// LoopAccessReport. 1016 void emitAnalysis(const LoopAccessReport &Message) { 1017 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1018 } 1019 1020 unsigned NumPredStores; 1021 1022 /// The loop that we evaluate. 1023 Loop *TheLoop; 1024 /// Scev analysis. 1025 ScalarEvolution *SE; 1026 /// Target Library Info. 1027 TargetLibraryInfo *TLI; 1028 /// Parent function 1029 Function *TheFunction; 1030 /// Target Transform Info 1031 const TargetTransformInfo *TTI; 1032 /// Dominator Tree. 1033 DominatorTree *DT; 1034 // LoopAccess analysis. 1035 LoopAccessAnalysis *LAA; 1036 // And the loop-accesses info corresponding to this loop. This pointer is 1037 // null until canVectorizeMemory sets it up. 1038 const LoopAccessInfo *LAI; 1039 1040 /// The interleave access information contains groups of interleaved accesses 1041 /// with the same stride and close to each other. 1042 InterleavedAccessInfo InterleaveInfo; 1043 1044 // --- vectorization state --- // 1045 1046 /// Holds the integer induction variable. This is the counter of the 1047 /// loop. 1048 PHINode *Induction; 1049 /// Holds the reduction variables. 1050 ReductionList Reductions; 1051 /// Holds all of the induction variables that we found in the loop. 1052 /// Notice that inductions don't need to start at zero and that induction 1053 /// variables can be pointers. 1054 InductionList Inductions; 1055 /// Holds the widest induction type encountered. 1056 Type *WidestIndTy; 1057 1058 /// Allowed outside users. This holds the reduction 1059 /// vars which can be accessed from outside the loop. 1060 SmallPtrSet<Value*, 4> AllowedExit; 1061 /// This set holds the variables which are known to be uniform after 1062 /// vectorization. 1063 SmallPtrSet<Instruction*, 4> Uniforms; 1064 1065 /// Can we assume the absence of NaNs. 1066 bool HasFunNoNaNAttr; 1067 1068 ValueToValueMap Strides; 1069 SmallPtrSet<Value *, 8> StrideSet; 1070 1071 /// While vectorizing these instructions we have to generate a 1072 /// call to the appropriate masked intrinsic 1073 SmallPtrSet<const Instruction*, 8> MaskedOp; 1074 }; 1075 1076 /// LoopVectorizationCostModel - estimates the expected speedups due to 1077 /// vectorization. 1078 /// In many cases vectorization is not profitable. This can happen because of 1079 /// a number of reasons. In this class we mainly attempt to predict the 1080 /// expected speedup/slowdowns due to the supported instruction set. We use the 1081 /// TargetTransformInfo to query the different backends for the cost of 1082 /// different operations. 1083 class LoopVectorizationCostModel { 1084 public: 1085 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 1086 LoopVectorizationLegality *Legal, 1087 const TargetTransformInfo &TTI, 1088 const TargetLibraryInfo *TLI, AssumptionCache *AC, 1089 const Function *F, const LoopVectorizeHints *Hints) 1090 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), 1091 TheFunction(F), Hints(Hints) { 1092 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 1093 } 1094 1095 /// Information about vectorization costs 1096 struct VectorizationFactor { 1097 unsigned Width; // Vector width with best cost 1098 unsigned Cost; // Cost of the loop with that width 1099 }; 1100 /// \return The most profitable vectorization factor and the cost of that VF. 1101 /// This method checks every power of two up to VF. If UserVF is not ZERO 1102 /// then this vectorization factor will be selected if vectorization is 1103 /// possible. 1104 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1105 1106 /// \return The size (in bits) of the widest type in the code that 1107 /// needs to be vectorized. We ignore values that remain scalar such as 1108 /// 64 bit loop indices. 1109 unsigned getWidestType(); 1110 1111 /// \return The desired interleave count. 1112 /// If interleave count has been specified by metadata it will be returned. 1113 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1114 /// are the selected vectorization factor and the cost of the selected VF. 1115 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1116 unsigned LoopCost); 1117 1118 /// \return The most profitable unroll factor. 1119 /// This method finds the best unroll-factor based on register pressure and 1120 /// other parameters. VF and LoopCost are the selected vectorization factor 1121 /// and the cost of the selected VF. 1122 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1123 unsigned LoopCost); 1124 1125 /// \brief A struct that represents some properties of the register usage 1126 /// of a loop. 1127 struct RegisterUsage { 1128 /// Holds the number of loop invariant values that are used in the loop. 1129 unsigned LoopInvariantRegs; 1130 /// Holds the maximum number of concurrent live intervals in the loop. 1131 unsigned MaxLocalUsers; 1132 /// Holds the number of instructions in the loop. 1133 unsigned NumInstructions; 1134 }; 1135 1136 /// \return information about the register usage of the loop. 1137 RegisterUsage calculateRegisterUsage(); 1138 1139 private: 1140 /// Returns the expected execution cost. The unit of the cost does 1141 /// not matter because we use the 'cost' units to compare different 1142 /// vector widths. The cost that is returned is *not* normalized by 1143 /// the factor width. 1144 unsigned expectedCost(unsigned VF); 1145 1146 /// Returns the execution time cost of an instruction for a given vector 1147 /// width. Vector width of one means scalar. 1148 unsigned getInstructionCost(Instruction *I, unsigned VF); 1149 1150 /// Returns whether the instruction is a load or store and will be a emitted 1151 /// as a vector operation. 1152 bool isConsecutiveLoadOrStore(Instruction *I); 1153 1154 /// Report an analysis message to assist the user in diagnosing loops that are 1155 /// not vectorized. These are handled as LoopAccessReport rather than 1156 /// VectorizationReport because the << operator of VectorizationReport returns 1157 /// LoopAccessReport. 1158 void emitAnalysis(const LoopAccessReport &Message) { 1159 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 1160 } 1161 1162 /// Values used only by @llvm.assume calls. 1163 SmallPtrSet<const Value *, 32> EphValues; 1164 1165 /// The loop that we evaluate. 1166 Loop *TheLoop; 1167 /// Scev analysis. 1168 ScalarEvolution *SE; 1169 /// Loop Info analysis. 1170 LoopInfo *LI; 1171 /// Vectorization legality. 1172 LoopVectorizationLegality *Legal; 1173 /// Vector target information. 1174 const TargetTransformInfo &TTI; 1175 /// Target Library Info. 1176 const TargetLibraryInfo *TLI; 1177 const Function *TheFunction; 1178 // Loop Vectorize Hint. 1179 const LoopVectorizeHints *Hints; 1180 }; 1181 1182 /// Utility class for getting and setting loop vectorizer hints in the form 1183 /// of loop metadata. 1184 /// This class keeps a number of loop annotations locally (as member variables) 1185 /// and can, upon request, write them back as metadata on the loop. It will 1186 /// initially scan the loop for existing metadata, and will update the local 1187 /// values based on information in the loop. 1188 /// We cannot write all values to metadata, as the mere presence of some info, 1189 /// for example 'force', means a decision has been made. So, we need to be 1190 /// careful NOT to add them if the user hasn't specifically asked so. 1191 class LoopVectorizeHints { 1192 enum HintKind { 1193 HK_WIDTH, 1194 HK_UNROLL, 1195 HK_FORCE 1196 }; 1197 1198 /// Hint - associates name and validation with the hint value. 1199 struct Hint { 1200 const char * Name; 1201 unsigned Value; // This may have to change for non-numeric values. 1202 HintKind Kind; 1203 1204 Hint(const char * Name, unsigned Value, HintKind Kind) 1205 : Name(Name), Value(Value), Kind(Kind) { } 1206 1207 bool validate(unsigned Val) { 1208 switch (Kind) { 1209 case HK_WIDTH: 1210 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1211 case HK_UNROLL: 1212 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1213 case HK_FORCE: 1214 return (Val <= 1); 1215 } 1216 return false; 1217 } 1218 }; 1219 1220 /// Vectorization width. 1221 Hint Width; 1222 /// Vectorization interleave factor. 1223 Hint Interleave; 1224 /// Vectorization forced 1225 Hint Force; 1226 1227 /// Return the loop metadata prefix. 1228 static StringRef Prefix() { return "llvm.loop."; } 1229 1230 public: 1231 enum ForceKind { 1232 FK_Undefined = -1, ///< Not selected. 1233 FK_Disabled = 0, ///< Forcing disabled. 1234 FK_Enabled = 1, ///< Forcing enabled. 1235 }; 1236 1237 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1238 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1239 HK_WIDTH), 1240 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1241 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1242 TheLoop(L) { 1243 // Populate values with existing loop metadata. 1244 getHintsFromMetadata(); 1245 1246 // force-vector-interleave overrides DisableInterleaving. 1247 if (VectorizerParams::isInterleaveForced()) 1248 Interleave.Value = VectorizerParams::VectorizationInterleave; 1249 1250 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1251 << "LV: Interleaving disabled by the pass manager\n"); 1252 } 1253 1254 /// Mark the loop L as already vectorized by setting the width to 1. 1255 void setAlreadyVectorized() { 1256 Width.Value = Interleave.Value = 1; 1257 Hint Hints[] = {Width, Interleave}; 1258 writeHintsToMetadata(Hints); 1259 } 1260 1261 /// Dumps all the hint information. 1262 std::string emitRemark() const { 1263 VectorizationReport R; 1264 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1265 R << "vectorization is explicitly disabled"; 1266 else { 1267 R << "use -Rpass-analysis=loop-vectorize for more info"; 1268 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1269 R << " (Force=true"; 1270 if (Width.Value != 0) 1271 R << ", Vector Width=" << Width.Value; 1272 if (Interleave.Value != 0) 1273 R << ", Interleave Count=" << Interleave.Value; 1274 R << ")"; 1275 } 1276 } 1277 1278 return R.str(); 1279 } 1280 1281 unsigned getWidth() const { return Width.Value; } 1282 unsigned getInterleave() const { return Interleave.Value; } 1283 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1284 1285 private: 1286 /// Find hints specified in the loop metadata and update local values. 1287 void getHintsFromMetadata() { 1288 MDNode *LoopID = TheLoop->getLoopID(); 1289 if (!LoopID) 1290 return; 1291 1292 // First operand should refer to the loop id itself. 1293 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1294 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1295 1296 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1297 const MDString *S = nullptr; 1298 SmallVector<Metadata *, 4> Args; 1299 1300 // The expected hint is either a MDString or a MDNode with the first 1301 // operand a MDString. 1302 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1303 if (!MD || MD->getNumOperands() == 0) 1304 continue; 1305 S = dyn_cast<MDString>(MD->getOperand(0)); 1306 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1307 Args.push_back(MD->getOperand(i)); 1308 } else { 1309 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1310 assert(Args.size() == 0 && "too many arguments for MDString"); 1311 } 1312 1313 if (!S) 1314 continue; 1315 1316 // Check if the hint starts with the loop metadata prefix. 1317 StringRef Name = S->getString(); 1318 if (Args.size() == 1) 1319 setHint(Name, Args[0]); 1320 } 1321 } 1322 1323 /// Checks string hint with one operand and set value if valid. 1324 void setHint(StringRef Name, Metadata *Arg) { 1325 if (!Name.startswith(Prefix())) 1326 return; 1327 Name = Name.substr(Prefix().size(), StringRef::npos); 1328 1329 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1330 if (!C) return; 1331 unsigned Val = C->getZExtValue(); 1332 1333 Hint *Hints[] = {&Width, &Interleave, &Force}; 1334 for (auto H : Hints) { 1335 if (Name == H->Name) { 1336 if (H->validate(Val)) 1337 H->Value = Val; 1338 else 1339 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1340 break; 1341 } 1342 } 1343 } 1344 1345 /// Create a new hint from name / value pair. 1346 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1347 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1348 Metadata *MDs[] = {MDString::get(Context, Name), 1349 ConstantAsMetadata::get( 1350 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1351 return MDNode::get(Context, MDs); 1352 } 1353 1354 /// Matches metadata with hint name. 1355 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1356 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1357 if (!Name) 1358 return false; 1359 1360 for (auto H : HintTypes) 1361 if (Name->getString().endswith(H.Name)) 1362 return true; 1363 return false; 1364 } 1365 1366 /// Sets current hints into loop metadata, keeping other values intact. 1367 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1368 if (HintTypes.size() == 0) 1369 return; 1370 1371 // Reserve the first element to LoopID (see below). 1372 SmallVector<Metadata *, 4> MDs(1); 1373 // If the loop already has metadata, then ignore the existing operands. 1374 MDNode *LoopID = TheLoop->getLoopID(); 1375 if (LoopID) { 1376 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1377 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1378 // If node in update list, ignore old value. 1379 if (!matchesHintMetadataName(Node, HintTypes)) 1380 MDs.push_back(Node); 1381 } 1382 } 1383 1384 // Now, add the missing hints. 1385 for (auto H : HintTypes) 1386 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1387 1388 // Replace current metadata node with new one. 1389 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1390 MDNode *NewLoopID = MDNode::get(Context, MDs); 1391 // Set operand 0 to refer to the loop id itself. 1392 NewLoopID->replaceOperandWith(0, NewLoopID); 1393 1394 TheLoop->setLoopID(NewLoopID); 1395 } 1396 1397 /// The loop these hints belong to. 1398 const Loop *TheLoop; 1399 }; 1400 1401 static void emitMissedWarning(Function *F, Loop *L, 1402 const LoopVectorizeHints &LH) { 1403 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1404 L->getStartLoc(), LH.emitRemark()); 1405 1406 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1407 if (LH.getWidth() != 1) 1408 emitLoopVectorizeWarning( 1409 F->getContext(), *F, L->getStartLoc(), 1410 "failed explicitly specified loop vectorization"); 1411 else if (LH.getInterleave() != 1) 1412 emitLoopInterleaveWarning( 1413 F->getContext(), *F, L->getStartLoc(), 1414 "failed explicitly specified loop interleaving"); 1415 } 1416 } 1417 1418 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1419 if (L.empty()) 1420 return V.push_back(&L); 1421 1422 for (Loop *InnerL : L) 1423 addInnerLoop(*InnerL, V); 1424 } 1425 1426 /// The LoopVectorize Pass. 1427 struct LoopVectorize : public FunctionPass { 1428 /// Pass identification, replacement for typeid 1429 static char ID; 1430 1431 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1432 : FunctionPass(ID), 1433 DisableUnrolling(NoUnrolling), 1434 AlwaysVectorize(AlwaysVectorize) { 1435 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1436 } 1437 1438 ScalarEvolution *SE; 1439 LoopInfo *LI; 1440 TargetTransformInfo *TTI; 1441 DominatorTree *DT; 1442 BlockFrequencyInfo *BFI; 1443 TargetLibraryInfo *TLI; 1444 AliasAnalysis *AA; 1445 AssumptionCache *AC; 1446 LoopAccessAnalysis *LAA; 1447 bool DisableUnrolling; 1448 bool AlwaysVectorize; 1449 1450 BlockFrequency ColdEntryFreq; 1451 1452 bool runOnFunction(Function &F) override { 1453 SE = &getAnalysis<ScalarEvolution>(); 1454 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1455 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1456 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1457 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1458 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1459 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1460 AA = &getAnalysis<AliasAnalysis>(); 1461 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1462 LAA = &getAnalysis<LoopAccessAnalysis>(); 1463 1464 // Compute some weights outside of the loop over the loops. Compute this 1465 // using a BranchProbability to re-use its scaling math. 1466 const BranchProbability ColdProb(1, 5); // 20% 1467 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1468 1469 // Don't attempt if 1470 // 1. the target claims to have no vector registers, and 1471 // 2. interleaving won't help ILP. 1472 // 1473 // The second condition is necessary because, even if the target has no 1474 // vector registers, loop vectorization may still enable scalar 1475 // interleaving. 1476 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1477 return false; 1478 1479 // Build up a worklist of inner-loops to vectorize. This is necessary as 1480 // the act of vectorizing or partially unrolling a loop creates new loops 1481 // and can invalidate iterators across the loops. 1482 SmallVector<Loop *, 8> Worklist; 1483 1484 for (Loop *L : *LI) 1485 addInnerLoop(*L, Worklist); 1486 1487 LoopsAnalyzed += Worklist.size(); 1488 1489 // Now walk the identified inner loops. 1490 bool Changed = false; 1491 while (!Worklist.empty()) 1492 Changed |= processLoop(Worklist.pop_back_val()); 1493 1494 // Process each loop nest in the function. 1495 return Changed; 1496 } 1497 1498 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1499 SmallVector<Metadata *, 4> MDs; 1500 // Reserve first location for self reference to the LoopID metadata node. 1501 MDs.push_back(nullptr); 1502 bool IsUnrollMetadata = false; 1503 MDNode *LoopID = L->getLoopID(); 1504 if (LoopID) { 1505 // First find existing loop unrolling disable metadata. 1506 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1507 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1508 if (MD) { 1509 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1510 IsUnrollMetadata = 1511 S && S->getString().startswith("llvm.loop.unroll.disable"); 1512 } 1513 MDs.push_back(LoopID->getOperand(i)); 1514 } 1515 } 1516 1517 if (!IsUnrollMetadata) { 1518 // Add runtime unroll disable metadata. 1519 LLVMContext &Context = L->getHeader()->getContext(); 1520 SmallVector<Metadata *, 1> DisableOperands; 1521 DisableOperands.push_back( 1522 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1523 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1524 MDs.push_back(DisableNode); 1525 MDNode *NewLoopID = MDNode::get(Context, MDs); 1526 // Set operand 0 to refer to the loop id itself. 1527 NewLoopID->replaceOperandWith(0, NewLoopID); 1528 L->setLoopID(NewLoopID); 1529 } 1530 } 1531 1532 bool processLoop(Loop *L) { 1533 assert(L->empty() && "Only process inner loops."); 1534 1535 #ifndef NDEBUG 1536 const std::string DebugLocStr = getDebugLocString(L); 1537 #endif /* NDEBUG */ 1538 1539 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1540 << L->getHeader()->getParent()->getName() << "\" from " 1541 << DebugLocStr << "\n"); 1542 1543 LoopVectorizeHints Hints(L, DisableUnrolling); 1544 1545 DEBUG(dbgs() << "LV: Loop hints:" 1546 << " force=" 1547 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1548 ? "disabled" 1549 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1550 ? "enabled" 1551 : "?")) << " width=" << Hints.getWidth() 1552 << " unroll=" << Hints.getInterleave() << "\n"); 1553 1554 // Function containing loop 1555 Function *F = L->getHeader()->getParent(); 1556 1557 // Looking at the diagnostic output is the only way to determine if a loop 1558 // was vectorized (other than looking at the IR or machine code), so it 1559 // is important to generate an optimization remark for each loop. Most of 1560 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1561 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1562 // less verbose reporting vectorized loops and unvectorized loops that may 1563 // benefit from vectorization, respectively. 1564 1565 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1566 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1567 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1568 L->getStartLoc(), Hints.emitRemark()); 1569 return false; 1570 } 1571 1572 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1573 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1574 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1575 L->getStartLoc(), Hints.emitRemark()); 1576 return false; 1577 } 1578 1579 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1580 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1581 emitOptimizationRemarkAnalysis( 1582 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1583 "loop not vectorized: vector width and interleave count are " 1584 "explicitly set to 1"); 1585 return false; 1586 } 1587 1588 // Check the loop for a trip count threshold: 1589 // do not vectorize loops with a tiny trip count. 1590 const unsigned TC = SE->getSmallConstantTripCount(L); 1591 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1592 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1593 << "This loop is not worth vectorizing."); 1594 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1595 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1596 else { 1597 DEBUG(dbgs() << "\n"); 1598 emitOptimizationRemarkAnalysis( 1599 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1600 "vectorization is not beneficial and is not explicitly forced"); 1601 return false; 1602 } 1603 } 1604 1605 // Check if it is legal to vectorize the loop. 1606 LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA); 1607 if (!LVL.canVectorize()) { 1608 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1609 emitMissedWarning(F, L, Hints); 1610 return false; 1611 } 1612 1613 // Use the cost model. 1614 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, TLI, AC, F, &Hints); 1615 1616 // Check the function attributes to find out if this function should be 1617 // optimized for size. 1618 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1619 F->hasFnAttribute(Attribute::OptimizeForSize); 1620 1621 // Compute the weighted frequency of this loop being executed and see if it 1622 // is less than 20% of the function entry baseline frequency. Note that we 1623 // always have a canonical loop here because we think we *can* vectoriez. 1624 // FIXME: This is hidden behind a flag due to pervasive problems with 1625 // exactly what block frequency models. 1626 if (LoopVectorizeWithBlockFrequency) { 1627 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1628 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1629 LoopEntryFreq < ColdEntryFreq) 1630 OptForSize = true; 1631 } 1632 1633 // Check the function attributes to see if implicit floats are allowed.a 1634 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1635 // an integer loop and the vector instructions selected are purely integer 1636 // vector instructions? 1637 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1638 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1639 "attribute is used.\n"); 1640 emitOptimizationRemarkAnalysis( 1641 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1642 "loop not vectorized due to NoImplicitFloat attribute"); 1643 emitMissedWarning(F, L, Hints); 1644 return false; 1645 } 1646 1647 // Select the optimal vectorization factor. 1648 const LoopVectorizationCostModel::VectorizationFactor VF = 1649 CM.selectVectorizationFactor(OptForSize); 1650 1651 // Select the interleave count. 1652 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1653 1654 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1655 << DebugLocStr << '\n'); 1656 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 1657 1658 if (VF.Width == 1) { 1659 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1660 1661 if (IC == 1) { 1662 emitOptimizationRemarkAnalysis( 1663 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1664 "not beneficial to vectorize and user disabled interleaving"); 1665 return false; 1666 } 1667 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1668 1669 // Report the unrolling decision. 1670 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1671 Twine("interleaved by " + Twine(IC) + 1672 " (vectorization not beneficial)")); 1673 1674 InnerLoopUnroller Unroller(L, SE, LI, DT, TLI, TTI, IC); 1675 Unroller.vectorize(&LVL); 1676 } else { 1677 // If we decided that it is *legal* to vectorize the loop then do it. 1678 InnerLoopVectorizer LB(L, SE, LI, DT, TLI, TTI, VF.Width, IC); 1679 LB.vectorize(&LVL); 1680 ++LoopsVectorized; 1681 1682 // Add metadata to disable runtime unrolling scalar loop when there's no 1683 // runtime check about strides and memory. Because at this situation, 1684 // scalar loop is rarely used not worthy to be unrolled. 1685 if (!LB.IsSafetyChecksAdded()) 1686 AddRuntimeUnrollDisableMetaData(L); 1687 1688 // Report the vectorization decision. 1689 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1690 Twine("vectorized loop (vectorization width: ") + 1691 Twine(VF.Width) + ", interleaved count: " + 1692 Twine(IC) + ")"); 1693 } 1694 1695 // Mark the loop as already vectorized to avoid vectorizing again. 1696 Hints.setAlreadyVectorized(); 1697 1698 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1699 return true; 1700 } 1701 1702 void getAnalysisUsage(AnalysisUsage &AU) const override { 1703 AU.addRequired<AssumptionCacheTracker>(); 1704 AU.addRequiredID(LoopSimplifyID); 1705 AU.addRequiredID(LCSSAID); 1706 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1707 AU.addRequired<DominatorTreeWrapperPass>(); 1708 AU.addRequired<LoopInfoWrapperPass>(); 1709 AU.addRequired<ScalarEvolution>(); 1710 AU.addRequired<TargetTransformInfoWrapperPass>(); 1711 AU.addRequired<AliasAnalysis>(); 1712 AU.addRequired<LoopAccessAnalysis>(); 1713 AU.addPreserved<LoopInfoWrapperPass>(); 1714 AU.addPreserved<DominatorTreeWrapperPass>(); 1715 AU.addPreserved<AliasAnalysis>(); 1716 } 1717 1718 }; 1719 1720 } // end anonymous namespace 1721 1722 //===----------------------------------------------------------------------===// 1723 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1724 // LoopVectorizationCostModel. 1725 //===----------------------------------------------------------------------===// 1726 1727 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1728 // We need to place the broadcast of invariant variables outside the loop. 1729 Instruction *Instr = dyn_cast<Instruction>(V); 1730 bool NewInstr = 1731 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1732 Instr->getParent()) != LoopVectorBody.end()); 1733 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1734 1735 // Place the code for broadcasting invariant variables in the new preheader. 1736 IRBuilder<>::InsertPointGuard Guard(Builder); 1737 if (Invariant) 1738 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1739 1740 // Broadcast the scalar into all locations in the vector. 1741 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1742 1743 return Shuf; 1744 } 1745 1746 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1747 Value *Step) { 1748 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1749 assert(Val->getType()->getScalarType()->isIntegerTy() && 1750 "Elem must be an integer"); 1751 assert(Step->getType() == Val->getType()->getScalarType() && 1752 "Step has wrong type"); 1753 // Create the types. 1754 Type *ITy = Val->getType()->getScalarType(); 1755 VectorType *Ty = cast<VectorType>(Val->getType()); 1756 int VLen = Ty->getNumElements(); 1757 SmallVector<Constant*, 8> Indices; 1758 1759 // Create a vector of consecutive numbers from zero to VF. 1760 for (int i = 0; i < VLen; ++i) 1761 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1762 1763 // Add the consecutive indices to the vector value. 1764 Constant *Cv = ConstantVector::get(Indices); 1765 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1766 Step = Builder.CreateVectorSplat(VLen, Step); 1767 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1768 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1769 // which can be found from the original scalar operations. 1770 Step = Builder.CreateMul(Cv, Step); 1771 return Builder.CreateAdd(Val, Step, "induction"); 1772 } 1773 1774 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1775 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1776 // Make sure that the pointer does not point to structs. 1777 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1778 return 0; 1779 1780 // If this value is a pointer induction variable we know it is consecutive. 1781 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1782 if (Phi && Inductions.count(Phi)) { 1783 InductionInfo II = Inductions[Phi]; 1784 return II.getConsecutiveDirection(); 1785 } 1786 1787 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1788 if (!Gep) 1789 return 0; 1790 1791 unsigned NumOperands = Gep->getNumOperands(); 1792 Value *GpPtr = Gep->getPointerOperand(); 1793 // If this GEP value is a consecutive pointer induction variable and all of 1794 // the indices are constant then we know it is consecutive. We can 1795 Phi = dyn_cast<PHINode>(GpPtr); 1796 if (Phi && Inductions.count(Phi)) { 1797 1798 // Make sure that the pointer does not point to structs. 1799 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1800 if (GepPtrType->getElementType()->isAggregateType()) 1801 return 0; 1802 1803 // Make sure that all of the index operands are loop invariant. 1804 for (unsigned i = 1; i < NumOperands; ++i) 1805 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1806 return 0; 1807 1808 InductionInfo II = Inductions[Phi]; 1809 return II.getConsecutiveDirection(); 1810 } 1811 1812 unsigned InductionOperand = getGEPInductionOperand(Gep); 1813 1814 // Check that all of the gep indices are uniform except for our induction 1815 // operand. 1816 for (unsigned i = 0; i != NumOperands; ++i) 1817 if (i != InductionOperand && 1818 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1819 return 0; 1820 1821 // We can emit wide load/stores only if the last non-zero index is the 1822 // induction variable. 1823 const SCEV *Last = nullptr; 1824 if (!Strides.count(Gep)) 1825 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1826 else { 1827 // Because of the multiplication by a stride we can have a s/zext cast. 1828 // We are going to replace this stride by 1 so the cast is safe to ignore. 1829 // 1830 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1831 // %0 = trunc i64 %indvars.iv to i32 1832 // %mul = mul i32 %0, %Stride1 1833 // %idxprom = zext i32 %mul to i64 << Safe cast. 1834 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1835 // 1836 Last = replaceSymbolicStrideSCEV(SE, Strides, 1837 Gep->getOperand(InductionOperand), Gep); 1838 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1839 Last = 1840 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1841 ? C->getOperand() 1842 : Last; 1843 } 1844 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1845 const SCEV *Step = AR->getStepRecurrence(*SE); 1846 1847 // The memory is consecutive because the last index is consecutive 1848 // and all other indices are loop invariant. 1849 if (Step->isOne()) 1850 return 1; 1851 if (Step->isAllOnesValue()) 1852 return -1; 1853 } 1854 1855 return 0; 1856 } 1857 1858 bool LoopVectorizationLegality::isUniform(Value *V) { 1859 return LAI->isUniform(V); 1860 } 1861 1862 InnerLoopVectorizer::VectorParts& 1863 InnerLoopVectorizer::getVectorValue(Value *V) { 1864 assert(V != Induction && "The new induction variable should not be used."); 1865 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1866 1867 // If we have a stride that is replaced by one, do it here. 1868 if (Legal->hasStride(V)) 1869 V = ConstantInt::get(V->getType(), 1); 1870 1871 // If we have this scalar in the map, return it. 1872 if (WidenMap.has(V)) 1873 return WidenMap.get(V); 1874 1875 // If this scalar is unknown, assume that it is a constant or that it is 1876 // loop invariant. Broadcast V and save the value for future uses. 1877 Value *B = getBroadcastInstrs(V); 1878 return WidenMap.splat(V, B); 1879 } 1880 1881 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1882 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1883 SmallVector<Constant*, 8> ShuffleMask; 1884 for (unsigned i = 0; i < VF; ++i) 1885 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1886 1887 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1888 ConstantVector::get(ShuffleMask), 1889 "reverse"); 1890 } 1891 1892 // Get a mask to interleave \p NumVec vectors into a wide vector. 1893 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 1894 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 1895 // <0, 4, 1, 5, 2, 6, 3, 7> 1896 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 1897 unsigned NumVec) { 1898 SmallVector<Constant *, 16> Mask; 1899 for (unsigned i = 0; i < VF; i++) 1900 for (unsigned j = 0; j < NumVec; j++) 1901 Mask.push_back(Builder.getInt32(j * VF + i)); 1902 1903 return ConstantVector::get(Mask); 1904 } 1905 1906 // Get the strided mask starting from index \p Start. 1907 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 1908 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 1909 unsigned Stride, unsigned VF) { 1910 SmallVector<Constant *, 16> Mask; 1911 for (unsigned i = 0; i < VF; i++) 1912 Mask.push_back(Builder.getInt32(Start + i * Stride)); 1913 1914 return ConstantVector::get(Mask); 1915 } 1916 1917 // Get a mask of two parts: The first part consists of sequential integers 1918 // starting from 0, The second part consists of UNDEFs. 1919 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 1920 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 1921 unsigned NumUndef) { 1922 SmallVector<Constant *, 16> Mask; 1923 for (unsigned i = 0; i < NumInt; i++) 1924 Mask.push_back(Builder.getInt32(i)); 1925 1926 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 1927 for (unsigned i = 0; i < NumUndef; i++) 1928 Mask.push_back(Undef); 1929 1930 return ConstantVector::get(Mask); 1931 } 1932 1933 // Concatenate two vectors with the same element type. The 2nd vector should 1934 // not have more elements than the 1st vector. If the 2nd vector has less 1935 // elements, extend it with UNDEFs. 1936 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 1937 Value *V2) { 1938 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 1939 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 1940 assert(VecTy1 && VecTy2 && 1941 VecTy1->getScalarType() == VecTy2->getScalarType() && 1942 "Expect two vectors with the same element type"); 1943 1944 unsigned NumElts1 = VecTy1->getNumElements(); 1945 unsigned NumElts2 = VecTy2->getNumElements(); 1946 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 1947 1948 if (NumElts1 > NumElts2) { 1949 // Extend with UNDEFs. 1950 Constant *ExtMask = 1951 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 1952 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 1953 } 1954 1955 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 1956 return Builder.CreateShuffleVector(V1, V2, Mask); 1957 } 1958 1959 // Concatenate vectors in the given list. All vectors have the same type. 1960 static Value *ConcatenateVectors(IRBuilder<> &Builder, 1961 ArrayRef<Value *> InputList) { 1962 unsigned NumVec = InputList.size(); 1963 assert(NumVec > 1 && "Should be at least two vectors"); 1964 1965 SmallVector<Value *, 8> ResList; 1966 ResList.append(InputList.begin(), InputList.end()); 1967 do { 1968 SmallVector<Value *, 8> TmpList; 1969 for (unsigned i = 0; i < NumVec - 1; i += 2) { 1970 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 1971 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 1972 "Only the last vector may have a different type"); 1973 1974 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 1975 } 1976 1977 // Push the last vector if the total number of vectors is odd. 1978 if (NumVec % 2 != 0) 1979 TmpList.push_back(ResList[NumVec - 1]); 1980 1981 ResList = TmpList; 1982 NumVec = ResList.size(); 1983 } while (NumVec > 1); 1984 1985 return ResList[0]; 1986 } 1987 1988 // Try to vectorize the interleave group that \p Instr belongs to. 1989 // 1990 // E.g. Translate following interleaved load group (factor = 3): 1991 // for (i = 0; i < N; i+=3) { 1992 // R = Pic[i]; // Member of index 0 1993 // G = Pic[i+1]; // Member of index 1 1994 // B = Pic[i+2]; // Member of index 2 1995 // ... // do something to R, G, B 1996 // } 1997 // To: 1998 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 1999 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2000 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2001 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2002 // 2003 // Or translate following interleaved store group (factor = 3): 2004 // for (i = 0; i < N; i+=3) { 2005 // ... do something to R, G, B 2006 // Pic[i] = R; // Member of index 0 2007 // Pic[i+1] = G; // Member of index 1 2008 // Pic[i+2] = B; // Member of index 2 2009 // } 2010 // To: 2011 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2012 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2013 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2014 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2015 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2016 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2017 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2018 assert(Group && "Fail to get an interleaved access group."); 2019 2020 // Skip if current instruction is not the insert position. 2021 if (Instr != Group->getInsertPos()) 2022 return; 2023 2024 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2025 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2026 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2027 2028 // Prepare for the vector type of the interleaved load/store. 2029 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2030 unsigned InterleaveFactor = Group->getFactor(); 2031 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2032 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2033 2034 // Prepare for the new pointers. 2035 setDebugLocFromInst(Builder, Ptr); 2036 VectorParts &PtrParts = getVectorValue(Ptr); 2037 SmallVector<Value *, 2> NewPtrs; 2038 unsigned Index = Group->getIndex(Instr); 2039 for (unsigned Part = 0; Part < UF; Part++) { 2040 // Extract the pointer for current instruction from the pointer vector. A 2041 // reverse access uses the pointer in the last lane. 2042 Value *NewPtr = Builder.CreateExtractElement( 2043 PtrParts[Part], 2044 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2045 2046 // Notice current instruction could be any index. Need to adjust the address 2047 // to the member of index 0. 2048 // 2049 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2050 // b = A[i]; // Member of index 0 2051 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2052 // 2053 // E.g. A[i+1] = a; // Member of index 1 2054 // A[i] = b; // Member of index 0 2055 // A[i+2] = c; // Member of index 2 (Current instruction) 2056 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2057 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2058 2059 // Cast to the vector pointer type. 2060 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2061 } 2062 2063 setDebugLocFromInst(Builder, Instr); 2064 Value *UndefVec = UndefValue::get(VecTy); 2065 2066 // Vectorize the interleaved load group. 2067 if (LI) { 2068 for (unsigned Part = 0; Part < UF; Part++) { 2069 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2070 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2071 2072 for (unsigned i = 0; i < InterleaveFactor; i++) { 2073 Instruction *Member = Group->getMember(i); 2074 2075 // Skip the gaps in the group. 2076 if (!Member) 2077 continue; 2078 2079 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2080 Value *StridedVec = Builder.CreateShuffleVector( 2081 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2082 2083 // If this member has different type, cast the result type. 2084 if (Member->getType() != ScalarTy) { 2085 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2086 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2087 } 2088 2089 VectorParts &Entry = WidenMap.get(Member); 2090 Entry[Part] = 2091 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2092 } 2093 2094 propagateMetadata(NewLoadInstr, Instr); 2095 } 2096 return; 2097 } 2098 2099 // The sub vector type for current instruction. 2100 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2101 2102 // Vectorize the interleaved store group. 2103 for (unsigned Part = 0; Part < UF; Part++) { 2104 // Collect the stored vector from each member. 2105 SmallVector<Value *, 4> StoredVecs; 2106 for (unsigned i = 0; i < InterleaveFactor; i++) { 2107 // Interleaved store group doesn't allow a gap, so each index has a member 2108 Instruction *Member = Group->getMember(i); 2109 assert(Member && "Fail to get a member from an interleaved store group"); 2110 2111 Value *StoredVec = 2112 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2113 if (Group->isReverse()) 2114 StoredVec = reverseVector(StoredVec); 2115 2116 // If this member has different type, cast it to an unified type. 2117 if (StoredVec->getType() != SubVT) 2118 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2119 2120 StoredVecs.push_back(StoredVec); 2121 } 2122 2123 // Concatenate all vectors into a wide vector. 2124 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2125 2126 // Interleave the elements in the wide vector. 2127 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2128 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2129 "interleaved.vec"); 2130 2131 Instruction *NewStoreInstr = 2132 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2133 propagateMetadata(NewStoreInstr, Instr); 2134 } 2135 } 2136 2137 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2138 // Attempt to issue a wide load. 2139 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2140 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2141 2142 assert((LI || SI) && "Invalid Load/Store instruction"); 2143 2144 // Try to vectorize the interleave group if this access is interleaved. 2145 if (Legal->isAccessInterleaved(Instr)) 2146 return vectorizeInterleaveGroup(Instr); 2147 2148 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2149 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2150 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2151 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2152 // An alignment of 0 means target abi alignment. We need to use the scalar's 2153 // target abi alignment in such a case. 2154 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2155 if (!Alignment) 2156 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2157 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2158 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2159 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2160 2161 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2162 !Legal->isMaskRequired(SI)) 2163 return scalarizeInstruction(Instr, true); 2164 2165 if (ScalarAllocatedSize != VectorElementSize) 2166 return scalarizeInstruction(Instr); 2167 2168 // If the pointer is loop invariant or if it is non-consecutive, 2169 // scalarize the load. 2170 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2171 bool Reverse = ConsecutiveStride < 0; 2172 bool UniformLoad = LI && Legal->isUniform(Ptr); 2173 if (!ConsecutiveStride || UniformLoad) 2174 return scalarizeInstruction(Instr); 2175 2176 Constant *Zero = Builder.getInt32(0); 2177 VectorParts &Entry = WidenMap.get(Instr); 2178 2179 // Handle consecutive loads/stores. 2180 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 2181 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2182 setDebugLocFromInst(Builder, Gep); 2183 Value *PtrOperand = Gep->getPointerOperand(); 2184 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2185 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2186 2187 // Create the new GEP with the new induction variable. 2188 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2189 Gep2->setOperand(0, FirstBasePtr); 2190 Gep2->setName("gep.indvar.base"); 2191 Ptr = Builder.Insert(Gep2); 2192 } else if (Gep) { 2193 setDebugLocFromInst(Builder, Gep); 2194 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 2195 OrigLoop) && "Base ptr must be invariant"); 2196 2197 // The last index does not have to be the induction. It can be 2198 // consecutive and be a function of the index. For example A[I+1]; 2199 unsigned NumOperands = Gep->getNumOperands(); 2200 unsigned InductionOperand = getGEPInductionOperand(Gep); 2201 // Create the new GEP with the new induction variable. 2202 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2203 2204 for (unsigned i = 0; i < NumOperands; ++i) { 2205 Value *GepOperand = Gep->getOperand(i); 2206 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2207 2208 // Update last index or loop invariant instruction anchored in loop. 2209 if (i == InductionOperand || 2210 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2211 assert((i == InductionOperand || 2212 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 2213 "Must be last index or loop invariant"); 2214 2215 VectorParts &GEPParts = getVectorValue(GepOperand); 2216 Value *Index = GEPParts[0]; 2217 Index = Builder.CreateExtractElement(Index, Zero); 2218 Gep2->setOperand(i, Index); 2219 Gep2->setName("gep.indvar.idx"); 2220 } 2221 } 2222 Ptr = Builder.Insert(Gep2); 2223 } else { 2224 // Use the induction element ptr. 2225 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2226 setDebugLocFromInst(Builder, Ptr); 2227 VectorParts &PtrVal = getVectorValue(Ptr); 2228 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2229 } 2230 2231 VectorParts Mask = createBlockInMask(Instr->getParent()); 2232 // Handle Stores: 2233 if (SI) { 2234 assert(!Legal->isUniform(SI->getPointerOperand()) && 2235 "We do not allow storing to uniform addresses"); 2236 setDebugLocFromInst(Builder, SI); 2237 // We don't want to update the value in the map as it might be used in 2238 // another expression. So don't use a reference type for "StoredVal". 2239 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2240 2241 for (unsigned Part = 0; Part < UF; ++Part) { 2242 // Calculate the pointer for the specific unroll-part. 2243 Value *PartPtr = 2244 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2245 2246 if (Reverse) { 2247 // If we store to reverse consecutive memory locations then we need 2248 // to reverse the order of elements in the stored value. 2249 StoredVal[Part] = reverseVector(StoredVal[Part]); 2250 // If the address is consecutive but reversed, then the 2251 // wide store needs to start at the last vector element. 2252 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2253 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2254 Mask[Part] = reverseVector(Mask[Part]); 2255 } 2256 2257 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2258 DataTy->getPointerTo(AddressSpace)); 2259 2260 Instruction *NewSI; 2261 if (Legal->isMaskRequired(SI)) 2262 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2263 Mask[Part]); 2264 else 2265 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2266 propagateMetadata(NewSI, SI); 2267 } 2268 return; 2269 } 2270 2271 // Handle loads. 2272 assert(LI && "Must have a load instruction"); 2273 setDebugLocFromInst(Builder, LI); 2274 for (unsigned Part = 0; Part < UF; ++Part) { 2275 // Calculate the pointer for the specific unroll-part. 2276 Value *PartPtr = 2277 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2278 2279 if (Reverse) { 2280 // If the address is consecutive but reversed, then the 2281 // wide load needs to start at the last vector element. 2282 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2283 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2284 Mask[Part] = reverseVector(Mask[Part]); 2285 } 2286 2287 Instruction* NewLI; 2288 Value *VecPtr = Builder.CreateBitCast(PartPtr, 2289 DataTy->getPointerTo(AddressSpace)); 2290 if (Legal->isMaskRequired(LI)) 2291 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2292 UndefValue::get(DataTy), 2293 "wide.masked.load"); 2294 else 2295 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2296 propagateMetadata(NewLI, LI); 2297 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2298 } 2299 } 2300 2301 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 2302 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2303 // Holds vector parameters or scalars, in case of uniform vals. 2304 SmallVector<VectorParts, 4> Params; 2305 2306 setDebugLocFromInst(Builder, Instr); 2307 2308 // Find all of the vectorized parameters. 2309 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2310 Value *SrcOp = Instr->getOperand(op); 2311 2312 // If we are accessing the old induction variable, use the new one. 2313 if (SrcOp == OldInduction) { 2314 Params.push_back(getVectorValue(SrcOp)); 2315 continue; 2316 } 2317 2318 // Try using previously calculated values. 2319 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2320 2321 // If the src is an instruction that appeared earlier in the basic block 2322 // then it should already be vectorized. 2323 if (SrcInst && OrigLoop->contains(SrcInst)) { 2324 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2325 // The parameter is a vector value from earlier. 2326 Params.push_back(WidenMap.get(SrcInst)); 2327 } else { 2328 // The parameter is a scalar from outside the loop. Maybe even a constant. 2329 VectorParts Scalars; 2330 Scalars.append(UF, SrcOp); 2331 Params.push_back(Scalars); 2332 } 2333 } 2334 2335 assert(Params.size() == Instr->getNumOperands() && 2336 "Invalid number of operands"); 2337 2338 // Does this instruction return a value ? 2339 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2340 2341 Value *UndefVec = IsVoidRetTy ? nullptr : 2342 UndefValue::get(VectorType::get(Instr->getType(), VF)); 2343 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2344 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2345 2346 Instruction *InsertPt = Builder.GetInsertPoint(); 2347 BasicBlock *IfBlock = Builder.GetInsertBlock(); 2348 BasicBlock *CondBlock = nullptr; 2349 2350 VectorParts Cond; 2351 Loop *VectorLp = nullptr; 2352 if (IfPredicateStore) { 2353 assert(Instr->getParent()->getSinglePredecessor() && 2354 "Only support single predecessor blocks"); 2355 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2356 Instr->getParent()); 2357 VectorLp = LI->getLoopFor(IfBlock); 2358 assert(VectorLp && "Must have a loop for this block"); 2359 } 2360 2361 // For each vector unroll 'part': 2362 for (unsigned Part = 0; Part < UF; ++Part) { 2363 // For each scalar that we create: 2364 for (unsigned Width = 0; Width < VF; ++Width) { 2365 2366 // Start if-block. 2367 Value *Cmp = nullptr; 2368 if (IfPredicateStore) { 2369 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2370 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 2371 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 2372 LoopVectorBody.push_back(CondBlock); 2373 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 2374 // Update Builder with newly created basic block. 2375 Builder.SetInsertPoint(InsertPt); 2376 } 2377 2378 Instruction *Cloned = Instr->clone(); 2379 if (!IsVoidRetTy) 2380 Cloned->setName(Instr->getName() + ".cloned"); 2381 // Replace the operands of the cloned instructions with extracted scalars. 2382 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2383 Value *Op = Params[op][Part]; 2384 // Param is a vector. Need to extract the right lane. 2385 if (Op->getType()->isVectorTy()) 2386 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2387 Cloned->setOperand(op, Op); 2388 } 2389 2390 // Place the cloned scalar in the new loop. 2391 Builder.Insert(Cloned); 2392 2393 // If the original scalar returns a value we need to place it in a vector 2394 // so that future users will be able to use it. 2395 if (!IsVoidRetTy) 2396 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2397 Builder.getInt32(Width)); 2398 // End if-block. 2399 if (IfPredicateStore) { 2400 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2401 LoopVectorBody.push_back(NewIfBlock); 2402 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 2403 Builder.SetInsertPoint(InsertPt); 2404 ReplaceInstWithInst(IfBlock->getTerminator(), 2405 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 2406 IfBlock = NewIfBlock; 2407 } 2408 } 2409 } 2410 } 2411 2412 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2413 Instruction *Loc) { 2414 if (FirstInst) 2415 return FirstInst; 2416 if (Instruction *I = dyn_cast<Instruction>(V)) 2417 return I->getParent() == Loc->getParent() ? I : nullptr; 2418 return nullptr; 2419 } 2420 2421 std::pair<Instruction *, Instruction *> 2422 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2423 Instruction *tnullptr = nullptr; 2424 if (!Legal->mustCheckStrides()) 2425 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2426 2427 IRBuilder<> ChkBuilder(Loc); 2428 2429 // Emit checks. 2430 Value *Check = nullptr; 2431 Instruction *FirstInst = nullptr; 2432 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2433 SE = Legal->strides_end(); 2434 SI != SE; ++SI) { 2435 Value *Ptr = stripIntegerCast(*SI); 2436 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2437 "stride.chk"); 2438 // Store the first instruction we create. 2439 FirstInst = getFirstInst(FirstInst, C, Loc); 2440 if (Check) 2441 Check = ChkBuilder.CreateOr(Check, C); 2442 else 2443 Check = C; 2444 } 2445 2446 // We have to do this trickery because the IRBuilder might fold the check to a 2447 // constant expression in which case there is no Instruction anchored in a 2448 // the block. 2449 LLVMContext &Ctx = Loc->getContext(); 2450 Instruction *TheCheck = 2451 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2452 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2453 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2454 2455 return std::make_pair(FirstInst, TheCheck); 2456 } 2457 2458 void InnerLoopVectorizer::createEmptyLoop() { 2459 /* 2460 In this function we generate a new loop. The new loop will contain 2461 the vectorized instructions while the old loop will continue to run the 2462 scalar remainder. 2463 2464 [ ] <-- Back-edge taken count overflow check. 2465 / | 2466 / v 2467 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2468 | / | 2469 | / v 2470 || [ ] <-- vector pre header. 2471 || | 2472 || v 2473 || [ ] \ 2474 || [ ]_| <-- vector loop. 2475 || | 2476 | \ v 2477 | >[ ] <--- middle-block. 2478 | / | 2479 | / v 2480 -|- >[ ] <--- new preheader. 2481 | | 2482 | v 2483 | [ ] \ 2484 | [ ]_| <-- old scalar loop to handle remainder. 2485 \ | 2486 \ v 2487 >[ ] <-- exit block. 2488 ... 2489 */ 2490 2491 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2492 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 2493 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2494 assert(VectorPH && "Invalid loop structure"); 2495 assert(ExitBlock && "Must have an exit block"); 2496 2497 // Some loops have a single integer induction variable, while other loops 2498 // don't. One example is c++ iterators that often have multiple pointer 2499 // induction variables. In the code below we also support a case where we 2500 // don't have a single induction variable. 2501 OldInduction = Legal->getInduction(); 2502 Type *IdxTy = Legal->getWidestInductionType(); 2503 2504 // Find the loop boundaries. 2505 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2506 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2507 2508 // The exit count might have the type of i64 while the phi is i32. This can 2509 // happen if we have an induction variable that is sign extended before the 2510 // compare. The only way that we get a backedge taken count is that the 2511 // induction variable was signed and as such will not overflow. In such a case 2512 // truncation is legal. 2513 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2514 IdxTy->getPrimitiveSizeInBits()) 2515 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2516 2517 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2518 // Get the total trip count from the count by adding 1. 2519 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2520 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2521 2522 const DataLayout &DL = OldBasicBlock->getModule()->getDataLayout(); 2523 2524 // Expand the trip count and place the new instructions in the preheader. 2525 // Notice that the pre-header does not change, only the loop body. 2526 SCEVExpander Exp(*SE, DL, "induction"); 2527 2528 // We need to test whether the backedge-taken count is uint##_max. Adding one 2529 // to it will cause overflow and an incorrect loop trip count in the vector 2530 // body. In case of overflow we want to directly jump to the scalar remainder 2531 // loop. 2532 Value *BackedgeCount = 2533 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2534 VectorPH->getTerminator()); 2535 if (BackedgeCount->getType()->isPointerTy()) 2536 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2537 "backedge.ptrcnt.to.int", 2538 VectorPH->getTerminator()); 2539 Instruction *CheckBCOverflow = 2540 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2541 Constant::getAllOnesValue(BackedgeCount->getType()), 2542 "backedge.overflow", VectorPH->getTerminator()); 2543 2544 // The loop index does not have to start at Zero. Find the original start 2545 // value from the induction PHI node. If we don't have an induction variable 2546 // then we know that it starts at zero. 2547 Builder.SetInsertPoint(VectorPH->getTerminator()); 2548 Value *StartIdx = ExtendedIdx = 2549 OldInduction 2550 ? Builder.CreateZExt(OldInduction->getIncomingValueForBlock(VectorPH), 2551 IdxTy) 2552 : ConstantInt::get(IdxTy, 0); 2553 2554 // Count holds the overall loop count (N). 2555 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2556 VectorPH->getTerminator()); 2557 2558 LoopBypassBlocks.push_back(VectorPH); 2559 2560 // Split the single block loop into the two loop structure described above. 2561 BasicBlock *VecBody = 2562 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2563 BasicBlock *MiddleBlock = 2564 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2565 BasicBlock *ScalarPH = 2566 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2567 2568 // Create and register the new vector loop. 2569 Loop* Lp = new Loop(); 2570 Loop *ParentLoop = OrigLoop->getParentLoop(); 2571 2572 // Insert the new loop into the loop nest and register the new basic blocks 2573 // before calling any utilities such as SCEV that require valid LoopInfo. 2574 if (ParentLoop) { 2575 ParentLoop->addChildLoop(Lp); 2576 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2577 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2578 } else { 2579 LI->addTopLevelLoop(Lp); 2580 } 2581 Lp->addBasicBlockToLoop(VecBody, *LI); 2582 2583 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2584 // inside the loop. 2585 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2586 2587 // Generate the induction variable. 2588 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2589 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2590 // The loop step is equal to the vectorization factor (num of SIMD elements) 2591 // times the unroll factor (num of SIMD instructions). 2592 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2593 2594 // Generate code to check that the loop's trip count that we computed by 2595 // adding one to the backedge-taken count will not overflow. 2596 BasicBlock *NewVectorPH = 2597 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "overflow.checked"); 2598 if (ParentLoop) 2599 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2600 ReplaceInstWithInst( 2601 VectorPH->getTerminator(), 2602 BranchInst::Create(ScalarPH, NewVectorPH, CheckBCOverflow)); 2603 VectorPH = NewVectorPH; 2604 2605 // This is the IR builder that we use to add all of the logic for bypassing 2606 // the new vector loop. 2607 IRBuilder<> BypassBuilder(VectorPH->getTerminator()); 2608 setDebugLocFromInst(BypassBuilder, 2609 getDebugLocFromInstOrOperands(OldInduction)); 2610 2611 // We may need to extend the index in case there is a type mismatch. 2612 // We know that the count starts at zero and does not overflow. 2613 if (Count->getType() != IdxTy) { 2614 // The exit count can be of pointer type. Convert it to the correct 2615 // integer type. 2616 if (ExitCount->getType()->isPointerTy()) 2617 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2618 else 2619 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2620 } 2621 2622 // Add the start index to the loop count to get the new end index. 2623 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2624 2625 // Now we need to generate the expression for N - (N % VF), which is 2626 // the part that the vectorized body will execute. 2627 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2628 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2629 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2630 "end.idx.rnd.down"); 2631 2632 // Now, compare the new count to zero. If it is zero skip the vector loop and 2633 // jump to the scalar loop. 2634 Value *Cmp = 2635 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2636 NewVectorPH = 2637 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2638 if (ParentLoop) 2639 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2640 LoopBypassBlocks.push_back(VectorPH); 2641 ReplaceInstWithInst(VectorPH->getTerminator(), 2642 BranchInst::Create(MiddleBlock, NewVectorPH, Cmp)); 2643 VectorPH = NewVectorPH; 2644 2645 // Generate the code to check that the strides we assumed to be one are really 2646 // one. We want the new basic block to start at the first instruction in a 2647 // sequence of instructions that form a check. 2648 Instruction *StrideCheck; 2649 Instruction *FirstCheckInst; 2650 std::tie(FirstCheckInst, StrideCheck) = 2651 addStrideCheck(VectorPH->getTerminator()); 2652 if (StrideCheck) { 2653 AddedSafetyChecks = true; 2654 // Create a new block containing the stride check. 2655 VectorPH->setName("vector.stridecheck"); 2656 NewVectorPH = 2657 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2658 if (ParentLoop) 2659 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2660 LoopBypassBlocks.push_back(VectorPH); 2661 2662 // Replace the branch into the memory check block with a conditional branch 2663 // for the "few elements case". 2664 ReplaceInstWithInst( 2665 VectorPH->getTerminator(), 2666 BranchInst::Create(MiddleBlock, NewVectorPH, StrideCheck)); 2667 2668 VectorPH = NewVectorPH; 2669 } 2670 2671 // Generate the code that checks in runtime if arrays overlap. We put the 2672 // checks into a separate block to make the more common case of few elements 2673 // faster. 2674 Instruction *MemRuntimeCheck; 2675 std::tie(FirstCheckInst, MemRuntimeCheck) = 2676 Legal->getLAI()->addRuntimeCheck(VectorPH->getTerminator()); 2677 if (MemRuntimeCheck) { 2678 AddedSafetyChecks = true; 2679 // Create a new block containing the memory check. 2680 VectorPH->setName("vector.memcheck"); 2681 NewVectorPH = 2682 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.ph"); 2683 if (ParentLoop) 2684 ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI); 2685 LoopBypassBlocks.push_back(VectorPH); 2686 2687 // Replace the branch into the memory check block with a conditional branch 2688 // for the "few elements case". 2689 ReplaceInstWithInst( 2690 VectorPH->getTerminator(), 2691 BranchInst::Create(MiddleBlock, NewVectorPH, MemRuntimeCheck)); 2692 2693 VectorPH = NewVectorPH; 2694 } 2695 2696 // We are going to resume the execution of the scalar loop. 2697 // Go over all of the induction variables that we found and fix the 2698 // PHIs that are left in the scalar version of the loop. 2699 // The starting values of PHI nodes depend on the counter of the last 2700 // iteration in the vectorized loop. 2701 // If we come from a bypass edge then we need to start from the original 2702 // start value. 2703 2704 // This variable saves the new starting index for the scalar loop. 2705 PHINode *ResumeIndex = nullptr; 2706 LoopVectorizationLegality::InductionList::iterator I, E; 2707 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2708 // Set builder to point to last bypass block. 2709 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2710 for (I = List->begin(), E = List->end(); I != E; ++I) { 2711 PHINode *OrigPhi = I->first; 2712 LoopVectorizationLegality::InductionInfo II = I->second; 2713 2714 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2715 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2716 MiddleBlock->getTerminator()); 2717 // We might have extended the type of the induction variable but we need a 2718 // truncated version for the scalar loop. 2719 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2720 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2721 MiddleBlock->getTerminator()) : nullptr; 2722 2723 // Create phi nodes to merge from the backedge-taken check block. 2724 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2725 ScalarPH->getTerminator()); 2726 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2727 2728 PHINode *BCTruncResumeVal = nullptr; 2729 if (OrigPhi == OldInduction) { 2730 BCTruncResumeVal = 2731 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2732 ScalarPH->getTerminator()); 2733 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2734 } 2735 2736 Value *EndValue = nullptr; 2737 switch (II.IK) { 2738 case LoopVectorizationLegality::IK_NoInduction: 2739 llvm_unreachable("Unknown induction"); 2740 case LoopVectorizationLegality::IK_IntInduction: { 2741 // Handle the integer induction counter. 2742 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2743 2744 // We have the canonical induction variable. 2745 if (OrigPhi == OldInduction) { 2746 // Create a truncated version of the resume value for the scalar loop, 2747 // we might have promoted the type to a larger width. 2748 EndValue = 2749 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2750 // The new PHI merges the original incoming value, in case of a bypass, 2751 // or the value at the end of the vectorized loop. 2752 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2753 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2754 TruncResumeVal->addIncoming(EndValue, VecBody); 2755 2756 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2757 2758 // We know what the end value is. 2759 EndValue = IdxEndRoundDown; 2760 // We also know which PHI node holds it. 2761 ResumeIndex = ResumeVal; 2762 break; 2763 } 2764 2765 // Not the canonical induction variable - add the vector loop count to the 2766 // start value. 2767 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2768 II.StartValue->getType(), 2769 "cast.crd"); 2770 EndValue = II.transform(BypassBuilder, CRD); 2771 EndValue->setName("ind.end"); 2772 break; 2773 } 2774 case LoopVectorizationLegality::IK_PtrInduction: { 2775 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2776 II.StepValue->getType(), 2777 "cast.crd"); 2778 EndValue = II.transform(BypassBuilder, CRD); 2779 EndValue->setName("ptr.ind.end"); 2780 break; 2781 } 2782 }// end of case 2783 2784 // The new PHI merges the original incoming value, in case of a bypass, 2785 // or the value at the end of the vectorized loop. 2786 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2787 if (OrigPhi == OldInduction) 2788 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2789 else 2790 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2791 } 2792 ResumeVal->addIncoming(EndValue, VecBody); 2793 2794 // Fix the scalar body counter (PHI node). 2795 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2796 2797 // The old induction's phi node in the scalar body needs the truncated 2798 // value. 2799 if (OrigPhi == OldInduction) { 2800 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2801 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2802 } else { 2803 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2804 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2805 } 2806 } 2807 2808 // If we are generating a new induction variable then we also need to 2809 // generate the code that calculates the exit value. This value is not 2810 // simply the end of the counter because we may skip the vectorized body 2811 // in case of a runtime check. 2812 if (!OldInduction){ 2813 assert(!ResumeIndex && "Unexpected resume value found"); 2814 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2815 MiddleBlock->getTerminator()); 2816 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2817 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2818 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2819 } 2820 2821 // Make sure that we found the index where scalar loop needs to continue. 2822 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2823 "Invalid resume Index"); 2824 2825 // Add a check in the middle block to see if we have completed 2826 // all of the iterations in the first vector loop. 2827 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2828 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2829 ResumeIndex, "cmp.n", 2830 MiddleBlock->getTerminator()); 2831 ReplaceInstWithInst(MiddleBlock->getTerminator(), 2832 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 2833 2834 // Create i+1 and fill the PHINode. 2835 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2836 Induction->addIncoming(StartIdx, VectorPH); 2837 Induction->addIncoming(NextIdx, VecBody); 2838 // Create the compare. 2839 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2840 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2841 2842 // Now we have two terminators. Remove the old one from the block. 2843 VecBody->getTerminator()->eraseFromParent(); 2844 2845 // Get ready to start creating new instructions into the vectorized body. 2846 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2847 2848 // Save the state. 2849 LoopVectorPreHeader = VectorPH; 2850 LoopScalarPreHeader = ScalarPH; 2851 LoopMiddleBlock = MiddleBlock; 2852 LoopExitBlock = ExitBlock; 2853 LoopVectorBody.push_back(VecBody); 2854 LoopScalarBody = OldBasicBlock; 2855 2856 LoopVectorizeHints Hints(Lp, true); 2857 Hints.setAlreadyVectorized(); 2858 } 2859 2860 namespace { 2861 struct CSEDenseMapInfo { 2862 static bool canHandle(Instruction *I) { 2863 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2864 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2865 } 2866 static inline Instruction *getEmptyKey() { 2867 return DenseMapInfo<Instruction *>::getEmptyKey(); 2868 } 2869 static inline Instruction *getTombstoneKey() { 2870 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2871 } 2872 static unsigned getHashValue(Instruction *I) { 2873 assert(canHandle(I) && "Unknown instruction!"); 2874 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2875 I->value_op_end())); 2876 } 2877 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2878 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2879 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2880 return LHS == RHS; 2881 return LHS->isIdenticalTo(RHS); 2882 } 2883 }; 2884 } 2885 2886 /// \brief Check whether this block is a predicated block. 2887 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2888 /// = ...; " blocks. We start with one vectorized basic block. For every 2889 /// conditional block we split this vectorized block. Therefore, every second 2890 /// block will be a predicated one. 2891 static bool isPredicatedBlock(unsigned BlockNum) { 2892 return BlockNum % 2; 2893 } 2894 2895 ///\brief Perform cse of induction variable instructions. 2896 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2897 // Perform simple cse. 2898 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2899 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2900 BasicBlock *BB = BBs[i]; 2901 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2902 Instruction *In = I++; 2903 2904 if (!CSEDenseMapInfo::canHandle(In)) 2905 continue; 2906 2907 // Check if we can replace this instruction with any of the 2908 // visited instructions. 2909 if (Instruction *V = CSEMap.lookup(In)) { 2910 In->replaceAllUsesWith(V); 2911 In->eraseFromParent(); 2912 continue; 2913 } 2914 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2915 // ...;" blocks for predicated stores. Every second block is a predicated 2916 // block. 2917 if (isPredicatedBlock(i)) 2918 continue; 2919 2920 CSEMap[In] = In; 2921 } 2922 } 2923 } 2924 2925 /// \brief Adds a 'fast' flag to floating point operations. 2926 static Value *addFastMathFlag(Value *V) { 2927 if (isa<FPMathOperator>(V)){ 2928 FastMathFlags Flags; 2929 Flags.setUnsafeAlgebra(); 2930 cast<Instruction>(V)->setFastMathFlags(Flags); 2931 } 2932 return V; 2933 } 2934 2935 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 2936 /// the result needs to be inserted and/or extracted from vectors. 2937 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 2938 const TargetTransformInfo &TTI) { 2939 if (Ty->isVoidTy()) 2940 return 0; 2941 2942 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 2943 unsigned Cost = 0; 2944 2945 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 2946 if (Insert) 2947 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 2948 if (Extract) 2949 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 2950 } 2951 2952 return Cost; 2953 } 2954 2955 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 2956 // Return the cost of the instruction, including scalarization overhead if it's 2957 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 2958 // i.e. either vector version isn't available, or is too expensive. 2959 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 2960 const TargetTransformInfo &TTI, 2961 const TargetLibraryInfo *TLI, 2962 bool &NeedToScalarize) { 2963 Function *F = CI->getCalledFunction(); 2964 StringRef FnName = CI->getCalledFunction()->getName(); 2965 Type *ScalarRetTy = CI->getType(); 2966 SmallVector<Type *, 4> Tys, ScalarTys; 2967 for (auto &ArgOp : CI->arg_operands()) 2968 ScalarTys.push_back(ArgOp->getType()); 2969 2970 // Estimate cost of scalarized vector call. The source operands are assumed 2971 // to be vectors, so we need to extract individual elements from there, 2972 // execute VF scalar calls, and then gather the result into the vector return 2973 // value. 2974 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 2975 if (VF == 1) 2976 return ScalarCallCost; 2977 2978 // Compute corresponding vector type for return value and arguments. 2979 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 2980 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 2981 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 2982 2983 // Compute costs of unpacking argument values for the scalar calls and 2984 // packing the return values to a vector. 2985 unsigned ScalarizationCost = 2986 getScalarizationOverhead(RetTy, true, false, TTI); 2987 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 2988 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 2989 2990 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 2991 2992 // If we can't emit a vector call for this function, then the currently found 2993 // cost is the cost we need to return. 2994 NeedToScalarize = true; 2995 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 2996 return Cost; 2997 2998 // If the corresponding vector cost is cheaper, return its cost. 2999 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3000 if (VectorCallCost < Cost) { 3001 NeedToScalarize = false; 3002 return VectorCallCost; 3003 } 3004 return Cost; 3005 } 3006 3007 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3008 // factor VF. Return the cost of the instruction, including scalarization 3009 // overhead if it's needed. 3010 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3011 const TargetTransformInfo &TTI, 3012 const TargetLibraryInfo *TLI) { 3013 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3014 assert(ID && "Expected intrinsic call!"); 3015 3016 Type *RetTy = ToVectorTy(CI->getType(), VF); 3017 SmallVector<Type *, 4> Tys; 3018 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3019 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3020 3021 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 3022 } 3023 3024 void InnerLoopVectorizer::vectorizeLoop() { 3025 //===------------------------------------------------===// 3026 // 3027 // Notice: any optimization or new instruction that go 3028 // into the code below should be also be implemented in 3029 // the cost-model. 3030 // 3031 //===------------------------------------------------===// 3032 Constant *Zero = Builder.getInt32(0); 3033 3034 // In order to support reduction variables we need to be able to vectorize 3035 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 3036 // stages. First, we create a new vector PHI node with no incoming edges. 3037 // We use this value when we vectorize all of the instructions that use the 3038 // PHI. Next, after all of the instructions in the block are complete we 3039 // add the new incoming edges to the PHI. At this point all of the 3040 // instructions in the basic block are vectorized, so we can use them to 3041 // construct the PHI. 3042 PhiVector RdxPHIsToFix; 3043 3044 // Scan the loop in a topological order to ensure that defs are vectorized 3045 // before users. 3046 LoopBlocksDFS DFS(OrigLoop); 3047 DFS.perform(LI); 3048 3049 // Vectorize all of the blocks in the original loop. 3050 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 3051 be = DFS.endRPO(); bb != be; ++bb) 3052 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 3053 3054 // At this point every instruction in the original loop is widened to 3055 // a vector form. We are almost done. Now, we need to fix the PHI nodes 3056 // that we vectorized. The PHI nodes are currently empty because we did 3057 // not want to introduce cycles. Notice that the remaining PHI nodes 3058 // that we need to fix are reduction variables. 3059 3060 // Create the 'reduced' values for each of the induction vars. 3061 // The reduced values are the vector values that we scalarize and combine 3062 // after the loop is finished. 3063 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 3064 it != e; ++it) { 3065 PHINode *RdxPhi = *it; 3066 assert(RdxPhi && "Unable to recover vectorized PHI"); 3067 3068 // Find the reduction variable descriptor. 3069 assert(Legal->getReductionVars()->count(RdxPhi) && 3070 "Unable to find the reduction variable"); 3071 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; 3072 3073 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3074 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3075 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3076 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3077 RdxDesc.getMinMaxRecurrenceKind(); 3078 setDebugLocFromInst(Builder, ReductionStartValue); 3079 3080 // We need to generate a reduction vector from the incoming scalar. 3081 // To do so, we need to generate the 'identity' vector and override 3082 // one of the elements with the incoming scalar reduction. We need 3083 // to do it in the vector-loop preheader. 3084 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3085 3086 // This is the vector-clone of the value that leaves the loop. 3087 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3088 Type *VecTy = VectorExit[0]->getType(); 3089 3090 // Find the reduction identity variable. Zero for addition, or, xor, 3091 // one for multiplication, -1 for And. 3092 Value *Identity; 3093 Value *VectorStart; 3094 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3095 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3096 // MinMax reduction have the start value as their identify. 3097 if (VF == 1) { 3098 VectorStart = Identity = ReductionStartValue; 3099 } else { 3100 VectorStart = Identity = 3101 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3102 } 3103 } else { 3104 // Handle other reduction kinds: 3105 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3106 RK, VecTy->getScalarType()); 3107 if (VF == 1) { 3108 Identity = Iden; 3109 // This vector is the Identity vector where the first element is the 3110 // incoming scalar reduction. 3111 VectorStart = ReductionStartValue; 3112 } else { 3113 Identity = ConstantVector::getSplat(VF, Iden); 3114 3115 // This vector is the Identity vector where the first element is the 3116 // incoming scalar reduction. 3117 VectorStart = 3118 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3119 } 3120 } 3121 3122 // Fix the vector-loop phi. 3123 3124 // Reductions do not have to start at zero. They can start with 3125 // any loop invariant values. 3126 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 3127 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3128 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 3129 VectorParts &Val = getVectorValue(LoopVal); 3130 for (unsigned part = 0; part < UF; ++part) { 3131 // Make sure to add the reduction stat value only to the 3132 // first unroll part. 3133 Value *StartVal = (part == 0) ? VectorStart : Identity; 3134 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 3135 LoopVectorPreHeader); 3136 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 3137 LoopVectorBody.back()); 3138 } 3139 3140 // Before each round, move the insertion point right between 3141 // the PHIs and the values we are going to write. 3142 // This allows us to write both PHINodes and the extractelement 3143 // instructions. 3144 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 3145 3146 VectorParts RdxParts; 3147 setDebugLocFromInst(Builder, LoopExitInst); 3148 for (unsigned part = 0; part < UF; ++part) { 3149 // This PHINode contains the vectorized reduction variable, or 3150 // the initial value vector, if we bypass the vector loop. 3151 VectorParts &RdxExitVal = getVectorValue(LoopExitInst); 3152 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 3153 Value *StartVal = (part == 0) ? VectorStart : Identity; 3154 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3155 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 3156 NewPhi->addIncoming(RdxExitVal[part], 3157 LoopVectorBody.back()); 3158 RdxParts.push_back(NewPhi); 3159 } 3160 3161 // Reduce all of the unrolled parts into a single vector. 3162 Value *ReducedPartRdx = RdxParts[0]; 3163 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3164 setDebugLocFromInst(Builder, ReducedPartRdx); 3165 for (unsigned part = 1; part < UF; ++part) { 3166 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3167 // Floating point operations had to be 'fast' to enable the reduction. 3168 ReducedPartRdx = addFastMathFlag( 3169 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3170 ReducedPartRdx, "bin.rdx")); 3171 else 3172 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3173 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3174 } 3175 3176 if (VF > 1) { 3177 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3178 // and vector ops, reducing the set of values being computed by half each 3179 // round. 3180 assert(isPowerOf2_32(VF) && 3181 "Reduction emission only supported for pow2 vectors!"); 3182 Value *TmpVec = ReducedPartRdx; 3183 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 3184 for (unsigned i = VF; i != 1; i >>= 1) { 3185 // Move the upper half of the vector to the lower half. 3186 for (unsigned j = 0; j != i/2; ++j) 3187 ShuffleMask[j] = Builder.getInt32(i/2 + j); 3188 3189 // Fill the rest of the mask with undef. 3190 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 3191 UndefValue::get(Builder.getInt32Ty())); 3192 3193 Value *Shuf = 3194 Builder.CreateShuffleVector(TmpVec, 3195 UndefValue::get(TmpVec->getType()), 3196 ConstantVector::get(ShuffleMask), 3197 "rdx.shuf"); 3198 3199 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3200 // Floating point operations had to be 'fast' to enable the reduction. 3201 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3202 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3203 else 3204 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3205 TmpVec, Shuf); 3206 } 3207 3208 // The result is in the first element of the vector. 3209 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 3210 Builder.getInt32(0)); 3211 } 3212 3213 // Create a phi node that merges control-flow from the backedge-taken check 3214 // block and the middle block. 3215 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 3216 LoopScalarPreHeader->getTerminator()); 3217 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[0]); 3218 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3219 3220 // Now, we need to fix the users of the reduction variable 3221 // inside and outside of the scalar remainder loop. 3222 // We know that the loop is in LCSSA form. We need to update the 3223 // PHI nodes in the exit blocks. 3224 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3225 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3226 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3227 if (!LCSSAPhi) break; 3228 3229 // All PHINodes need to have a single entry edge, or two if 3230 // we already fixed them. 3231 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3232 3233 // We found our reduction value exit-PHI. Update it with the 3234 // incoming bypass edge. 3235 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3236 // Add an edge coming from the bypass. 3237 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3238 break; 3239 } 3240 }// end of the LCSSA phi scan. 3241 3242 // Fix the scalar loop reduction variable with the incoming reduction sum 3243 // from the vector body and from the backedge value. 3244 int IncomingEdgeBlockIdx = 3245 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3246 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3247 // Pick the other block. 3248 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3249 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3250 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3251 }// end of for each redux variable. 3252 3253 fixLCSSAPHIs(); 3254 3255 // Remove redundant induction instructions. 3256 cse(LoopVectorBody); 3257 } 3258 3259 void InnerLoopVectorizer::fixLCSSAPHIs() { 3260 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3261 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3262 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3263 if (!LCSSAPhi) break; 3264 if (LCSSAPhi->getNumIncomingValues() == 1) 3265 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3266 LoopMiddleBlock); 3267 } 3268 } 3269 3270 InnerLoopVectorizer::VectorParts 3271 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3272 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3273 "Invalid edge"); 3274 3275 // Look for cached value. 3276 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3277 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3278 if (ECEntryIt != MaskCache.end()) 3279 return ECEntryIt->second; 3280 3281 VectorParts SrcMask = createBlockInMask(Src); 3282 3283 // The terminator has to be a branch inst! 3284 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3285 assert(BI && "Unexpected terminator found"); 3286 3287 if (BI->isConditional()) { 3288 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3289 3290 if (BI->getSuccessor(0) != Dst) 3291 for (unsigned part = 0; part < UF; ++part) 3292 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3293 3294 for (unsigned part = 0; part < UF; ++part) 3295 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3296 3297 MaskCache[Edge] = EdgeMask; 3298 return EdgeMask; 3299 } 3300 3301 MaskCache[Edge] = SrcMask; 3302 return SrcMask; 3303 } 3304 3305 InnerLoopVectorizer::VectorParts 3306 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3307 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3308 3309 // Loop incoming mask is all-one. 3310 if (OrigLoop->getHeader() == BB) { 3311 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3312 return getVectorValue(C); 3313 } 3314 3315 // This is the block mask. We OR all incoming edges, and with zero. 3316 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3317 VectorParts BlockMask = getVectorValue(Zero); 3318 3319 // For each pred: 3320 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3321 VectorParts EM = createEdgeMask(*it, BB); 3322 for (unsigned part = 0; part < UF; ++part) 3323 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3324 } 3325 3326 return BlockMask; 3327 } 3328 3329 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3330 InnerLoopVectorizer::VectorParts &Entry, 3331 unsigned UF, unsigned VF, PhiVector *PV) { 3332 PHINode* P = cast<PHINode>(PN); 3333 // Handle reduction variables: 3334 if (Legal->getReductionVars()->count(P)) { 3335 for (unsigned part = 0; part < UF; ++part) { 3336 // This is phase one of vectorizing PHIs. 3337 Type *VecTy = (VF == 1) ? PN->getType() : 3338 VectorType::get(PN->getType(), VF); 3339 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3340 LoopVectorBody.back()-> getFirstInsertionPt()); 3341 } 3342 PV->push_back(P); 3343 return; 3344 } 3345 3346 setDebugLocFromInst(Builder, P); 3347 // Check for PHI nodes that are lowered to vector selects. 3348 if (P->getParent() != OrigLoop->getHeader()) { 3349 // We know that all PHIs in non-header blocks are converted into 3350 // selects, so we don't have to worry about the insertion order and we 3351 // can just use the builder. 3352 // At this point we generate the predication tree. There may be 3353 // duplications since this is a simple recursive scan, but future 3354 // optimizations will clean it up. 3355 3356 unsigned NumIncoming = P->getNumIncomingValues(); 3357 3358 // Generate a sequence of selects of the form: 3359 // SELECT(Mask3, In3, 3360 // SELECT(Mask2, In2, 3361 // ( ...))) 3362 for (unsigned In = 0; In < NumIncoming; In++) { 3363 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3364 P->getParent()); 3365 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3366 3367 for (unsigned part = 0; part < UF; ++part) { 3368 // We might have single edge PHIs (blocks) - use an identity 3369 // 'select' for the first PHI operand. 3370 if (In == 0) 3371 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3372 In0[part]); 3373 else 3374 // Select between the current value and the previous incoming edge 3375 // based on the incoming mask. 3376 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3377 Entry[part], "predphi"); 3378 } 3379 } 3380 return; 3381 } 3382 3383 // This PHINode must be an induction variable. 3384 // Make sure that we know about it. 3385 assert(Legal->getInductionVars()->count(P) && 3386 "Not an induction variable"); 3387 3388 LoopVectorizationLegality::InductionInfo II = 3389 Legal->getInductionVars()->lookup(P); 3390 3391 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 3392 // which can be found from the original scalar operations. 3393 switch (II.IK) { 3394 case LoopVectorizationLegality::IK_NoInduction: 3395 llvm_unreachable("Unknown induction"); 3396 case LoopVectorizationLegality::IK_IntInduction: { 3397 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3398 Type *PhiTy = P->getType(); 3399 Value *Broadcasted; 3400 if (P == OldInduction) { 3401 // Handle the canonical induction variable. We might have had to 3402 // extend the type. 3403 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3404 } else { 3405 // Handle other induction variables that are now based on the 3406 // canonical one. 3407 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3408 "normalized.idx"); 3409 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3410 Broadcasted = II.transform(Builder, NormalizedIdx); 3411 Broadcasted->setName("offset.idx"); 3412 } 3413 Broadcasted = getBroadcastInstrs(Broadcasted); 3414 // After broadcasting the induction variable we need to make the vector 3415 // consecutive by adding 0, 1, 2, etc. 3416 for (unsigned part = 0; part < UF; ++part) 3417 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 3418 return; 3419 } 3420 case LoopVectorizationLegality::IK_PtrInduction: 3421 // Handle the pointer induction variable case. 3422 assert(P->getType()->isPointerTy() && "Unexpected type."); 3423 // This is the normalized GEP that starts counting at zero. 3424 Value *NormalizedIdx = 3425 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 3426 NormalizedIdx = 3427 Builder.CreateSExtOrTrunc(NormalizedIdx, II.StepValue->getType()); 3428 // This is the vector of results. Notice that we don't generate 3429 // vector geps because scalar geps result in better code. 3430 for (unsigned part = 0; part < UF; ++part) { 3431 if (VF == 1) { 3432 int EltIndex = part; 3433 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3434 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3435 Value *SclrGep = II.transform(Builder, GlobalIdx); 3436 SclrGep->setName("next.gep"); 3437 Entry[part] = SclrGep; 3438 continue; 3439 } 3440 3441 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3442 for (unsigned int i = 0; i < VF; ++i) { 3443 int EltIndex = i + part * VF; 3444 Constant *Idx = ConstantInt::get(NormalizedIdx->getType(), EltIndex); 3445 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3446 Value *SclrGep = II.transform(Builder, GlobalIdx); 3447 SclrGep->setName("next.gep"); 3448 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3449 Builder.getInt32(i), 3450 "insert.gep"); 3451 } 3452 Entry[part] = VecVal; 3453 } 3454 return; 3455 } 3456 } 3457 3458 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3459 // For each instruction in the old loop. 3460 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3461 VectorParts &Entry = WidenMap.get(it); 3462 switch (it->getOpcode()) { 3463 case Instruction::Br: 3464 // Nothing to do for PHIs and BR, since we already took care of the 3465 // loop control flow instructions. 3466 continue; 3467 case Instruction::PHI: { 3468 // Vectorize PHINodes. 3469 widenPHIInstruction(it, Entry, UF, VF, PV); 3470 continue; 3471 }// End of PHI. 3472 3473 case Instruction::Add: 3474 case Instruction::FAdd: 3475 case Instruction::Sub: 3476 case Instruction::FSub: 3477 case Instruction::Mul: 3478 case Instruction::FMul: 3479 case Instruction::UDiv: 3480 case Instruction::SDiv: 3481 case Instruction::FDiv: 3482 case Instruction::URem: 3483 case Instruction::SRem: 3484 case Instruction::FRem: 3485 case Instruction::Shl: 3486 case Instruction::LShr: 3487 case Instruction::AShr: 3488 case Instruction::And: 3489 case Instruction::Or: 3490 case Instruction::Xor: { 3491 // Just widen binops. 3492 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3493 setDebugLocFromInst(Builder, BinOp); 3494 VectorParts &A = getVectorValue(it->getOperand(0)); 3495 VectorParts &B = getVectorValue(it->getOperand(1)); 3496 3497 // Use this vector value for all users of the original instruction. 3498 for (unsigned Part = 0; Part < UF; ++Part) { 3499 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3500 3501 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3502 VecOp->copyIRFlags(BinOp); 3503 3504 Entry[Part] = V; 3505 } 3506 3507 propagateMetadata(Entry, it); 3508 break; 3509 } 3510 case Instruction::Select: { 3511 // Widen selects. 3512 // If the selector is loop invariant we can create a select 3513 // instruction with a scalar condition. Otherwise, use vector-select. 3514 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3515 OrigLoop); 3516 setDebugLocFromInst(Builder, it); 3517 3518 // The condition can be loop invariant but still defined inside the 3519 // loop. This means that we can't just use the original 'cond' value. 3520 // We have to take the 'vectorized' value and pick the first lane. 3521 // Instcombine will make this a no-op. 3522 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3523 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3524 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3525 3526 Value *ScalarCond = (VF == 1) ? Cond[0] : 3527 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3528 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Entry[Part] = Builder.CreateSelect( 3531 InvariantCond ? ScalarCond : Cond[Part], 3532 Op0[Part], 3533 Op1[Part]); 3534 } 3535 3536 propagateMetadata(Entry, it); 3537 break; 3538 } 3539 3540 case Instruction::ICmp: 3541 case Instruction::FCmp: { 3542 // Widen compares. Generate vector compares. 3543 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3544 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3545 setDebugLocFromInst(Builder, it); 3546 VectorParts &A = getVectorValue(it->getOperand(0)); 3547 VectorParts &B = getVectorValue(it->getOperand(1)); 3548 for (unsigned Part = 0; Part < UF; ++Part) { 3549 Value *C = nullptr; 3550 if (FCmp) 3551 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3552 else 3553 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3554 Entry[Part] = C; 3555 } 3556 3557 propagateMetadata(Entry, it); 3558 break; 3559 } 3560 3561 case Instruction::Store: 3562 case Instruction::Load: 3563 vectorizeMemoryInstruction(it); 3564 break; 3565 case Instruction::ZExt: 3566 case Instruction::SExt: 3567 case Instruction::FPToUI: 3568 case Instruction::FPToSI: 3569 case Instruction::FPExt: 3570 case Instruction::PtrToInt: 3571 case Instruction::IntToPtr: 3572 case Instruction::SIToFP: 3573 case Instruction::UIToFP: 3574 case Instruction::Trunc: 3575 case Instruction::FPTrunc: 3576 case Instruction::BitCast: { 3577 CastInst *CI = dyn_cast<CastInst>(it); 3578 setDebugLocFromInst(Builder, it); 3579 /// Optimize the special case where the source is the induction 3580 /// variable. Notice that we can only optimize the 'trunc' case 3581 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3582 /// c. other casts depend on pointer size. 3583 if (CI->getOperand(0) == OldInduction && 3584 it->getOpcode() == Instruction::Trunc) { 3585 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3586 CI->getType()); 3587 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3588 LoopVectorizationLegality::InductionInfo II = 3589 Legal->getInductionVars()->lookup(OldInduction); 3590 Constant *Step = 3591 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3592 for (unsigned Part = 0; Part < UF; ++Part) 3593 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3594 propagateMetadata(Entry, it); 3595 break; 3596 } 3597 /// Vectorize casts. 3598 Type *DestTy = (VF == 1) ? CI->getType() : 3599 VectorType::get(CI->getType(), VF); 3600 3601 VectorParts &A = getVectorValue(it->getOperand(0)); 3602 for (unsigned Part = 0; Part < UF; ++Part) 3603 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3604 propagateMetadata(Entry, it); 3605 break; 3606 } 3607 3608 case Instruction::Call: { 3609 // Ignore dbg intrinsics. 3610 if (isa<DbgInfoIntrinsic>(it)) 3611 break; 3612 setDebugLocFromInst(Builder, it); 3613 3614 Module *M = BB->getParent()->getParent(); 3615 CallInst *CI = cast<CallInst>(it); 3616 3617 StringRef FnName = CI->getCalledFunction()->getName(); 3618 Function *F = CI->getCalledFunction(); 3619 Type *RetTy = ToVectorTy(CI->getType(), VF); 3620 SmallVector<Type *, 4> Tys; 3621 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3622 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3623 3624 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3625 if (ID && 3626 (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 3627 ID == Intrinsic::lifetime_start)) { 3628 scalarizeInstruction(it); 3629 break; 3630 } 3631 // The flag shows whether we use Intrinsic or a usual Call for vectorized 3632 // version of the instruction. 3633 // Is it beneficial to perform intrinsic call compared to lib call? 3634 bool NeedToScalarize; 3635 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 3636 bool UseVectorIntrinsic = 3637 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 3638 if (!UseVectorIntrinsic && NeedToScalarize) { 3639 scalarizeInstruction(it); 3640 break; 3641 } 3642 3643 for (unsigned Part = 0; Part < UF; ++Part) { 3644 SmallVector<Value *, 4> Args; 3645 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3646 Value *Arg = CI->getArgOperand(i); 3647 // Some intrinsics have a scalar argument - don't replace it with a 3648 // vector. 3649 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 3650 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 3651 Arg = VectorArg[Part]; 3652 } 3653 Args.push_back(Arg); 3654 } 3655 3656 Function *VectorF; 3657 if (UseVectorIntrinsic) { 3658 // Use vector version of the intrinsic. 3659 Type *TysForDecl[] = {CI->getType()}; 3660 if (VF > 1) 3661 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3662 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 3663 } else { 3664 // Use vector version of the library call. 3665 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 3666 assert(!VFnName.empty() && "Vector function name is empty."); 3667 VectorF = M->getFunction(VFnName); 3668 if (!VectorF) { 3669 // Generate a declaration 3670 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 3671 VectorF = 3672 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 3673 VectorF->copyAttributesFrom(F); 3674 } 3675 } 3676 assert(VectorF && "Can't create vector function."); 3677 Entry[Part] = Builder.CreateCall(VectorF, Args); 3678 } 3679 3680 propagateMetadata(Entry, it); 3681 break; 3682 } 3683 3684 default: 3685 // All other instructions are unsupported. Scalarize them. 3686 scalarizeInstruction(it); 3687 break; 3688 }// end of switch. 3689 }// end of for_each instr. 3690 } 3691 3692 void InnerLoopVectorizer::updateAnalysis() { 3693 // Forget the original basic block. 3694 SE->forgetLoop(OrigLoop); 3695 3696 // Update the dominator tree information. 3697 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3698 "Entry does not dominate exit."); 3699 3700 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3701 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3702 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3703 3704 // Due to if predication of stores we might create a sequence of "if(pred) 3705 // a[i] = ...; " blocks. 3706 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3707 if (i == 0) 3708 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3709 else if (isPredicatedBlock(i)) { 3710 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3711 } else { 3712 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3713 } 3714 } 3715 3716 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3717 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3718 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3719 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3720 3721 DEBUG(DT->verifyDomTree()); 3722 } 3723 3724 /// \brief Check whether it is safe to if-convert this phi node. 3725 /// 3726 /// Phi nodes with constant expressions that can trap are not safe to if 3727 /// convert. 3728 static bool canIfConvertPHINodes(BasicBlock *BB) { 3729 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3730 PHINode *Phi = dyn_cast<PHINode>(I); 3731 if (!Phi) 3732 return true; 3733 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3734 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3735 if (C->canTrap()) 3736 return false; 3737 } 3738 return true; 3739 } 3740 3741 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3742 if (!EnableIfConversion) { 3743 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3744 return false; 3745 } 3746 3747 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3748 3749 // A list of pointers that we can safely read and write to. 3750 SmallPtrSet<Value *, 8> SafePointes; 3751 3752 // Collect safe addresses. 3753 for (Loop::block_iterator BI = TheLoop->block_begin(), 3754 BE = TheLoop->block_end(); BI != BE; ++BI) { 3755 BasicBlock *BB = *BI; 3756 3757 if (blockNeedsPredication(BB)) 3758 continue; 3759 3760 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3761 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3762 SafePointes.insert(LI->getPointerOperand()); 3763 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3764 SafePointes.insert(SI->getPointerOperand()); 3765 } 3766 } 3767 3768 // Collect the blocks that need predication. 3769 BasicBlock *Header = TheLoop->getHeader(); 3770 for (Loop::block_iterator BI = TheLoop->block_begin(), 3771 BE = TheLoop->block_end(); BI != BE; ++BI) { 3772 BasicBlock *BB = *BI; 3773 3774 // We don't support switch statements inside loops. 3775 if (!isa<BranchInst>(BB->getTerminator())) { 3776 emitAnalysis(VectorizationReport(BB->getTerminator()) 3777 << "loop contains a switch statement"); 3778 return false; 3779 } 3780 3781 // We must be able to predicate all blocks that need to be predicated. 3782 if (blockNeedsPredication(BB)) { 3783 if (!blockCanBePredicated(BB, SafePointes)) { 3784 emitAnalysis(VectorizationReport(BB->getTerminator()) 3785 << "control flow cannot be substituted for a select"); 3786 return false; 3787 } 3788 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3789 emitAnalysis(VectorizationReport(BB->getTerminator()) 3790 << "control flow cannot be substituted for a select"); 3791 return false; 3792 } 3793 } 3794 3795 // We can if-convert this loop. 3796 return true; 3797 } 3798 3799 bool LoopVectorizationLegality::canVectorize() { 3800 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3801 // be canonicalized. 3802 if (!TheLoop->getLoopPreheader()) { 3803 emitAnalysis( 3804 VectorizationReport() << 3805 "loop control flow is not understood by vectorizer"); 3806 return false; 3807 } 3808 3809 // We can only vectorize innermost loops. 3810 if (!TheLoop->empty()) { 3811 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3812 return false; 3813 } 3814 3815 // We must have a single backedge. 3816 if (TheLoop->getNumBackEdges() != 1) { 3817 emitAnalysis( 3818 VectorizationReport() << 3819 "loop control flow is not understood by vectorizer"); 3820 return false; 3821 } 3822 3823 // We must have a single exiting block. 3824 if (!TheLoop->getExitingBlock()) { 3825 emitAnalysis( 3826 VectorizationReport() << 3827 "loop control flow is not understood by vectorizer"); 3828 return false; 3829 } 3830 3831 // We only handle bottom-tested loops, i.e. loop in which the condition is 3832 // checked at the end of each iteration. With that we can assume that all 3833 // instructions in the loop are executed the same number of times. 3834 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3835 emitAnalysis( 3836 VectorizationReport() << 3837 "loop control flow is not understood by vectorizer"); 3838 return false; 3839 } 3840 3841 // We need to have a loop header. 3842 DEBUG(dbgs() << "LV: Found a loop: " << 3843 TheLoop->getHeader()->getName() << '\n'); 3844 3845 // Check if we can if-convert non-single-bb loops. 3846 unsigned NumBlocks = TheLoop->getNumBlocks(); 3847 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3848 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3849 return false; 3850 } 3851 3852 // ScalarEvolution needs to be able to find the exit count. 3853 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3854 if (ExitCount == SE->getCouldNotCompute()) { 3855 emitAnalysis(VectorizationReport() << 3856 "could not determine number of loop iterations"); 3857 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3858 return false; 3859 } 3860 3861 // Check if we can vectorize the instructions and CFG in this loop. 3862 if (!canVectorizeInstrs()) { 3863 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3864 return false; 3865 } 3866 3867 // Go over each instruction and look at memory deps. 3868 if (!canVectorizeMemory()) { 3869 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3870 return false; 3871 } 3872 3873 // Collect all of the variables that remain uniform after vectorization. 3874 collectLoopUniforms(); 3875 3876 DEBUG(dbgs() << "LV: We can vectorize this loop" 3877 << (LAI->getRuntimePointerChecking()->Need 3878 ? " (with a runtime bound check)" 3879 : "") 3880 << "!\n"); 3881 3882 // Analyze interleaved memory accesses. 3883 if (EnableInterleavedMemAccesses) 3884 InterleaveInfo.analyzeInterleaving(Strides); 3885 3886 // Okay! We can vectorize. At this point we don't have any other mem analysis 3887 // which may limit our maximum vectorization factor, so just return true with 3888 // no restrictions. 3889 return true; 3890 } 3891 3892 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3893 if (Ty->isPointerTy()) 3894 return DL.getIntPtrType(Ty); 3895 3896 // It is possible that char's or short's overflow when we ask for the loop's 3897 // trip count, work around this by changing the type size. 3898 if (Ty->getScalarSizeInBits() < 32) 3899 return Type::getInt32Ty(Ty->getContext()); 3900 3901 return Ty; 3902 } 3903 3904 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3905 Ty0 = convertPointerToIntegerType(DL, Ty0); 3906 Ty1 = convertPointerToIntegerType(DL, Ty1); 3907 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3908 return Ty0; 3909 return Ty1; 3910 } 3911 3912 /// \brief Check that the instruction has outside loop users and is not an 3913 /// identified reduction variable. 3914 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3915 SmallPtrSetImpl<Value *> &Reductions) { 3916 // Reduction instructions are allowed to have exit users. All other 3917 // instructions must not have external users. 3918 if (!Reductions.count(Inst)) 3919 //Check that all of the users of the loop are inside the BB. 3920 for (User *U : Inst->users()) { 3921 Instruction *UI = cast<Instruction>(U); 3922 // This user may be a reduction exit value. 3923 if (!TheLoop->contains(UI)) { 3924 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3925 return true; 3926 } 3927 } 3928 return false; 3929 } 3930 3931 bool LoopVectorizationLegality::canVectorizeInstrs() { 3932 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3933 BasicBlock *Header = TheLoop->getHeader(); 3934 3935 // Look for the attribute signaling the absence of NaNs. 3936 Function &F = *Header->getParent(); 3937 const DataLayout &DL = F.getParent()->getDataLayout(); 3938 if (F.hasFnAttribute("no-nans-fp-math")) 3939 HasFunNoNaNAttr = 3940 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3941 3942 // For each block in the loop. 3943 for (Loop::block_iterator bb = TheLoop->block_begin(), 3944 be = TheLoop->block_end(); bb != be; ++bb) { 3945 3946 // Scan the instructions in the block and look for hazards. 3947 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3948 ++it) { 3949 3950 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3951 Type *PhiTy = Phi->getType(); 3952 // Check that this PHI type is allowed. 3953 if (!PhiTy->isIntegerTy() && 3954 !PhiTy->isFloatingPointTy() && 3955 !PhiTy->isPointerTy()) { 3956 emitAnalysis(VectorizationReport(it) 3957 << "loop control flow is not understood by vectorizer"); 3958 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3959 return false; 3960 } 3961 3962 // If this PHINode is not in the header block, then we know that we 3963 // can convert it to select during if-conversion. No need to check if 3964 // the PHIs in this block are induction or reduction variables. 3965 if (*bb != Header) { 3966 // Check that this instruction has no outside users or is an 3967 // identified reduction value with an outside user. 3968 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3969 continue; 3970 emitAnalysis(VectorizationReport(it) << 3971 "value could not be identified as " 3972 "an induction or reduction variable"); 3973 return false; 3974 } 3975 3976 // We only allow if-converted PHIs with exactly two incoming values. 3977 if (Phi->getNumIncomingValues() != 2) { 3978 emitAnalysis(VectorizationReport(it) 3979 << "control flow not understood by vectorizer"); 3980 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3981 return false; 3982 } 3983 3984 // This is the value coming from the preheader. 3985 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3986 ConstantInt *StepValue = nullptr; 3987 // Check if this is an induction variable. 3988 InductionKind IK = isInductionVariable(Phi, StepValue); 3989 3990 if (IK_NoInduction != IK) { 3991 // Get the widest type. 3992 if (!WidestIndTy) 3993 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 3994 else 3995 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 3996 3997 // Int inductions are special because we only allow one IV. 3998 if (IK == IK_IntInduction && StepValue->isOne()) { 3999 // Use the phi node with the widest type as induction. Use the last 4000 // one if there are multiple (no good reason for doing this other 4001 // than it is expedient). 4002 if (!Induction || PhiTy == WidestIndTy) 4003 Induction = Phi; 4004 } 4005 4006 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4007 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 4008 4009 // Until we explicitly handle the case of an induction variable with 4010 // an outside loop user we have to give up vectorizing this loop. 4011 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4012 emitAnalysis(VectorizationReport(it) << 4013 "use of induction value outside of the " 4014 "loop is not handled by vectorizer"); 4015 return false; 4016 } 4017 4018 continue; 4019 } 4020 4021 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, 4022 Reductions[Phi])) { 4023 AllowedExit.insert(Reductions[Phi].getLoopExitInstr()); 4024 continue; 4025 } 4026 4027 emitAnalysis(VectorizationReport(it) << 4028 "value that could not be identified as " 4029 "reduction is used outside the loop"); 4030 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 4031 return false; 4032 }// end of PHI handling 4033 4034 // We handle calls that: 4035 // * Are debug info intrinsics. 4036 // * Have a mapping to an IR intrinsic. 4037 // * Have a vector version available. 4038 CallInst *CI = dyn_cast<CallInst>(it); 4039 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) && 4040 !(CI->getCalledFunction() && TLI && 4041 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4042 emitAnalysis(VectorizationReport(it) << 4043 "call instruction cannot be vectorized"); 4044 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4045 return false; 4046 } 4047 4048 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4049 // second argument is the same (i.e. loop invariant) 4050 if (CI && 4051 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 4052 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 4053 emitAnalysis(VectorizationReport(it) 4054 << "intrinsic instruction cannot be vectorized"); 4055 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4056 return false; 4057 } 4058 } 4059 4060 // Check that the instruction return type is vectorizable. 4061 // Also, we can't vectorize extractelement instructions. 4062 if ((!VectorType::isValidElementType(it->getType()) && 4063 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 4064 emitAnalysis(VectorizationReport(it) 4065 << "instruction return type cannot be vectorized"); 4066 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4067 return false; 4068 } 4069 4070 // Check that the stored type is vectorizable. 4071 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4072 Type *T = ST->getValueOperand()->getType(); 4073 if (!VectorType::isValidElementType(T)) { 4074 emitAnalysis(VectorizationReport(ST) << 4075 "store instruction cannot be vectorized"); 4076 return false; 4077 } 4078 if (EnableMemAccessVersioning) 4079 collectStridedAccess(ST); 4080 } 4081 4082 if (EnableMemAccessVersioning) 4083 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 4084 collectStridedAccess(LI); 4085 4086 // Reduction instructions are allowed to have exit users. 4087 // All other instructions must not have external users. 4088 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 4089 emitAnalysis(VectorizationReport(it) << 4090 "value cannot be used outside the loop"); 4091 return false; 4092 } 4093 4094 } // next instr. 4095 4096 } 4097 4098 if (!Induction) { 4099 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4100 if (Inductions.empty()) { 4101 emitAnalysis(VectorizationReport() 4102 << "loop induction variable could not be identified"); 4103 return false; 4104 } 4105 } 4106 4107 return true; 4108 } 4109 4110 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4111 Value *Ptr = nullptr; 4112 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4113 Ptr = LI->getPointerOperand(); 4114 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4115 Ptr = SI->getPointerOperand(); 4116 else 4117 return; 4118 4119 Value *Stride = getStrideFromPointer(Ptr, SE, TheLoop); 4120 if (!Stride) 4121 return; 4122 4123 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4124 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4125 Strides[Ptr] = Stride; 4126 StrideSet.insert(Stride); 4127 } 4128 4129 void LoopVectorizationLegality::collectLoopUniforms() { 4130 // We now know that the loop is vectorizable! 4131 // Collect variables that will remain uniform after vectorization. 4132 std::vector<Value*> Worklist; 4133 BasicBlock *Latch = TheLoop->getLoopLatch(); 4134 4135 // Start with the conditional branch and walk up the block. 4136 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4137 4138 // Also add all consecutive pointer values; these values will be uniform 4139 // after vectorization (and subsequent cleanup) and, until revectorization is 4140 // supported, all dependencies must also be uniform. 4141 for (Loop::block_iterator B = TheLoop->block_begin(), 4142 BE = TheLoop->block_end(); B != BE; ++B) 4143 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4144 I != IE; ++I) 4145 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4146 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4147 4148 while (!Worklist.empty()) { 4149 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4150 Worklist.pop_back(); 4151 4152 // Look at instructions inside this loop. 4153 // Stop when reaching PHI nodes. 4154 // TODO: we need to follow values all over the loop, not only in this block. 4155 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4156 continue; 4157 4158 // This is a known uniform. 4159 Uniforms.insert(I); 4160 4161 // Insert all operands. 4162 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4163 } 4164 } 4165 4166 bool LoopVectorizationLegality::canVectorizeMemory() { 4167 LAI = &LAA->getInfo(TheLoop, Strides); 4168 auto &OptionalReport = LAI->getReport(); 4169 if (OptionalReport) 4170 emitAnalysis(VectorizationReport(*OptionalReport)); 4171 if (!LAI->canVectorizeMemory()) 4172 return false; 4173 4174 if (LAI->hasStoreToLoopInvariantAddress()) { 4175 emitAnalysis( 4176 VectorizationReport() 4177 << "write to a loop invariant address could not be vectorized"); 4178 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4179 return false; 4180 } 4181 4182 if (LAI->getNumRuntimePointerChecks() > 4183 VectorizerParams::RuntimeMemoryCheckThreshold) { 4184 emitAnalysis(VectorizationReport() 4185 << LAI->getNumRuntimePointerChecks() << " exceeds limit of " 4186 << VectorizerParams::RuntimeMemoryCheckThreshold 4187 << " dependent memory operations checked at runtime"); 4188 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 4189 return false; 4190 } 4191 return true; 4192 } 4193 4194 LoopVectorizationLegality::InductionKind 4195 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4196 ConstantInt *&StepValue) { 4197 if (!isInductionPHI(Phi, SE, StepValue)) 4198 return IK_NoInduction; 4199 4200 Type *PhiTy = Phi->getType(); 4201 // Found an Integer induction variable. 4202 if (PhiTy->isIntegerTy()) 4203 return IK_IntInduction; 4204 // Found an Pointer induction variable. 4205 return IK_PtrInduction; 4206 } 4207 4208 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4209 Value *In0 = const_cast<Value*>(V); 4210 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4211 if (!PN) 4212 return false; 4213 4214 return Inductions.count(PN); 4215 } 4216 4217 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4218 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4219 } 4220 4221 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4222 SmallPtrSetImpl<Value *> &SafePtrs) { 4223 4224 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4225 // Check that we don't have a constant expression that can trap as operand. 4226 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4227 OI != OE; ++OI) { 4228 if (Constant *C = dyn_cast<Constant>(*OI)) 4229 if (C->canTrap()) 4230 return false; 4231 } 4232 // We might be able to hoist the load. 4233 if (it->mayReadFromMemory()) { 4234 LoadInst *LI = dyn_cast<LoadInst>(it); 4235 if (!LI) 4236 return false; 4237 if (!SafePtrs.count(LI->getPointerOperand())) { 4238 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4239 MaskedOp.insert(LI); 4240 continue; 4241 } 4242 return false; 4243 } 4244 } 4245 4246 // We don't predicate stores at the moment. 4247 if (it->mayWriteToMemory()) { 4248 StoreInst *SI = dyn_cast<StoreInst>(it); 4249 // We only support predication of stores in basic blocks with one 4250 // predecessor. 4251 if (!SI) 4252 return false; 4253 4254 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4255 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4256 4257 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4258 !isSinglePredecessor) { 4259 // Build a masked store if it is legal for the target, otherwise scalarize 4260 // the block. 4261 bool isLegalMaskedOp = 4262 isLegalMaskedStore(SI->getValueOperand()->getType(), 4263 SI->getPointerOperand()); 4264 if (isLegalMaskedOp) { 4265 --NumPredStores; 4266 MaskedOp.insert(SI); 4267 continue; 4268 } 4269 return false; 4270 } 4271 } 4272 if (it->mayThrow()) 4273 return false; 4274 4275 // The instructions below can trap. 4276 switch (it->getOpcode()) { 4277 default: continue; 4278 case Instruction::UDiv: 4279 case Instruction::SDiv: 4280 case Instruction::URem: 4281 case Instruction::SRem: 4282 return false; 4283 } 4284 } 4285 4286 return true; 4287 } 4288 4289 void InterleavedAccessInfo::collectConstStridedAccesses( 4290 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 4291 const ValueToValueMap &Strides) { 4292 // Holds load/store instructions in program order. 4293 SmallVector<Instruction *, 16> AccessList; 4294 4295 for (auto *BB : TheLoop->getBlocks()) { 4296 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4297 4298 for (auto &I : *BB) { 4299 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 4300 continue; 4301 // FIXME: Currently we can't handle mixed accesses and predicated accesses 4302 if (IsPred) 4303 return; 4304 4305 AccessList.push_back(&I); 4306 } 4307 } 4308 4309 if (AccessList.empty()) 4310 return; 4311 4312 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 4313 for (auto I : AccessList) { 4314 LoadInst *LI = dyn_cast<LoadInst>(I); 4315 StoreInst *SI = dyn_cast<StoreInst>(I); 4316 4317 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 4318 int Stride = isStridedPtr(SE, Ptr, TheLoop, Strides); 4319 4320 // The factor of the corresponding interleave group. 4321 unsigned Factor = std::abs(Stride); 4322 4323 // Ignore the access if the factor is too small or too large. 4324 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 4325 continue; 4326 4327 const SCEV *Scev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4328 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 4329 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 4330 4331 // An alignment of 0 means target ABI alignment. 4332 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 4333 if (!Align) 4334 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 4335 4336 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 4337 } 4338 } 4339 4340 // Analyze interleaved accesses and collect them into interleave groups. 4341 // 4342 // Notice that the vectorization on interleaved groups will change instruction 4343 // orders and may break dependences. But the memory dependence check guarantees 4344 // that there is no overlap between two pointers of different strides, element 4345 // sizes or underlying bases. 4346 // 4347 // For pointers sharing the same stride, element size and underlying base, no 4348 // need to worry about Read-After-Write dependences and Write-After-Read 4349 // dependences. 4350 // 4351 // E.g. The RAW dependence: A[i] = a; 4352 // b = A[i]; 4353 // This won't exist as it is a store-load forwarding conflict, which has 4354 // already been checked and forbidden in the dependence check. 4355 // 4356 // E.g. The WAR dependence: a = A[i]; // (1) 4357 // A[i] = b; // (2) 4358 // The store group of (2) is always inserted at or below (2), and the load group 4359 // of (1) is always inserted at or above (1). The dependence is safe. 4360 void InterleavedAccessInfo::analyzeInterleaving( 4361 const ValueToValueMap &Strides) { 4362 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 4363 4364 // Holds all the stride accesses. 4365 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 4366 collectConstStridedAccesses(StrideAccesses, Strides); 4367 4368 if (StrideAccesses.empty()) 4369 return; 4370 4371 // Holds all interleaved store groups temporarily. 4372 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 4373 4374 // Search the load-load/write-write pair B-A in bottom-up order and try to 4375 // insert B into the interleave group of A according to 3 rules: 4376 // 1. A and B have the same stride. 4377 // 2. A and B have the same memory object size. 4378 // 3. B belongs to the group according to the distance. 4379 // 4380 // The bottom-up order can avoid breaking the Write-After-Write dependences 4381 // between two pointers of the same base. 4382 // E.g. A[i] = a; (1) 4383 // A[i] = b; (2) 4384 // A[i+1] = c (3) 4385 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 4386 // above (1), which guarantees that (1) is always above (2). 4387 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 4388 ++I) { 4389 Instruction *A = I->first; 4390 StrideDescriptor DesA = I->second; 4391 4392 InterleaveGroup *Group = getInterleaveGroup(A); 4393 if (!Group) { 4394 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 4395 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 4396 } 4397 4398 if (A->mayWriteToMemory()) 4399 StoreGroups.insert(Group); 4400 4401 for (auto II = std::next(I); II != E; ++II) { 4402 Instruction *B = II->first; 4403 StrideDescriptor DesB = II->second; 4404 4405 // Ignore if B is already in a group or B is a different memory operation. 4406 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 4407 continue; 4408 4409 // Check the rule 1 and 2. 4410 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 4411 continue; 4412 4413 // Calculate the distance and prepare for the rule 3. 4414 const SCEVConstant *DistToA = 4415 dyn_cast<SCEVConstant>(SE->getMinusSCEV(DesB.Scev, DesA.Scev)); 4416 if (!DistToA) 4417 continue; 4418 4419 int DistanceToA = DistToA->getValue()->getValue().getSExtValue(); 4420 4421 // Skip if the distance is not multiple of size as they are not in the 4422 // same group. 4423 if (DistanceToA % static_cast<int>(DesA.Size)) 4424 continue; 4425 4426 // The index of B is the index of A plus the related index to A. 4427 int IndexB = 4428 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 4429 4430 // Try to insert B into the group. 4431 if (Group->insertMember(B, IndexB, DesB.Align)) { 4432 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 4433 << " into the interleave group with" << *A << '\n'); 4434 InterleaveGroupMap[B] = Group; 4435 4436 // Set the first load in program order as the insert position. 4437 if (B->mayReadFromMemory()) 4438 Group->setInsertPos(B); 4439 } 4440 } // Iteration on instruction B 4441 } // Iteration on instruction A 4442 4443 // Remove interleaved store groups with gaps. 4444 for (InterleaveGroup *Group : StoreGroups) 4445 if (Group->getNumMembers() != Group->getFactor()) 4446 releaseGroup(Group); 4447 } 4448 4449 LoopVectorizationCostModel::VectorizationFactor 4450 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4451 // Width 1 means no vectorize 4452 VectorizationFactor Factor = { 1U, 0U }; 4453 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 4454 emitAnalysis(VectorizationReport() << 4455 "runtime pointer checks needed. Enable vectorization of this " 4456 "loop with '#pragma clang loop vectorize(enable)' when " 4457 "compiling with -Os"); 4458 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4459 return Factor; 4460 } 4461 4462 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4463 emitAnalysis(VectorizationReport() << 4464 "store that is conditionally executed prevents vectorization"); 4465 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4466 return Factor; 4467 } 4468 4469 // Find the trip count. 4470 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4471 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4472 4473 unsigned WidestType = getWidestType(); 4474 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4475 unsigned MaxSafeDepDist = -1U; 4476 if (Legal->getMaxSafeDepDistBytes() != -1U) 4477 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4478 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4479 WidestRegister : MaxSafeDepDist); 4480 unsigned MaxVectorSize = WidestRegister / WidestType; 4481 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4482 DEBUG(dbgs() << "LV: The Widest register is: " 4483 << WidestRegister << " bits.\n"); 4484 4485 if (MaxVectorSize == 0) { 4486 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4487 MaxVectorSize = 1; 4488 } 4489 4490 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4491 " into one vector!"); 4492 4493 unsigned VF = MaxVectorSize; 4494 4495 // If we optimize the program for size, avoid creating the tail loop. 4496 if (OptForSize) { 4497 // If we are unable to calculate the trip count then don't try to vectorize. 4498 if (TC < 2) { 4499 emitAnalysis 4500 (VectorizationReport() << 4501 "unable to calculate the loop count due to complex control flow"); 4502 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4503 return Factor; 4504 } 4505 4506 // Find the maximum SIMD width that can fit within the trip count. 4507 VF = TC % MaxVectorSize; 4508 4509 if (VF == 0) 4510 VF = MaxVectorSize; 4511 else { 4512 // If the trip count that we found modulo the vectorization factor is not 4513 // zero then we require a tail. 4514 emitAnalysis(VectorizationReport() << 4515 "cannot optimize for size and vectorize at the " 4516 "same time. Enable vectorization of this loop " 4517 "with '#pragma clang loop vectorize(enable)' " 4518 "when compiling with -Os"); 4519 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4520 return Factor; 4521 } 4522 } 4523 4524 int UserVF = Hints->getWidth(); 4525 if (UserVF != 0) { 4526 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4527 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4528 4529 Factor.Width = UserVF; 4530 return Factor; 4531 } 4532 4533 float Cost = expectedCost(1); 4534 #ifndef NDEBUG 4535 const float ScalarCost = Cost; 4536 #endif /* NDEBUG */ 4537 unsigned Width = 1; 4538 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4539 4540 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4541 // Ignore scalar width, because the user explicitly wants vectorization. 4542 if (ForceVectorization && VF > 1) { 4543 Width = 2; 4544 Cost = expectedCost(Width) / (float)Width; 4545 } 4546 4547 for (unsigned i=2; i <= VF; i*=2) { 4548 // Notice that the vector loop needs to be executed less times, so 4549 // we need to divide the cost of the vector loops by the width of 4550 // the vector elements. 4551 float VectorCost = expectedCost(i) / (float)i; 4552 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4553 (int)VectorCost << ".\n"); 4554 if (VectorCost < Cost) { 4555 Cost = VectorCost; 4556 Width = i; 4557 } 4558 } 4559 4560 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4561 << "LV: Vectorization seems to be not beneficial, " 4562 << "but was forced by a user.\n"); 4563 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4564 Factor.Width = Width; 4565 Factor.Cost = Width * Cost; 4566 return Factor; 4567 } 4568 4569 unsigned LoopVectorizationCostModel::getWidestType() { 4570 unsigned MaxWidth = 8; 4571 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 4572 4573 // For each block. 4574 for (Loop::block_iterator bb = TheLoop->block_begin(), 4575 be = TheLoop->block_end(); bb != be; ++bb) { 4576 BasicBlock *BB = *bb; 4577 4578 // For each instruction in the loop. 4579 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4580 Type *T = it->getType(); 4581 4582 // Ignore ephemeral values. 4583 if (EphValues.count(it)) 4584 continue; 4585 4586 // Only examine Loads, Stores and PHINodes. 4587 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4588 continue; 4589 4590 // Examine PHI nodes that are reduction variables. 4591 if (PHINode *PN = dyn_cast<PHINode>(it)) 4592 if (!Legal->getReductionVars()->count(PN)) 4593 continue; 4594 4595 // Examine the stored values. 4596 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4597 T = ST->getValueOperand()->getType(); 4598 4599 // Ignore loaded pointer types and stored pointer types that are not 4600 // consecutive. However, we do want to take consecutive stores/loads of 4601 // pointer vectors into account. 4602 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4603 continue; 4604 4605 MaxWidth = std::max(MaxWidth, 4606 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 4607 } 4608 } 4609 4610 return MaxWidth; 4611 } 4612 4613 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 4614 unsigned VF, 4615 unsigned LoopCost) { 4616 4617 // -- The interleave heuristics -- 4618 // We interleave the loop in order to expose ILP and reduce the loop overhead. 4619 // There are many micro-architectural considerations that we can't predict 4620 // at this level. For example, frontend pressure (on decode or fetch) due to 4621 // code size, or the number and capabilities of the execution ports. 4622 // 4623 // We use the following heuristics to select the interleave count: 4624 // 1. If the code has reductions, then we interleave to break the cross 4625 // iteration dependency. 4626 // 2. If the loop is really small, then we interleave to reduce the loop 4627 // overhead. 4628 // 3. We don't interleave if we think that we will spill registers to memory 4629 // due to the increased register pressure. 4630 4631 // Use the user preference, unless 'auto' is selected. 4632 int UserUF = Hints->getInterleave(); 4633 if (UserUF != 0) 4634 return UserUF; 4635 4636 // When we optimize for size, we don't interleave. 4637 if (OptForSize) 4638 return 1; 4639 4640 // We used the distance for the interleave count. 4641 if (Legal->getMaxSafeDepDistBytes() != -1U) 4642 return 1; 4643 4644 // Do not interleave loops with a relatively small trip count. 4645 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4646 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 4647 return 1; 4648 4649 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4650 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4651 " registers\n"); 4652 4653 if (VF == 1) { 4654 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4655 TargetNumRegisters = ForceTargetNumScalarRegs; 4656 } else { 4657 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4658 TargetNumRegisters = ForceTargetNumVectorRegs; 4659 } 4660 4661 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4662 // We divide by these constants so assume that we have at least one 4663 // instruction that uses at least one register. 4664 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4665 R.NumInstructions = std::max(R.NumInstructions, 1U); 4666 4667 // We calculate the interleave count using the following formula. 4668 // Subtract the number of loop invariants from the number of available 4669 // registers. These registers are used by all of the interleaved instances. 4670 // Next, divide the remaining registers by the number of registers that is 4671 // required by the loop, in order to estimate how many parallel instances 4672 // fit without causing spills. All of this is rounded down if necessary to be 4673 // a power of two. We want power of two interleave count to simplify any 4674 // addressing operations or alignment considerations. 4675 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4676 R.MaxLocalUsers); 4677 4678 // Don't count the induction variable as interleaved. 4679 if (EnableIndVarRegisterHeur) 4680 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4681 std::max(1U, (R.MaxLocalUsers - 1))); 4682 4683 // Clamp the interleave ranges to reasonable counts. 4684 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 4685 4686 // Check if the user has overridden the max. 4687 if (VF == 1) { 4688 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4689 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 4690 } else { 4691 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4692 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 4693 } 4694 4695 // If we did not calculate the cost for VF (because the user selected the VF) 4696 // then we calculate the cost of VF here. 4697 if (LoopCost == 0) 4698 LoopCost = expectedCost(VF); 4699 4700 // Clamp the calculated IC to be between the 1 and the max interleave count 4701 // that the target allows. 4702 if (IC > MaxInterleaveCount) 4703 IC = MaxInterleaveCount; 4704 else if (IC < 1) 4705 IC = 1; 4706 4707 // Interleave if we vectorized this loop and there is a reduction that could 4708 // benefit from interleaving. 4709 if (VF > 1 && Legal->getReductionVars()->size()) { 4710 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 4711 return IC; 4712 } 4713 4714 // Note that if we've already vectorized the loop we will have done the 4715 // runtime check and so interleaving won't require further checks. 4716 bool InterleavingRequiresRuntimePointerCheck = 4717 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 4718 4719 // We want to interleave small loops in order to reduce the loop overhead and 4720 // potentially expose ILP opportunities. 4721 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4722 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 4723 // We assume that the cost overhead is 1 and we use the cost model 4724 // to estimate the cost of the loop and interleave until the cost of the 4725 // loop overhead is about 5% of the cost of the loop. 4726 unsigned SmallIC = 4727 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4728 4729 // Interleave until store/load ports (estimated by max interleave count) are 4730 // saturated. 4731 unsigned NumStores = Legal->getNumStores(); 4732 unsigned NumLoads = Legal->getNumLoads(); 4733 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 4734 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 4735 4736 // If we have a scalar reduction (vector reductions are already dealt with 4737 // by this point), we can increase the critical path length if the loop 4738 // we're interleaving is inside another loop. Limit, by default to 2, so the 4739 // critical path only gets increased by one reduction operation. 4740 if (Legal->getReductionVars()->size() && 4741 TheLoop->getLoopDepth() > 1) { 4742 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 4743 SmallIC = std::min(SmallIC, F); 4744 StoresIC = std::min(StoresIC, F); 4745 LoadsIC = std::min(LoadsIC, F); 4746 } 4747 4748 if (EnableLoadStoreRuntimeInterleave && 4749 std::max(StoresIC, LoadsIC) > SmallIC) { 4750 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 4751 return std::max(StoresIC, LoadsIC); 4752 } 4753 4754 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 4755 return SmallIC; 4756 } 4757 4758 // Interleave if this is a large loop (small loops are already dealt with by 4759 // this 4760 // point) that could benefit from interleaving. 4761 bool HasReductions = (Legal->getReductionVars()->size() > 0); 4762 if (TTI.enableAggressiveInterleaving(HasReductions)) { 4763 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 4764 return IC; 4765 } 4766 4767 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 4768 return 1; 4769 } 4770 4771 LoopVectorizationCostModel::RegisterUsage 4772 LoopVectorizationCostModel::calculateRegisterUsage() { 4773 // This function calculates the register usage by measuring the highest number 4774 // of values that are alive at a single location. Obviously, this is a very 4775 // rough estimation. We scan the loop in a topological order in order and 4776 // assign a number to each instruction. We use RPO to ensure that defs are 4777 // met before their users. We assume that each instruction that has in-loop 4778 // users starts an interval. We record every time that an in-loop value is 4779 // used, so we have a list of the first and last occurrences of each 4780 // instruction. Next, we transpose this data structure into a multi map that 4781 // holds the list of intervals that *end* at a specific location. This multi 4782 // map allows us to perform a linear search. We scan the instructions linearly 4783 // and record each time that a new interval starts, by placing it in a set. 4784 // If we find this value in the multi-map then we remove it from the set. 4785 // The max register usage is the maximum size of the set. 4786 // We also search for instructions that are defined outside the loop, but are 4787 // used inside the loop. We need this number separately from the max-interval 4788 // usage number because when we unroll, loop-invariant values do not take 4789 // more register. 4790 LoopBlocksDFS DFS(TheLoop); 4791 DFS.perform(LI); 4792 4793 RegisterUsage R; 4794 R.NumInstructions = 0; 4795 4796 // Each 'key' in the map opens a new interval. The values 4797 // of the map are the index of the 'last seen' usage of the 4798 // instruction that is the key. 4799 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4800 // Maps instruction to its index. 4801 DenseMap<unsigned, Instruction*> IdxToInstr; 4802 // Marks the end of each interval. 4803 IntervalMap EndPoint; 4804 // Saves the list of instruction indices that are used in the loop. 4805 SmallSet<Instruction*, 8> Ends; 4806 // Saves the list of values that are used in the loop but are 4807 // defined outside the loop, such as arguments and constants. 4808 SmallPtrSet<Value*, 8> LoopInvariants; 4809 4810 unsigned Index = 0; 4811 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4812 be = DFS.endRPO(); bb != be; ++bb) { 4813 R.NumInstructions += (*bb)->size(); 4814 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4815 ++it) { 4816 Instruction *I = it; 4817 IdxToInstr[Index++] = I; 4818 4819 // Save the end location of each USE. 4820 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4821 Value *U = I->getOperand(i); 4822 Instruction *Instr = dyn_cast<Instruction>(U); 4823 4824 // Ignore non-instruction values such as arguments, constants, etc. 4825 if (!Instr) continue; 4826 4827 // If this instruction is outside the loop then record it and continue. 4828 if (!TheLoop->contains(Instr)) { 4829 LoopInvariants.insert(Instr); 4830 continue; 4831 } 4832 4833 // Overwrite previous end points. 4834 EndPoint[Instr] = Index; 4835 Ends.insert(Instr); 4836 } 4837 } 4838 } 4839 4840 // Saves the list of intervals that end with the index in 'key'. 4841 typedef SmallVector<Instruction*, 2> InstrList; 4842 DenseMap<unsigned, InstrList> TransposeEnds; 4843 4844 // Transpose the EndPoints to a list of values that end at each index. 4845 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4846 it != e; ++it) 4847 TransposeEnds[it->second].push_back(it->first); 4848 4849 SmallSet<Instruction*, 8> OpenIntervals; 4850 unsigned MaxUsage = 0; 4851 4852 4853 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4854 for (unsigned int i = 0; i < Index; ++i) { 4855 Instruction *I = IdxToInstr[i]; 4856 // Ignore instructions that are never used within the loop. 4857 if (!Ends.count(I)) continue; 4858 4859 // Ignore ephemeral values. 4860 if (EphValues.count(I)) 4861 continue; 4862 4863 // Remove all of the instructions that end at this location. 4864 InstrList &List = TransposeEnds[i]; 4865 for (unsigned int j=0, e = List.size(); j < e; ++j) 4866 OpenIntervals.erase(List[j]); 4867 4868 // Count the number of live interals. 4869 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4870 4871 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4872 OpenIntervals.size() << '\n'); 4873 4874 // Add the current instruction to the list of open intervals. 4875 OpenIntervals.insert(I); 4876 } 4877 4878 unsigned Invariant = LoopInvariants.size(); 4879 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4880 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4881 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4882 4883 R.LoopInvariantRegs = Invariant; 4884 R.MaxLocalUsers = MaxUsage; 4885 return R; 4886 } 4887 4888 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4889 unsigned Cost = 0; 4890 4891 // For each block. 4892 for (Loop::block_iterator bb = TheLoop->block_begin(), 4893 be = TheLoop->block_end(); bb != be; ++bb) { 4894 unsigned BlockCost = 0; 4895 BasicBlock *BB = *bb; 4896 4897 // For each instruction in the old loop. 4898 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4899 // Skip dbg intrinsics. 4900 if (isa<DbgInfoIntrinsic>(it)) 4901 continue; 4902 4903 // Ignore ephemeral values. 4904 if (EphValues.count(it)) 4905 continue; 4906 4907 unsigned C = getInstructionCost(it, VF); 4908 4909 // Check if we should override the cost. 4910 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4911 C = ForceTargetInstructionCost; 4912 4913 BlockCost += C; 4914 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4915 VF << " For instruction: " << *it << '\n'); 4916 } 4917 4918 // We assume that if-converted blocks have a 50% chance of being executed. 4919 // When the code is scalar then some of the blocks are avoided due to CF. 4920 // When the code is vectorized we execute all code paths. 4921 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4922 BlockCost /= 2; 4923 4924 Cost += BlockCost; 4925 } 4926 4927 return Cost; 4928 } 4929 4930 /// \brief Check whether the address computation for a non-consecutive memory 4931 /// access looks like an unlikely candidate for being merged into the indexing 4932 /// mode. 4933 /// 4934 /// We look for a GEP which has one index that is an induction variable and all 4935 /// other indices are loop invariant. If the stride of this access is also 4936 /// within a small bound we decide that this address computation can likely be 4937 /// merged into the addressing mode. 4938 /// In all other cases, we identify the address computation as complex. 4939 static bool isLikelyComplexAddressComputation(Value *Ptr, 4940 LoopVectorizationLegality *Legal, 4941 ScalarEvolution *SE, 4942 const Loop *TheLoop) { 4943 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4944 if (!Gep) 4945 return true; 4946 4947 // We are looking for a gep with all loop invariant indices except for one 4948 // which should be an induction variable. 4949 unsigned NumOperands = Gep->getNumOperands(); 4950 for (unsigned i = 1; i < NumOperands; ++i) { 4951 Value *Opd = Gep->getOperand(i); 4952 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4953 !Legal->isInductionVariable(Opd)) 4954 return true; 4955 } 4956 4957 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4958 // can likely be merged into the address computation. 4959 unsigned MaxMergeDistance = 64; 4960 4961 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4962 if (!AddRec) 4963 return true; 4964 4965 // Check the step is constant. 4966 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4967 // Calculate the pointer stride and check if it is consecutive. 4968 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4969 if (!C) 4970 return true; 4971 4972 const APInt &APStepVal = C->getValue()->getValue(); 4973 4974 // Huge step value - give up. 4975 if (APStepVal.getBitWidth() > 64) 4976 return true; 4977 4978 int64_t StepVal = APStepVal.getSExtValue(); 4979 4980 return StepVal > MaxMergeDistance; 4981 } 4982 4983 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4984 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4985 return true; 4986 return false; 4987 } 4988 4989 unsigned 4990 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4991 // If we know that this instruction will remain uniform, check the cost of 4992 // the scalar version. 4993 if (Legal->isUniformAfterVectorization(I)) 4994 VF = 1; 4995 4996 Type *RetTy = I->getType(); 4997 Type *VectorTy = ToVectorTy(RetTy, VF); 4998 4999 // TODO: We need to estimate the cost of intrinsic calls. 5000 switch (I->getOpcode()) { 5001 case Instruction::GetElementPtr: 5002 // We mark this instruction as zero-cost because the cost of GEPs in 5003 // vectorized code depends on whether the corresponding memory instruction 5004 // is scalarized or not. Therefore, we handle GEPs with the memory 5005 // instruction cost. 5006 return 0; 5007 case Instruction::Br: { 5008 return TTI.getCFInstrCost(I->getOpcode()); 5009 } 5010 case Instruction::PHI: 5011 //TODO: IF-converted IFs become selects. 5012 return 0; 5013 case Instruction::Add: 5014 case Instruction::FAdd: 5015 case Instruction::Sub: 5016 case Instruction::FSub: 5017 case Instruction::Mul: 5018 case Instruction::FMul: 5019 case Instruction::UDiv: 5020 case Instruction::SDiv: 5021 case Instruction::FDiv: 5022 case Instruction::URem: 5023 case Instruction::SRem: 5024 case Instruction::FRem: 5025 case Instruction::Shl: 5026 case Instruction::LShr: 5027 case Instruction::AShr: 5028 case Instruction::And: 5029 case Instruction::Or: 5030 case Instruction::Xor: { 5031 // Since we will replace the stride by 1 the multiplication should go away. 5032 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5033 return 0; 5034 // Certain instructions can be cheaper to vectorize if they have a constant 5035 // second vector operand. One example of this are shifts on x86. 5036 TargetTransformInfo::OperandValueKind Op1VK = 5037 TargetTransformInfo::OK_AnyValue; 5038 TargetTransformInfo::OperandValueKind Op2VK = 5039 TargetTransformInfo::OK_AnyValue; 5040 TargetTransformInfo::OperandValueProperties Op1VP = 5041 TargetTransformInfo::OP_None; 5042 TargetTransformInfo::OperandValueProperties Op2VP = 5043 TargetTransformInfo::OP_None; 5044 Value *Op2 = I->getOperand(1); 5045 5046 // Check for a splat of a constant or for a non uniform vector of constants. 5047 if (isa<ConstantInt>(Op2)) { 5048 ConstantInt *CInt = cast<ConstantInt>(Op2); 5049 if (CInt && CInt->getValue().isPowerOf2()) 5050 Op2VP = TargetTransformInfo::OP_PowerOf2; 5051 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5052 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5053 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5054 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5055 if (SplatValue) { 5056 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5057 if (CInt && CInt->getValue().isPowerOf2()) 5058 Op2VP = TargetTransformInfo::OP_PowerOf2; 5059 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5060 } 5061 } 5062 5063 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5064 Op1VP, Op2VP); 5065 } 5066 case Instruction::Select: { 5067 SelectInst *SI = cast<SelectInst>(I); 5068 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5069 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5070 Type *CondTy = SI->getCondition()->getType(); 5071 if (!ScalarCond) 5072 CondTy = VectorType::get(CondTy, VF); 5073 5074 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5075 } 5076 case Instruction::ICmp: 5077 case Instruction::FCmp: { 5078 Type *ValTy = I->getOperand(0)->getType(); 5079 VectorTy = ToVectorTy(ValTy, VF); 5080 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5081 } 5082 case Instruction::Store: 5083 case Instruction::Load: { 5084 StoreInst *SI = dyn_cast<StoreInst>(I); 5085 LoadInst *LI = dyn_cast<LoadInst>(I); 5086 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 5087 LI->getType()); 5088 VectorTy = ToVectorTy(ValTy, VF); 5089 5090 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5091 unsigned AS = SI ? SI->getPointerAddressSpace() : 5092 LI->getPointerAddressSpace(); 5093 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5094 // We add the cost of address computation here instead of with the gep 5095 // instruction because only here we know whether the operation is 5096 // scalarized. 5097 if (VF == 1) 5098 return TTI.getAddressComputationCost(VectorTy) + 5099 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5100 5101 // For an interleaved access, calculate the total cost of the whole 5102 // interleave group. 5103 if (Legal->isAccessInterleaved(I)) { 5104 auto Group = Legal->getInterleavedAccessGroup(I); 5105 assert(Group && "Fail to get an interleaved access group."); 5106 5107 // Only calculate the cost once at the insert position. 5108 if (Group->getInsertPos() != I) 5109 return 0; 5110 5111 unsigned InterleaveFactor = Group->getFactor(); 5112 Type *WideVecTy = 5113 VectorType::get(VectorTy->getVectorElementType(), 5114 VectorTy->getVectorNumElements() * InterleaveFactor); 5115 5116 // Holds the indices of existing members in an interleaved load group. 5117 // An interleaved store group doesn't need this as it dones't allow gaps. 5118 SmallVector<unsigned, 4> Indices; 5119 if (LI) { 5120 for (unsigned i = 0; i < InterleaveFactor; i++) 5121 if (Group->getMember(i)) 5122 Indices.push_back(i); 5123 } 5124 5125 // Calculate the cost of the whole interleaved group. 5126 unsigned Cost = TTI.getInterleavedMemoryOpCost( 5127 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 5128 Group->getAlignment(), AS); 5129 5130 if (Group->isReverse()) 5131 Cost += 5132 Group->getNumMembers() * 5133 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5134 5135 // FIXME: The interleaved load group with a huge gap could be even more 5136 // expensive than scalar operations. Then we could ignore such group and 5137 // use scalar operations instead. 5138 return Cost; 5139 } 5140 5141 // Scalarized loads/stores. 5142 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5143 bool Reverse = ConsecutiveStride < 0; 5144 const DataLayout &DL = I->getModule()->getDataLayout(); 5145 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 5146 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 5147 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 5148 bool IsComplexComputation = 5149 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 5150 unsigned Cost = 0; 5151 // The cost of extracting from the value vector and pointer vector. 5152 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5153 for (unsigned i = 0; i < VF; ++i) { 5154 // The cost of extracting the pointer operand. 5155 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 5156 // In case of STORE, the cost of ExtractElement from the vector. 5157 // In case of LOAD, the cost of InsertElement into the returned 5158 // vector. 5159 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 5160 Instruction::InsertElement, 5161 VectorTy, i); 5162 } 5163 5164 // The cost of the scalar loads/stores. 5165 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 5166 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5167 Alignment, AS); 5168 return Cost; 5169 } 5170 5171 // Wide load/stores. 5172 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 5173 if (Legal->isMaskRequired(I)) 5174 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 5175 AS); 5176 else 5177 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 5178 5179 if (Reverse) 5180 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 5181 VectorTy, 0); 5182 return Cost; 5183 } 5184 case Instruction::ZExt: 5185 case Instruction::SExt: 5186 case Instruction::FPToUI: 5187 case Instruction::FPToSI: 5188 case Instruction::FPExt: 5189 case Instruction::PtrToInt: 5190 case Instruction::IntToPtr: 5191 case Instruction::SIToFP: 5192 case Instruction::UIToFP: 5193 case Instruction::Trunc: 5194 case Instruction::FPTrunc: 5195 case Instruction::BitCast: { 5196 // We optimize the truncation of induction variable. 5197 // The cost of these is the same as the scalar operation. 5198 if (I->getOpcode() == Instruction::Trunc && 5199 Legal->isInductionVariable(I->getOperand(0))) 5200 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 5201 I->getOperand(0)->getType()); 5202 5203 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 5204 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 5205 } 5206 case Instruction::Call: { 5207 bool NeedToScalarize; 5208 CallInst *CI = cast<CallInst>(I); 5209 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 5210 if (getIntrinsicIDForCall(CI, TLI)) 5211 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 5212 return CallCost; 5213 } 5214 default: { 5215 // We are scalarizing the instruction. Return the cost of the scalar 5216 // instruction, plus the cost of insert and extract into vector 5217 // elements, times the vector width. 5218 unsigned Cost = 0; 5219 5220 if (!RetTy->isVoidTy() && VF != 1) { 5221 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 5222 VectorTy); 5223 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 5224 VectorTy); 5225 5226 // The cost of inserting the results plus extracting each one of the 5227 // operands. 5228 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 5229 } 5230 5231 // The cost of executing VF copies of the scalar instruction. This opcode 5232 // is unknown. Assume that it is the same as 'mul'. 5233 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 5234 return Cost; 5235 } 5236 }// end of switch. 5237 } 5238 5239 char LoopVectorize::ID = 0; 5240 static const char lv_name[] = "Loop Vectorization"; 5241 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5242 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5243 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5244 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5245 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 5246 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5247 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5248 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5249 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5250 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5251 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5252 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5253 5254 namespace llvm { 5255 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5256 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5257 } 5258 } 5259 5260 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5261 // Check for a store. 5262 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5263 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5264 5265 // Check for a load. 5266 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5267 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5268 5269 return false; 5270 } 5271 5272 5273 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5274 bool IfPredicateStore) { 5275 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5276 // Holds vector parameters or scalars, in case of uniform vals. 5277 SmallVector<VectorParts, 4> Params; 5278 5279 setDebugLocFromInst(Builder, Instr); 5280 5281 // Find all of the vectorized parameters. 5282 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5283 Value *SrcOp = Instr->getOperand(op); 5284 5285 // If we are accessing the old induction variable, use the new one. 5286 if (SrcOp == OldInduction) { 5287 Params.push_back(getVectorValue(SrcOp)); 5288 continue; 5289 } 5290 5291 // Try using previously calculated values. 5292 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5293 5294 // If the src is an instruction that appeared earlier in the basic block 5295 // then it should already be vectorized. 5296 if (SrcInst && OrigLoop->contains(SrcInst)) { 5297 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5298 // The parameter is a vector value from earlier. 5299 Params.push_back(WidenMap.get(SrcInst)); 5300 } else { 5301 // The parameter is a scalar from outside the loop. Maybe even a constant. 5302 VectorParts Scalars; 5303 Scalars.append(UF, SrcOp); 5304 Params.push_back(Scalars); 5305 } 5306 } 5307 5308 assert(Params.size() == Instr->getNumOperands() && 5309 "Invalid number of operands"); 5310 5311 // Does this instruction return a value ? 5312 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5313 5314 Value *UndefVec = IsVoidRetTy ? nullptr : 5315 UndefValue::get(Instr->getType()); 5316 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5317 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5318 5319 Instruction *InsertPt = Builder.GetInsertPoint(); 5320 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5321 BasicBlock *CondBlock = nullptr; 5322 5323 VectorParts Cond; 5324 Loop *VectorLp = nullptr; 5325 if (IfPredicateStore) { 5326 assert(Instr->getParent()->getSinglePredecessor() && 5327 "Only support single predecessor blocks"); 5328 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5329 Instr->getParent()); 5330 VectorLp = LI->getLoopFor(IfBlock); 5331 assert(VectorLp && "Must have a loop for this block"); 5332 } 5333 5334 // For each vector unroll 'part': 5335 for (unsigned Part = 0; Part < UF; ++Part) { 5336 // For each scalar that we create: 5337 5338 // Start an "if (pred) a[i] = ..." block. 5339 Value *Cmp = nullptr; 5340 if (IfPredicateStore) { 5341 if (Cond[Part]->getType()->isVectorTy()) 5342 Cond[Part] = 5343 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5344 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5345 ConstantInt::get(Cond[Part]->getType(), 1)); 5346 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5347 LoopVectorBody.push_back(CondBlock); 5348 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5349 // Update Builder with newly created basic block. 5350 Builder.SetInsertPoint(InsertPt); 5351 } 5352 5353 Instruction *Cloned = Instr->clone(); 5354 if (!IsVoidRetTy) 5355 Cloned->setName(Instr->getName() + ".cloned"); 5356 // Replace the operands of the cloned instructions with extracted scalars. 5357 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5358 Value *Op = Params[op][Part]; 5359 Cloned->setOperand(op, Op); 5360 } 5361 5362 // Place the cloned scalar in the new loop. 5363 Builder.Insert(Cloned); 5364 5365 // If the original scalar returns a value we need to place it in a vector 5366 // so that future users will be able to use it. 5367 if (!IsVoidRetTy) 5368 VecResults[Part] = Cloned; 5369 5370 // End if-block. 5371 if (IfPredicateStore) { 5372 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5373 LoopVectorBody.push_back(NewIfBlock); 5374 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5375 Builder.SetInsertPoint(InsertPt); 5376 ReplaceInstWithInst(IfBlock->getTerminator(), 5377 BranchInst::Create(CondBlock, NewIfBlock, Cmp)); 5378 IfBlock = NewIfBlock; 5379 } 5380 } 5381 } 5382 5383 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5384 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5385 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5386 5387 return scalarizeInstruction(Instr, IfPredicateStore); 5388 } 5389 5390 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5391 return Vec; 5392 } 5393 5394 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5395 return V; 5396 } 5397 5398 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5399 // When unrolling and the VF is 1, we only need to add a simple scalar. 5400 Type *ITy = Val->getType(); 5401 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5402 Constant *C = ConstantInt::get(ITy, StartIdx); 5403 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5404 } 5405